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Abstract. There are different types of correlation patterns between the
variables of a time course data set, such as positive correlations, negative
correlations, time-lagged correlations, and those correlations containing
small interrupted gaps. Usually, these correlations are maintained only on
a subset of time points rather than on the whole span of the time points
which are traditionally required for correlation definition. As these types
of patterns underline different trends of data movement, mining all of
them is an important step to gain a broad insight into the dependencies
of the variables. In this work, we prove that these diverse types of corre-
lation patterns can be all represented by a generalized form of positive
correlation patterns. We also prove a correspondence between positive
correlation patterns and sequential patterns. We then present an efficient
single-scan algorithm for mining all of these types of correlations. This
“pan-correlation” mining algorithm is evaluated on synthetic time course
data sets, as well as on yeast cell cycle gene expression data sets. The
results indicate that: (i) our mining algorithm has linear time increment
in terms of increasing number of variables; (ii) negative correlation pat-
terns are abundant in real-world data sets; and (iii) correlation patterns
with time lags and gaps are also abundant. Existing methods have only
discovered incomplete forms of many of these patterns, and have missed
some important patterns completely.

1 Introduction

Time course data have been involved in many real-world applications, especially
in the fields of finance, healthcare and biomedicine. This work investigates the
mining algorithm of correlation patterns. A correlation pattern is defined as a
series of highly correlated data movement trends between two sets of variables on
some subset of time points (not necessarily on the whole span of the time points).
The two basic types of correlations are the positive correlation or the negative
correlation. A pattern of positive correlation is a set of variables showing the
same direction in their data movements. On the other hand, the data changes
of one set of variables in a negative correlation pattern go jointly up or down
whenever the value changes of the other set of variables move in the opposite
direction. Variables in time course data also have time-dependent interactions.
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The influence of a variable on other variables sometimes may not be immediate.
Instead, it is going to be effective only after some time delay, leading to time-
lagged correlation (positive or negative). Thus, there are four types of correlation
patterns: the basic positive and negative correlation patterns (i.e., synchronized
correlations without time delay), and time-lagged positive and negative corre-
lation patterns. Time course data in real-world applications may also contain a
small amount of unknown noise and errors. These noise and errors can interrupt
the time continuity of a correlation, leading to gaps in the correlation. Gaps
complicate the complexity of correlation mining, because the gaps can happen
at any time point, and the length of a gap is unknown.

This work introduces a new type of correlation pattern, named “pan-correlation
patterns”, to maximize the sequence of coherent data movements in one pattern.
A pan-correlation pattern consists of a maximized sub-list V0 of variables, where
all the listed variables are associated with a segment of time points having the
same length, such that V0 can be divided into two not necessarily mutually-
exclusive lists of variables V1 and V2, satisfying: (i) every pair of variables within
V1 are positively correlated, or time-lag positively correlated, or time-lag posi-
tively correlated with gaps; (ii) every pair of variables within V2 are positively
correlated, or time-lag positively correlated, or time-lag positively correlated
with gaps; and (iii) every pair of variables between V1 and V2 are negatively cor-
related, or time-lag negatively correlated, or time-lag negatively correlated with
gaps. V1 or V2 can be empty—in this case, a pan-correlation pattern is simplified
as a positive pan-correlation pattern. By our definition, a pan-correlation pat-
tern can cover all of the following characteristics: the basic positively/negatively
correlated data movement trends, time-lag effects, and noise/error gaps. Howev-
er, mining significant pan-correlation patterns is a problem of high complexity.
Existing methods are not capable of conducting the mining of pan-correlation
patterns. They may only be able to detect a special subtype of pan-correlation
patterns, for example, positive correlation patterns by [6, 3], or negative correla-
tion patterns by [14, 7], or both positive and negative correlations by [15, 4], or
time-lagged positive correlation patterns by [5, 2].

Our work introduces an efficient algorithm for mining significant pan-correlation
patterns. We proposed three critical ideas. First, we prove that all the different
types of correlation patterns can be represented by a generalized form of pos-
itive correlation patterns—viz. pan-correlation patterns. Based on this theory,
we can focus on the mining of all positive correlations. Second, the time course
data set is transformed into a sequential data set containing sequences of “up”,
“down”, and “no-change”, which are the three movement trends of variables.
With this data discretization idea [11, 7, 9], the pan-correlation mining problem
can be converted into a sequential pattern mining problem. Central to how we
enable the representation of the different types of negative correlation patterns
through the generalized form of positive correlation patterns is that we make an
opposite-mirror copy [8] of the original sequential data set and then add it to
the original data. A cost of adding the mirror copy of the sequential data is that
many redundant patterns are produced. Thus, our third new idea is to modify
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a sequential pattern mining algorithm to efficiently prune redundant patterns
in the mining process. Our pan-correlation mining algorithm is tested on syn-
thetic time course data sets and four microarray gene expression time course
data sets. The synthetic data sets are used to demonstrate the efficiency of our
algorithm. The experiments on the gene expression data show that negative cor-
relation patterns are indeed abundant in real-world data sets, and that patterns
with different time delays and gaps are common. It is worth noting that pan-
correlation patterns are not a kind of pairwise correlation patterns, and it is of
high time complexity, if not impossible, to use traditional algorithms, clustering
or pairwise correlation, to mine pan-correlation patterns.

