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Abstract 

Protein complexes play a vital role in living organisms as they regulate and execute 

biological processes. As experimental methods of extracting protein complexes are fraught 

with difficulties, scientists look towards protein complex prediction. However, protein-

protein interaction (PPI) data which are used to predict protein complexes are often noisy and 

incomplete. As published literature may hold a wealth of PPI data which goes unnoticed, this 

paper aims to enhance the prediction of protein complexes by text mining PPI data from 

literature abstracts. In this paper, we explore various rule-based methods of extracting PPI 

data from MEDLINE abstracts. Additionally, we show that the removal of non-hub proteins 

can reduce the impact of noisy PPI data on protein complex prediction and retrieve smaller 

and more accurate protein complexes which would otherwise be discarded by CMC. 

Moreover, we show that the selection of abstracts for augmentation is worth doing to 

overcome the incompleteness of PPI data. 
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1. Introduction 

Proteins are the functional molecules of the cell. Subunits of proteins interact in varying 

combinations to form protein complexes which regulate and execute biological processes. 

Despite the importance of protein complexes, there are numerous bottlenecks in the discovery 

and prediction of protein complexes. While large protein complexes are experimentally 

difficult to capture, the incompleteness and noisiness of protein-protein interaction (PPI) data 

hinders the prediction of protein complexes. This is caused by missing edges and the 

presence of incorrect edges in the PPI graph. Therefore, existing methods of protein complex 

prediction could not achieve high recall because interaction data is absent or incorrect. This 

paper hypothesizes that missing information might be reported in literature databases such as 

MEDLINE which stores close to 11 million records. Hence, the goal of this project is to 

improve the prediction of protein complexes through text mining of PPI data from 

MEDLINE abstracts. 

The hypothesis was investigated by combining the PPI network built from experimental PPI 

data with PPIs that are mined from MEDLINE abstracts. Figure 1 gives an outline of the 

experimental procedure. 

 

 

Figure 1: Diagram of experimental procedure. 

Three different methods of extracting PPI data from text were attempted. They are (i) co-

occurrences of two proteins in a sentence (Co), (ii) co-occurrences of two proteins in a 

sentence together with a verb from a dictionary of four interaction words (Dict) and (iii) 

using a trained Bayesian network (BN) (Chowdhary, Zhang and Liu, 2009) that extracts PPI 

information from abstracts. Separate PPI networks are built from real PPIs, text mined PPIs 

and a combination of real and text mined PPIs. These PPI networks were used to predict 

protein complexes and their results were compared.  

In further detail, the combined network of real and abstract PPIs fared better in protein 

complex prediction as compared to separate PPI networks. However, the combined network 

still contained noisy and incomplete PPI data. Incompleteness of PPI data means that the 

network has missing PPIs or edges that are part of a real protein complex and noisy PPI data 
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means that incorrect PPIs or edges are present in the network which misleads the prediction 

of protein complexes. We attempt to overcome the incompleteness of PPI data through 

augmentation. This was done by text mining the possible missing edges from a new set of 

MEDLINE abstracts, which is referred to as the augmenting set, that mutually excludes our 

original set of MEDLINE abstracts and augmenting the new edges to the combined PPI 

network. Additionally, we attempt to overcome the noisiness of PPI data through the removal 

of incorrect edges so that smaller and more accurate protein complexes can be predicted. This 

was done by removing non-hub proteins of predicted complexes from the PPI network and 

using the edited network to predict new complexes. All PPI networks were weighted and 

protein complexes were predicted using Clustering based on Maximal Cliques(CMC) (Liu, 

Wong and Chua, 2009). 

The results showed that the hypothesis of this paper is valid. The combined network of real 

PPIs and PPIs that are mined from MEDLINE abstracts lead to an improvement in the 

prediction of real protein complexes. Out of the three methods used to extract PPIs from text, 

Dict produced a network which fared better in predicting protein complexes. Moreover, the 

combined network of real PPIs and PPIs from Dict performed the best in predicting protein 

complexes. While only a small augmenting set of abstracts were used to augment the 

network, some complexes benefitted greatly from the augmentation. In addition, the removal 

of non-hub proteins allowed the protein prediction program used in this project to capture 

smaller and more accurate complexes which were not predicted by the original network.  

1.1 Report outline 

In the introduction, we identified the incompleteness and noisiness of PPI data to be a 

bottleneck in protein complex prediction and stated the hypothesis that missing PPI data 

might be found in MEDLINE abstracts. In addition, we mentioned that the goal of the project 

was to improve protein complex prediction with the use of PPI data from MEDLINE 

abstracts. This was followed by a summary of the experiments that were carried out in this 

project. Furthermore, we briefly described the corresponding results and these results 

supported our hypothesis. 

The rest of the report will be organised in the following manner. Firstly, background 

information which is important to understanding this project will be presented. This includes 

PPI network, techniques for extracting PPI from literature and predicting protein complexes 

given a PPI network. This will be followed by a description of the experiments that were 
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carried out. Next, the methods that were used to evaluate the quality of the predicted 

complexes will be discussed. Subsequently, the results of the experiments will be presented 

and analyzed. This will be followed by a chapter on future work and the conclusion of this 

paper. 

2. Background information 

This chapter presents some basic information about PPI network and the experimental 

techniques and non-experimental techniques used to derive PPI data. In addition, techniques 

which are used for extracting PPIs from text will be presented. Lastly, this chapter will also 

discuss the algorithms that are used to predict protein complexes given a PPI network. 

2.1 Discussing PPI network  

A PPI network summarizes PPI data into an undirected graph G = (V, E), where distinct 

proteins are represented by vertices and the interaction between any two proteins by edges. 

PPI data are generated on a large scale using high-throughput experimental techniques such 

as yeast-two hybrid (Y2H), affinity purification-mass spectrometry (AP-MS) and protein 

microarray. The experimental techniques of producing PPIs and their limitations will be 

briefly described followed by non-experimental methods of getting PPI data such as using 

databases and natural language processing.  

2.1.1 Yeast-two hybrid (Y2H) method 

 
Figure 2: Interaction detection by Y2H. (a) Activation of reporter gene by transcriptional 
activator. (b) Activation of reporter gene by reconstituted transcriptional activator (Ng and 
Tan, 2004). 
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In Y2H, scientists detect PPI by making use of the naturally occurring transcriptional 

activator in yeast. The proteins of interest which are called “bait” and “prey” are attached to 

separate domains of the transcriptional activator before introducing them into the yeast cell. 

An interaction between the bait and prey will turn on the reporter gene, such as the green 

fluorescent protein gene. This will indicate the presence of an interaction. 

