

Correlation-Based Methods for Biological Data
Cleaning

JUDICE, LIE YONG KOH
(Master of Technology, NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2007

 II

In long memory of my father and sister

 III

Correlation-Based Methods for Biological Data
Cleaning

by

JUDICE, LIE YONG KOH, M.Tech

Dissertation

Presented to the Faculty of

the School of Computing of

the National University of Singapore

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

National University of Singapore

March 2007

 IV

Acknowledgements

I would like to express my gratitude to all those who have helped me complete this PhD

thesis. First, I am deeply grateful to my supervisor, Dr. Mong Li Lee, School of Computing,

National University of Singapore, for her guidance and teachings. This completion of the PhD

thesis will not be possible without her consistent support and patience, as well as her wisdom

which has been of utmost value to the project.

I would also like extend my gratitude to my mentor, Associate Prof Wynne Hsu,

School of Computing, National University of Singapore, for her guidance and knowledge. I

am fortunate to have learned from her, and have been greatly inspired by her wide knowledge

and intelligence.

I have furthermore to thank my other mentor, Dr. Vladimir Brusic, University of

Queensland for providing biological perspectives to the project. And my appreciation goes to

the advisory committee members for beneficial discussions during my Qualifying and Thesis

Proposal examinations.

In addition, I wish to extend my appreciation to my colleagues in the Institute for

Infocomm Research (I2R) for their assistance, suggestions and friendship during the course of

my part-time PhD studies. Special acknowledgement goes to Mr. Wee Tiong Ang and Ms.

Veeramani Anitha, Research Engineer for their helps and to Dr. See Kiong Ng, Manager of

Knowledge Discovery Department for his understanding and encouragement.

Most importantly, I will like to thank my family for their love. I will also like to

dedicate this thesis to my sister whose passing had driven me to retrospect my goals in life

and to my father who died of heart attack and kidney failure in the midst of my study and

whom I regretted for not spending enough time with during his last days. And to the one I

respect most in life, my mother.

Last but not least, I wish to express my greatest appreciation to my husband, Soon

Heng Tan for his continuous support, encouragement and for providing his biological

 V

perspectives to the project. I am thankful that I can always rely on his understanding to help

me through the most difficult times of the PhD study and of my life.

Judice L.Y. Koh

National University of Singapore

December 2006

 VI

Abstracts

Data overload combine with widespread use of automated large-scale analysis and mining

result in a rapid depreciation of the World’s data quality. Data cleaning is an emerging

domain that aims at improving data quality through the detection and elimination of data

artifacts. These data artifacts comprise of errors, discrepancies, redundancies, ambiguities,

and incompleteness that hamper the efficacy of analysis or data mining.

Despite the importance, data cleaning remains neglected in certain knowledge-driven

domains. One such example is Bioinformatics; biological data are often used uncritically

without considering the errors or noises contained within, and research on both the “causes”

of data artifacts and the corresponding data cleaning remedies are lacking. In this thesis, we

conduct the an in-depth study of what constitutes data artifacts in real-world biological

databases. To the best of our knowledge, this is the first complete investigation of the data

quality factors in biological data.The result of our study indicates that biological data quality

problem is by nature multifactorial and requires a number of different data cleaning

approaches. While some existing data cleaning methods are directly applicable to certain

artifacts, others such as annotation errors and multiple duplicate relations have not been

studied. This provides the inspirations for us to devise new data cleaning methods.

Current data cleaning approaches derive observations of data artifacts from the values

of independent attributes and records. On the other hand, the correlation patterns between the

attributes provide additional information of the relationships embedded within a data set

among the entities. In this thesis, we exploit the correlations between data entities to identify

data artifacts that existing data cleaning methods fall short of addressing. We propose 3 novel

data cleaning methods for detecting outliers and duplicates, and further apply them to real-

world biological data as proof-of-concepts.

 VII

Traditional outlier detection approaches rely on the rarity of the target attribute or

records. While rarity may be a good measure for class outliers, for attribute outliers, rarity

may not equate abnormality. The ODDS (Outlier Detection from Data Subspaces) method

utilizes deviating correlation patterns for the identification of common yet abnormal

attributes. Experimental validation shows that it can achieve an accuracy of up to 88%.

The ODDS method is further extended to XODDS, an outlier detection method for

semi-structured data models such as XML which is rapidly emerging as a new standard for

data representation and exchange on the World Wide Web (WWW). In XODDS, we leverage

on the hierarchical structure of the XML to provide addition context information enabling

knowledge-based data cleaning. Experimental validation shows that the contextual

information in XODDS elevates both efficiency and the effectiveness of detecting outliers.

Traditional duplicate detection methods regard duplicate relation as a boolean

property. Moreover, different types of duplicates exists, some of which cannot be trivially

merged. Our third contribution, the correlation-based duplicate detection method induced

rules from associations between attributes in order to identify different types of duplicates.

Correlation-based methods aimed at resolving data cleaning problems are

conceptually new. This thesis demonstrates they are effective in addressing some data

artifacts that cannot be tackled by existing data cleaning techniques, with evidence of

practical applications to real-world biological databases.

 VIII

List of Tables

Table 1.1: Different records in database representing the same customer 6

Table 1.2: Customer bank accounts with personal information and monthly transactional

averages ... 8

Table 2.1: Different types of data artifacts .. 15

Table 2.2: Different records from multiple databases representing the same customer.......... 19

Table 3.1: The disulfide bridges in PDB records 1VNA, 1B3C and corresponding Entrez

record GI 494705 and GI 4139618 .. 62

Table 3.2: Summary of possible biological data cleaning remedies 63

Table 4.1: World Clock data set containing 4 attribute outliers .. 69

Table 4.2: Number of attribute outliers inserted into World-Clock data set 83

Table 4.3: Performance of ODDS/O-measure at varying number of CA-outliers per tuple ... 84

Table 4.4: Description of attributes in UniProt ... 86

Table 4.5: Frequencies of GO target attributes identified at projections of degree 5 of UniProt

data set ... 87

Table 4.6: CA-outliers detected in UniProtKB/TrEMBL using ODDS/Of-measure.............. 89

Table 4.7: Manual verification of Gene Ontology CA-outliers detected in

UniProtKB/TrEMBL.. 90

Table 5.1: The 2☓2 contigency table of a target attribute and its correlated neighbourhood

 ... 107

Table 5.2: Example contingency tables for monotone properties. .. 109

Table 5.3. Properties of attribute outlier metrics ... 112

Table 5.4: Attribute subspaces derived in RBank using χ2.. 117

Table 5.5: Outliers detected from the UniProt/TrEMBL Gene Ontologies and Keywords

annotations ... 121

 IX

Table 5.6: Annotation results of outliers detected from the UniProt/TrEMBL Gene ontologies

 ... 122

Table 6.1: Multiple types of duplicates that exist in the protein databases 127

Table 6.2: Similarity scores of Entrez records 1910194A and P45639................................. 132

Table 6.3: Different types of duplicate pair in training data set .. 134

Table 6.4: Examples of duplicate rules induced from CBA.. 136

 X

List of Figures

Figure 1.1: Exponential growth of DNA records in GenBank, DDBJ and EMBL 3

Figure 2.1: Sorted Neighbourhood Method with sliding window of width 6 21

Figure 3.1: The central dogma of molecular biology. ... 39

Figure 3.2: The data warehousing framework of BioWare ... 41

Figure 3.3: The 4 levels physical classification of data artifacts in sequence databases 44

Figure 3.4: The conceptual classification of data artifacts in sequence databases 45

Figure 3.5: Protein sequences recorded at UniProtKB/Swiss-Prot containing 5 to 15

synonyms ... 49

Figure 3.6: Undersized sequences in major protein databases .. 52

Figure 3.7: Undersized sequences in major nucleotide databases... 52

Figure 3.8: Nucleotide sequence with the flanking vectors at the 3’ and 5’ ends 53

Figure 3.9: Structure of the eukaryotic gene containing the exons, introns, 5’ untranslated

region and 3’ untranslated region... 55

Figure 3.10: The functional descriptors of a UniProtKB/Swiss-Prot sequence map to the

comment attributes in Entrez ... 60

Figure 3.11: Mis-fielded reference values in a GenBank record... 61

Figure 4.1: Selected attribute combinations of the World Clock dataset and their supports... 70

Figure 4.2: Example of a concept lattice of 4 tuples with 3 attributes F1, F2, and F3 77

Figure 4.3: Attribute combinations at projections of degree k with two attribute outliers - b

and d ... 80

Figure 4.4: Rate-of-change for individual attributes in X1 ... 84

Figure 4.5: Accuracy of ODDS converges in data subspaces of lower degrees in Mix3........ 85

Figure 4.6: Performance of ODDS compared with classifier-based attribute outlier detection ..

 ... 86

 XI

Figure 5.1: Example bank accounts XML document .. 94

Figure 5.2: The 4 subspaces in Bank Account XML .. 96

Figure 5.3: The XODDS outlier detection framework .. 104

Figure 5.5: Performance of XODDS of various metrics using ROC-derived thresholds...... 114

Figure 5.6: Performance of XODDS of various outlier metrics using Top-k 115

Figure 5.7: Performance of XODDS at varying noise levels .. 116

Figure 5.8: Performance of XODDS compared to the relational approach........................... 118

Figure 5.9: Number of aggregate outliers in the account subspace across varying noise 119

Figure 5.10: Running time of XODDS at varying data size.. 120

Figure 5.11: Simplified UniProt XML .. 120

Figure 6.1: Extent of replication of scorpion toxin proteins across multiple databases 126

Figure 6.2: Duplicate detection framework... 130

Figure 6.3: Matching criteria of an Entrez protein record ... 131

Figure 6.4: Field labels from each pair of duplicates in training dataset............................... 134

Figure 6.5: Accuracy of detecting duplicates using different classifiers............................... 135

Figure 6.6: F-score of detecting different types of duplicates ... 135

 XII

Table of Contents

Acknowledgements .. IV

Abstracts...VI

List of Tables...VIII

List of Figures ..X

Chapter 1: Introduction.. 1

1.1 Background.. 2

1.1.1 Data Explosion, Data Mining, and Data Cleaning 2

1.1.2 Applications Demanding “Clean Data” ... 4

1.1.3 Importance of Data Cleaning in Bioinformatics .. 7

1.1.4 Correlation-based Data Cleaning Approaches ... 8

1.1.5 Scope of Data Cleaning.. 9

1.2 Motivation.. 10

1.3 Contribution ... 11

1.4 Organisation... 13

Chapter 2: A Survey on Data Cleaning Approaches.. 14

2.1 Data Artifacts and Data Cleaning .. 15

2.2 Evolution of Data Cleaning Approaches ... 17

2.3 Data Cleaning Approaches .. 18

2.3.1 Duplicate Detection Methods... 19

2.3.2 Outlier Detection Methods... 26

2.3.3 Other Data Cleaning Methods.. 29

2.4 Data Cleaning Frameworks and Systems .. 30

2.4.1 Knowledge-based Data Cleaning Systems... 31

2.4.2 Declarative Data Cleaning Applications .. 31

2.5 From Structured to Semi-structured Data Cleaning... 32

2.5.1 XML Duplicate Detection.. 33

 XIII

2.5.2 Knowledge-based XML Data Cleaning ... 33

2.6 Biological Data Cleaning... 34

2.6.1 BIO-AJAX ... 34

2.6.2 Classifier-based Cleaning of Sequences .. 34

2.7 Concluding Remarks.. 35

Chapter 3: A Classification of Biological Data Artifacts ... 36

3.1 Background.. 37

3.1.1 Central Dogma of Molecular Biology.. 37

3.1.2 Biological Database Systems ... 39

3.1.3 Sources of Biological Data Artifacts.. 41

3.2 Motivation.. 42

3.3 Classification ... 43

3.3.1 Attribute-level artifacts .. 46

3.3.2 Record-level artifacts ... 54

3.3.3 Single Database level artifacts ... 56

3.3.4 Multiple Database level artifacts.. 59

3.4 Applying Existing Data Cleaning Methods ... 62

3.5 Concluding Section.. 64

Chapter 4: Correlation-based Detection of Attribute Outliers using ODDS................... 65

4.1 Introduction.. 66

4.1.1 Attribute Outliers and Class Outliers ... 67

4.1.2 Contribution ... 68

4.2 Background.. 69

4.2.1 Motivating Example... 69

4.3 Definitions ... 72

4.3.1 Preliminaries .. 72

4.3.2 Correlation-based Outlier Metrics.. 73

4.3.3 Rate-of-Change for Threshold Optimisation.. 74

 XIV

4.4 Attribute Outlier Detection Algorithms ... 75

4.4.1 Subspace Generation using Concept Lattice.. 76

4.4.2 The ODDS Algorithm.. 77

4.4.3 Pruning Strategies in ODDS .. 80

4.4.4 The prune-ODDS Algorithm.. 81

4.5 Performance Evaluation... 82

4.5.1 World-Clock Data Set .. 82

4.5.2 UniProt Protein Data Set .. 86

4.6 Concluding Section.. 90

Chapter 5: Attribute Outlier Detection in XML using XODDS 91

5.1 Introduction.. 93

5.1.1 Motivating Example... 94

5.1.2 Contributions.. 97

5.2 Preliminary Definitions.. 97

5.2.1 Correlated Subspaces ... 98

5.2.2 Aggregate Attributes .. 99

5.2.3 Correlation Neighbourhood ... 100

5.2.4 Outlier Scoring... 100

5.2.5 Outlier Identification.. 102

5.3 Outlier Detection Framework .. 102

5.3.1 XODDS Framework .. 102

5.3.2 Algorithms ... 104

5.4 Attribute Outlier Metrics ... 106

5.4.1 Interesting-ness Measures .. 107

5.4.2 Properties of Attribute Outlier Metrics .. 109

5.5 Performance Evaluation... 112

5.5.1 Bank Account Data Set .. 113

5.5.2 UniProt Data Set .. 120

 XV

5.6 Concluding Section.. 123

Chapter 6:Duplicate Detection from Association Mining.. 124

6.1 Introduction.. 125

6.1.1 Motivating Example... 127

6.2 Background.. 129

6.2.1 Association mining... 129

6.3 Materials and Methods... 130

6.3.1 Duplicate Detection Framework .. 130

6.3.2 Matching Criteria ... 131

6.3.3 Conjunctive Duplicate Rules.. 133

6.3.4 Association Mining of Duplicate Rules ... 133

6.4 Performance Evaluation... 134

6.5 Concluding Section.. 136

Chapter 7: Discussion ... 137

7.1 Review of Main Results and Findings ... 138

7.1.1 Classifications of Biological Data Artifacts... 138

7.1.2 Attribute Outlier Detection using ODDS... 139

7.1.3 Attribute Outlier Detection in XML using XODDS 140

7.1.4 Detection of Multiple Duplicate Relations... 140

7.2 Recommendations...Error! Bookmark not defined.

7.2.1 Systematic Frameworks for Data Cleaning.. 141

7.2.2 Data Cleaning for Semi-structured Data .. 142

Bibliography... 144

 1

Chapter 1: Introduction

The beginning of knowledge is the discovery of something we do not understand.

Frank Herbert
US science fiction novelist (1920 - 1986)

 2

1.1 Background

1.1.1 Data Explosion, Data Mining, and Data Cleaning

The “How much information” project conducted by UC Berkeley in 2003 estimated that

every year, one person produces an equivalence of “30-feet books” of data, and 92 percent

are in electronic formats [LV03]. However, this astonishing quantitative growth of data is the

antithesis of its qualitative content. Increasingly diversified sources of data combined with the

lack of quality control mechanisms result in the depreciation of the World’s data quality - a

phenomenon commonly known as data overloading.

The first decade of the 21st century also witness a widespread use of data mining

techniques that aim at extracting new knowledge (concepts, patterns, or explanations, among

others) from the data stored in databases, also known as Knowledge Discovery from

Databases (KDD). The prevalent popularity of data mining is driven by technological

advancements that generate voluminous data, which can no longer be manually inspected and

analysed. For example, in the biological domain, the invention of high-throughput sequencing

techniques enables the deciphering of genomes that accumulate massively into the biological

databanks. GenBank, the public repository of DNA sequences build and supported by the US

National Institute of Health (NIH) has been growing exponentially towards 100 billion bases,

the equivalence of more than 70 million database records (Figure 1.1). Similar growth of

DNA data are seen in DNA databank of Japan (DDBJ) and European Molecular Biology

Laboratory (EMBL). The data available from GenBank, DDBJ and EMBL are only parts of

the “ocean” of public-domain biological information which is used extensively in

Bioinformatics for In silico discoveries – biological discoveries using computer modelling or

computer simulations.

Due to the sheer volume, databases such as GenBank are often used with no

consideration of the errors and defects contained within. When subject to automated data

mining and analysis, these “dirty data” may produce highly misleading results, resulting in a

 3

“garbage-in garbage-out” situation. Further complication arises when some of the erroneous

results are added back into the information systems, and therefore creating a chain of error

proliferations.

Figure 1.1: Exponential growth of DNA records in GenBank, DDBJ and EMBL

Figure from http://www.ncbi.nlm.nih.gov/Genbank

Data cleaning is an emerging domain that aims at improving data quality. It is

particularly critical in databases with high evolutionary nature such as the biological

databases and data warehouses new data generated from the worldwide experimental labs are

directly submitted into these databases on daily basis without adequate data cleaning steps

and quality checks. The “dirty data” accumulate as well as proliferate as the data exchange

among the databases and transform through data mining pipelines.

Although data cleaning is the essential first step in the data mining process, it is often

neglected conveniently because the solution towards attaining high quality data is non-

obvious. Development of data cleaning techniques is at its infancy and the problem is

complicated by the multiplicity as well as the complexity of data artifacts, also known as

“dirty data” or data noise.

 4

1.1.2 Applications Demanding “Clean Data”

High quality data or “clean data” are essential to almost any information system that requires

accurate analysis of large amount of real-world data. In these applications, automatic data

corrections are achieved through data cleaning methods and frameworks, some forming the

key components of the data integration process (e.g. data warehouses) and are the pre-steps of

even using the data (e.g. customer or patient matching). This section describes some of the

key applications of data cleaning.

1.1.2.1 Data Warehouses

The classical application of data cleaning is in data warehouses [LLLK99, VVS+00, RH01,

ACG02, CGGM03]. Data warehousing emerged as the solution for “warehousing of

information” in the 1990s in the business domain; a business data warehouse is defined as a

subject-oriented, integrated, non-volatile, time-variant collection of data organised to support

management decisions [Inm93]. Common applications of data warehousing include:

• Business domain to support business intelligence and decision making [Poe96,

AIRR99]

• Chemo-Informatics to facilitate pharmaceutical discoveries [Heu99]

• Healthcare to support analysis of medical data warehouses [Sch98, Gib99,

HRM00]

Data warehouses are generally used to provide analytical results from multi-

dimensional data through effective summarization and processing of segments of source data

relevant to the specific analyses. Business data warehouses are basis of decision support

systems (DSS) that provide analytical results to managers so that they can analyse a situation

and make important business decisions. Cleanliness and integrity of the data contributes to

the accuracy and correctness of these results and hence affects the impact of any decision or

conclusion drawn, with direct cost amounting to 5 million dollars for a corporate with a

customer base of a million [Kim96].

 5

Nevertheless, the quality problem of data warehouses is non-trivial. In a data

warehouse, analytical results are derived from large volume of historical and operational data

integrated from heterogeneous sources. Warehouse data exist in highly diversified formats

and structures, and therefore it is difficult to identify and merge duplicates for purpose of

integration. Also, the reliability of the data sources is not always assured when the data

collection is voluminous; large amount of data can be deposited into the operational data

sources in a batch mode or by data entry without sufficient checking. Given the excessive

redundancies and the numerous ways errors can be introduced into a data warehouse, it is not

surprising that data cleaning is one of the fast evolving research interests for data

warehousing in the 21st century [SSU96].

1.1.2.2 Customer or Patient Matching

Data quality is sometimes defined as a measurement of the agreement between the data views

presented by an information system and that same data in real world [Orr98]. However, the

view presented in a database is often an over-representation of an entity in real world;

multiple records in a database represent the same entity or fragmented information of it.

In banking, the manifestation of duplicate customer records incurs direct mailing

costs in printing, postage, and mail preparation by sending multiple mails to the same person

and same household. In United States alone, $611 billion a year is lost as a result of solely

customer data (names and addresses) [Eck02]. Table 1.1 shows an example of the customer

matching problem. As shown, the duplication detection problem is a combination of:

• Mis-spellings e.g. “Judy Koh”

• Typographical errors e.g. “Judic Koh” and “S’pre”

• Word transpositions e.g. “2 13 Street East” and “Koh Judice”

• Abbreviations e.g. “SG” and “2 E 13 St”

• Different data types e.g “Two east thirteenth st”

• Different representations e.g country code can be represented as “(65)”, “65-“ or

“(065)”

 6

• Change in external policy such as the introduction of an additional digit to

Singapore’s phone numbers effective from 2005. “65-8748281” becomes “65-

68748281”.

Table 1.1: Different records in database representing the same customer

 Name Address City State Zip Phone

1 J.Koh 2 E 13th Street Singapore - 119613 (65) 8748281

2 Judice 2 13 Street East SG Singapore 119-613 68748281

3 Koh Judice 2 E thirteenth street S’pore S’pore 11961 65-68748281

4 Judy Koh 2 E 13 St - SG 119 613 65-8748281

5 Judic Koh Two east thirteenth st Toronto S’pre - (065)-8748281

The data cleaning market-place is loaded with solutions for cleaning customer lists and

addresses, including i/Lytics GLOBAL by Innovative Systems Inc.

(http://business.innovativesystems.com/postal_coding/index.php), Heist Data Cleaning

solutions (http://www.heist.co.uk/mailinglistscleaning/), and Dataflux Corporation

(http://www.dataflux.com/main.jsp).

The same redundancy problem prevails in healthcare. Mismatching the patients to the

correct medical records, or introducing errors to the prescriptions or patients health records

can cause disastrous loss of lives. The Committee of Healthcare in America estimated that

44,000 to 98,000 preventable deaths per year are caused by erroneous and poor quality data;

one major cause is mistaken identities [KCD99].

1.1.2.3 Integration of information systems or databases

Data cleaning is required whenever databases or information systems need to be integrated,

particularly after acquisition or merging of companies. To combine diversified volumes of

data from numerous backend databases, often geographically distributed, enormous data

cleaning efforts are required to deal with the redundancies, discrepancies and inconsistencies.

In a classical example, the British Ministry of Defence embarked on an $11 million

data cleansing project in 1999 to integrate 850 information systems, 3 inventory systems and

 7

15 remote systems. Data cleaning processes conducted over the four years include (1)

disambiguation of synonyms and homonyms, (2) duplicate detection and elimination, and (3)

error and inconsistency corrections through data profiling. This major data cleaning project is

believed to have saved the British Ministry $36 million dollars [Whe04].

In general, data quality issues are critical in domains which require storage of large

volume of data, are constantly integrated from diversified sources, and where data analysis

and mining plays an important role. One such example is Bioinformatics.

1.1.3 Importance of Data Cleaning in Bioinformatics

Over the past decade, advancement in high-throughput sequencing offers unprecedented

opportunities for scientific breakthroughs in fundamental biological research. While genome

sequencings of more than 205,000 named organisms aim at elucidating the complexity of

biological systems, this is only the beginning of the era of data explosion in biological

sciences. Given the development of faster and more affordable genome sequencing

technologies, the numerous organisms that have not been studied, and the recent paradigm

shift from genotyping to re-sequencing, the number of genome projects is expected to

continue at an exponential growth rate into the next decade [Met05]. These genome project

initiatives are directly translated into amounting volumes of uncharacterized data which

rapidly accumulates into the public biological databases of biological entities such as

GenBank [BKL+06], UniProt [WAB+06], PDB [DAB+05], among others .

Public biological databases are essential information resources used daily by

biologists around the world for sequence variation studies, comparative genomics and

evolution, genome mapping, analysis of specific genes or proteins, molecular bindings and

interactions study, and other data mining purposes. The correctness of decisions or

conclusions derived from the public data depends on the data quality, which in turn suffers

from exponential data growth, increasingly diversified sources, and lack of quality checks.

Clearly, the presence of data artifacts directly affects the reliability of biological discoveries.

Bork [Bor00] highlighted that poor data quality is the key hurdle that the bioinformatics

 8

community has to overcome in order that computational prediction schemes exceed 70%

accuracy. Informatics burdens created by low quality, unreliable data also limits large-scale

analysis at the –omics (Genomics, Proteomics, Immunomics, Interactomics, among others)

level. As a result, the complete knowledge of biological systems remains buried within the

biological databases.

Although this need is drawing increasing attention over the last few years, progress

still fall short in making the data “fit for analysis” [MNF03, GAD02], and data quality

problems of varying complexities exist [BB96, BK98, Bre99, Bor00, GAD+02], some of

which cannot be resolved given the limitations of existing data cleaning approaches.

1.1.4 Correlation-based Data Cleaning Approaches

Current data cleaning approaches derive observations of data artifacts from independent

attributes and records (details in Chapter 2). On the other hand, the correlation patterns

embedded within a data set provide additional information of the semantic relationships

among the entities, beyond the individual attribute values. Correlation mining - the analysis

of the relationships among attributes is becoming an essential task in data mining processes.

For example, the core of association rule mining is to find sets of attributes that co-occur

frequently in a transaction database, while feature selection involves identifying strongly

correlated dimensions.

Table 1.2: Customer bank accounts with personal information and monthly

transactional averages

Ac Type Cust/

Age

Cust/ Profession Addr/ Country Addr/ State Addr/ City Trans/

Count

Trans/

Avg

1 Saving 35 Engineer Czech S.Moravi Opava 2 $52

2 Cheque 75 Manager USA LA California 300 $143

3 Saving 16 Professor Czech S.Moravi Opava 80 $72

4 Saving 18 Student USA S.Moravi Opava 58 $63

5 Saving 37 Professor Czech S.Moravi Opava 25 $124

 9

Table 1.2 shows a simple example of the inadequacy of merely considering data

values in outlier detection. By applying traditional mechanisms for attribute outlier detection

that focus on finding rare values across univariate distributions of each dimension, we may be

able to identify the low transaction count in Account 1 is an attribute outliers. However, such

strategies based on rarity are unlikely to determine the 16-year old professor in Account 3, or

the USA that is erroneously associated with the city and state of Czech in Account 4. These

possible errors are however detectable from the deviating co-occurrence patterns of the

attributes.

Besides abnormal correlations that constitute data noise in the form of attribute

outliers, the mining of positive correlations also enables the sub-grouping of redundancy

relations. Duplicate detection strategies typically compute the degree of field similarities

between two records in order to determine the extent of duplication. Moreover, intuitively,

duplicate relation is not a boolean property because not all similar records can be trivially

merged. The different types of duplicates do not vary in their extent of similarity but rather in

their associative attributes and corresponding similarity thresholds.

Correlation mining techniques generally focus on strong positive correlations

[AIS93, LKCH03, BMS97, KCN06]. Besides market basket analysis, correlation-based

methods have been developed for complex matching of web query interface [HCH04],

network management [GH97], music classification [PWL01], among others. However,

correlation-based methods targeted at resolving data cleaning problems are conceptually new.

1.1.5 Scope of Data Cleaning

Juron and Blanton defined in [JB99] - "data to be of high quality if they are fit for their

intended uses in operations, decision making and planning." According to this definition,

data quality is measured by the usability of data, and achieving high quality data encompasses

the definition and management of processes that create, store, move, manipulate, process and

use data in a system [WKM93, WSF95]. While a wide range of issues relate to data usability

- from typical quality criterion such as data consistency, correctness, relevance to application

 10

and human aspects such as ease-of-use, timeliness, and accessibility, current approaches in

data cleaning mainly arises out of the need to mine and to analyse large volume of data

residing in databases or data warehouses.

Specifically, the data cleaning approaches mentioned in this work devote to data

quality problems that hamper the efficacy of analysis or data mining and are identifiable

completely or partially through computer algorithms and methods. The data cleaning research

covered in this work does not take into account data quality issues associated with the

external domain-dependent and process-dependent factors that affect how data are produced,

processed and physically passed around. It does not include quality control initiatives, such as

manual selection of input data, manual tracing of data entry sources, feedback mechanisms in

the data processing steps, the usability aspects of the database application interfaces, and

other domain specific objectives associated with the non-computational correction of data.

While we will not give details, it suffices to mention that the term data cleaning has

different meanings in various domains; some examples are found in [RAMC97, BZSH99,

VCEK05]. For biological data, this work does not cover sequencing errors caused by a

defective transformation of the fluorescent signal intensities produced by an automated

sequencing machine into a sequence of the four bases of DNA. Such measurement errors are

not traceable from the sequence records using statistical computation or data mining.

1.2 Motivation

Data cleaning is an important aspect of bioinformatics. However, biological data are often

used uncritically without considering the errors or noises contained within. Relevant research

on both the “causes” and the corresponding data cleaning remedies are lacking. This research

is driven by the desire to address the data quality problems in real-world data such as the

biological data. The thesis has two main objectives:

(1) Investigate factors causing depreciating data quality in the biological data

(2) Devise new data cleaning methods for data artifacts that cannot be resolved using

existing data cleaning techniques

 11

To the best of our knowledge, this is the first serious work in biological data

cleaning. The benefit of addressing data cleaning issues in biological data is two-fold. While

the high dimensionality and complexity of biological data depicts it as an excellent real-world

case study for developing data cleaning techniques, biological data also contain an assortment

of data quality issues providing new insights to data cleaning problems.

1.3 Contribution

This thesis presents a complete study of the classification of data artifacts in biological

databases and proposes 3 new correlation-based data cleaning methods. The classification of

biological data artifacts serves as a “roadmap” for data cleaning processes. The data cleaning

methods are general; and we demonstrate they are applicable to both biological and non-

biological data. These methods are unlike traditional data cleaning strategies that focused on

the defects in individual records or attribute values. Rather, the correlations between data

entities are exploited to identify artifacts that existing data cleaning methods cannot detect.

The completion of this research project will make 4 specific contributions to the

research in data cleaning as well as bioinformatics:

• Classification of biological data artifacts

The data quality problem of biological data is a collective result of artifacts at the

field, record, single and multiple-database levels (physical classification), and a

combinatory problem of the bioinformatics that deals with the syntax and semantics

of data collection, annotation, and storage, as well as the complexity of biological

data (conceptual classification). We conduct an investigation to determine the

multiple types of data artifacts that cause data quality depreciation in major

biological databases; 11 types and 28 subtypes of data artifacts are identified. We

classify these artifacts into their physical as well as conceptual types. We also

evaluate the limitations of existing data cleaning methods in addressing each type of

artifacts. To the best of our knowledge, this is the first complete study of biological

 12

data artifacts, with the objective of gaining holistic insights into the data quality

problem and the adequacy of current data cleaning techniques.

• A correlation-based attribute outlier detection method

An outlier is an object that does not conform to the normal behaviour of the data set.

Existing outlier detection methods focus on class outliers and research on attribute

outliers is limited, despite the equal role attribute outliers play in depreciating data

quality and reducing data mining accuracy. We introduce ODDS (for Outlier

Detection from Data Subspaces) method to detect attribute outliers from the deviating

correlation behaviour of attributes. Three metrics to evaluate outlier-ness of

attributes, and an adaptive factor to distinguish outliers from non-outliers are

proposed. Evaluation on both biological and non-biological data shows that ODDS is

effective in identifying attribute outliers, and detecting erroneous annotations in

protein databases.

• A framework for detecting attribute outliers in XML

Increasing biological databases are converted into XML formats in order to facilitate

data exchange. However, current outlier detection methods for relational data models

are not directly adaptable to XML documents. We develop a novel outlier detection

method for XML data models call XODDS (for XML Outlier Detection from Data

Subspace). The XODDS framework utilizes the correlation between attributes to

adaptively identify outliers and leverages on the hierarchical structure of XML to

determine semantically meaningful subspaces of the correlation-based outliers.

XODDS consists of four key steps: (1) attribute aggregation defines summarizing

elements in the hierarchical XML structures, (2) subspace identification determines

contextually informative neighbourhoods for outlier detection, (3) outlier scoring

computes the extent of outlier-ness using correlation-based metrics, and (4) outlier

identification adaptively determine the optimal thresholds distinguishing the outliers

from non-outliers.

