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Abstracts 

Data overload combine with widespread use of automated large-scale analysis and mining 

result in a rapid depreciation of the World’s data quality. Data cleaning is an emerging 

domain that aims at improving data quality through the detection and elimination of data 

artifacts. These data artifacts comprise of errors, discrepancies, redundancies, ambiguities, 

and incompleteness that hamper the efficacy of analysis or data mining.  

Despite the importance, data cleaning remains neglected in certain knowledge-driven 

domains. One such example is Bioinformatics; biological data are often used uncritically 

without considering the errors or noises contained within, and research on both the “causes” 

of data artifacts and the corresponding data cleaning remedies are lacking. In this thesis, we 

conduct the an in-depth study of what constitutes data artifacts in real-world biological 

databases. To the best of our knowledge, this is the first complete investigation of the data 

quality factors in biological data.The result of our study indicates that biological data quality 

problem is by nature multifactorial and requires a number of different data cleaning 

approaches. While some existing data cleaning methods are directly applicable to certain 

artifacts, others such as annotation errors and multiple duplicate relations have not been 

studied. This provides the inspirations for us to devise new data cleaning methods.  

Current data cleaning approaches derive observations of data artifacts from the values 

of independent attributes and records. On the other hand, the correlation patterns between the 

attributes provide additional information of the relationships embedded within a data set 

among the entities. In this thesis, we exploit the correlations between data entities to identify 

data artifacts that existing data cleaning methods fall short of addressing. We propose 3 novel 

data cleaning methods for detecting outliers and duplicates, and further apply them to real-

world biological data as proof-of-concepts.  
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Traditional outlier detection approaches rely on the rarity of the target attribute or 

records. While rarity may be a good measure for class outliers, for attribute outliers, rarity 

may not equate abnormality. The ODDS (Outlier Detection from Data Subspaces) method 

utilizes deviating correlation patterns for the identification of common yet abnormal 

attributes. Experimental validation shows that it can achieve an accuracy of up to 88%.  

The ODDS method is further extended to XODDS, an outlier detection method for 

semi-structured data models such as XML which is rapidly emerging as a new standard for 

data representation and exchange on the World Wide Web (WWW). In XODDS, we leverage 

on the hierarchical structure of the XML to provide addition context information enabling 

knowledge-based data cleaning. Experimental validation shows that the contextual 

information in XODDS elevates both efficiency and the effectiveness of detecting outliers. 

Traditional duplicate detection methods regard duplicate relation as a boolean 

property. Moreover, different types of duplicates exists, some of which cannot be trivially 

merged. Our third contribution, the correlation-based duplicate detection method induced 

rules from associations between attributes in order to identify different types of duplicates.  

Correlation-based methods aimed at resolving data cleaning problems are 

conceptually new. This thesis demonstrates they are effective in addressing some data 

artifacts that cannot be tackled by existing data cleaning techniques, with evidence of 

practical applications to real-world biological databases. 
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Chapter 1: Introduction 

 

The beginning of knowledge is the discovery of something we do not understand. 

 

Frank Herbert 
US science fiction novelist (1920 - 1986) 
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1.1 Background 

1.1.1 Data Explosion, Data Mining, and Data Cleaning 

The “How much information” project conducted by UC Berkeley in 2003 estimated that 

every year, one person produces an equivalence of “30-feet books” of data, and 92 percent 

are in electronic formats [LV03]. However, this astonishing quantitative growth of data is the 

antithesis of its qualitative content. Increasingly diversified sources of data combined with the 

lack of quality control mechanisms result in the depreciation of the World’s data quality - a 

phenomenon commonly known as data overloading.  

The first decade of the 21st century also witness a widespread use of data mining 

techniques that aim at extracting new knowledge (concepts, patterns, or explanations, among 

others) from the data stored in databases, also known as Knowledge Discovery from 

Databases (KDD). The prevalent popularity of data mining is driven by technological 

advancements that generate voluminous data, which can no longer be manually inspected and 

analysed. For example, in the biological domain, the invention of high-throughput sequencing 

techniques enables the deciphering of genomes that accumulate massively into the biological 

databanks. GenBank, the public repository of DNA sequences build and supported by the US 

National Institute of Health (NIH) has been growing exponentially towards 100 billion bases, 

the equivalence of more than 70 million database records (Figure 1.1). Similar growth of 

DNA data are seen in DNA databank of Japan (DDBJ) and European Molecular Biology 

Laboratory (EMBL). The data available from GenBank, DDBJ and EMBL are only parts of 

the “ocean” of public-domain biological information which is used extensively in 

Bioinformatics for In silico discoveries – biological discoveries using computer modelling or 

computer simulations.  

Due to the sheer volume, databases such as GenBank are often used with no 

consideration of the errors and defects contained within. When subject to automated data 

mining and analysis, these “dirty data” may produce highly misleading results, resulting in a 
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“garbage-in garbage-out” situation. Further complication arises when some of the erroneous 

results are added back into the information systems, and therefore creating a chain of error 

proliferations. 

  
Figure 1.1: Exponential growth of DNA records in GenBank, DDBJ and EMBL  

Figure from http://www.ncbi.nlm.nih.gov/Genbank 
 

Data cleaning is an emerging domain that aims at improving data quality. It is 

particularly critical in databases with high evolutionary nature such as the biological 

databases and data warehouses new data generated from the worldwide experimental labs are 

directly submitted into these databases on daily basis without adequate data cleaning steps 

and quality checks. The “dirty data” accumulate as well as proliferate as the data exchange 

among the databases and transform through data mining pipelines.  

Although data cleaning is the essential first step in the data mining process, it is often 

neglected conveniently because the solution towards attaining high quality data is non-

obvious. Development of data cleaning techniques is at its infancy and the problem is 

complicated by the multiplicity as well as the complexity of data artifacts, also known as 

“dirty data” or data noise. 
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1.1.2 Applications Demanding “Clean Data” 

High quality data or “clean data” are essential to almost any information system that requires 

accurate analysis of large amount of real-world data. In these applications, automatic data 

corrections are achieved through data cleaning methods and frameworks, some forming the 

key components of the data integration process (e.g. data warehouses) and are the pre-steps of 

even using the data (e.g. customer or patient matching). This section describes some of the 

key applications of data cleaning. 

1.1.2.1 Data Warehouses 

The classical application of data cleaning is in data warehouses [LLLK99, VVS+00, RH01, 

ACG02, CGGM03]. Data warehousing emerged as the solution for “warehousing of 

information” in the 1990s in the business domain; a business data warehouse is defined as a 

subject-oriented, integrated, non-volatile, time-variant collection of data organised to support 

management decisions [Inm93]. Common applications of data warehousing include: 

• Business domain to support business intelligence and decision making [Poe96, 

AIRR99] 

• Chemo-Informatics to facilitate pharmaceutical discoveries [Heu99] 

• Healthcare to support analysis of medical data warehouses [Sch98, Gib99, 

HRM00] 

Data warehouses are generally used to provide analytical results from multi-

dimensional data through effective summarization and processing of segments of source data 

relevant to the specific analyses. Business data warehouses are basis of decision support 

systems (DSS) that provide analytical results to managers so that they can analyse a situation 

and make important business decisions. Cleanliness and integrity of the data contributes to 

the accuracy and correctness of these results and hence affects the impact of any decision or 

conclusion drawn, with direct cost amounting to 5 million dollars for a corporate with a 

customer base of a million [Kim96].  
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Nevertheless, the quality problem of data warehouses is non-trivial. In a data 

warehouse, analytical results are derived from large volume of historical and operational data 

integrated from heterogeneous sources. Warehouse data exist in highly diversified formats 

and structures, and therefore it is difficult to identify and merge duplicates for purpose of 

integration. Also, the reliability of the data sources is not always assured when the data 

collection is voluminous; large amount of data can be deposited into the operational data 

sources in a batch mode or by data entry without sufficient checking. Given the excessive 

redundancies and the numerous ways errors can be introduced into a data warehouse, it is not 

surprising that data cleaning is one of the fast evolving research interests for data 

warehousing in the 21st century [SSU96]. 

1.1.2.2 Customer or Patient Matching 

Data quality is sometimes defined as a measurement of the agreement between the data views 

presented by an information system and that same data in real world [Orr98]. However, the 

view presented in a database is often an over-representation of an entity in real world; 

multiple records in a database represent the same entity or fragmented information of it. 

In banking, the manifestation of duplicate customer records incurs direct mailing 

costs in printing, postage, and mail preparation by sending multiple mails to the same person 

and same household. In United States alone, $611 billion a year is lost as a result of solely 

customer data (names and addresses) [Eck02]. Table 1.1 shows an example of the customer 

matching problem. As shown, the duplication detection problem is a combination of: 

• Mis-spellings e.g. “Judy Koh”  

• Typographical errors e.g. “Judic Koh” and “S’pre” 

• Word transpositions e.g. “2 13 Street East” and “Koh Judice” 

• Abbreviations e.g. “SG” and “2 E 13 St” 

• Different data types e.g “Two east thirteenth st”  

• Different representations e.g  country code can be represented as “(65)”, “65-“ or 

“(065)”  
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• Change in external policy such as the introduction of an additional digit to 

Singapore’s phone numbers effective from 2005. “65-8748281” becomes “65-

68748281”. 

Table 1.1: Different records in database representing the same customer 

 Name Address City State Zip Phone 

1 J.Koh 2 E 13th Street Singapore - 119613 (65) 8748281 

2 Judice 2 13 Street East SG Singapore 119-613 68748281 

3 Koh Judice 2 E thirteenth street S’pore S’pore 11961 65-68748281 

4 Judy Koh 2 E 13 St - SG 119 613 65-8748281 

5 Judic Koh Two east thirteenth st Toronto S’pre - (065)-8748281 

 

The data cleaning market-place is loaded with solutions for cleaning customer lists and 

addresses, including i/Lytics GLOBAL by Innovative Systems Inc. 

(http://business.innovativesystems.com/postal_coding/index.php), Heist Data Cleaning 

solutions (http://www.heist.co.uk/mailinglistscleaning/), and Dataflux Corporation 

(http://www.dataflux.com/main.jsp). 

The same redundancy problem prevails in healthcare. Mismatching the patients to the 

correct medical records, or introducing errors to the prescriptions or patients health records 

can cause disastrous loss of lives. The Committee of Healthcare in America estimated that 

44,000 to 98,000 preventable deaths per year are caused by erroneous and poor quality data; 

one major cause is mistaken identities [KCD99]. 

1.1.2.3 Integration of information systems or databases 

Data cleaning is required whenever databases or information systems need to be integrated, 

particularly after acquisition or merging of companies. To combine diversified volumes of 

data from numerous backend databases, often geographically distributed, enormous data 

cleaning efforts are required to deal with the redundancies, discrepancies and inconsistencies. 

In a classical example, the British Ministry of Defence embarked on an $11 million 

data cleansing project in 1999 to integrate 850 information systems, 3 inventory systems and 
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15 remote systems. Data cleaning processes conducted over the four years include (1) 

disambiguation of synonyms and homonyms, (2) duplicate detection and elimination, and (3) 

error and inconsistency corrections through data profiling. This major data cleaning project is 

believed to have saved the British Ministry $36 million dollars [Whe04].  

In general, data quality issues are critical in domains which require storage of large 

volume of data, are constantly integrated from diversified sources, and where data analysis 

and mining plays an important role. One such example is Bioinformatics.  

1.1.3 Importance of Data Cleaning in Bioinformatics 

Over the past decade, advancement in high-throughput sequencing offers unprecedented 

opportunities for scientific breakthroughs in fundamental biological research. While genome 

sequencings of more than 205,000 named organisms aim at elucidating the complexity of 

biological systems, this is only the beginning of the era of data explosion in biological 

sciences. Given the development of faster and more affordable genome sequencing 

technologies, the numerous organisms that have not been studied, and the recent paradigm 

shift from genotyping to re-sequencing, the number of genome projects is expected to 

continue at an exponential growth rate into the next decade [Met05]. These genome project 

initiatives are directly translated into amounting volumes of uncharacterized data which 

rapidly accumulates into the public biological databases of biological entities such as 

GenBank [BKL+06], UniProt [WAB+06], PDB [DAB+05], among others .  

Public biological databases are essential information resources used daily by 

biologists around the world for sequence variation studies, comparative genomics and 

evolution, genome mapping, analysis of specific genes or proteins, molecular bindings and 

interactions study, and other data mining purposes. The correctness of decisions or 

conclusions derived from the public data depends on the data quality, which in turn suffers 

from exponential data growth, increasingly diversified sources, and lack of quality checks. 

Clearly, the presence of data artifacts directly affects the reliability of biological discoveries. 

Bork [Bor00] highlighted that poor data quality is the key hurdle that the bioinformatics 
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community has to overcome in order that computational prediction schemes exceed 70% 

accuracy. Informatics burdens created by low quality, unreliable data also limits large-scale 

analysis at the –omics (Genomics, Proteomics, Immunomics, Interactomics, among others) 

level. As a result, the complete knowledge of biological systems remains buried within the 

biological databases. 

Although this need is drawing increasing attention over the last few years, progress 

still fall short in making the data “fit for analysis” [MNF03, GAD02], and data quality 

problems of varying complexities exist [BB96, BK98, Bre99, Bor00, GAD+02], some of 

which cannot be resolved given the limitations of existing data cleaning approaches.  

1.1.4 Correlation-based Data Cleaning Approaches 

Current data cleaning approaches derive observations of data artifacts from independent 

attributes and records (details in Chapter 2). On the other hand, the correlation patterns 

embedded within a data set provide additional information of the semantic relationships 

among the entities, beyond the individual attribute values. Correlation mining - the analysis 

of the relationships among attributes is becoming an essential task in data mining processes. 

For example, the core of association rule mining is to find sets of attributes that co-occur 

frequently in a transaction database, while feature selection involves identifying strongly 

correlated dimensions. 

Table 1.2: Customer bank accounts with personal information and monthly 

transactional averages 

Ac Type Cust/ 

Age 

Cust/ Profession Addr/ Country Addr/ State Addr/  City Trans/ 

Count 

Trans/ 

Avg 

1 Saving 35 Engineer Czech S.Moravi Opava 2 $52 

2 Cheque 75 Manager USA LA California 300 $143 

3 Saving 16 Professor Czech S.Moravi Opava 80 $72 

4 Saving 18 Student USA S.Moravi Opava 58 $63 

5 Saving 37 Professor Czech S.Moravi Opava 25 $124 
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Table 1.2 shows a simple example of the inadequacy of merely considering data 

values in outlier detection. By applying traditional mechanisms for attribute outlier detection 

that focus on finding rare values across univariate distributions of each dimension, we may be 

able to identify the low transaction count in Account 1 is an attribute outliers. However, such 

strategies based on rarity are unlikely to determine the 16-year old professor in Account 3, or 

the USA that is erroneously associated with the city and state of Czech in Account 4. These 

possible errors are however detectable from the deviating co-occurrence patterns of the 

attributes.  

Besides abnormal correlations that constitute data noise in the form of attribute 

outliers, the mining of positive correlations also enables the sub-grouping of redundancy 

relations. Duplicate detection strategies typically compute the degree of field similarities 

between two records in order to determine the extent of duplication. Moreover, intuitively, 

duplicate relation is not a boolean property because not all similar records can be trivially 

merged. The different types of duplicates do not vary in their extent of similarity but rather in 

their associative attributes and corresponding similarity thresholds.  

Correlation mining techniques generally focus on strong positive correlations 

[AIS93, LKCH03, BMS97, KCN06]. Besides market basket analysis, correlation-based 

methods have been developed for complex matching of web query interface [HCH04], 

network management [GH97], music classification [PWL01], among others. However, 

correlation-based methods targeted at resolving data cleaning problems are conceptually new. 

1.1.5 Scope of Data Cleaning 

Juron and Blanton defined in [JB99] - "data to be of high quality if they are fit for their 

intended uses in operations, decision making and planning." According to this definition, 

data quality is measured by the usability of data, and achieving high quality data encompasses 

the definition and management of processes that create, store, move, manipulate, process and 

use data in a system [WKM93, WSF95]. While a wide range of issues relate to data usability 

- from typical quality criterion such as data consistency, correctness, relevance to application 
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and human aspects such as ease-of-use, timeliness, and accessibility, current approaches in 

data cleaning mainly arises out of the need to mine and to analyse large volume of data 

residing in databases or data warehouses.  

Specifically, the data cleaning approaches mentioned in this work devote to data 

quality problems that hamper the efficacy of analysis or data mining and are identifiable 

completely or partially through computer algorithms and methods. The data cleaning research 

covered in this work does not take into account data quality issues associated with the 

external domain-dependent and process-dependent factors that affect how data are produced, 

processed and physically passed around. It does not include quality control initiatives, such as 

manual selection of input data, manual tracing of data entry sources, feedback mechanisms in 

the data processing steps, the usability aspects of the database application interfaces, and 

other domain specific objectives associated with the non-computational correction of data.  

While we will not give details, it suffices to mention that the term data cleaning has 

different meanings in various domains; some examples are found in [RAMC97, BZSH99, 

VCEK05]. For biological data, this work does not cover sequencing errors caused by a 

defective transformation of the fluorescent signal intensities produced by an automated 

sequencing machine into a sequence of the four bases of DNA. Such measurement errors are 

not traceable from the sequence records using statistical computation or data mining. 

1.2 Motivation 

Data cleaning is an important aspect of bioinformatics. However, biological data are often 

used uncritically without considering the errors or noises contained within. Relevant research 

on both the “causes” and the corresponding data cleaning remedies are lacking. This research 

is driven by the desire to address the data quality problems in real-world data such as the 

biological data. The thesis has two main objectives:  

(1) Investigate factors causing depreciating data quality in the biological data 

(2) Devise new data cleaning methods for data artifacts that cannot be resolved using 

existing data cleaning techniques  
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To the best of our knowledge, this is the first serious work in biological data 

cleaning. The benefit of addressing data cleaning issues in biological data is two-fold. While 

the high dimensionality and complexity of biological data depicts it as an excellent real-world 

case study for developing data cleaning techniques, biological data also contain an assortment 

of data quality issues providing new insights to data cleaning problems.  

1.3 Contribution 

This thesis presents a complete study of the classification of data artifacts in biological 

databases and proposes 3 new correlation-based data cleaning methods. The classification of 

biological data artifacts serves as a “roadmap” for data cleaning processes. The data cleaning 

methods are general; and we demonstrate they are applicable to both biological and non-

biological data. These methods are unlike traditional data cleaning strategies that focused on 

the defects in individual records or attribute values. Rather, the correlations between data 

entities are exploited to identify artifacts that existing data cleaning methods cannot detect. 

The completion of this research project will make 4 specific contributions to the 

research in data cleaning as well as bioinformatics: 

• Classification of biological data artifacts 

The data quality problem of biological data is a collective result of artifacts at the 

field, record, single and multiple-database levels (physical classification), and a 

combinatory problem of the bioinformatics that deals with the syntax and semantics 

of data collection, annotation, and storage, as well as the complexity of biological 

data (conceptual classification). We conduct an investigation to determine the 

multiple types of data artifacts that cause data quality depreciation in major 

biological databases; 11 types and 28 subtypes of data artifacts are identified. We 

classify these artifacts into their physical as well as conceptual types. We also 

evaluate the limitations of existing data cleaning methods in addressing each type of 

artifacts. To the best of our knowledge, this is the first complete study of biological 
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data artifacts, with the objective of gaining holistic insights into the data quality 

problem and the adequacy of current data cleaning techniques.  

• A correlation-based attribute outlier detection method 

An outlier is an object that does not conform to the normal behaviour of the data set. 

Existing outlier detection methods focus on class outliers and research on attribute 

outliers is limited, despite the equal role attribute outliers play in depreciating data 

quality and reducing data mining accuracy. We introduce ODDS (for Outlier 

Detection from Data Subspaces) method to detect attribute outliers from the deviating 

correlation behaviour of attributes. Three metrics to evaluate outlier-ness of 

attributes, and an adaptive factor to distinguish outliers from non-outliers are 

proposed. Evaluation on both biological and non-biological data shows that ODDS is 

effective in identifying attribute outliers, and detecting erroneous annotations in 

protein databases. 

• A framework for detecting attribute outliers in XML 

Increasing biological databases are converted into XML formats in order to facilitate 

data exchange. However, current outlier detection methods for relational data models 

are not directly adaptable to XML documents. We develop a novel outlier detection 

method for XML data models call XODDS (for XML Outlier Detection from Data 

Subspace). The XODDS framework utilizes the correlation between attributes to 

adaptively identify outliers and leverages on the hierarchical structure of XML to 

determine semantically meaningful subspaces of the correlation-based outliers. 

XODDS consists of four key steps: (1) attribute aggregation defines summarizing 

elements in the hierarchical XML structures, (2) subspace identification determines 

contextually informative neighbourhoods for outlier detection, (3) outlier scoring 

computes the extent of outlier-ness using correlation-based metrics, and (4) outlier 

identification adaptively determine the optimal thresholds distinguishing the outliers 

from non-outliers.  
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• An association mining method to detect multiple types of duplicates 

This work examines the extent of redundancy in biological data and proposes a 

method for detecting the different types of duplicates in biological data. Duplicate 

relations in a real-world biological dataset are induced using association mining. 

Evaluation of our method on a real-world dataset shows that our duplicate rules can 

accurately identify up to 96.8% of the duplicates in the dataset. 

The classification of biological data artifacts was published in ICDT 2005 Workshop 

on Database Issues in Biological Database (DBiBD). The paper describing the ODDS outlier 

detection method has been accepted for publication in DASFAA 2007 [KLHL07], and the 

XODDS method paper has been submitted [KLHA07]. A full paper on duplicate detection 

using association mining was published in ECML/PKDD 2004 Workshop on Data Mining 

and Text Mining for Bioinformatics [KLK+04]. 

1.4 Organisation 

The rest of this thesis is organized as follows. First, Chapter 2 reviews current approaches to 

data cleaning in detail. Background information on bioinformatics and biological database, 

and the taxonomy of biological data artifacts is presented in Chapter 3. The ODDS method is 

presented in Chapter 4. We demonstrate how ODDS can be applied to distinguish erroneous 

annotations in protein databases. An extension of the outlier detection framework to XML 

data is proposed to Chapter 5, which leverages on the contextual information in XML to 

facilitate the detection of outliers in semi-structured data models. Chapter 6 presents a 

correlation-based approach towards duplicate detection of protein sequences. We conclude in 

Chapter 7 with discussions on further works. 
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Chapter 2: A Survey on Data Cleaning 
Approaches 

If I have seen further, it is by standing on the shoulders of giants. 

 

Issac Newton 
English Mathematician (1643-1727) 
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In this chapter, we discuss how data cleaning approaches have evolved over the last decade 

and we survey existing data cleaning methods, systems and commercial applications. 