There are two limitations to detecting PPI by Y2H. They are low coverage of proteins and 

high error rates with some experiments reporting 50% false positives (Ng, 2004). 

2.1.2 Affinity purification-mass spectrometry (AP-MS) method 

 
Figure 3: Interaction detection by AP-MS (Ng, 2004). 

In AP-MS, groups of interacting proteins can be detected. Similar to Y2H, a bait protein is 

used and it is immobilized on a column wall while mixtures of candidate proteins are passed 

through the column. Interacting proteins will be captured by the bait while non-interacting 

proteins will be eluted away. The interacting proteins are identified using mass spectrometry. 

Similar to Y2H, the limitations of AP-MS include low coverage of proteins and high error 

rates in terms of false positives and false negatives (Ng, 2004). 
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2.1.3 Protein microarray method 

 
Figure 4: Interaction detection by protein microarray (Vancouver prostate centre, 2005). 

In protein microarray, the detection of groups of interacting proteins is multiplexed on a 

microarray chip. Thousands of bait proteins are spotted at a unique location on the chip. 

Candidate proteins which are pre-attached to a suitable dye are allowed to pass through the 

chip. Interacting proteins will be captured by the bait while non-interacting proteins will be 

eluted away. The attached dye allows the interacting proteins to be detected. 

The limitation of protein microarray is in the synthesis of bait proteins and the maintenance 

of its structure and function while it is on the chip. 

2.1.4 PPI database 

As the experimental techniques discussed tend to produce noisy and incomplete data, PPI 

databases such as the Database of Interacting Proteins (DIP) were created to provide 

comprehensive and accurate PPI data sources. These databases are hand curated from 

experimentally determined protein interactions and biological literature to ensure valid entries 

(Shoemaker and Pancheko, 2007). Thus, evaluating literature becomes the rate limiting step 

in the growth of the database (Marcotte, Xenarios and Eisenberg, 2000). As such, people turn 

to natural language processing to automatically discover protein interactions. 

2.1.5 Natural language processing (NLP) 

NLP can be used to discover PPIs by parsing sentences in biology papers into grammatical 

units. This can be broadly divided into three categories: rule-based, shallow parsing and deep 

parsing (Zhou, He and Koh, 2006). Rule-based methods uses a set of predefined patterns to 

extract PPIs, shallow parsing extract local dependencies among phrases without 

reconstructing the structure of the entire sentence to determine PPIs and deep parsing takes 
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into account the structure of the entire sentence. Table 1 shows the performance reported so 

far in terms of recall and precision for the various methods.  

Category Performance 
Recall (%) Precision (%) 

Rule-based 86 94 
Shallow parsing 62 89 

Deep parsing 48 80 
Table 1: Performance of mining PPI from literature (Zhou et al, 2006). 

Although no benchmark datasets have been used to provide a fair comparison of the methods, 

rule-based methods appear to achieve the best performance so far. In addition, rule-based 

methods are also popular in extracting PPIs as recent studies which extract PPIs from 

PubMed abstracts tend to use rule-based methods (Chowdhary et al, 2009). For example, it is 

used in Protein Interaction Information Extraction System (PIE), a good PPI extraction web 

service that extract PPIs from literature (Sun et al, 2008). 

2.2 Techniques for extracting PPI from literature 

The problem of PPI extraction consists of two components. The first deals with protein name 

recognition or tagging of protein names and the second deals with PPI extraction. 

(Chowdhary et al, 2009) This section discusses the techniques of extracting PPIs given 

correct tagged protein names. As it was previously mentioned that rule-based methods are 

popular and fare well in PPI extraction, this paper will focus on using rule-based methods in 

mining PPIs from text. 

Rule-based methods include using co-occurrences of two proteins (Co), manually specified 

rules using a dictionary of four interaction verbs (interact, bind, complex, associate) (Dict), 

concept profile-based relation (Herman et al, 2009) and machine learning such as using a 

trained Bayesian network (BN). (Chowdhary et al, 2009) The rule-based methods will be 

discussed in greater detail. 

2.2.1 Co-occurrences of two proteins (Co) 

This method of PPI extraction extracts two proteins based on their appearance in the same 

sentence. It assumes that two proteins tend to interact if it occurs together in the same 

sentence. This is the simplest rule-based method and it represents how biologists might 

search for information (Herman et al, 2009). However, it tends to produce a large number of 

false positives (Chowdhary et al, 2009). 
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2.2.2 Manually specified rules using a dictionary of four interaction verbs (Dict) 

This method of PPI extraction extracts two proteins based on their appearance in the same 

sentence as well as the occurrence of a dictionary word in that sentence. The dictionary 

consists of four interaction verbs: interact, bind, complex, associate. This method of 

extraction achieved an average recall of 83.6% and precision of 93.2% by Ono et al 

(Chowdhary et al, 2009). However, an analysis of Ono et al’s dataset by Chowdhary et al 

revealed that a high proportion of true samples, comprising of 72.7%, was present in the 

dataset. This shows that a simple method of extracting PPIs can be used on literature abstracts 

if the set of abstracts tend to contain protein interactions.     

2.2.3 Concept profile-based relation 

This method of PPI extraction extracts two proteins based on their appearance in the same 

abstract as well as similarity in concept profiles of the two proteins. A protein concept profile 

is a summary of the context in which the protein appears in the literature. The attributes of the 

concept profile include concepts such as diseases, symptoms, tissues and biological 

processes. The successful use of concept profile-based relation to extract PPIs show that PPIs 

can be predicted without having their interaction explicitly described in literature (Herman et 

al, 2009).  

2.2.4 Bayesian network (BN) 

This method of PPI extraction first extracts two proteins based the presence of a “PPI triplet” 

and outputs the PPI if the likelihood of their interaction being true from the trained BN is 

greater than 50%. A PPI triplet is defined as two proteins which co-occur in the same 

sentence together with the presence of an interacting word. A BN summarizes a set of 

language features into a directed acyclic graph with probabilistic relationship. Each vertex 

represents a language feature and the edge that connect the features make up the rules with 

some conditional probability attached to it. Unlike previous methods of PPI extraction, this 

method uses machine learning to learn the structure of the BN and its parameters. 
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Figure 5: BN structure learned from cross-validation (Chowdhary et al, 2009).   

The BN comprises of 12 manually selected language features and each feature is constrained 

to a maximum of two parent node. When a PPI triplet is found, the language feature of the 

sentence that the triplet is in will be calculated and the PPI triplet is classified using the 

network structure and parameters in figure 5 by calculating the posterior probability of the 

class C being true using Bayes’ theorem. 

 

𝑃𝑃(𝐶𝐶|𝐸𝐸) =
𝑃𝑃(𝐸𝐸|𝐶𝐶)𝑃𝑃(𝐶𝐶)

𝑃𝑃(𝐸𝐸)
 

Figure 6: Bayes’ theorem. 