 13

• An association mining method to detect multiple types of duplicates

This work examines the extent of redundancy in biological data and proposes a

method for detecting the different types of duplicates in biological data. Duplicate

relations in a real-world biological dataset are induced using association mining.

Evaluation of our method on a real-world dataset shows that our duplicate rules can

accurately identify up to 96.8% of the duplicates in the dataset.

The classification of biological data artifacts was published in ICDT 2005 Workshop

on Database Issues in Biological Database (DBiBD). The paper describing the ODDS outlier

detection method has been accepted for publication in DASFAA 2007 [KLHL07], and the

XODDS method paper has been submitted [KLHA07]. A full paper on duplicate detection

using association mining was published in ECML/PKDD 2004 Workshop on Data Mining

and Text Mining for Bioinformatics [KLK+04].

1.4 Organisation

The rest of this thesis is organized as follows. First, Chapter 2 reviews current approaches to

data cleaning in detail. Background information on bioinformatics and biological database,

and the taxonomy of biological data artifacts is presented in Chapter 3. The ODDS method is

presented in Chapter 4. We demonstrate how ODDS can be applied to distinguish erroneous

annotations in protein databases. An extension of the outlier detection framework to XML

data is proposed to Chapter 5, which leverages on the contextual information in XML to

facilitate the detection of outliers in semi-structured data models. Chapter 6 presents a

correlation-based approach towards duplicate detection of protein sequences. We conclude in

Chapter 7 with discussions on further works.

 14

Chapter 2: A Survey on Data Cleaning
Approaches

If I have seen further, it is by standing on the shoulders of giants.

Issac Newton
English Mathematician (1643-1727)

 15

In this chapter, we discuss how data cleaning approaches have evolved over the last decade

and we survey existing data cleaning methods, systems and commercial applications.

2.1 Data Artifacts and Data Cleaning

Data cleaning, also known as data cleansing or data scrubbing encompasses methods and

algorithms that deal with artifacts in data. We formally define data cleaning:

Data cleaning is the process of detecting and eliminating data artifacts in order to improve

the quality of data for analysis and mining.

Here, data artifacts refer to data quality problems such as errors, discrepancies,

redundancies, ambiguities, and incompleteness that hamper the efficacy of analysis or data

mining. Since real-world objects that are completely and accurately represented in databases

have perfect data quality [Orr98], data artifacts are basically the differences between the real-

world and database representations. Data artifacts may be caused by erroneous entry, wrong

measurements, data transformation problems, inaccurate annotations, mis-interpretations,

among others. Table 2.1 shows some common examples of data artifacts and their types.

Table 2.1: Different types of data artifacts

 Errors Discrepancies Incompleteness Redundancies Ambiguities
Duplicates *

Outliers * *
Spurious links *
Missing values *
Illegal values *

Synonyms * *
Homonyms *

Integrity violations * * *
Dependency

violations
*

Format variations *
Word transposition *

Mis-spellings * *

We broadly characterized data artifacts into 5 types – errors, discrepancies,

incompleteness, redundancies and ambiguities. Errors are measurements, observations, or

calculations which are incorrect or inaccurate representations of the “truth”. In databases,

 16

errors are seen as outliers, illegal values, integrity and dependency violations, or mis-

spellings. For instance, consider a relation R(Country, State, City) and let r1 = <‘Singapore’,

‘Singapore’, ‘Toronto’> be a tuple in R, where r1[City]=<’Toronto’> is erroneously

introduced. If the functional dependency FD: City → Country is specified in the relational

database, it is possible to detect the error as a dependency violation at point of insertion.

However, this FD does not always hold. For example, the city called Geneva is in Illinois,

U.S.A as well as Switzerland, Geneva (state). An alternative approach is to take into account

the deviating behaviour of the attribute and utilize outlier detection approaches to isolate the

error.

Discrepancies are differences between conflicting observations, measurements or

calculations. Unlike errors, it is not straightforward to determine which of the conflicting

entities is the “truth”. Consider another tuple in R, r2 = <’Canada’, ‘British Columbia’,

‘Toronto’>. r2[State]=<’British Columbia’> and r2[City]=<’Toronto’> are conflicting

observations because either may be erroneous. Similarly, homonymous entities are not

necessary incorrect.

Incompleteness means the information of a real-world entity is missing from the

corresponding tuples in the databases. When a highly sparse database, which is manifested

with missing values, is subjected to machine learning, the learned model may adjust to very

specific random features in the rare training examples, thus resulting in over-fitting.

Likewise, in data mining perspectives, redundancy in duplicate or synonymous records

results in over-representations of specific patterns that in turn, disturb the statistical

distributions.

Ambiguities refer to unclear or uncertain observations. The use of multiple names to

describe the same entity (synonyms), the same names for different entities (homonyms), or

mis-spellings are all symbolic of ambiguous information. For example, besides known as a

common abbreviation for two different classes of enzymes - glycerol kinase and guanylate

kinase, GK is also as an abbreviation of the Geko gene of Drosophila melanogaster (Fruit

 17

fly). It is impossible to tell from the name GK, if the corresponding DNA sequence is an

enzyme or is a gene of fruit fly.

Some of these artifacts can be trivially resolved using proprietary spell-checkers and

by incorporating integrity, dependency and format constraints into the relational databases.

On the contrary, detecting and eliminating duplicates and outliers have proven to be of

greater challenge. In fact, majority of the research in data cleaning are related to either

duplicate or outlier detection. The alternative approach of hand-correcting the data is

extremely expensive and laborious and cannot be fool-proofed of additional entry errors from

the annotators. On the other hand, data cleaning is more than a simple update of a record,

often requiring decomposition and reassembling of the data. A serious data cleaning tool can

easily be an extensive software system.

2.2 Evolution of Data Cleaning Approaches

Data cleaning is a new field that emerges over the last decade. Driven by information

overload, widespread use of data mining and developments in database technologies, the data

cleaning field has expanded in many aspects; new types of data artifacts are addressed, more

sophisticated data cleaning solutions are available, and new data models are explored.

The first works in data cleaning focused at detecting redundancies in data sets

(merge/purge and duplicate detection), addressing various types of violations (integrity,

dependency, format violations), and identifying defective attribute values (data profiling).

Recent works have expanded beyond the defects in individual records or attribute values into

the detection of defective relationships between records and between attributes (spurious

links). Also, the technical aspects have advanced from individual algorithms and metrics

(sorted neighbourhood methods, field matching) into complete data cleaning systems and

frameworks (IntelliClean, Potter’s wheel, AJAX), as well as essential components of the data

warehouse integration systems (ETL and fuzzy duplicates). The data models investigated

extend from structured (relational) data to the semi-structured XML models (DogmatiX).

 18

In this thesis, we expand the scope of data cleaning beyond the defects in individual

records or attribute values into the detection of defective relationships between records and

between attributes. We also delve into data cleaning methods for XML models.

2.3 Data Cleaning Approaches

Strategies for data cleaning may differ according to the types of data artifacts, but they

generally faced the recall-precision dilemma. We first define recall and precision using true-

positives (TP), false-positives (FP) and false-negatives (FN).

)(FPTP
TPprecision
+

=

)(FNTP
TPrecall
+

=

Precision, also known as positive predictive value is the ratio of data points detected that

indeed contain artifacts. Recall, also known as sensitivity is the ratio of data artifacts detected.

In this work, we use F-score which is a combined score of both recall and precision.

)(
)2(

recallprecision
recallprecisionscoreF

+
××

=−

The recall-precision dilemma indicates that the higher the recall, the lower is the

precision, and vice versa. Data artifacts detection methods are commonly associated with

criteria or thresholds that differentiate the artifacts from the non-artifacts. Higher recall can

be achieved by relaxing some of the criteria or thresholds with an increase in the number of

TP, but corresponding reduction in precision because FP also increases. Stringent criteria or

high thresholds may reduce FP and thus increase precision, but at the same time, reduces the

number of positive detected and thus the recall. Achieving both high recall and precision, and

therefore a high F-score is a common objective for data cleaners.

 19

2.3.1 Duplicate Detection Methods

Early works in data cleaning focused on the merge/purge problems, also known as de-

duplication, de-duping, record linkages, duplicate detection. Merge/Purge addresses the

fundamental issue of inexact duplicates – two or more records of varying formats and

structures (syntactic values) are alternative representations of the same semantic entity

[HS95, HS98]. Merge refers to the joining of information from heterogeneous sources and

purge means the extraction of knowledge from the merge data. Merge/purge research

generally address two issues:

• Efficiency of comparing every possible pair of records from a plurality of databases.

The naïve approach has a quadratic complexity, so this class of methods aim at

reducing time complexity through restricting the comparisons to records which have

higher probability of being duplicates.

• Accuracy of the similarity measurements between two or more records. Methods

belonging to this class investigate the various similarity functions of fields,

especially of strings and multiple ways of record matching.

Duplicates are common in real-world data that are collected from external sources

such as through surveying, submission, and data entry. Integration of databases or

information systems also generates redundancies. For example, merging all the records in

Table 2.2 requires identifying that “First Name” and “Given name” refer to the same entities,

“Name” is a concatenation of first and last names, and “Residential” and “Address” refers to

the same fields.

Table 2.2: Different records from multiple databases representing the same customer

 Name Address City State Zip Phone
1 J.Koh 2 E 13th Street Singapore - 119613 (65) 8748281
2 Koh Judice 2 13 Street East SG Singapore 119-613 68748281

 First Name Last Name Address Country code Contact
1 J. Koh 2 E 13th Street, Singapore 65 8748281
2 Judy Koh 2 E 13 St. S(119613) - 68748281

 Given name Last name Residential Country Tel
1 Judic Koh Two east thirteenth st SG - (065)-8748281

 20

In data warehouses designed for On-Line Analytical Processing (OLAP),

Merge/Purge is also a critical step in the Extraction, Transformation, and Loading (ETL)

process of integrating data from multiple operational sources.

2.3.1.1 Efficiency-driven Methods

Sorted-neighbourhood method (SNM) is one of the classical approaches to merge/purge

problems. SNM first sorts the database based on a unique composite key constructed from

one or more fields in order to bring similar records to a bounded neighbourhood in a linear

list [HS95]. A window of size w is slide along the list such that only records within the

window are pair-wise compared; every new record entering the window is compared with the

previous w-1 records (Figure 2.1). SNM reduces O(N2) complexity of a typical pair-wise

comparison step to O(wN) where w is the size of the window and N is the number of records.

The effectiveness of the method, however, is restricted to the selection of appropriate keys.

An example of SNM is given in Figure 2.1, which shows a list of sorted customer

portfolios. The composite key is the combination “<First name><Last name><security ID>”.

Notice that the accuracy of SNM is highly dependent on the choice of the keys as well as the

window width. We can bring the duplicate records “IvetteKeegan8509119” and

“YvetteKegan9509119” into lexicographical proximity of the sliding window of size w using

the composite key “<First name><security ID><Last name>”; “Keegan8509119Ivette” and

“Kegan9509119Yvette” are sufficiently close keys. However, this brings

“DianaDambrosion0” and “DianaAmbrosion0” – with corresponding new composite keys

“Dambrosion0Diana” and “Ambrosion0Diana” beyond comparable range. Enlarging the size

of sliding window may improve the recall of SNM but at the expense of time complexity.

The duplicate elimination method (DE-SNM) improves SNM by first sorting the

records on a chosen key and then dividing the sorted records into two lists: duplicate and non-

duplicate [Her95]. DE-SNM achieves slight efficiency improvement over SNM, but suffers

from the same drawbacks as SNM. The multi-pass sorted-neighbourhood method (MP-SNM)

removes SNM’s dependency on a single composite key by performing multiple independent

 21

passes of SNM based on different sorting keys. The union of the duplicates found from

multiple passes are flagged as duplicates. Using the same example in Figure 2.1, 3 separate

passes of SNM using “First name”, “Last name” and “Security No.” respectively would have

identified all duplicates.

Figure 2.1: Sorted Neighbourhood Method with sliding window of width 6

In [ME97], priority queues of clusters of records facilitate duplicate comparison.

Instead of comparing to every other record within a fixed window, a record is compare to

representatives of clustered subsets with higher priority in the queue. It reported a saving of

75% of time from the classical pair-wise algorithm.

Transitivity and Transitivity Closure

Under the assumption of transitivity, if record x1 is a duplicate of x2, and x2 is a duplicate of

x3, then x1 is a duplicate of x3. Some duplicate detection methods leverage on the assumption

that relation “is duplicate of” is transitive to reduce the search space for duplicates [HS95,

LLKL99, ME97]. Generalizing the transitivity assumption, we denote xi ≈ xj if xi is a detected

duplicate of record xj. Then for any x which is a duplicate of xi, x ≈ xj. Likewise, x ≈ xj implies

that x ≈ xi. With the transitive assumption of duplicate relations, the number of pair-wise

matching that is required to determine clusters of duplicates is reduced.

If we model data records into an undirected graph where edges represent the relation

“is similar to”, then the “is duplicate of” relation corresponds to the transitive closure of the

“is similar to” relation. Further clarifying, we define formally transitive closure:

Sliding window
with w = 5

 22

Let R be the binary relation “is similar to” and X be a set of duplicate records. The transitive

closure of R on a set X is the minimal transitive relation R’ on X that contains R.. Thus for

any Xxx ji ∈, , xiR’xj iff there exist xi, xi+1, ..., xj and xrRxr+1 for all i≤r<j.

R’ is a transitive closure of R means that xi is reachable from xj and vice versa. In a database,

a transitive closure of “is duplicate of” can be seen as a group of records representing the

same semantic entity.

However, the duplicate transitivity assumption is not flawless without loss of

precision; the extent of similarity diminishes along the transitive relations. Two records,

which are far apart in the “is similar to” graph, are not necessarily duplicates. An example is

given in [LLL00]: “Mather” ≈ “Mother” and “Mather” ≈ “Father”, but “Mother” ≈ “Father”

does not hold.

2.3.1.2 Accuracy-driven methods

Instead of reducing the complexity of pair-wise comparisons, other duplicate detection

research focus on the accuracy of the determining duplicates. These works generally relate to

record linkages, object identification, and similarity metrics. The duplicate determination

stage decomposes into two key steps:

(1) Field Matching measures the similarity between corresponding fields in two records.

(2) Record Matching measures the similarity of two or more records over some

combinations of the individual field matching scores.

Field Matching Functions

Most field matching functions deal with string data types because typographical variations in

strings account for a large part of the mismatches in attribute values. A comprehensive

description of the general string matching functions is given in [Gus97]. [EIV07] gives a

detailed survey of the field matching techniques used for duplicate detection. Here, we will

highlight a few commonly used similarity metrics.

String similarity functions are roughly grouped into order-preserving and unordered

techniques. Given that order-preserving similarity metrics rely on the order of the characters

 23

to determine similarities; these approaches are suitable for detecting typographical errors and

abbreviations.

The most common order-preserving similarity function is the edit distance, also

known as the Levenshtein distance, which calculates the number of operations needed to

transform from one string to another [Lev66]. For example, the edit distance between

“Judice” and “Judy” is 3 because 3 edits - 1 substitution and 2 deletions are required for the

transformation. The basic algorithm for computing edit distance using dynamic programming

(DP) runs at the complexity of ()21 ss ×Ο where |s1| and |s2| are the lengths of the strings s1

and s2 respectively.

Recent years has seen the adaptation of string matching strategies originally used in

Bioinformatics to align DNA (string of nucleotides) or protein (string of amino acids)

sequences. Unlike edit distance, these sequence similarity functions allow for open gaps and

extend gaps between the characters at certain penalties [NW70, SW81]. For example, edit

distance is highly position-specific and does not effectively match mis-aligned string such as

“J. L. Y. Koh” with “Judice L. Y. Koh”. With Needleman and Wunsch algorithm [NW70]

and Smith-Waterman distance [SW81], the introduction of gaps into the first string enables

proper alignment of the two strings. However, studies had shown that more elaborated

matching algorithms such as Smith-Waterman does not necessarily out-performed basic

matching functions [BM03].

Unordered string matching approaches do not require the exact ordering of characters

and hence are more effective in identifying word transpositions and synonyms. The notion of

“token matching” was introduced in [LLKL99]. Tokenizing a string involves 2 steps: (1)

Split each string into tokens delimited by punctuation characters or spaces, and (2) Sort the

tokens lexicographically and join them into a string which is used as the key for SNM and

DE-SNM. It makes sense to tokenize strings semantically because different orderings of real-

world string values often refer to the same entity. For example, tokenizing both “Judice L. Y.

Koh” and “Koh L. Y. Judice” with different ordering of the first, middle and last names

 24

produces “Judice L. Koh Y.” as the key for record matching in SNM. Similar concept of

“atomic tokens” of words calculates the number of matching tokens from two strings to

determine the similarity between 2 fields [ME96].

Another unordered string similarity function is the cosine similarity that transforms

the input strings into vector space to determine similarity using the Euclidean cosine rule.

Cosine similarity of two strings s1 and s2 represented by “bag of words” w is defined

∑

∑
=

w

w

wsws

wsws
ssine

2
2

2
1

21

21
)(.)(

)().(
),(cos

String similarities can also be machine-learned, using support vector machine (SVM)

or probabilistic approaches [BM03]. While learning approaches towards string similarity has

the benefit of adapting the algorithm according to different input databases, the accuracy is

highly dependent on the size of the input data set, and it is difficult to find training data sets

with sufficient coverage of similar strings.

Record Matching Functions

The record matching functions, also known as merging rules determine whether two records

are duplicates. A record matching function is defined over some or all of the attributes of the

relation. The first record matching methods use simple domain-specific rules specified by

domain experts to define a unique collective set of keys for each semantic entity; duplicates

of the same object have the same values for these keys [WM89].

In [HS95], merging rules are represented using a set of equational axioms of domain

equivalence. For example, the following rule indicates that an identical match of last name

and address, together with an almost similar match of last name infer that two records ri and rj

are duplicates:

Given two records, ri and rj
IF the last name of ri equals the last name of rj,

AND the first names differ slightly,
AND the address of ri equals the address of rj

THEN
ri is equivalent. to rj.

 25

A database may require more than one equational axiom to determine all possible duplicate

scenarios. Creating and maintaining such domain specific merging rules is time-consuming

and is almost unattainable for large databases.

Let S be a general similarity metric of two fields (e.g edit distance) and α be given

thresholds. Notice that the above merging rule can be generalized into a conjunction of field

similarity measures:

Given two records ri and rj, ri is equivalent to rj if
S(ri[last name], rj[last name]) ≤ α1
^ S(ri[address], rj[address]) ≤ α2

^ S(ri[last name], rj[last name]) ≤ α3

Instead of returning a boolean decision of whether ri and rj are duplicates, the conjunction can

return an aggregate similarity score that determines the extent of replication of the two

records [ME97, Coh00]. An alternative method mapped the individual string distances onto a

Euclidean space to perform a similarity join [JLM03]. In cases where multiple rules describe

the duplication scenarios, the conjunctive clauses are joined disjunctively.

One way to overcome the time-consuming process of manually specifying record

matching functions is to derive them through machine learning. The main difficulty in

machine learning approaches is the collection of the input training pairs of duplicates and

non-duplicates. [SB02] proposed an iterative de-duplication system that actively learns as

users interactively label the duplicates and non-duplicates and add them to the classifiers. An

accuracy of up to 98% is achievable using Decision Tree C4.5, Support Vector Machine

(SVM), and Naïve Bayes as the classifiers. The TAILOR system adopt a supervise classifier

approach; the probabilistic, induction, and clustering decision models are used to machine

learn the comparison vectors and their corresponding matching or unmatching status

[EVE02].

2.3.1.3 Correlation-based Methods

Recent approaches towards duplicate detection utilize context information derived from the

correlations of an entity in order to improve the accuracy of matching [ACG02, LHK04].

[ACG02] leverages on the hierarchical correlations between tuples in dimensional tables to

 26

detect duplicates with the same correlations across related parent and child tables. [LHK04]

exploit the context information of the correlated attributes to determine duplicates. Two

records are duplicates if their context attributes overlap significantly. For example, to

determine if “Judice L. Y. Koh” and “J. L. Koh” refers to the same author, the spurious link

method evaluates the extent of overlap in the contextual information of the co-authors, the

subjects, and the concept hierarchies of the conferences or journals where their works are

published.

Rather than inspecting individual attributes and records, correlation-based duplicate

detection approaches aim at exploiting additional knowledge from the associations between

attributes and between the records to improve the efficacy of determining duplicates.

2.3.2 Outlier Detection Methods

An outlier is an object exhibiting alternative behaviour in a data set. It is a data point that

does not conform to the general patterns characterizing the data set. Detecting outliers has

important applications in data cleaning as well as in the mining of abnormal patterns for fraud

detection, stock market analysis, intrusion detection, marketing, network sensors, email spam

detection, among others [Esk02, LSM99, PPKG03]. Data cleaning applications depict

outliers as data noise or errors interfering with data mining mechanisms and thus, eliminating

outliers leads to better accuracy. In other applications, outliers are irregular patterns from the

rest of the data and thus entail special notice.

There are two types of outliers, the class and the attribute outliers [ZW04]. Class

outliers are multivariate data points (tuples) which do not fit into any cluster formed by the

remaining data. Intuitively, clustering a data set produces discrimination of class outliers as

by-products. Attribute outliers are univariate data points deviating from the behaviour of

remaining attribute points of the data set.

Existing outlier detection methods have primarily focused on class outliers.

Numerous methods for identifying class outliers broadly classifies into distribution-based,

 27

clustering-based, distance-based and density-based approaches. Detecting attribute outliers,

on the contrary, had received less attention from the data mining community.

2.3.2.1 Distribution-based Approach

Distribution-based approaches are among the first methods designed for detecting outliers.

Typically, a distribution model (E.G. Gaussian, Normal) that best-fit the values of an attribute

is used to differentiate points which do not fit into the distribution [BL94, RL87]. Although

distribution-based methods focus on identifying attribute outliers, the distribution model is

usually univariate; they do not take into account correlations between attributes and are

limited to the detection of obvious off-scale values in a single dimension. The accuracy

largely depends on the best-fit distribution models used, and selecting appropriate models are

computationally intensive.

2.3.2.2 Data Polishing

Data polishing approaches to attribute outlier detection problem construct for each dimension

a classifier based on the remaining dimensions and the class dimension [Ten04, ZW04].

Incorrect predictions are labelled as attribute outliers. The accuracy of data polishing method

varies depending on the classifier used. Generally, classifiers robust to random data noise

give better accuracy. In addition, data polishing methods are limited to finding attribute

outliers resulting in change of class membership.

2.3.2.3 Clustering-based Approach

Some clustering algorithms generate outliers as by-products, usually in forms of singletons

that do not fit into any of the clusters. For example, in [BC00], data points are added to

clusters incrementally with the objective of minimizing the change in fractal dimensions.

Outliers are thus isolated into the “miniature” clusters. While these methods are optimized to

produce clusters rather than outliers, some recent works focused directly on the problem of

outlier detection using clustering techniques. [HXD03] utilizes the size of each data cluster

and relative distance from neighbouring clusters to compute its outlier-ness. In [JTS01], a

Minimum Spanning Tree (MST) is constructed and the clusters at the longest edges are

 28

discriminated as outliers. Ren et al. [RRP04] optimized the efficiency of clustering-based

outlier detection method using a vertical P-tree data representation. In general, clustering-

based outlier detection methods have the difficulty to scale with high-dimensional, sparse,

and large data sets. The cost of clustering expedite when the data dimensionality and size in-

creases. Aggrawal and Yu developed an evolutionary approach to direct the searches for

subspace outliers of lower dimensions [AY05].

2.3.2.4 Density-based Approach

Breunig et al. [BKNS00] proposed the first density-based outlier detection method. The

number of points in its surrounding neighbourhood defines a density-based outlier. Isolated

data points relatively far from its local neighbours are determined by a high local outlier

factor (LOF). Jin et al. [JTH01] proposed improvement to LOF using pruning of the micro-

clusters of compressed data representation in the feature space.

Density-based approaches generally suffer from high computational cost due to the

large number of k-nearest neighbour queries. The accuracy again depends on the number k

specified as the neighbourhood of the point. The LOCI method reduced the computational

cost through approximate calculation using a “box-counting” mechanism [PKGF03]. Still, the

speed and accuracy depends on the number of boxes defined.

2.3.2.5 Distance-based Approach

A data point is a distance-based outlier if there exists less than β fraction of other data points

which are less than κ distance from it [KNT00]. Native distance-based outlier detection

methods do not scale well with data dimensionality and size. Computational time can be

reduced by pruning in data partitions [RRK00], p-tree data structures [RRPS04], or distance-

based neighbourhood cells [KN98]. The limitation of distance-based approach lies in the

selection of β and κ, which are user-defined. Accuracy of the method fluctuates depending on

these two parameters. Too high β leads to more false positives while low κ causes more false

negatives.

 29

In [KN99], Knorr and Ng mine attribute subspaces in a lattice structure to provide

specific explanations to the class outlier identified by their distance-based outlier detection

method [KN98]. This approach is restricted to only class outliers but non-class outliers may

also contain implicit irregularities in the form of attribute outliers. Whether the presence of

attribute outliers constitutes class outliers depends on a number of factors, such as the

dimensionality of the data set, the “strength” of the attribute outliers, and the correlation of

the outlier attributes and the class attributes.

2.3.3 Other Data Cleaning Methods

Apart from duplicate and outlier detection, data cleaning methods also aimed at resolving

artifacts such as dependency, format, and integrity violations, spelling errors, illegal values,

and missing values.

2.3.3.1 Fuzzy Matching

Given an initial set of clean records, it is possible to identify new records containing

erroneous strings that match fuzzily to those in the existing records [CGGM03]. Consider

that a new record <“Usa”, “S Diego”, “California”> is added to a database relation

R(Country, State, City). Through fuzzy matching of the individual fields with existing tuples

in R, it is possible to identify that “Usa” is variant of “U.S.A.” and “S. Diego” is a synonym

of “San Diego”. Fuzzy matching uses the inverted document functions (IDF) of the weighted

tokens in a record to compute the similarity function, and then identifies K nearest

neighbours. The method also clusters similar reference records in order to achieve more

efficient querying of matching records and fields.

2.3.3.2 Data Profiling

Data profiling techniques derive descriptive metadata features from individual attributes for

quality checking of new tuple [RH00]. Some examples of descriptive features include data

type, length, cardinality, discrete values, minimum and maximum values, and mean. There is

little research interest in data profiling, but it is a common technique used in commercialized

 30

data cleaning products due to its simplicity. Examples of commercialized companies using

data profiling include data integration solution providers such as Dataflux Corporation

(http://www.dataflux.com/main.jsp) and Informatica Corporation (www.informatica.com).

2.3.3.3 Probabilistic Noise Identification

The LENS systems presented in [KM03] identifies corrupted attribute values through the use

of 3 probabilistic models of clean and noisy records, and the corruption matrix. The

probabilistic models are generated through an iterative process of learning the generative

models and estimating the corruption matrix that indicate which attributes are corrupted by

noise.

2.3.3.4 Database Repair

The class of research on database repair focuses on enforcing integrity constraints to detect

and eliminate inconsistencies and conflicts in databases. The process of database repair

involves modifying values or deleting tuples in order to ensure that the integrity constraints

are satisfied. [BFFR05] models the database repair process into a cost-model of finding the

minimal cost repairs to each violation of functional dependencies (FDs) or inclusion

dependencies (INDs). While [ADNB06] also regard the repair process as a set of value

modifications, it models the problem into a logical theory of signed formulae with the

objective of achieving value correction with the least number of modifications. Database

repairs are also associated with consistent query answering where repairs are related to the

insertion or deletion of records, depending on the queries [Wij05, BC03].

2.4 Data Cleaning Frameworks and Systems

Over the past few years, several data cleaning systems and frameworks become available in

the marketplace and for public usage, especially on the Web. These tools provide complete

solution towards the data quality problem and typically address more than one artifact.

 31

2.4.1 Knowledge-based Data Cleaning Systems

The IntelliClean is a general knowledge-based data cleaning system [LLL00]. The

IntelliClean framework is separated into 3 main stages: (1) Pre-processing steps utilize

lookup tables and reference functions to standardized the data format, thus removing

variations in spellings, representations, abbreviations, naming, and measurement units. (2)

Processing stage performs duplicate detection on the conditioned records using rules

specified with an expert system; each rule is weight according to its duplicate detection

effectiveness. (3) Validation and verification stage for checking of undetected duplicates and

merged results.

By allowing representation of the domain knowledge in the data cleaning framework,

IntelliClean achieves both high recall and precision. Though it focuses on duplicate detection,

part of the spelling errors, ambiguities in syntactic and semantic representations are resolved

at the pre-processing stage.

2.4.2 Declarative Data Cleaning Applications

The Potter’s Wheel allows users to “interact” with the data cleaning process of detecting

inconsistencies in structures, discrepancies, and errors. Traditional data cleaners either

accepts a set of duplicate identification rules (sometimes in form of equational axioms) as

inputs to their systems or the rules are hard-coded directly into transformation scripts, usually

not by the end-users. Potter’s Wheel provides a graphical interface for users to specify the

structural transformation process and discrepancy detection rules called domains. The data

cleaning process is domain independent because it is entirely user-driven; the system merely

facilitates the specifications of the data cleaning steps.

The AJAX approach [GFSS00] models a data cleaning process into a graph of atomic

transformations and provides SQL extension for each transformation. It supports user

interventions to fine-tune the data cleaning process and to declare the record matching rules.

The data lineage facilities makes it possible for users to backtrack steps in the data cleaning

 32

process, inspect intermediate results and exceptions. By flagging exceptional cases, the

process allows human intervention to handle cases that cannot be automatically resolved.

Also based on declarative data cleaning, ARKTOS provides graphical and declarative

features to define the data transformation and cleaning tasks in the data warehouse [VVS+00].

Users using 2 specification languages define the cleaning rules in ARKTOS: (1) XML-based

Activity Definition Language (XADL) and (2) Simple Activity Definition language (SADL).

The data cleaning rules and tasks model into a pipeline of activities making up the data

cleaning process. The system measures the quality of data after each activity using quality

factors.

In general, declarative data cleaning applications enable users to model their own

data cleaning process. This is facilitated through user-friendly graphical interfaces equipped

with declarative features for specifying the rules and tasks. Therefore, such applications are

also domain independent.

2.5 From Structured to Semi-structured Data Cleaning

The proliferation of semi-structured data models such as XML, driven by the popularity of

the WWW, has created new challenges in data mining. Knowledge discovery activities now

encompasses the development of new data mining approaches for more effective and efficient

mining of XML data, some of which leverage on the self-describing nature of XML data to

provide additional context information to data mining processes [BMBA00, SCH+98].

Unlike other research in data mining, current works in data cleaning primarily focus

on structured relational databases and are not applicable or easily extensible to semi-

structured data such as XML. There exist limitations in direct adaptation of data cleaning

methods for relational data models onto XML data models, given the intrinsic differences

between XML and relational data models. XML data is hierarchical, but relational data has a

flat structure. XML data is self-describing and has an inherent ordering. These unique

characteristics of the XML data models give rise to context information lacking in the

relational data model. For instance, an XML document contains information about the

 33

relationships of entities to one another in the form of the hierarchy; the only types of

relationships that can be defined in relational tables are the parent and dependent table.

This section briefly describes the few known research works on XML data cleaning.

2.5.1 XML Duplicate Detection

DogmatiX is a duplicate detection method for XML data models [WN05]. Unlike the

relational counterparts, DogmatiX performs similarity matching of both the data values as

well as the structures of the target entities. The method addresses two main difficulties when

detecting duplicates in XML documents:

(1) In XML, the descriptions of an object are distributed in different elements which are

not necessarily the children. A child element may be a related object. For example, an

XML element <Movie> has elements <Title> and <Actors> which is a nested

structure of <Actor>. While <Title> element is a feature of the movie, <Actors> refer

to a different object which would have been modelled as a separate table in relational

model.

(2) Structural diversity of determining the same object in different XML structures. In

the last example, the <Actor> elements can also be the direct children of <Movie>

element.

To address (1), the descriptive elements of an object are defined heuristically, such as its r-

distant ancestors or descendents. Structural diversity is tackled through the use of object

definitions that may be provided by the users, to map corresponding objects from different

XML structures.