2.1 Data Artifacts and Data Cleaning 

Data cleaning, also known as data cleansing or data scrubbing encompasses methods and 

algorithms that deal with artifacts in data. We formally define data cleaning: 

Data cleaning is the process of detecting and eliminating data artifacts in order to improve 

the quality of data for analysis and mining. 

Here, data artifacts refer to data quality problems such as errors, discrepancies, 

redundancies, ambiguities, and incompleteness that hamper the efficacy of analysis or data 

mining. Since real-world objects that are completely and accurately represented in databases 

have perfect data quality [Orr98], data artifacts are basically the differences between the real-

world and database representations. Data artifacts may be caused by erroneous entry, wrong 

measurements, data transformation problems, inaccurate annotations, mis-interpretations, 

among others. Table 2.1 shows some common examples of data artifacts and their types.  

Table 2.1: Different types of data artifacts 

 Errors Discrepancies Incompleteness Redundancies Ambiguities
Duplicates    *  

Outliers * *    
Spurious links    *  
Missing values   *   
Illegal values *     

Synonyms     * * 
Homonyms     * 

Integrity violations * *   * 
Dependency 

violations 
*     

Format variations     * 
Word transposition     * 

Mis-spellings *    * 
 

We broadly characterized data artifacts into 5 types – errors, discrepancies, 

incompleteness, redundancies and ambiguities. Errors are measurements, observations, or 

calculations which are incorrect or inaccurate representations of the “truth”. In databases, 
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errors are seen as outliers, illegal values, integrity and dependency violations, or mis-

spellings. For instance, consider a relation R(Country, State, City) and let r1 = <‘Singapore’, 

‘Singapore’, ‘Toronto’> be a tuple in R, where r1[City]=<’Toronto’> is erroneously 

introduced. If the functional dependency FD: City → Country is specified in the relational 

database, it is possible to detect the error as a dependency violation at point of insertion. 

However, this FD does not always hold. For example, the city called Geneva is in Illinois, 

U.S.A as well as Switzerland, Geneva (state). An alternative approach is to take into account 

the deviating behaviour of the attribute and utilize outlier detection approaches to isolate the 

error. 

Discrepancies are differences between conflicting observations, measurements or 

calculations. Unlike errors, it is not straightforward to determine which of the conflicting 

entities is the “truth”. Consider another tuple in R, r2 = <’Canada’, ‘British Columbia’, 

‘Toronto’>. r2[State]=<’British Columbia’> and r2[City]=<’Toronto’> are conflicting 

observations because either may be erroneous. Similarly, homonymous entities are not 

necessary incorrect.  

Incompleteness means the information of a real-world entity is missing from the 

corresponding tuples in the databases. When a highly sparse database, which is manifested 

with missing values, is subjected to machine learning, the learned model may adjust to very 

specific random features in the rare training examples, thus resulting in over-fitting. 

Likewise, in data mining perspectives, redundancy in duplicate or synonymous records 

results in over-representations of specific patterns that in turn, disturb the statistical 

distributions. 

Ambiguities refer to unclear or uncertain observations. The use of multiple names to 

describe the same entity (synonyms), the same names for different entities (homonyms), or 

mis-spellings are all symbolic of ambiguous information. For example, besides known as a 

common abbreviation for two different classes of enzymes - glycerol kinase and guanylate 

kinase, GK is also as an abbreviation of the Geko gene of Drosophila melanogaster (Fruit 
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fly). It is impossible to tell from the name GK, if the corresponding DNA sequence is an 

enzyme or is a gene of fruit fly.  

Some of these artifacts can be trivially resolved using proprietary spell-checkers and 

by incorporating integrity, dependency and format constraints into the relational databases. 

On the contrary, detecting and eliminating duplicates and outliers have proven to be of 

greater challenge. In fact, majority of the research in data cleaning are related to either 

duplicate or outlier detection. The alternative approach of hand-correcting the data is 

extremely expensive and laborious and cannot be fool-proofed of additional entry errors from 

the annotators. On the other hand, data cleaning is more than a simple update of a record, 

often requiring decomposition and reassembling of the data. A serious data cleaning tool can 

easily be an extensive software system.  

2.2 Evolution of Data Cleaning Approaches 

Data cleaning is a new field that emerges over the last decade. Driven by information 

overload, widespread use of data mining and developments in database technologies, the data 

cleaning field has expanded in many aspects; new types of data artifacts are addressed, more 

sophisticated data cleaning solutions are available, and new data models are explored. 

The first works in data cleaning focused at detecting redundancies in data sets 

(merge/purge and duplicate detection), addressing various types of violations (integrity, 

dependency, format violations), and identifying defective attribute values (data profiling). 

Recent works have expanded beyond the defects in individual records or attribute values into 

the detection of defective relationships between records and between attributes (spurious 

links). Also, the technical aspects have advanced from individual algorithms and metrics 

(sorted neighbourhood methods, field matching) into complete data cleaning systems and 

frameworks (IntelliClean, Potter’s wheel, AJAX), as well as essential components of the data 

warehouse integration systems (ETL and fuzzy duplicates). The data models investigated 

extend from structured (relational) data to the semi-structured XML models (DogmatiX).  
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In this thesis, we expand the scope of data cleaning beyond the defects in individual 

records or attribute values into the detection of defective relationships between records and 

between attributes. We also delve into data cleaning methods for XML models. 

2.3 Data Cleaning Approaches  

Strategies for data cleaning may differ according to the types of data artifacts, but they 

generally faced the recall-precision dilemma. We first define recall and precision using true-

positives (TP), false-positives (FP) and false-negatives (FN). 

)( FPTP
TPprecision
+
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+
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Precision, also known as positive predictive value is the ratio of data points detected that 

indeed contain artifacts. Recall, also known as sensitivity is the ratio of data artifacts detected. 

In this work, we use F-score which is a combined score of both recall and precision. 
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The recall-precision dilemma indicates that the higher the recall, the lower is the 

precision, and vice versa. Data artifacts detection methods are commonly associated with 

criteria or thresholds that differentiate the artifacts from the non-artifacts. Higher recall can 

be achieved by relaxing some of the criteria or thresholds with an increase in the number of 

TP, but corresponding reduction in precision because FP also increases. Stringent criteria or 

high thresholds may reduce FP and thus increase precision, but at the same time, reduces the 

number of positive detected and thus the recall. Achieving both high recall and precision, and 

therefore a high F-score is a common objective for data cleaners. 
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2.3.1 Duplicate Detection Methods 

Early works in data cleaning focused on the merge/purge problems, also known as de-

duplication, de-duping, record linkages, duplicate detection. Merge/Purge addresses the 

fundamental issue of inexact duplicates – two or more records of varying formats and 

structures (syntactic values) are alternative representations of the same semantic entity 

[HS95, HS98]. Merge refers to the joining of information from heterogeneous sources and 

purge means the extraction of knowledge from the merge data. Merge/purge research 

generally address two issues: 

• Efficiency of comparing every possible pair of records from a plurality of databases. 

The naïve approach has a quadratic complexity, so this class of methods aim at 

reducing time complexity through restricting the comparisons to records which have 

higher probability of being duplicates.  

• Accuracy of the similarity measurements between two or more records. Methods 

belonging to this class investigate the various similarity functions of fields, 

especially of strings and multiple ways of record matching.  

Duplicates are common in real-world data that are collected from external sources 

such as through surveying, submission, and data entry. Integration of databases or 

information systems also generates redundancies. For example, merging all the records in 

Table 2.2 requires identifying that “First Name” and “Given name” refer to the same entities, 

“Name” is a concatenation of first and last names, and “Residential” and “Address” refers to 

the same fields.  

Table 2.2: Different records from multiple databases representing the same customer 

 Name Address City State Zip Phone 
1 J.Koh 2 E 13th Street Singapore - 119613 (65) 8748281 
2 Koh Judice 2 13 Street East SG Singapore 119-613 68748281 

 

 First Name Last Name Address Country code Contact 
1 J. Koh 2 E 13th Street, Singapore 65 8748281 
2 Judy Koh 2 E 13 St. S(119613) - 68748281 

 

 Given name Last name Residential Country Tel 
1 Judic Koh Two east thirteenth st SG - (065)-8748281 
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In data warehouses designed for On-Line Analytical Processing (OLAP), 

Merge/Purge is also a critical step in the Extraction, Transformation, and Loading (ETL) 

process of integrating data from multiple operational sources. 

2.3.1.1 Efficiency-driven Methods 

Sorted-neighbourhood method (SNM) is one of the classical approaches to merge/purge 

problems. SNM first sorts the database based on a unique composite key constructed from 

one or more fields in order to bring similar records to a bounded neighbourhood in a linear 

list [HS95]. A window of size w is slide along the list such that only records within the 

window are pair-wise compared; every new record entering the window is compared with the 

previous w-1 records (Figure 2.1). SNM reduces O(N2) complexity of a typical pair-wise 

comparison step to O(wN) where w is the size of the window and N is the number of records. 

The effectiveness of the method, however, is restricted to the selection of appropriate keys.  

An example of SNM is given in Figure 2.1, which shows a list of sorted customer 

portfolios. The composite key is the combination “<First name><Last name><security ID>”. 

Notice that the accuracy of SNM is highly dependent on the choice of the keys as well as the 

window width. We can bring the duplicate records “IvetteKeegan8509119” and 

“YvetteKegan9509119” into lexicographical proximity of the sliding window of size w using 

the composite key “<First name><security ID><Last name>”; “Keegan8509119Ivette” and 

“Kegan9509119Yvette” are sufficiently close keys. However, this brings 

“DianaDambrosion0” and “DianaAmbrosion0” – with corresponding new composite keys 

“Dambrosion0Diana” and “Ambrosion0Diana” beyond comparable range. Enlarging the size 

of sliding window may improve the recall of SNM but at the expense of time complexity.  

The duplicate elimination method (DE-SNM) improves SNM by first sorting the 

records on a chosen key and then dividing the sorted records into two lists: duplicate and non-

duplicate [Her95]. DE-SNM achieves slight efficiency improvement over SNM, but suffers 

from the same drawbacks as SNM. The multi-pass sorted-neighbourhood method (MP-SNM) 

removes SNM’s dependency on a single composite key by performing multiple independent 



 21

passes of SNM based on different sorting keys. The union of the duplicates found from 

multiple passes are flagged as duplicates. Using the same example in Figure 2.1, 3 separate 

passes of SNM using “First name”, “Last name” and “Security No.” respectively would have 

identified all duplicates. 

 

Figure 2.1: Sorted Neighbourhood Method with sliding window of width 6 

 

In [ME97], priority queues of clusters of records facilitate duplicate comparison. 

Instead of comparing to every other record within a fixed window, a record is compare to 

representatives of clustered subsets with higher priority in the queue. It reported a saving of 

75% of time from the classical pair-wise algorithm.  

Transitivity and Transitivity Closure 

Under the assumption of transitivity, if record x1 is a duplicate of x2, and x2 is a duplicate of 

x3, then x1 is a duplicate of x3. Some duplicate detection methods leverage on the assumption 

that relation “is duplicate of” is transitive to reduce the search space for duplicates [HS95, 

LLKL99, ME97]. Generalizing the transitivity assumption, we denote xi ≈ xj if xi is a detected 

duplicate of record xj. Then for any x which is a duplicate of xi, x ≈ xj. Likewise, x ≈ xj implies 

that x ≈ xi. With the transitive assumption of duplicate relations, the number of pair-wise 

matching that is required to determine clusters of duplicates is reduced.  

If we model data records into an undirected graph where edges represent the relation 

“is similar to”, then the “is duplicate of” relation corresponds to the transitive closure of the 

“is similar to” relation. Further clarifying, we define formally transitive closure: 

Sliding window 
with w = 5 
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Let R be the binary relation “is similar to” and X be a set of duplicate records. The transitive 

closure of R on a set X is the minimal transitive relation R’ on X that contains R.. Thus for 

any Xxx ji ∈, , xiR’xj iff there exist xi, xi+1, ..., xj and xrRxr+1 for all i≤r<j. 

R’ is a transitive closure of R means that xi is reachable from xj and vice versa. In a database, 

a transitive closure of “is duplicate of” can be seen as a group of records representing the 

same semantic entity.  

However, the duplicate transitivity assumption is not flawless without loss of 

precision; the extent of similarity diminishes along the transitive relations. Two records, 

which are far apart in the “is similar to” graph, are not necessarily duplicates. An example is 

given in [LLL00]: “Mather” ≈ “Mother” and “Mather” ≈ “Father”, but “Mother” ≈ “Father” 

does not hold.  

2.3.1.2 Accuracy-driven methods 

Instead of reducing the complexity of pair-wise comparisons, other duplicate detection 

research focus on the accuracy of the determining duplicates. These works generally relate to 

record linkages, object identification, and similarity metrics. The duplicate determination 

stage decomposes into two key steps:  

(1) Field Matching measures the similarity between corresponding fields in two records. 

(2) Record Matching measures the similarity of two or more records over some 

combinations of the individual field matching scores.   

Field Matching Functions 

Most field matching functions deal with string data types because typographical variations in 

strings account for a large part of the mismatches in attribute values. A comprehensive 

description of the general string matching functions is given in [Gus97]. [EIV07] gives a 

detailed survey of the field matching techniques used for duplicate detection. Here, we will 

highlight a few commonly used similarity metrics. 

String similarity functions are roughly grouped into order-preserving and unordered 

techniques. Given that order-preserving similarity metrics rely on the order of the characters 
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to determine similarities; these approaches are suitable for detecting typographical errors and 

abbreviations.  

The most common order-preserving similarity function is the edit distance, also 

known as the Levenshtein distance, which calculates the number of operations needed to 

transform from one string to another [Lev66]. For example, the edit distance between 

“Judice” and “Judy” is 3 because 3 edits - 1 substitution and 2 deletions are required for the 

transformation. The basic algorithm for computing edit distance using dynamic programming 

(DP) runs at the complexity of ( )21 ss ×Ο where |s1| and |s2| are the lengths of the strings s1 

and s2 respectively.  

Recent years has seen the adaptation of string matching strategies originally used in 

Bioinformatics to align DNA (string of nucleotides) or protein (string of amino acids) 

sequences. Unlike edit distance, these sequence similarity functions allow for open gaps and 

extend gaps between the characters at certain penalties [NW70, SW81]. For example, edit 

distance is highly position-specific and does not effectively match mis-aligned string such as 

“J. L. Y. Koh” with “Judice L. Y. Koh”. With Needleman and Wunsch algorithm [NW70] 

and Smith-Waterman distance [SW81], the introduction of gaps into the first string enables 

proper alignment of the two strings. However, studies had shown that more elaborated 

matching algorithms such as Smith-Waterman does not necessarily out-performed basic 

matching functions [BM03]. 

Unordered string matching approaches do not require the exact ordering of characters 

and hence are more effective in identifying word transpositions and synonyms. The notion of 

“token matching” was introduced in [LLKL99]. Tokenizing a string involves 2 steps: (1) 

Split each string into tokens delimited by punctuation characters or spaces, and (2) Sort the 

tokens lexicographically and join them into a string which is used as the key for SNM and 

DE-SNM. It makes sense to tokenize strings semantically because different orderings of real-

world string values often refer to the same entity. For example, tokenizing both “Judice L. Y. 

Koh” and “Koh L. Y. Judice” with different ordering of the first, middle and last names 
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produces “Judice L. Koh Y.” as the key for record matching in SNM. Similar concept of 

“atomic tokens” of words calculates the number of matching tokens from two strings to 

determine the similarity between 2 fields [ME96]. 

Another unordered string similarity function is the cosine similarity that transforms 

the input strings into vector space to determine similarity using the Euclidean cosine rule. 

Cosine similarity of two strings s1 and s2 represented by “bag of words” w is defined 
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String similarities can also be machine-learned, using support vector machine (SVM) 

or probabilistic approaches [BM03]. While learning approaches towards string similarity has 

the benefit of adapting the algorithm according to different input databases, the accuracy is 

highly dependent on the size of the input data set, and it is difficult to find training data sets 

with sufficient coverage of similar strings. 

Record Matching Functions 

The record matching functions, also known as merging rules determine whether two records 

are duplicates.  A record matching function is defined over some or all of the attributes of the 

relation. The first record matching methods use simple domain-specific rules specified by 

domain experts to define a unique collective set of keys for each semantic entity; duplicates 

of the same object have the same values for these keys [WM89].  

In [HS95], merging rules are represented using a set of equational axioms of domain 

equivalence. For example, the following rule indicates that an identical match of last name 

and address, together with an almost similar match of last name infer that two records ri and rj 

are duplicates: 

Given two records, ri and rj 
IF the last name of ri equals the last name of rj, 

AND the first names differ slightly, 
AND the address of ri equals the address of rj 

THEN 
ri is equivalent. to rj. 
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A database may require more than one equational axiom to determine all possible duplicate 

scenarios. Creating and maintaining such domain specific merging rules is time-consuming 

and is almost unattainable for large databases.  

Let S be a general similarity metric of two fields (e.g edit distance) and α be given 

thresholds. Notice that the above merging rule can be generalized into a conjunction of field 

similarity measures: 

Given two records ri and rj, ri is equivalent to rj if  
S(ri[last name], rj[last name]) ≤ α1  
^  S(ri[address], rj[address]) ≤  α2 

^ S(ri[last name], rj[last name]) ≤  α3 
 

Instead of returning a boolean decision of whether ri and rj are duplicates, the conjunction can 

return an aggregate similarity score that determines the extent of replication of the two 

records [ME97, Coh00]. An alternative method mapped the individual string distances onto a 

Euclidean space to perform a similarity join [JLM03]. In cases where multiple rules describe 

the duplication scenarios, the conjunctive clauses are joined disjunctively. 

One way to overcome the time-consuming process of manually specifying record 

matching functions is to derive them through machine learning. The main difficulty in 

machine learning approaches is the collection of the input training pairs of duplicates and 

non-duplicates. [SB02] proposed an iterative de-duplication system that actively learns as 

users interactively label the duplicates and non-duplicates and add them to the classifiers. An 

accuracy of up to 98% is achievable using Decision Tree C4.5, Support Vector Machine 

(SVM), and Naïve Bayes as the classifiers. The TAILOR system adopt a supervise classifier 

approach; the probabilistic, induction, and clustering decision models are used to machine 

learn the comparison vectors and their corresponding matching or unmatching status 

[EVE02]. 

2.3.1.3 Correlation-based Methods 

Recent approaches towards duplicate detection utilize context information derived from the 

correlations of an entity in order to improve the accuracy of matching [ACG02, LHK04]. 

[ACG02] leverages on the hierarchical correlations between tuples in dimensional tables to 
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detect duplicates with the same correlations across related parent and child tables. [LHK04] 

exploit the context information of the correlated attributes to determine duplicates. Two 

records are duplicates if their context attributes overlap significantly. For example, to 

determine if “Judice L. Y. Koh” and “J. L. Koh” refers to the same author, the spurious link 

method evaluates the extent of overlap in the contextual information of the co-authors, the 

subjects, and the concept hierarchies of the conferences or journals where their works are 

published. 

Rather than inspecting individual attributes and records, correlation-based duplicate 

detection approaches aim at exploiting additional knowledge from the associations between 

attributes and between the records to improve the efficacy of determining duplicates. 

2.3.2 Outlier Detection Methods 

An outlier is an object exhibiting alternative behaviour in a data set. It is a data point that 

does not conform to the general patterns characterizing the data set. Detecting outliers has 

important applications in data cleaning as well as in the mining of abnormal patterns for fraud 

detection, stock market analysis, intrusion detection, marketing, network sensors, email spam 

detection, among others [Esk02, LSM99, PPKG03]. Data cleaning applications depict 

outliers as data noise or errors interfering with data mining mechanisms and thus, eliminating 

outliers leads to better accuracy. In other applications, outliers are irregular patterns from the 

rest of the data and thus entail special notice. 

There are two types of outliers, the class and the attribute outliers [ZW04]. Class 

outliers are multivariate data points (tuples) which do not fit into any cluster formed by the 

remaining data. Intuitively, clustering a data set produces discrimination of class outliers as 

by-products. Attribute outliers are univariate data points deviating from the behaviour of 

remaining attribute points of the data set.  

Existing outlier detection methods have primarily focused on class outliers. 

Numerous methods for identifying class outliers broadly classifies into distribution-based, 
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clustering-based, distance-based and density-based approaches. Detecting attribute outliers, 

on the contrary, had received less attention from the data mining community.  

2.3.2.1 Distribution-based Approach 

Distribution-based approaches are among the first methods designed for detecting outliers. 

Typically, a distribution model (E.G. Gaussian, Normal) that best-fit the values of an attribute 

is used to differentiate points which do not fit into the distribution [BL94, RL87]. Although 

distribution-based methods focus on identifying attribute outliers, the distribution model is 

usually univariate; they do not take into account correlations between attributes and are 

limited to the detection of obvious off-scale values in a single dimension. The accuracy 

largely depends on the best-fit distribution models used, and selecting appropriate models are 

computationally intensive. 

2.3.2.2 Data Polishing 

Data polishing approaches to attribute outlier detection problem construct for each dimension 

a classifier based on the remaining dimensions and the class dimension [Ten04, ZW04]. 

Incorrect predictions are labelled as attribute outliers. The accuracy of data polishing method 

varies depending on the classifier used. Generally, classifiers robust to random data noise 

give better accuracy. In addition, data polishing methods are limited to finding attribute 

outliers resulting in change of class membership. 

2.3.2.3 Clustering-based Approach 

Some clustering algorithms generate outliers as by-products, usually in forms of singletons 

that do not fit into any of the clusters. For example, in [BC00], data points are added to 

clusters incrementally with the objective of minimizing the change in fractal dimensions. 

Outliers are thus isolated into the “miniature” clusters. While these methods are optimized to 

produce clusters rather than outliers, some recent works focused directly on the problem of 

outlier detection using clustering techniques. [HXD03] utilizes the size of each data cluster 

and relative distance from neighbouring clusters to compute its outlier-ness. In [JTS01], a 

Minimum Spanning Tree (MST) is constructed and the clusters at the longest edges are 
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discriminated as outliers. Ren et al. [RRP04] optimized the efficiency of clustering-based 

outlier detection method using a vertical P-tree data representation. In general, clustering-

based outlier detection methods have the difficulty to scale with high-dimensional, sparse, 

and large data sets. The cost of clustering expedite when the data dimensionality and size in-

creases. Aggrawal and Yu developed an evolutionary approach to direct the searches for 

subspace outliers of lower dimensions [AY05].  