Class C comprises of two categories: true or false. The PPI triplet being evaluated will be 

classified into one of the two categories depending on whether the BN evaluates the 

interaction to be a true or false interaction. The feature vector E represents the language 

features in the learnt BN. From the equation in figure 6, P(C) is the prior probability of C, 

P(E) is the marginal probability of the feature vector E and P(E|C) is the conditional 

probability of observing the feature vector E in a given class C. The calculation for P(E) is 

simplified by assuming conditional independence. 

The advantage of BN is this method extract PPIs based on rules which are representative of 

those used in unstructured texts such as word order, co-occurrences and distance between two 

protein names. In addition, it is scalable for large PPI extraction as it uses Dirichlet parameter 

priors in the BN framework which helps to resolve missing data and ambiguity (Chowdhary 

et al, 2009). 
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2.3 Protein complex prediction given PPI network 

Protein complexes can be inferred from a PPI network as the combination of PPI data can 

accurately define members of a protein complex (Krycer, Pang and Wilkins, 2008). 

Algorithms that have been proposed to predict protein complexes from PPI networks usually 

search for dense sub-graphs as it has been observed that dense regions in PPI networks 

correspond to protein complexes (Wu, Li and Kwoh, 2004). This is a clustering problem and 

proposed algorithms adopt different strategies to find clusters. The three algorithms that will 

be discussed are Markov Clustering (MCL), Molecular Complex Detection (MCODE) and 

Clustering based on Maximal Cliques (CMC) (Liu et al, 2009).  

2.3.1 Markov Clustering (MCL) 

MCL find clusters by simulating many random walks in a graph. It is based on the 

assumption that many random walks in a graph can capture dense region of the graph since 

there is a higher probability of starting and ending in the same dense region. The MCL 

algorithm iterates two steps: the expansion and contraction step. The expansion step visits 

more neighbours while the contraction step rank neighbours which are more favourable (lim, 

2009). MCL looks for clusters globally and generate only non-overlapping clusters (Wu et al, 

2004). 

2.3.2 Molecular Complex Detection (MCODE) 

MCODE find clusters using dense regions of the graph as seeds and expand outwards to form 

clusters. There are three steps to the algorithm. Firstly, every vertex in the graph is weighted 

by their local neighbourhood densities. Secondly, vertices with high weights are selected as 

seeds or initial clusters and neighbouring vertices are augmented if their weight is above a 

given threshold. The algorithm continues to augment neighbouring vertices until no more 

vertices can be added. Lastly, the generated clusters will be post-processed. The post-

processing stage removes clusters that do not contain vertices with minimum degree of two 

and adds some vertices, called “fluff”, to the remaining clusters. The addition of fluff allows 

the generation of overlapping clusters. Thus, MCODE looks for clusters locally and may 

generate overlapping clusters (Bader and Hogue, 2003). 
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Result 

No 

2.3.3 Clustering based on Maximal Cliques (CMC) 

CMC uses clique finding and merging strategy on a weighted PPI network to find protein 

complexes. A clique is defined as a maximal complete sub-graph. Figure 7 shows the 

schematic diagram of the algorithm. 

 

 

 

 

 

 

 

 

Figure 7: Diagram of CMC algorithm. 

A PPI network is first built from the set of PPIs. The edges of the PPI network are then 

iteratively weighted using the AdjustCD weighting algorithm which is based on the 

neighbourhood densities of the vertices that are connected by the edge. The intention behind 

weighting the edges is to provide a measure of reliability of the PPIs so as to reduce the 

impact of noisy data on clique finding. After weighting, the PPI network is used to enumerate 

all maximal cliques greater than or equal to size k. The enumerated cliques are scored 

according to their weighted density and ranked in decreasing order of their score before going 

to the merging step. In the merging step, CMC searches for the existence of another clique 

which satisfies the conditions in the merging step and merges, discards or accepts the cliques 

accordingly. Discarding highly overlapped cliques serves to reduce result size while merging 

of two cliques with high overlap generates a bigger clique which was not predicted due to the 

incompleteness of the PPI data (Liu et al, 2009). 

 

Merging step 

Merge 
cliques 

Discard 1 
clique 

Inter-score 
< merge 
threshold 

 Yes 

Yes 

No 

Overlap-score 
≥ overlap 
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PPIs Iteratively weighted 
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Ranked 
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Maximal cliques 
min size = k 
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2.3.3.1 AdjustCD weighting algorithm 

As mentioned, AdjustCD is used to iteratively weigh the edges of the PPI network. The 

AdjustCD equation will be discussed first followed by the iterated AdjustCD equation. 

Given a pair of proteins (u, v) in a PPI network G = (V, E), 
  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴(𝐴𝐴, 𝑣𝑣) =
2|𝑁𝑁𝐴𝐴⋂𝑁𝑁𝑣𝑣|

|𝑁𝑁𝐴𝐴 | + 𝜆𝜆𝐴𝐴 + |𝑁𝑁𝑣𝑣| + 𝜆𝜆𝑣𝑣
 

 

𝜆𝜆𝑤𝑤 = max{0,
∑ |𝑁𝑁𝑥𝑥 |𝑥𝑥𝑥𝑥𝑥𝑥

|𝑥𝑥|
−  |𝑁𝑁𝑤𝑤 |} 

Where Nu: set of neighbours of u in G and Nv: set of neighbours of v in G  

Figure 8: The AdjustCD equation (Liu et al, 2009). 

The AdjustCD equation in figure 8 scores the edges based on the number of neighbours of the 

two proteins and penalizes proteins with few interactions. The intuition behind the formula 

can be illustrated with an example with two cases. In the first case, u has 1 neighbour 

(|Nu|=1), v has 1 neighbour (|Nv|=1) and the neighbour of u and v are themselves 

(|Nu⋂Nv|=1). In the second case, u have 10 neighbours (|Nu|=10), v have 10 neighbours 

(|Nv|=10) and the neighbours of u and v are the same (|Nu⋂Nv|=10). If the average degree of 

the network is 4, AdjustCD(u,v) = 0.25 for the first case and AdjustCD(u,v)=1 for the second 

case. The values reflect the reliability of the interaction because if u has 1 incorrect neighbour 

in the first case, the interaction between u and v is incorrect. On the other hand, even if u and 

v have 4 incorrect neighbours in the second case, their interaction may still be correct. 

Therefore, figure 8 allows the weight of the edge to reflect the reliability of the PPIs in 

complex prediction (Liu et al, 2009) unlike edges that are represented in binary where 1 

indicates the presence of an edge and 0 indicates the absence of an edge. 