2.5.2 Knowledge-based XML Data Cleaning

[LTLL03] investigates the numerous limitations of conducting knowledge-based duplicate

detection based on expert system on XML documents. Three key issues are identified: (1)

Mapping to an expert system fact template requires well-defined, ordered columns but XML

documents are inherently semi-structured and often contain nested relations. (2) Efficiency of

 34

the data cleaning process is dependent on the parser used. (3) Sorting of XML documents by

keys used for detecting duplicates in SNM requires mechanism to index the records for

manipulation, which is achievable using through conversion of the XML document to a

RDBMs or a flat file.

Another work related to cleaning XML documents is [YLL03]. A “template-based”

approach is used to select relevant tags from XML web pages to construct a style-tree (ST),

with the purpose of eliminating nodes not specified in the style-tree

2.6 Biological Data Cleaning

While the problem of data artifacts in biological data has been known for a long time and

individual artifacts have been reported [OH98, Bre99, BC01, GAD+02, ITA+03, MNF03,

SFM+99, GAA+00, LKSV92, SS03, Tha99, PHBR04], the development of data cleaning

approaches in the bioinformatics domain is at its infancy. Very few complete data cleaning

methods for biological data exist.

2.6.1 BIO-AJAX

The BIO-AJAX tool for detecting and resolving duplicate taxonomy of organisms utilize

prefix-matching strategies to integrate different terms that describe the same species

[HGP+04]. BIO-AJAX uses a list of prefixes as matching keys to gather all trees refer to the

same organism. For example, it recognized that the term “homo sapiens” and “homo sapien”

refers to the same organism (human), given that one is a prefix of another. BIO-AJAX is

integrate into Treebase (www.treebase.org), a database of published phylogenetic trees and

related references. As the name implies, the BIO-AJAX is built upon the AJAX data

cleaning system for declarative definitions of the matching rules.

2.6.2 Classifier-based Cleaning of Sequences

A case study of handling noises in Osteogenesis Imperfecta (OI) related sequences is present

in [Ten03]. Teng applied three data cleaning approaches to resolve the presence of mis-

 35

classified instances. The first approach utilizes the inherent feature in a C4.5 classifier to

avoid over-fitting. The second approach removes incorrect instance predictions (filtering),

and the third method correct instances with its predicted values (polishing). Through these

cleaning approaches, the classification accuracies improve up to 66%.

2.7 Concluding Remarks

Majority of data cleaning methods focus on the more challenging duplicate and outlier

detection problems, while other approaches address database repair issues related to various

types of violations, inconsistency, and errors. The data cleaning methods propose in this

thesis also target attribute and outlier detection. Instead of identifying defects in individual

records or attribute values, we leverage on the correlations embedded within the data set to

devise effective methods to identify data artifacts.

For many domains that involve the analysis and knowledge extraction of large

volume of data, data quality is an important factor to the accuracy of the analysis and data

mining methods. Data cleaning is a critical pre-step for improving data quality and it involves

a wide spectrum of approaches for each type of artifacts. Bioinformatics has the same

demand for high quality data, but there are limited data cleaning applications in the domain.

In the first place, there is little understanding of what causes the data quality problem in

biological data. For this reason, it is essential to first conduct a study of the different types of

artifacts in biological data.

 36

Chapter 3: A Classification of Biological
Data Artifacts

The most incomprehensible thing about the world is that it is comprehensible.

Albert Einstein
Physicist (1879 - 1955)

 37

Bioinformatics is a field where data grows at an exponential rate and knowledge grows only

at linear rate. The deciphering of the human genomes and of many more organisms bring

about a quantitative data growth that is inverse compare to its qualitative content. Increasing

data artifacts depreciate the quality of biological data, and affect large-scale –omics analysis.

In order to address the data quality problems in Bioinformatics, we must first understand

what constitute data artifacts in biological data and the sources of these data quality factors.

In the first part of this chapter, we give a brief description of the background of biological

data and databases, and the role data cleaning plays in biological database systems. In the

second part, we present the result of our investigation of factors that causes depreciation of

biological data quality. Through observations derived from biological databases, we identify

11 types and 28 subtypes of biological data artifacts and classify them into their physical and

conceptual groupings. Based on heuristics and the domain knowledge, we develop programs

to detect these artifacts in representative data sets in order to evaluate the extent of

manifestation in real-world databases. For each data artifacts, we identify the appropriate data

cleaning methods.

The classification of biological data artifacts serves as a “roadmap” for data cleaning.

Mapping the classification to existing data cleaning methods reveals some data artifacts that

current data cleaning methods fall short of addressing. To the best of our knowledge, this is

the first complete study of the data quality issues in biological data.

3.1 Background

3.1.1 Central Dogma of Molecular Biology

Understanding the issues pertaining to biological data artifacts demands the biological

perspectives. At the core of the biological information system is the central dogma of

molecular biology that depicts the information flow among the real-world biological entities

(Figure 3.1). It summarizes the process of “DNA makes RNA makes protein" [Cri58].

 38

Deoxyribonucleic acid (DNA) is the hereditary information found in the cell nucleus

of human or almost all other organisms. A polymer or chain of four nucleotides - Alanine

(A), Cytosine (C), Guanine (G) and Thymine (T), a DNA sequence is often represented as a

succession of A, C, G and T in database records. An important property of DNA is that it

replicates; each strand of DNA in the double helix serves as a pattern for replicating the

complementary strand. This is critical during cell division so that each cell have the same

copy of the DNA as the old cell. While DNA serves as the “blueprint” for hereditary

information during cell divisions, it is not directly involved in the biochemical processes of a

cell. Rather, proteins are the essential functional units (macromolecules) involved in all

biochemical processes in living cells. Proteins are made from units of DNA along the

chromosomes known as Genes through a two-stage process. First, enzymes known as

polymerases transcribed the DNA to produce messenger RNA (mRNA), a ribonucleic acid

(RNA) molecule. Second, the ribosome translated the mRNA into a chain of amino acids that

folds into a 3-dimensional functional protein outside the nucleus.

 39

Figure 3.1: The central dogma of molecular biology.

Figure from http://www.accessexcellence.org/RC/VL/GG/central.html

Biological data are primarily organised around DNA and RNA (or mRNA) nucleotide

sequences, genes, protein sequences, and 3D protein macromolecular structures; they account

for 280 out of 500 (56%) biological databases registered at DBCAT catalogue [DBBG00].

The remaining 44% of the biological databases contain related literatures, mapping

information of genes to the genomes, and other miscellaneous information.

3.1.2 Biological Database Systems

Biological data management systems usually take the form of publicly accessible biological

databases [Ste03]. They include primary sequence databases, protein structure databases,

gene expression databases, micro-array databases, databases of protein-protein interactions,

and a large number of specialist databases. As of October 2005, the Molecular Biology

 40

Database collection [Gal06] listed in total 858 databases classified into 14 categories and

DBCAT listed 500 databases classified into 7 categories [DBBG00].

Web-based integration systems, either in the form of integrated query systems or data

warehouses provide virtual or materialized access to the major primary databases [DMM+03].

Virtual integration systems, also known as federated databases, provide a software middle

layer to query multiple primary databases and extract relevant data into consolidated reports.

Examples of virtual integration systems include DiscoveryLink [HSK+01], Kleisli [Wong01],

SRS [ZLAE02], and Entrez [SEOK96].

Materialized integration approach adopts a persistent storage of the data using a data

warehouse. Examples of biological data warehouses are a gene expression data warehouse

[MT01], GIMS - a genomic data warehouse [CPW+01], a microarray data warehouse

[FHB+02], Ligand data warehouse [FCM+04], a general sequence information data warehouse

[SHX+05], a genome data warehouse [KKSL+04]. Organised around specific subject, the goal

of constructing a biological data warehouse is to facilitate integrative analysis, summarization

of information, and extraction of new knowledge hidden in the data [BK04, KB05]. This in

turn, depends on the presence of clean, up-to-date, and well-organised data and is particularly

difficult in a warehouse environment due to the diversity and distribution of the biological

data from external sources. Therefore, data cleaning is an essential component in the

biological data warehousing framework. For instance, Figure 3.2 shows that data cleaning is

required in the data retrieval and update stages as well as annotation stage of BioWare – a

biological data warehousing system [KKS+04].

 41

Figure 3.2: The data warehousing framework of BioWare

3.1.3 Sources of Biological Data Artifacts

Many reasons account for the presence of data artifacts in biological databases. Biological

database records are primarily collected through direct submissions by the worldwide

experimentalists and sequence centres, bulk submissions from high-throughput sequencing

projects, or data exchanges between the databases. Adequate quality control of the

submission process is often lacking, and therefore the correctness of the submitted data is not

assured. Erroneous data may be mistakenly submitted, especially in projects that produce

voluminous data.

Different molecular databases have different data formats and schemas, and

nomenclature is not standardized across databases. This introduces high level of information

redundancy because the same sequence may have inconsistent, overlapping, or partial

information in heterogeneous representations that cannot be easily merged. Some of the

major databases update one another, replicating partial or full entries from one database to

another. For example, GenBank [BKL+06] contains data from direct submissions and bulk

 42

daily updates from DDBJ [OSGT06] and EMBL [KAA+05], and vice versa. Replication of

data also happens due to the annotation of same sequences by different groups, submission of

the same sequence to different databases, or even re-submission of the same sequence to the

same database either by same or different authors.

In addition, the primary sequence records in the databases are often enriched with

additional functional and structural information through manual annotations. The Swiss-Prot

section of the UniProt database (UniProtKB/Swiss-Prot) is hand-curated by expert annotators

from the Swiss Institute of Bioinformatics in Switzerland [WAB+06], while GenBank and

EMBL allow sequence submitters to modify their sequence records with additional

information. Random errors may escape the inbuilt quality control mechanism of human

annotation and submitting authors not familiar with data models may input correct

information in the wrong record fields. Also, sequence annotations may not be consistent

across databases and interpretations of the same biological entity may differ. Consequently,

different records describing the same sequences sometimes provide discrepant information.

Numerous biological databases consist of derived data generated from biological

analysis, data mining or computational annotations. One example is the TrEMBL section of

the UniProt database (UniProtKB/TrEMBL); the functional annotations of new protein

sequences are computationally inferred from similar protein sequences. Computational

annotations are not completely accurate and are subject to certain degree of annotation errors.

For example, Wieser et al. [WKA04] detected mis-annotations in UniProtKB/TrEMBL by

cross-validating its predictive models with Uni-ProtKB/Swiss-Prot.

3.2 Motivation

Multiple sources of introducing artifacts to biological database systems, combined with the

lack of adequate quality control cause a manifestation of low quality data. Data artifacts

typically affect more than 10% of the records in a biological data set. An earlier study of

swine lymphocyte antigens (SLA) showed that of all records extracted from public databases,

 43

17% of records contained at least one type of artifacts [SKB00]. Korning et al. [KHRB96]

extracted data from GenBank for the analysis of A. thaliana splice sites. They reported that

more than 15% of the A. thaliana records from GenBank must be removed in order to achieve

a reasonable prediction of the splice sites.

The presence of data artifacts in public sequence data has been known for a long time

and individual artifacts have been reported, but a complete analysis of the data quality issues

pertaining to biological data is lacking. Overton and Haas [OH98] studied sequence structure

violations in molecular databases. The presence of annotation errors was discussed [Bre99,

BC01, GAD+02, ITA+03, MNF03]. Studies of contaminated sequences were conducted

[LKSV92, SFM+99, GAA+00]. Some studies have focused on the analysis of specialized

datasets. Expressed sequence tags (EST) were analysed for presence of contaminations

[SS03], and the extraction of high quality datasets [Tha99, PHBR04].

Designing data cleaning remedies requires investigation of the sources of artifacts,

the mechanism of their introduction into the databases, and their manifestation in the

databases. Understanding these factors also provides an insight into possible limitations of

data cleaning methods.

3.3 Classification

In total, we observe 11 types and 28 subtypes of artifacts across major nucleotide and protein

sequence databases. Classified according to their physical and conceptual sources, they

represent the “roadmap” for cleaning biological data.

 44

Figure 3.3: The 4 levels physical classification of data artifacts in sequence databases

The first classification grouped data artifacts according to their presence in data items

at four levels of detail – individual attributes, individual records, individual databases, and

multiple databases (Figure 3.3). Such separation follows the intuitive progression of the data

cleaning process for resolving artifacts at data entities of varying granularity. For example, it

makes sense to correct individual attribute values before cross-referencing two or more

attributes for discrepant information. The classification also reflects the complexity of the

data cleaning steps. Unlike duplicate detection in a single database, the same operation for

 45

multiple databases of different schema requires additional mapping steps to identify the

corresponding attributes.

The second classification differentiates artifacts by their conceptual sources,

distinguishing artifacts originating from annotation or implementation processes with those

inherently parts of the imprecision of biological knowledge (Figure 3.4). This classification

groups the artifacts according to their conceptual sources of bioinformatics and biological

origins. Artifacts of bioinformatics sources are imperfections of the information systems that

deal with how sequences are collected, annotated, and stored in databases. These are data

management issues from the viewpoint of bioinformatics. Related artifacts are either

syntactic (related to the design and structure of the databases) or semantic (related to the

meaning or interpretation of the sequences). Biological artifacts are mistakes due to the

shortcomings of biology as an empirical science. They reflect the complexity of biological

systems.

Figure 3.4: The conceptual classification of data artifacts in sequence databases

 46

The next few sections detail the 11 types and 28 subtypes of artifacts identified from

our study. Examples given in this study are extracted using a number of heuristic methods

and programs which we developed based on domain knowledge. These examples are found in

the NCBI Entrez searchable nucleotide and protein databases [SEOK96] and the UniProt

Knowledge Base (comprises of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL). The

nucleotide databases accessible via Entrez include GenBank, EMBL, DDBJ, RefSeqs (NCBI-

curated non-redundant set of reference sequences) [PTM05], USPTO (sequences submitted to

U.S. Patent and Trademark Office), and TPA (third party annotated sequences). The NCBI

entrez searchable protein databases include GenPept (sequence data from the translated

coding regions from DNA sequences in GenBank, EMBL, and DDBJ) as well as protein

sequences submitted to Protein Information Resource (PIR) [WYH+03], SWISS-PROT

[BBA+03], Protein Research Foundation (PRF), and sequences from solved structures of

Protein Data Bank (PDB) [DAB+05].

Most biological database records discussed in this section are collected into the

online BioDArt catalogue (http://antigen.i2r.a-star.edu.sg/BioDArt).

3.3.1 Attribute-level artifacts

Attribute level artifacts are field values with uninformative, invalid, erroneous or ambiguous

content. We observed four main types of attribute level artifacts - invalid attribute values,

ambiguous attribute values, dubious sequences, and contaminated sequences.

3.3.1.1 Invalid values

Many attributes of a nucleotide or protein sequence record are free-texts, and therefore not

restricted to any integrity, format or functional dependency constraint. These attributes are

prone to data entry or typographical errors such as mis-spellings.

Spelling errors

Spelling errors are non-critical but affect the efficiency of keyword searches that demand

exact matching of the input words. Simple spell-checking mechanisms distinguish spelling

errors as entities which are missing in the spell-checkers’ thesaurus. In biological texts, the

 47

continuous introduction of new names or identifiers for new genes, proteins, diseases and

drugs, and the combinations of chemical names, pose difficulties in consolidating a complete

thesaurus for spell checking. This affects the effectiveness of biomedical spell-checkers such

as Spellex Bio-Tech (spellex.com/Products/biotech.htm), Free Medical Spell Checker

(www.free-medical-spell-check.com), and Inductel Scientific and Technical Speller

(www.inductel.com/spel_sci_spell.html); all 3 spell-checkers label “Cystin” - a cilia-

associated protein described in 2002 [HMY+02], as a misspelling for “Cysteine”.

We detected 63 commonly occurring misspelled words through screening 35,322

Human Lymphocyte Antigen (HLA) nucleotide annotations using a general-purpose spell-

checker, followed by manual verification. The verification step proved to be a crucial step;

only 11% of the words identified are misspellings. Among those incorrectly detected by the

spell-checker are new names, chemical names or linguistic irregularities such as

“proliferations” and “leukaemias”. Querying the Entrez nucleotide and protein databases with

these 63 misspelled words returns 7,075 databases records (as of August 2006, data shown in

BioDArt). For example, the word “mitochondrial” is commonly misspelled as “mitchondrial”

or “mitochrondrial”; more than 600 records containing either of the two misspelled words.

Non-specific names

The ability to identify sequences through their names depends on the specificity of the gene

or protein names assigned. Ideally, names should be uniquely associated with groups of

related sequences. However, standardization of naming conventions for biological entities,

such as in enzyme nomenclature (EC terms) is not completely established. Assignments of

names to a gene or a protein are often left to the discretion of submitting authors who may

give improper names to the sequences. Some protein names are numerical; they correspond to

the locus of the coding genes or an arbitrary form of numbering decided by the

experimentalists, others are undersized names comprising one or two letters, and some

chemical rather than common names. For example, the Actin protein recorded in

ACTM_HELER of UniProtKB/Swiss-Prot database is known as “M” which also denotes a

gene accountable for the Newcastle disease virus (Locus 1312416B of PRF database).

 48

Non-specific names can be detected by screening individual field names in databases

for given formats (all digits or multiple “-“). Corrections require sequence databases to

enforce format constraints on the values that are stored in these attributes. If implemented as

quality control rules in the sequence submission tools such as that of GenBank BankIT or

EMBL Webin, these constraints will prohibit submissions of attribute values beyond pre-

determined limits.

3.3.1.2 Ambiguity

Incomplete standardization of naming conventions also results in a potentially wide spectrum

of names describing the same sequence. Often enough, a sequence has multiple names

(synonyms), and different sequences can share the same name (homonyms) or abbreviation.

Synonyms and homonyms induce ambiguities in the identification of a particular sequence

using keywords. Searching for a specific group of sequences using names with high

homonymy usually result in a number of false matches.

Synonyms

Due to the lack of controlled vocabulary of biological entities, multiple names reference the

same protein or nucleotide sequence. Excessive synonymy in namings causes information

ambiguities. We screened 222,289 sequences recorded in the UniProtKB/SwissProt database

(release 8.0) for the number of “Synonym” elements at each XML sequence record.

UniProtKB/Swiss-Prot recorded 53% (122,099) proteins identifiable by up to 15 synonyms,

among which 144 proteins have more than 10 synonyms (Figure 3.5, data in BioDArt). 81%

of the synonyms are non-unique, meaning they are assigned to 2 or more proteins. For

example, the “salivary acidic proline-rich phosphoprotein 1/2 precursor protein” (recorded in

PRPC_HUMAN of UniProtKB/Swiss-Prot) is known as “PRP-1/PRP-2”, “Pr1/Pr2”,

“Protein C”, “PIF-S”, “Parotid double-band protein”, “Pa” as well as “Db-s”.

In principle, this means that a large percentage of the protein sequences are

identifiable by multiple names. The prevalence of multiple naming conventions for the same

 49

entities is not limited to this data set analysed. Rather, it is a common repercussion of

incomplete standardized nomenclature and affects numerous sequence databases.

Protein sequences with 5-15 synonyms

3030

955

501
180 97 76 30 23 10 2 3

0

500

1000

1500

2000

2500

3000

3500

5 6 7 8 9 10 11 12 13 14 15

Number of synonyms

N
um

be
r o

f r
ec

or
ds

Figure 3.5: Protein sequences recorded at UniProtKB/Swiss-Prot containing 5 to 15

synonyms

Homonyms

The same names or abbreviations may refer to vastly different protein or nucleotide entities.

While some homonyms are legitimate descriptors for sequences that are found in multiple

organisms (such as the enzymes), others describe vastly different sequences. For example,

202 UniProt records containing the Gene field “GK” include glycerol kinases, glutamite

kinases, guanylate kinases, a hexokinase, a Geko protein, Keratin, and a membrane spanning

glycoprotein gK.

Again, we screened the UniProtKB/SwissProt database for the number of protein

sequences bearing the same “Protein name”. 72% of the proteins recorded in

UniProtKB/Swiss-Prot have non-unique protein names. Among these, 14% of the protein

names describe more than 100 other proteins (examples in BioDArt). For instance, 128

proteins recorded in UniProt is known as “Nucleoproteins”; significant number of these

proteins is less than 5% similar in their sequences. The diversity of the proteins named after

“Nucleoproteins” is not surprising, given that this general term refers to any protein

associated with nucleic acids, and thus encompasses a variety.

 50

Extensive synonymy and homonymy are consequences of incomplete standardization

and lack of standard nomenclature which are critical guidelines governing the naming

mechanisms of an empirical science [WMN01]. Agreeing on a particular gene or protein

name facilitates research because it facilitates searches, as well as the mapping of sequences

across different databases [NW03].

Research on the disambiguation of protein and gene names that aims at untangling

the web of synonyms and homonyms [HDR01, YA03, PCG+04] are directly applicable to

resolving these ambiguities. Text-mining methods, particularly those devoted to solving the

issue of named-entity recognition, provide dictionaries or thesaurus facilitating the

clarification of gene and protein names [CHD05, ZZS+04], although molecular terms

typically mined from biomedical texts may have limited overlaps with databases [SC05]. In

addition, isolated and usually species-dependent efforts can be noted (e.g., human gene

names are reviewed by HGNC: http://www.gene.ucl.ac.uk/nomenclature/).

Misuse of Fields

Data entry mistakes of the sequence submitting authors to the wrong fields may produce

ambiguous attribute values. For example, the protein name of UniProtKB/TrEMBL

[BBA+03] entry Q06524 was “NOTE THAT THERE ARE TWO OVERLAPPING ORFS

ON THE OTHER strand” since 1996. The error was recently corrected (Release 44) to

“Ypr151cp”. We also reported a heat-shock protein sequence T45472 in PIR (version 79.1)

with the gene name “Intron position not resolved (incomplete sequence)” which was later

corrected.

Such erroneous attribute values take the form of attribute outliers in a database.

However, in biological databases, the affected attributes are usually free-texts and therefore,

the existing data profiling methods which rely on the numerical profiles of the attribute

values to identify the attribute outliers are not directly applicable.

 51

3.3.1.3 Dubious Sequences

Besides free text attributes, the protein or nucleotide sequence fields are also vulnerable to

data entry problems and errors, with possible consequence of becoming useless for any form

of data mining or analysis.

Uninformative Sequences

Part of the protein or nucleotide sequences contains abundant number of unknown residues

“X” or unknown nucleotides “N”. A simple screening of all protein sequences recorded in

UniProtKB/Swiss-Prot database identifies 13 proteins that have more than 30% unknown

residues. For instance, the protein recorded in UN19_CLOPA contains the sequence

“XXFESXEMR” which seems to be a motif representation rather than a protein sequence. A

similar test on the dataset of 99 Lymphocytic Choriomeningitis Virus (LCMV) nucleotide

sequences retrieved from Entrez identified 3 records [AH004715 AH004719 and AH004720]

which are completely made up of “N” sequences. Three other nucleotide sequences [GI:

912860, 912868 and 912876] have 90% unknown sequence content.

These uninformative sequences are typically the result of erroneous sequence entry

by the submitting authors. Such mistakes are easily avoidable if format constraints are

adequately imposed upon new sequence submitted from the public to these databases.

Undersized sequences

Some protein or nucleotide sequences are too short for any meaningful form of analysis. We

searched the Entrez system for sequences of a specified length. (e.g. query “4[SLEN]” where

SLEN limits the search to sequence length). We observed 3,749 out of 10,350,551 proteins

collected in the Entrez accessible protein databases are shorter than four residues (as of Aug

2006). In fact, 2,026 proteins contained only a single residue. Similarly, 1,957 out of

87,514,218 searchable nucleotide sequences from Entrez are shorter than six bases (as of Aug

2006). These undersized sequences are found in several major sequence databases (Figures

3.6 and 3.7, data in BioDArt).

 52

Undersize protein in major databases

1333

533 584571

153 200
119

50 161

3 5 170 0 20
0

200
400
600
800

1000
1200
1400
1600

1 2 3

Sequence length

N
um

be
r o

f s
eq

ue
nc

es
GenPept

TrEMBL

PDB

Swiss-Prot

PIR

Figure 3.6: Undersized sequences in major protein databases

Some naturally occurring short sequences do exist such as thyrotropin-releasing

hormone (TRH) tri-peptides and Glutathione. However, we found by manual inspection that

with few exceptions, the undersized sequences in databases are erroneous. While some are

erroneous submission of small sequence fragments, others are results of erroneous translation

of the complementary nucleotide sequences to the proteins. For example, protein sequence

which was produced by conceptually translating the “96 ..>98” region (where “..>” means the

region extends beyond position 98) of its coding gene contain only a single amino acid. Also,

there are cases of partial entry of sequences; submission of the full sequences are not

completed.

Undersize nucleotide in major databases

239

129
113

79 98

0

116 128 145

585

15 3 0 7 41 22 60 84 129

0
100
200
300
400
500
600
700

1 2 3 4 5
Sequence length

N
um

be
r o

fs
eq

ue
nc

es

GenBank

USPTO

EMBL
DDBJ

Figure 3.7: Undersized sequences in major nucleotide databases

 53

An implementation to screen for undersized sequences is trivial. A more generalized

approach, however, is to impose constraints on the minimum length of the sequences

submitted to the primary databases.

3.3.1.4 Contaminated Sequences

Contaminated sequences are nucleotide sequences containing biological sequence segments

of foreign origin. These foreign contaminants include insertions of transposable elements

[Bin93], clones from heterologous sources [WDS+93], oligo-nucleotides such as adaptors,

linker and PCR primers [CD04], bacteriophage [May78, LKP92, ŁCS+04], and cross-

contaminated samples in the laboratories [DA95]; a comprehensive description of the various

types of contamination is given in Sorek and Safer [SS03].

Sequence contamination studies have focused largely on contamination of cloning

vectors. Vectors are agents that carry DNA fragments into a host cell. They are usually used

for cloning (cloning vectors) or for expressing genes (expression vectors). The vector

sequences probe and bind the DNA fragments at the 5’ and 3’ sites (Figure 3.8). The DNA

fragment is then isolated from its vectors by cutting at the restriction enzyme sites. Some of

the common vectors used in experiments include the plasmid, Lambda phage, cosmid and

yeast artificial chromosome (YAC). In cases when the gene is not completely isolated from

its vectors, the vectors become part of the gene submitted to the databases.

Figure 3.8: Nucleotide sequence with the flanking vectors at the 3’ and 5’ ends

The problem of vector contamination was discussed as early as in 1992 when 0.23%

of 20,000 eukaryotic entries were found contaminated [LKSV92]. [SFM+99] reported that up

to 0.36% of the sequences in GenBank were subject to similar contaminations. Vector

contaminated sequences were identified by matching the sequences with a database of vector

 54

segments [MGB99]. This approach was adopted by NCBI VecScreen tool

(www.ncbi.nlm.nih.gov/VecScreen) to screen all submitted sequences. However, our study

indicated that VecScreen depends on the completeness of its UniVec cloning vectors database

(ftp.ncbi.nih.gov/pub/UniVec).

Using BLASTN [AMS+97], we matched 8,850 C. albicans nucleotide sequences

retrieved from Entrez nucleotide databases with 18 cloning vectors commonly used for

C.albicans. The program identifies 15 potential contaminations (data in BioDArt). For

example, the regions at positions 1,737 to 1,825 - the 3’ end of the C. albicans iro1 gene

(Entrez GI: 9588659) is identical to a fragmented region of C. albicans vectors pDDB57

(Entrez GI: 6651387), and pGEM-URA3 (Entrez GI: 50363243). This indicates the iro1 gene

submitted to EMBL is likely contaminated with part of its cloning vectors.

Though all new sequences submitted to the major databases are screened for vector

contaminations, contaminations may still be missed because the vector databases are not

updated. For instance, the cloning vectors of C. albicans were not found in the UniVec

database, last updated in 1999.

3.3.2 Record-level artifacts

Conflicting information exists in the single record among two or more attributes – we call

them the record-level artifacts. Two types of record-level artifacts are found in the sequence

records – sequence structure violations and inconsistent content with related references.

3.3.2.1 Sequence Structure Violations

In eukaryotes, the typical structure of a gene follows order of the promoter region, the non-

coding 5' untranslated region (5' UTR), alternating series of introns and exons, and ending

with the 3' untranslated region (3’ UTR) (Figure 3.9). The promoter, 3’ UTR and 5’ UTR

regions contain regulatory elements that control protein synthesis. During splicing, the introns

are removed from the primary transcript while the exons assemble to form the mature RNAs

which are eventually synthesize to proteins.

 55

Figure 3.9: Structure of the eukaryotic gene containing the exons, introns, 5’

untranslated region and 3’ untranslated region
Figure from http://genome.wellcome.ac.uk/doc_WTD020755.html

Corresponding feature attributes of a gene database record contain non-overlapping

positions ordered according to the gene structure. Incorrect specification of starting or ending

positions of the regions, either by the database annotators or the submitting authors may

cause erroneous overlapping regions, except for alternatively spliced cases.

The structural violations can be determined through comparing the positions and

orderings of related features. The screening program takes into consideration domain rules for

differentiating cases of alternative splicing from genuine intron/exon overlaps. Through this

simplistic approach, we identify 9 fungal nucleotide sequences containing erroneous

Intron/exon overlaps (Data in BioDArt). For example, an Aspergillus niger sarA gene

submitted to GenBank (Entrez GI:1061033) has overlapping intron and exon 1, at regions

239..398 and 397..500 respectively.

Our method is limited by the accuracy and the completeness of the domain rules. In

[OH98], these domain rules are machine-learned using case-based reasoning. The result is a

rule-based sequence structure parser capable of identifying and correcting 60% of the

complete coding sequences in GenBank.

 56

3.3.2.2 Inconsistent with related references

Sequence annotations are typically derived from related literature references. Database

curators enrich the sequence records with information that they have read from the reference

articles. As with any manual annotation, the process is susceptible to human data entry errors,

thus producing sequence annotations that are inconsistent with the complementary references

provided.

In a study of Dengue virus, we observed mis-annotations in Swiss-Prot record P27915

and PIR record GNWVD3 [KHL+06]. The NS1/NS2A and NS4A/NS4B junctions given in

these Dengue type 3 complete RNA sequences did not match the regions given in the

reference of these records [OS90]. While manual checking of such inconsistencies by cross-

referencing the database content with their literatures is tedious, computational detection of

discrepancies of the sequence annotations with its references is non-trivial and may require

complex text-mining solutions. Nevertheless, research efforts such as the BioRAT

information extraction system provide the basis for the development of a possible solution

[CBLJ04].

3.3.3 Single Database level artifacts

Single database-level artifacts refer to redundancy and discrepancy of the information that

exists in two or more records in the same database. Since these artifacts affect records from

different databases, we also classify them as multiple-database level artifacts.

3.3.3.1 Annotation errors

Annotation is the process of assigning functional descriptions to new sequences. Both

computational and manual annotation processes are susceptible to annotation errors –

discrepant descriptors assigned to two or more sequences.

Different interpretation of the same sequence

Biologists studying the same sequences may provide different interpretations. A comparative

study of the annotations by three different groups of 340 genes of M. genitalium genome

 57

showed that incompatible descriptions were assigned to 8% of these genes [Bre99]. In one

example, the same mg085 protein was separately identified as a HMG-CoA reductase (EC

1.1.1.34), a NADH-ubiquinone oxidoreductase (EC 1.6.5.3), as well as an ATP/GTP enzyme.

A study of the different annotations of the C. trachomatis genome also showed 37% of the

dataset contains inconsistent functional assignments [ITA+03].

[MNF03] estimated that annotation discrepancies affect 5% to 40% of the public

protein and nucleotide sequences. The rate is a conservative under-estimation because in

reality, the artifacts accumulate and propagate in multiple databases through transformations

and data exchanges.

Putative Features

Due to the rapid accumulation of new uncharacterized sequences (only sequences; no

functional or structural descriptions), there is a widespread use of computational annotation

methods. Most of them rely on the inferences from homologous sequences. This depends on

the assumption that highly similar sequences have the same biochemical properties and

functions. Nevertheless, whether two sequences are “homologous” depends on individual

judgements, thus giving rise to annotation discrepancies.

Putative features refer to attributes of the query sequence that are inferred from

attributes of similar sequences found in the database. The correctness of putative features

largely depends on the thresholds used as similarity cut-offs. In some cases, even the highest

matching sequence from database search may have weak sequence similarities and therefore

might not share similar functions with the query sequence. Comprehensive overviews of the

limited accuracy of putative features are given in [Bor01, GAA+00].