The rest of the paper is organized as follows. We define the six types of
correlation patterns and their closure property in Section 2. We then describe
our pan-correlation mining algorithm in Section 3. After that, we present result-
s of our pan-correlation mining algorithm on synthetic and also real-life gene
expression time course data sets in Section 4.

2 Problem formulation
Let V be a set of NV variables v1, v2, . . . , vNV

. Let T be a set of NT consecutive
time points t1, t2, . . . , tNT . Here, tj and tj+1 in NT are two ordered consecutive
time points with tj ≺ tj+1, indicating that tj precedes tj+1. Let mi,j denote the
value of variable vi at time point tj . A time course data set is then defined by
the data matrix M = [mi,j ]NV ×NT

.

2.1 Correlation patterns: Definitions
Definition 1. A positive correlation pattern p is a pair comprising a subset V0

of variables in V and a continuous segment Tp of time points in T such that,
for every pair of consecutive time points from tj to tj+1 in Tp, the values of all
variables in V0 decrease or increase simultaneously. A positive correlation p is
written as p = ⟨V0, Tp⟩.
It is possible that the magnitude of the ‘decrease’ or ‘increase’ is very small.
These slight decrease or increase movements are both considered as ‘no-change’.
Therefore, these time segments will be considered to have the same value move-
ment in a positive correlation when the variables change their movements very
slightly. More formally, for each vi, we say the value of vi increases (decreas-
es) from consecutive time point tj to tj+1 if it changes by at least δi, where δi
is some specified threshold. Under this assumption, a pattern containing only
‘no-change’ provides less information for high correlation. Therefore, we require
that a correlation pattern must contain at least one significant decrease/increase
movements. This convention is applied on all definitions, lemmas, and proposi-
tions in this work. Please note that δs might also result in information lost in
correlation pattern. Optimal δ’s threshold should consider the tradeoff between
insignificant, noise change and information lost. There is no gold standard to
provide the best δs. Thus, the threshold of δs could be specified by users based
on domain knowledge.

Definition 2 (Cf. [7]). A negative correlation pattern n is a triplet comprising
two non-overlapping subsets V1 and V2 of variables in V and a continuous seg-
ment Tn of time points in T such that, for every pair of consecutive time points
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from tj to tj+1 in Tn, the values of all variables in V1 decrease while the values
of all variables in V2 increase, and vice versa. A negative correlation n is written
as n = ⟨(V1, V2), Tn⟩.
These two definitions describe a synchronized pace of value change without time
delay. In fact, some variables in the data matrix M may have influence on others,
but the effect may not take place immediately (i.e., after some time delay).

Definition 3. A time-lagged negative correlation pattern kn is a pair of dis-
tinct lists {(vx1 , T

1
p ), . . . , (vxh

, Th
p )} and {(vy1 , T

1
q ), . . . , (vyg , T

g
q )}, such that:

(i) V1 = {vx1 , . . . , vxh
} and V2 = {vy1 , . . . , vyg} are two possibly overlapping

lists of not necessarily distinct variables of V ; (ii) T 1
K = {T 1

p , . . . , T
h
p } and

T 2
K = {T 1

q , . . . , T
g
q } are two lists of h and g continuous time segments of the

same length in T ; (iii) for every 1 ≤ r < |T 1
p | and for every vxi ∈ V1, the value

of vxi increases (decreases) from the rth time point in T i
p to the (r + 1)th time

point in T i
p if and only if for all other vxj ∈ V1, the value of vxj increases (de-

creases) from the rth time point in T j
p to the (r+1)th time point in T j

p ; (iv) for
every 1 ≤ r < |T 1

p | and for every vyi ∈ V2, the value of vyi increases (decreases)

from the rth time point in T i
q to the (r+ 1)th time point in T i

q if and only if for
all other vyj ∈ V2, the value of vyj increases (decreases) from the rth time point
in T j

q to the (r+1)th time point in T j
q ; and (v) for every 1 ≤ r < |T 1

p |, for every
vxi ∈ V1, and for every vyj ∈ V2, the value of vxi increases (decreases) from the
rth time point in T i

p to the (r + 1)th time point in T i
p if and only if the value

of vyj decreases (increases) from the rth time point in T j
q to the (r + 1)th time

point in T j
q . For convenience, a time-lagged negative correlation kn is written as

kn = ⟨(V1, V2), (T
1
K , T 2

K)⟩.
When V1 and T 1

K , or V2 and T 2
K , are empty, kn is a time-lagged positive corre-

lation, denoted by kp.
A time segment can be extended into a discontinuous time segment to tolerate