Given a pair of proteins (u, v) in a PPI network G = (V, E), 
  

𝑤𝑤𝑘𝑘(𝐴𝐴, 𝑣𝑣) =
∑ (𝑤𝑤𝑘𝑘−1(𝑥𝑥,𝐴𝐴)  + 𝑤𝑤𝑘𝑘−1(𝑥𝑥, 𝑣𝑣))𝑥𝑥𝑥𝑥𝑁𝑁𝐴𝐴 ∩𝑁𝑁𝑣𝑣

∑ 𝑤𝑤𝑘𝑘−1(𝑥𝑥,𝐴𝐴) + 𝜆𝜆𝐴𝐴𝑘𝑘  + ∑ 𝑤𝑤𝑘𝑘−1(𝑥𝑥, 𝑣𝑣) +𝑥𝑥𝑥𝑥𝑁𝑁𝑣𝑣  𝜆𝜆𝑣𝑣𝑘𝑘𝑥𝑥𝑥𝑥𝑁𝑁𝐴𝐴
 

 

𝜆𝜆𝑦𝑦𝑘𝑘 = max{0,
∑ ∑ 𝑤𝑤𝑘𝑘−1(𝑥𝑥, 𝑧𝑧)𝑧𝑧𝑥𝑥𝑁𝑁𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

|𝑥𝑥|
−  � 𝑤𝑤(𝑥𝑥, 𝑦𝑦)

𝑥𝑥𝑥𝑥𝑁𝑁𝑦𝑦
} 

Where wk-1(x,u) is the score of (x,u) in the (k-1)th iteration 

Figure 9: The iterative AdjustCD equation (Liu et al, 2009). 



12 
 

The difference between AdjustCD and iterative AdjustCD is the latter uses the score of the 

edge from the previous iteration to calculate the score for the next iteration. Iteratively 

weighting the network attempts to get a value for the edge which is a better estimate of the 

true value of the interaction. The authors of CMC have shown that iterative AdjustCD can 

improve functional homogeneity and localization coherence of top ranked interactions.  

2.3.4 Comparing clustering algorithms 

Previously, three clustering algorithms for protein complex prediction were discussed. They 

are MCL, MCODE and CMC. A comparative study of Markov Clustering (MCL), Molecular 

Complex Detection (MCODE) and two other algorithms have reported MCL to perform 

better in predicting real complexes and MCODE to be better in predicting high quality 

complexes (Wu et al, 2004). The result of the study is shown in figure 10.  

 
Figure 10: Comparison of four clustering algorithms using MIPS dataset. (Wu et al, 2004)  

The study also suggests that future algorithms should have high recall like MCL and better 

precision like MCODE. Although DECAFF seems to perform well as it has a relatively high 

recall and precision as well as the highest F-measure, the algorithm generated complexes with 

high redundancy (Wu et al, 2004). CMC is an algorithm that achieves higher recall than MCL 

and higher precision than MCODE (Liu et al, 2009).  
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Table 2: Comparison of four clustering algorithms using MIPS and Aloy dataset (Liu et al, 

2009). 

Despite the good results achieved by CMC, there are three limitations to the algorithm. The 

first two limitations to the CMC algorithm were identified by Lim (Lim, 2009). Firstly, 

important clusters may be discarded during the merging step. Secondly, initial cliques that 

have a good representation of a particular protein complex may produce a false negative 

when merged. A third limitation of CMC was identified during this project and it is the use of 

cliques being a stringent condition in predicting protein complexes. This is because most PPI 

network graphs that correspond to protein complexes were not as dense as what previous 

complex finding algorithms have theorized (Gallagher and Goldberg, 2009). Hence, we 

propose and investigate if the removal of non-hub proteins in the network will lead to the 

prediction of smaller and more accurate complexes using CMC. 

3. Experiments 

The goal of this project is to attempt various experiments to improve the prediction of protein 

complexes with the use of PPI data from MEDLINE abstracts. This is because experimental 

data tend to be noisy and incomplete. According to the previous chapter, rule-based methods 

are commonly used to extract PPI data from text. Moreover, rule-based methods tend to 

produce better results in the extraction of PPIs. The three rule-based methods that will be 

used are Co, Dict and BN. For the prediction of protein complexes, CMC will be used as it 

was shown that CMC achieves better recall and precision than other existing algorithms such 

as MCL and MCODE. 
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A total of five experiments were conducted and all experiments include abstract PPI data. 

The purpose of experiment 1 and 2 is to establish the parameters used in CMC for subsequent 

experiments. Experiment 1 determines the number of iteration to be used for weighing the 

PPI network using iterative AdjustCD (Figure 9). Experiment 2 determines the optimal merge 

threshold and overlap threshold for the merging step in CMC (Figure 7). In the subsequent 

experiments, various methods were attempted to improve the prediction of protein 

complexes. Experiment 3 uses the two different methods: Dict and BN to extract PPIs from 

abstracts. The goal of experiment 3 is to determine the best method for extracting PPIs from 

text. Next, experiment 4 attempts to remove noisy PPI edges by removing non-hub proteins 

from the PPI network. Lastly, experiment 5 carried out augmentation of the PPI network in 

an attempt to fill in missing edges of the network. The new set of abstracts which is named 

the augmenting set mutually excludes the initial set of abstracts. 

For all experiments, only clusters of size 4 and above were enumerated since larger sized 

protein complexes are biologically difficult to capture. The dataset used will be presented 

followed by details of the five different experiments.  

3.1 Dataset 

This section gives details about the real PPIs, abstracts used for extracting PPIs and the 

reference complexes used for evaluating the predicted complexes. The abstracts used 

comprises of the initial set of abstracts (Li, 2008) and the augmented set that is retrieved for 

experiment 5. The initial set of abstracts was used in all experiments. 

3.1.1 Real PPIs 

The real PPIs are from Liu et al. The dataset contain yeast protein interactions generated by 

six different individual experiments. The dataset contain 3295 proteins and 15900 

interactions, among which 10458 interactions have common neighbours. 

3.1.2 Initial set of abstracts 

The initial set of abstracts was retrieved from the Pubmed database. A querying program 

looks for abstracts containing the names and synonyms of the proteins from Saccharomyces 

Genome Database (SGD). The abstracts which are included were limited to the first 1000 

abstracts and an added constraint to limit the search to title and abstracts with the Pubmed 

filter option (Li, 2008). 
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The initial set of abstracts comprises of a total of 192082 abstracts. Of which, 186798 were 

non-empty abstracts and they contain a total of 659598 sentences. 