The result of computational inferences can be an under- or over-prediction. Under-

prediction means only one or a few of the properties of the matching record are adopted to the

query sequence. An over-predicted annotation assignment transfers all annotations of the best

matching sequence without additional verification. Some active sites dependent functional

properties cannot be extrapolated from similar sequences and “blind” inference can cause

erroneous functional assignment.

 58

Also, it is not always obvious to the database users which attributes are putative. The

users are therefore unable to judge the credibility of a given record. Indicating the putative

features of a submitted sequence to public domain databases is encouraged yet not strictly

enforced. GenBank depends entirely on the goodwill of sequence submitters to label the

putative features. In curated databases such as UniProtKB/Swiss-Prot, descriptions of protein

sequences whose functions are putatively inferred start with the word “Putative”. Putative

features are also separately marked either with “Potential”, “By Similarity” or “Putative”

(according to section 2.4 of www.expasy.org/sprot/userman.html#contents).

While annotation errors and discrepancies affect a significant percentage of the

publicly available protein sequences, data cleaning methods that address them are lacking.

Among the very few known strategies are [WKA04, KL05]. Aggravating the data quality

problem, annotation errors are not isolated cases of the affected sequence but proliferate to

new sequences with functional assignments drawn from the mis-annotated sequences. Details

of the proliferation rate of mis-annotations are discussed in Giks et al. [GAD+02].

In Chapter 4 and 5, we introduce a general attribute outlier detection method that is

capable of accurate detection of annotation discrepancies in protein annotations. Unlike

classical outlier detection methods, we leverage on the correlation between attributes to

determine outlier entities.

3.3.3.2 Sequence Redundancy

As discussed in section 3.1.3, various factors contribute to sequence redundancy. In order to

estimate the extent of redundancy in major sequence databases, we screen 4,431 fungal

sequences in Entrez nucleotide databases using a simple rule:

Two records are duplicates if the sequences are identical and they belong to the same

species.

The same rule is used in the UniParc database to merge redundant sequences from PIR and

Swiss-Prot [LDB+04]. Of the records from 4 nucleotide database sources - EMBL, DDBJ,

GenBank, and RefSeq, 7% contained sequences described in other records. If duplicate

 59

sequences identified from this naïve rule are trivially merged, the redundancy of the dataset

will reduce by 81% (from 299 records to 58 records). However, manual verifications show

that some sequences identified by this naïve rule sometimes belong to different strains, and

therefore may have different feature descriptions. This difference, however, is not usually

obvious from inspecting the content of the database records. It is also not obvious if identical

sequences of dissimilar isolates, clones or specimens come from the same strain.

In general, whether to merge the duplicates detected depend on factors beyond on the

similarity of the records. Rather, different types of duplication exist. Similarly, in protein, we

observed four different types of duplication (details in Chapter 6). As such, existing duplicate

detection methods that consider duplication as a Boolean property are not directly applicable.

3.3.4 Multiple Database level artifacts

Massive transformations occur during exchange and integration of sequence records from

multiple databases. Defective data transformation from syntactically different databases may

result in systematic errors.

3.3.4.1 Incompatible schema

Sequence data are repeatedly copied, corrected, and transformed among heterogeneous

databases. Matching the fields in databases with dissimilar schemas sometimes introduce

artifacts because of schema mismatches.

Concatenated values

During data transformation, 2 or more attributes are sometimes concatenated into a single

attribute when the target database schema does not contain structures for some of the fields in

the original schema. For example, the function, sub-cellular location, tissue specificity, and

other functional descriptors of a UniProtKB/Swiss-Prot sequence map to the

Seqdesc_comment attribute of the corresponding Entrez record (Figure 3.10).

 60

<comment type="function">
 <text>Shows anti-epileptic activity. Shares high homology
with depressant insect toxins, but shows very weak toxicity
against mammals an insects and no obvious symptoms on
insect larvae</text>
</comment>
<comment type="subcellular location">
 <text>Secreted protein</text>
</comment>
<comment type="tissue specificity">
 <text>Expressed by the venom gland</text>
</comment>
<comment type="mass spectrometry" mass="6730.4"
method="Electrospray">
 <location>
 <begin position="22"/>
 <end position="82"/>
 </location>
 <note>Ref.1</note>
</comment>
<comment type="similarity">
 <text>Belongs to the long (4 C-C) scorpion toxin
superfamily. Sodium channel inhibitor family. Beta
subfamily</text>
</comment>

<Seqdesc>
 <Seqdesc_comment>[FUNCTION] Shows anti-epileptic
activity. Shares high homology with depressant insect toxins,
but shows very weak toxicity against mammals an insects
and
no obvious symptoms on insect larvae.
 </Seqdesc_comment>
</Seqdesc>
 <Seqdesc_comment>[SUBCELLULAR LOCATION]
Secreted protein.
 </Seqdesc_comment>
</Seqdesc>
<Seqdesc>
 <Seqdesc_comment>[TISSUE SPECIFICITY] Expressed
by the venom gland.
 </Seqdesc_comment>
</Seqdesc>
<Seqdesc>
 <Seqdesc_comment>[MASS SPECTROMETRY]
MW=6730.4; METHOD=Electrospray; RANGE=22-82;
NOTE=Ref.1.
 </Seqdesc_comment>
</Seqdesc>
<Seqdesc>
 <Seqdesc_comment>[SIMILARITY] Belongs to the
long (4 C-C) scorpion toxin superfamily. Sodium channel
inhibitor family. Beta subfamily.
 </Seqdesc_comment>
</Seqdesc>

Figure 3.10: The functional descriptors of a UniProtKB/Swiss-Prot sequence map to the

comment attributes in Entrez

Such compounded fields reduce the structure of a database and cause difficulties in

extracting specific data. In [HKK03], we extracted gene names and protein synonyms from

Uni-ProtKB/Swiss-Prot and LocusLink [PM01] records for purpose of text-mining protein-

protein interactions from PubMed abstracts. This extraction was complicated because

multiple names were concatenated in a single field using “and”, “or” or commas as

separators. In Uni-ProtKB/Swiss-Prot, this problem was resolved in later releases.

Mis-fielded values

If the target database schema does not contain attributes designed for a particular piece of

information, such information are inserted into the wrong fields. For example, the data

schema of Entrez records does not contain separate fields for the sources of sequences from

direct submission. The date of submission and the author address are therefore inserted into

the reference TITLE and JOURNAL attributes (Figure 3.11).

 61

Figure 3.11: Mis-fielded reference values in a GenBank record

Incorrect fitting of field values during data transformations reduced the effectiveness

of obtaining specific and meaningful query results. When constructing a relational genomic

data warehouse of database records extracted using Entrez, we had to differentiate between

valid reference field values and those describing the sequence submission sources.

3.3.4.2 Data Provenance Flaws

Data provenance is the understanding of data origin and its transformation over a series of

updates. Data provenance information is important for data miners who need to keep track of

critical changes to the data records which may affect the analysis results derived from the

older versions.

In some sequence databases (PDB, PIR, among others), data provenance information

is not explicitly captured. Minimal revision history such as dates of modification and

indications of changes in main sections (annotation or sequence) were provided. Database

users cannot reconstruct how a sequence was added to the database and the subsequent

changes (corrections, additions, and deletions) made to a given sequence record. Comparing

the current release of a data record with its previous version in earlier releases usually

provides the details of changes. Yet, the archives of past releases of these databases are not

necessarily available.

However, recent efforts by UniProt significantly improved the data provenance

concern in the bioinformatics data community. The UniSave annotation version database

accurately documents the modifications that have been made to every UniProt proteins

[LNZA06].

 62

As there was no agreement among different database groups to maintain the integrity

of data across multiple databases, modifications and deletions made to a record in one

database are also not necessarily propagated to other databases.

3.3.4.3 Erroneous Data Transformation

Table 3.1: The disulfide bridges in PDB records 1VNA, 1B3C and corresponding Entrez

record GI 494705 and GI 4139618

Positions of disulfide bonds in PDB record
IVNA

Positions of disulfide bonds in Entrez
record 494705

(12, 65) (16, 41)
(16, 41) (25, 46)
(25, 46) (29, 48)
(29, 48)

Positions of disulfide bonds in PDB record
IB3C

Positions of disulfide bonds in Entrez
record 4139618

(11, 64) (15, 40)
(15, 40) (24, 45)
(24, 45) (28, 47)
(28, 47)

Errors may be generated from system defects in data integration mechanisms. The

transformation in Entrez caused records imported from PDB to show incorrect disulfide

connectivity patterns in the features section of imported records. Table 3.1 shows an example

of missing disulfide bridges in records imported from PDB records. In all these cases, one

end of the missing bridge occurs on the last residue of the sequences.

3.4 Applying Existing Data Cleaning Methods

We summarize the possible data cleaning remedies for each of the 11 types of artifacts and

their limitations in Table 3.2. Some artifacts can be detected using simple format constraints

of individual fields (Undersized sequences, Uninformative sequences, Non-specific names),

while some require serious data processing in order to be identified (Contaminated

sequences, Sequence structure violations) and others require certain level of expert

verifications (Spelling errors, Synonyms, Homonyms/Abbreviations). Artifacts such as

Incompatible schema, Data transformation errors, and Data provenance flaws are most

 63

appropriately resolved by the database developers through re-design of the systems and

databases. Although advancement in text-mining may facilitate cross-checking, at this point

of time, inconsistency with related references are still determined primarily through manual

checks.

Table 3.2: Summary of possible biological data cleaning remedies

Types of artifacts Possible remedies Limitations or requirements

Spelling errors Spell checkers New names and chemical names are

often mistaken as misspellings.

Non-specific names Format constraints -

Ambiguity Disambiguition of gene and protein

names [HDR01, YA03, PCG+04]

 Detection is possible but correction of

names may require expert knowledge.

Dubious sequences Format constraints -

Vector contaminated

sequences

Sequence similarity searches against

updated vector database [VecScreen]

Accuracy depends on the currency of

vector databases

Sequence structure

violations

Detection using domain rules learned

from known structural violations

[OH98]

Alternative splicing cases can be

mistaken as violations.

Inconsistency with

related references

Cross-checking of database records

with full reference texts

Mainly manual.

Annotation errors Outlier detection Existing class outlier detection

methods are not directly applicable

Sequence redundancy Duplicate detection Multiple types of duplicates exists

Incompatible schema Re-design of schema -

Data provenance flaws Database maintenance using

metadata.

-

Erroneous data

transformation

Correct system bugs -

This thesis focuses on the Annotation errors and Sequence Redundancy. If an

annotated attribute exhibits abnormal correlations with other annotated descriptors of the

same sequence, it is likely that the outlier attribute is erroneous. Based on this idea, outlier

detection approaches clearly provides a way to determine annotation errors. However,

existing outlier detection methods target at class outliers and do not regard the correlations

 64

between the attributes. Similarly, existing duplicate detection methods do not take into

account the presence of multiple types of duplicates. In the next 3 chapters, we introduce new

correlation-based data cleaning methods which enable the detection of these 2 types of

artifacts. These methods, however, are general and are not restrictively applicable to

biological data.

3.5 Concluding Section

As biological data continue to accumulate exponentially, biological sequence databases are

confronted with a critical need to tackle the corresponding depreciation of data quality. Our

analysis of the presence of data artifacts indicates that the data quality problem is a collective

result of 11 types and 28 sub-types of artifacts at the field, record, single and multiple-

database levels. It is also a combinatory problem of the bioinformatics that deals with the

syntax and semantics of data collection, annotation, and storage, as well as the complexity of

biological data.

An assembly of data cleaning methods is required to eliminate these artifacts. Some

artifacts can be resolved partially or completely using existing data cleaning methods; certain

heuristics methods which we have developed to screen the presence of artifacts in biological

data sets and databases can be expanded into complete data cleaning solutions. For more

complicated artifacts such as annotation errors and sequence redundancy, correlation-based

data cleaning approaches explore in the remaining chapters of this thesis provides new

strategies for detecting the outliers and duplicates.

 65

Chapter 4: Correlation-based Detection
of Attribute Outliers using ODDS

A journey of a thousand miles begins with a single step.

Confucius
Teacher and Philosopher (BC 479-551)

 66

An outlier is an object exhibiting alternative behaviour in a data set. It is a data point that

does not conform to the general patterns characterizing the data set. Outlier detection has

important applications in data cleaning. It provides the basis of finding errors and

discrepancies that account for data noises reducing the accuracy of the mining and analysing

large volume of data.

Existing outlier detection methods focus on class outliers and research on attribute

outliers is limited, despite the equal role attribute outliers play in data quality depreciation.

Methods for detection of class outliers rely on rarity observed from the distribution, density

or distance of the tuples to determine outlier-ness. For attributes, however, rarity does not

necessarily equate abnormality. Rather, an attribute outlier is defined by its deviating

correlation behaviour with respect to other attributes.

In this chapter, we propose a novel correlation method to detect attribute outliers in

databases. The method, which we call ODDS (for Outlier Detection from Data Subspaces)

regards attribute outlier as a local deviator and systematically searches the data subspaces to

identify possible outliers. ODDS is a general method, therefore both non-biological and

biological applications are discussed.

We formulate three metrics to evaluate outlier-ness of attributes, and introduce an

adaptive factor to distinguish outliers from non-outliers. We also devise two filtering

strategies to reduce the complexity of the ODDS algorithm. Experiments with a synthetic

data set indicate that our proposed ODDS method achieves an accuracy of up to 88%.

Following the discussion in Section 3.4, we demonstrate that ODDS is effective in identifying

annotation errors in the UniProt protein database.

4.1 Introduction

Outlier detection is the process of identifying outliers that do not conform to the general

behaviour of the data set. Contrary to other data mining methods aim at determining

predominant patterns in majority of the data, outlier detection methods target the under-

represented, abnormal patterns that deviate from the rest of the data. These patterns are often

 67

the consequences of data artifacts such as errors, discrepancies, spelling errors, illegal values,

and multiple types of violations. Therefore, outlier detection is the basis for data noise

reduction in data cleaning, and is an imperative step towards improving the accuracy of any

data mining and analysis applications.

Besides data cleaning, outlier detection is also the foundation of applications such as

fraud detection, stock market analysis, intrusion detection, network sensors analysis, and

email spam detection where the presence of outliers suggest abnormal signals entailing

special notice and further investigation [Esk02, LSM99, PPKG03].

4.1.1 Attribute Outliers and Class Outliers

Existing outlier detection methods focus primarily on class outliers - multivariate data points

(tuples) which do not fit into any class by definitions of distance, density, or nearest

neighbour [ZW04]. Comparatively, data cleaning research have overlooked developments in

the detection of attribute outliers - univariate points that exhibits deviating correlation

behaviour with respect to other attributes although for a number of reasons, detecting

attribute outliers is an equivalently important problem in data cleaning.

First, class outliers are often the result of one or more attribute outliers. Correcting or

eliminating only the affecting attributes rather than the tuples has the advantage of fixing the

abnormal behaviours while retaining information. Second, even when attribute outliers do not

affect class memberships, they may still interfere with the data analysis mechanisms as data

noise. Third, for many real-world data sets that do not contain class attributes, it is still

meaningful to identify attribute outliers because they are sources of errors. One example is

the UniProt database which contains the functional, structural, and physico-chemical

descriptions of proteins [WAB+06]. Though there is no meaningful class attribute for

proteins, maintaining correctness of every detail provided in these records is critical, given

that the worldwide biological researchers reference them extensively for analysis and

experimental planning.

 68

The nature of the outlier patterns associated with class and attribute entities differ. A

common approach for detecting class outliers is to cluster the tuples in order to isolate the

class outliers as singletons. However, applying the same clustering technique to attributes is

only effective in finding rare attribute values, which are not necessarily attribute outliers.

While we detail this observation in Section 4.2.2, it suffices to mention here that for attribute

outliers, rarity does not equate abnormality. Rather, the deviating correlation behaviour of an

attribute with respect to other attributes within a localized subspace defines its outlier-ness.

4.1.2 Contribution

This chapter focused on a novel correlated-based detection method for attribute outliers. We

call the method ODDS to denote attribute Outlier Detection from Data Subspaces. In contrast

to a global property that is applicable to all dimensions of the data set, we consider an

attribute outlier as a localized deviator of a particular subspace. Our notion of attribute

outlier-ness is therefore a bivariate property of both the target attribute and a correlated

neighbourhood. The ODDS algorithm effectively iterates through the data subspaces to

compute the outlier scores for each bivariate tuple of attribute outliers. The ODDS method is

effectively applicable to the identification of annotation errors in a large protein database.

Specific contributions of this work include:

1. A formal definition of attribute outliers based on the correlation behaviour of

attributes in data subspaces.

2. Three new metrics O-measure, Q-measure and Of-measure quantify the deviating

correlation behaviour of an attribute. O-measure is the most accurate while Q-

measure is computationally less intensive. Of-measure is devised for sparse data sets

containing vast occurrences of rare attribute values which are not outliers.

3. An adaptive Rate-of-change factor selects optimal thresholds for distinguishing the

outliers from non-outliers in any given data set. These automatic and data-dictated

thresholds remove dependency on user-defined parameter.

 69

4. The ODDS algorithm systematically detects attribute outliers in data subspaces,

together with two strategies to filter subspaces that do not contain attribute outliers.

The organization of the rest of this chapter is as follows. A motivating example is given in the

next section. Section 4.3 details the formal definitions. In Section 4.4, we present the ODDS

algorithm, and experimental evaluations follow in Section 4.5. We conclude in Section 4.6.

4.2 Background

Attribute outliers are generally under-studied in outlier detection research. Comparatively,

methods for detecting class outliers are common; the data cleaning survey in Chapter 2

elaborates some of these methods. Among the few attribute outlier detection methods are

distribution-based (section 2.3.2.1) and data polishing (section 2.3.1.2) approaches. In Section

4.5, we compare the performance of ODDS to the data polishing method using C4.5 as the

classifier – the same strategy used in [ZW04].

4.2.1 Motivating Example

Table 4.1: World Clock data set containing 4 attribute outliers

 Country State City Day Time† Weather

1 U.S.A California LA Tue 8:40pm Sunny

2 U.S.A California LA Tue 8:40pm Rainy

3 U.S.A California VancouverY WedZ 8:40pm Sunny

4 U.S.A California LA Tue 8:40pm Storm

5 U.S.A California LA Tue 8:40pm Snow

6 Canada British Columbia Vancouver Tue 8:40pm Storm

7 Canada British Columbia Vancouver Tue 8:40pm Sunny

8 Canada CaliforniaW Vancouver Tue 8:40pm Rainy

9 Canada B. C.X Vancouver Tue 8:40pm Rainy

10 Canada British Columbia Vancouver Tue 8:40pm Rainy

11 Micronesia Ponape Palikir Wed 2:40pm Storm
† Class attribute W, X, Y, Z Attribute outliers

We illustrate the rationale of key concepts in ODDS using a simple example in Table 4.1.

The example is a World Clock data set, with the class attribute Time. It contains 4 attribute

outliers in record 3, 8, and 9. ‘B.C.’ (X) is an unlikely abbreviation of British Columbia and

 70

‘California’ in tuple 8 (W) is an erroneous data entry. While it is easy to segregate X from the

distribution model of all attributes in the State dimension, discriminating W is more

complicated because it seems to be a perfectly legitimate value in the same distribution.

Similarly, the erroneous ‘Vancouver’ (Y) and ‘Wed’ (Z) are non-obvious.

Nevertheless, observations drawn from the supports or frequencies of attribute

combinations provide hints for determining all these attribute outliers (Figure 4.1):

Observation 1: For attribute outliers, rarity does not equate outlier-ness. Tuples with one or

more rare values may possibly be class outliers, but rare attributes are not necessarily

attribute outliers. Consider Case C – although the tuple is a perfectly legitimate class outlier

belonging to the rare class of ‘2:40pm’ in Table 4.1, individual attributes of the tuple -

‘Micronesia’, ‘Ponape’ and ‘Palikir’ are consistent in their correlation behaviour and are not

erroneous, even if they are rare in individual dimensions of Country, State and City.

Figure 4.1: Selected attribute combinations of the World Clock dataset and their

supports

In a similar biological example, 3 out of 208,005 tuples in the UniProt protein

database (Release 7.1) contain the values <’Parkin’,‘PKRN’,‘S-nitrosylation’> for attributes

 71

Protein name, Gene name and Keyword respectively. Despite rarity in their dimensions, they

are not attribute outliers. In reality, few known protein sequences are associated with the

Parkinson disease, but they are consistently known as Parkin, are products of PKRN gene,

and are post-translationally modified by nitrosylation.

Observation 2:Attribute outliers are localized correlation deviators. Rarity may be a good

indicator for class outlier-ness, but attribute outliers are determined by their deviating

correlation behaviour within a localized subspace. In simple sense, an attribute outlier shows

abnormal associations with other attributes within a data subspace. Consider Case A in Figure

4.1 –‘California’ is seldom associated with ‘Canada’ and ‘Vancouver’, compared to that of

‘Vancouver’ and ‘Canada’ which co-occur in 5 tuples. Comparatively, only 1 sub-tuple of

<’Canada’,‘California’> and of <‘California’,‘Vancouver’> exists. Intuitively, the greater the

difference in the sub-tuple supports, the higher is the likelihood that ‘California’ is an

attribute outlier in the combination <’Canada’,‘California’,‘Vancouver’>. This forms the

basis of our outlier metrics. The same analogy identifies X in Case B.

Observation 3: A tuple may contain more than one attribute outliers. In real-world databases,

a tuple often contain multiple attribute outliers. The multiplicity of attribute outliers within

the same tuple interferes with the correlation patterns of one another, creating complications

in segregating individual outliers. However, an attribute outlier can be isolated at lower

dimensional attribute combinations. Consider Case D – the two attribute outliers separate

when they are projected into different 4-attribute sub-tuples.

Besides other attribute outliers in the same tuple, noisy and uncorrelated dimensions

may also interfere with the outlier detection algorithms. For example, the Weather dimension

in Table 4.1 does not relate to any other attributes but contain non-deterministic/random

values interfering with the correlation patterns. Since ODDS algorithm systematically

explores individual subspaces for presence of attribute outlier, it naturally generates

subspaces that do not contain any of the noisy dimensions.

To isolate the attribute outliers from non-outliers, users typically need to define a

threshold. This is not viable in practice, given that the number of outliers in the real world

 72

dataset varies depending on the noise level of the data set and the data dimension under study.

In the ODDS algorithm, the optimal threshold is determined from the maximal Rate-of-

change which intuitively marks the point where sorted outlier scores drastically change. Rate-

of-change is the natural boundary separating the outliers and non-outliers, and it removes the

dependency of the outlier detection on any user-specified parameter.

Summarizing, unlike class outliers, rarity is not an adequate measurement of attribute

outlier-ness. Rather, attribute outliers are local correlation deviators of a given subspace.

Here, we formally define a correlation-based attribute outlier:

A correlation-based attribute outlier is an object which exhibits abnormal behaviour

in a subspace of related objects.

An attribute outlier is a bivariate property of an attribute value and the subspace where it

exhibits abnormal correlation. Therefore, attribute outlier detection methods involve finding

both the attributes as well as the associated subspaces.

4.3 Definitions

In this section, we present all formal definitions used in ODDS.

4.3.1 Preliminaries

4.3.1.1 Support

Definition 1: Let R be a relation with m attributes. Let S be a projection of degree (v-u+1) on

R over an arbitrary set of attributes Au,..., Av, ()RS
vu AA ,...,π= . The support of a tuple s in S,

denoted by sup(s), is the count of the tuples in R that have the same values for attributes

Au,..., Av as tuple s.

For example, consider the World-Clock relation R(Country, State, City, Day, Time,

Weather) in Table 4.1, and a projected relation over three attributes, ()RS CityStateCountry ,,π= .

The support of tuple <’U.S.A’, ‘California’, ‘LA’> in S is 4 since tuples 1, 2, 4 and 5 in R

 73

have the same attribute values for Country, State and City. Similarly, sup(<’Canada’,

‘California’, ‘Vancouver’>) = 1.

4.3.1.2 Neighbourhood

Definition 2: Let tuple s=<au,…, av> be a tuple in the projected relation S. Without loss of

generality, we consider Av as the target attribute whose extent of deviation we are interested

to determine. The neighbourhood of Av w.r.t s is defined as N(Av, s) = <au,…, av-1>. The

support of N(Av, s) is the count of tuples in R with the same values au,…, av-1 for Au,…, Av-1.

Continuing from the last example, consider tuple s=<’Canada’, ‘California’,

‘Vancouver’> in the projected relation S. The neighbourhood of the State attribute in tuple s,

denoted as N(State, s) is the sub-tuple <’Canada’, ‘Vancouver’>. Since the same values of

‘Canada’ and ‘Vancouver’ for attributes Country and City respectively are found in tuples 6,

7, 8, 9 and 10 of R, we have sup(N(State, s)) = 5.

4.3.2 Correlation-based Outlier Metrics

Our objective is to determine attributes which deviate from its neighbours in the projected

relations. We formulate three metrics O-measure and Q-measure to quantify the extent of

deviation.

4.3.2.1 O-measure

Definition 3: The O-measure (Outlier measure) of target attribute Av w.r.t. s is defined as

()
()()

()()sAN

sAN
sAmeasureO

v

v

ui
i

v ,sup

,sup
,

1

∑
−

==− (4.1)

The lower the O-measure score, the more likely attribute Av is an attribute outlier in s.

Let us compute the O-measure of the attribute outlier W in Table 4.1. Let s=<’Canada’,

‘California’, ‘Vancouver’> be a tuple of ()RS CityStateCountry ,,π= . The support of N(State, s) is

 74

5 while sup(N(Country, s)) and sup(N(City, s)) are both 1. The O-measure of the State

attribute w.r.t. s is (1+1)/5=0.4.

For comparison, we also compute the O-measure of the State attribute in tuple

t=<’U.S.A’, ‘California’, ‘LA’>. We have O-measure(State, t) = (sup(N(Country, t)) +

sup(N(City, t))) / sup(N(State, t)) = (4+5)/4 = 2.25. ‘California’ is an attribute outlier in

attribute combination s but not in t, therefore O-measure(State, s) is relatively lower than O-

measure(State, t). Recall that the outlier metric should not consider rare classes or events as

attribute outliers. This is evident using O-measure where the high O-measure(Country,

<’Micronesia’, ’Ponape’, ’Palikir’>) = 2 prevents the mis-interpretation of Micronesia as an

attribute outlier.

4.3.2.2 Q-measure

The Q-measure of an attribute A w.r.t tuple s is defined as

()
()()sAN
ssAmeasureQ

,sup
sup),(=− (4.2)

Let a be the attribute value of A. Q-measure is the conditional probability of a tuple having

the value a for attribute A, given that the tuple has the same attribute values as the

neighbourhood of A. Relating this back to the attribute outlier W in Table 4.1, Q-

measure(State, <’Canada’, ‘California’, ‘Vancouver’>) = 1/5 = 0.2.

Computationally, it is less intensive to use Q-measure as the outlier detection metric

because less calculation of the supports of neighbourhoods is required. This is however, at the

expense of accuracy performance, which we will show in Section 4.5.

4.3.3 Rate-of-Change for Threshold Optimisation

4.3.3.1 CA-outlier

Let S be projected relation of n tuples S={s1,…, sn}. Given a threshold β, a Correlation-based

Attribute (CA-)outlier is a paired set (A, si), 1≤ i≤ n such that the deviation scores of A w.r.t

 75

si based on an outlier metric (O-measure or Q-measure) is less than β. Optimal value of β can

be automatically derived using Rate-of-change.

4.3.3.2 Rate-of-Change

Given an attribute A and the set of O-measure(A, si) Ssi ∈∀ , 1≤ i≤ n. Let L be the list of

tuples si sorted in ascending order of O-measure(A, si). The Rate-of-change of a ranked tuple

si (2≤i≤n) is defined as

() () ()
()1

1

,
,,

−

−

−
−−−

=−−
i

ii
i sAmeasureO

sAmeasureOsAmeasureO
schangeofRate (4.3)

The same formula is applicable to determine the Rate-of-change based on the Q-measure

metrics. Intuitively, the Rate-of-change measures the extent of increments in the outlier

scores. The maximum Rate-of-change indicates the point at which the outlier scores increase

suddenly and intuitively suggests the boundary between the outliers and the non-outliers.

4.4 Attribute Outlier Detection Algorithms

In Section 4.3.1.1, we discussed that a correlation-based attribute outlier (CA)-outlier is a

paired set (A, si) of an attribute A and a tuple in the projected relation Ssi ∈ . Following that

attribute outliers are defined with respect to a tuple in a projected relation (data subspace) S,

we decompose the detection of CA-outliers into 2 sub-problems:

Step 1: Generate all possible projected relations and supports. The enumeration of

the subspaces is equivalent to a concept lattice, where each node corresponds to a tuple si

in a projected relation S.

Step 2: Calculate outlier scores and flag detected CA-outliers. The outlier scores are

computed based on either the O-measure or Q-measure, depending on the nature of the

input data and the efficiency requirements. Rate-of-Change determines the cut-off

threshold to divide the outliers and non-outliers.

 76

4.4.1 Subspace Generation using Concept Lattice

A concept lattice (also known as the Galois lattice) is a mathematical structure of a set of

formal concepts, each comprising of the examples covered by the context (extension) and the

descriptions of the concept (intension) [Wil82, GW99]. The enumeration of projected

relations in Step (1) of the outlier detection process resembles the building a concept lattice.

Let us first formally define some of the notations used in concept lattice with respect

to a database relation R with attributes A = {A1, A2, …, Am}. The concept lattice of a formal

context L(R, A, C) describes a set of database tuples R, a set of attributes A, and a relation

C⊆R☓A. Each node in L, known as a formal concept is a pair set (E, I), where extension

E⊆R and intension I⊆A. A partial order relation can be built on all concept lattice nodes.

Given l1=(E1, I1) and l2=(E2, I2), let l1< l2 ⇔ I1⊂ I2, the precedent order means l2 is a direct

parent of l1 if I2 is an attribute superset of I1 and the latter is a sub-tuple of I2. Figure 4.2

shows an example of the concept lattice generated from a relation of 3 attributes. Relating the

concept lattice to our definitions in Section 4.3, each formal concept correspond to a tuple in

the projected relation, and the degree of the attribute combination is the cardinality of the

intension |I|, and the support is the cardinality of the extension |E|.

 77

Figure 4.2: Example of a concept lattice of 4 tuples with 3 attributes F1, F2, and F3

Concept lattices are commonly used in frequent itemset mining for the derivation of

association rules [HLS99, ZPOL97, Zak04]. Various algorithms have been proposed to

improve the time efficiency of building a concept lattice. We will not discuss the time

complexity of the lattice building step; a study of the performance of various algorithms is

found in [KO02]. Rather, we focus on the more computationally demanding Step (2) and

discuss a brute force as well as a pruned approach with reduced complexity.

4.4.2 The ODDS Algorithm

We first discuss the algorithm and the time complexity of the ODDS approach for CA-outlier

detection.

4.4.2.1 Outlier Detection Algorithm

Algorithm 1 shows the details of the ODDS algorithm. A top-down iteration over the data

subspaces, starting from the original relation R to the projected relations at degree 3 is

performed [line 2]. The tuples or attribute combinations are stored into a list L. For each

target attribute of each attribute combinations at degree k, the outlier scores (based on O-

measure or Q-measure) are computed [line 6-8]. For each attribute, Get_CA-outliers function

accepts a list of all attributes values of the same dimension and their corresponding O-

measure or Q-measure values, and returns the detected CA-outliers.

Algorithm 1: ODDS
Input: Enumerated projections of degree 2..m for relation R with m attributes. User option of
outlier metric.
Output: CA-outliers and the corresponding tuples of projected relations
1. List S, S’ ← Ø
2. For degree k ← m to 3 do
3. S ← projected relations of degree k and supports
4. S’ ← projected relations of degree (k-1) and supports
5. For each s in S do
6. For each attribute A of s do
7. OA ← add ComputeOutlierScores(A, s, S, S’, sup(A), metric option)
8. Endfor
9. Endfor

 78

10. For each attribute A of R do // compute Rate-of-change
11. OUTPUT Get_CA-outliers (OA)
12. Enddo
13. Endfor

ComputeOutlierScores takes in an option of the outlier metric to use. Q-measure is less

computationally costly; it is the quotient of the support of a subspace and the neighbourhood

of the target attribute (conditional probability). On the contrary, O-measure adds an

additional complexity to the computation [line 6-8] where the supports of every neighbour of

the target attribute are computed. The extent of the additional computational burden is

described in section 4.4.2.2.