some small amount of noise. For example, Tp = [1, 2, 3, 4, 7, 8, 9, 10] is a discon-
tinuous time segment containing a gap of length 2 between 4 and 7. The first 4
time points of Tp are continuous from 1 to 4, and the next 4 time points are con-
tinuous from 7 to 10. The pattern p = {(v, Tp = [1, 2, 3, 4, 7, 8, 9, 10]), (v′, T ′

p =
[1, 2, 3, 4, 5, 6, 7])} is defined as a positive correlation pattern with gaps if the
changes of the values of v for any two consecutive time points of [1, 2, 3, 4] are
in the same direction as the changes of the values of v′ for [1, 2, 3, 4], and the
changes of the values of v for any two consecutive time points of [7, 8, 9, 10] are
in the same direction as the changes of the values of v′ for [4, 5, 6, 7]. The data
movement trends between the time points 4 and 7 in v are not considered due
to the gap.

Next, we introduce the definitions for (time-lagged) positive/negative corre-
lation patterns that contain gaps. A pair of consecutive time points ti and ti+1

is denoted as tpp(i,i+1). In this work, all time-point pairs are pairs of consecutive
time points. Let Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h} be an ordered list of h
time-point pairs, where tij ≺ tij+1 . Tpp is continuous if and only if for every
1 ≤ k ≤ h, ik + 1 = ik+1. Otherwise, Tpp is discontinuous and contains gap-
s. A continuous Tpp corresponds to a continuous time segment. For example,
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{tpp(1,2), tpp(2,3), tpp(3,4)} corresponds to time segment {t1, t2, t3, t4}. A discon-
tinuous Tpp may also corresponds to a continuous time segment. For example,
{tpp(1,2), tpp(3,4)} correspond to time segment {t1, t2, t3, t4}. So, a time segment
alone is not sufficient to define the data movements on the time-point pairs and
the movement gaps.

Definition 4. A negative pan-correlation pattern is a time-lagged negative cor-
relation pattern with gaps. That is, it is a pair of distinct lists {(vx1 , Tpp

1
p), . . .,

(vxh
, Tpphp)} and {(vy1 , Tpp

1
q), . . . , (vyg , Tpp

g
q)}, such that: (i) V1 = {vx1 , . . . , vxh

}
and V2 = {vy1 , . . . , vyg} are two possibly overlapping lists of not necessarily dis-

tinct variables in V ; (ii) T PP1
K = {Tpp1p, . . . , Tpphp} and T PP2

K = {Tpp1q, . . .,
Tppgq} are two lists of time-point-pair lists all with the same length and possibly
containing different gaps; (iii) for every 1 ≤ r < |Tpp1p| and for every vxi ∈ V1,

the value of vxi increases (decreases) at the rth time-point pair in Tppip if and
only if for all other vxj ∈ V1, the value of vxj increases (decreases) at the rth
time-point pair in Tppjp; (iv) for every 1 ≤ r < |Tpp1p| and for every vyi ∈ V2,

the value of vyi increases (decreases) at the rth time-point pair in Tppiq if and
only if for all other vyj ∈ V2, the value of vyj increases (decreases) at the rth
time-point pair in Tppjq; (v) for every 1 ≤ r < |Tpp1p|, for every vxi ∈ V1, and for
every vyj ∈ V2, the value of vxi increases (decreases) at the rth time-point pair
in Tppip if and only if the value of vyj decreases (increases) at the rth time-point

pair in Tppjq. For convenience, a negative pan-correlation pattern C is written as

C = ⟨(V1,V2), (T PP1
K , T PP2

K)⟩.

When V1 and T PP1
K , or V2 and T PP2

K , are empty, C is a positive pan-
correlation. Moreover, every continuous time segment T∗ in the definitions from
Definition 1 to Definition 3 can be converted into a continuous Tpp. Thus all
correlation patterns by these definitions can be rewritten by using time-point-
pair list Tpp to replace time segment T∗.

There are a huge number of positive and negative pan-correlation patterns in
the data matrix M . However, we are only interested in those patterns that are
closed. A pattern C = ⟨(V1,V2), (T PP1

K , T PP2
K)⟩ is closed if (i) any time-point-

pair list in T PP1
K and T PP2

K cannot be enlarged to include more time-point
pairs without breaking the underlying correlation among the variables in V1 and
V2, and (ii) the list of variables V1 and V2 cannot be enlarged to include more
variables as there can be no other variable that correlates positively or negatively
to those in V1 and V2 over the same number of time-point pairs in T PP1

K and
T PP2

K . Every positive (negative) pan-correlation pattern can be derived from
some closed positive (negative) pan-correlation patterns by deleting variables
and/or deleting time-point pairs. Thus, the set of all closed positive (negative)
pan-correlation patterns forms a lossless and non-redundant representation of
positive (negative) pan-correlation patterns. These patterns are called closed
patterns and more specifically C-, CP-, and CN-closed patterns.