3.1.3 Augmenting set of abstracts 

The augmenting set of abstracts is the new abstracts that were retrieved from MEDLINE 

database. A querying program looks for abstracts containing the names and synonyms of 

proteins from SGD. The abstracts which are included were limited to the first 100 abstracts 

for each protein. This set of abstracts mutually excludes the initial set of abstracts. This is 

because only proteins which are found in reference complexes but not in predicted complexes 

from the combined network of real and Dict PPIs in experiment 3 are used to query the 

database and the initial set of abstracts would only contain abstracts with proteins that are 

found in the predicted complexes. The abstracts were tagged for their protein names using the 

Name Entity Recognition (NER) software (Zhou and Su, 2004) at the Institute for Infocomm 

Research (I2R). 

The augmenting set of abstracts comprises of a total of 43521 abstracts. Of which, 43516 

were non-empty abstracts and they contain a total of 432971 sentences. The augmenting set 

was only used in experiment 5. 

3.1.4 Reference complexes 

Two reference sets of protein complexes are used. The first set is hand-curated complexes 

from MIPS and the second set is from Aloy. For both sets, only complexes with size 4 and 

above are kept (Liu et al, 2009). A total of 164 complexes are present in MIPS and a total of 

62 complexes are present in Aloy. These two sets were used in experiment 1. 

It was noted that some complexes in Aloy overlapped with MIPS. Hence, the union of both 

reference sets called AloyMIPS were obtained. A total of 213 complexes are present in 

AloyMIPS. Of which, 164 complexes were from MIPS and 49 complexes were from Aloy. 

AloyMIPS was used as the reference set for experiments 2 to 5 while Aloy and MIPS were 

used separately in experiment 1. 
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3.2 Experiment 1 – Number of iteration for AdjustCD 

In this experiment, co-occurrences of two proteins in the same sentence (Co) was used to 

extract the PPIs from the initial set of MEDLINE abstracts. No real PPIs were used in this 

experiment and abstract PPIs are from the initial set of abstracts. The network was weighted 

with varying number of iterations of iterative AdjustCD. The overlap threshold of 0.5 and 

merge threshold of 0.25 that were suggested by Liu et al for real PPIs was used in CMC. The 

threshold for evaluating the clusters using recall and precision was set to 0.5. The threshold 

of 0.5 indicates that the predicted complexes must have at least 50% overlap with the 

reference complexes in order to be counted in recall and precision. Recall measures the 

completeness of the predicted complexes while precision measures the fidelity of the 

predicted complexes. Further details are given in section 4.1. 

 Aloy MIPS 
Number of 

iteration 
Recall Precision Recall Precision 

5 0.403 0.015 0.294 0.026 
10 0.403 0.016 0.281 0.025 
20 0.403 0.016 0.281 0.025 
30 0.403 0.016 0.281 0.025 

Table 3: Recall and precision for Co with different number of iteration. 

Table 3 shows stability of recall and precision after 10 iterations. To be on the safe side, the 

number of iterations was set to 20 for future experiments. 

3.3 Experiment 2 – Optimal merge threshold and overlap threshold 

In experiment 2, co-occurrences of the two proteins in the same sentence with a dictionary 

verb of “interact”, “bind”, “complex” or “associate” (Dict) were used to extract the PPIs from 

the initial set of abstracts. No real PPIs were used in this experiment and abstract PPIs are 

from the initial set of abstracts. Protein complexes are predicted from the weighted Dict 

network using different values of overlap threshold and merge threshold.  
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Figure 11: Precision-recall of PPI network from Dict under different parameter settings. 

The result showed that an overlap threshold of 0.25 and merge threshold of 0.5 is optimal as 

it has the largest area under the precision-recall curve in the graph. Hence, these threshold 

values are used for future experiments that contain abstracts PPIs. 

3.4 Experiment 3 – Using Dict and BN to extract PPI from text 

 After determining the necessary parameters such as number of iteration, overlap threshold 

and merge threshold. The effectiveness of the different methods of extracting PPIs from text 

could be compared. In experiment 3, four different PPI networks were built for protein 

complex prediction and the results were evaluated. The four different PPI networks are based 

on real PPI, Dict, trained BN by Chowdhary et al and the combined network of real PPI and 

Dict. The network which comprises of only real PPIs used an overlap threshold of 0.5 and 

merge threshold of 0.25 suggested by Liu et al for real PPIs. The other three networks used 

an overlap threshold of 0.25 and merge threshold of 0.5 which is optimal for abstract PPIs 

from experiment 2. As the combined network of real PPI and Dict gave the best results for 

prediction of complexes, this method will be used in experiment 4 and 5. 
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3.5 Experiment 4 – Iterative removal of non-hub proteins 

As PPI data tend to be noisy, experiment 4 attempts to improve the prediction of protein 

complexes through the removal of noisy data. Although the effect of noisy edges on the PPI 

network are dampened due to the weighting of the network, noisy edges may still affect the 

prediction of protein complexes due to the clique finding and merging strategy in CMC. This 

is because in the merging step, some highly overlapping clusters are discarded. Noisy edges 

may contribute to the overlap. Besides noisy edges, real complexes can overlap one another 

and a real complex may be discarded by CMC. Hence, we attempt to remove non-hub 

proteins from the PPI data to reduce the overlap between clusters and attempt to retrieve 

clusters that are discarded. Non-hub proteins are proteins that participate in very little 

complexes.   

At iteration 0, there were no changes to the procedure and the experiment followed figure 1. 

The predicted clusters from iteration 0 form the set of unique clusters. In iteration 1, proteins 

that occurred in n=1 unique clusters were removed from the PPI data and fed into CMC for 

prediction. Predicted clusters that were not in the unique clusters from iteration 0 were added 

to the set of unique clusters. This will be followed by iteration 2 where proteins that occurred 

in n=2 unique clusters will be removed from the PPI data. This process continues until 

iteration 5. The intuition for iterating the removal of non-hub proteins is to prevent the 

removal of hub-proteins which will affect clique generation in CMC. Proteins that occur less 

frequently in the predicted clusters were removed first to try and reduce the overlap between 

cliques generated by CMC so that we can retrieve clusters that would have been discarded in 

the previous iteration. The modification that was described is illustrated in figure 12.  

 

 

 

Figure 12: Procedure to remove non-hub proteins. 

The PPI data that was used at iteration 0 is the combined set of real PPIs and Dict. The 

iteration stopped at n=5 as the network became small and the recall stabilized (Table 5). 
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3.6 Experiment 5 – Augmenting the PPI network  

The purpose of augmentation is to add in correct edges into the network to determine if more 

accurate protein complexes would be predicted. First, a list of proteins which are found in 

AloyMIPS but not in the predicted complexes from the combined network of real and Dict 

PPIs in experiment 3 were generated. As there are many different names for the same protein, 

their synonyms were added to the list. This list was used to query the database of MEDLINE 

abstracts and the augmenting set of abstracts was retrieved and tagged. Details of retrieval 

and tagging were given in section 3.1.3. Lastly, PPIs were extracted from the new abstracts 

using Dict and the extracted PPIs were augmented to the original set of real and Dict PPIs. 