Algorithm 2: ComputeOutlierScores
Input: Projections of degree m-1 (S’) and target attribute (A) and subspace (s). User option of
outlier metric.
Output: Outlier score
1. If (metric is Q-measure) then
2. Q-measure(A, s)=GetSupport(S, s)/GetSupport(S’, N(A, s))
3. return Q-measure(A, s)
4. Else if (metric is O-measure) then
5. O-measure(A, s)=0
6. For each neighbors Ci of A do
7. O-measure(A, s)=O-measure(A,s)+GetSupport(S’, N(Ci,s))
8. Endfor
9. O-measure(A, s)=O-measure(A, s)/ GetSupport(S’, N(A, s))
10. return O-measure(A, s)
11. Endif

In Get_CA-outliers, the input attribute points are sorted in ascending values of their outlier

scores [line 1] to identify the maximum Rate-of-change [line 3]. Attribute points above max

Rate-of-change are output as CA-outliers [line 6-8].

Algorithm 3: Get_CA-outliers (OA)
Input: List of attributes Aj and subsets with O-measure or Q-measure values
Output: CA-outliers according to adaptive Rate-of-change thresholds
1. B ← OA sorted in ascending order of measure(Aj)
2. For each point bi, 2≤i≤|Bj| do
3. Rate-of-change(bi) = (bi - bi-1)/ bi // rate of change
4. Endfor
5. ß ← i with max Rate-of-change(bi)
6. For each bi, 1≤ j ≤ ß do
7. OUTPUT CA-outliers ← bi
8. Endfor

 79

4.4.2.2 Time Complexity Analysis

The complexity of the algorithm is the complete search space of CA-outliers. Since a CA-

outlier is a paired set (A, si) of an attribute A and a tuple in the projected subspace S, Ssi ∈ ,

the total number of possible values of a CA-outlier is the enumeration of attributes multiply

by the total number of subspaces.

Lemma 1: Given a relation R with m attributes, the total number of columns in all possible

projections of R is m2m-1.

Proof. At each k (0≤ k≤ m), the total number of k-projections of m attributes is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
m

. The

total number of columns across all projections is the sum:

k
m
k

⎛

⎝
⎜

⎞

⎠
⎟

k= 0

m

∑ =
m
1

⎛

⎝
⎜

⎞

⎠
⎟ + 2

m
2

⎛

⎝
⎜

⎞

⎠
⎟ + ...+ (m −1)

m
m −1

⎛

⎝
⎜

⎞

⎠
⎟ + m

m
m

⎛

⎝
⎜

⎞

⎠
⎟

= m + 2 m!
(m − 2)2!

+ ...+ (m −1). m!
(m − m +1)!(m −1)!

+ m m!
(m − m)!m!

= m + m (m −1)!
((m −1) −1)!1!

⎡

⎣ ⎢
⎤

⎦ ⎥ + ...+ m (m −1)!
((m −1) − (m − 2))!(m − 2)!

⎡

⎣ ⎢
⎤

⎦ ⎥ + m (m −1)!
((m −1) − (m −1))!(m −1)!

⎡

⎣ ⎢
⎤

⎦ ⎥

= m
m −1

0
⎛

⎝
⎜

⎞

⎠
⎟ +

m −1
1

⎛

⎝
⎜

⎞

⎠
⎟ + ...+

m −1
m − 2

⎛

⎝
⎜

⎞

⎠
⎟ +

m −1
m −1

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

= m
m −1

k
⎛

⎝
⎜

⎞

⎠
⎟

k= 0

m−1

∑ = m2m−1

Theorem 1: Given a relation R with m attributes and n tuples, the operation ODDS with Q-

measure has a complexity of Ο nm2m−1().

Proof. Given Lemma 1, the total number of columns across all k-projections is m2m-1. Since n

is the maximum number of tuples across all projections, then Ο nm2m−1() is the worst-case

total of all attributes in all subspaces.

Theorem 2: Given a relation R with m attributes and n tuples, the operation ODDS with O-

measure has a complexity of Ο nm(m +1)2m−2().

Proof. To compute the O-measure outlier scores for each target attribute in

ComputeOutlierScores, the support of every other neighbourhood of A is calculated. The

 80

number of iterations between line 6-8 of ODDS algorithm becomes

2
2

0

2

222

0

2

2)1(
2

)1(

2
2

...
1

2
0

2
2
2

...
1

2
0

2

1
)1(...

2
2

1

−
−

=

=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∑

∑

m
m

k

m

k

mm
k

m
mm

m
mmm

m
m
mmm

m

m
m

m
m

m
m

mm
k
m

k

.

Whither using O-measure or Q-measure, the brute-force approach of searching every data

subspace of a relation for CA-outliers is highly inefficient.

4.4.3 Pruning Strategies in ODDS

To reduce the time complexity of Algorithm 1, we propose two filtering strategies to identify

and prune data subspaces that cannot possibly contain an attribute outlier. This is illustrated

in Figure 4.3, which shows part of the concept lattice generated from a relation of 5 arbitrary

attributes, and the supports of each attribute combination. The numerical values at the top

right corner of the combinations are the corresponding supports.

Figure 4.3: Attribute combinations at projections of degree k with two attribute outliers

- b and d

We assume that all possible projections of the relation are completely enumerated.

Intuitively, a frequent tuple of any projected relation cannot be a CA-outlier. Our first

strategy filters any tuple s with sup(s) ≥ minsup, s and its sub-tuples from the calculation of

 81

the outlier scores. Pruning of sub-tuples follows the Apriori property: supports of sub-tuples

increase across projected relations of decreasing degrees. For example,

sup(<’A’,‘b’,‘C’,‘d’,‘E’>) ≤ sup(<’A’,‘C’,‘d’,‘E’>) ≤ sup(<’A’,‘C’,‘E’>). In Figure 4.3,

setting minsup at 20 will prune off <’A’,‘B’,‘C’,‘D’,‘E’> with sub-tuples <’A’,‘B’,‘C’,‘E’>

and <’A’,‘C’,‘E’>.

The second filtering strategy only applies to the Q-measure metric which exhibits the

monotone property. We prove that if ‘b’ is a CA-outlier in a tuple s based on Q-measure, it is

also CA-outlier in the sub-tuples of s.

Theorem 3: Let s be a tuple in projected relation S. An attribute A is a CA-outlier w.r.t s

based on Q-measure implies that A is a CA-outlier w.r.t any sub-tuple of s which also

contains A.

Proof. Let b be a CA-outlier w.r.t s=<’A’,’b’,’C’,’D’> detected using the Q-measure

deviation metric. Let s' be a sub-tuple of s. Let β be the optimal threshold such that for any

CA-outlier A, Q-measure(A, s)≤ β. Based on the Apriori property, we have

β≤−=≤=−

≤

),(
)),(sup(

)sup(
))',(sup(

)sup(
)',(

))',(sup()),(sup(

sbmeasureQ
sbN

b
sbN

b
sbmeasureQ

sbNsbN

Hence, b is also a CA-outlier in s'. Sub-tuples of any CA-outlier found using Q-

measure in an attribute combination are eliminated from deviation computation. In Figure

4.3, sub-tuples <‘A’,’b’,’C’>, <’A’,’b’,’E’> and <’b’,’C’,’E’> are omitted when ‘b’ is

detected a CA-outlier in <’A’,’b’,’C’,’E’>. Beyond reducing the time complexity of the

outlier score calculation, Theorem 3 enables reduction of the time for enumerating the

projections.

4.4.4 The prune-ODDS Algorithm

Algorithm 4 shows the details of the prune-ODDS algorithm with Q-measure. A top-down

iteration over the data subspaces, starting from the original relation R to the projected

relations at level 3 is performed [line 3]. The tuples of attribute combinations are stored into a

 82

list S. Iteration begins by eliminating tuples which have supports greater than minsup from S

[line 4]. Sub-tuples of degree (k-1) data subspaces are generated from the existing tuples in S

at the beginning of each iteration [line 4].

Algorithm 4: prune-ODDS
Input: Enumerated projections of degree 2..m for relation R with m attributes. User option of
outlier metric. User input minsup.
Output: CA-outliers and the corresponding tuples of projected relations
1. List S, S’ ← Ø
2. S ← projected relations of degree m with supports ≤ minsup
3. For degree k ← m to 3 do
4. S’ ← sub-tuples of S of degree (k-1) and supports ≤ minsup
5. For each s in S do
6. For each attribute A of s do
7. OA ← add ComputeOutlierScores(A, s, S, S’, sup(A), metric)
8. Endfor
9. Endfor
10. For each attribute A of R do // compute Rate-of-change
11. OUTPUT OF ← Get_CA-outliers (OA)
12. Remove in S’ sub-tuples of OF
12. Enddo
13. S ← S’
14. If S is empty then
15. TERMINATE program
16. EndIf
17. Endfor

The Q-measures are computed for each target attribute of each attribute combinations

at degree k [line 6-8]. Based on theorem 3, the sub-tuples of CA-outliers are removed at line

12. The program terminates if the list S is empty [line 15].

4.5 Performance Evaluation

We evaluate the performance of ODDS on a synthetic data set and a real-world protein

database. Experiments were performed on a Pentium-IV 1.8GHz computer with 2GB of main

memory, and running Windows XP. Programs are written using a combination of Perl and

C++.

4.5.1 World-Clock Data Set

The synthetic data set contains 9 attributes and 50,000 tuples generated from

http://www.timeanddate.com/worldclock/. The original data set is free of any form of data

 83

noise, thus preventing the implicit noise in the original data set from interfering with the

artificial noise introduced.

Table 4.2: Number of attribute outliers inserted into World-Clock data set

Attributes X1 X2 X3 X4 Mix3
Country 311 299 298 287 295
State 311 320 294 286 315
City 310 339 302 322 336
Day 83 94 106 184 96
Time 278 271 262 285 374
Sunrise 337 311 305 291 316
Sunset 333 308 317 296 325
Postal Code 299 312 315 286 318
Continent 238 246 300 263 225

In order to evaluate the performance of ODDS at varying numbers of attribute

outliers per tuple, we introduce x artificial attributes outliers to a random tuple in the data set.

These attributes are assigned random values from their respective domains. The four datasets

containing x=1, 2, 3, and 4 outliers per tuple are denoted X1, X2, X3 and X4 respectively.

For example, X2 has 2,500 CA-outliers (5%) distributed across 1,250 tuples, each containing

2 attribute outliers. We also generate a Mix3 dataset by randomly inserting 1 to 3 artificial

attribute outliers to each randomly selected tuple. Table 4.2 shows the number of attribute

outliers inserted into World-Clock data set.

4.5.1.1 Accuracy at varying number of outliers per tuple

The accuracy of ODDS depends on the effectiveness of the outlier metric as well as the Rate-

of-change. The maximum Rate-of-change is the point where the outlier scores change

significantly. Figure 4.4 shows the Rate-of-change scores of each attribute derived from the

ODDS/O-measure. The maximum Rate-of-Change for each attribute matches the number of

outliers inserted in Table 4.2, and an F-score of 100% is achieved for X1 (Table 4.3). This

indicates not only is the Rate-of-change effective in determining the optimal cut-off

thresholds differentiating the outliers (positives) from the non-outliers (negatives), O-measure

 84

also accurately quantifies the extent of deviation of the attribute outliers. Subsequent

experiments utilize the Rate-of-change factors as default selection for thresholds.

Rate-of-change for determining the outlier detection thresholds for X1

Country, 311

State, 311

City, 310

Day, 83

Time, 278

Sunrise, 337

Sunset, 333
Postal Code, 300

Continent, 238

0

5

10

15

20

25

1 51 101 151 201 251 301

No. of tuples (in ascending O-measure scores)

R
at

e-
of

-c
ha

ng
e(

O
-m

ea
su

re
)

Figure 4.4: Rate-of-change for individual attributes in X1

Table 4.3 shows the F-scores of ODDS at varying number of CA-outliers per tuple.

With only 9 attributes, it is not surprising that the false-negatives escalate when tuples contain

4 or more CA-outliers per tuple. For data sets containing between 1 to 3 attribute outliers in

each tuple, the outlier detection method can achieve an F-score of between 73% and 100%.

Precision is generally high (92-100%), meaning that the FP rate is low. We expect that real-

world data set will contain a mixture of different number of attribute outliers in each tuple.

For this, ODDS/O-measure achieves an F-score of 88% for the Mix3 data set.

Table 4.3: Performance of ODDS/O-measure at varying number of CA-outliers per

tuple

 Recall (%) Precision (%) F-score(%)
X1 100 100 100
X2 90 100 95
X3 63 99 73
X4 39 92 50
Mix3 79 99 88

4.5.1.2 Convergence across projections

 85

In reality, we do not know the number of attribute outliers that may be present in each tuple

of a database. The ODDS approach systematically searches for CA-outliers, identifying

tuples with only one outlier at the data subspaces of the highest degree k (i.e. complete tuple),

and others at the subsequent lower degree projections. The detected CA-outliers accumulate

across the projections.

The Mix3 data set is used to evaluate the performance of ODDS algorithm using O-

measure and Q-measure metrics respectively. The accuracy of ODDS converges across the

projected relations of degree k, starting from k=7, with decreasing false negatives as the

number of attribute outliers detected accumulate. Figure 4.5 shows the F-score is between

70% to 88% with O-measure and Q-measure.

Accuracy of different attribute outlier metrics

0

20

40

60

80

100

9 8 7 6 5 4 3

Degree of projected relations

F-
sc

or
e

O-measure
Q-measure

Figure 4.5: Accuracy of ODDS converges in data subspaces of lower degrees in Mix3

4.5.1.3 Comparison with other methods

ODDS/O-measure and ODDS/Q-measure perform consistently better than classifier-based

methods using decision tree C4.5 [ZW04, Ten04]. Its performance is also stable when the

percentage of outlier noise increases. As the percentage of attribute outliers in the data set

increases, the correlations between attributes decreases, thus affecting the accuracy of the

correlation-based outlier detection approach.

 86

ODDS compare with Data Polishing method using c4.5 for Mix3

40

60

80

100

1% 5% 10% 15% 20%

Noise Level

F-
sc

or
e

(%
)

ODDS(O-measure)

ODDS(Q-measure)

Data Polishing
using C4.5

Figure 4.6: Performance of ODDS compared with classifier-based attribute outlier

detection

4.5.2 UniProt Protein Data Set

The UniProt database (release 7.1) consisting of 2,826,395 protein sequence records are

collected from multiple sources of large-scale sequencing projects and is frequently accessed

by the world-wide biological researchers for analysis and data mining. As discussed in

Chapter 3 (Section 3.3.3.1), UniProt/TrEMBL records are computationally annotated, thus

the protein functions are predicted rather than verified experimentally, they contain a

significant portion of annotation errors. UniProt/TrEMBL contains primarily free-text and is

highly sparse. For this experiment, we focus on 5 attributes relevant to the protein annotated

properties.

Table 4.4: Description of attributes in UniProt

Attribute Distinct values Multiple values Description

OR 6 No Organism source of the protein

KW 898 Yes Keywords subject reference for the protein

GO 8,486 Yes Gene ontology controlled vocabulary of

proteins’ properties.

PN 669,151 No Proposed official name of protein

SY 126,299 Yes List of synonyms of the protein

 87

Table 4.4 shows that the protein name PN, gene name GN, synonym SY each contain

more than 100,000 unique values. These large numbers suggest the high sparse-ness of the

UniProt database. In fact, the naming of proteins and genes are often left to the discretion of

the experimentalists who submit these sequences into the database, hence, a large percentage

of these names are rare but legitimate.

Table 4.5: Frequencies of GO target attributes identified at projections of degree 5 of

UniProt data set

Attribute value Freq Attribute value Freq

ATP_binding 172,090 iron ion binding 81,693

kinase activity 30,355 antigen processing, exogenous antigen via

M..

6,786

binding 27,933 membrane 295,807

calcium ion binding 13,481 metabolism 87,071

catalytic activity 50.693 methyltransferase activity 7,905

chromosome segregation 1,205 negative regulation of cytokine production 1

cytokine activity 816 phosphoprotein phosphatase activity 1,693

defense response to bacteria 408 positive regulation of MHC class II

biosynt…

19

drug transporter activity 1,304 protein-tyrosine kinase activity 3,817

drug transport 189 protein amino acid phosphorylation 32,462

electron transporter activity 1 protein binding 42,461

extracellular space 5,133 protein biosynthesis 41,101

hydrolase activity 71,025 response to unfolded protein 6,311

integrase activity 2,230 ribosome 17,865

interferon-gamma

biosynthesis

15 signal transducer activity 10.702

signal transduction 23,060 spindle pole body 84

transferase activity 114,389 structural constituent of ribosome 25,059

translational initiation 2,416 translation initiation factor activity 3,747

Intracellular 65,544 transporter activity 57,341

A preliminary experiment applying the ODDS/O-measure to the UniProt data set

reveals that the O-measure metric does not distinguish the rare attributes from the attribute

outliers. Table 4.5 shows the frequencies of the target attributes (neighbourhoods not shown)

in the GO dimension identified from projected relations of degree 5 of the data set. We notice

 88

that some of the outliers detected are in fact rare attribute values, including “negative

regulation of cytokine production”, “electron transporter activity”, “interferon-gamma

biosynthesis”, “positive regulation of MHC class II biosynt…” each with a frequency of less

than 20 in the data set.

Since we are not interested to detect these rare attribute values, we adjust the O-

measure metric with a frequency factor to penalize the metric by the frequency of the target

attribute; the new metric is called Of-measure.

4.5.2.1 Of-measure

Let freq(Av) be the frequency of an attribute Av in the original relation R. The Of-measure of

Av w.r.t a tuple s is defined as

()()

()() ()vv

v

ui
i

vf AfreqsAN

sAN
sAmeasureO

,sup

,sup
),(

1

∑
−

==− (4.4)

Of-measure takes into account the support of Av in R. A lower weightage is given to

the rare attribute values with lower frequencies. Unlike O-measure, Of-measure favours non-

rare values and is more effective in identifying attribute outliers in sparse data set which

contained vast occurrences of rare attribute values which are not attribute outliers. In certain

sparse data sets such as the UniProt database, finding the vast occurrences of rare attribute

values such as ‘B.C’ (Table 4.1), which is not necessarily erroneous is not of prime interest.

As an example, consider the attribute outlier X in Table 4.1. Given the low frequency

of the value ‘B.C.’ in the data set, the low O-measure score almost guarantee that the State

attribute in s= <’Canada’, ‘B.C.’, ‘Vancouver’> will be labelled as an outlier, that is, O-

measure(State, s)=(1+1)/4=0.5. In contrast, Of-measure(State, s) = (1+1)/(4*0.09) = 5.6 is

relatively much higher.

 89

4.5.2.2 CA-outliers in UniProtKB/TrEMBL

We applied ODDS/Of-measure to the complete UniProt data set. Table 4.6 shows the number

of outliers detected for each attribute. CA-outliers are redundantly identified across different

degree of the projected subspaces; the accumulated number of affected records shows the

non-redundant number of affected records.

Table 4.6: CA-outliers detected in UniProtKB/TrEMBL using ODDS/Of-measure

CA-outliers detected at
projections of degree

OR PN KW GO SY

3 27 (73) 45 (24) 56 (31) 17 (97) 18 (5)
4 333 (553) 136

(6033)
276

(196)
378 (2196) 186 (124)

5 195 (45) 40 (13) 57 (17) 308 (2365) 132 (56)
Accumulated (671) (6070) (241) (2365) (185)

* Brackets contain number of affected records.

4.5.2.3 Verification of CA-outliers detected

Biologists through manual verification check the validities of CA-outliers found in the GO

dimension. True positive TP indicates an uncommon association of the target attribute with

the other attributes in the projected relation. False positive FP indicates that no peculiarity is

found in the correlation behaviour of the target attribute. Indeterminable means that further

investigation is required.

The manual verification step largely depends on the knowledge level of the biologist

and his decisive-ness. Table 4.7 shows that a large percentage (24%-46%) of the CA-outliers

require further investigation because the biologist lacks the detail knowledge to justify if the

annotation is erroneous or it is only exceptional. 27%-58% are false positives. 10%-24% (or

19%-55% positive predictive rate among those justifiable) of the gene ontology attribute

outliers are confirmed result of erroneous annotations.

The experiment shows that ODDS can be used as a pre-step for cleaning protein

annotations, subjected to further verification by an annotator. Obvious cases of erroneous

annotations are found in the ODDS results. For example, 12 bacteria proteins (Q9Z5E4,

Q6J5G7, among others) are associated with viral capsids which are protein coats for viral

 90

particles. Also, 5 eukaryote proteins (Q9BG87, Q4IJ15, among others) are oddly related to

the reproduction of viruses.

Table 4.7: Manual verification of Gene Ontology CA-outliers detected in

UniProtKB/TrEMBL

Annotation CA-outliers TP FP Indet.
CA-outliers detected at 3-attribute projections 17 6 5 6
CA-outliers detected at 4-attribute projections 378 65 221 92
CA-outliers detected at 5-attribute projections 308 31 136 141

4.6 Concluding Section

Existing outlier detection methods focus primarily on class outliers; limited research has been

conducted on attribute outliers. This work presents a novel method called ODDS that utilizes

the correlations between attributes to identify attribute outliers. Rather than focusing on rare

attribute values or rare classes, ODDS systematically searches for attribute points that exhibit

alternative correlation behaviour when compared to other attribute points in a data subspace.

These local deviators which we refer to CA-outliers are bivariate. Experimental evaluation

shows that ODDS can achieve F-score of up to 88% in synthetic data set and is practically

applicable for detecting erroneous annotations in a protein database.

This chapter focused on the accuracy of the outlier detection approach. Two filtering

strategies are applied to reduce the running time of the ODDS algorithm where the

enumeration of data subspaces is a major bottleneck. To reduce the running time further, one

strategy is to separate the data space into partitions of correlated subspaces in order to reduce

the number of enumerated projections. This idea is evaluated in the next chapter which

proposes the use of XML hierarchical structures to derive meaning partitions, thus improving

the effectiveness and efficiency of attribute outlier detection.

 91

Chapter 5: Attribute Outlier Detection in
XML using XODDS

Although nature commences with reason and ends in experience, it is necessary for us to do
the opposite, that is to commence with experience and from this to proceed to investigate the

reason.

Leonardo Da Vinci
Engineer, Painter, & Sculptor (1453 - 1519)

 92

Despite the recent proliferation of semi-structured data models such as XML as the

standardized data representation in various domains, including bioinformatics, the

development of data cleaning approaches for such data is at rudimentary stage. Even among

the limited data cleaning works in XML discussed in the data cleaning survey in Chapter 2,

the problem of duplicates is addressed, but not outliers. Existing outlier detection methods

remain focus on relational data and they are not easily adaptable to XML data because of the

inherent differences in data structures.

In this chapter, we propose a systematic 4-steps framework for outlier detection in

XML data called XODDS (for XML Outlier Detection from Data Subspace). Similar to the

ODDS method, the XODDS framework utilizes the correlations between attributes to

adaptively identify attribute outliers. In addition, XODDS leverages on the hierarchical

structure of the XML document to provide contextual information lacking in relational data,

with the aim of improving both the effectiveness as well as efficiency of identifying attribute

outliers in XML documents. Specifically, we introduce two novel concepts of correlated

subspaces and aggregate attributes in XML. The notion of correlated subspaces reduces the

time complexity of the attribute outlier method by separating the XML document into several

natural partitions according to the hierarchical structure. Aggregate attributes enables

summarization of group of nodes, and thus facilitates data cleaning at higher level of

abstractions. We also devise 6 key properties that a good metric for attribute outliers should

satisfy, and compare other correlation-based measures to the xO-measure and xQ-measure

metrics used in XODDS.

Experiments results on both synthetic and real-world data sets indicate that XODDS

is effective in detecting attribute outliers in XML. In the detection of annotation errors in

UniProt/TrEMBL, XODDS attains 97% positive predictive value (PPV) - with significant

improvement over ODDS.

 93

5.1 Introduction

In the recent years, increasing number of databases are converted into XML formats to

facilitate data exchanges and publishing on the Web. For example, major biological databases

have started to support XML formats; they include UniProt (UniProt XML) [WAB+06],

GenBank (NCBI XML, INSDSeqXML, and TinySeqXML) [BKL+06], and PDB (mmCIF,

and PDBML) [DAB+05]. Regardless of this growth, current data cleaning methods focus on

relational data. Although there are a few data cleaning works on XML, they mainly focused

on duplicate detection [LTLL03, WN05, PWN06] (details in Section 2.5). On the contrary,

the development of outlier detection methods for XML documents has been overlooked.

Intrinsic differences between XML and relational data models inhibit direct

adaptation of conventional data cleaning methods to XML data model. XML data are often

"sparse"; missing information are represented using optional elements. In contrast, relational

data are usually "dense" and missing attribute values are represented by null values. This

introduces bias to the XML data, which in turn falsely amplifies the magnitude of outlier-

ness. Data sparseness should be taken into account when selecting a suitable metric for

attribute outlier detection - a crucial step in attribute outlier detection. There exist numerous

interesting-ness measures for ranking the usefulness and significance of the discovered co-

relations or co-occurrences [HH01, TKS02]. However, they are primarily devised for the

mining of association rules or for feature selection, and may not be naturally suited to the

attribute outlier detection problem. In order to systematically compare the suitability of the

two metrics used in XODDS - xO-measure and xQ-measure to the existing interesting-ness

metrics, we develop 6 key properties of a good attribute outlier metric and evaluate the extent

to which each metric satisfies these properties (details in Section 5.4).

Also, XML data contain multiple levels of nested elements (or attributes), whereas

relational data are “flat”. Such encoding of relationships between the XML elements in the

form of the hierarchy provides additional contextual information to the attribute outlier

detection problem. Specifically, we utilize the hierarchical structures of XML to derive

 94

correlated subspaces and aggregate attributes that advance the outlier detection process. We

use a concrete Bank account example often used for fraud detection to elaborate these two

concepts.

5.1.1 Motivating Example

Figure 5.1: Example bank accounts XML document

Consider the 3 attribute outliers shown in Figure 5.1. The <Country:USA> element in Figure

5.1(a) is erroneously associated with the <State:South Moravi> and <City:Opava> of Czech

Republic. <Bank:YZ> is unusual because most transactions from this account are credited to

 95

Bank AB. In Figure 5.1(c), a transaction involving $1000 is unusual because transactional

amounts for this account are typically less than $100.

First, we observe that attribute outlier-ness is a bivariate property of a target attribute

and a localized neighbourhood of correlated attributes. By inspecting the correlations across

all <Country>, <State> and <City> elements in Figure 5.1(a), we can deduce that

<Country:USA> is an attribute outlier from its negative correlations to <State:S.Moravi> and

<City:Opava>. Conversely, comparing the same Country element to <Amt:$1000> or

<Bank:AB> make little sense in identifying attribute outliers. The observation is in

agreement to our definition of a correlation-based attribute outlier in Chapter 4.

A correlation-based attribute outlier is an object which exhibits abnormal behaviour

in a subspace of related objects.

Notice that the structure of XML provide hints of what constitutes “a subspace of

related objects”. The notion of correlated subspaces in XML leverages on the nested

structure to identify groups of logically correlated elements. For example, the elements

<Country>, <State> and <City> form a correlated subspace, that describes the <Branch

Address> of any account. The <Amt>, <Bank> and <Type> elements of <Transaction>

elements in Figure 5.1(a) form a subspace, which is however different from the transactional

subspace in Figure 5.1(b). Realistically, each account has different spending power and

therefore transactions are not comparable across different accounts.

Figure 5.1 also shows the aggregate attributes (indicated by dotted lines) that have

been derived from aggregate functions such as AVG, COUNT, MIN, MAX, and SUM to

summarize sub-structures in XML through computing a scalar value from a set of multiple

elements [GHQ95, GCB+97]. Certain XML query language such as XQuery and XML-GL

support aggregate attributes [CCD+99, CFR+01]. Aggregate attribute can facilitate the

identification of outliers at higher level of abstractions. For example, through the correlation

patterns of the <Count>, <Avg> and <Country> elements in Figure 5.1(a)-(d), we can

identify accounts with unusually low (or high) transactional averages or counts, compared to

other accounts from the same country.

 96

Logically separating the Bank Account XML (details of computational derivations in

Section 5.2) generates the 4 subspaces shown in Figure 5.2. The correlation behaviour of each

attribute is analysed with respect to individual subspaces, rather than the entire XML

document. Consider the subspace in Figure 5.2(c), evidence that <Country:USA> is an

attribute outlier can be drawn from the correlation behaviour of <Country:USA> with

<State:S.Moravi> and <City:Opava>. This observation motivates the development of xO-

measure and xQ-measure. The same deduction identifies “Zech”, which is, however a rare

attribute rather than an attribute outlier. In Chapter 4, we explained that rarity does not equate

to outlier-ness, and individual elements with rare values are not necessarily outliers. The

transactions of each account are organised into different subspaces in 5.2(a) and 5.2(b);

intuitively, we are looking for deviation in transactional behaviour of individual account

holders, and not across. Also notice that the aggregate attributes are organised into a separate

subspace which is useful for tracking the transactional behaviour across different countries.

Figure 5.2: The 4 subspaces in Bank Account XML

 97

The rest of the chapter expand on the two concepts of correlated subspaces and

aggregate attributes to devise a complete framework for detecting attribute outliers in XML

documents.

5.1.2 Contributions

Specifically, this chapter makes the following contributions:

1. We introduce the notion of correlated subspaces, which is a meaningful grouping of

correlated objects based on the XML data structures.

2. We propose the use of aggregate attributes as summarizing elements in the

hierarchical XML structures. The use of aggregate attributes enables the detection of

attribute outliers at higher level of abstraction.

3. We develop two correlation-based attribute outlier metrics for XML, namely the xO-

Measure and xQ-Measure. We identify 6 key properties that a good attribute outlier

metric should satisfy, and use them to evaluate xO-Measure and xQ-Measure with

other existing interesting-ness measures.

4. We develop a complete, systematic framework for detecting attribute outliers in

XML called XODDS (for XML attribute Outlier Detection from Data Subspaces)

and demonstrate its effectiveness on real world datasets.

The rest of this chapter is organized as follows. Section 5.2 presents formal

definitions used in XODDS and Section 5.3 describes the XODDS framework. Section 5.4

presents a comparative analysis of attribute outlier detection metrics. An experimental

evaluation of XODDS is given in Section 5.5, and we conclude in Section 5.6.

5.2 Preliminary Definitions

First, we present formal definitions of the terms used in XODDS. An XML document can be

modelled as a tree T(V, E, r, L) where V is a set of n nodes, E is a set of edges E⊆V☓V and r

is the root node. Each node represents an element or an attribute.

 98

Let L be a countable set of labels. The labelling function label: V→L maps each v∈V

to some l∈L; different nodes may have the same label. Each e∈E is an ordered pair of

nodes, e = (vi, vj) where vi∈V is the parent of vj∈V, and vj is the child of vi.

We use the function value(v) to denote the value of a leaf node. It follows that if vj is

a leaf node, value(vj) ≠ Ø. For every node v∈V, there is a unique path from root node r to v,

denoted by pr,v = (vo = r, v1 …, v). The number of edges from r to v is dist(r, v). Without loss

of generality, we say that r is an ancestor of v, or v is a descendant of r.

Consider the example in Figure 1(c). Let T be the tree rooted on Account node. L =

{“Account”, “Branch Address”, “Country”, “State”, “City”}. <Country>, <State>, and

<City> are child nodes of <Branch Address>, and their distances from root node are 2.

5.2.1 Correlated Subspaces

5.2.1.1 Object

Definition 1: Given a tree T(V, E, r, L), an object Obj(vi) rooted at node vi∈V is a set of

nodes v∈V such that dist(vi, v)=1 and value(v)≠Ø. Simply, an object is denoted by its

children leaf nodes. For example, the XML document in Figure 5.1(a) comprises of 3 objects.

The <Branch Address> node forms an object with children nodes of <Country>, <State> and

<City>. Similarly, Figure 5.2(a) shows Obj (<Transaction>) = {<Amt:$30>, <Type:C>,

<Bank:YZ>}.