2.3.2.4 Density-based Approach 

Breunig et al. [BKNS00] proposed the first density-based outlier detection method. The 

number of points in its surrounding neighbourhood defines a density-based outlier. Isolated 

data points relatively far from its local neighbours are determined by a high local outlier 

factor (LOF). Jin et al. [JTH01] proposed improvement to LOF using pruning of the micro-

clusters of compressed data representation in the feature space.  

Density-based approaches generally suffer from high computational cost due to the 

large number of k-nearest neighbour queries. The accuracy again depends on the number k 

specified as the neighbourhood of the point. The LOCI method reduced the computational 

cost through approximate calculation using a “box-counting” mechanism [PKGF03]. Still, the 

speed and accuracy depends on the number of boxes defined.  

2.3.2.5 Distance-based Approach 

A data point is a distance-based outlier if there exists less than β fraction of other data points 

which are less than κ distance from it [KNT00]. Native distance-based outlier detection 

methods do not scale well with data dimensionality and size. Computational time can be 

reduced by pruning in data partitions [RRK00], p-tree data structures [RRPS04], or distance-

based neighbourhood cells [KN98]. The limitation of distance-based approach lies in the 

selection of β and κ, which are user-defined. Accuracy of the method fluctuates depending on 

these two parameters. Too high β leads to more false positives while low κ causes more false 

negatives.  
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In [KN99], Knorr and Ng mine attribute subspaces in a lattice structure to provide 

specific explanations to the class outlier identified by their distance-based outlier detection 

method [KN98]. This approach is restricted to only class outliers but non-class outliers may 

also contain implicit irregularities in the form of attribute outliers. Whether the presence of 

attribute outliers constitutes class outliers depends on a number of factors, such as the 

dimensionality of the data set, the “strength” of the attribute outliers, and the correlation of 

the outlier attributes and the class attributes. 

2.3.3 Other Data Cleaning Methods 

Apart from duplicate and outlier detection, data cleaning methods also aimed at resolving 

artifacts such as dependency, format, and integrity violations, spelling errors, illegal values, 

and missing values.  

2.3.3.1 Fuzzy Matching 

Given an initial set of clean records, it is possible to identify new records containing 

erroneous strings that match fuzzily to those in the existing records [CGGM03].  Consider 

that a new record <“Usa”, “S Diego”, “California”> is added to a database relation 

R(Country, State, City). Through fuzzy matching of the individual fields with existing tuples 

in R, it is possible to identify that “Usa” is variant of “U.S.A.” and “S. Diego” is a synonym 

of “San Diego”. Fuzzy matching uses the inverted document functions (IDF) of the weighted 

tokens in a record to compute the similarity function, and then identifies K nearest 

neighbours. The method also clusters similar reference records in order to achieve more 

efficient querying of matching records and fields.  

2.3.3.2 Data Profiling 

Data profiling techniques derive descriptive metadata features from individual attributes for 

quality checking of new tuple [RH00]. Some examples of descriptive features include data 

type, length, cardinality, discrete values, minimum and maximum values, and mean. There is 

little research interest in data profiling, but it is a common technique used in commercialized 
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data cleaning products due to its simplicity. Examples of commercialized companies using 

data profiling include data integration solution providers such as Dataflux Corporation 

(http://www.dataflux.com/main.jsp) and Informatica Corporation (www.informatica.com).  

2.3.3.3 Probabilistic Noise Identification 

The LENS systems presented in [KM03] identifies corrupted attribute values through the use 

of 3 probabilistic models of clean and noisy records, and the corruption matrix. The 

probabilistic models are generated through an iterative process of learning the generative 

models and estimating the corruption matrix that indicate which attributes are corrupted by 

noise. 

2.3.3.4 Database Repair 

The class of research on database repair focuses on enforcing integrity constraints to detect 

and eliminate inconsistencies and conflicts in databases. The process of database repair 

involves modifying values or deleting tuples in order to ensure that the integrity constraints 

are satisfied.  [BFFR05] models the database repair process into a cost-model of finding the 

minimal cost repairs to each violation of functional dependencies (FDs) or inclusion 

dependencies (INDs). While [ADNB06] also regard the repair process as a set of value 

modifications, it models the problem into a logical theory of signed formulae with the 

objective of achieving value correction with the least number of modifications. Database 

repairs are also associated with consistent query answering where repairs are related to the 

insertion or deletion of records, depending on the queries [Wij05, BC03].  

2.4 Data Cleaning Frameworks and Systems 

Over the past few years, several data cleaning systems and frameworks become available in 

the marketplace and for public usage, especially on the Web. These tools provide complete 

solution towards the data quality problem and typically address more than one artifact.  
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2.4.1 Knowledge-based Data Cleaning Systems 

The IntelliClean is a general knowledge-based data cleaning system [LLL00]. The 

IntelliClean framework is separated into 3 main stages: (1) Pre-processing steps utilize 

lookup tables and reference functions to standardized the data format, thus removing 

variations in spellings, representations, abbreviations, naming, and measurement units. (2) 

Processing stage performs duplicate detection on the conditioned records using rules 

specified with an expert system; each rule is weight according to its duplicate detection 

effectiveness.  (3) Validation and verification stage for checking of undetected duplicates and 

merged results.  

By allowing representation of the domain knowledge in the data cleaning framework, 

IntelliClean achieves both high recall and precision. Though it focuses on duplicate detection, 

part of the spelling errors, ambiguities in syntactic and semantic representations are resolved 

at the pre-processing stage. 

2.4.2 Declarative Data Cleaning Applications 

The Potter’s Wheel allows users to “interact” with the data cleaning process of detecting 

inconsistencies in structures, discrepancies, and errors. Traditional data cleaners either 

accepts a set of duplicate identification rules (sometimes in form of equational axioms) as 

inputs to their systems or the rules are hard-coded directly into transformation scripts, usually 

not by the end-users. Potter’s Wheel provides a graphical interface for users to specify the 

structural transformation process and discrepancy detection rules called domains. The data 

cleaning process is domain independent because it is entirely user-driven; the system merely 

facilitates the specifications of the data cleaning steps.  

The AJAX approach [GFSS00] models a data cleaning process into a graph of atomic 

transformations and provides SQL extension for each transformation. It supports user 

interventions to fine-tune the data cleaning process and to declare the record matching rules. 

The data lineage facilities makes it possible for users to backtrack steps in the data cleaning 
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process, inspect intermediate results and exceptions. By flagging exceptional cases, the 

process allows human intervention to handle cases that cannot be automatically resolved. 

Also based on declarative data cleaning, ARKTOS provides graphical and declarative 

features to define the data transformation and cleaning tasks in the data warehouse [VVS+00]. 

Users using 2 specification languages define the cleaning rules in ARKTOS:  (1) XML-based 

Activity Definition Language (XADL) and (2) Simple Activity Definition language (SADL). 

The data cleaning rules and tasks model into a pipeline of activities making up the data 

cleaning process. The system measures the quality of data after each activity using quality 

factors.  

In general, declarative data cleaning applications enable users to model their own 

data cleaning process. This is facilitated through user-friendly graphical interfaces equipped 

with declarative features for specifying the rules and tasks. Therefore, such applications are 

also domain independent. 

2.5 From Structured to Semi-structured Data Cleaning 

The proliferation of semi-structured data models such as XML, driven by the popularity of 

the WWW, has created new challenges in data mining. Knowledge discovery activities now 

encompasses the development of new data mining approaches for more effective and efficient 

mining of XML data, some of which leverage on the self-describing nature of XML data to 

provide additional context information to data mining processes [BMBA00, SCH+98].  

Unlike other research in data mining, current works in data cleaning primarily focus 

on structured relational databases and are not applicable or easily extensible to semi-

structured data such as XML. There exist limitations in direct adaptation of data cleaning 

methods for relational data models onto XML data models, given the intrinsic differences 

between XML and relational data models. XML data is hierarchical, but relational data has a 

flat structure. XML data is self-describing and has an inherent ordering. These unique 

characteristics of the XML data models give rise to context information lacking in the 

relational data model. For instance, an XML document contains information about the 
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relationships of entities to one another in the form of the hierarchy; the only types of 

relationships that can be defined in relational tables are the parent and dependent table.  

This section briefly describes the few known research works on XML data cleaning. 

2.5.1 XML Duplicate Detection 

DogmatiX is a duplicate detection method for XML data models [WN05]. Unlike the 

relational counterparts, DogmatiX performs similarity matching of both the data values as 

well as the structures of the target entities. The method addresses two main difficulties when 

detecting duplicates in XML documents:  

(1) In XML, the descriptions of an object are distributed in different elements which are 

not necessarily the children. A child element may be a related object. For example, an 

XML element <Movie> has elements <Title> and <Actors> which is a nested 

structure of <Actor>. While <Title> element is a feature of the movie, <Actors> refer 

to a different object which would have been modelled as a separate table in relational 

model.  

(2) Structural diversity of determining the same object in different XML structures. In 

the last example, the <Actor> elements can also be the direct children of <Movie> 

element. 

To address (1), the descriptive elements of an object are defined heuristically, such as its r-

distant ancestors or descendents. Structural diversity is tackled through the use of object 

definitions that may be provided by the users, to map corresponding objects from different 

XML structures. 

2.5.2 Knowledge-based XML Data Cleaning 

[LTLL03] investigates the numerous limitations of conducting knowledge-based duplicate 

detection based on expert system on XML documents. Three key issues are identified: (1) 

Mapping to an expert system fact template requires well-defined, ordered columns but XML 

documents are inherently semi-structured and often contain nested relations. (2) Efficiency of 
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the data cleaning process is dependent on the parser used. (3) Sorting of XML documents by 

keys used for detecting duplicates in SNM requires mechanism to index the records for 

manipulation, which is achievable using through conversion of the XML document to a 

RDBMs or a flat file. 

Another work related to cleaning XML documents is [YLL03]. A “template-based” 

approach is used to select relevant tags from XML web pages to construct a style-tree (ST), 

with the purpose of eliminating nodes not specified in the style-tree 

2.6 Biological Data Cleaning 

While the problem of data artifacts in biological data has been known for a long time and 

individual artifacts have been reported [OH98, Bre99, BC01, GAD+02, ITA+03, MNF03, 

SFM+99, GAA+00, LKSV92, SS03, Tha99, PHBR04], the development of data cleaning 

approaches in the bioinformatics domain is at its infancy. Very few complete data cleaning 

methods for biological data exist. 

2.6.1 BIO-AJAX 

The BIO-AJAX tool for detecting and resolving duplicate taxonomy of organisms utilize 

prefix-matching strategies to integrate different terms that describe the same species 

[HGP+04]. BIO-AJAX uses a list of prefixes as matching keys to gather all trees refer to the 

same organism. For example, it recognized that the term “homo sapiens” and “homo sapien” 

refers to the same organism (human), given that one is a prefix of another. BIO-AJAX is 

integrate into Treebase (www.treebase.org), a database of published phylogenetic trees and 

related references.  As the name implies, the BIO-AJAX is built upon the AJAX data 

cleaning system for declarative definitions of the matching rules. 

2.6.2 Classifier-based Cleaning of Sequences 

A case study of handling noises in Osteogenesis Imperfecta (OI) related sequences is present 

in [Ten03]. Teng applied three data cleaning approaches to resolve the presence of mis-



 35

classified instances. The first approach utilizes the inherent feature in a C4.5 classifier to 

avoid over-fitting. The second approach removes incorrect instance predictions (filtering), 

and the third method correct instances with its predicted values (polishing). Through these 

cleaning approaches, the classification accuracies improve up to 66%. 

2.7 Concluding Remarks 

Majority of data cleaning methods focus on the more challenging duplicate and outlier 

detection problems, while other approaches address database repair issues related to various 

types of violations, inconsistency, and errors. The data cleaning methods propose in this 

thesis also target attribute and outlier detection. Instead of identifying defects in individual 

records or attribute values, we leverage on the correlations embedded within the data set to 

devise effective methods to identify data artifacts. 

For many domains that involve the analysis and knowledge extraction of large 

volume of data, data quality is an important factor to the accuracy of the analysis and data 

mining methods. Data cleaning is a critical pre-step for improving data quality and it involves 

a wide spectrum of approaches for each type of artifacts. Bioinformatics has the same 

demand for high quality data, but there are limited data cleaning applications in the domain. 

In the first place, there is little understanding of what causes the data quality problem in 

biological data. For this reason, it is essential to first conduct a study of the different types of 

artifacts in biological data.  



 36

Chapter 3: A Classification of Biological 
Data Artifacts 

 

The most incomprehensible thing about the world is that it is comprehensible. 

 

Albert Einstein 
Physicist (1879 - 1955) 
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Bioinformatics is a field where data grows at an exponential rate and knowledge grows only 

at linear rate. The deciphering of the human genomes and of many more organisms bring 

about a quantitative data growth that is inverse compare to its qualitative content. Increasing 

data artifacts depreciate the quality of biological data, and affect large-scale –omics analysis. 

In order to address the data quality problems in Bioinformatics, we must first understand 

what constitute data artifacts in biological data and the sources of these data quality factors. 

In the first part of this chapter, we give a brief description of the background of biological 

data and databases, and the role data cleaning plays in biological database systems. In the 

second part, we present the result of our investigation of factors that causes depreciation of 

biological data quality. Through observations derived from biological databases, we identify 

11 types and 28 subtypes of biological data artifacts and classify them into their physical and 

conceptual groupings. Based on heuristics and the domain knowledge, we develop programs 

to detect these artifacts in representative data sets in order to evaluate the extent of 

manifestation in real-world databases. For each data artifacts, we identify the appropriate data 

cleaning methods.  

The classification of biological data artifacts serves as a “roadmap” for data cleaning. 

Mapping the classification to existing data cleaning methods reveals some data artifacts that 

current data cleaning methods fall short of addressing. To the best of our knowledge, this is 

the first complete study of the data quality issues in biological data. 

3.1 Background 

3.1.1 Central Dogma of Molecular Biology  

Understanding the issues pertaining to biological data artifacts demands the biological 

perspectives. At the core of the biological information system is the central dogma of 

molecular biology that depicts the information flow among the real-world biological entities 

(Figure 3.1). It summarizes the process of “DNA makes RNA makes protein" [Cri58].  
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Deoxyribonucleic acid (DNA) is the hereditary information found in the cell nucleus 

of human or almost all other organisms. A polymer or chain of four nucleotides - Alanine 

(A), Cytosine (C), Guanine (G) and Thymine (T), a DNA sequence is often represented as a 

succession of A, C, G and T in database records. An important property of DNA is that it 

replicates; each strand of DNA in the double helix serves as a pattern for replicating the 

complementary strand. This is critical during cell division so that each cell have the same 

copy of the DNA as the old cell. While DNA serves as the “blueprint” for hereditary 

information during cell divisions, it is not directly involved in the biochemical processes of a 

cell. Rather, proteins are the essential functional units (macromolecules) involved in all 

biochemical processes in living cells. Proteins are made from units of DNA along the 

chromosomes known as Genes through a two-stage process. First, enzymes known as 

polymerases transcribed the DNA to produce messenger RNA (mRNA), a ribonucleic acid 

(RNA) molecule. Second, the ribosome translated the mRNA into a chain of amino acids that 

folds into a 3-dimensional functional protein outside the nucleus.  
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Figure 3.1: The central dogma of molecular biology.  

Figure from http://www.accessexcellence.org/RC/VL/GG/central.html 
 

Biological data are primarily organised around DNA and RNA (or mRNA) nucleotide 

sequences, genes, protein sequences, and 3D protein macromolecular structures; they account 

for 280 out of 500 (56%) biological databases registered at DBCAT catalogue [DBBG00]. 

The remaining 44% of the biological databases contain related literatures, mapping 

information of genes to the genomes, and other miscellaneous information.  

3.1.2 Biological Database Systems 

Biological data management systems usually take the form of publicly accessible biological 

databases [Ste03]. They include primary sequence databases, protein structure databases, 

gene expression databases, micro-array databases, databases of protein-protein interactions, 

and a large number of specialist databases. As of October 2005, the Molecular Biology 
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Database collection [Gal06] listed in total 858 databases classified into 14 categories and 

DBCAT listed 500 databases classified into 7 categories [DBBG00].  

Web-based integration systems, either in the form of integrated query systems or data 

warehouses provide virtual or materialized access to the major primary databases [DMM+03]. 

Virtual integration systems, also known as federated databases, provide a software middle 

layer to query multiple primary databases and extract relevant data into consolidated reports. 

Examples of virtual integration systems include DiscoveryLink [HSK+01], Kleisli [Wong01], 

SRS [ZLAE02], and Entrez [SEOK96]. 

Materialized integration approach adopts a persistent storage of the data using a data 

warehouse. Examples of biological data warehouses are a gene expression data warehouse 

[MT01], GIMS - a genomic data warehouse [CPW+01], a microarray data warehouse 

[FHB+02], Ligand data warehouse [FCM+04], a general sequence information data warehouse 

[SHX+05], a genome data warehouse [KKSL+04]. Organised around specific subject, the goal 

of constructing a biological data warehouse is to facilitate integrative analysis, summarization 

of information, and extraction of new knowledge hidden in the data [BK04, KB05]. This in 

turn, depends on the presence of clean, up-to-date, and well-organised data and is particularly 

difficult in a warehouse environment due to the diversity and distribution of the biological 

data from external sources. Therefore, data cleaning is an essential component in the 

biological data warehousing framework. For instance, Figure 3.2 shows that data cleaning is 

required in the data retrieval and update stages as well as annotation stage of BioWare – a 

biological data warehousing system [KKS+04].  
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Figure 3.2: The data warehousing framework of BioWare 
 

3.1.3 Sources of Biological Data Artifacts 

Many reasons account for the presence of data artifacts in biological databases. Biological 

database records are primarily collected through direct submissions by the worldwide 

experimentalists and sequence centres, bulk submissions from high-throughput sequencing 

projects, or data exchanges between the databases. Adequate quality control of the 

submission process is often lacking, and therefore the correctness of the submitted data is not 

assured. Erroneous data may be mistakenly submitted, especially in projects that produce 

voluminous data.  

Different molecular databases have different data formats and schemas, and 

nomenclature is not standardized across databases. This introduces high level of information 

redundancy because the same sequence may have inconsistent, overlapping, or partial 

information in heterogeneous representations that cannot be easily merged. Some of the 

major databases update one another, replicating partial or full entries from one database to 

another. For example, GenBank [BKL+06] contains data from direct submissions and bulk 
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daily updates from DDBJ [OSGT06] and EMBL [KAA+05], and vice versa. Replication of 

data also happens due to the annotation of same sequences by different groups, submission of 

the same sequence to different databases, or even re-submission of the same sequence to the 

same database either by same or different authors.  

In addition, the primary sequence records in the databases are often enriched with 

additional functional and structural information through manual annotations. The Swiss-Prot 

section of the UniProt database (UniProtKB/Swiss-Prot) is hand-curated by expert annotators 

from the Swiss Institute of Bioinformatics in Switzerland [WAB+06], while GenBank and 

EMBL allow sequence submitters to modify their sequence records with additional 

information. Random errors may escape the inbuilt quality control mechanism of human 

annotation and submitting authors not familiar with data models may input correct 

information in the wrong record fields. Also, sequence annotations may not be consistent 

across databases and interpretations of the same biological entity may differ. Consequently, 

different records describing the same sequences sometimes provide discrepant information.  

Numerous biological databases consist of derived data generated from biological 

analysis, data mining or computational annotations. One example is the TrEMBL section of 

the UniProt database (UniProtKB/TrEMBL); the functional annotations of new protein 

sequences are computationally inferred from similar protein sequences. Computational 

annotations are not completely accurate and are subject to certain degree of annotation errors. 

For example, Wieser et al. [WKA04] detected mis-annotations in UniProtKB/TrEMBL by 

cross-validating its predictive models with Uni-ProtKB/Swiss-Prot.  

3.2 Motivation 

Multiple sources of introducing artifacts to biological database systems, combined with the 

lack of adequate quality control cause a manifestation of low quality data. Data artifacts 

typically affect more than 10% of the records in a biological data set. An earlier study of 

swine lymphocyte antigens (SLA) showed that of all records extracted from public databases, 
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17% of records contained at least one type of artifacts [SKB00]. Korning et al. [KHRB96] 

extracted data from GenBank for the analysis of A. thaliana splice sites. They reported that 

more than 15% of the A. thaliana records from GenBank must be removed in order to achieve 

a reasonable prediction of the splice sites.   

The presence of data artifacts in public sequence data has been known for a long time 

and individual artifacts have been reported, but a complete analysis of the data quality issues 

pertaining to biological data is lacking. Overton and Haas [OH98] studied sequence structure 

violations in molecular databases. The presence of annotation errors was discussed [Bre99, 

BC01, GAD+02, ITA+03, MNF03]. Studies of contaminated sequences were conducted 

[LKSV92, SFM+99, GAA+00]. Some studies have focused on the analysis of specialized 

datasets. Expressed sequence tags (EST) were analysed for presence of contaminations 

[SS03], and the extraction of high quality datasets [Tha99, PHBR04].  

Designing data cleaning remedies requires investigation of the sources of artifacts, 

the mechanism of their introduction into the databases, and their manifestation in the 

databases. Understanding these factors also provides an insight into possible limitations of 

data cleaning methods.  

3.3 Classification 

In total, we observe 11 types and 28 subtypes of artifacts across major nucleotide and protein 

sequence databases. Classified according to their physical and conceptual sources, they 

represent the “roadmap” for cleaning biological data.  
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Figure 3.3: The 4 levels physical classification of data artifacts in sequence databases 

 

The first classification grouped data artifacts according to their presence in data items 

at four levels of detail – individual attributes, individual records, individual databases, and 

multiple databases (Figure 3.3). Such separation follows the intuitive progression of the data 

cleaning process for resolving artifacts at data entities of varying granularity. For example, it 

makes sense to correct individual attribute values before cross-referencing two or more 

attributes for discrepant information. The classification also reflects the complexity of the 

data cleaning steps. Unlike duplicate detection in a single database, the same operation for 
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multiple databases of different schema requires additional mapping steps to identify the 

corresponding attributes. 

The second classification differentiates artifacts by their conceptual sources, 

distinguishing artifacts originating from annotation or implementation processes with those 

inherently parts of the imprecision of biological knowledge (Figure 3.4). This classification 

groups the artifacts according to their conceptual sources of bioinformatics and biological 

origins. Artifacts of bioinformatics sources are imperfections of the information systems that 

deal with how sequences are collected, annotated, and stored in databases. These are data 

management issues from the viewpoint of bioinformatics. Related artifacts are either 

syntactic (related to the design and structure of the databases) or semantic (related to the 

meaning or interpretation of the sequences). Biological artifacts are mistakes due to the 

shortcomings of biology as an empirical science. They reflect the complexity of biological 

systems.  