The following relationships between the various types of pan-correlation pat-
terns can be easily proved.
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Proposition 1. Let C = ⟨(V1,V2), (T PP1
K , T PP2

K)⟩, C1 = ⟨V1, T PP1
K⟩, and

C2 = ⟨V2, T PP2
K⟩. Then

– C is in CN implies both C1 and C2 are in CP.
– C is in CN if, and only if, C′ = ⟨(V2, V1), (T PP2

K , T PP1
K)⟩ is in CN.

– C is closed in C if, and only if, it is closed in CN.
– C′

1 = ⟨(V1, {}), (T PP1
K , {})⟩ is closed in CN implies C1 is closed in CP.

– C is closed in C implies for i ∈ {1, 2}, for every (closed) pattern C′ =
⟨V ′, T PP ′⟩ in CP where Ci ⊑p C′, it is the case that Vi = V ′ (Note that
Ci = C′ does not hold).

The second point of Proposition 1 implies some degree of redundancy, as the two
patterns C and C′ capture the same correlation information. We will deal with
this redundancy later in Section 3.

2.2 Unified representation of all correlation patterns

Let V ∗ be a set of variables v1∗, v2∗, ..., vNV
∗. Let mi,j∗ = −mi,j denote the

value of variable vi∗ at time point tj , and this value of vi∗ at time point tj is
the negation of the value of vi at time point tj . A negated time course data
set is then defined by the data matrix M∗ = [mi,j∗]NV ×NT . It is also called a
mirror-copy of M . Clearly, whenever the value of vi increases (decreases) from
time point tj to time point tj+1, the value of vi∗ decreases (increases) from time
point tj to time point tj+1. I.e., the value of vi∗ moves in the opposite direction
of vi. Let M

′ be the matrix obtained by adding the negated data matrix M∗ to
the original data matrix M (details are given in Section 3.2). Then, the lemma
below follows from this observation and can be easily proved.

Lemma 1. C = ⟨(V1 = {vx1
, . . . , vxh

}, V2 = {vy1
, . . . , vyg

}), (T PP1
K = {Tpp1p, . . . , Tpphp},

T PP2
K = {Tpp1q, . . . , Tppgq})⟩ is in CN in the data matrix M if, and only if, C∗ =

⟨V = {vx1 , . . . , vxh
, vy1∗, . . . , vyg∗}, T PP = {Tpp1p, . . . , Tpphp , Tpp1q, . . . , Tppgq}⟩

is in CP in the data matrix M ′.

Based on the equivalence above, for C in CN with regard to M , we write C∗
for its counterpart in CP with regard to M ′.

Every closed CP pattern in the data matrix M ′ is in a one-to-one correspon-
dence with a closed CN pattern (also a closed C pattern) in the data matrix
M .

Theorem 1. C = ⟨(V1 = {vx1 , . . . , vxh
}, V2 = {vy1 , . . . , vyg}), (T PP1

K =

{Tpp1p, . . . , Tpphp}, T PP2
K = {Tpp1q, . . . , Tppgq})⟩ is closed in the data matrix

M if, and only if, C∗ is closed in the data matrix M ′. Thus, C-closed patterns
in M are in one-to-one correspondence with CP-closed patterns in M ′. (Proof is
omitted due to page limitation.)

3 Mining algorithms

Our efficient mining of all significant pan-correlation patterns consists of the
following four components.
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3.1 Transform time-course data set M into sequential transaction
data set S

Given a time-course data setM = [mi,j ]NV ×NT
, let si,j be the value movement of

the variable vi between time point tj and tj+1 (= tj+1). Specifically, si,j is U (up)
if mi,j+1 ≥ mi,j + δi, and is D (down) if mi,j+1 ≤ mi,j − δi, and is O otherwise.
Let Ri = {si,1, si,2, · · · , si,NT−1} be the sequence of all value movements of
vi ∈ V . Let S = [si,j ]NV ×(NT−1) be a sequential transaction data set which is
easily transformed from M . S has the same variables V as M does, but each
variable in S has NT − 1 sequential value movements. In the transformation,
δi is used to define the scale of the variable vi’s value movement in M . δi for
vi ∈ V is set as twenty percents of the absolute difference between the second
maximum value of mi,j and the second minimum value of mi,j , 1 ≤ j ≤ NT .
The maximum value and the minimum value are discarded to avoid some outlier
values of vi in M .

We view S as a set of sequential transactions. And each row Ri in S cor-
responds to a sequential transaction and is viewed a sequence of value move-
ments (U, D, and O). Given any variable vi ∈ V and any ordered set of
time-point pairs Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h}. Let f(vi, Tpp) be the
list {si,i1 , . . . , si,ih}. Thus, f(vi, Tpp) gives the value movements of vi during
Tpp. We write f ′(vi, Tpp) to denote the list obtained by flipping every U to
D and every D to U in f(vi, Tpp). In S, a sequential pattern is a list of val-
ue movements (U, D, and O). A sequential pattern sp = {s1, . . . , sh} is said
to occur in a sequential transaction Ri if there is a list of time-point pairs
Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h}, such that f(vi, Tpp) = sp. That is, the
value movements specified in the pattern sp occur in the transaction Ri in the
same order as they appear in sp, possibly separated by other value movements.
We write supp(sp, S) to denote the support of the sequential pattern sp in S.