5.2.1.2 Nearest Common Ancestor

Definition 2: Given two nodes, vi ,vj ∈ V, vc ∈ V said to be the common ancestor of vi and

vj if they are both descendents of vc. vc is called the nearest common ancestor of vi and vj,

denoted as NCA(vi ,vj) ∈ V if the distance between vi and vj through vc is shorter than any v

∈ V. Consider the example in Figure 5.1(c). Let T be the tree rooted on Account node. L =

{“Account”, “Branch Address”, “Country”, “State”, “City”}. <Country>, <State>, and

 99

<City> are child nodes of <Branch Address>, and their distances from root node are 2. The

nearest common ancestor NCA(<Country>,<City>)=<Branch Address>.

5.2.1.3 Correlated Subspace

Definition 3: Given a tree T(V, E, r, L), a node Vvp ∈ , which we call the pivoting node of

the subspace, and Lls ∈ , a correlated subspace S(vp, ls) is a set of nodes such that ∀

),(sp lvSv ∈

1. Obj(v) ≠ Ø

2. for any vi, vj ∈ S(vp, ls), NCA(vi, vj)= vp

3. for any vi, vj ∈ S(vp, ls), jpip vvvv pp ,, =

For example, the S_Transactions_1 and S_Transactions_2 in Figure 5.2 are subspaces, with

ls=”Transaction” and pivoting node vp=<Transactions>. Its follows that the correlated

subspace of Branch Address, S_Branch_Address = S(<Accounts>, “Branch_Address”). In

general, a correlated subspace is a container of comparable objects, and each object is

represented by a set of leaf nodes.

5.2.2 Aggregate Attributes

The contextual complexity of aggregate attributes requires that they are defined by the users

rather than determined by the system. Such specifications can be facilitated through a user

interface for the selection of aggregate functions and the nodes to aggregate. For example, in

Figure 5.1(a) and (b), the <Transactions> node is summarized through computing the

COUNT function on <Transaction> nodes and AVG aggregate function on the <Amt> nodes.

5.2.2.1 Aggregate Attribute

Definition 4: Given T, an aggregate attribute VFpvv vvia i
∈),,(, is a sibling leaf node of vi

derived from applying the aggregate function F on all descendent nodes of vi following the

path location vvi
p , . In Figure 1(a), let F = AVG be applied to all <Amt> nodes following the

 100

xpath location ‘Transactions/Transaction/@Amt’. This generates the <Avg:$976> node

which is inserted into the XML as a sibling node of <Transactions>.

5.2.3 Correlation Neighbourhood

Correlation-based attribute outlier-ness is a bivariate property of both the target attribute (leaf

node) and a correlation neighborhood, which is a group of attributes that co-occur with the

target attribute in the same subspace.

5.2.3.1 Correlation Neighbourhood

Definition 5: Given a node vi ∈ V, Obj(vi) ≠ Ø. Let)(i
k

s vObjV ⊆ be a subset of leaf nodes

of the object defined over vi where k is called the degree of k
sV . For each target node k

st Vv ∈ ,

the correlation neighborhood of vt in k
sV is defined }|{),(t

k
s

k
st vvVvVvN ≠∈= . A

neighborhood),(k
st VvN is of degree k where k=|),(k

st VvN |. In Figure 5.2(c), the 2-degree

neighborhoods of <State:S.Moravi> is the set of 2 nodes {<Country:USA>, <City:Opava>}.

5.2.4 Outlier Scoring

Outlier-ness is not a binary property. Simply labeling an object as an outlier serves little

value; the objects have different degree of deviation, giving rise to the notion of strong or

weak outliers. In the XML model, an attribute outlier metric is a measurement of the strength

of the outlier-ness of each object in its correlated neighborhood. We adapt the O-measure and

Q-measure in ODDS for the XML models, and call them xO-measure and xQ-measure.

5.2.4.1 Support

Definition 6: Given a subspace S(vp, ls) and a node),(spi lvSv ∈ , let)(i
k

s vObjV ⊆ . The

support of k
sV , denoted sup(k

sV) is the count of the number of nodes),(sp lvSv ∈ such that

∀ vs ∈ k
sV , there exists e=(v, vj) ∈ E, value(vj)=value(vs). In general sense, the support of a

 101

set of nodes k
sV is the count of objects in the same subspace, with leaf nodes that have the

same values as k
sV . For example, the support of sup(N(<State:S.Moravi>))=

sup({<Country:Czech>, <City:Opavi>}) = 2 in Figure 5.2(c).

5.2.4.2 xO-measure

Definition 7: Given S(vp, ls) and a node),(spi lvSv ∈ , let)(i
k

s vObjV ⊆ . The xO-measure

of a node k
ss Vv ∈ , denoted O-measure(vs, k

sV) is defined as

)),(sup(

)),(sup(
),(k

ss

vv

k
sj

k
ss VvN

VvN
VvmeasurexO ij

∑
=

=−
(5.1)

where sj
k

sj vvVv ≠∈ ,

xO-measure is basically the quotient of the co-occurrences of an attribute v with its neighbors

and the co-occurrence of its neighbours. For example in Figure 5.2(c), the xO-measure of

<Country:USA> in {<State:S.Moravi>, <City:Opava>} = ¼ and this is comparatively lower

than xO-measure(<Country:Czech>, {<State:S.Moravi>, <City:Opava>}) = 2/4 = 0.5.

5.2.4.3 xQ-measure

Definition 8: Given S(vp, ls) and a node),(spi lvSv ∈ , let)(i
k

s vObjV ⊆ . The xQ-measure of

v in neighborhood),(k
st VvN is defined as

),(sup(
)sup(

),(k
ss

sk
ss VvN

v
VvmeasurexQ =− (5.2)

Essentially, the xQ-measure is the conditional probability of a target attribute vs over its

neighborhood. In Figure 5.2(b), the xQ-measure(<Bank:YZ>, {<Amt:$1000>,

<Type:C>})=1/2=0.5. Notice that for both xO-measure and xQ-measure, lower scores

implies higher degree of attribute outlier-ness.

The output from the outlier scoring step is a list of metric scores with respect to the

node and its neighborhoods. For each attribute across neighborhoods of a projection degree k,

the outlier scores are ranked in ascending order.

 102

5.2.5 Outlier Identification

Outlier-ness scoring measures the objects according to their extent of outlier-ness, they do not

differentiate between outliers and non-outliers. To isolate the attribute outliers from non-

outliers, users typically need to define a threshold. This is not viable, given that the number of

attribute outliers differ across different XML documents, and across different types of

elements. In the XODDS algorithm, the optimal threshold is determined from the maximal

Rate-of-change which is the data-dictated outlier score separating the outliers and non-

outliers, thus removing the dependency of the outlier detection on any user-specified

parameter. We compare by experiments the effectiveness of Rate-of-Change with the Top-k

approach that selects a certain top percentage of the data set as outliers.

5.2.5.1 Rate-of-Change

Definition 9: Given a node and the set of xO-measure),(k
ss Vv at degree k and where

label(vs)=ls, let xO-measure)',(k
ss Vv be the list sorted in ascending order of xO-

measure),(k
ss Vv . The Rate-of-change of a ranked object vs (2≤i≤n) is defined as

() () ()
()k

is

k
s

k
is

s VvmeasurexO
VvmeasurexOVvmeasurexO

vchangeofRate i

',
',',

1

−

−−−
=−− − (5.3)

5.3 Outlier Detection Framework

The complexity of the outlier detection problem cannot be resolved in a single computational

step. Rather, it demands streamlining of various algorithmic components into a systematic

framework.

5.3.1 XODDS Framework

The XODDS framework is a generalized approach towards detecting attribute outliers from

XML documents. Figure 5.3 details the specification requirements and processes in XODDS.

There are four key steps:

 103

1. Attribute aggregation is a specification step for users to define summarizing

elements as well as where to insert them in the XML documents. Aggregate attributes

serve as abstraction to the nested elements and enable the identification of outliers at

higher levels of the abstraction.

2. Subspace identification determines semantically meaningful subspaces in the XML

document. Deriving the subspaces requires identifying clusters of objects forming a

subspace.

3. Outlier scoring computes the outlier scores for each object in its subspaces using

xO-measure and xQ-measure. The support-based object pruning step reduces the

enumeration of neighborhoods for outlier scoring and therefore the computational

complexity.

4. Outlier identification distinguishes the outliers from the non-outliers using an

adaptive threshold derived from the input XML. It is unrealistic to adopt a fixed

threshold for all XML documents because the number of outliers varies according to

different noise levels. Two adaptive strategies are examined, namely the Top-k and

Rate-of-Change approaches. Finally, we remove redundancy of outliers that exist in

overlapping neighbourhoods of varying degrees.

 104

Figure 5.3: The XODDS outlier detection framework

5.3.2 Algorithms

The XODDS framework divides the outlier detection problem in XML into 4 systematic steps

of attribute aggregation, subspace identification, outlier scoring, and outlier identification. In

this section, we will describe the details of selected procedures in the framework.

Procedure FindObjectNSubspace identifies objects and subspaces in the XML

document. If the elements or attributes are numerical, we discretize them into categorical

values through binning them into equi-width intervals. After parsing the XML document into

a DOM tree, the procedure performs a depth-first search on the tree [Line 1]. Each object

node is collected into an array Object. If the node has the same sibling nodes, it is

immediately identified as a subspace with its parent as the pivoting node [Line 5-6].

Otherwise, the object is stored into a list which is screened at Line 13-20. Following

Definition 3 in Section 5.2.1, object nodes are checked if they belongs to the subspace S

based on their nearest common neighbours and XPATHs. The function isObjectNode simply

checks if the given node contains leaf nodes. Given that the XODDS algorithm is correlation-

 105

based, it relies on the correlation among 3 or more attributes to determine outlier-ness. The

output of Procedure FindObjectNSubspace is a list of XML subspaces S.

Procedure FindObjectNSubspace
Input: XML document
Output: A list of XML subspaces, S(vp, ls) defined over input tree T
1. Parse XML into DOM tree, T
2. S ← Ø, Obj ← Ø, Object ← Ø
3. For each vi of T do
4. If isObjectNode(vi) then
5. If label(sibling(vi)) == label (vi) then
6. S(parent(vi), label(vi)) ← vi
7. Else
8. Obj ← vi, label(vi), XPATH(vi)
9. Endif
10. Object(vi) ← children(vi)
11. Endif
12. Endfor
13. For each vi, label(vi), XPATH(vi) in Obj do
14. For each remaining vj, label(vj), XPATH(vj) in Obj do
15. If label(vi)== label(vj) AND XPATH(vi)== XPATH(vj) then
16. S(NCA(vi, vj), label(vi)) ← vi
17. Endif
18. EndFor
19. EndFor
20. S(NCA(vi, vj), label(vj)) ← vj

Procedure FindNeighbourhood takes as input the list of subspaces identified and

enumerates all the attribute combinations in each subspace, where each combination is a

subset of the object’s children leaf nodes [Line 1]. The support of each unique subset or

neighborhood accumulates according to Definition 6 in Section 5.2.4 [Line 5-9]. The output

of the table is a list of hash-tables for each attribute combinations.

Procedure FindNeighbourhood
Input: List of subspaces, S defined over input DOM tree T
Output: Set of support hashtables sup(V(k, s)) for each attribute
1. Initialize support hashtables, V(k, S(vp, label(vs))) based on projections of vs
2. For each subspace S(vp, label(vs)) do
3. For each node vi in S(vp, label(vs)) do
4.

 Create all subsets s of degree k in Object(vi)
5. If V(k, S(vp, label(vs)), s) exists then
6. Increment count of sup(V(k, S(vp, label(vs)), s)) by 1
7. Else
8. sup(V(k, S(vp, label(vs)), s)) = 1
9. EndIf
10. EndFor
11. EndFor

 106

Once the supports are computed, Procedure ScoreNGetOutliers compute the outlier scores

based on the xO-measure or xQ-measure metric. For each target attribute of each projection in

every subspace, the optimal thresholds based on the Rate-of-Change is computed [Line 7-14].

The calculate_score function returns the metric scores of va in all possible enumeration of

correlated neighborhoods within S(vp, label(vs)). In order to reduce the cost of the extensive

enumerations, a pruning step is introduced to calculate_score to filter combinations of target

attributes and correlated neighbourhood (the equivalent of F11 discussed in next section) with

supports larger than minsup. Line 7 sorts the attribute in ascending order while Line 8-10

computes the Rate-of-change from the sorted measures. Correlation-based outliers with the

lowest ß outlier scores are output.

Procedure ScoreNGetOutliers
Input: List of supports of subsets. User option of outlier metrics. User input minsup
Output: Set of outlier measures for each attribute and subspace
1. For each subspace S(vp, label(vs)) do
2. For all k projection, k≥3 do
3. For each node va in V(k, S(vp, label(vs)), s) do
4. Ak ← calculate_score(va, V(k, S(vp, label(vs)), s, minsup)
5. Endfor
6. Endfor
7. B ← OA sorted in ascending order of measure(Ak)
8. For each point bi, 2≤i≤|Bj| do
9. Rate-of-change(bi) = (bi - bi-1)/ bi // rate of change
10. Endfor
11. ß ← i with max Rate-of-change(bi)
12. For each bi, 1≤ j ≤ ß do
13. OUTPUT CA-outliers ← bi
14. Endfor
15. Endfor

5.4 Attribute Outlier Metrics

Interesting-ness measures are commonly used for ranking the usefulness and significance of

the discovered co-relations or co-occurrences. They may therefore be appropriate for

quantifying attribute outliers. In order to systematically compare the suitability of xO-

measure and xQ-measure, as well as these interesting-ness metrics to the attribute outlier

 107

detection problem, we develop the key properties of an attribute outlier metric and evaluate

the extent to which each metric satisfies these properties.

5.4.1 Interesting-ness Measures

Correlation and association-based measures for categorical data are commonly defined in

terms of the frequency counts (or supports) in a 2 ☓2 contingency table depicting the co-

presence, co-absence and cross-presence of two variables. In detecting attribute outliers, we

are interested in the correlation behaviour of a target attribute, denoted vt, with remaining

attributes of a correlated neighbourhood, denoted N(vt), as shown in Table 5.1.

Table 5.1: The 2☓2 contigency table of a target attribute and its correlated

neighbourhood

 N(vt) ¬ N(vt)

vt F(v,N) F F1+

¬ vt F-N F-- F0+

 F+N F+0 N

Interesting-ness measures examined in this comparative study are mainly described in

[HH99, TKS02]. Since attribute outlier-ness relates to negative correlations, we select metrics

that measure negative correlations. We briefly describe these interesting-ness measures with

respect to a correlated subspace of n objects in XML as follows:

5.4.1.1 Piatetsky-Shapiro Rule Interest

The Piatetsky-Shapiro (PS) Rule Interest [FPS99] calculates the difference between the

observed and expected number of objects that contains both the target attribute vt and the

given correlated neighbourhood N(vt):

2
1111))(,(

n
FF

n
FvNvPS tt

++−=

With values ranging from -0.25 to +0.25, the PS rule index measures both positive

correlations (PS > 0) and negative correlations (PS < 0); PS = 0 indicates that vt and N(vt) are

 108

statistically independent. Stronger attribute outliers are dictated by lower negative PS scores,

meaning that the observed presence of vt in N(vt) is lower than expected.

5.4.1.2 Interest factor

Instead of the difference, the Interest factor (I) computes the quotient of the observed and

expected number of objects that contains vt and N(vt) [TKS02]:

11

11))(,(
++

=
FF

nFvNvI tt

Values of I range from 0 to +∞ where I > 1 indicates positive correlations and I < 1 implies

that vt negatively correlates with N(vt). The closer is the I values to 0, the stronger is the

attribute outlier-ness (vt, N(vt)).

5.4.1.3 Jaccard coefficient

The Jaccard coefficient calculates the proportion of objects containing the target attribute vt

and the N(vt) over the cross-presence of vt and N(vt) [JD98].

110110

11))(,(
FFF

F
vNvJaccard tt ++

=

The Jaccard coefficient ranges between 0 to 1. Strong attribute outliers are represented by

lower Jaccard coefficients close to 0 while positive correlations are depicted by values close

to 1. Unlike Piatetsky-Shapiro and Interest, the Jaccard coefficient does not statistically

distinguished between the positive and negative correlations.

5.4.1.4 Hmeasure

The Hmeasure is a multiplication of the individual effect of the cross-presence of vt and N(vt)

[HCH04]. Hmeasure ranges from 0 to 1 where a value close to 0 implies stronger positive

correlations and that close to 1 implies high degree of negative correlations.

11

0110))(,(
++

=
FF
FF

vNvHmeasure tt

A strong attribute outlier will therefore has Hmeasure close to 1, meaning that vt has high

degree of co-occurrences in other neighbourhoods, and N(vt) tend to co-occur with other

attributes.

 109

5.4.1.5 Probability

Probability is simply the probability that an object contains the target attribute vt co-occurs

with N(vt). The values range from 0 to 1 and strong attribute outliers are dictated by low

degree of Pr close to 0.

n
F

vNv tt
11))(,Pr(=

5.4.2 Properties of Attribute Outlier Metrics

5.4.2.1 Metric properties

Table 5.2: Example contingency tables for monotone properties.

M2 indicates an attribute outlier, M5 is a rare class, and M6 depicts a rare attribute.

M1 N(vt) ¬ N(vt) M2 N(vt) ¬ N(vt) M3 N(vt) ¬ N(vt)
vt 50 50 100 vt 1 99 100 vt 50 50 100

¬ vt 50 50 100 ¬ vt 99 1 100 ¬ vt 450 50 500
 100 100 200 100 100 200 500 100 600

M4 N(vt) ¬ N(vt) M5 N(vt) ¬ N(vt) M6 N(vt) ¬ N(vt)
vt 50 50 100 vt 1 1 2 vt 1 1 2

¬ vt 50 450 500 ¬ vt 1 99 100 ¬ vt 99 1 100
 100 500 600 2 100 102 100 100 102

One of the first extensive works on the statistical properties of the correlation measures was

presented by Piatetsky-Shapiro [Pia99]. Here, we first adapt 2 of the key properties proposed

by Piatetsky-Shapiro to the attribute outlier problem. We use M to denote the matrix

⎥
⎦

⎤
⎢
⎣

⎡

1101

1011

FF
FF

 and o(M) to represent a metric function o applied to M.

Property 1 (Monotonically increases with F11): Given that the overall supports of vt as

well as N(vt) do not change, o(M) monotonically increases with the co-presence of vt and

N(vt). Property 1 ensures that o(M) is statistically dependent on the significance of F11. If the

number of objects that indicate co-occurrences vt and N(vt) decreases with respect to total

number of objects that contains either vt and N(vt), the greater is the likelihood that vt is an

attribute outlier with respect to N(vt).

 110

For example in Table 5.2(a), xQ-measure(M1)=50/100=0.5 while M2 with reduced F11

has a corresponding lower xQ-measure(M2)=1/100=0.01. Therefore, xQ-measure satisfies

Property 1.

Property 2 (Monotonically decreases with F1+ or F+1): o(M) monotonically decreases

when the supports of vt or N(vt) increases, given that the co-presence does not changed.

Property 2 indicates that o(M) is lower (and therefore vt exhibits higher degree of outlier-ness

in N(vt)) if a greater coverage of vt or N(vt) is required to achieve the same level of co-

presence. xQ-measure also satisfies Property 2; the xQ-measure of M2 is 0.01 is

comparatively lower than xQ-measure(M3)= 50/500=0.1.

Property 3 (Null invariance): o(M+C)= o(M) where C = ⎥
⎦

⎤
⎢
⎣

⎡
k0
00 and k > 0. Sparse data

has high degree of F00. Property 3 ensures that the attribute outlier metric for XML is

invariant to F00, the co-absence of vt and N(vt). This property is often known as the Null

invariance property [TKS02, HCH04]. For instance, M1 and M4 only differs in the magnitude

of F00 and xQ-measure(M1)=xQ-measure(M4)=50/100=0.5.

Property 4 (Rare class): o(M) differentiates rare classes from attribute outliers. Often,

rare classes (or rare objects) are mistaken as attribute outliers. For example, consider the

Branch_Address object defined by the elements - <Country:Micronesia>, <State:Ponape>,

and <City:Palikir>. None of the 3 elements are attribute outliers because Micronesia

consistently co-occur with Ponape as well as Palikir and vice versa. M5 in Table 5.2 depicts

the contingency table of a rare object which must be differentiated from the real attribute

outlier described in M2. xQ-measure satisfy Property 4; xQ-measure(M5)=1/2=0.5 is

comparatively higher than xQ-measure(M2).

Property 5 (Rare attribute): o(M) differentiates rare attributes from attribute outliers.

Property 5 states that the metric differentiates rare attributes such as the <Country:Zech>

element in Figure 1(b) from the attribute outliers. A metric that satisfies Property 5 is not

necessarily a good attribute outlier metric, but rather it depends on the nature of the input data

 111

and the user requirements. Rare attributes may be the result of errors, so data cleaning

processes, which require that they are isolated together with attribute outliers, may

specifically select metrics that do not satisfy this property. For example, xQ-

measure(M6)=1/100=0.01 is equivalently low as xQ-measure(M2); xQ-measure does not

differentiate between the attribute outliers and rare attributes.

Property 6 (Downward closure): o(M) is downward closure with respect to N(vt).

Property 6 is the basis of support-based pruning. Let N’(vt)⊆N(vt) and o’(M) be the value of

the measure on vt and N’(vt), a metric satisfies downward closure if o’(M)≥ o(M). The

property ensures that if vt=<Country:USA> is an attribute outlier in the neighborhood

N(vt)={<State:S.Moravi>,<City:Opava>,<Continent:Europe>}, then vt is also an attribute

outlier with respect to {<State:S.Moravi>,<Continent:Europe>}.

5.4.2.2 Evaluation of Attribute Outlier Metrics

As shown in Table 5.3, none of 8 metrics investigated satisfies all 6 properties, we note that

some properties are more important than others. Property 1 and 2 statistically justify the

correctness of the metrics. Property 3 ensures that the metric is least affected by sparse data.

Notice that both Piatetsky-Shapiro and Interest do not satisfy Property 3. This means that the

effectiveness of these two metrics are limited by the sparseness of the XML data.

Property 4 distinguishes outlier class from attribute outlier and therefore is a critical

property for accurate attribute outlier detection, especially if the metric is used for error

identification. Notice that the Probability metric does not satisfy most properties. Given that

probability merely measures the rarity of a target attribute and its neighborhood, it is

obviously an inappropriate measurement for attribute outliers and the experiment in the next

section justifies this observation.

 Property 5 and 6 are optional features that depend on the nature of the application

and the efficiency requirements. Notice that xO-measure and xQ-measure satisfy all

properties except for Property 5; they do not differentiate rare attributes and attribute outliers.

Both xO-measure and Jaccard do not enable support-based pruning.

 112

Table 5.3. Properties of attribute outlier metrics

Metrics P1 P2 P3 P4 P5 P6

xO-measure Yes Yes* Yes Yes No No

xQ-measure Yes Yes* Yes Yes No Yes

Piatetsky-Shapiro (PS) Yes Yes No Yes Yes No

Interest (I) Yes Yes No Yes Yes Yes

Jaccard (ζ) Yes Yes Yes Yes No No

H-measure=(1-H-measure) No No Yes Yes Yes No

H-measure’ Yes Yes Yes Yes Yes No

Probability (Pr) Yes No Yes No No Yes

* Only if the property applies to increase of the supports of N(vt)

5.5 Performance Evaluation

We evaluate the performance of the XODDS algorithm on both synthetic Bank Account and

real-world protein data sets. Experiments were performed on an Intel Core 2 dual, 2 GHz

computer with 1GB of main memory, and running Mac OS. Programs are written using Java.

The following aspects are investigated:

(1) Compare the accuracy of xO-measure, xQ-measure and other interesting-ness metrics

using Top-k and Rate-of-Change selection methods.

(2) Evaluate the accuracy of various attribute outlier metrics in data sets with varying

noise levels.

(3) Compare the accuracy of XODDS with the relational approach which uses 2χ to

derive the correlated subspaces in relational tables.

(4) Evaluate the performance of XODDS at higher level of abstractions through the use

of aggregate attributes. In particular, we are looking for “hidden” outliers which

could be missed if not for the use of aggregate attributes.

 113

(5) Evaluate the running time of attribute outlier metrics at varying data size, with and

without pruning.

(6) Evaluate the performance of XODDS on UniProtKB/TrEMBL database to detect

discrepancies in annotations. The results are manually annotated.

5.5.1 Bank Account Data Set

We extracted from the financial data set available at the web site

http://lisp.vse.cz/pkdd99/Challenge/berka.htm, a Bank Account data set (denoted Bank)

containing 4,500 accounts, 207,989 transactional records, 670 loan records, and 711 payment

orders. The data set, originally in relational tables, is converted to the XML schema as shown

in Figure 5.4. To prevent the implicit noise from interfering with the evaluation process, we

removed 4,884 transactional records which potentially contain outliers, leaving 203,105

transactions.

Figure 5.4: XML tree of Bank Account data partitioned to 504 subspaces (Ds1-504)

Aggregate attributes specified for this data set are Loan_amt, PO_count, PO_avg, TR_avg,

and TR_count. Optional attributes are in dotted nodes.

 114

5.5.1.1 Top-K vs Rate-of-Change

We compare the performance of various metrics on the Bank Account data set with 2%

attribute outliers (as well as rare attributes) inserted. Figures 5.5 and 5.6 show that xO-

measure and xQ-measure which are metrics specifically designed for attribute outlier

detection, generally outperform the other metrics using either Top-k or Rate-of-Change

(ROC) threshold selection strategy.

In Figure 5.5, the F-scores for xO-measure and xQ-measure converges up 80% when

outliers are distinguished using the ROC thresholds are calculated from the top 15% of the

objects (k) with the lowest metric scores. Figure 5.6 shows that the performance of the same

metrics without ROC, at corresponding F-scores of up to 66%. Also noticed that at k=1%, the

top-k approach achieves much higher F-scores than ROC across all metrics. This is expected

because the input XML document contains 2% noise; selecting a “tighter bound” within the

top 1% outliers merely serves to increase the number of FNs (false negatives).

Accuracy of attribute outlier metrics using ROC-
derived thresholds

0

20

40

60

80

100

1% 2% 4% 6% 8% 10% 15% 20%

k

F-
sc

or
e

xO-measure

xQ-measure

Interest

Jaccard

PS

Hmeasure'

Probability

Figure 5.5: Performance of XODDS of various metrics using ROC-derived thresholds

 115

Accuracy of attribute outlier metrics using Top-k

0

20

40

60

80

100

1% 2% 4% 6% 8% 10% 15% 20%

k

F-
sc

or
e

xO-measure

xQ-measure

Interest

Jaccard

PS

Hmeasure

Probability

Figure 5.6: Performance of XODDS of various outlier metrics using Top-k

From a realistic perspective, we inserted attribute outliers as well as rare attributes

into the input XML document because both types of patterns entail attention. Potentially

fraudulent patterns such as the $1,000 transactional amount in Figure 5.1(c) are present as

rare attributes, whereas abnormally low (or high) transactional averages compared to other

accounts of the same country are seen as attribute outliers. Hence, metrics that do not

differentiate between them - Property 5 (xO-measure, xQ-measure and Jaccard) generally

achieves higher F-scores. One other reason for the poor performance of Interest and PS

metrics is their dependence on the vast co-absence of XML data; they do not satisfy the null

invariance property.

5.5.1.2 Varying Noise

Figure 5.7 compares the F-scores of various metrics at varying noise levels. Outlier

thresholds are adaptively selected by XODDS using ROC. xO-measure and xQ-measure

perform consistently better than the other metrics, even as the noise level increases. F-scores

range between 72-81% for xO-measure and between 75%-80% for xQ-measure.

 116

Accuracy of attribute outlier metrics at varying
noise

0

20

40

60

80

100

2% 4% 6% 8% 10%

noise level

F-
sc

or
e

xO-measure

xQ-measure

Interest

Jaccard

PS

Hmeasure

Probability

Figure 5.7: Performance of XODDS at varying noise levels

5.5.1.3 XODDS vs Relational

XODDS utilizes the inherent hierarchical structure of XML to derive meaningful subspaces

for outlier detection. Similarly, given a relational table, dimensions or columns can be

divided into subspaces through attribute clustering. In order to compare the accuracy of

detecting outliers using these two approaches, we relationalizes the Bank Account data set

(denoted RBank), and cluster the attributes based on Chi-square χ2.

The χ2 test is typically used to determine correlations between dimensions containing

categorical data [Eve77]. For non-parametric data or continuous data, rank-order correlation

calculations such Spearman-Rho and Kendall-tau or the Pearson test can be used instead.

The χ2 test of independence is based on the difference of the observed frequencies with the

corresponding expected frequencies. If χ2 = 0, the two attribute vectors are statistically

independent. The χ2 is computed by:

()
∑

−
=

exp

2
exp2

f
ffobsχ

where fexp refers to the expected frequency of an attribute pair in the contingency table and fobs

is the observed frequency.

 117

Table 5.4: Attribute subspaces derived in RBank using χ2

Subspace Attributes

1 Freq, Add1, Add2, Transaction/Acct to, Transaction/Bank to, Payment order/Acct to

2 Loan/Amount, Loan/Duration, Loan/Payment

3 Payment order/Bank to, Payment order/Amount, Payment order/Type

4
Transaction/Type, Transaction/Operation, Transaction/Amount, Transaction/Balance,

Transaction/K-symbol

Table 5.4 shows the groups of attributes derived from the relational table using χ2. It

makes sense that the region(Add1) or district(Add2) where the customer open his bank

account is likely dependent on the banks he often transacts to, it is not surprising to find that

Transaction/Bank to, Transaction/Acct to, and Payment order/Acct to are correlated to the

Bank branch addresses (Add1 and Add2) in Subspace 1. We apply the same outlier scoring

and selection algorithms to the relational subspaces. Figure 5.8 shows the performance of

XODDS compared with the relational approach at varying noise levels. As discussed in

Section 5.2, the poor performance of the latter approach may be due to the increased

redundancy when an object is replicated across multiple tuples when “flattened”, and thus

affecting the distribution of each dimension in the converted relational table.

XODDS consistently performs better compared to the relational approach with F-

scores of between 63%-86%. As the noise level increases, the correlation between the

attributes decreases, thus affecting the accuracy of the outlier detection. Overall, the accuracy

using xQ-measure in XODDS is slightly higher than with xO-measure, particularly when the

level of noise increases. In fact, even on the Bank Account data set with 10% noise, the F-

score achieved using XODDS with xQ-measure is 70%.

 118

Figure 5.8: Performance of XODDS compared to the relational approach

5.5.1.4 Aggregate attributes

The purpose of aggregate attributes is to summarize nested XML structures so that detection

of attribute outliers at higher level of abstraction is possible. We introduced 5 aggregate

attributes to the Bank Account data set: TR_count and TR_avg are the number of transactions

and the average amount of transactions of an account. PO_count and PO_avg are the number

of payment orders and the average amount of the payment orders. LN_amt is the loan amount.

Since each account is restricted to one loan, the loan amount is merely “promoted” to the

account level.

The aggregate attributes are compared across all 4,500 accounts in the Bank Account

data set; the outliers identified are shown in Figure 5.9. We are interested to determine any

inherent outliers in the raw data set. We anticipated that removing 4,884 transactional records

with possible outliers in the transaction subspace may not necessarily “clean up” the account

subspace. This is justified by applying XODD on the clean data set which does not contain

any inserted outliers. Some of the interesting inherent outliers which are uncovered are:

1. An account which has less than 10 transactional records.

2. Loan amount of less than $1,000 issued to 2 accounts.

3. Loan amount of more than $100,000 issued to 1 account.

Outlier Detection Accuracy on Bank Account XML

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2% 4% 6% 8% 10%
Noise level

F-
sc

or
e Bank-OM

Bank-QM
RBank-OM
RBank-QM

 119

4. 18 accounts in Hl.m. Praha city of Czech Republic have transactional averages less

than $100. These accounts are highlighted because the typical transactional averages

of accounts opened in Hl.m. Praha is usually in magnitude more than $100.

In general, the number of aggregate attribute outliers does not increase significantly

as noise level increases, even for the averaging attributes. Inserting fraudulently high

transactional amount to the transaction object may increase the outliers at the account level

(e.g. transactional average increases) but it may also average out the outlier behavior.