This augmented set of PPIs was passed to CMC for protein complex prediction. The results 

of the experiment will be discussed in section 5.3.    

4. Evaluation methods 

The quality of the predicted clusters are evaluated using 3 methods: Jaccard index, subset 

evaluation and Gene ontology (GO). This chapter will present and explain the evaluation 

methods. 

4.1 Jaccard index 

Jaccard index was used to calculate the match score of the predicted cluster against the 

reference complex.  

Given a predicted cluster S and reference complex C, 

𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚ℎ_𝐴𝐴𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆,𝐶𝐶)  =
|𝑥𝑥𝑆𝑆 ∩ 𝑥𝑥𝐶𝐶|
|𝑥𝑥𝑆𝑆 ∪ 𝑥𝑥𝐶𝐶|

 

Where Vs: set of proteins contained in S and Vc: set of proteins contained in C 

Figure 13: Equation for Jaccard index (Liu et al, 2009). 

The equation in figure 13 calculates the proportion of overlap between a predicted cluster and 

a reference complex. The predicted cluster is said to match the reference complex if there is 

more than 50% overlap between the two complexes. Hence, a match threshold of 0.5 was 

used in this project and there is a match when match_score(S, C) ≥ match threshold. This 

definition of match is used in the calculation of recall and precision in figure 14.  
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Given a set of reference complexes C = {C1, C2, ... , Cn} and a set of prediction clusters P = 

{S1, S2, ... , Sn} 

𝑅𝑅𝑠𝑠𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 =
|{𝐶𝐶𝑖𝑖|𝐶𝐶𝑖𝑖 ∈ 𝐶𝐶 ⋀∃𝑆𝑆𝐴𝐴 ∈ 𝑃𝑃, 𝑆𝑆𝐴𝐴  𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚ℎ𝑠𝑠𝐴𝐴 𝐶𝐶𝑖𝑖}|

|𝐶𝐶|
 

𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝐴𝐴𝑖𝑖𝑠𝑠𝑃𝑃 =
|{𝑆𝑆𝐴𝐴 |𝑆𝑆𝐴𝐴 ∈ 𝑃𝑃⋀∃𝐶𝐶𝑖𝑖𝑥𝑥 𝐶𝐶,𝐶𝐶𝑖𝑖  𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚ℎ𝑠𝑠𝐴𝐴 𝑆𝑆𝐴𝐴 }|

|𝑃𝑃|
 

Figure 14: Equation for calculating recall and precision (Liu et al, 2009). 

Recall is a measure of completeness or the ratio of the number of predicted clusters that 

match the reference complexes against the total number of reference complexes. A high recall 

indicates that the experiment retrieved more genuine complexes. 

Precision is a measure of exactness or the ratio of the number of reference complexes that 

match the predicted clusters against the total number of predicted clusters. A high precision 

indicates that the experiment retrieved better quality complexes. 

4.2 Subset evaluation 

In addition to recall and precision, subset evaluation is another method to evaluate the quality 

of complexes and uses subset score.  

Given a set of reference complexes C = {C1, C2, ... , Cn} and a set of prediction clusters P = 

{S1, S2, ... , Sn} 

𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴_𝐴𝐴𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑖𝑖 ,𝐶𝐶) = maxCiϵC
|𝑆𝑆𝑖𝑖 ∩ 𝐶𝐶𝑖𝑖|

|𝑆𝑆𝑖𝑖|
 

𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴_𝐴𝐴𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝑖𝑖 , 𝑆𝑆) = maxSiϵS
|𝐶𝐶𝑖𝑖 ∩ 𝑆𝑆𝑖𝑖|

|𝐶𝐶𝑖𝑖|
 

Figure 15: Equation for calculating subset score. 

Subset_score(Si, C) is calculated for all predicated clusters. A high score for subset_score(Si, 

C) indicates that a large part of the predicted cluster is a subset of the reference complexes. 

Similarly, subset_score(Ci, S) is calculated for all reference complexes and a high score for 

subset_score(Ci, S) indicates that a large part of the real complex is a subset of the predicted 

complexes. Subset_score(Si, C) is similar to precision and subset_score(Ci, S) is similar to 

recall. Hence, good quality complexes will have a high score for subset_score(Si, C) and high 

score for subset_score(Ci, S). To give an overall view of the quality of the predicted clusters, 
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the frequencies of occurrences of the scores are tabulated and a graph of frequency versus 

subset score is drawn. 

4.3 Gene ontology (GO) 

GO is a systematic way to describe gene and protein function. It comprises of three 

ontologies: molecular function, biological process and cellular component. In addition to 

Jaccard index and subset evaluation, the predicted clusters are also evaluated using GO terms 

for cellular component. This measures the localization coherence (lc) of the clusters which 

indicate the percentage of clusters which show some minimum percentage of proteins in the 

cluster that occur together in a cellular component. The intuition for using this is proteins that 

form complexes will seldom be in different cellular components. Thus, lc is also a measure of 

the quality of the predicted complexes (Liu et al, 2009).   

4.4 Other evaluation method 

In addition to evaluating predicted clusters using Jaccard index, subset evaluation and GO for 

cellular component, it will be useful to also evaluate predicted clusters based on pathway 

coherence. This is because proteins which form complexes tend to be in the same pathway 

and predicted clusters that are not found in the same cellular component may be investigated 

for pathway coherence. However, there was insufficient time to prepare comprehensive 

pathway information for yeast. While GO for biological process may be used to replace the 

evaluation method for pathway coherence, it is not as precise as pathway coherence. 

5. Results and discussion 

As shown in chapter 3, Experiment 1 and 2 determined the best parameters to use for CMC. 

This chapter presents and discusses the results for experiment 3 to 5.  The result from 

experiment 3 proved that using PPIs from abstracts to enhance protein complex prediction is 

valid. The results from experiment 4 showed that noisy edges can be pruned by removing 

non-hub proteins. Lastly, the results from experiment 5 showed that augmentation of the PPI 

network is beneficial. 
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5.1 Results of experiment 3 

In experiment 3, four different PPI networks were built and passed to CMC. Table 4 displays 

the result for experiment 3 under the match threshold of 0.5. 