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3.4: The conceptual classification of data artifacts in sequence databases 
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The next few sections detail the 11 types and 28 subtypes of artifacts identified from 

our study. Examples given in this study are extracted using a number of heuristic methods 

and programs which we developed based on domain knowledge. These examples are found in 

the NCBI Entrez searchable nucleotide and protein databases [SEOK96] and the UniProt 

Knowledge Base (comprises of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL). The 

nucleotide databases accessible via Entrez include GenBank, EMBL, DDBJ, RefSeqs (NCBI-

curated non-redundant set of reference sequences) [PTM05], USPTO (sequences submitted to 

U.S. Patent and Trademark Office), and TPA (third party annotated sequences). The NCBI 

entrez searchable protein databases include GenPept (sequence data from the translated 

coding regions from DNA sequences in GenBank, EMBL, and DDBJ) as well as protein 

sequences submitted to Protein Information Resource (PIR) [WYH+03], SWISS-PROT 

[BBA+03], Protein Research Foundation (PRF), and sequences from solved structures of 

Protein Data Bank (PDB) [DAB+05].  

Most biological database records discussed in this section are collected into the 

online BioDArt catalogue (http://antigen.i2r.a-star.edu.sg/BioDArt). 

3.3.1 Attribute-level artifacts 

Attribute level artifacts are field values with uninformative, invalid, erroneous or ambiguous 

content. We observed four main types of attribute level artifacts - invalid attribute values, 

ambiguous attribute values, dubious sequences, and contaminated sequences.  

3.3.1.1 Invalid  values 

Many attributes of a nucleotide or protein sequence record are free-texts, and therefore not 

restricted to any integrity, format or functional dependency constraint. These attributes are 

prone to data entry or typographical errors such as mis-spellings. 

Spelling errors 

Spelling errors are non-critical but affect the efficiency of keyword searches that demand 

exact matching of the input words. Simple spell-checking mechanisms distinguish spelling 

errors as entities which are missing in the spell-checkers’ thesaurus. In biological texts, the 
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continuous introduction of new names or identifiers for new genes, proteins, diseases and 

drugs, and the combinations of chemical names, pose difficulties in consolidating a complete 

thesaurus for spell checking. This affects the effectiveness of biomedical spell-checkers such 

as Spellex Bio-Tech (spellex.com/Products/biotech.htm), Free Medical Spell Checker 

(www.free-medical-spell-check.com), and Inductel Scientific and Technical Speller 

(www.inductel.com/spel_sci_spell.html); all 3 spell-checkers label “Cystin” - a cilia-

associated protein described in 2002 [HMY+02], as a misspelling for “Cysteine”. 

We detected 63 commonly occurring misspelled words through screening 35,322 

Human Lymphocyte Antigen (HLA) nucleotide annotations using a general-purpose spell-

checker, followed by manual verification. The verification step proved to be a crucial step; 

only 11% of the words identified are misspellings. Among those incorrectly detected by the 

spell-checker are new names, chemical names or linguistic irregularities such as 

“proliferations” and “leukaemias”. Querying the Entrez nucleotide and protein databases with 

these 63 misspelled words returns 7,075 databases records (as of August 2006, data shown in 

BioDArt). For example, the word “mitochondrial” is commonly misspelled as “mitchondrial” 

or “mitochrondrial”; more than 600 records containing either of the two misspelled words. 

Non-specific names 

The ability to identify sequences through their names depends on the specificity of the gene 

or protein names assigned. Ideally, names should be uniquely associated with groups of 

related sequences. However, standardization of naming conventions for biological entities, 

such as in enzyme nomenclature (EC terms) is not completely established. Assignments of 

names to a gene or a protein are often left to the discretion of submitting authors who may 

give improper names to the sequences. Some protein names are numerical; they correspond to 

the locus of the coding genes or an arbitrary form of numbering decided by the 

experimentalists, others are undersized names comprising one or two letters, and some 

chemical rather than common names. For example, the Actin protein recorded in 

ACTM_HELER of UniProtKB/Swiss-Prot database is known as “M” which also denotes a 

gene accountable for the Newcastle disease virus (Locus 1312416B of PRF database). 
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Non-specific names can be detected by screening individual field names in databases 

for given formats (all digits or multiple “-“). Corrections require sequence databases to 

enforce format constraints on the values that are stored in these attributes. If implemented as 

quality control rules in the sequence submission tools such as that of GenBank BankIT or 

EMBL Webin, these constraints will prohibit submissions of attribute values beyond pre-

determined limits. 

3.3.1.2 Ambiguity 

Incomplete standardization of naming conventions also results in a potentially wide spectrum 

of names describing the same sequence. Often enough, a sequence has multiple names 

(synonyms), and different sequences can share the same name (homonyms) or abbreviation. 

Synonyms and homonyms induce ambiguities in the identification of a particular sequence 

using keywords. Searching for a specific group of sequences using names with high 

homonymy usually result in a number of false matches.  

Synonyms 

Due to the lack of controlled vocabulary of biological entities, multiple names reference the 

same protein or nucleotide sequence. Excessive synonymy in namings causes information 

ambiguities. We screened 222,289 sequences recorded in the UniProtKB/SwissProt database 

(release 8.0) for the number of “Synonym” elements at each XML sequence record. 

UniProtKB/Swiss-Prot recorded 53% (122,099) proteins identifiable by up to 15 synonyms, 

among which 144 proteins have more than 10 synonyms (Figure 3.5, data in BioDArt). 81% 

of the synonyms are non-unique, meaning they are assigned to 2 or more proteins. For 

example, the “salivary acidic proline-rich phosphoprotein 1/2 precursor protein” (recorded in 

PRPC_HUMAN of UniProtKB/Swiss-Prot)  is known as “PRP-1/PRP-2”, “Pr1/Pr2”, 

“Protein C”, “PIF-S”, “Parotid double-band protein”, “Pa” as well as “Db-s”. 

In principle, this means that a large percentage of the protein sequences are 

identifiable by multiple names. The prevalence of multiple naming conventions for the same 
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entities is not limited to this data set analysed. Rather, it is a common repercussion of 

incomplete standardized nomenclature and affects numerous sequence databases. 

Protein sequences with 5-15 synonyms

3030

955

501
180 97 76 30 23 10 2 3

0

500

1000

1500

2000

2500

3000

3500

5 6 7 8 9 10 11 12 13 14 15

Number of synonyms

N
um

be
r o

f r
ec

or
ds

 
 

Figure 3.5: Protein sequences recorded at UniProtKB/Swiss-Prot containing 5 to 15 

synonyms 

Homonyms 

The same names or abbreviations may refer to vastly different protein or nucleotide entities. 

While some homonyms are legitimate descriptors for sequences that are found in multiple 

organisms (such as the enzymes), others describe vastly different sequences. For example, 

202 UniProt records containing the Gene field “GK” include glycerol kinases, glutamite 

kinases, guanylate kinases, a hexokinase, a Geko protein, Keratin, and a membrane spanning 

glycoprotein gK.  

Again, we screened the UniProtKB/SwissProt database for the number of protein 

sequences bearing the same “Protein name”. 72% of the proteins recorded in 

UniProtKB/Swiss-Prot have non-unique protein names. Among these, 14% of the protein 

names describe more than 100 other proteins (examples in BioDArt). For instance, 128 

proteins recorded in UniProt is known as “Nucleoproteins”; significant number of these 

proteins is less than 5% similar in their sequences. The diversity of the proteins named after 

“Nucleoproteins” is not surprising, given that this general term refers to any protein 

associated with nucleic acids, and thus encompasses a variety. 
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Extensive synonymy and homonymy are consequences of incomplete standardization 

and lack of standard nomenclature which are critical guidelines governing the naming 

mechanisms of an empirical science [WMN01]. Agreeing on a particular gene or protein 

name facilitates research because it facilitates searches, as well as the mapping of sequences 

across different databases [NW03].  

Research on the disambiguation of protein and gene names that aims at untangling 

the web of synonyms and homonyms [HDR01, YA03, PCG+04] are directly applicable to 

resolving these ambiguities. Text-mining methods, particularly those devoted to solving the 

issue of named-entity recognition, provide dictionaries or thesaurus facilitating the 

clarification of gene and protein names [CHD05, ZZS+04], although molecular terms 

typically mined from biomedical texts may have limited overlaps with databases [SC05]. In 

addition, isolated and usually species-dependent efforts can be noted (e.g., human gene 

names are reviewed by HGNC: http://www.gene.ucl.ac.uk/nomenclature/).  

Misuse of Fields 

Data entry mistakes of the sequence submitting authors to the wrong fields may produce 

ambiguous attribute values. For example, the protein name of UniProtKB/TrEMBL 

[BBA+03] entry Q06524 was “NOTE THAT THERE ARE TWO OVERLAPPING ORFS 

ON THE OTHER strand” since 1996. The error was recently corrected (Release 44) to 

“Ypr151cp”. We also reported a heat-shock protein sequence T45472 in PIR (version 79.1) 

with the gene name “Intron position not resolved (incomplete sequence)” which was later 

corrected.  

Such erroneous attribute values take the form of attribute outliers in a database. 

However, in biological databases, the affected attributes are usually free-texts and therefore, 

the existing data profiling methods which rely on the numerical profiles of the attribute 

values to identify the attribute outliers are not directly applicable.  
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3.3.1.3 Dubious Sequences 

Besides free text attributes, the protein or nucleotide sequence fields are also vulnerable to 

data entry problems and errors, with possible consequence of becoming useless for any form 

of data mining or analysis. 

Uninformative Sequences 

Part of the protein or nucleotide sequences contains abundant number of unknown residues 

“X” or unknown nucleotides “N”. A simple screening of all protein sequences recorded in 

UniProtKB/Swiss-Prot database identifies 13 proteins that have more than 30% unknown 

residues. For instance, the protein recorded in UN19_CLOPA contains the sequence 

“XXFESXEMR” which seems to be a motif representation rather than a protein sequence. A 

similar test on the dataset of 99 Lymphocytic Choriomeningitis Virus (LCMV) nucleotide 

sequences retrieved from Entrez identified 3 records [AH004715 AH004719 and AH004720] 

which are completely made up of “N” sequences. Three other nucleotide sequences [GI: 

912860, 912868 and 912876] have 90% unknown sequence content.  

These uninformative sequences are typically the result of erroneous sequence entry 

by the submitting authors. Such mistakes are easily avoidable if format constraints are 

adequately imposed upon new sequence submitted from the public to these databases. 

Undersized sequences 

Some protein or nucleotide sequences are too short for any meaningful form of analysis. We 

searched the Entrez system for sequences of a specified length.  (e.g. query “4[SLEN]” where 

SLEN limits the search to sequence length). We observed 3,749 out of 10,350,551 proteins 

collected in the Entrez accessible protein databases are shorter than four residues (as of Aug 

2006). In fact, 2,026 proteins contained only a single residue. Similarly, 1,957 out of 

87,514,218 searchable nucleotide sequences from Entrez are shorter than six bases (as of Aug 

2006). These undersized sequences are found in several major sequence databases (Figures 

3.6 and 3.7, data in BioDArt).  
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Undersize protein in major databases
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Figure 3.6: Undersized sequences in major protein databases 
 

Some naturally occurring short sequences do exist such as thyrotropin-releasing 

hormone (TRH) tri-peptides and Glutathione. However, we found by manual inspection that  

with few exceptions, the undersized sequences in databases are erroneous. While some are 

erroneous submission of small sequence fragments, others are results of erroneous translation 

of the complementary nucleotide sequences to the proteins. For example, protein sequence 

which was produced by conceptually translating the “96 ..>98” region (where “..>” means the 

region extends beyond position 98) of its coding gene contain only a single amino acid. Also, 

there are cases of partial entry of sequences; submission of the full sequences are not 

completed.  
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Figure 3.7: Undersized sequences in major nucleotide databases 
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An implementation to screen for undersized sequences is trivial. A more generalized 

approach, however, is to impose constraints on the minimum length of the sequences 

submitted to the primary databases.  

3.3.1.4 Contaminated Sequences 

Contaminated sequences are nucleotide sequences containing biological sequence segments 

of foreign origin. These foreign contaminants include insertions of transposable elements 

[Bin93], clones from heterologous sources [WDS+93], oligo-nucleotides such as adaptors, 

linker and PCR primers [CD04], bacteriophage [May78, LKP92, ŁCS+04], and cross-

contaminated samples in the laboratories [DA95]; a comprehensive description of the various 

types of contamination is given in Sorek and Safer [SS03].  

Sequence contamination studies have focused largely on contamination of cloning 

vectors. Vectors are agents that carry DNA fragments into a host cell. They are usually used 

for cloning (cloning vectors) or for expressing genes (expression vectors). The vector 

sequences probe and bind the DNA fragments at the 5’ and 3’ sites (Figure 3.8). The DNA 

fragment is then isolated from its vectors by cutting at the restriction enzyme sites. Some of 

the common vectors used in experiments include the plasmid, Lambda phage, cosmid and 

yeast artificial chromosome (YAC). In cases when the gene is not completely isolated from 

its vectors, the vectors become part of the gene submitted to the databases. 

 

Figure 3.8: Nucleotide sequence with the flanking vectors at the 3’ and 5’ ends 
 

The problem of vector contamination was discussed as early as in 1992 when 0.23% 

of 20,000 eukaryotic entries were found contaminated [LKSV92]. [SFM+99] reported that up 

to 0.36% of the sequences in GenBank were subject to similar contaminations. Vector 

contaminated sequences were identified by matching the sequences with a database of vector 
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segments [MGB99]. This approach was adopted by NCBI VecScreen tool 

(www.ncbi.nlm.nih.gov/VecScreen) to screen all submitted sequences. However, our study 

indicated that VecScreen depends on the completeness of its UniVec cloning vectors database 

(ftp.ncbi.nih.gov/pub/UniVec).  

Using BLASTN [AMS+97], we matched 8,850 C. albicans nucleotide sequences 

retrieved from Entrez nucleotide databases with 18 cloning vectors commonly used for 

C.albicans. The program identifies 15 potential contaminations (data in BioDArt). For 

example, the regions at positions 1,737 to 1,825 - the 3’ end of the C. albicans iro1 gene 

(Entrez GI: 9588659) is identical to a fragmented region of C. albicans vectors pDDB57 

(Entrez GI: 6651387), and pGEM-URA3 (Entrez GI: 50363243). This indicates the iro1 gene 

submitted to EMBL is likely contaminated with part of its cloning vectors. 

Though all new sequences submitted to the major databases are screened for vector 

contaminations, contaminations may still be missed because the vector databases are not 

updated. For instance, the cloning vectors of C. albicans were not found in the UniVec 

database, last updated in 1999. 

3.3.2 Record-level artifacts 

Conflicting information exists in the single record among two or more attributes – we call 

them the record-level artifacts. Two types of record-level artifacts are found in the sequence 

records – sequence structure violations and inconsistent content with related references.  

3.3.2.1 Sequence Structure Violations 

In eukaryotes, the typical structure of a gene follows order of the promoter region, the non-

coding 5' untranslated region (5' UTR), alternating series of introns and exons, and ending 

with the 3' untranslated region (3’ UTR) (Figure 3.9). The promoter, 3’ UTR and 5’ UTR 

regions contain regulatory elements that control protein synthesis. During splicing, the introns 

are removed from the primary transcript while the exons assemble to form the mature RNAs 

which are eventually synthesize to proteins.  
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Figure 3.9: Structure of the eukaryotic gene containing the exons, introns, 5’ 

untranslated region and 3’ untranslated region  
Figure from http://genome.wellcome.ac.uk/doc_WTD020755.html 

 

Corresponding feature attributes of a gene database record contain non-overlapping 

positions ordered according to the gene structure. Incorrect specification of starting or ending 

positions of the regions, either by the database annotators or the submitting authors may 

cause erroneous overlapping regions, except for alternatively spliced cases.  

The structural violations can be determined through comparing the positions and 

orderings of related features. The screening program takes into consideration domain rules for 

differentiating cases of alternative splicing from genuine intron/exon overlaps. Through this 

simplistic approach, we identify 9 fungal nucleotide sequences containing erroneous 

Intron/exon overlaps (Data in BioDArt). For example, an Aspergillus niger sarA gene 

submitted to GenBank (Entrez GI:1061033) has overlapping intron and exon 1, at regions 

239..398 and 397..500 respectively.  

Our method is limited by the accuracy and the completeness of the domain rules. In 

[OH98], these domain rules are machine-learned using case-based reasoning. The result is a 

rule-based sequence structure parser capable of identifying and correcting 60% of the 

complete coding sequences in GenBank.  
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3.3.2.2 Inconsistent with related references 

Sequence annotations are typically derived from related literature references. Database 

curators enrich the sequence records with information that they have read from the reference 

articles. As with any manual annotation, the process is susceptible to human data entry errors, 

thus producing sequence annotations that are inconsistent with the complementary references 

provided.  

In a study of Dengue virus, we observed mis-annotations in Swiss-Prot record P27915 

and PIR record GNWVD3 [KHL+06]. The NS1/NS2A and NS4A/NS4B junctions given in 

these Dengue type 3 complete RNA sequences did not match the regions given in the 

reference of these records [OS90]. While manual checking of such inconsistencies by cross-

referencing the database content with their literatures is tedious, computational detection of 

discrepancies of the sequence annotations with its references is non-trivial and may require 

complex text-mining solutions. Nevertheless, research efforts such as the BioRAT 

information extraction system provide the basis for the development of a possible solution 

[CBLJ04]. 

3.3.3 Single Database level artifacts 

Single database-level artifacts refer to redundancy and discrepancy of the information that 

exists in two or more records in the same database. Since these artifacts affect records from 

different databases, we also classify them as multiple-database level artifacts.   

3.3.3.1 Annotation errors 

Annotation is the process of assigning functional descriptions to new sequences. Both 

computational and manual annotation processes are susceptible to annotation errors – 

discrepant descriptors assigned to two or more sequences.  

Different interpretation of the same sequence 

Biologists studying the same sequences may provide different interpretations. A comparative 

study of the annotations by three different groups of 340 genes of M. genitalium genome 
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showed that incompatible descriptions were assigned to 8% of these genes [Bre99]. In one 

example, the same mg085 protein was separately identified as a HMG-CoA reductase (EC 

1.1.1.34), a NADH-ubiquinone oxidoreductase (EC 1.6.5.3), as well as an ATP/GTP enzyme. 

A study of the different annotations of the C. trachomatis genome also showed 37% of the 

dataset contains inconsistent functional assignments [ITA+03]. 

[MNF03] estimated that annotation discrepancies affect 5% to 40% of the public 

protein and nucleotide sequences. The rate is a conservative under-estimation because in 

reality, the artifacts accumulate and propagate in multiple databases through transformations 

and data exchanges. 

Putative Features 

Due to the rapid accumulation of new uncharacterized sequences (only sequences; no 

functional or structural descriptions), there is a widespread use of computational annotation 

methods. Most of them rely on the inferences from homologous sequences. This depends on 

the assumption that highly similar sequences have the same biochemical properties and 

functions. Nevertheless, whether two sequences are “homologous” depends on individual 

judgements, thus giving rise to annotation discrepancies.  

Putative features refer to attributes of the query sequence that are inferred from 

attributes of similar sequences found in the database. The correctness of putative features 

largely depends on the thresholds used as similarity cut-offs. In some cases, even the highest 

matching sequence from database search may have weak sequence similarities and therefore 

might not share similar functions with the query sequence. Comprehensive overviews of the 

limited accuracy of putative features are given in [Bor01, GAA+00].  

The result of computational inferences can be an under- or over-prediction. Under-

prediction means only one or a few of the properties of the matching record are adopted to the 

query sequence. An over-predicted annotation assignment transfers all annotations of the best 

matching sequence without additional verification. Some active sites dependent functional 

properties cannot be extrapolated from similar sequences and “blind” inference can cause 

erroneous functional assignment.  
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Also, it is not always obvious to the database users which attributes are putative. The 

users are therefore unable to judge the credibility of a given record. Indicating the putative 

features of a submitted sequence to public domain databases is encouraged yet not strictly 

enforced. GenBank depends entirely on the goodwill of sequence submitters to label the 

putative features. In curated databases such as UniProtKB/Swiss-Prot, descriptions of protein 

sequences whose functions are putatively inferred start with the word “Putative”. Putative 

features are also separately marked either with “Potential”, “By Similarity” or “Putative” 

(according to section 2.4 of www.expasy.org/sprot/userman.html#contents).  

While annotation errors and discrepancies affect a significant percentage of the 

publicly available protein sequences, data cleaning methods that address them are lacking. 

Among the very few known strategies are [WKA04, KL05]. Aggravating the data quality 

problem, annotation errors are not isolated cases of the affected sequence but proliferate to 

new sequences with functional assignments drawn from the mis-annotated sequences. Details 

of the proliferation rate of mis-annotations are discussed in Giks et al. [GAD+02].  

In Chapter 4 and 5, we introduce a general attribute outlier detection method that is 

capable of accurate detection of annotation discrepancies in protein annotations. Unlike 

classical outlier detection methods, we leverage on the correlation between attributes to 

determine outlier entities.  

3.3.3.2 Sequence Redundancy 

As discussed in section 3.1.3, various factors contribute to sequence redundancy. In order to 

estimate the extent of redundancy in major sequence databases, we screen 4,431 fungal 

sequences in Entrez nucleotide databases using a simple rule:  

Two records are duplicates if the sequences are identical and they belong to the same 

species. 

The same rule is used in the UniParc database to merge redundant sequences from PIR and 

Swiss-Prot [LDB+04]. Of the records from 4 nucleotide database sources - EMBL, DDBJ, 

GenBank, and RefSeq, 7% contained sequences described in other records. If duplicate 
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sequences identified from this naïve rule are trivially merged, the redundancy of the dataset 

will reduce by 81% (from 299 records to 58 records). However, manual verifications show 

that some sequences identified by this naïve rule sometimes belong to different strains, and 

therefore may have different feature descriptions. This difference, however, is not usually 

obvious from inspecting the content of the database records. It is also not obvious if identical 

sequences of dissimilar isolates, clones or specimens come from the same strain. 

In general, whether to merge the duplicates detected depend on factors beyond on the 

similarity of the records. Rather, different types of duplication exist. Similarly, in protein, we 

observed four different types of duplication (details in Chapter 6). As such, existing duplicate 

detection methods that consider duplication as a Boolean property are not directly applicable. 

3.3.4 Multiple Database level artifacts 

Massive transformations occur during exchange and integration of sequence records from 

multiple databases. Defective data transformation from syntactically different databases may 

result in systematic errors. 

3.3.4.1 Incompatible schema 

Sequence data are repeatedly copied, corrected, and transformed among heterogeneous 

databases. Matching the fields in databases with dissimilar schemas sometimes introduce 

artifacts because of schema mismatches.  