The space of all sequential patterns occurring in S is denoted by SP. A closed
sequential pattern in SP is defined below, which is similar to those in previous
works [13].

Definition 5. Let sp and sp′ be two sequential patterns. We say sp ≤ sp′ in SP
if, and only if, sp is a subsequence of sp′ or is identical to sp′, and supp(sp, S) =
supp(sp′, S). The closed patterns of SP are the maximal patterns in SP according
to this partial order.

It is obvious that f(vxi , Tpp
i) = f(vxj , Tpp

j) for 1 ≤ i, j ≤ h, for any pattern
C = ⟨V = {vx1 , ..., vxh

}, T PP = {Tpp1, . . . , Tpph}⟩ in CP in M . The following
easily-proved property connects the closed patterns in SP of S and those in CP
of M .

Proposition 2. For every SP-closed pattern sp in S, there is a unique CP-
closed pattern C = ⟨V = {vx1

, . . . , vxh
}, T PP = {Tpp1, . . . , Tpph}⟩ in M , such

that sp = f(vxi , Tpp
i) for 1 ≤ i ≤ h. And for every CP-closed pattern C = ⟨V =

{vx1
, . . . , vxh

}, T PP = {Tpp1, . . . , Tpph}⟩ in M , there is a SP-closed pattern sp
in S, such that sp = f(vxi , Tpp

i) for 1 ≤ i ≤ h. Thus, SP-closed patterns in S
are in one-to-one correspondence with CP-closed patterns of M .
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3.2 Opposite mirror copy of S

In S = [si,j ]NV ×(NT−1), a positive correlation pattern is denoted by one sequence
of value movements, while a negative correlation pattern is denoted by two se-
quences of value movements whose value movements are opposite to each other
at every position, U vs. D, and D vs. U. To make available in S the unified for-
mulation of positive and negative correlation patterns, an opposite mirror copy
of each transaction in S is created and added into S. This data management
technique was similarly used by [8] for mining biclusters.

Given the value movements of vi in S, i.e., Ri = {si,1, si,2, . . . , si,NT−1}, let
its opposite mirror copy be R∗i = {s∗i,1, s∗i,2, . . . , s∗i,NT−1} where s∗i,j is up if
si,j is down, s∗i,j is down if si,j is up, and otherwise s∗i,j = si,j . The opposite
mirror copy of all transactions in S are added into S. The new transaction data
set is denoted by S′ = [s′i,j ]2NV ×(NT−1), where all Ris of vis are indexed from 0
to 2NV -2 with step 2 in S′, and all R∗is are indexed from 1 to 2NV -1 with step
2. This index strategy is used later. S′ is also the sequential transaction data set
derived from M ′.

Then, the crucial theorem below follows immediately from Theorem 1 and
Proposition 2.

Theorem 2. SP-closed patterns in S′ are in one-to-one correspondence with
C-closed patterns in M . (Proof is omitted due to page limitation.)

3.3 Mine frequent closed sequential value movements in S′

All SP-closed patterns in S′ can be detected using efficient algorithms of min-
ing closed sequential patterns. After that, given a SP-closed pattern in S′, by
Theorem 2, there is a corresponding CP-closed pattern in M ′, i.e., a C-closed
pattern in M . Then, all pan-correlation patterns can be easily obtained from
these frequent closed sequential value movements by restoring the time-point
pair information and the transaction id information: given a SP-closed pattern
sp and its supp(sp, S) with {vx1 , ..., vxh

, vy1∗, ..., vyg∗}, the variables from V of
M ′ are grouped in one set while those from V ∗ are grouped in another set,
indicating the negative correlation between the two sets; then, the time-point
pair information associated with sp is detected by matching sp with each vari-
able vxi ∈ supp(sp, S) where there might be multiple matches in vxi , indicating
multiple occurrence of sp in vxi .

3.4 Opposite mirror copy causes redundancy in patterns

In M ′, every pan-correlation pattern has a mirror image that carries the same in-
formation.For example, a negative correlation pattern C = ⟨(V1,V2), (T PP1, T PP2)⟩
in M can be represented by C∗ = ⟨V1 ∪ V2∗, T PP1 ∪ T PP2⟩ or C∗′ = ⟨V1 ∗
∪V2, T PP1∪T PP2⟩ in M ′. Here, V1∗ is the negation of V1 and V2∗ is the nega-
tion of V2. Correspondingly in S′ from M ′, sp = f(vxi , Tpp

i) for vxi ∈ V1 ∪ V2∗
and sp′ = f(vyj , Tpp

j) for vyj ∈ V1 ∗ ∪V2, and sp ̸= sp′. Thus, C is mined twice
in terms of sp or sp′ in S′. And once one of sp and sp′ is known, there is no
need to mine the other because the other can be produced according to the flip
relationship between their components. Thus, sp and sp′ are redundant. It is
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easily proved that a closed C correlation pattern in M is always detected twice
in terms of sp and sp′ in S′.