Method Network 

size 

Avg node 

degree 

Number of 

clusters 

Recall Precision Localization 

coherence (lc) 

PPI network 

from real PPIs 

1836 3.86 186 0.474 0.333 At least 69% of 

clusters show 

86% lc 

PPI network 

from abstracts 

(Dict) 

2594 3.02 482 0.249 0.095 At least 66% of 

clusters show 

78% lc 

Combined 

network of real 

PPIs and Dict 

3225 4.02 617 0.549 0.154 At least 66% of 

clusters show 

84% lc 

PPI network 

from abstracts 

(BN) 

1283 1.53 138 0.061 0.065 At least 60% of 

clusters show 

80% lc 

Table 4: Recall, precision and localization coherence of protein complexes from 4 different 
PPI networks. 

It can be observed that recall and precision of protein clusters which are predicted from PPIs 

from BN is extremely low. However, the localization coherence result shows that protein 

clusters that are predicted are relevant since at least 60% of the clusters have 80% of the 

proteins in the same cluster also occurring in the same cellular component. Hence, low 

precision is not a concern as it is most likely due to the incompleteness of protein complex 

data in the reference complexes AloyMIPS. The low recall is due to the PPI network being 

small and sparse as compared to the other networks. As the same set of abstracts is used for 

PPI extraction in BN and Dict, it is most likely that the BN method generated many false-

negative PPIs. 

Additionally, table 4 provides evidence that using a combined network to predict protein 

clusters produces better quality prediction than separate networks of real PPIs and abstract 

PPIs. This is because the average node degree for the combined network of real PPIs and Dict 

is higher than the individual networks. Moreover, the combined network shows an increase in 
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recall. This means that PPIs from abstracts help to fill in the missing edges of the real PPI 

network to predict more protein clusters that match the reference complexes. We illustrate 

this with a visualization of a real complex which was only predicted after abstract PPIs are 

added into the network (Figure 16).  

   
Figure 16: Graph of real complex 420. 

Furthermore, the large increase in recall for the combined network of real PPIs and Dict 

suggests that the recall of the network from abstracts is likely to be limited by the number of 

abstracts that are analyzed. However, the combined network shows a decrease in precision as 

compared to the network derived from real PPIs. A possible reason for the decrease in 

precision is that edges that are extracted from abstracts contain a higher level of noise than 

those from real PPIs. Lower precision should not be a cause for alarm since the localization 

coherence results for combined network and network from real PPIs does not differ much 

even though there are 3 times more clusters that are predicted in the combined network. 
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Figure 17: Venn diagram of correctly predicted clusters from 2 different PPI networks. 

An analysis of the clusters showed that 130 clusters are predicted by both the combined 

network and network from real PPIs, 26 clusters are predicted by the combined network but 

not by the network from real PPIs, and 1 cluster was predicted by the network from real PPIs 

but not by the combined network. This suggest that the combined network is performing 

reasonably well (20% more correctly predicted clusters) as the predicted clusters are of 

comparable quality to those predicted based on real PPI only.  

Further analysis of the PPIs that were extracted is done in the next section to confirm that 

using PPIs from abstracts to enhance the prediction of protein complexes is valid. 

5.1.1 Comparison between real PPIs and PPIs from abstracts (Dict) 

From the initial set of abstracts in section 3.1.2, 17413 abstracts contained at least a 

dictionary word and 25838 sentences contained at least a dictionary word. A total of 32497 

PPIs were extracted from the abstracts. By comparing with 15900 real PPIs, 32493 abstract 

PPIs are not found in real PPIs while 15896 real PPIs are not found in abstract PPIs. These 

numbers suggest two things. Firstly, abstracts can potentially fill in PPIs which are missing 

from PPI databases and high-throughput experiments. This is provided that the PPIs that are 

extracted from abstracts are generally correct. Secondly, as many real PPIs in the databases 

used are not found among PPIs which are extracted from abstracts, it is likely that we have 

considered too few abstracts or the methods used for extracting PPIs from abstracts also 

needs improvement. 

As mentioned, most abstract PPIs are not found in real PPIs and vice versa. Therefore, 161 

randomly chosen abstract PPIs were manually checked with their abstracts. Of which, 21 

PPIs were found to definitely not interact, the interactions of 45 PPIs were unsure and 95 

Real PPIs 
Real + Dict 
PPIs 

1 130 26 



25 
 

PPIs were found to definitely interact. This implies that for the PPIs whose interaction status 

is clear, the odds that an edge derived from abstracts is a real PPI is better than 4:1. This 

provides good evidence that using and combining PPIs from abstracts to predict protein 

complexes is valid. 

5.2 Results of experiment 4 

 The purpose of experiment 4 is to remove non-hub proteins which could potentially be noisy 

data which prevents the discovery of smaller and more accurate complexes. 

Iteration Network 
size 

Avg node 
degree 

Number of 
clusters 

Recall Precision Localization 
coherence (lc) 

0 3225 4.02 617 0.549 0.154 At least 66% show 
84% lc 

1 1514 3.34 617+163= 
780 

0.559 0.145 At least 69% show 
84% lc 

2 1339 3.42 780+29= 
809 

0.559 0.142 At least 69% show 
84% lc 

3 999 2.89 809+77= 
886 

0.563 0.132 At least 70% show 
83% lc 

4 901 2.88 886+30= 
916 

0.563 0.13 At least 71% show 
84% lc 

5 783 2.65 916+41= 
957 

0.563 0.126 At least 71% show 
84% lc 

 Table 5: Recall, precision and localization coherence after different iterations of non-hub 
protein removal. 

The result of the experiment shows that the removal of non-hub proteins leads to an increase 

in recall and localization coherence. This means that the experiment is generating a greater 

number of protein clusters which match the reference complexes and these clusters tend to be 

real complexes since they have high localization coherence. It is most likely that the iterated 

removal of non-hub proteins is causing clusters which were initially discarded to be found. 

The quality of the predicted clusters are visualised on a subset evaluation graph (Figure 18). 
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Figure 18: (top) subset evaluation graph of protein complexes before iterated removal of non-
hub proteins. (bottom) Subset evaluation graph of protein complexes after 5 iterated removals 
of non-hub proteins. 

By comparing both graphs in figure 18, it can be seen that there is a large increase in the 

number of complexes in subset_score(Si, C) after iterated removal of non-hub proteins. A 

large increase in subset_score(Si, C) means that there are more predicted clusters that have 

higher overlap with real complexes. By similarly comparing both graphs for subset_score(Ci, 

S), it can be observed that two complexes that have a maximum score of 0.1 before iterated 

removal improved to a maximum score of 0.2, one complex that has a maximum score of 0.5 
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before iterated removal improved to a maximum score of 0.6 and one complex that has a 

maximum score of 0.8 before iterated removal improved to a maximum score of 1. In short, a 

total of 4 complexes have improved their score while none have decreased. Therefore, the 

overall quality of the predicted complexes has improved. 