Concatenated values   

During data transformation, 2 or more attributes are sometimes concatenated into a single 

attribute when the target database schema does not contain structures for some of the fields in 

the original schema. For example, the function, sub-cellular location, tissue specificity, and 

other functional descriptors of a UniProtKB/Swiss-Prot sequence map to the 

Seqdesc_comment attribute of the corresponding Entrez record (Figure 3.10). 
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<comment type="function"> 
    <text>Shows anti-epileptic activity. Shares high homology 
with depressant insect toxins, but shows very weak toxicity 
against mammals an insects and no obvious symptoms on 
insect larvae</text> 
</comment> 
<comment type="subcellular location"> 
    <text>Secreted protein</text> 
</comment> 
<comment type="tissue specificity"> 
    <text>Expressed by the venom gland</text> 
</comment> 
<comment type="mass spectrometry" mass="6730.4" 
method="Electrospray"> 
    <location> 
      <begin position="22"/> 
      <end position="82"/> 
    </location> 
    <note>Ref.1</note> 
</comment> 
<comment type="similarity"> 
    <text>Belongs to the long (4 C-C) scorpion toxin 
superfamily. Sodium channel inhibitor family. Beta 
subfamily</text> 
</comment> 
 

<Seqdesc> 
    <Seqdesc_comment>[FUNCTION] Shows anti-epileptic  
activity. Shares high homology with depressant insect toxins,  
but shows very weak toxicity against mammals an insects 
and  
no obvious symptoms on insect larvae. 
    </Seqdesc_comment> 
</Seqdesc> 
    <Seqdesc_comment>[SUBCELLULAR LOCATION]  
Secreted protein. 
    </Seqdesc_comment> 
</Seqdesc> 
<Seqdesc> 
    <Seqdesc_comment>[TISSUE SPECIFICITY] Expressed  
by the venom gland. 
    </Seqdesc_comment> 
</Seqdesc> 
<Seqdesc> 
    <Seqdesc_comment>[MASS SPECTROMETRY] 
MW=6730.4; METHOD=Electrospray; RANGE=22-82; 
NOTE=Ref.1. 
    </Seqdesc_comment> 
</Seqdesc> 
<Seqdesc> 
    <Seqdesc_comment>[SIMILARITY] Belongs to the  
long (4 C-C) scorpion toxin superfamily. Sodium channel  
inhibitor family. Beta subfamily. 
    </Seqdesc_comment> 
</Seqdesc> 

Figure 3.10: The functional descriptors of a UniProtKB/Swiss-Prot sequence map to the 

comment attributes in Entrez 

 

Such compounded fields reduce the structure of a database and cause difficulties in 

extracting specific data. In [HKK03], we extracted gene names and protein synonyms from 

Uni-ProtKB/Swiss-Prot and LocusLink [PM01] records for purpose of text-mining protein-

protein interactions from PubMed abstracts. This extraction was complicated because 

multiple names were concatenated in a single field using “and”, “or” or commas as 

separators. In Uni-ProtKB/Swiss-Prot, this problem was resolved in later releases.  

Mis-fielded values 

If the target database schema does not contain attributes designed for a particular piece of 

information, such information are inserted into the wrong fields. For example, the data 

schema of Entrez records does not contain separate fields for the sources of sequences from 

direct submission. The date of submission and the author address are therefore inserted into 

the reference TITLE and JOURNAL attributes (Figure 3.11).  
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Figure 3.11: Mis-fielded reference values in a GenBank record 

 
Incorrect fitting of field values during data transformations reduced the effectiveness 

of obtaining specific and meaningful query results. When constructing a relational genomic 

data warehouse of database records extracted using Entrez, we had to differentiate between 

valid reference field values and those describing the sequence submission sources. 

3.3.4.2 Data Provenance Flaws 

Data provenance is the understanding of data origin and its transformation over a series of 

updates. Data provenance information is important for data miners who need to keep track of 

critical changes to the data records which may affect the analysis results derived from the 

older versions. 

In some sequence databases (PDB, PIR, among others), data provenance information 

is not explicitly captured. Minimal revision history such as dates of modification and 

indications of changes in main sections (annotation or sequence) were provided. Database 

users cannot reconstruct how a sequence was added to the database and the subsequent 

changes (corrections, additions, and deletions) made to a given sequence record. Comparing 

the current release of a data record with its previous version in earlier releases usually 

provides the details of changes. Yet, the archives of past releases of these databases are not 

necessarily available.  

However, recent efforts by UniProt significantly improved the data provenance 

concern in the bioinformatics data community. The UniSave annotation version database 

accurately documents the modifications that have been made to every UniProt proteins 

[LNZA06]. 
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As there was no agreement among different database groups to maintain the integrity 

of data across multiple databases, modifications and deletions made to a record in one 

database are also not necessarily propagated to other databases. 

3.3.4.3 Erroneous Data Transformation 

Table 3.1: The disulfide bridges in PDB records 1VNA, 1B3C and corresponding Entrez 

record GI 494705 and GI 4139618 

Positions of disulfide bonds in PDB record 
IVNA 

Positions of disulfide bonds in Entrez 
record 494705 

(12, 65) (16, 41) 
(16, 41) (25, 46) 
(25, 46) (29, 48) 
(29, 48)  

Positions of disulfide bonds in PDB record 
IB3C 

Positions of disulfide bonds in Entrez 
record 4139618 

(11, 64) (15, 40) 
(15, 40) (24, 45) 
(24, 45) (28, 47) 
(28, 47)  

 

Errors may be generated from system defects in data integration mechanisms. The 

transformation in Entrez caused records imported from PDB to show incorrect disulfide 

connectivity patterns in the features section of imported records. Table 3.1 shows an example 

of missing disulfide bridges in records imported from PDB records. In all these cases, one 

end of the missing bridge occurs on the last residue of the sequences.  

3.4 Applying Existing Data Cleaning Methods 

We summarize the possible data cleaning remedies for each of the 11 types of artifacts and 

their limitations in Table 3.2.  Some artifacts can be detected using simple format constraints 

of individual fields (Undersized sequences, Uninformative sequences, Non-specific names), 

while some require serious data processing in order to be identified (Contaminated 

sequences, Sequence structure violations) and others require certain level of expert 

verifications (Spelling errors, Synonyms, Homonyms/Abbreviations). Artifacts such as 

Incompatible schema, Data transformation errors, and Data provenance flaws are most 
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appropriately resolved by the database developers through re-design of the systems and 

databases. Although advancement in text-mining may facilitate cross-checking, at this point 

of time, inconsistency with related references are still determined primarily through manual 

checks. 

 
Table 3.2: Summary of possible biological data cleaning remedies 

Types of artifacts Possible remedies Limitations or requirements 

Spelling errors Spell checkers New names and chemical names are 

often mistaken as misspellings.  

Non-specific names Format constraints - 

Ambiguity Disambiguition of gene and protein 

names [HDR01, YA03, PCG+04] 

 Detection is possible but correction of 

names may require expert knowledge.

Dubious sequences Format constraints - 

Vector contaminated 

sequences 

Sequence similarity searches against 

updated vector database [VecScreen]

Accuracy depends on the currency of 

vector databases 

Sequence structure 

violations 

Detection using domain rules learned 

from known structural violations   

[OH98] 

Alternative splicing cases can be 

mistaken as violations. 

Inconsistency with 

related references 

Cross-checking of database records 

with full reference texts 

Mainly manual. 

Annotation errors Outlier detection Existing class outlier detection 

methods are not directly applicable 

Sequence redundancy Duplicate detection Multiple types of duplicates exists 

Incompatible schema Re-design of schema - 

Data provenance flaws Database maintenance using 

metadata. 

- 

Erroneous data 

transformation 

Correct system bugs - 

 
 

This thesis focuses on the Annotation errors and Sequence Redundancy. If an 

annotated attribute exhibits abnormal correlations with other annotated descriptors of the 

same sequence, it is likely that the outlier attribute is erroneous. Based on this idea, outlier 

detection approaches clearly provides a way to determine annotation errors. However, 

existing outlier detection methods target at class outliers and do not regard the correlations 
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between the attributes. Similarly, existing duplicate detection methods do not take into 

account the presence of multiple types of duplicates. In the next 3 chapters, we introduce new 

correlation-based data cleaning methods which enable the detection of these 2 types of 

artifacts. These methods, however, are general and are not restrictively applicable to 

biological data.  

3.5 Concluding Section 

As biological data continue to accumulate exponentially, biological sequence databases are 

confronted with a critical need to tackle the corresponding depreciation of data quality. Our 

analysis of the presence of data artifacts indicates that the data quality problem is a collective 

result of 11 types and 28 sub-types of artifacts at the field, record, single and multiple-

database levels. It is also a combinatory problem of the bioinformatics that deals with the 

syntax and semantics of data collection, annotation, and storage,  as well as the complexity of 

biological data. 

An assembly of data cleaning methods is required to eliminate these artifacts. Some 

artifacts can be resolved partially or completely using existing data cleaning methods; certain 

heuristics methods which we have developed to screen the presence of artifacts in biological 

data sets and databases can be expanded into complete data cleaning solutions. For more 

complicated artifacts such as annotation errors and sequence redundancy, correlation-based 

data cleaning approaches explore in the remaining chapters of this thesis provides new 

strategies for detecting the outliers and duplicates. 
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Chapter 4: Correlation-based Detection 
of Attribute Outliers using ODDS 

A journey of a thousand miles begins with a single step. 

Confucius 
Teacher and Philosopher (BC 479-551) 
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An outlier is an object exhibiting alternative behaviour in a data set. It is a data point that 

does not conform to the general patterns characterizing the data set. Outlier detection has 

important applications in data cleaning. It provides the basis of finding errors and 

discrepancies that account for data noises reducing the accuracy of the mining and analysing 

large volume of data.  

Existing outlier detection methods focus on class outliers and research on attribute 

outliers is limited, despite the equal role attribute outliers play in data quality depreciation. 

Methods for detection of class outliers rely on rarity observed from the distribution, density 

or distance of the tuples to determine outlier-ness. For attributes, however, rarity does not 

necessarily equate abnormality. Rather, an attribute outlier is defined by its deviating 

correlation behaviour with respect to other attributes.  

In this chapter, we propose a novel correlation method to detect attribute outliers in 

databases. The method, which we call ODDS (for Outlier Detection from Data Subspaces) 

regards attribute outlier as a local deviator and systematically searches the data subspaces to 

identify possible outliers. ODDS is a general method, therefore both non-biological and 

biological applications are discussed.  

We formulate three metrics to evaluate outlier-ness of attributes, and introduce an 

adaptive factor to distinguish outliers from non-outliers. We also devise two filtering 

strategies to reduce the complexity of the ODDS algorithm. Experiments with a synthetic 

data set indicate that our proposed ODDS method achieves an accuracy of up to 88%. 

Following the discussion in Section 3.4, we demonstrate that ODDS is effective in identifying 

annotation errors in the UniProt protein database. 

4.1 Introduction 

Outlier detection is the process of identifying outliers that do not conform to the general 

behaviour of the data set. Contrary to other data mining methods aim at determining 

predominant patterns in majority of the data, outlier detection methods target the under-

represented, abnormal patterns that deviate from the rest of the data. These patterns are often 
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the consequences of data artifacts such as errors, discrepancies, spelling errors, illegal values, 

and multiple types of violations. Therefore, outlier detection is the basis for data noise 

reduction in data cleaning, and is an imperative step towards improving the accuracy of any 

data mining and analysis applications.  

Besides data cleaning, outlier detection is also the foundation of applications such as 

fraud detection, stock market analysis, intrusion detection, network sensors analysis, and 

email spam detection where the presence of outliers suggest abnormal signals entailing 

special notice and further investigation [Esk02, LSM99, PPKG03]. 

4.1.1 Attribute Outliers and Class Outliers 

Existing outlier detection methods focus primarily on class outliers - multivariate data points 

(tuples) which do not fit into any class by definitions of distance, density, or nearest 

neighbour [ZW04]. Comparatively, data cleaning research have overlooked developments in 

the detection of attribute outliers - univariate points that exhibits deviating correlation 

behaviour with respect to other attributes although for a number of reasons, detecting 

attribute outliers is an equivalently important problem in data cleaning.  

First, class outliers are often the result of one or more attribute outliers. Correcting or 

eliminating only the affecting attributes rather than the tuples has the advantage of fixing the 

abnormal behaviours while retaining information. Second, even when attribute outliers do not 

affect class memberships, they may still interfere with the data analysis mechanisms as data 

noise. Third, for many real-world data sets that do not contain class attributes, it is still 

meaningful to identify attribute outliers because they are sources of errors. One example is 

the UniProt database which contains the functional, structural, and physico-chemical 

descriptions of proteins [WAB+06]. Though there is no meaningful class attribute for 

proteins, maintaining correctness of every detail provided in these records is critical, given 

that the worldwide biological researchers reference them extensively for analysis and 

experimental planning. 
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The nature of the outlier patterns associated with class and attribute entities differ. A 

common approach for detecting class outliers is to cluster the tuples in order to isolate the 

class outliers as singletons. However, applying the same clustering technique to attributes is 

only effective in finding rare attribute values, which are not necessarily attribute outliers. 

While we detail this observation in Section 4.2.2, it suffices to mention here that for attribute 

outliers, rarity does not equate abnormality. Rather, the deviating correlation behaviour of an 

attribute with respect to other attributes within a localized subspace defines its outlier-ness.  

4.1.2 Contribution 

This chapter focused on a novel correlated-based detection method for attribute outliers. We 

call the method ODDS to denote attribute Outlier Detection from Data Subspaces. In contrast 

to a global property that is applicable to all dimensions of the data set, we consider an 

attribute outlier as a localized deviator of a particular subspace. Our notion of attribute 

outlier-ness is therefore a bivariate property of both the target attribute and a correlated 

neighbourhood. The ODDS algorithm effectively iterates through the data subspaces to 

compute the outlier scores for each bivariate tuple of attribute outliers. The ODDS method is 

effectively applicable to the identification of annotation errors in a large protein database. 

Specific contributions of this work include: 

1. A formal definition of attribute outliers based on the correlation behaviour of 

attributes in data subspaces.  

2. Three new metrics O-measure, Q-measure and Of-measure quantify the deviating 

correlation behaviour of an attribute. O-measure is the most accurate while Q-

measure is computationally less intensive. Of-measure is devised for sparse data sets 

containing vast occurrences of rare attribute values which are not outliers.  

3. An adaptive Rate-of-change factor selects optimal thresholds for distinguishing the 

outliers from non-outliers in any given data set. These automatic and data-dictated 

thresholds remove dependency on user-defined parameter. 
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4. The ODDS algorithm systematically detects attribute outliers in data subspaces, 

together with two strategies to filter subspaces that do not contain attribute outliers. 

The organization of the rest of this chapter is as follows. A motivating example is given in the 

next section. Section 4.3 details the formal definitions. In Section 4.4, we present the ODDS 

algorithm, and experimental evaluations follow in Section 4.5. We conclude in Section 4.6. 

4.2 Background 

Attribute outliers are generally under-studied in outlier detection research. Comparatively, 

methods for detecting class outliers are common; the data cleaning survey in Chapter 2 

elaborates some of these methods. Among the few attribute outlier detection methods are 

distribution-based (section 2.3.2.1) and data polishing (section 2.3.1.2) approaches. In Section 

4.5, we compare the performance of ODDS to the data polishing method using C4.5 as the 

classifier – the same strategy used in [ZW04].  

4.2.1 Motivating Example 

Table 4.1: World Clock data set containing 4 attribute outliers  

 Country State City Day Time† Weather 

1 U.S.A California LA Tue 8:40pm Sunny 

2 U.S.A California LA Tue 8:40pm Rainy 

3 U.S.A California VancouverY WedZ 8:40pm Sunny 

4 U.S.A California LA Tue 8:40pm Storm 

5 U.S.A California LA Tue 8:40pm Snow 

6 Canada British Columbia Vancouver Tue 8:40pm Storm 

7 Canada British Columbia Vancouver Tue 8:40pm Sunny 

8 Canada CaliforniaW Vancouver Tue 8:40pm Rainy 

9 Canada B. C.X Vancouver Tue 8:40pm Rainy 

10 Canada British Columbia Vancouver Tue 8:40pm Rainy 

11 Micronesia Ponape Palikir Wed 2:40pm Storm 
† Class attribute W, X, Y, Z Attribute outliers 

We illustrate the rationale of key concepts in ODDS using a simple example in Table 4.1. 

The example is a World Clock data set, with the class attribute Time. It contains 4 attribute 

outliers in record 3, 8, and 9. ‘B.C.’ (X) is an unlikely abbreviation of British Columbia and 
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‘California’ in tuple 8 (W) is an erroneous data entry. While it is easy to segregate X from the 

distribution model of all attributes in the State dimension, discriminating W is more 

complicated because it seems to be a perfectly legitimate value in the same distribution. 

Similarly, the erroneous ‘Vancouver’ (Y) and ‘Wed’ (Z) are non-obvious.  

Nevertheless, observations drawn from the supports or frequencies of attribute 

combinations provide hints for determining all these attribute outliers (Figure 4.1): 

Observation 1: For attribute outliers, rarity does not equate outlier-ness. Tuples with one or 

more rare values may possibly be class outliers, but rare attributes are not necessarily 

attribute outliers. Consider Case C – although the tuple is a perfectly legitimate class outlier 

belonging to the rare class of ‘2:40pm’ in Table 4.1, individual attributes of the tuple - 

‘Micronesia’, ‘Ponape’ and ‘Palikir’ are consistent in their correlation behaviour and are not 

erroneous, even if they are rare in individual dimensions of Country, State and City. 

 

Figure 4.1: Selected attribute combinations of the World Clock dataset and their 

supports 

 

In a similar biological example, 3 out of 208,005 tuples in the UniProt protein 

database (Release 7.1) contain the values <’Parkin’,‘PKRN’,‘S-nitrosylation’> for attributes 
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Protein name, Gene name and Keyword respectively. Despite rarity in their dimensions, they 

are not attribute outliers. In reality, few known protein sequences are associated with the 

Parkinson disease, but they are consistently known as Parkin, are products of PKRN gene, 

and are post-translationally modified by nitrosylation. 

Observation 2:Attribute outliers are localized correlation deviators. Rarity may be a good 

indicator for class outlier-ness, but attribute outliers are determined by their deviating 

correlation behaviour within a localized subspace. In simple sense, an attribute outlier shows 

abnormal associations with other attributes within a data subspace. Consider Case A in Figure 

4.1 –‘California’ is seldom associated with ‘Canada’ and ‘Vancouver’, compared to that of 

‘Vancouver’ and ‘Canada’ which co-occur in 5 tuples. Comparatively, only 1 sub-tuple of 

<’Canada’,‘California’> and of <‘California’,‘Vancouver’> exists. Intuitively, the greater the 

difference in the sub-tuple supports, the higher is the likelihood that ‘California’ is an 

attribute outlier in the combination <’Canada’,‘California’,‘Vancouver’>. This forms the 

basis of our outlier metrics. The same analogy identifies X in Case B.  

Observation 3: A tuple may contain more than one attribute outliers. In real-world databases, 

a tuple often contain multiple attribute outliers. The multiplicity of attribute outliers within 

the same tuple interferes with the correlation patterns of one another, creating complications 

in segregating individual outliers. However, an attribute outlier can be isolated at lower 

dimensional attribute combinations. Consider Case D – the two attribute outliers separate 

when they are projected into different 4-attribute sub-tuples.  

Besides other attribute outliers in the same tuple, noisy and uncorrelated dimensions 

may also interfere with the outlier detection algorithms. For example, the Weather dimension 

in Table 4.1 does not relate to any other attributes but contain non-deterministic/random 

values interfering with the correlation patterns. Since ODDS algorithm systematically 

explores individual subspaces for presence of attribute outlier, it naturally generates 

subspaces that do not contain any of the noisy dimensions.  

To isolate the attribute outliers from non-outliers, users typically need to define a 

threshold. This is not viable in practice, given that the number of outliers in the real world 
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dataset varies depending on the noise level of the data set and the data dimension under study. 

In the ODDS algorithm, the optimal threshold is determined from the maximal Rate-of-

change which intuitively marks the point where sorted outlier scores drastically change. Rate-

of-change is the natural boundary separating the outliers and non-outliers, and it removes the 

dependency of the outlier detection on any user-specified parameter.  

Summarizing, unlike class outliers, rarity is not an adequate measurement of attribute 

outlier-ness. Rather, attribute outliers are local correlation deviators of a given subspace. 

Here, we formally define a correlation-based attribute outlier: 

A correlation-based attribute outlier is an object which exhibits abnormal behaviour 

in a subspace of related objects. 

An attribute outlier is a bivariate property of an attribute value and the subspace where it 

exhibits abnormal correlation. Therefore, attribute outlier detection methods involve finding 

both the attributes as well as the associated subspaces.  

4.3 Definitions 

In this section, we present all formal definitions used in ODDS.  

4.3.1 Preliminaries 

4.3.1.1 Support 

Definition 1: Let R be a relation with m attributes. Let S be a projection of degree (v-u+1) on 

R over an arbitrary set of attributes Au,..., Av, ( )RS
vu AA ,...,π= . The support of a tuple s in S, 

denoted by sup(s), is the count of the tuples in R that have the same values for attributes 

Au,..., Av as tuple s. 

For example, consider the World-Clock relation R(Country, State, City, Day, Time, 

Weather) in Table 4.1, and a projected relation over three attributes, ( )RS CityStateCountry ,,π= .  

The support of tuple <’U.S.A’, ‘California’, ‘LA’> in S is 4 since tuples 1, 2, 4 and 5 in R 
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have the same attribute values for Country, State and City. Similarly, sup(<’Canada’, 

‘California’, ‘Vancouver’>) = 1.  

4.3.1.2 Neighbourhood 

Definition 2: Let tuple s=<au,…, av> be a tuple in the projected relation S.  Without loss of 

generality, we consider Av as the target attribute whose extent of deviation we are interested 

to determine. The neighbourhood of Av w.r.t s is defined as N(Av, s) = <au,…, av-1>. The 

support of N(Av, s) is the count of tuples in R with the same values au,…, av-1 for Au,…, Av-1. 

Continuing from the last example, consider tuple s=<’Canada’, ‘California’, 

‘Vancouver’> in the projected relation S. The neighbourhood of the State attribute in tuple s, 

denoted as N(State, s) is the sub-tuple <’Canada’, ‘Vancouver’>. Since the same values of 

‘Canada’ and ‘Vancouver’ for attributes Country and City respectively are found in tuples 6, 

7, 8, 9 and 10 of R, we have sup(N(State, s)) = 5.   