Fortunately, each pair of redundant patterns has some unique property below.
Without loss of generality, let a pair of redundant patterns C∗ = ⟨(vx1 , Tpp

1
p), . . . , (vxh

, Tpphp),

(vy1∗, Tpp1q), . . . , (vyg∗, Tppgq)⟩ and C∗′ = ⟨(vx1∗, Tpp1p), . . . , (vxh
∗, Tpphp), (vy1 , Tpp

1
q), . . . , (vyg , Tpp

g
q)⟩

on M ′ both capture the same information as C = ⟨(V1 = {vx1 , . . . , vxh
}, V2 =

{vy1 , . . . , vyg}), (T PP1
K = {Tpp1p, . . . , Tpphp}, T PP2

K = {Tpp1q, . . . , Tppgq})⟩ in

M . Here v∗ is the negation of v. Then, we rewrite C∗ = {(vz1 , Tpp1), . . . , (vzh+g
, Tpph+g)}

and C∗′ = {(v′w1
, Tpp1

′
), . . . , (v′wh+g

, Tpph+g′
)}. In C∗ and C∗′, assume that all

pairs of (vz∗ , Tpp
∗) are ordered first according to the transaction indexes of vz∗

and then according to the time-point pairs in Tpp∗. After that, it is easily proved
that vz1 = vw1∗, or z1 = w1 and Tpp1 ≤ Tpp1

′
, or vice versa.

Thus to avoid producing redundant SP-closed patterns in S′, we must modify
the algorithm for mining sequential value movements. We apply two constraints
below to prune the redundant patterns. (i) On a sub-dataset S′

s ⊆ S′ with the
ascending order of the indexes of all transactions on S′ (Please refer to Section 3.2
for the detail of the indexes), assume Rxj is the first transaction on S′

s , i.e.,
the transaction with the minimum transaction index. If Rxj is produced from
a vi∗ ∈ V ∗, all sequential patterns on S′

s are redundant and thus the search of
new sequential patterns on S′

s should be pruned. (ii) Otherwise, given a frequent
value movement e (i.e. a value movement U, D or O) on S′

s, let Rxmin1 be the
transaction with the minimum id where e occurs, and pos1 be the first occurrence
position of e in Rxmin1 ; let Rxmin2 be the transaction with the second minimum
id where e occurs, and pos2 be the first occurrence position of e in Rxmin2 . If
Rxmin1 is produced from vi ∈ V and Rxmin2 is produced from vi∗ ∈ V ∗ and
pos1 > pos2, the search in the branch of frequent sequential patterns adding e
is redundant and should be pruned. The lemma below is easily proved.

Lemma 2. Our pruning strategy can guarantee that the closed sequential pat-
terns detected are complete and non-redundant in S′. (Proof is omitted due to
page limitation.)

3.5 Parameter setting

Three parameters, minV , minTPP and maxO, are used to prune trivial corre-
lation patterns. In a given pan-correlation pattern C = ⟨V, T PP⟩, minV is the
minimum size of V, minTPP is the minimum size of Tpp ∈ T PP, and maxO is
the maximum number of O contained.

3.6 An illustrative example

Figure 1 illustrates how our algorithm works. A time-course data set M has
six variables and eight time points. M is shown in Figure 1(a) and visualized in
Figure 1(b). Figure 1(b) does not easily show a very nice pan-correlation between
the six variables. But our algorithm can discover a good negative correlation
pattern among the six variables.

By our algorithm, M is firstly discretized to obtain a sequential data S in
the first part of Figure 1(c). Then the opposite mirror copy of all sequences in
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ID 1 2 3 4 5 6 7 8

v1 5 11 14 �8 9 4 13 �4
v2 2 6 9 �5 �6 4 1 8

v3 �1 1 3 6 4 0 5 �5
v4 -6 -10 -14 -9 -3 -13   -3   -3
v5 -2 -5 -8 -5 -1 -9 ��-10   -5
v6   -1 �0 0 -4 -7 -5 -1 -5

(a)

15

v

v

v

v

v5

0

5

10

1 2 3 4 5 6 7 8

v1

v2

v3

v4

v5v5

v

 15

 10

 5
v5

v6

11

(b)

Figure 2. An example time-series data

ID 2−1 3−2 4−3 5−4 6−5 7−6 8−7

a b c d e f g

The discritized data set

v1 0 U U D  O D U  D
v2 2 U U D  O  O D U

v3 4  O U U D D U  O
v4 6 D D U U D  U  O
v5 8 D D U U D  O  U
v6 10  O  O D D U U D

The opposite discritized data set

v1 1 D D U  O U D U

v2 3 D D U  O  U U D

v3 5  O D D U U D  O
v4 7 U U D D U  D  O
v5 9 U U D D U  O  D
v6 11  O  O U U D D U

15

(c)