Another observation is both graphs show that a large number of predicted clusters have a low 

score. For instance, in figure 18 (bottom), there are 189, 56 and 197 clusters that have a low 

score of 0, 0.1 and 0.2 respectively. The size of the clusters which produces the scores after 

modification was investigated by plotting a 3D graph of frequency versus score versus size of 

the clusters. The red lines refer to real complexes while the blue lines refer to predicted 

clusters. 

 
Figure 19: 3D graph of protein complexes after iterated removal of non-hub proteins. 

The 3D graph for subset_score(Si, C) shows that many of the small predicted clusters do not 

overlap real complexes. For example, for the complexes of size 4-5, 48% of the predicted 

clusters may have less than 20% overlap with real complexes. Nevertheless, for the 189 
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predicted clusters with a score of 0, a localization coherence check shows that at least 52% of 

the complexes show 83% localization coherence. This means that approximately half of the 

clusters are in the same cellular component and have a good chance of being real complexes 

even though they are not found in the reference set AloyMIPS. This may be due to the fact 

that the set of benchmark complexes are very incomplete.  

The 3D graph for subset_score(Ci, S) shows that the smaller real complexes are generally 

well captured within large clusters but larger complexes with size greater than 10 are missed 

as they have a score of less than 0.5. A total of 5 complexes with a score of 0 were missed. 

The complexes were visualised and their edges were filled in based on the real PPI data 

mentioned in section 3.1.1. Two of complexes are presented for illustration. 

 

Figure 20: Graph of real complex 520.20. 

Figure 20 show that complex 520.20 was not captured by CMC because it is not a clique. 

Moreover, the high number of isolated nodes suggests that the PPI data is very incomplete for 

the complex. This supports the limitation identified in section 2.3.4 that some complexes are 

not discovered because (i) using cliques as a basis to predict protein complexes is a stringent 

condition and (ii) many PPIs in the complex are probably missing in the PPI network since 

proteins in a real complex should not be disconnected from the complex.  
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Figure 21: Graph of real complex 500 and predicted cluster C21. 

In general, the structure of real complex 500 seems to comprise of 3 dense regions. While 

CMC is able to predict a part of the protein complex, the full complex remains undetected 

since the 3 parts are separated by sparse regions. The other 2 parts of the complex was 

probably not detected by CMC as they do not fulfil the clique criteria. 

The visualisation of complex 500 also shows that information about many edges in the 

protein is not found. If information about these edges is known, CMC may be able to predict 

the complex.  

5.3 Results from experiment 5 

Experiment 5 augments the combined network of real and Dict PPIs with edges of proteins 

that are found in real complexes but not in the combined network. In order to evaluate if 

augmentation benefited protein complex prediction, the subset evaluation of the reference 

complexes before augmentation and after augmentation is done. The subset score equation in 

figure 15 was used to calculate subset_score(Ci, U) and subset_score(Ci, A), where Ci is the 

reference complex AloyMIPS, U is the set of clusters predicted from the combined network 
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of real and Dict PPIs without augmentation and A is the set of clusters predicted from the 

augmented network. A graph of subset_score(Ci, U) versus subset_score(Ci, A) was plotted.  

 

Figure 22: Graph of subset_score(Ci, U) versus subset_score(Ci, A). 

From the graph, most of the points are aligned along the diagonal. This means that those 

complexes were unaffected by the augmentation. Data points that are above the diagonal 

indicate that the complexes benefitted from the augmentation. It can be seen that there are 

some complexes which benefitted a lot from augmentation. Hence, augmentation of the 

network is worth doing. 

Due to the time constraints of this project, the augmenting set of abstracts is small. In 

addition, the querying program which searches for the abstracts which contain the proteins of 

interest retrieved significant false-positives abstracts which were only detected after the 

abstracts were tagged. In order to obtain abstracts that are more likely to contain relevant 

PPIs, we suggest using Bayesian inference based on the frequency of discriminating words 

(Marcotte et al, 2000) to determine whether a given paper discusses PPIs before retrieving the 

paper based on the occurrence of the proteins of interest. This method is currently used to 

help in the expansion of DIP. 
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6. Future work 

This section suggests some future work for this project which an interested researcher may 

work on. Based on this project, there are three things worth implementing. They are the 

development of an evaluation method for pathway coherence, the prediction of complexes 

based on the largest k-connected sub-graphs and better selection of abstracts for 

augmentation. 

6.1 Evaluation by pathway coherence 

It was mentioned in section 4.4 that we were unable to evaluate the predicted clusters based 

on pathway coherence as we did not have sufficient time to collect and prepare 

comprehensive yeast pathway information. Such an evaluation method can be used to 

determine if clusters that are not found in the same cellular component is found in the same 

pathway. This is beneficial as the GO annotation is incomplete. 

6.2 Predicting complexes based on largest k-connected sub-graphs  

It was shown in our experiments that although the clique criterion was able to predict many 

real complexes, many complexes are also missed by CMC. When the missed complexes were 

visualised, they are indeed not cliques. In order to capture these missed complexes, we 

suggest the prediction of complexes from PPI network based on the largest k-connected sub-

graphs. A k-connected sub-graph is a connected sub-graph with size greater than k and will 

remain connected after deleting k nodes from it.  

6.3 Improving the selection of abstracts for augmentation 

As mentioned in section 5.3, the selection of abstracts for augmentation could be more 

precise. Instead of using the names of the proteins of interest to retrieve abstracts, future work 

could consider detecting if an abstract discusses PPIs first by using Bayesian inference before 

looking for the abstracts that contain the protein names.  
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7. Conclusion 

This project explores the usage of text mining to supplement PPI data in PPI network for 

protein complex prediction. We make the following specific contributions: 

• Firstly, three rule-based methods of extracting PPIs from text were explored. They are 

co-occurrences of two proteins in the same sentence (Co), co-occurrences of two 

proteins in the same sentence together with a dictionary verb from a dictionary of four 

interaction word (interact, bind, complex, associate) (Dict) and using a trained 

Bayesian Network (BN) by Chowdhary et al. The results showed that the combined 

network of real PPIs and Dict fared better in predicting real complexes.  

• Secondly, noisy edges were pruned away by removing non-hub proteins from the 

network iteratively. The iterative pruning led to the prediction of a greater number of 

complexes that were likely to be real.  

• Lastly, the combined network of real PPIs and Dict was selectively augmented with 

new edges. The augmenting abstracts contain proteins which are found in the 

reference complexes but not in the predicted complexes. PPIs were extracted and 

augmented to the PPI network for protein complex prediction. The results showed that 

even with the small set of augmenting abstracts, there was an improvement in the 

prediction of some complexes. 
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