4.3.2 Correlation-based Outlier Metrics 

Our objective is to determine attributes which deviate from its neighbours in the projected 

relations. We formulate three metrics O-measure and Q-measure to quantify the extent of 

deviation.  

4.3.2.1 O-measure 

Definition 3: The O-measure (Outlier measure) of target attribute Av w.r.t. s is defined as  

( )
( )( )

( )( )sAN

sAN
sAmeasureO

v

v

ui
i

v ,sup

,sup
,

1

∑
−

==−  (4.1)

 

The lower the O-measure score, the more likely attribute Av is an attribute outlier in s. 

Let us compute the O-measure of the attribute outlier W in Table 4.1. Let s=<’Canada’, 

‘California’, ‘Vancouver’> be a tuple of ( )RS CityStateCountry ,,π= . The support of N(State, s) is 
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5 while sup(N(Country, s)) and sup(N(City, s)) are both 1. The O-measure of the State 

attribute w.r.t. s is (1+1)/5=0.4.  

For comparison, we also compute the O-measure of the State attribute in tuple 

t=<’U.S.A’, ‘California’, ‘LA’>. We have O-measure(State, t) = (sup(N(Country, t)) + 

sup(N(City, t))) / sup(N(State, t)) = (4+5)/4 = 2.25. ‘California’ is an attribute outlier in 

attribute combination s but not in t, therefore O-measure(State, s) is relatively lower than O-

measure(State, t). Recall that the outlier metric should not consider rare classes or events as 

attribute outliers. This is evident using O-measure where the high O-measure(Country, 

<’Micronesia’, ’Ponape’, ’Palikir’>) = 2 prevents the mis-interpretation of Micronesia as an 

attribute outlier. 

4.3.2.2 Q-measure 

The Q-measure of an attribute A w.r.t tuple s is defined as 

( )
( )( )sAN
ssAmeasureQ

,sup
sup),( =−  (4.2)

 

Let a be the attribute value of A. Q-measure is the conditional probability of a tuple having 

the value a for attribute A, given that the tuple has the same attribute values as the 

neighbourhood of A. Relating this back to the attribute outlier W in Table 4.1, Q-

measure(State, <’Canada’, ‘California’, ‘Vancouver’>) = 1/5 = 0.2. 

Computationally, it is less intensive to use Q-measure as the outlier detection metric 

because less calculation of the supports of neighbourhoods is required. This is however, at the 

expense of accuracy performance, which we will show in Section 4.5.  

4.3.3 Rate-of-Change for Threshold Optimisation 

4.3.3.1 CA-outlier 

Let S be projected relation of n tuples S={s1,…, sn}. Given a threshold β, a Correlation-based 

Attribute (CA-)outlier is a paired set (A, si), 1≤ i≤ n such that the deviation scores of A w.r.t 
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si based on an outlier metric (O-measure or Q-measure) is less than β. Optimal value of β can 

be automatically derived using Rate-of-change.  

4.3.3.2 Rate-of-Change 

Given an attribute A and the set of O-measure(A, si) Ssi ∈∀ , 1≤ i≤ n. Let L be the list of 

tuples si sorted in ascending order of O-measure(A, si). The Rate-of-change of a ranked tuple 

si (2≤i≤n) is defined as   

( ) ( ) ( )
( )1
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,,

−

−

−
−−−

=−−
i

ii
i sAmeasureO

sAmeasureOsAmeasureO
schangeofRate  (4.3)

 

The same formula is applicable to determine the Rate-of-change based on the Q-measure 

metrics. Intuitively, the Rate-of-change measures the extent of increments in the outlier 

scores. The maximum Rate-of-change indicates the point at which the outlier scores increase 

suddenly and intuitively suggests the boundary between the outliers and the non-outliers. 

4.4 Attribute Outlier Detection Algorithms 

In Section 4.3.1.1, we discussed that a correlation-based attribute outlier (CA)-outlier is a 

paired set (A, si) of an attribute A and a tuple in the projected relation Ssi ∈ . Following that 

attribute outliers are defined with respect to a tuple in a projected relation (data subspace) S, 

we decompose the detection of CA-outliers into 2 sub-problems: 

Step 1: Generate all possible projected relations and supports. The enumeration of 

the subspaces is equivalent to a concept lattice, where each node corresponds to a tuple si 

in a projected relation S. 

Step 2: Calculate outlier scores and flag detected CA-outliers. The outlier scores are 

computed based on either the O-measure or Q-measure, depending on the nature of the 

input data and the efficiency requirements. Rate-of-Change determines the cut-off 

threshold to divide the outliers and non-outliers. 
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4.4.1 Subspace Generation using Concept Lattice 

A concept lattice (also known as the Galois lattice) is a mathematical structure of a set of 

formal concepts, each comprising of the examples covered by the context (extension) and the 

descriptions of the concept (intension) [Wil82, GW99]. The enumeration of projected 

relations in Step (1) of the outlier detection process resembles the building a concept lattice.  

Let us first formally define some of the notations used in concept lattice with respect 

to a database relation R with attributes A = {A1, A2, …, Am}. The concept lattice of a formal 

context L(R, A, C) describes a set of database tuples R, a set of attributes A, and a relation 

C⊆R☓A. Each node in L, known as a formal concept is a pair set (E, I), where extension 

E⊆R and intension I⊆A. A partial order relation can be built on all concept lattice nodes. 

Given l1=(E1, I1) and l2=(E2, I2), let l1< l2 ⇔ I1⊂ I2, the precedent order means l2 is a direct 

parent of l1 if I2 is an attribute superset of I1 and the latter is a sub-tuple of I2. Figure 4.2 

shows an example of the concept lattice generated from a relation of 3 attributes. Relating the 

concept lattice to our definitions in Section 4.3, each formal concept correspond to a tuple in 

the projected relation, and the degree of the attribute combination is the cardinality of the 

intension |I|, and the support is the cardinality of the extension |E|.  
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Figure 4.2: Example of a concept lattice of 4 tuples with 3 attributes F1, F2, and F3 

 

Concept lattices are commonly used in frequent itemset mining for the derivation of 

association rules [HLS99, ZPOL97, Zak04]. Various algorithms have been proposed to 

improve the time efficiency of building a concept lattice. We will not discuss the time 

complexity of the lattice building step; a study of the performance of various algorithms is 

found in [KO02]. Rather, we focus on the more computationally demanding Step (2) and 

discuss a brute force as well as a pruned approach with reduced complexity. 

4.4.2 The ODDS Algorithm 

We first discuss the algorithm and the time complexity of the ODDS approach for CA-outlier 

detection.  

4.4.2.1 Outlier Detection Algorithm 

Algorithm 1 shows the details of the ODDS algorithm. A top-down iteration over the data 

subspaces, starting from the original relation R to the projected relations at degree 3 is 

performed [line 2]. The tuples or attribute combinations are stored into a list L. For each 

target attribute of each attribute combinations at degree k, the outlier scores (based on O-

measure or Q-measure) are computed [line 6-8]. For each attribute, Get_CA-outliers function 

accepts a list of all attributes values of the same dimension and their corresponding O-

measure or Q-measure values, and returns the detected CA-outliers.  

 

Algorithm 1: ODDS 
Input: Enumerated projections of degree 2..m for relation R with m attributes. User option of 
outlier metric. 
Output: CA-outliers and the corresponding tuples of projected relations 
1.  List S, S’ ← Ø 
2. For degree k ← m to 3 do  
3. S ← projected relations of degree k and supports 
4.  S’ ← projected relations of degree (k-1) and supports 
5.  For each s in S do 
6.          For each attribute A of s do 
7.    OA ← add ComputeOutlierScores(A, s, S, S’, sup(A), metric option) 
8.   Endfor 
9.  Endfor 
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10.  For each attribute A of R do  // compute Rate-of-change 
11.   OUTPUT Get_CA-outliers (OA) 
12.  Enddo 
13. Endfor 
 

ComputeOutlierScores takes in an option of the outlier metric to use. Q-measure is less 

computationally costly; it is the quotient of the support of a subspace and the neighbourhood 

of the target attribute (conditional probability). On the contrary, O-measure adds an 

additional complexity to the computation [line 6-8] where the supports of every neighbour of 

the target attribute are computed. The extent of the additional computational burden is 

described in section 4.4.2.2. 

Algorithm 2: ComputeOutlierScores 
Input: Projections of degree m-1 (S’) and target attribute (A) and subspace (s). User option of 
outlier metric. 
Output: Outlier score 
1.  If (metric is Q-measure) then 
2.  Q-measure(A, s)=GetSupport(S, s)/GetSupport(S’, N(A, s)) 
3.  return Q-measure(A, s) 
4. Else if (metric is O-measure) then 
5.  O-measure(A, s)=0 
6.  For each neighbors Ci of A do  
7.   O-measure(A, s)=O-measure(A,s)+GetSupport(S’, N(Ci,s)) 
8.  Endfor 
9.  O-measure(A, s)=O-measure(A, s)/ GetSupport(S’, N(A, s)) 
10.  return O-measure(A, s) 
11. Endif 
 
In Get_CA-outliers, the input attribute points are sorted in ascending values of their outlier 

scores [line 1] to identify the maximum Rate-of-change [line 3]. Attribute points above max 

Rate-of-change are output as CA-outliers [line 6-8].  

Algorithm 3: Get_CA-outliers (OA) 
Input: List of attributes Aj and subsets with O-measure or Q-measure values 
Output: CA-outliers according to adaptive Rate-of-change thresholds 
1. B ← OA sorted in ascending order of measure(Aj) 
2. For each point bi, 2≤i≤|Bj| do 
3.  Rate-of-change(bi) = (bi - bi-1)/ bi // rate of change 
4. Endfor 
5. ß ← i with max Rate-of-change(bi) 
6. For each bi, 1≤ j ≤ ß do  
7.  OUTPUT CA-outliers ← bi 
8. Endfor  
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4.4.2.2 Time Complexity Analysis 

The complexity of the algorithm is the complete search space of CA-outliers. Since a CA-

outlier is a paired set (A, si) of an attribute A and a tuple in the projected subspace S, Ssi ∈ , 

the total number of possible values of a CA-outlier is the enumeration of attributes multiply 

by the total number of subspaces. 

Lemma 1: Given a relation R with m attributes, the total number of columns in all possible 

projections of R is m2m-1. 

Proof. At each k (0≤ k≤ m), the total number of k-projections of m attributes is ⎟⎟
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Theorem 1:  Given a relation R with m attributes and n tuples, the operation ODDS with Q-

measure has a complexity of Ο nm2m−1( ). 

Proof. Given Lemma 1, the total number of columns across all k-projections is m2m-1. Since n 

is the maximum number of tuples across all projections, then Ο nm2m−1( ) is the worst-case 

total of all attributes in all subspaces. 

Theorem 2:  Given a relation R with m attributes and n tuples, the operation ODDS  with O-

measure has a complexity of Ο nm(m +1)2m−2( ). 

Proof. To compute the O-measure outlier scores for each target attribute in 

ComputeOutlierScores, the support of every other neighbourhood of A is calculated. The 
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number of iterations between line 6-8 of ODDS algorithm becomes 
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Whither using O-measure or Q-measure, the brute-force approach of searching every data 

subspace of a relation for CA-outliers is highly inefficient.  

4.4.3 Pruning Strategies in ODDS 

To reduce the time complexity of Algorithm 1, we propose two filtering strategies to identify 

and prune data subspaces that cannot possibly contain an attribute outlier. This is illustrated 

in Figure 4.3, which shows part of the concept lattice generated from a relation of 5 arbitrary 

attributes, and the supports of each attribute combination. The numerical values at the top 

right corner of the combinations are the corresponding supports. 

 

Figure 4.3: Attribute combinations at projections of degree k with two attribute outliers 

- b and d  
 

We assume that all possible projections of the relation are completely enumerated. 

Intuitively, a frequent tuple of any projected relation cannot be a CA-outlier. Our first 

strategy filters any tuple s with sup(s) ≥ minsup, s and its sub-tuples from the calculation of 
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the outlier scores.  Pruning of sub-tuples follows the Apriori property: supports of sub-tuples 

increase across projected relations of decreasing degrees. For example, 

sup(<’A’,‘b’,‘C’,‘d’,‘E’>) ≤  sup(<’A’,‘C’,‘d’,‘E’>)  ≤  sup(<’A’,‘C’,‘E’>). In Figure 4.3, 

setting minsup at 20 will prune off <’A’,‘B’,‘C’,‘D’,‘E’> with sub-tuples <’A’,‘B’,‘C’,‘E’> 

and  <’A’,‘C’,‘E’>.  

The second filtering strategy only applies to the Q-measure metric which exhibits the 

monotone property. We prove that if ‘b’ is a CA-outlier in a tuple s based on Q-measure, it is 

also CA-outlier in the sub-tuples of s.  

Theorem 3: Let s be a tuple in projected relation S. An attribute A is a CA-outlier w.r.t s 

based on Q-measure implies that A is a CA-outlier w.r.t any sub-tuple of s which also 

contains A. 

Proof. Let b be a CA-outlier w.r.t s=<’A’,’b’,’C’,’D’> detected using the Q-measure 

deviation metric. Let s' be a sub-tuple of s. Let β be the optimal threshold such that for any 

CA-outlier A, Q-measure(A, s)≤ β. Based on the Apriori property, we have 

β≤−=≤=−

≤
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Hence, b is also a CA-outlier in s'. Sub-tuples of any CA-outlier found using Q-

measure in an attribute combination are eliminated from deviation computation. In Figure 

4.3, sub-tuples <‘A’,’b’,’C’>, <’A’,’b’,’E’> and <’b’,’C’,’E’> are omitted when ‘b’ is 

detected a CA-outlier in <’A’,’b’,’C’,’E’>. Beyond reducing the time complexity of the 

outlier score calculation, Theorem 3 enables reduction of the time for enumerating the 

projections. 

4.4.4 The prune-ODDS Algorithm 

Algorithm 4 shows the details of the prune-ODDS algorithm with Q-measure. A top-down 

iteration over the data subspaces, starting from the original relation R to the projected 

relations at level 3 is performed [line 3]. The tuples of attribute combinations are stored into a 
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list S. Iteration begins by eliminating tuples which have supports greater than minsup from S 

[line 4]. Sub-tuples of degree (k-1) data subspaces are generated from the existing tuples in S 

at the beginning of each iteration [line 4].  

 
Algorithm 4: prune-ODDS  
Input: Enumerated projections of degree 2..m for relation R with m attributes. User option of 
outlier metric. User input minsup. 
Output: CA-outliers and the corresponding tuples of projected relations 
1.  List S, S’ ← Ø 
2. S ← projected relations of degree m with supports ≤ minsup 
3. For degree k ← m to 3 do  
4.  S’ ← sub-tuples of S of degree (k-1) and supports ≤ minsup 
5.  For each s in S do 
6.          For each attribute A of s do 
7.    OA ← add ComputeOutlierScores(A, s, S, S’, sup(A), metric) 
8.   Endfor 
9.  Endfor 
10.  For each attribute A of R do  // compute Rate-of-change 
11.   OUTPUT OF ← Get_CA-outliers (OA) 
12.   Remove in S’ sub-tuples of OF 
12.  Enddo 
13.  S ← S’ 
14.  If S is empty then 
15.   TERMINATE program  
16.  EndIf 
17. Endfor  
 

The Q-measures are computed for each target attribute of each attribute combinations 

at degree k [line 6-8]. Based on theorem 3, the sub-tuples of CA-outliers are removed at line 

12. The program terminates if the list S is empty [line 15]. 

4.5 Performance Evaluation 

We evaluate the performance of ODDS on a synthetic data set and a real-world protein 

database. Experiments were performed on a Pentium-IV 1.8GHz computer with 2GB of main 

memory, and running Windows XP. Programs are written using a combination of Perl and 

C++. 

4.5.1 World-Clock Data Set 

The synthetic data set contains 9 attributes and 50,000 tuples generated from 

http://www.timeanddate.com/worldclock/. The original data set is free of any form of data 
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noise, thus preventing the implicit noise in the original data set from interfering with the 

artificial noise introduced.  

 
 

Table 4.2: Number of attribute outliers inserted into World-Clock data set 

Attributes X1 X2 X3 X4 Mix3 
Country 311 299 298 287 295 
State 311 320 294 286 315 
City 310 339 302 322 336 
Day 83 94 106 184 96 
Time 278 271 262 285 374 
Sunrise 337 311 305 291 316 
Sunset 333 308 317 296 325 
Postal Code 299 312 315 286 318 
Continent 238 246 300 263 225 

 

In order to evaluate the performance of ODDS at varying numbers of attribute 

outliers per tuple, we introduce x artificial attributes outliers to a random tuple in the data set. 

These attributes are assigned random values from their respective domains. The four datasets 

containing x=1, 2, 3, and 4 outliers per tuple are denoted X1, X2, X3 and X4 respectively. 

For example, X2 has 2,500 CA-outliers (5%) distributed across 1,250 tuples, each containing 

2 attribute outliers. We also generate a Mix3 dataset by randomly inserting 1 to 3 artificial 

attribute outliers to each randomly selected tuple. Table 4.2 shows the number of attribute 

outliers inserted into World-Clock data set. 

4.5.1.1 Accuracy at varying number of outliers per tuple 

The accuracy of ODDS depends on the effectiveness of the outlier metric as well as the Rate-

of-change. The maximum Rate-of-change is the point where the outlier scores change 

significantly. Figure 4.4 shows the Rate-of-change scores of each attribute derived from the 

ODDS/O-measure. The maximum Rate-of-Change for each attribute matches the number of 

outliers inserted in Table 4.2, and an F-score of 100% is achieved for X1 (Table 4.3). This 

indicates not only is the Rate-of-change effective in determining the optimal cut-off 

thresholds differentiating the outliers (positives) from the non-outliers (negatives), O-measure 
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also accurately quantifies the extent of deviation of the attribute outliers. Subsequent 

experiments utilize the Rate-of-change factors as default selection for thresholds. 

Rate-of-change for determining the outlier detection thresholds for X1
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Figure 4.4: Rate-of-change for individual attributes in X1 
 

Table 4.3 shows the F-scores of ODDS at varying number of CA-outliers per tuple. 

With only 9 attributes, it is not surprising that the false-negatives escalate when tuples contain 

4 or more CA-outliers per tuple. For data sets containing between 1 to 3 attribute outliers in 

each tuple, the outlier detection method can achieve an F-score of between 73% and 100%. 

Precision is generally high (92-100%), meaning that the FP rate is low. We expect that real-

world data set will contain a mixture of different number of attribute outliers in each tuple. 

For this, ODDS/O-measure achieves an F-score of 88% for the Mix3 data set. 

Table 4.3: Performance of ODDS/O-measure at varying number of CA-outliers per 

tuple 

 Recall (%) Precision (%) F-score(%) 
X1 100 100 100 
X2 90 100 95 
X3 63 99 73 
X4 39 92 50 
Mix3 79 99 88 

 

4.5.1.2 Convergence across projections 
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In reality, we do not know the number of attribute outliers that may be present in each tuple 

of a database. The ODDS approach systematically searches for CA-outliers, identifying 

tuples with only one outlier at the data subspaces of the highest degree k (i.e. complete tuple), 

and others at the subsequent lower degree projections. The detected CA-outliers accumulate 

across the projections. 

The Mix3 data set is used to evaluate the performance of ODDS algorithm using O-

measure and Q-measure metrics respectively. The accuracy of ODDS converges across the 

projected relations of degree k, starting from k=7, with decreasing false negatives as the 

number of attribute outliers detected accumulate. Figure 4.5 shows the F-score is between 

70% to 88% with O-measure and Q-measure.  
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Figure 4.5: Accuracy of ODDS converges in data subspaces of lower degrees in Mix3 
 

4.5.1.3 Comparison with other methods 

ODDS/O-measure and ODDS/Q-measure perform consistently better than classifier-based 

methods using decision tree C4.5 [ZW04, Ten04]. Its performance is also stable when the 

percentage of outlier noise increases. As the percentage of attribute outliers in the data set 

increases, the correlations between attributes decreases, thus affecting the accuracy of the 

correlation-based outlier detection approach.  
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Figure 4.6: Performance of ODDS compared with classifier-based attribute outlier 

detection 

4.5.2 UniProt Protein Data Set 

The UniProt database (release 7.1) consisting of 2,826,395 protein sequence records are 

collected from multiple sources of large-scale sequencing projects and is frequently accessed 

by the world-wide biological researchers for analysis and data mining. As discussed in 

Chapter 3 (Section 3.3.3.1), UniProt/TrEMBL records are computationally annotated, thus 

the protein functions are predicted rather than verified experimentally, they contain a 

significant portion of annotation errors. UniProt/TrEMBL contains primarily free-text and is 

highly sparse. For this experiment, we focus on 5 attributes relevant to the protein annotated 

properties.  

Table 4.4: Description of attributes in UniProt 

Attribute Distinct values Multiple values Description 

OR 6 No Organism source of the protein 

KW 898 Yes Keywords subject reference for the protein 

GO 8,486 Yes Gene ontology controlled vocabulary of 

proteins’ properties. 

PN 669,151 No Proposed official name of protein 

SY 126,299 Yes List of synonyms of the protein 
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Table 4.4 shows that the protein name PN, gene name GN, synonym SY each contain 

more than 100,000 unique values. These large numbers suggest the high sparse-ness of the 

UniProt database. In fact, the naming of proteins and genes are often left to the discretion of 

the experimentalists who submit these sequences into the database, hence, a large percentage 

of these names are rare but legitimate.  

Table 4.5: Frequencies of GO target attributes identified at projections of degree 5 of 

UniProt data set  

Attribute value Freq Attribute value Freq 

ATP_binding 172,090 iron ion binding 81,693 

kinase activity 30,355 antigen processing, exogenous antigen via 

M.. 

6,786 

binding 27,933 membrane 295,807 

calcium ion binding 13,481 metabolism 87,071 

catalytic activity 50.693 methyltransferase activity 7,905 

chromosome segregation 1,205 negative regulation of cytokine production 1 

cytokine activity 816 phosphoprotein phosphatase activity 1,693 

defense response to bacteria 408 positive regulation of MHC class II 

biosynt… 

19 

drug transporter activity 1,304 protein-tyrosine kinase activity 3,817 

drug transport 189 protein amino acid phosphorylation 32,462 

electron transporter activity 1 protein binding 42,461 

extracellular space 5,133 protein biosynthesis 41,101 

hydrolase activity 71,025 response to unfolded protein 6,311 

integrase activity 2,230 ribosome 17,865 

interferon-gamma 

biosynthesis 

15 signal transducer activity 10.702 

signal transduction 23,060 spindle pole body 84 

transferase activity 114,389 structural constituent of ribosome 25,059 

translational initiation 2,416 translation initiation factor activity 3,747 

Intracellular 65,544 transporter activity 57,341 

 

A preliminary experiment applying the ODDS/O-measure to the UniProt data set 

reveals that the O-measure metric does not distinguish the rare attributes from the attribute 

outliers. Table 4.5 shows the frequencies of the target attributes (neighbourhoods not shown) 

in the GO dimension identified from projected relations of degree 5 of the data set. We notice 
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that some of the outliers detected are in fact rare attribute values, including “negative 

regulation of cytokine production”, “electron transporter activity”, “interferon-gamma 

biosynthesis”, “positive regulation of MHC class II biosynt…” each with a frequency of less 

than 20 in the data set.  