ID a b c d e f g

v1 0 U U D  O D U  D
1 D D U  O U D  U

v2 2 U U D  O  D D U

3 D D U  O  U U D

v3 4  O U U D D U  O
5  O D D U U D  O

v4 6 D D U U D  U  O
7 U U D D U  D  O

v5 8 D D U U D  O  U
9 U U D D U  O  D

v6 10  O  O D D U U D

11  O  O U U D D U

(d)

Pattern 1 U,U,D,D,U

Occurrence 1 0,2,4,7,9,11

Pattern 2 D,D,U,U,D

Occurrence 2 1,3,5,6,8,10

15

(e)

Pattern 1 U,U,D,D,U

Occurrence 1 group 1 v1,v2,v3

group 2 v4,v5,v6

15

(f)

5

10

15

v1

v2

v3

1

 10

 5

0

1 2 3 4 5 6 7 8

v3

v4

v5

v6

 15

(g)

15

v

v

v

4

0

5

10

v1

v2

v3

4v4

v

v

 15

 10

 5

1 2 3 4 5 6
v4

v5

v6

(h)

Fig. 1. An illustrative example of our algorithm. (a) An example of time-course data
set M . (b) The plot of the example data set. (c) The discretized data set. (d) The
combined data set using the opposite mirror copy strategy. (e) The negative pan-
correlation patterns. (f) The pattern matching in the original data. (g) The plot of the
pattern with gaps and lagged time points. (h) The plot of the pattern merging gaps
and ignoring lagged time points (for visualization only). The strike-through((((numbers,

�U,�O and�D indicate those values and value movements not in the detected patterns
in (e). From (c) to (f), U indicates Up-changed, O no change, while D Down-changed.

S, as shown in the second part of Figure 1(c), is constructed using the strategy
in Section 3.2. All sequences in Figure 1(c) comprise S′ in Figure 1(d). With
minV = 5 and minTPP = 5, two pan-correlation patterns are available in S′,
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as shown in Figure 1(e). It can be clearly seen from Figure 1(e) that these two
pan-correlation patterns are the same in the original data M , which can be
represented in Figure 1(f). Our algorithm can prune the redundancy and only
outputs this pattern (visualized in Figure 1(g)). If the gaps are merged and the
time points lagged are ignored (for visualization only), this correlation pattern
is shown in Figure 1(h).

4 Performance evaluation and application
Our algorithm was tested on both synthetic time-course data sets and real-world
time-course data sets of biomedical gene expression. In the implementation, we
modified the source code of BIDE+ [13] for detecting pan-correlation patterns
by integrating our pruning strategies.

4.1 Efficiency and scalability results on synthetic data sets
Two series of synthetic data sets are used. The first series of data sets have
the same number of time points but have an increasing number of variables.
The second series of data sets have the same number of variables but have an
increasing number of time points. The values in these data sets are randomly
chosen from {−150,−148,−146, . . . , 150}. The efficiency of BIDE+ without our
pruning strategies is also evaluated on the mirror-copy datasets of the synthetic
data. This performance is used for the comparison to show the contribution of
our algorithm.

(a) (b)

Fig. 2. The assessment on the synthetic data.Both minTPP and minV are set to 2, and
maxO to the number of time points. (a) The computing time (sec.) when the number
of variables increases. (b) The computing time (sec.) when the number of time points
increases.

Our algorithm was applied to the first series of data sets to see its scalability
when the variable size increases. We set the number of time points as NT = 20,
and increaseNV from 100 to 500, 1,000, 2,000, 4,000, 6,000, 8,000, 16,000, 32,000,
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64,000, and to 128,000. The data at each NV are randomly produced three
times to avoid some randomization effect. The average computing time costs
are shown in Figure 2(a). It can be seen that the computing time cost by our
algorithm increases very slowly. It has approximately linear increment of time
complexity with increasing NV . In particular when NV = 128, 000, the average
computing time is about 30 minutes. Figure 2(a) also shows that BIDE+ without
our pruning strategies is more than nine times slower than our algorithm when
NV = 128, 000.

Both our algorithm and BIDE+ without our pruning strategies were also
applied to the second series of synthetic data sets to examine its scalability
when the size of time points increases. We keep the number of variables always
as NV = 5000 and randomly produce data sets with NT varying from 5 to 8,
10, 12, 15, 20, 25, 28, and to 30. The data sets of each NT are also randomly
produced three times to avoid the randomization effect. The average computing
time costs are shown in Figure 2(b). The computing costs increase exponentially
when the number of time points NT increases. Again, Figure 2(b) suggests that
BIDE+ without our pruning strategies is more than 14 times slower than our
algorithm when NT = 28. In conclusion, our algorithm is much faster than
sequential pattern mining algorithms to detect pan-correlation patterns.