Outliers in aggregate attributes

0

20

40

60

80

100

Clean 2% 4% 6% 8% 10%

Noise Level

N
um

be
r o

f o
ut

lie
rs

TR_count(OM)

TR_avg(OM)

Loan_amt(OM)

Freq(OM)

TR_count(QM)

Loan_amt(QM)

Figure 5.9: Number of aggregate outliers in the account subspace across varying noise

5.5.1.5 Running time at varying data size

We evaluate the running time of XODDS across varying data size. As shown in Figure 5.10,

XODDS increases exponentially. At 9,000 account nodes, XODDS requires 38 minutes.

Moreover, pruning of attribute outliers that have supports greater than minsup significantly

reduce the execution time (details in Section 5.3.2).

 120

Execution Time of XODDS

0

500

1000

1500

2000

2500

2250 4500 7750 9000

Number of account nodes

Ti
m

e
(s

ec
on

ds
)

No Prune
Minsup=10
Minsup=20
Minsup=5

Figure 5.10: Running time of XODDS at varying data size

5.5.2 UniProt Data Set

The second part of the experiments evaluate the performance of XODDS in detecting

annotation errors in a the UniProt/TrEMBL data set, and shows that XODDS is achieve better

accuracy compare to the ODDS method proposed in Chapter 4.

Figure 5.11: Simplified UniProt XML

 121

The original UniProt XML schema is extensive. For purpose of this study, we

simplify the UniProt XML (Figure 5.11) and only focused on selected subspaces of the Gene

Ontologies and the Keywords. Each protein object in UniProt/TrEMBL is annotated with a

set of Gene ontology nodes corresponding to the Gene ontology controlled vocabulary of

proteins’ properties. Similarly, a protein contains a number of keyword subject references.

Table 5.5 shows the detected outliers. The k-neighbourhoods indicate the size of the

neighbourhoods of the outliers.

Table 5.5: Outliers detected from the UniProt/TrEMBL Gene Ontologies and Keywords

annotations

k-Neighborhoods GO (OM) GO(QM) KW(OM) KW(QM)

3 46 184 5 40

4 91 491 6 53

5 54 251 49 30

6 60 85 53 25

7 10 13 75 11

8 904 473 65 2

9 532 99 215 228

10 9 9 43 44

11 3712 9595 4 4

12 1621 4252 1 1

13 524 1391 2 2

14 117 317 - -

15 16 45 - -

16 1 3 - -

17 3 5731 - -

18 1208 765 - -

19 75 50 - -

Total 8983 23754 418 440

A biologist through manual verification verifies the detected attribute outliers. Table

5.6 shows the accuracy of the Gene ontology outliers detected using ODDS (with O-

measure). True positive TP indicates an uncommon association of the target attribute with the

other attributes in the projected relation. False positive FP indicates that no peculiarity is

 122

found in the correlation behaviour of the target attribute. Indeterminable means that further

investigation is required.

The manual verification step largely depends on the knowledge level of the biologist

and his decisive-ness. Table 5.6 shows that a large percentage 43% of the outliers require

further investigation because the biologist lacks the domain knowledge to justify if the

annotation is erroneous or it is only exceptional. Only 3% out of those which can be

annotated are false positives. The remaining 97% of the gene ontology outliers are confirmed

erroneous annotations. This is a significant improvement over the 19%-55% positive

predictive rate (PPV) achieved by ODDS (details in Chapter 4, Section 4.5.2).

Table 5.6: Annotation results of outliers detected from the UniProt/TrEMBL Gene

ontologies

k-Neighborhoods TP FP Indeterminable

3 9 12 25

4 28 7 56

5 23 3 28

6 35 0 25

7 6 0 4

8 283 48 573

9 189 39 304

10 4 1 4

11 2347 5 1360

12 1167 0 454

13 419 0 105

14 102 0 15

15 15 0 1

16 1 0 0

17 1 0 2

18 354 33 821

19 21 1 53

Total 5004 149 3830

To mention a few interesting examples, a Mitochondrion protein Q35127 which

occurs outside the nucleus is annotated to be involved in “DNA repair” - a process which

 123

occurs only inside the nucleus, a Chloroplast protein Q5UVG7 which is a plant cell organelle,

is involved in “defense response to pathogen” and another Mitochondrion protein Q9B8V5 is

annotated to contain a “nucleus”. Some of these erroneous annotations are corrected in the

latest UniProtKB/TrEMBL release.

5.6 Concluding Section

In this chapter, we have presented a novel framework called XODDS that utilizes the

correlations between attributes to identify, attribute outliers. We introduced in XODDS, two

new concepts of correlated subspace and aggregate attributes which are derived from the

hierarchical structural of XML data models. We also develop two attribute outlier metrics -

xO-measure and xQ-measure. Through evaluation with synthetic and real-world data, we

have shown that XODDS can achieve F-score of up to 80% and it can determine up to 97%

erroneous annotations on a real-world protein data set.

 124

Chapter 6: Duplicate Detection from
Association Mining

Nothing in life is to be feared, it is only to be understood.

Marie Curie
Chemist and Physicist (1867 - 1934)

 125

Duplicate detection is an important data cleaning problem; duplicates cause over-

representation of patterns and affect the accuracy of the data mining results. Existing

duplicate detection methods consider redundancy as a Boolean operation – if two records are

sufficiently similar, they are identified as duplicates and are merged. However, for many real-

world databases, multiple facets of duplication exist and the merging step depends on the

types of redundancy detected. Not all duplicates can be trivially combined. One such example

is the biological data. In Chapter 3 (Section 3.2.2.2), we discuss the limitations of using a

simplified rule to detect varying types of duplicates.

This chapter explores a learning approach towards detecting multiple types of

duplicate relations. Leveraging on the correlations between attributes, duplicate rules for

different types of duplicate relations are induced from a known set of duplicates using

association mining. The method is used to identify 5 types of duplicates in biological data –

duplicates, structural isoforms, cross-species duplicates, sequence fragments, and cross-

annotation variants.

Evaluation of the proposed approach on a protein data set shows that the duplicate

rules are capable of identifying up to 97.3% of the varying types of duplicates. Slight

improvement is achieved over other classifiers, but the approach has practical advantage of

requiring only the positive training set of duplicates. Other classifiers are highly dependent on

the completeness of the comparatively larger negative training set.

6.1 Introduction

Extensive diversity in data formats, schemas, nomenclatures as well as in geographical

distribution introduces in high level of information redundancy among the biological

databases. The same sequence may have inconsistent, overlapping, or partial information in

heterogeneous representations in heterogeneous data sources. The various causes of

redundancy in biological data are described in Chapter 3 (Section 3.1.3).

In a comprehensive study of the structural and functional annotations of scorpion

toxins [SGT+02], we observed through collecting and merging the scorpion toxin records

 126

from 6 source databases: 143 out of 211 (68% redundancy) scorpion toxin proteins are

replicated across 2 to 5 data sources; 13 are found in 5 database sources (Figure 6.1).

Proteins replicated across multiple databases

27

57
46

13

0

20

40

60

80

100

2 3 4 5

Number of protein databases

N
um

be
r o

f p
ro

te
in

s

Figure 6.1: Extent of replication of scorpion toxin proteins across multiple databases

For merely 211 records, it is possible to delete or merge-join duplicates manually. But this is

not viable for large-scale functional and structural studies of other organisms such as fugu

(more than 2,000 protein records in GenBank as of Dec 2006) or mouse (more than 180,000

protein records in GenBank as of Dec 2006), let alone human (more than 320,000 protein

records in GenBank as of Dec 2006).

Typically, cleaning of biological data is carried out in proprietary or ad-hoc manner,

sometimes even manual. Systematic processes for biological data cleaning are lacking.

Rather, specific procedures are designed for cleaning certain datasets. For example, in

[Tha99], stringent selection criteria are used to select complete and unique records of Homo

sapiens splice sites from EMBL database. Requirements for complete coding region, genuine

human nuclear DNA, non-pseudogene, absence of alternative gene products, among others,

reduced the initial 4,300 raw records to 400 records. Retaining only one sequence among any

group of sequences with more than 80% identity reduced the dataset further to 310 records.

Such approaches of eliminating all incomplete records (sequences) can result in loss of

information from cases of partially determined or partially annotated yet non-redundant

sequences.

 127

6.1.1 Motivating Example

Existing duplicate detection methods focus primarily on well-defined records such as

customer contact information. On the other hand, biological data records have more than one

facet of duplication. For example, the known duplicate relations of annotated protein

sequences in the NCBI entrez searchable protein databases (GenPept, Swiss-Prot, PDB, PIR,

among others) are described in Table 6.1.

Table 6.1: Multiple types of duplicates that exist in the protein databases

Duplicate type Description

1. Duplicates Identical protein sequences with different annotations (one may be a

structure record) due to:

• Sequences submitted by different annotators

• Sequences submitted more than once to same database

• Sequences submitted to different databases

2. Structural

isoforms

Same protein sequence but records have different orientations or

conformations due to:

• Difference in partial organisation of proteins (Chain A and B)

• Structural modeling of the same protein by different methods or by

different researchers

• Cleavage resulting in different foldings

• Protein complexes

• Sequence from structural inhibition study

3. Cross-species

duplicates

Identical protein sequences exist in different genus/species (not

subspecies)

4. Sequence

fragments

One sequence is a segment of a more complete sequence due to:

• Partially determined sequence fragment

• Precursor/mature protein pairs (both are complete sequences)

5. Cross-

annotation

variants

Highly similar sequences but not identical sequences with different

features in annotation due to:

• Sequence variants with different functions

• Synthetic sequences for the study of functional residues

• Different annotations given by separate annotators

 128

Duplicates refer to proteins which are recorded in more than one database entries due

to different data sources, varying views of the proteins (PDB protein structures versus Swiss-

Prot protein annotations), or repeated submissions of the sequence by the same or different

annotators. Usually, duplicates contain partial information of the same protein sequence and

should be merged into a single entity. Structural isoforms are database records describing

different structural conformations or orientations of the same protein. Cross-species

duplicates are identical protein sequences belonging to different species. Sequence fragments

contain partial information of the complete sequence, and are typically merged into the latter.

Traditionally, incomplete sequences are eliminated during data cleaning processes. This

approach, however, may result in loss of important information. Cross-annotation variants

are highly similar sequences with slight difference in sequence features. Biologically, cross-

annotation variants are particularly useful in identifying specific residues that are critical in

determining the protein’s functional properties.

Generally, the actions taken upon detecting the varying types of duplicates depend on

the objectives of the users as well as on the type of the duplicate relations. For example,

duplicates may be directly merged to form complete sequences while cross-annotation

variants will need to be inspected separately by the expert annotators. Merging structural

isoforms depends on the nature of the analysis; whether the analysis is based on the protein

structures or the primary sequences.

The same multiplicity of duplicate relations also exists in non-biological domain. For

example, two patient records that differ only in the blood group cannot be directly combined.

Possible contamination during blood tests may result in labelling of incorrect blood groups.

This in turn may result in serious loss of lives [KCD99]. Such duplicate records must be

highlighted so that additional blood tests are conducted.

Specific contributions from this work include:

1. We introduce the notion of multiple types of duplicate relations, as opposed to

traditional concept that redundancy is a boolean property.

 129

2. We propose a correlation-based method for learning the duplicate rules of varying

types of duplicate relations. Different duplicate rules are induced from a known set of

duplicates using association mining.

The rest of the chapter is organised as follows: In section 6.2, we briefly describe

association mining – the basis of our duplicate learning approach. Section 6.3 details the

materials and methods. In section 6.4, we discuss results of our experiments and we conclude

in section 6.5.

6.2 Background

Learning techniques that rely on supervised classifiers for duplicate detection are not new.

[SB02] proposed an iterative de-duplication system that actively learns using Decision Tree

C4.5, Support Vector Machine (SVM), and Naïve Bayes as the classifiers. [EVE02] utilizes

probabilistic, induction and clustering based decision models to classify the records into two

classes – duplicates and non-duplicates. Unlike these methods which require a negative

training set of non-duplicates, the input to the association mining are pairs of duplicates.

Through association-based classifier approach, each type of duplicate relations is

characterized by both the similarities of the attributes (which we call matching criteria) as

well as the correlation patterns among the attributes.

In Section 6.4 of this chapter, we will show that association-based classifier

outperforms other classifiers.

6.2.1 Association mining

Association mining or induction is commonly used in market basket analysis to find items

frequently bought together by shoppers. The first algorithm for mining frequent item sets is

Apriori [AIS93]. Association rules are induced from items that are most frequently occurred

together, known as the frequent item set. For example, a rule of the form “Buy(A) ^ Buy(B)

→ Buy(C)” indicates that a customer who buys item A and item B buys C, with the

interestingness of this rule measured from the support and confidence of the rule. The support

 130

is the percentage of transactions in the input database that contain A, B and C. The

confidence is the percentage of transactions that contain A and B (the antecedent) also

containing C (the consequent).

Association rule mining has been applied to other data cleaning problems [MML01,

LLH04] but not in duplicate detection. As such, this is the first application of association

mining methods on duplicate detection problem. To the best of our knowledge, this is also the

first comprehensive work that addresses redundancy in biological data.

6.3 Materials and Methods

This section details the duplicate detection framework.

6.3.1 Duplicate Detection Framework

Figure 6.2: Duplicate detection framework

Figure 6.2 depicts the association-based duplicate detection framework. First, matching

criteria for comparing record pairs are selected from the input data set. Selected attributes

based on these matching criteria of each duplicate record pairs are measured using varying

similarity functions, depending on the data types of the attributes. The similarity values for

each pair of records in the training data are discretized. Duplicate rules mined from subsets of

attributes and their similarity measures, each describing a type of duplicate relation are used

to detect duplicates in biological datasets.

 131

6.3.2 Matching Criteria

Protein records from Entrez are comparable across 9 matching criteria as shown in Figure

6.3. A protein record contains 3 main types of data fields: (1) Protein and DNA primary

sequences, (2) categorical fields, and (3) free-text strings, each requiring different similarity

functions to measure the degree of similarity of two corresponding fields.

Figure 6.3: Matching criteria of an Entrez protein record

 132

Protein or DNA sequences are matched using their percentage identity scores

computed from BLAST 2 sequences (bl2seq) algorithm [TM99]. Bl2seq utilize the gapped

BLAST algorithm [AMS+97] to align and compare pairs of DNA-DNA or protein-protein

sequences, and the percentage identity scores reflect the degree of similarity of the two

sequences. We denote the sequence similarity function as S.

Categorical fields contain values belonging to a fixed value-set. For example, the

organism fields in Entrez records are derived from the standardized taxonomy of the

organisms. If two categorical fields have the same values, they are given a similarity score of

1; otherwise 0. We denote this Boolean match as similarity function M.

The third type of data fields are the free-text strings. The most common method for

comparing string is the edit distance or Levenshtein distance [Lev66]. The edit distance

computes the minimum number of edit operations (insertions, deletions, and substitutions) to

transform from one string to another, and we denote the edit distance by E.

Table 6.2 shows an example of the similarity scores of the ORIGIN sequence field,

the ORGANISM field (category of species) and the free-text DEFINITION of two scorpion

venom records from the GenPept and Swiss-Prot database respectively.

Table 6.2: Similarity scores of Entrez records 1910194A and P45639

Field 1910194A P45639 Score

ORIGIN MCMPCFTTDHQMAR

KCDDCCGGKGRGKC

YGPQCLCR

MCMPCFTTDHQMARK

CDDCCGGKGRGKCYG

PQCLCR

1

ORGANISM Leiurus quinquestriatus

quinquestriatus

Leiurus quinquestriatus

quinquestriatus

1

DEFINITION chlorotoxin. Chlorotoxin 0.92

 133

6.3.3 Conjunctive Duplicate Rules

The overall similarity of two database records is determined from the similarities of

individual fields of the records. Taking into consideration the correlations of fields and their

similarity measures, a conjunctive clause of the matching criteria represents a duplicate

relation. We call them duplicate rules, also known as merging rules. An example of a

duplicate rule is:

Identical protein sequences ^ same length ^ same species → duplicate

The conjunctive clause is translated into a set of matching criteria and corresponding

thresholds. This can be calculated by applying data type specific similarity functions (S for

sequence similarity, N for numerical ratio and M for Boolean matching) on the sequence,

sequence length and species fields respectively.

S(Seq)=1.0 ^ N(Seq Length)=1.0 ^ M(species)=1 → duplicate

If we encode the matching values as items, the rule takes the form of an association rule and

we can easily apply association rule mining to induce models of the duplicate relations from

dataset of known duplicates.

SE1.0 ^ LE1.0 ^ SP1 → duplicate

6.3.4 Association Mining of Duplicate Rules

The training dataset contains the similarity scores of pairs of records across the 9 criteria. To

generate the items from the scores, we encode the values with field labels. For continuous

values such as the sequence similarity scores which range from 0 to 1.0, the values are

partitioned into equiwidth bins of 0.1. Hence, sequence similarity score item “SQ0.95”

becomes “SQ0.9”. Figure 6.4 shows an input data set for association-based supervised

classifier.

 134

Figure 6.4: Field labels from each pair of duplicates in training dataset

6.4 Performance Evaluation

The dataset is a combination of two set of records. The first data set consists of 520 scorpion

toxin proteins retrieved from Entrez using the keywords “scorpion AND (venom OR toxin)”.

The second set contains 780 snake PLA2 venom proteins retrieved from Entrez using the

keywords “serpentes AND venom AND PLA2”. The 1300 records were annotated separately

by two biologists; 1328 duplicate pairs were identified collectively (Table 6.3).

Table 6.3: Different types of duplicate pair in training data set

Types of duplicates Scorpion toxin Snake PLA2 toxin Combined

1. Structural isoform 19 187 206

2. Duplicate 251 444 695

3. Cross-species duplicate 13 27 40

4. Sequence fragment 97 181 278

5. Cross-annotation variant 90 19 109

Total 470 858 1328

Experiments were performed on a Pentium-M 1.6GHz computer with 1GB of main

memory, and running Windows XP. Association mining is carried out using CBA [LHM99]

(Classification Based on Association) while other classifiers methods are evaluated using

WEKA [HDW94].Figure 6.5 shows the accuracy results using different classifiers.

AAG39642 AAG39643 AC0.9 LE1.0 DE1.0 DB1 SP1 RF1.0 PD0 FT1.0 SQ1.0

AAG39642 Q9GNG8 AC0.1 LE1.0 DE0.4 DB0 SP1 RF1.0 PD0 FT0.1 SQ1.0

P00599 PSNJ1W AC0.2 LE1.0 DE0.4 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0

P01486 NTSREB AC0.0 LE1.0 DE0.3 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0

O57385 CAA11159 AC0.1 LE1.0 DE0.5 DB0 SP1 RF0.0 PD0 FT0.1 SQ1.0

S32792 P24663 AC0.0 LE1.0 DE0.4 DB0 SP1 RF0.5 PD0 FT1.0 SQ1.0

P45629 S53330 AC0.0 LE1.0 DE0.2 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0

 135

Accuracy of detecting duplicates using various
classifiers

94.797.2 92.393.9

5.37.76.13.8
0

20

40

60

80

100

CBA Decision
Tree

Naïve
Bayes

SVM

Type of classifier

% correctly classif ied

% incorrectly classif ied

Figure 6.5: Accuracy of detecting duplicates using different classifiers

In general, association-based classifier yields better accuracy, achieving a positive

predictive rate of 97.2%. Figure 6.6 shows the breakdown of the results into various types of

duplicate relation. Cross-annotation variants are less predictive because variant sequences are

usually considered as “similar” and the two biologists have different perspectives over what

is considered “significantly similar”. This fuzzy characteristic is inherent in biological data.

F-score of detecting multiple types of duplicates

0

20

40

60

80

100

Stru
ctu

ral
 is

ofo
rm

Dup
lica

te

Cros
s-s

pe
cie

s d
up

lica
te

Seq
ue

nc
e f

rag
men

t

Cros
s-a

nn
ota

tio
n v

ari
an

t

Duplicate type

F-
sc

or
e

(%
)

CBA

Decision Tree

Naïve Bayes

SVM

Figure 6.6: F-score of detecting different types of duplicates

Apart from the relative higher accuracy, the association mining approach has a practical

advantage over other approaches; it does not require the negative data set of non-duplicates.

First, it is difficult to collect a complete set of non-duplicates, and in addition, the input data

 136

would be highly skewed because the negative training set is naturally much larger than the

positive counterparts. Table 6.4 shows part of the 181 duplicate rules induced from CBA.

Table 6.4: Examples of duplicate rules induced from CBA

Rule Conf % Sup %

1. M(PDB)=1 ^ M(Ref)=1.0 → Structural Isoform 100 9.5

2. M(Feature)=1 ^ M(PDB)=1 ^ E(Accession)=0.8 → Structural Isoform 100 7.8

3. M(Ref)=1 ^ M(Species)=1 ^ M(DB)=0 ^ E(Definition)=0.3 ^

S(Sequenc)=1 →Duplicate

100 5.0

4. M(PDB)=0 ^ E(Definition)=0.9 ^ M(Seq length)=1 ^ E(Accession)=0.8 →

Variant

100 0.15

5. M(Species)=1 ^ M(Similarity)=0.9 → Fragment 100 3.0

For example, rule (1) indicates that a pair of sequence records from the same data

source of PDB (meaning they are both translated from structural proteins) and contains the

same references are structural isoforms. Rule (2) indicates that structural isoforms have

identical features and their accession differs only slightly. It makes sense as structural

duplicates representing different chains differ by a chain suffix, such as 1DJT_A and

1DJT_B. Rule (3) shows that identical sequences from the same species and relates to the

same research articles, but from different data sources, are likely duplicates.

6.5 Concluding Section

In this chapter, we presented an application of correlation-based learning technique for

duplicate detection. The chapter achieved preliminary contributions to duplicate detection for

biological data. It explores scoring functions and criteria for matching sequence records.

Also, it introduces a new method for modeling different types of duplicate relations using

association rules and we compare with other classifiers including decision tree C4.5, Naïve

Bayes and SVM. The duplicate rules identified from this work can be used for eliminating

duplicates in protein sequence databases.

 137

Chapter 7: Discussion

Every great mistake has a halfway moment, a split second when it can be recalled and
perhaps remedied.

Pearl Buck
Author (1892 - 1973)

 138

The information overload era result in a manifestation of low quality data in real-world

databases. The demand for high quality data surges and opens new challenges for data

cleaning. This thesis aims at tackling the data quality problem through an in-depth study of

the data quality problem and the development of data cleaning techniques. We holistically

addressed the problem of data artifacts in real-world biological databases and proposes 3 new

general correlation-based data cleaning methods.

The completion of this research project made 4 specific contributions to the research

in data cleaning as well as bioinformatics. Specific results and findings from each problem

researched in this thesis are summarized in this chapter.

7.1 Review of Main Results and Findings

7.1.1 Classifications of Biological Data Artifacts

Chapter 3 of this thesis examines the varying types of artifacts in biological data. We

observed that the data quality problem is a collective result of 11 types and 28 sub-types of

artifacts at the field, record, single and multiple-database levels. It is also a combinatory

problem of the bioinformatics that deals with the syntax and semantics of data collection,

annotation, and storage, as well as the complexity of biological data. We developed both

physical and conceptual classifications of these data artifacts; these classifications can be

used as a “roadmap” for cleaning biological data. Representative examples of each type of

artifacts are extracted from real-world biological databases and documented into an online

catalogue called BioDArt (http://antigen.i2r.a-star.edu.sg/BioDArt/). To the best of our

knowledge, this is the first complete study of biological data artifacts, with the objective of

gaining holistic insights into the data quality problem and the adequacy of current data

cleaning techniques.

Some artifacts can be addressed using existing data cleaning technique, while other

more complicated artifacts require new methods. For example, these exists no known data

 139

cleaning method to resolve annotation errors, which affect 5% to 40% of the public protein

and nucleotide sequences. Also, the problem of sequence redundancy is unlike the classical

definition of duplicates in data cleaning; varying types of duplicate relations exist. The rest of

the thesis is motivated at resolving these two data artifacts through new correlation-based

data cleaning approaches.

7.1.2 Attribute Outlier Detection using ODDS

Chapter 4 focuses on the ODDS correlation-based detection method for attribute outliers.

Unlike traditional class outlier detection research which consider outlier-ness as a global

property applicable to all dimensions of the data set, our notion of attribute outlier-ness is a

bivariate property of an attribute value and the subspace where it exhibits abnormal

correlation. This is because for attribute outliers, rarity does not equate attribute outlier-ness

but rather, the deviating correlation behaviour. Therefore, the ODDS algorithm involves

finding both the attributes as well as the associated subspaces.

We also devised 3 new metrics O-measure, Q-measure and Of-measure to quantify

attribute outlier-ness. Experiments with synthetic data shown that O-measure is the most

accurate while Q-measure is computationally less intensive. Of-measure is devised for sparse

data sets containing vast occurrences of rare attribute values which are not outliers. The

number of attribute outliers differ from one dataset to another, depending on the noise level.

Therefore, we developed an adaptive Rate-of-change factor to select optimal thresholds for

distinguishing the outliers from non-outliers in any given data set. These automatic and data-

dictated thresholds remove dependency on user-defined parameter. Because of the high time-

cost of enumerating subspaces, we also introduced two strategies to filter subspaces that do

not contain attribute outliers.

ODDS achieves an F-score of up to 88% in a synthetic data set for database tuples

containing between 1 to 3 attribute outliers. Experiments with the UniProtKB/TrEMBL

protein data set shown that ODDS achieve a positive predictive value (PPV) of up to 55% in

detecting erroneous annotations.

 140

7.1.3 Attribute Outlier Detection in XML using XODDS

Increasing biological databases are converted into XML formats in order to facilitate data

exchange, including the protein databases. However, current outlier detection methods for

relational data models are not directly adaptable to XML documents. Chapter 5 proposes

XODDS - a four steps framework towards identifying attribute outliers in XML documents.

Besides utilizing correlations between attributes to adaptively identify attribute

outlier, XODDS leverages on the hierarchical structure of the XML document to provide

contextual information lacking in relational data, with the aim of improving both the

effectiveness as well as efficiency of identifying attribute outliers. Specifically, 2 novel

concepts of correlated subspaces and aggregate attributes in XML were introduced.

Respectively, they reduce the time complexity of the attribute outlier method by separating

the XML document into several natural partitions and enable summarization of group of

nodes for data cleaning at higher level of abstractions.

We also develop for XODDS, the xO-measure and xQ-measure outlier scoring

metrics which were adapted from O-measure and Q-measure. Experimental evaluation of xO-

measure and xQ-measure with other correlation-based measures show that they significantly

outperform other measures namely the Piatetsky-Shapiro rule interest, Interest factor, Jaccard

coefficient, Hmeasure and Probability. XODDS also consistently performs better compared

to the relational approach with F-scores of between 63%-86%. The introduction of aggregate

attributes additionally identifies inherent attribute outliers.

When applied to the detectoin of annotation errors in UniProt/TrEMBL, XODDS

attains a 97% positive predictive value (PPV), with significant improvement over ODDS.

7.1.4 Detection of Multiple Duplicate Relations

Chapter 6 of this thesis proposes a new approach to detect the varying types of duplicate

relations. Unlike traditional duplication detection approaches, we consider the multi-facets of

redundancy and develop a association rule induction method to model the various types of

 141

duplication. The method is used to identify 5 types of duplicates in biological data –

duplicates, structural isoforms, cross-species duplicates, sequence fragments, and cross-

annotation variants.

Experimental evaluation on a scorpion and snake venom protein data set with known

duplicates shows that duplicate rules learned from association-based classifiers are capable of

identifying up to 97.3% of the varying types of duplicates. Slight improvement is achieved

over other classifiers, but the approach has practical advantage of requiring only the positive

training set of duplicates.

7.2 Future Works

Overall, there remains several aspects of data cleaning that require further research. This

section proposes two key research directions.

7.2.1 Biological Data Cleaning

Data quality is a multifactorial problem. In Chapter 3, we determined that for biological data,

data quality problem is the combine effect of 11 types and 28 sub-types of data artifacts. To

detect and to correct each type of artifact is an extensive data cleaning project of its own. The

data cleaning methods proposed in this thesis focus on the detection of annotation errors and

duplicates that cover only 2 of the known artifacts in the classification. Developing the

detection methods already constitutes to more than 3 years of research. There are several

other interesting research problems in biological data cleaning which have not been

completely resolved. For instance, the problem of term disambiguation have also drawn

increasing attention in the recent years. Moreover, only partial solutions have been

developed. As with many other data cleaning problems for biological data, the difficulty of

untangling the “web” of synonymy and homonymy in molecular entities stems from the

inherent complexity of biology as an empirical science.

 142

In addition, current approaches to data cleaning (including the methods proposed in

this thesis) largely focus on the detection of the artifacts and not their correction, which in

turn, requires new algorithms and methods. Clearly, the development of data cleaning

techniques is at its infancy and it is becoming more critical in the bioinformatics domain as

data continue to accumulate at an exponential rate and artifacts are proliferating among the

diversified data sources, handicapping large-scale analysis.

Further work is needed to tackle the depreciating data quality problem in

bioinformatics; a spectrum of data cleaning approaches addressing the assorted types of data

artifacts from varying origins or sources, and affecting different parts of the databases is

required. The classifications of biological data artifacts that we proposed in Chapter 3 of this

thesis serve as a “roadmap” for the continuation of future work in biological cleaning

research.

7.2.2 Data Cleaning for Semi-structured Data

Current works in data cleaning have primarily focused on structured databases to discover

duplicate records and outliers. Semi-structured data models such as XML is rapidly

proliferating as a new standard for data representation and exchange on the World Wide Web.

As the world head towards the paper-less society, digital libraries containing unstructured

data are also becoming increasingly popular for extracting information and text-mining.

On the other hand, the intrinsic structural differences between relational and XML or

unstructured data models limit the direct adaptation of conventional data cleaning methods.

Morever, the hierarchical structure of XML data provides additional semantic context that

can be exploited to enhance the data cleaning method. We have shown in Chapter 5 that the

hierarchical structure of XML enables the identification of semantic correlated subspaces

within a XML document and the definition of aggregate attributes to summarize complex

objects so that they can be compared at higher level of abstraction. And we demonstrate that

the use of these two concepts significantly improve the accuracy of the outlier detection

process. These are probably two examples of utilizing the structural models of XML as a

 143

means to enhance the data mining process. Further research is required to fully exploit the

structural differences of XML and relational data to derive contextual information lacking in

the latter and use it to improve our data mining techniques.

 144

Bibliography

[ACG02] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating Fuzzy Duplicates in

Data Warehouses. VLDB, pages 586-597, 2002.

[ADNB06] O. Arieli, M. Denecker, B. Nuffelen, and M. Bruynooghe. Computational

methods for database repair by signed formulae. Annals of Mathematics and

Artificial Intelligence, 46(1-2): 4-37(34), 2006.

[AIRR99] M. S. Almeida, M. Ishikawa, J. Reinschmidt, and T. Roeber. Getting Started with

Data Warehouse and Business Intelligence. IBM Redbooks, 1999.

[AIS93] R.Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. ACM SIGMOD, pages 207-216, 1993.

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Research, 25(17):3389-3402, 1997.

[AY05] Aggarwal, C.C., Yu, P.S. An Effective and Efficient Algorithm for High-

dimensional Outlier Detection. VLDB Journal, 14(2):211-221, 2005.

[BB96] P. Bork and A. Bairoch. Go hunting in sequence databases but watch out for the

traps. Trends in Genetics, 12(10):425-427, 1996.

[BBA+03] B. Boeckmann, A. Bairoch, R. Apweiler, M. –C. Blatter, A. Estreicher, E.

Gasteiger, M. J. Martin, K. Michoud, C. O Donovan, and I. Phan. The SWISS-

PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic

Acids Research, 31(Database issue):365-370, 2003.

[BC00] D. Barbará and P. Chen. Using the fractal dimension to cluster datasets. ACM

SIGKDD, pages 260-264, 2000.

[BC01] P. Bork and R. Copley. The draft sequences. Filling in the gaps. Nature,

409(6822):818-820, 2001.

 145

[BC03] L. E. Bertossi and J. Chomicki. Query answering in inconsistent databases.

Logics for Emerging Applications of Databases, J. Chomicki, van der Meyden

and G. Saake eds, Springer, pages 43-83, 2003.

[BFFR05] P Bohannon, W Fan, M Flaster, and R Rastogi. A cost-based model and effective

heuristic for repairing constraints by value modification. ACM SIGMOD, pages

143-154, 2005.

[Bin93] M. Binns. Contamination of DNA database sequence entries with Escherichia

coli insertion sequences. Nucleic Acids Research, 21:779-779, 1993.