Since we are not interested to detect these rare attribute values, we adjust the O-

measure metric with a frequency factor to penalize the metric by the frequency of the target 

attribute; the new metric is called Of-measure.  

4.5.2.1 Of-measure 

Let freq(Av) be the frequency of an attribute Av in the original relation R. The Of-measure of 

Av w.r.t a tuple s is defined as 
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Of-measure takes into account the support of Av in R. A lower weightage is given to 

the rare attribute values with lower frequencies. Unlike O-measure, Of-measure favours non-

rare values and is more effective in identifying attribute outliers in sparse data set which 

contained vast occurrences of rare attribute values which are not attribute outliers. In certain 

sparse data sets such as the UniProt database, finding the vast occurrences of rare attribute 

values such as ‘B.C’ (Table 4.1), which is not necessarily erroneous is not of prime interest.  

As an example, consider the attribute outlier X in Table 4.1. Given the low frequency 

of the value ‘B.C.’ in the data set, the low O-measure score almost guarantee that the State 

attribute in s= <’Canada’, ‘B.C.’, ‘Vancouver’> will be labelled as an outlier, that is, O-

measure(State, s)=(1+1)/4=0.5.  In contrast, Of-measure(State, s) = (1+1)/(4*0.09) = 5.6 is 

relatively much higher.  
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4.5.2.2 CA-outliers in UniProtKB/TrEMBL 

We applied ODDS/Of-measure to the complete UniProt data set. Table 4.6 shows the number 

of outliers detected for each attribute. CA-outliers are redundantly identified across different 

degree of the projected subspaces; the accumulated number of affected records shows the 

non-redundant number of affected records.  

Table 4.6:  CA-outliers detected in UniProtKB/TrEMBL using ODDS/Of-measure 

CA-outliers detected at 
projections of degree 

OR PN KW GO SY 

3 27 (73) 45 (24) 56 (31) 17 (97) 18 (5) 
4 333 (553) 136 

(6033) 
276 

(196) 
378 (2196) 186 (124) 

5 195 (45) 40 (13) 57 (17) 308 (2365) 132 (56) 
Accumulated (671) (6070) (241) (2365) (185) 

* Brackets contain number of affected records. 

4.5.2.3 Verification of CA-outliers detected 

Biologists through manual verification check the validities of CA-outliers found in the GO 

dimension. True positive TP indicates an uncommon association of the target attribute with 

the other attributes in the projected relation. False positive FP indicates that no peculiarity is 

found in the correlation behaviour of the target attribute. Indeterminable means that further 

investigation is required. 

The manual verification step largely depends on the knowledge level of the biologist 

and his decisive-ness. Table 4.7 shows that a large percentage (24%-46%) of the CA-outliers 

require further investigation because the biologist lacks the detail knowledge to justify if the 

annotation is erroneous or it is only exceptional. 27%-58% are false positives. 10%-24% (or 

19%-55% positive predictive rate among those justifiable) of the gene ontology attribute 

outliers are confirmed result of erroneous annotations.  

The experiment shows that ODDS can be used as a pre-step for cleaning protein 

annotations, subjected to further verification by an annotator. Obvious cases of erroneous 

annotations are found in the ODDS results. For example, 12 bacteria proteins (Q9Z5E4, 

Q6J5G7, among others) are associated with viral capsids which are protein coats for viral 
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particles. Also, 5 eukaryote proteins (Q9BG87, Q4IJ15, among others) are oddly related to 

the reproduction of viruses. 

Table 4.7:  Manual verification of Gene Ontology CA-outliers detected in 

UniProtKB/TrEMBL 

Annotation CA-outliers  TP FP Indet. 
CA-outliers detected at 3-attribute projections 17 6 5 6 
CA-outliers detected at 4-attribute projections 378 65 221 92 
CA-outliers detected at 5-attribute projections 308 31 136 141 

 
4.6 Concluding Section 

Existing outlier detection methods focus primarily on class outliers; limited research has been 

conducted on attribute outliers. This work presents a novel method called ODDS that utilizes 

the correlations between attributes to identify attribute outliers. Rather than focusing on rare 

attribute values or rare classes, ODDS systematically searches for attribute points that exhibit 

alternative correlation behaviour when compared to other attribute points in a data subspace. 

These local deviators which we refer to CA-outliers are bivariate. Experimental evaluation 

shows that ODDS can achieve F-score of up to 88% in synthetic data set and is practically 

applicable for detecting erroneous annotations in a protein database. 

This chapter focused on the accuracy of the outlier detection approach. Two filtering 

strategies are applied to reduce the running time of the ODDS algorithm where the 

enumeration of data subspaces is a major bottleneck. To reduce the running time further, one 

strategy is to separate the data space into partitions of correlated subspaces in order to reduce 

the number of enumerated projections. This idea is evaluated in the next chapter which 

proposes the use of XML hierarchical structures to derive meaning partitions, thus improving 

the effectiveness and efficiency of attribute outlier detection. 
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Chapter 5: Attribute Outlier Detection in 
XML using XODDS 

Although nature commences with reason and ends in experience, it is necessary for us to do 
the opposite, that is to commence with experience and from this to proceed to investigate the 

reason. 

 

Leonardo Da Vinci 
Engineer, Painter, & Sculptor (1453 - 1519) 

 



 92

Despite the recent proliferation of semi-structured data models such as XML as the 

standardized data representation in various domains, including bioinformatics, the 

development of data cleaning approaches for such data is at rudimentary stage. Even among 

the limited data cleaning works in XML discussed in the data cleaning survey in Chapter 2, 

the problem of duplicates is addressed, but not outliers. Existing outlier detection methods 

remain focus on relational data and they are not easily adaptable to XML data because of the 

inherent differences in data structures. 

In this chapter, we propose a systematic 4-steps framework for outlier detection in 

XML data called XODDS (for XML Outlier Detection from Data Subspace). Similar to the 

ODDS method, the XODDS framework utilizes the correlations between attributes to 

adaptively identify attribute outliers. In addition, XODDS leverages on the hierarchical 

structure of the XML document to provide contextual information lacking in relational data, 

with the aim of improving both the effectiveness as well as efficiency of identifying attribute 

outliers in XML documents. Specifically, we introduce two novel concepts of correlated 

subspaces and aggregate attributes in XML. The notion of correlated subspaces reduces the 

time complexity of the attribute outlier method by separating the XML document into several 

natural partitions according to the hierarchical structure. Aggregate attributes enables 

summarization of group of nodes, and thus facilitates data cleaning at higher level of 

abstractions. We also devise 6 key properties that a good metric for attribute outliers should 

satisfy, and compare other correlation-based measures to the xO-measure and xQ-measure 

metrics used in XODDS. 

Experiments results on both synthetic and real-world data sets indicate that XODDS 

is effective in detecting attribute outliers in XML. In the detection of annotation errors in 

UniProt/TrEMBL, XODDS attains 97% positive predictive value (PPV) - with significant 

improvement over ODDS.  
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5.1 Introduction  

In the recent years, increasing number of databases are converted into XML formats to 

facilitate data exchanges and publishing on the Web. For example, major biological databases 

have started to support XML formats; they include UniProt (UniProt XML) [WAB+06], 

GenBank (NCBI XML, INSDSeqXML, and TinySeqXML) [BKL+06], and PDB (mmCIF, 

and PDBML) [DAB+05]. Regardless of this growth, current data cleaning methods focus on 

relational data. Although there are a few data cleaning works on XML, they mainly focused 

on duplicate detection [LTLL03, WN05, PWN06] (details in Section 2.5). On the contrary, 

the development of outlier detection methods for XML documents has been overlooked. 

Intrinsic differences between XML and relational data models inhibit direct 

adaptation of conventional data cleaning methods to XML data model. XML data are often 

"sparse"; missing information are represented using optional elements. In contrast, relational 

data are usually "dense" and missing attribute values are represented by null values. This 

introduces bias to the XML data, which in turn falsely amplifies the magnitude of outlier-

ness. Data sparseness should be taken into account when selecting a suitable metric for 

attribute outlier detection - a crucial step in attribute outlier detection. There exist numerous 

interesting-ness measures for ranking the usefulness and significance of the discovered co-

relations or co-occurrences [HH01, TKS02]. However, they are primarily devised for the 

mining of association rules or for feature selection, and may not be naturally suited to the 

attribute outlier detection problem. In order to systematically compare the suitability of the 

two metrics used in XODDS - xO-measure and xQ-measure to the existing interesting-ness 

metrics, we develop 6 key properties of a good attribute outlier metric and evaluate the extent 

to which each metric satisfies these properties (details in Section 5.4).  

Also, XML data contain multiple levels of nested elements (or attributes), whereas 

relational data are “flat”. Such encoding of relationships between the XML elements in the 

form of the hierarchy provides additional contextual information to the attribute outlier 

detection problem. Specifically, we utilize the hierarchical structures of XML to derive 
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correlated subspaces and aggregate attributes that advance the outlier detection process. We 

use a concrete Bank account example often used for fraud detection to elaborate these two 

concepts.  

5.1.1 Motivating Example 

 

Figure 5.1: Example bank accounts XML document 
 

Consider the 3 attribute outliers shown in Figure 5.1. The <Country:USA> element in Figure 

5.1(a) is erroneously associated with the <State:South Moravi> and <City:Opava> of Czech 

Republic. <Bank:YZ> is unusual because most transactions from this account are credited to 
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Bank AB. In Figure 5.1(c), a transaction involving $1000 is unusual because transactional 

amounts for this account are typically less than $100. 

First, we observe that attribute outlier-ness is a bivariate property of a target attribute 

and a localized neighbourhood of correlated attributes. By inspecting the correlations across 

all <Country>, <State> and <City> elements in Figure 5.1(a), we can deduce that 

<Country:USA> is an attribute outlier from its negative correlations to <State:S.Moravi> and 

<City:Opava>. Conversely, comparing the same Country element to <Amt:$1000> or 

<Bank:AB> make little sense in identifying attribute outliers. The observation is in 

agreement to our definition of a correlation-based attribute outlier in Chapter 4.  

A correlation-based attribute outlier is an object which exhibits abnormal behaviour 

in a subspace of related objects. 

Notice that the structure of XML provide hints of what constitutes “a subspace of 

related objects”. The notion of correlated subspaces in XML leverages on the nested 

structure to identify groups of logically correlated elements. For example, the elements 

<Country>, <State> and <City> form a correlated subspace, that describes the <Branch 

Address> of any account.  The <Amt>, <Bank> and <Type> elements of <Transaction> 

elements in Figure 5.1(a) form a subspace, which is however different from the transactional 

subspace in Figure 5.1(b). Realistically, each account has different spending power and 

therefore transactions are not comparable across different accounts.  

Figure 5.1 also shows the aggregate attributes (indicated by dotted lines) that have 

been derived from aggregate functions such as AVG, COUNT, MIN, MAX, and SUM to 

summarize sub-structures in XML through computing a scalar value from a set of multiple 

elements [GHQ95, GCB+97]. Certain XML query language such as XQuery and XML-GL 

support aggregate attributes [CCD+99, CFR+01]. Aggregate attribute can facilitate the 

identification of outliers at higher level of abstractions. For example, through the correlation 

patterns of the <Count>, <Avg> and <Country> elements in Figure 5.1(a)-(d), we can 

identify accounts with unusually low (or high) transactional averages or counts, compared to 

other accounts from the same country. 
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Logically separating the Bank Account XML (details of computational derivations in 

Section 5.2) generates the 4 subspaces shown in Figure 5.2. The correlation behaviour of each 

attribute is analysed with respect to individual subspaces, rather than the entire XML 

document.  Consider the subspace in Figure 5.2(c), evidence that <Country:USA> is an 

attribute outlier can be drawn from the correlation behaviour of <Country:USA> with 

<State:S.Moravi> and <City:Opava>. This observation motivates the development of xO-

measure and xQ-measure. The same deduction identifies “Zech”, which is, however a rare 

attribute rather than an attribute outlier. In Chapter 4, we explained that rarity does not equate 

to outlier-ness, and individual elements with rare values are not necessarily outliers. The 

transactions of each account are organised into different subspaces in 5.2(a) and 5.2(b); 

intuitively, we are looking for deviation in transactional behaviour of individual account 

holders, and not across. Also notice that the aggregate attributes are organised into a separate 

subspace which is useful for tracking the transactional behaviour across different countries.  

 

Figure 5.2: The 4 subspaces in Bank Account XML 
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The rest of the chapter expand on the two concepts of correlated subspaces and 

aggregate attributes to devise a complete framework for detecting attribute outliers in XML 

documents.   

5.1.2 Contributions 

Specifically, this chapter makes the following contributions: 

1. We introduce the notion of correlated subspaces, which is a meaningful grouping of 

correlated objects based on the XML data structures. 

2. We propose the use of aggregate attributes as summarizing elements in the 

hierarchical XML structures. The use of aggregate attributes enables the detection of 

attribute outliers at higher level of abstraction.  

3.  We develop two correlation-based attribute outlier metrics for XML, namely the xO-

Measure and xQ-Measure. We identify 6 key properties that a good attribute outlier 

metric should satisfy, and use them to evaluate xO-Measure and xQ-Measure with 

other existing interesting-ness measures. 

4.  We develop a complete, systematic framework for detecting attribute outliers in 

XML called XODDS (for XML attribute Outlier Detection from Data Subspaces) 

and demonstrate its effectiveness on real world datasets. 

The rest of this chapter is organized as follows. Section 5.2 presents formal 

definitions used in XODDS and Section 5.3 describes the XODDS framework. Section 5.4 

presents a comparative analysis of attribute outlier detection metrics. An experimental 

evaluation of XODDS is given in Section 5.5, and we conclude in Section 5.6. 

5.2 Preliminary Definitions 

First, we present formal definitions of the terms used in XODDS. An XML document can be 

modelled as a tree T(V, E, r, L) where V is a set of n nodes, E is a set of edges E⊆V☓V and r 

is the root node. Each node represents an element or an attribute.  
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Let L be a countable set of labels. The labelling function label: V→L maps each v∈V 

to some l∈L; different nodes may have the same label.  Each e∈E is an ordered pair of 

nodes, e = (vi, vj) where vi∈V is the parent of vj∈V, and vj is the child of vi.  

We use the function value(v) to denote the value of a leaf node. It follows that if vj is 

a leaf node, value(vj) ≠ Ø. For every node v∈V, there is a unique path from root node r to v, 

denoted by pr,v = (vo = r, v1 …, v). The number of edges from r to v is dist(r, v). Without loss 

of generality, we say that r is an ancestor of v, or v is a descendant of r.  

Consider the example in Figure 1(c). Let T be the tree rooted on Account node. L = 

{“Account”, “Branch Address”, “Country”, “State”, “City”}. <Country>, <State>, and 

<City> are child nodes of <Branch Address>, and their distances from root node are 2. 

5.2.1 Correlated Subspaces 

5.2.1.1 Object 

Definition 1: Given a tree T(V, E, r, L), an object Obj(vi) rooted at node vi∈V is a set of 

nodes v∈V such that dist(vi, v)=1 and value(v)≠Ø. Simply, an object is denoted by its 

children leaf nodes. For example, the XML document in Figure 5.1(a) comprises of 3 objects. 

The <Branch Address> node forms an object with children nodes of <Country>, <State> and 

<City>. Similarly, Figure 5.2(a) shows Obj (<Transaction>) = {<Amt:$30>, <Type:C>, 

<Bank:YZ>}. 

5.2.1.2 Nearest Common Ancestor 

Definition 2: Given two nodes, vi ,vj ∈ V,  vc ∈ V said to be the common ancestor of vi and 

vj if they are both descendents of vc. vc is called the nearest common ancestor of vi and vj, 

denoted as NCA(vi ,vj) ∈ V if the distance between vi and vj through vc is shorter than any v 

∈ V. Consider the example in Figure 5.1(c). Let T be the tree rooted on Account node. L = 

{“Account”, “Branch Address”, “Country”, “State”, “City”}. <Country>, <State>, and 
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<City> are child nodes of <Branch Address>, and their distances from root node are 2. The 

nearest common ancestor NCA(<Country>,<City>)=<Branch Address>. 

5.2.1.3 Correlated Subspace 

Definition 3: Given a tree T(V, E, r, L), a node Vvp ∈ , which we call the pivoting node of 

the subspace, and Lls ∈ , a correlated subspace S(vp, ls) is a set of nodes such that ∀ 

),( sp lvSv ∈  

1. Obj(v) ≠ Ø 

2. for any vi, vj ∈ S(vp, ls), NCA(vi, vj)= vp  

3. for any vi, vj ∈ S(vp, ls), jpip vvvv pp ,, =  

For example, the S_Transactions_1 and S_Transactions_2 in Figure 5.2 are subspaces, with 

ls=”Transaction” and pivoting node vp=<Transactions>. Its follows that the correlated 

subspace of Branch Address, S_Branch_Address = S(<Accounts>, “Branch_Address”). In 

general, a correlated subspace is a container of comparable objects, and each object is 

represented by a set of leaf nodes. 

5.2.2 Aggregate Attributes 

The contextual complexity of aggregate attributes requires that they are defined by the users 

rather than determined by the system. Such specifications can be facilitated through a user 

interface for the selection of aggregate functions and the nodes to aggregate. For example, in 

Figure 5.1(a) and (b), the <Transactions> node is summarized through computing the 

COUNT function on <Transaction> nodes and AVG aggregate function on the <Amt> nodes. 

5.2.2.1 Aggregate Attribute 

Definition 4: Given T, an aggregate attribute VFpvv vvia i
∈),,( ,  is a sibling leaf node of vi 

derived from applying the aggregate function F on all descendent nodes of vi following the 

path location vvi
p , . In Figure 1(a), let F = AVG be applied to all <Amt> nodes following the 
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xpath location ‘Transactions/Transaction/@Amt’. This generates the <Avg:$976> node 

which is inserted into the XML as a sibling node of <Transactions>.  

5.2.3 Correlation Neighbourhood 

Correlation-based attribute outlier-ness is a bivariate property of both the target attribute (leaf 

node) and a correlation neighborhood, which is a group of attributes that co-occur with the 

target attribute in the same subspace. 

5.2.3.1 Correlation Neighbourhood 

Definition 5: Given a node vi ∈ V, Obj(vi) ≠ Ø. Let )( i
k

s vObjV ⊆ be a subset of leaf nodes 

of the object defined over vi where k is called the degree of k
sV . For each target node k

st Vv ∈ , 

the correlation neighborhood of vt in k
sV  is defined }|{),( t

k
s

k
st vvVvVvN ≠∈= . A 

neighborhood ),( k
st VvN  is of degree k where k=| ),( k

st VvN |. In Figure 5.2(c), the 2-degree 

neighborhoods of <State:S.Moravi> is the set of 2 nodes {<Country:USA>, <City:Opava>}.  

5.2.4 Outlier Scoring 

Outlier-ness is not a binary property. Simply labeling an object as an outlier serves little 

value; the objects have different degree of deviation, giving rise to the notion of strong or 

weak outliers. In the XML model, an attribute outlier metric is a measurement of the strength 

of the outlier-ness of each object in its correlated neighborhood. We adapt the O-measure and 

Q-measure in ODDS for the XML models, and call them xO-measure and xQ-measure. 

5.2.4.1 Support 

Definition 6: Given a subspace S(vp, ls) and a node ),( spi lvSv ∈ , let )( i
k

s vObjV ⊆ . The 

support of k
sV , denoted sup( k

sV ) is the count of the number of nodes ),( sp lvSv ∈ such that 

∀ vs ∈ k
sV ,  there exists e=(v, vj) ∈ E, value(vj)=value(vs). In general sense, the support of a 
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set of nodes k
sV  is the count of objects in the same subspace, with leaf nodes that have the 

same values as k
sV . For example, the support of sup(N(<State:S.Moravi>))= 

sup({<Country:Czech>, <City:Opavi>}) = 2 in Figure 5.2(c).  

5.2.4.2 xO-measure 

Definition 7: Given S(vp, ls) and a node ),( spi lvSv ∈ , let )( i
k

s vObjV ⊆ . The xO-measure 

of a node k
ss Vv ∈ , denoted O-measure(vs, k

sV ) is defined as  

)),(sup(

)),(sup(
),( k

ss

vv

k
sj

k
ss VvN

VvN
VvmeasurexO ij

∑
=

=−  
(5.1)

where sj
k

sj vvVv ≠∈ ,  

xO-measure is basically the quotient of the co-occurrences of an attribute v with its neighbors 

and the co-occurrence of its neighbours. For example in Figure 5.2(c), the xO-measure of 

<Country:USA> in {<State:S.Moravi>, <City:Opava>} = ¼ and this is comparatively lower 

than xO-measure(<Country:Czech>, {<State:S.Moravi>, <City:Opava>}) = 2/4 = 0.5.  

5.2.4.3 xQ-measure 

Definition 8: Given S(vp, ls) and a node ),( spi lvSv ∈ , let )( i
k

s vObjV ⊆ . The xQ-measure of 

v in neighborhood ),( k
st VvN is defined as  

),(sup(
)sup(

),( k
ss

sk
ss VvN

v
VvmeasurexQ =−  (5.2)

Essentially, the xQ-measure is the conditional probability of a target attribute vs over its 

neighborhood. In Figure 5.2(b), the xQ-measure(<Bank:YZ>, {<Amt:$1000>, 

<Type:C>})=1/2=0.5. Notice that for both xO-measure and xQ-measure, lower scores 

implies higher degree of attribute outlier-ness. 

The output from the outlier scoring step is a list of metric scores with respect to the 

node and its neighborhoods. For each attribute across neighborhoods of a projection degree k, 

the outlier scores are ranked in ascending order.   
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5.2.5 Outlier Identification 

Outlier-ness scoring measures the objects according to their extent of outlier-ness, they do not 

differentiate between outliers and non-outliers. To isolate the attribute outliers from non-

outliers, users typically need to define a threshold. This is not viable, given that the number of 

attribute outliers differ across different XML documents, and across different types of 

elements. In the XODDS algorithm, the optimal threshold is determined from the maximal 

Rate-of-change which is the data-dictated outlier score separating the outliers and non-

outliers, thus removing the dependency of the outlier detection on any user-specified 

parameter. We compare by experiments the effectiveness of Rate-of-Change with the Top-k 

approach that selects a certain top percentage of the data set as outliers.  