4.2 Application in time-course gene expression data

Our algorithm was also evaluated on four real-life microarray gene expression
data sets: alpha, cdc15, elu [12], and cdc28 [1]. All of them are time-course
gene expression data related to Yeast cell cycle. elu, cdc28, alpha and cdc15
involve 14, 17, 18 and 24 time points, respectively. The four data sets have
5,114 common available genes. our algorithm is able to detect significant pan-
correlation patterns efficiently with less than 7 minutes.

At the minTPP level of 70% of NT (i.e., spanning at least 10, 12, 13 and 17
time-point pairs in elu, cdc28, alpha and cdc15 respectively), our algorithm de-
tects 1,934 C pan-correlation patterns in elu, 5,942 in cdc28, 13,693 in alpha and
139,811 in cdc15. Because C pan-correlation patterns may overlap very much,
we filter out overlapping patterns. This filtering results in 588, 2,392, 3,191 and
9,501 non-overlapping C correlation patterns in elu, cdc28, alpha and cdc15,
respectively.

We examine the correlation coefficient, positive or negative, of the variables
in our pan-correlation patterns to demonstrate that highly correlated patterns
cannot be observed if the time lagging effect or the broken gap is not consid-
ered. Given a pan-correlation pattern C = ⟨V, T PP⟩, its Pearson’s correlation

coefficient PCC is calculated by PCC =

∑
vxi

∈V,vxj
∈V,xi ̸=xj

abs(p(vxi
,vxj

))

(∥V∥×(∥V∥−1)) , where

abs(∗) returns the absolute value of ∗, p(vxi , vxj ) is the Pearson’s correlation
coefficient between the value movements of two variables vxi and vxj on all time
points in the original time-course data, and ∥V∥ is the number of unique variables
in V.

In comparison, we also calculate PCC only on T PP, and call it PCCT PP .
PCCT PP is also calculated by the above equation except that p(vxi , vxj ) is
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computed only on those time-point pairs involving in T PP. When PCC or
PCCT PP is 1, it means that all the variables in V are correlated ideally with
each other. When PCC or PCCT PP is 0, there is completely no correlation
for the variables. PCC and PCCT PP are compared to signify particularly that
time-lagged correlation patterns can have strong correlations.

The results are shown in Table 1. It is observed that the variables in our C
pan-correlation patterns are highly correlated with each other, having an average
PCCT PP > 0.82 across the four datasets. However, their correlation on all time-
point pairs without consideration of time lagging effect or broken gaps is very
low with an average PCC < 0.35 across the four datasets. This implies that
if an algorithm does not take lagged time points and gaps into considerations,
it would miss many pan-correlation patterns or would discover only specialized
pan-correlation patterns.

Table 1. PCC and PCCT PP on four time-course gene expression data.

Dataset mina meana stda maxa

elu PCC 0.191 0.294 0.026 0.450
PCCT PP 0.719 0.832 0.022 0.923

cdc28 PCC 0.069 0.264 0.036 0.483
PCCT PP 0.657 0.827 0.028 0.919

alpha PCC 0.133 0.299 0.048 0.565
PCCT PP 0.685 0.832 0.029 0.936

cdc15 PCC 0.122 0.347 0.083 0.799
PCCT PP 0.620 0.826 0.034 0.933

a: The minimum, mean, standard deviation and maximum PCC or PCCT PP of all
pan-correlation patterns in each data set.

Four examples of pan-correlation patterns We show one pan-correlation
pattern for each of the four microarray time-course data sets to partly illustrate
the complexity of mining correlation patterns. These examples are displayed at
Figure 3(c), 3(d), 3(g) and 3(h). The original time-course data of the involved
variables are also presented in Figure 3. From Figure 3(a), 3(b), 3(e) and 3(f),
we can see that pan-correlation patterns are hardly visualized in the background
of original data due to the gaps and lagged time points. However, these pan-
correlation patterns turn out to be clear, as shown in Figure 3(c), 3(d), 3(g)
and 3(h), after the removal of gaps and shifting. There are many similar examples
we found from the four Yeast cell time-course gene expression data sets. Their
biological significance is strong (the result is not reported here as that is a
different topic).

5 Conclusion

In this work, we have proposed an efficient algorithm for mining all significan-
t pan-correlation patterns from time-course data sets based on three effective
ideas: the discretization idea, the generalized representation of positive patterns
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(g) A pan-correlation pattern in cdc28
with PCCT PP = 0.851
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(h) A pan-correlation pattern in cdc15
with PCCT PP = 0.870

Fig. 3. Four examples of pan-correlation patterns with two sets of variables: one set
with solid blue line and the other with dashed red line. (a), (b), (e) and (f): The original
time-course data of the involved variables in the four pan-correlation pattern examples
on alpha, elu, cdc28 and cdc15 data set of Yeast cell cycle, respectively. (c), (d), (g)
and (h): The corresponding pan-correlation pattern with smoothing after removing
time-lagged points and gaps. Small errors may be in the pattern due to smoothing.

and the opposite-mirror copy of the original sequential data set. Our algorithm
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has been tested on synthetic time-course data sets and on four Yeast cell cycle
time-course data sets. The efficiency of our algorithm has shown to be high.
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