[BK02] C. Borgelt and R. Kruse. Induction of association rules: Apriori implementation.

14th Conference on Computational Statistics, pages 395-400, 2002.

[BK98] P. Bork and E. V. Koonin. Predicting functions from protein sequences–where

are the bottlenecks? Nature Genetics, 18:313-318, 1998.

[BK04] V. Brusic and J. L. Y. Koh. Genetic Databases. Mammalian Genomics, A.

Ruvinsky and J. A. Marshall-Graves ed., CABI Publishing, Wallingford, Chapter

16, 411-427, 2004.

[BKL+06] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.

GenBank. Nucleic Acids Research, 34(Database issue):16-20, 2006.

[BKNS00] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying Density-

based Local Outliers. ACM SIGMOD, 93-104, 2000.

[BL94] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and Sons, New

York, 1994.

[BM03] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable

string similarity measures. ACM SIGKDD, 39-48, 2003.

[BMBA00] A. G. Büchner, M. Baumgartenand M. D. Mulvenna, R. Böhm, and S. S. Anand.

Data mining and XML: Current and future issues. 1st International Conference

on Web Information Systems Engineering (WISE), pages 127-131, 2000.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing

association rules to correlations. ACM SIGMOD Record, 26(2):265-276, 1997.

 146

[Bor01] P. Bork. Powers and Pitfalls in Sequence Analysis: The 70% Hurdle. Genome

Research, 10(4):398-400, 2001.

[Bre99] S. E. Brenner. Errors in genome annotation. Trends in Genomics (TIG), 15:132-

133, 1999.

[BZSH99] V. Brusic, J. Zeleznikow, T. Sturniolo, E. Bono, and J. Hammer. Data cleansing

for computer models: a case study from immunology, 6th International

Conference on Neural Information Processing (ICONIP), 2:603-609, 1999.

[CBLJ04] D. P. A. Corney, B. F. Buxton, W. B. Langdon, and D. T. Jones. BioRAT:

Extracting Biological Information from Full-length Papers, Bioinformatics,

20(17):3206-3213, 2004.

[CCD+99] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca,

XMLGL: A Graphical Language for Querying and Restructuring XML, WWW.,

pages 93-109, 1999.

[CD04] J. S. Coker and E. Davies. Identifying adaptor contamination when mining DNA

sequence data. BioTechniques, 31(2):194-198, 2004.

[CFR+01] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanascu. XQuery: A

query language for XML. World Wide Web Consortium, 2001. Available from

http://wwww.w3.org/TR/xquery/.

[CGGM03] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy

match for online data cleaning, ACM SIGMOD, 313-324, 2003.

[CHDS05] A. M. Cohen, W. R. Hersh, C. Dubay and K. Spackman. Using co-occurrence

network structure to extract synonymous gene and protein names from

MEDLINE abstracts. BMC Bioinformatics, 6(1):103, 2005.

[Coh00] W. W. Cohen. Data Integration using similarity joins and a word-based

information representation language. Information Systems, 26(8):607-633, 2001.

[CPW+01] M. Cornell, N. W. Paton, S. Wu, C. A. Goble, C. J. Miller, P. Kirby, K. Eilbeck,

A. Brass, A. Hayes, and S. G. Oliver. GIMS - A Data Warehouse for Storage and

 147

Analysis of Genome Sequence and Functional Data. 2nd IEEE International

Symposium on Bioinformatics and Bioengineering, pages 15-22, 2001.

[Cri70] F. Crick. Central Dogma of Molecular Biology. Nature, 227:561-563, 1970.

[Cri58] F. H. C. Crick. On Protein Synthesis. Annual symposium of the Society for

Experimental Biology and Medicine, XII:139-163, 1958.

[DA95] M. Dean and R. Allikmets. Contamination of cDNA libraries and expressed-

sequence-tags databases. American Journal of Human Genetics, 57(5):1254-

1255, 1995.

[DAB+05] N. Deshpande, K. J. Addess, W. F. Bluhm, J. C. Merino-Ott, W. Townsend-

Merino, Q. Zhang, C. Knezevich, L. Xie, L. Chen, Z. Feng, R. K. Green, J. L.

Flippen-Anderson, J. Westbrook, H. M. Berman, and P. E. Bourne. The RCSB

Protein Data Bank: a redesigned query system and relational database based on

the mmCIF schema. Nucleic Acids Research, 33(Database issue):233-237, 2005.

[DBBG00] C. Discala, X. Benigni1, E. Barillot, and G. Vaysseix. DBcat: a catalog of 500

biological databases. Nucleic Acids Research, 28(Database issue):8-9, 2000.

[DMM+03] P. Durand, C. Medigue, A. Morgat, Y. Vandenbrouck, A. Viari, and F.

Rechenmann. Integration of data and methods for genome analysis. Current

Opinion in Drug Discovery and Development, 6, 346-352, 2003

[Eck02] W. W. Eckerson. Achieving business success through a commitment to high

quality data, The Data Warehousing Institute Report Series, No.101, Chatsworth,

USA.

[EKV07] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record

Detection: A Survey. IEEE TKDE, 19(1):1-16, 2007.

[Esk02] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. A. Stolfo. Geometric

Framework for Unsupervised Anomaly Detection: Detecting Intrusions in

Unlabeled Data. Applications of Data Mining in Computer Security, D. Barbara,

S. Jajodia (eds), Kluwer Academics Publishers, 77-102, 2002.

[Eve77] B. S. Everitt. The analysis of Contigency Tables, Chapman and Hall, 1977.

 148

[EVE02] M. G. Elfeky, V. S. Verykios, A. K. Elmagarmid. TAILOR: A Record Linkage

Tool Box. IEEE ICDE, pages 17-28, 2002.

[FCM+04] Z. Feng, L. Chen, H. Maddula, O. Akcan, R. Oughtred, H. M. Berman, and J.

Westbrook. Ligand Depot: a data warehouse for ligands bound to

macromolecules. Bioinformatics, 20(13):2153-2155, 2004.

[FHB+02] K. Fellenberg, N. C. Hauser, B. Brors, J. D. Hoheisel, and M. Vingron.

Microarray data warehouse allowing for inclusion of experiment annotations in

statistical analysis. Bioinformatics, 18(3):423-433, 2002.

[FPS99] U. M. Fayyad, . Pietetsky-Shapiro, and P. Smyth. From data mining to

knowledge discovery. Advances in Knowledge Discovery and Data Mining,

Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy eds, AAAI/MIT press, pages

1-34, 1996.

[HDW94] G. Holmes, A. Donkin, I. H. Witten. WEKA: a machine learning workbench.

Second Australian and New Zealand Conference on Intelligent Information

Systems, 357-361, 1994.

[GAA+00] R. Guigo, P. Agarwal, J. F. Abril, M. Burset, and J. W. Fickett. An assessment of

gene prediction accuracy in large DNA sequences. Genome Research, 10:1631-

1642, 2000.

[GAD+02] W.R. Gilks, B. Audit, D. De-Angelis, S. Tsoka, and C. A. Ouzounis. Modeling

the percolation of annotation errors in a database of protein sequences.

Bioinformatics, 18(12):1641-1649, 2002.

[Gal06] Y. Galperin. The Molecular Biology Database Collection: 2006 update. Nucleic

Acids Research, 34(Database edition):3-5, 2006.

[GCB+97] J. Gray, S. Chaudhuri1, A. Bosworth1, A. Layman1, D. Reichart, M. Venkatrao,

F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and

Knowledge Discovery, 1(1):29-53, 1997.

 149

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. A. Saita. Declarative

Data Cleaning: Language, model, and algorithms. VLDB, pages 371-380, 2001.

[GFSS00] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an extensible data

cleaning tool. ACM SIGMOD, pages 590-602, 2000.

[GH97] R. D. Gardner, D. A. Harle. Fault resolution and alarm correlation in high-speed

networks using database mining techniques. International Conference on

Information, Communications and Signal Processing (ICICS), 3:1423-1427,

1997.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-Query Processing in Data

Warehousing Environments. VLDB, pages 358-369, 1995.

[Gib99] G. Gibson. What works. Data warehouse: decision support solution reduces

patient admissions, saves payer millions. Health Management Technology,

20:42-46, 1999.

[Gus97] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis. Matheematical Foundations,

Springer, 1999.

[HCH04] B. He, K. C. Chang, J. Han. Discovering complex matchings across Web query

interfaces: A correlation-mining approach. ACM SIGKDD, pages 148-157, 2004.

[HDR01] V. Hatzivassiloglou, P. A. Duboue, and A. Rzhetsky. Disambiguating proteins,

genes, and RNA in text: a machine learning approach. Bioinformatics, 17(suppl

1):97-106, 2001.

[Heu99] K. I. Heuer. The development cycle of a pharmaceutical discovery

chemoinformatics system. Medical Research Review, 19:209–221, 1999.

[Her95] M. Hernandez. A generation of band joins and the merge/purge problem.

Techical report CUCS-005-1995, Department of Computer Science, Columbia

University, 1995.

 150

[HGP+04] K. G. Herbert, N. H. Gehani, W. H. Piel, J. T. L. Wang, and C. H. Wu. BIO-

AJAX: An extensible framework for biological data cleaning. Sigmod Record,

33(2):51-57, 2004.

[HH99] R. J. Hilderman and H. J. Hamilton. Knowledge discovery and interestingness

measures: a survey. Regina: Dept. of Computer Science, University of Regina,

1999.

[HKK03] J. Hosaka, J. L. Y. Koh, and A. Konagaya. Effect of utilizing terminology on

extraction of protein-protein interaction information from biomedical literature.

10th Conference of the European Chapter of the Association for Computer

Linguistics (EACL), pages 107–110, 2003.

[HLS99] K. Hu, Y. Lu, C. Shi. Incremental Discovering Association Rules: A Concept

Lattice Approach. PaKDD, pages 109-113, 1999.

[HMY+02] X. Hou, M. Mrug, B. K. Yoder, E. J. Lefkowitz, G. Kremmidiotis, P.

D'Eustachio, D. R. Beier, and L. M. Guay-Woodford. Cystin, a novel cilia-

associated protein, is disrupted in the cpk mouse model of polycystic kidney

disease. Journal of Clinical Investment, 109(4):533-540, 2002.

[HRM00] D. Hristovski, M. Rogac, and M. Markota. Data warehousing and OLAP in

public health care. American Medical Informatics Association Symposium 2000,

pages 369-373, 2000.

[HS95] A. M. Hernández and J. S. Stolfo. The Merge/Purge Problem for Large

Databases. ACM SIGMOD, pages 127-138, 1995.

[HS98] A. H. Mauricio and J. S. Stolfo. Real-world Data is dirty: Data Cleansing and the

Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1):9-27, 1998.

[HXD03] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern

Recognition Letters 24(9-10):1641-1650, 2003.

[Inm93] W. H. Inmon. Building the Data Warehouse, Wiley-QED, New York, 1993.

[ITA+03] I. Iliopoulos, S. Tsoka, M. A. Andrade, A. J. Enright, M. Carroll, P. Poullet, V.

Promponas, T. Liakopoulos, G. Palaios, C. Pasquier, S. Hamodrakas, J.

 151

Tamames, A. T. Yagnik, A. Tramontano, D. Devos, C. Blaschke, A. Valencia, D.

Brett, D. Martin D, C. Leroy, L. Rigoutsos, C. Sander, and C. A. Ouzounis.

Evaluation of annotation strategies using an entire genome sequence.

Bioinformatics, 19(6):717-726, 2003.

[JB99] J. M. Juran and G. A. Blanton. Juran's Quality Handbook. McGraw-Hill, 1999.

[JD98] A.K. Jain and R.C. Dubes. Algorithms for clustering data. Prentice Hall,

Englewood Cliffs, NJ, 1988.

[JTH01] W. Jin, A. K. H. Tung, and J. Han. Mining Top-n Local Outliers in Large

Databases. ACM SIGKDD, pages 293-298, 2001.

[JTS01] M. F. Jiang, S. S. Tseng, and C. M. Su. Two-phase clustering process for outliers

detection. Pattern Recognition Letters, 22(6-7): 691-700, 2001.

[KAA+05] C. Kanz, P. Aldebert, N. Althorpe, W. Baker, A. Baldwin, K. Bates, P. Browne,

A. van den Broek, M. Castro, G. Cochrane, K. Duggan, R. Eberhardt, N.

Faruque, J. Gamble, F. G. Diez, N. Harte, T. Kulikova, Q. Lin, V. Lombard, R.

Lopez, R. Mancuso, M. McHale, F. Nardone, V. Silventoinen, S. Sobhany, P.

Stoehr, M. A. Tuli, K. Tzouvara, R. Vaughan, D. Wu, W. Zhu and R. Apweiler.

The EMBL Nucleotide Sequence Database. Nucleic Acids Research, 33(Database

Issue):29-33, 2005.

[KB05] J. L. Y. Koh and V. Brusic. Bioinformatics Database Warehousing.

Bioinformatics Technologies, Y. P. P. Chen ed., Springer, Chapter 3:45-62, 2005.

[KCD99] L. Kohn, J. Corrigan, and M. Donaldson. To Err Is Human: Building a Safer

Health System, National Academy Press, 1999.

[KCH+03] W. Kim, B. J. Choi, E. K. Hong, S. K. Kim, and D. Lee. A Taxonomy of Dirty

Data. Data Mining and Knowledge Discovery, 7(1):81-99, 2003.

[KCN06] Y. Ke, J. Cheng, and W. Ng. Mining quantitative correlated patterns using an

information-theoretic approach. ACM SIGKDD, pages 227 – 236, 2006.

 152

[KHL+06] A. M. Khan, A. T. Heiny, K. X. Lee, K. N. Srinivasan, T. W. Tan, J. T. August,

and V. Brusic. Large-scale analysis of antigenic diversity of T-cell epitopes in

dengue virus. BMC Bioinformatics, 7(Suppl 5):S4, 2006.

[KHRB96] P. G. Korning, S. M. Hebsgaard, P. Rouze, and S. Brunak. Cleaning the

GenBank, Arabidopsis thailana data set. Nucleic Acids Research, 24, 316–320,

1996.

[Kim96] R. Kimball. Dealing with Dirty Data. DBMS Online,

www.dbmsmag.com/9609d14.htm, 1996.

[KKSL+04] A. Kasprzyk, D. Keefe, D. Smedley, D. London, W. Spooner, C. Melsopp, M.

Hammond, P. Rocca-Serra, T. Cox, and E. Birney. EnsMart: A Generic System

for Fast and Flexible Access to Biological Data. Genome Research, 14(1):160-

169, 2004.

[KKS+04] J. L. Y. Koh, S. P. T. Krishnan, S. H. Seah, P. T. J. Tan, A. M. Khan, M. L. Lee,

and V. Brusic. BioWare: A framework for bioinformatics data retrieval,

annotation and publishing. ACM SIGIR Workshop on Search and Discovery in

Bioinformatics (SIGIRBIO), 2004.

[KL05] N. Kaplan and M. Linial. Automatic detection of false annotations via binary

property clustering. BMC Bioinformatics, 6:46, 2005.

[KLB05] J. L. Y. Koh, M. L. Lee, and V. Brusic. A classification of biological data

artifacts, in ICDT Workshop on Database Issues in Biological Databases, pages

53-57, 2005.

[KLHA07] J. L. Y. Koh, M. L. Lee, W. Hsu and W. T. Ang. Correlation-based Outlier

Detection in XML, SIGKDD, 2007 [Submitted]

[KLHL07] J. L. Y. Koh, M. L. Lee, W. Hsu and K. T. Lam. Correlation-based Detection of

Attribute Outliers, DASFAA, 2007 [Accepted]

[KLK+04] J. L. Y. Koh, M. L. Lee, A. M. Khan, P. T. J. Tan, and V. Brusic. Duplicate

Detection in Biological Data using Association Rule Mining, ECML/PKDD

 153

Workshop on Data Mining and Text Mining for Bioinformatics, pages 35-41,

2004.

[KM03] J. Kubica and A. Moore. Probabilistic Noise Identification and Data Cleaning.

ICDE, pages 131-138, 2003.

[KN98] E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-Based Outliers in

Large Datasets, Proc. of the 24th International Conference on Very Large Data

Bases (VLDB), pages 392-403, 1998.

[KN99] E. M. Knorr and R. T. Ng. Finding Intensional Knowledge of Distance-based

Outliers. VLDB, pages 211-222, 1999.

[KNT00] E. M. Knorr, R. T. Ng, V. Tucakov. Distance-based Outliers: Algorithms and

Applications. VLDB Journal, 8:237-253, 2000.

[KO02] S. Kuznetsov and S. Obiedkov. Comparing Performance of Algorithms for

Generating Concept Lattices. Journal of Experimental & Theoretical Artificial

Intelligence, 14, 189-216, 2002.

[KSZ01] P. D. Karp, S. Paley, and J. Zhu. Database verification studies of Swiss-Prot and

GenBank. Bioinformatics, 17(6):526-532, 2001.

[ŁCS+04] M. ŁoŚ, A. CzyŻ, E. Sell, A. WÊgrzyn, P. Neubauer, and G. WÊgrzyn.

Bacteriophage contamination: is there a simple method to reduce its deleterious

effects in laboratory cultures and biotechnological factories? J Appl Genetic,

45(1):111-120, 2004.

[LDB+04] Leinonen, R. Diez, F. G. Binns, D. Fleischmann, W. Lopez, and R. Apweiler.

UniProt Archive. Bioinformatics, 20, 3236–3237.

[Lev66] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics – Doklady 10, 10:707-710, 1966.

[LHK04] M. L. Lee, W. Hsu, and V. Kothari. Cleaning up the spurious links in data. IEEE

Intelligent Systems: Special issue on Data and Information Cleaning and

Preprocessing. 19(2):28-33, 2004.

 154

[LHM99] B. Liu, W. Hsu, Y. Ma. Pruning and summarizing the discovered associations.

ACM SIGKDD, 125-134, 1999.

 [LKCH03] Y. K. Lee, W. Y. Kim, Y. D. Cai, and J. Han. Comine: Efficient mining of

correlated patterns. IEEE ICDM, pages 581- 584, 2003.

[LKP92] R. Lopez, T. Kristensen and H. Prydz. Database contamination. Nature,

355(6357):211, 1992.

[LKSV92] E. D. Lamperti, J. M. Kittelberger, T. F. Smith, and L. Villa-Komaroff.

Corruption of genomic databases with anomalous sequence. Nucleic Acids

Research, 20(11):2741–2747, 1992.

[LLH04] R. Lu, M. L. Lee, W. Hsu. Using interval association rules to identify dubious

values. Advances in Web-Age Information Management, pages 528-538, 2004.

[LLL00] M. L. Lee, T. W. Ling, and W. L. Low. IntelliClean: a knowledge-based

intelligent data cleaner. ACM SIGKDD, pages 290-294, 2000.

[LLLK99] M. L. Lee, H. Lu, T. W. Ling, and Y. T. Ko. Cleansing Data for Mining and

Warehousing, DEXA, 751-760, 1999.

[LNZA06] R. Leinonen, F. Nardone, W. Zhu, and R. Apweiler. UniSave: the UniProtKB

Sequence/Annotation Version database. Bioinformatics, 22(10):1284-1285, 2006.

[LSM99] W. Lee, S. J. Stolfo, and K. Mok. Data Mining in Work Flow Environments:

Experiences in Intrusion Detection. ACM SIGKDD, 1999.

[LTLL02] W. L. Low, W. H. Tok, M. L. Lee, and T. W. Ling. Data Cleaning and XML :

The DBLP Experience. Poster in IEEE ICDE, 2002. (full paper in www-

appn.comp.nus.edu.sg/~esubmit/search/techrep_03.cgi?id=techrep;TRA1/03)

[LV03] P. Lyman and H. R. Varian. How Much Information,

http://www.sims.berkeley.edu/how-much-info-2003, 2003.

[May78] J. A. Mayo. A comparison of methods for detecting bacteriophage contamina-

tion of tissue culture sera. In Vitro, 14:413-417, 1978.

[Met05] M. L. Metzker. Emerging technologies in DNA sequencing. Genome Research,

15:1767-1776, 2005.

 155

[ME96] A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and

applications. SIGMOD workshop on research issues on knowledge discovery and

data mining, pages 267-270, 1996.

[ME97] A. Monge and C. Elkan. An efficient domain-independent algorithm for

detecting approximately duplicate database records. Data mining and knowledge

discovery, 1997.

[MGB99] C. Miller, J. Gurd, and A. Brass. A RAPID algorithm for sequence database com-

parisons: application to the identification of vector contamination in the EMBL

databases. Bioinformatics, 15(2):111-121, 1999.

[MNF03] H. Müller, F. Naumann, and J. Freytag. Data Quality in Genome Databases.

International Conference on Information Quality, pages 269-284, 2003.

[MML01] A. Marcus, J. I. Maletic, K. Lin. Ordinal association rules for error identification

in data sets. ACM CIKM, pages 589 - 591, 2001.

[MT01] V. M. Markowitz and T. Topaloglou. Applying data warehouse concepts to gene

expression data management. Bioinformatics and Bioengineering Conference

(BIBE), 65-72, 2001.

[NW03] D. W. Nebert and H. M. Wain. Update on human genome completion and

annotations: Genome nomenclature. Human Genomics, 1(1): 66-71, 2003

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequences of two proteins. Journal of Molecular

Biology, 48:443-453, 1970.

[OH98] C. G. Overton and J. Haas. Case-Based Reasoning Driven Gene Annotation.

Computational Methods in Molecular Biology. Elsevier Science, 32:65-86, 1998.

[Orr98] K. Orr. Data Quality and Systems Theory. Communications of the ACM, 41(2):

66-71, 1998.

[OS90] K. Osatomi and H. Sumiyoshi. Complete nucleotide sequence of dengue type 3

virus genome RNA. Virology, 176:643-647, 1990.

 156

[OSGT06] K. Okubo, H. Sugawara, T. Gojobori, and Y. Tateno. DDBJ in preparation for

overview of research activities behind data submissions. Nucleic Acids Research,

34(Database issue):6-9, 2006.

[PCG+04] R. M. Podowski, J. G. Cleary, N. T. Goncharoff, G. Amoutzias, W. S. Hayes.

AZuRE, a scalable system for automated term disambiguation of gene and

protein names. Proceedings of IEEE Computational Systems Bioinformatics

Conference (CSB) 2004, 415- 424, 2004.

[Pia91] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules.

Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. Frawley eds,

MIT Press, Cambridge, MA: 2299-2480, 1991.

[PHBR04] H. Pospisil, A. Herrmann, R. H. Bortfeldt, and J. G. Reich. EASED: Extended

Alternatively Spliced EST Database. Nucleic Acids Research, 32(Database

issue):70–74, 2004.

[PKGF03] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. LOCI: Fast

Outlier Detection using the Local Correlation Integral. IEEE ICDE, pages 315-

326, 2003.

[PM01] K. D. Pruitt and D. R. Maglott. RefSeq and LocusLink: NCBI gene-centered re-

sources. Nucleic Acids Research, 29(1):137-140, 2001.

[Poe96] V. Poe. Building a Data Warehouse for Decision Support. Prentice Hall PTR,

1996.

[PPKG03] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Distributed

deviation detection in sensor networks. SIGMOD Record, 4(32):77-82, 2003.

[PWL01] F. Pachet, G. Westermann, D. Laigre. Musical data mining for electronic music

distribution. Web Delivering of Music, pages 101- 106, 2001.

[PWN06] S. Puhlmann, M. Weis, F. Naumann. XML Duplicate Detection Using Sorted

Neighborhoods. EDBT, pages 773-791, 2006.

[RAMC97] B. L. Roberts, M. K. Anthony, E. A. Madigan, and Y. Chen. Data Management:

Cleaning and Checking. Nursing Research, 46(6):350-352, 1997.

 157

[RD00] E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches IEEE

Technical Bulletin on Data Engineering, 23(4): 3-13, 2000.

[Red04] T. Redman. Data: An Unfolding Quality Disaster. DM Review, August issue,

2004.

[RH01] V. Raman and J. M. Hellerstein. Potter’s wheel: an interactive data cleaning

system, VLDB, pages 381-390, 2001.

[RL87] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection.

John Wiley and Sons, 1987.

[RRK00] S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficient Algorithm for Mining

Outliers from Large Data Sets. ACM SIGMOD, 427-438, 2000.

[RRP04] D. Ren, I. Rahal, W. Perrizo. A Vertical Outlier Detection Algorithm with

Clusters as By-Product. IEEE ICTAI, 22-29, 2004.

[RRPS04] D. Ren, I. Rahal, W. Perrizo, K. Scott. A vertical distance-based outlier detection

method with local pruning. ACM CIKM, 279-284, 2004.

[PTM05] K. D. Pruitt, T. Tatusova, and D. R. Maglott. NCBI Reference Sequence

(RefSeq): a curated non-redundant sequence database of genomes, transcripts and

proteins. Nucleic Acids Research, 33(Database issue):501-504, 2005.

[SB02] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.

ACM SIGKDD, pages 269-278, 2002.

[SBB+00] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. W. Paton, C. A. Goble,

and A. Brass. TAMBIS: transparent access to multiple bioinformatics

information sources. Bioinformatics, 16(2):184-185, 2000.

[SC05] L. Shi and F. Campagne. Building a protein name dictionary from full text: a

machine learning term extraction approach. BMC Bioinformatics, 6(1):88, 2005.

[Sch98] R. Scheese. Data warehousing as a healthcare business solution. Healthcare

Financial Management, 52(2):56-59, 1998.

[SCH+98] L. Singh, B. Chen, R. Haight, P. Scheuermann, and K. Aoki. A robust system

architecture for mining semi-structured data. ACM SIGKDD, 329-333, 1998.

 158

[SEOK96] G. D. Schuler, J. A. Epstein, H. Ohkawa, J. A. Kans. Entrez: molecular biology

database and retrieval system. Methods Enzymol. 266:141-162, 1996.

[SFM+99] G. A. Seluja, A. Farmer, M. McLeod, C. Harger and P. A. Schad. Establishing a

method of vector contamination identification in database sequences.

Bioinformatics, 15(2):106-110, 1999.

[SGT+02] K. N. Srinivasan, P. Gopalakrishnakone, P. T. Tan, K. C. Chew, B. Cheng, R. M.

Kini, J. L. Y. Koh, S. H. Seah and V. Brusic. SCORPION, a molecular database

of scorpion toxins. Toxicon , 40:23-31, 2002.

[She97] D. Shenk. Data Smog: surviving the information glut. New York, Harper and

Collins, 1997.

[SHX+05] S. P. Shah, Y. Huang, T. Xu, M. M. S. Yuen, J. Ling, and B. F. F. Ouellette.

Atlas - a data warehouse for integrative bioinformatics. BMC Bioinformatics,

6:34, 2005.

[SKB00] C. Schönbach, P. Kowalski-Saunders and V. Brusic. Data warehousing in

molecular biology. Briefings in Bioinformatics 1, 190-198, 2000.

[SS03] R. Sorek and H. M. Safer. A novel algorithm for computa-tional identification of

contaminated EST libraries. Nucleic Acids Research, 31(3):1067-1074, 2003.

[SSU96] A. Silberschatz, M. Stonebraker, and J. Ullman. Database research:

Achievements and opportunities into the 21st century. SIGMOD Record,

25(1):52, 1996.

[Ste03] L. D. Stein. Integrating biological databases. Nature Reviews Genetics,

4(55):337-345, 2003.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147:195-197, 1981.

[Ten03] C. M. Teng. Applying noise handling techniques to genomic data: A case study.

IEEE ICDM, pages 743- 746, 2003.

[Ten04] C. M. Teng. Polishing Blemishes: Issues in Data Correction. IEEE Intelligent

Systems, 19, 2:34-39, 2004.

 159

[Tha99] T. A. Thanaraj. A clean data set of EST-confirmed splice sites from Homo

sapiens and standards for clean-up procedures. Nucleic Acids Research.

27(13):2627-2637, 1999.

[TKB03] P. T. J. Tan, A. M. Khan, and V. Brusic. Bioinformatics for venom and toxin

sciences. Briefings in Bioinformatics, 4:53-62, 2003.

[TKS02] P. N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness

measure for association patterns. ACM SIGKDD, pages 32-41, 2002.

[TM99] T. A. Tatusova, and T. L. Madden. BLAST 2 Sequences, a new tool for

comparing protein and nucleotide sequences. FEMS Microbiology Letters,

174:247–250, 1999.

[VCEK05] J. Van den Broeck, S. A. Cunningham, R. Eeckels, and K. Herbst. Data Cleaning:

Detecting, Diagnosing, and Editing Data Abnormalities. PLoS Med. 2(10):e267,

2005.

[VVS+00] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis and T. Sellis.

ARKTOS: A tool for data cleaning and transformation in data warehouse

Environments. IEEE Data Engineering Bulletin, 23(4):42-47, 2000.

[WAB+06] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker, B. Boeckmann,

S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, R.

Mazumder, C. O'Donovan, N. Redaschi, and B. Suzek. The Universal Protein

Resource (UniProt): an expanding universe of protein information. Nucleic Acids

Research, 34(Database issue):187-191, 2006.

[WDS+93] O. White, T. Dunning, G. Sutton, M. Adams, J. C. Venter and C. Fields. A

quality control algorithm for DNA sequencing projects. Nucleic Acids Research.

21(16):3829-3838, 1993

[Whe04] M. Wheatley. Operation Clean Data. CIO Magazine, Jul. 1, 2004.

[Wij05] J. Wijsen. On condensing database repairs obtained by tuple deletions.

Proceedings. DEXA, pages 849- 853, 2005.

 160

[Wil82] R. Wille. Reconstructing Lattice Theory: an Approach Based on Hierarchies of

concepts. Ordered sets, Reidel, 1982.

[WKA04] D. Wieser, E. Kretschmann, and R. Apweiler. Filtering erroneous protein

annotation. Bioinformatics, 20(Suppl. 1):342-347, 2004.

[WKM93] Wang, R., Kon, H. & Madnick, S., Data quality requirements analysis and

modelling, IEEE ICDE, pages 670-677, 1993.

[WM89] Y. R. Wang and S. E. Madnick. The Inter-Database instance identification

problem in integrating autonomous systems. IEEE ICDE, pages 46-55, 1989.

[WMN01] J. A. White, L. J. Maltais and D. W. Nerbert. An increasingly urgent need for

standardised gene nomenclature. Nature Genetics, 2001.

[WN05] M. Weis and F. Naumann. DogmatiX tracks down duplicates in XML. ACM

SIGMOD, pages 431-422, 2005.

[Wong01] L. Wong. Bioinformatics Integration Simplified: The Kleisli Way. Frontiers in

Human Genetics: Diseases and Technologies, chapter 6:79-90. 2001

[WSF95] R. Wang, H. Kon and S. Madnick, A framework for analysis of data quality

research, IEEE TKDE, 7(4):623-640, 1995.

[WYH+03] C. H. Wu, L.-S. L. Yeh, H. Huang, L. Arminski, J. Castro-Alvear, Y. Chen, Z.

Hu, P. Kourtesis, R. S. Ledley, B. E. Suzek. The Protein Information Resource.

Nucleic Acids Research, 31(1):345-347, 2003.

[YA03] H. Yu and E. Agichtein. Extracting synonymous gene and protein terms from

biological literature. Bioinformatics, 19(supp. 1): 340-349, 2003.

[YLL03] L. Yi, B. Liu, and X. Li. Eliminating Noisy Information in Web Pages for Data

Mining. ACM SIGKDD, pages 296-305, 2003

[Zak04] M. J. Zaki: Mining Non-Redundant Association Rules. Data Mining and

Knowledge Discovery, 9(3): 223-248, 2004.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast

discovery of association rules. Proc. 3rd Intl. Conf. KDD, page 283-296, 1997.

 161

[ZLAE02] E. M. Zdobnov, R. Lopez, R. Apweiler, T. Etzold. The EBI SRS server—new

features. Bioinformatics, 18:1149–1150, 2002.

[ZW04] X. Zhu and X. Wu. Class Noise vs. Attribute Noise: A Quantitative Study of their

Impacts. Artificial Intelligence Review, 22(3):177-210, 2004.

[ZZS+04] G. D. Zhou, J. Zhang, J. Su, D. Shen and C. L. Tan. Recognizing names in

biomedical texts: a machine learning approach. Bioinformatics, 20(7):1178-1190,

2004.