5.2.5.1 Rate-of-Change 

Definition 9: Given a node and the set of xO-measure ),( k
ss Vv  at degree k and where 

label(vs)=ls, let xO-measure )',( k
ss Vv be the list sorted in ascending order of xO-

measure ),( k
ss Vv . The Rate-of-change of a ranked object vs (2≤i≤n) is defined as   

( ) ( ) ( )
( )k

is

k
s

k
is

s VvmeasurexO
VvmeasurexOVvmeasurexO

vchangeofRate i

',
',',

1

−

−−−
=−− −  (5.3)

 

5.3 Outlier Detection Framework 

The complexity of the outlier detection problem cannot be resolved in a single computational 

step. Rather, it demands streamlining of various algorithmic components into a systematic 

framework.  

5.3.1 XODDS Framework 

The XODDS framework is a generalized approach towards detecting attribute outliers from 

XML documents. Figure 5.3 details the specification requirements and processes in XODDS. 

There are four key steps: 
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1.  Attribute aggregation is a specification step for users to define summarizing 

elements as well as where to insert them in the XML documents. Aggregate attributes 

serve as abstraction to the nested elements and enable the identification of outliers at 

higher levels of the abstraction.  

2.  Subspace identification determines semantically meaningful subspaces in the XML 

document. Deriving the subspaces requires identifying clusters of objects forming a 

subspace.  

3.  Outlier scoring computes the outlier scores for each object in its subspaces using 

xO-measure and xQ-measure. The support-based object pruning step reduces the 

enumeration of neighborhoods for outlier scoring and therefore the computational 

complexity.  

4.  Outlier identification distinguishes the outliers from the non-outliers using an 

adaptive threshold derived from the input XML. It is unrealistic to adopt a fixed 

threshold for all XML documents because the number of outliers varies according to 

different noise levels. Two adaptive strategies are examined, namely the Top-k and 

Rate-of-Change approaches. Finally, we remove redundancy of outliers that exist in 

overlapping neighbourhoods of varying degrees. 



 104

 

Figure 5.3: The XODDS outlier detection framework 
 

5.3.2 Algorithms 

The XODDS framework divides the outlier detection problem in XML into 4 systematic steps 

of attribute aggregation, subspace identification, outlier scoring, and outlier identification. In 

this section, we will describe the details of selected procedures in the framework. 

Procedure FindObjectNSubspace identifies objects and subspaces in the XML 

document. If the elements or attributes are numerical, we discretize them into categorical 

values through binning them into equi-width intervals. After parsing the XML document into 

a DOM tree, the procedure performs a depth-first search on the tree [Line 1]. Each object 

node is collected into an array Object. If the node has the same sibling nodes, it is 

immediately identified as a subspace with its parent as the pivoting node [Line 5-6]. 

Otherwise, the object is stored into a list which is screened at Line 13-20. Following 

Definition 3 in Section 5.2.1, object nodes are checked if they belongs to the subspace S 

based on their nearest common neighbours and XPATHs. The function isObjectNode simply 

checks if the given node contains leaf nodes. Given that the XODDS algorithm is correlation-
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based, it relies on the correlation among 3 or more attributes to determine outlier-ness. The 

output of Procedure FindObjectNSubspace is a list of XML subspaces S. 

 
Procedure FindObjectNSubspace 
Input: XML document 
Output: A list of XML subspaces, S(vp, ls) defined over input tree T 
1. Parse XML into DOM tree, T 
2. S ← Ø, Obj ← Ø, Object ← Ø 
3. For each vi of T do 
4.   If isObjectNode(vi) then 
5.     If label(sibling(vi)) == label (vi) then 
6.        S(parent(vi), label(vi)) ← vi 
7.      Else  
8.        Obj ← vi, label(vi), XPATH(vi) 
9.      Endif   
10.      Object(vi) ← children(vi) 
11.     Endif 
12. Endfor 
13. For each vi, label(vi), XPATH(vi) in Obj do 
14.  For each remaining vj, label(vj), XPATH(vj) in Obj do 
15.   If label(vi)== label(vj) AND XPATH(vi)== XPATH(vj) then 
16.    S(NCA(vi, vj), label(vi)) ← vi 
17.   Endif   
18.  EndFor  
19. EndFor 
20. S(NCA(vi, vj), label(vj)) ← vj 
 

Procedure FindNeighbourhood takes as input the list of subspaces identified and 

enumerates all the attribute combinations in each subspace, where each combination is a 

subset of the object’s children leaf nodes [Line 1]. The support of each unique subset or 

neighborhood accumulates according to Definition 6 in Section 5.2.4 [Line 5-9]. The output 

of the table is a list of hash-tables for each attribute combinations. 

Procedure FindNeighbourhood 
Input: List of subspaces, S defined over input DOM tree T 
Output: Set of support hashtables sup(V(k, s)) for each attribute 
1. Initialize support hashtables, V(k, S(vp, label(vs))) based on projections of vs  
2. For each subspace S(vp, label(vs)) do 
3.  For each node vi in S(vp, label(vs)) do 
4.  

 Create all subsets s of degree k in Object(vi) 
5.   If V(k, S(vp, label(vs)), s) exists then 
6.    Increment count of sup(V(k, S(vp, label(vs)), s)) by 1 
7.   Else 
8.    sup(V(k, S(vp, label(vs)), s))  = 1 
9.   EndIf  
10.  EndFor 
11. EndFor 
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Once the supports are computed, Procedure ScoreNGetOutliers compute the outlier scores 

based on the xO-measure or xQ-measure metric. For each target attribute of each projection in 

every subspace, the optimal thresholds based on the Rate-of-Change is computed [Line 7-14]. 

The calculate_score function returns the metric scores of va in all possible enumeration of 

correlated neighborhoods within S(vp, label(vs)). In order to reduce the cost of the extensive 

enumerations, a pruning step is introduced to calculate_score to filter combinations of target 

attributes and correlated neighbourhood (the equivalent of F11 discussed in next section) with 

supports larger than minsup. Line 7 sorts the attribute in ascending order while Line 8-10 

computes the Rate-of-change from the sorted measures. Correlation-based outliers with the 

lowest ß outlier scores are output. 

Procedure ScoreNGetOutliers 
Input: List of supports of subsets. User option of outlier metrics. User input minsup 
Output: Set of outlier measures for each attribute and subspace 
1. For each subspace S(vp, label(vs)) do  
2.   For all k projection, k≥3 do 
3.    For each node va in V(k, S(vp, label(vs)), s) do 
4.    Ak ← calculate_score(va, V(k, S(vp, label(vs)), s, minsup) 
5.     Endfor 
6.   Endfor  
7.   B ← OA sorted in ascending order of measure(Ak) 
8.   For each point bi, 2≤i≤|Bj| do 
9.    Rate-of-change(bi) = (bi - bi-1)/ bi // rate of change 
10.    Endfor 
11.    ß ← i with max Rate-of-change(bi) 
12.    For each bi, 1≤ j ≤ ß do  
13.     OUTPUT CA-outliers ← bi 
14.    Endfor 
15. Endfor  
 

5.4 Attribute Outlier Metrics 

Interesting-ness measures are commonly used for ranking the usefulness and significance of 

the discovered co-relations or co-occurrences. They may therefore be appropriate for 

quantifying attribute outliers. In order to systematically compare the suitability of xO-

measure and xQ-measure, as well as these interesting-ness metrics to the attribute outlier 
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detection problem, we develop the key properties of an attribute outlier metric and evaluate 

the extent to which each metric satisfies these properties. 

5.4.1 Interesting-ness Measures 

Correlation and association-based measures for categorical data are commonly defined in 

terms of the frequency counts (or supports) in a 2 ☓2 contingency table depicting the co-

presence, co-absence and cross-presence of two variables. In detecting attribute outliers, we 

are interested in the correlation behaviour of a target attribute, denoted vt, with remaining 

attributes of a correlated neighbourhood, denoted N(vt), as shown in Table 5.1. 

Table 5.1: The 2☓2 contigency table of a target attribute and its correlated 

neighbourhood  

 N(vt) ¬ N(vt)  

vt F(v,N) F F1+ 

¬ vt F-N F-- F0+ 

 F+N F+0 N 

 

Interesting-ness measures examined in this comparative study are mainly described in 

[HH99, TKS02]. Since attribute outlier-ness relates to negative correlations, we select metrics 

that measure negative correlations. We briefly describe these interesting-ness measures with 

respect to a correlated subspace of n objects in XML as follows:  

5.4.1.1 Piatetsky-Shapiro Rule Interest 

The Piatetsky-Shapiro (PS) Rule Interest  [FPS99] calculates the difference between the 

observed and expected number of objects that contains both the target attribute vt and the 

given correlated neighbourhood N(vt): 

2
1111))(,(

n
FF

n
FvNvPS tt

++−=  

With values ranging from -0.25 to +0.25, the PS rule index measures both positive 

correlations (PS > 0) and negative correlations (PS < 0); PS = 0 indicates that vt and N(vt) are 
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statistically independent. Stronger attribute outliers are dictated by lower negative PS scores, 

meaning that the observed presence of vt in N(vt) is lower than expected.  

5.4.1.2 Interest factor 

Instead of the difference, the Interest factor (I) computes the quotient of the observed and 

expected number of objects that contains vt and N(vt) [TKS02]: 

11

11))(,(
++

=
FF

nFvNvI tt  

Values of I range from 0 to +∞ where I > 1 indicates positive correlations and I < 1 implies 

that vt negatively correlates with N(vt). The closer is the I  values to 0, the stronger is the 

attribute outlier-ness (vt, N(vt)). 

5.4.1.3 Jaccard coefficient 

The Jaccard coefficient calculates the proportion of objects containing the target attribute vt 

and the N(vt) over the cross-presence of vt and N(vt) [JD98].  

110110

11))(,(
FFF

F
vNvJaccard tt ++

=  

The Jaccard coefficient ranges between 0 to 1. Strong attribute outliers are represented by 

lower Jaccard coefficients close to 0 while positive correlations are depicted by values close 

to 1. Unlike Piatetsky-Shapiro and Interest, the Jaccard coefficient does not statistically 

distinguished between the positive and negative correlations. 

5.4.1.4 Hmeasure 

The Hmeasure is a multiplication of the individual effect of the cross-presence of vt and N(vt) 

[HCH04]. Hmeasure ranges from 0 to 1 where a value close to 0 implies stronger positive 

correlations and that close to 1 implies high degree of negative correlations. 

11

0110))(,(
++

=
FF
FF

vNvHmeasure tt  

A strong attribute outlier will therefore has Hmeasure close to 1, meaning that vt has high 

degree of co-occurrences in other neighbourhoods, and N(vt) tend to co-occur with other 

attributes.  
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5.4.1.5 Probability 

Probability is simply the probability that an object contains the target attribute vt co-occurs 

with N(vt). The values range from 0 to 1 and strong attribute outliers are dictated by low 

degree of Pr close to 0. 

n
F

vNv tt
11))(,Pr( =  

5.4.2 Properties of Attribute Outlier Metrics 

5.4.2.1 Metric properties 

Table 5.2: Example contingency tables for monotone properties.  

M2 indicates an attribute outlier, M5 is a rare class, and M6 depicts a rare attribute. 

M1 N(vt) ¬ N(vt)   M2 N(vt) ¬ N(vt)   M3 N(vt) ¬ N(vt)  
vt 50 50 100  vt 1 99 100  vt 50 50 100

¬ vt 50 50 100  ¬ vt 99 1 100  ¬ vt 450 50 500
 100 100 200   100 100 200   500 100 600

 

M4  N(vt) ¬ N(vt)   M5 N(vt) ¬ N(vt)   M6 N(vt) ¬ N(vt)  
vt 50 50 100  vt 1 1 2  vt 1 1 2 

¬ vt 50 450 500  ¬ vt 1 99 100  ¬ vt 99 1 100
 100 500 600   2 100 102   100 100 102

  

One of the first extensive works on the statistical properties of the correlation measures was 

presented by Piatetsky-Shapiro [Pia99]. Here, we first adapt 2 of the key properties proposed 

by Piatetsky-Shapiro to the attribute outlier problem. We use M to denote the matrix 

⎥
⎦

⎤
⎢
⎣

⎡

1101

1011

FF
FF

 and o(M) to represent a metric function o applied to M. 

Property 1 (Monotonically increases with F11): Given that the overall supports of vt as 

well as N(vt) do not change, o(M) monotonically increases with the co-presence of vt and 

N(vt). Property 1 ensures that o(M) is statistically dependent on the significance of F11. If the 

number of objects that indicate co-occurrences vt and N(vt) decreases with respect to total 

number of objects that contains either vt and N(vt), the greater is the likelihood that vt is an 

attribute outlier with respect to N(vt).  



 110

For example in Table 5.2(a), xQ-measure(M1)=50/100=0.5 while M2 with reduced F11 

has a corresponding lower xQ-measure(M2)=1/100=0.01. Therefore, xQ-measure satisfies 

Property 1.  

Property 2 (Monotonically decreases with F1+ or F+1): o(M) monotonically decreases 

when the supports of vt or N(vt) increases, given that the co-presence does not changed. 

Property 2 indicates that o(M) is lower (and therefore vt  exhibits higher degree of outlier-ness 

in N(vt)) if a greater coverage of vt or N(vt) is required to achieve the same level of co-

presence. xQ-measure also satisfies Property 2; the xQ-measure of M2 is 0.01 is 

comparatively lower than xQ-measure(M3)= 50/500=0.1.  

Property 3 (Null invariance): o(M+C)= o(M) where C = ⎥
⎦

⎤
⎢
⎣

⎡
k0
00  and k > 0. Sparse data 

has high degree of F00. Property 3 ensures that the attribute outlier metric for XML is 

invariant to F00, the co-absence of vt and N(vt). This property is often known as the Null 

invariance property [TKS02, HCH04]. For instance, M1 and M4 only differs in the magnitude 

of F00 and xQ-measure(M1)=xQ-measure(M4)=50/100=0.5.  

Property 4 (Rare class): o(M) differentiates rare classes from attribute outliers. Often, 

rare classes (or rare objects) are mistaken as attribute outliers. For example, consider the 

Branch_Address object defined by the elements - <Country:Micronesia>, <State:Ponape>, 

and <City:Palikir>. None of the 3 elements are attribute outliers because Micronesia 

consistently co-occur with Ponape as well as Palikir and vice versa.  M5 in Table 5.2 depicts 

the contingency table of a rare object which must be differentiated from the real attribute 

outlier described in M2.  xQ-measure satisfy Property 4; xQ-measure(M5)=1/2=0.5 is 

comparatively higher than xQ-measure(M2).  

Property 5 (Rare attribute): o(M) differentiates rare attributes from attribute outliers. 

Property 5 states that the metric differentiates rare attributes such as the <Country:Zech> 

element in Figure 1(b) from the attribute outliers. A metric that satisfies Property 5 is not 

necessarily a good attribute outlier metric, but rather it depends on the nature of the input data 
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and the user requirements. Rare attributes may be the result of errors, so data cleaning 

processes, which require that they are isolated together with attribute outliers, may 

specifically select metrics that do not satisfy this property. For example, xQ-

measure(M6)=1/100=0.01 is equivalently low as xQ-measure(M2); xQ-measure does not 

differentiate between the attribute outliers and rare attributes. 

Property 6 (Downward closure): o(M) is downward closure with respect to N(vt). 

Property 6 is the basis of support-based pruning. Let N’(vt)⊆N(vt) and o’(M) be the value of 

the measure on vt and N’(vt), a metric satisfies downward closure if o’(M)≥ o(M). The 

property ensures that if vt=<Country:USA> is an attribute outlier in the neighborhood 

N(vt)={<State:S.Moravi>,<City:Opava>,<Continent:Europe>}, then vt is also an attribute 

outlier with respect to {<State:S.Moravi>,<Continent:Europe>}. 

5.4.2.2 Evaluation of Attribute Outlier Metrics 

As shown in Table 5.3,  none of 8 metrics investigated satisfies all 6 properties, we note that 

some properties are more important than others. Property 1 and 2 statistically justify the 

correctness of the metrics. Property 3 ensures that the metric is least affected by sparse data. 

Notice that both Piatetsky-Shapiro and Interest do not satisfy Property 3. This means that the 

effectiveness of these two metrics are limited by the sparseness of the XML data. 

Property 4 distinguishes outlier class from attribute outlier and therefore is a critical 

property for accurate attribute outlier detection, especially if the metric is used for error 

identification. Notice that the Probability metric does not satisfy most properties. Given that 

probability merely measures the rarity of a target attribute and its neighborhood, it is 

obviously an inappropriate measurement for attribute outliers and the experiment in the next 

section justifies this observation. 

 Property 5 and 6 are optional features that depend on the nature of the application 

and the efficiency requirements. Notice that xO-measure and xQ-measure satisfy all 

properties except for Property 5; they do not differentiate rare attributes and attribute outliers. 

Both xO-measure and Jaccard do not enable support-based pruning.  
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Table 5.3. Properties of attribute outlier metrics 

Metrics P1 P2 P3 P4 P5 P6 

xO-measure Yes Yes* Yes Yes No No 

xQ-measure Yes Yes* Yes Yes No Yes 

Piatetsky-Shapiro (PS) Yes Yes No Yes Yes No 

Interest (I) Yes Yes No Yes Yes Yes 

Jaccard (ζ) Yes Yes Yes Yes No No 

H-measure=(1-H-measure) No No Yes Yes Yes No 

H-measure’ Yes Yes Yes Yes Yes No 

Probability (Pr) Yes No Yes No No Yes 

* Only if the property applies to increase of the supports of N(vt) 

5.5 Performance Evaluation 

We evaluate the performance of the XODDS algorithm on both synthetic Bank Account and 

real-world protein data sets. Experiments were performed on an Intel Core 2 dual, 2 GHz 

computer with 1GB of main memory, and running Mac OS. Programs are written using Java. 

The following aspects are investigated:    

(1) Compare the accuracy of xO-measure, xQ-measure and other interesting-ness metrics 

using Top-k and Rate-of-Change selection methods. 

(2) Evaluate the accuracy of various attribute outlier metrics in data sets with varying 

noise levels. 

(3) Compare the accuracy of XODDS with the relational approach which uses 2χ to 

derive the correlated subspaces in relational tables. 

(4) Evaluate the performance of XODDS at higher level of abstractions through the use 

of aggregate attributes. In particular, we are looking for “hidden” outliers which 

could be missed if not for the use of aggregate attributes. 
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(5) Evaluate the running time of attribute outlier metrics at varying data size, with and 

without pruning. 

(6) Evaluate the performance of XODDS on UniProtKB/TrEMBL database to detect 

discrepancies in annotations. The results are manually annotated. 

5.5.1 Bank Account Data Set 

We extracted from the financial data set available at the web site 

http://lisp.vse.cz/pkdd99/Challenge/berka.htm, a Bank Account data set (denoted Bank) 

containing 4,500 accounts, 207,989 transactional records, 670 loan records, and 711 payment 

orders. The data set, originally in relational tables, is converted to the XML schema as shown 

in Figure 5.4. To prevent the implicit noise from interfering with the evaluation process, we 

removed 4,884 transactional records which potentially contain outliers, leaving 203,105 

transactions. 

 

Figure 5.4: XML tree of Bank Account data partitioned to 504 subspaces (Ds1-504) 

Aggregate attributes specified for this data set are Loan_amt, PO_count, PO_avg, TR_avg, 

and TR_count. Optional attributes are in dotted nodes. 
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5.5.1.1 Top-K vs Rate-of-Change 

We compare the performance of various metrics on the Bank Account data set with 2% 

attribute outliers (as well as rare attributes) inserted. Figures 5.5 and 5.6 show that xO-

measure and xQ-measure which are metrics specifically designed for attribute outlier 

detection, generally outperform the other metrics using either Top-k or Rate-of-Change 

(ROC) threshold selection strategy.   

In Figure 5.5, the F-scores for xO-measure and xQ-measure converges up 80% when 

outliers are distinguished using the ROC thresholds are calculated from the top 15% of the 

objects (k) with the lowest metric scores. Figure 5.6 shows that the performance of the same 

metrics without ROC, at corresponding F-scores of up to 66%. Also noticed that at k=1%, the 

top-k approach achieves much higher F-scores than ROC across all metrics. This is expected 

because the input XML document contains 2% noise; selecting a “tighter bound” within the 

top 1% outliers merely serves to increase the number of FNs (false negatives). 
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Figure 5.5: Performance of XODDS of various metrics using ROC-derived thresholds 
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Accuracy of attribute outlier metrics using Top-k
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Figure 5.6: Performance of XODDS of various outlier metrics using Top-k 

 

From a realistic perspective, we inserted attribute outliers as well as rare attributes 

into the input XML document because both types of patterns entail attention. Potentially 

fraudulent patterns such as the $1,000 transactional amount in Figure 5.1(c) are present as 

rare attributes, whereas abnormally low (or high) transactional averages compared to other 

accounts of the same country are seen as attribute outliers. Hence, metrics that do not 

differentiate between them - Property 5 (xO-measure, xQ-measure and Jaccard) generally 

achieves higher F-scores. One other reason for the poor performance of Interest and PS 

metrics is their dependence on the vast co-absence of XML data; they do not satisfy the null 

invariance property. 

5.5.1.2 Varying Noise 

Figure 5.7 compares the F-scores of various metrics at varying noise levels. Outlier 

thresholds are adaptively selected by XODDS using ROC. xO-measure and xQ-measure 

perform consistently better than the other metrics, even as the noise level increases. F-scores 

range between 72-81% for xO-measure and between 75%-80% for xQ-measure. 
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Accuracy of attribute outlier metrics at varying 
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Figure 5.7: Performance of XODDS at varying noise levels 

5.5.1.3 XODDS vs Relational 

XODDS utilizes the inherent hierarchical structure of XML to derive meaningful subspaces 

for outlier detection. Similarly, given a relational table, dimensions or columns can be 

divided into subspaces through attribute clustering. In order to compare the accuracy of 

detecting outliers using these two approaches, we relationalizes the Bank Account data set 

(denoted RBank), and cluster the attributes based on Chi-square χ2. 

The χ2 test is typically used to determine correlations between dimensions containing 

categorical data [Eve77]. For non-parametric data or continuous data, rank-order correlation 

calculations such Spearman-Rho and Kendall-tau or the Pearson test can be used instead. 

The χ2 test of independence is based on the difference of the observed frequencies with the 

corresponding expected frequencies. If χ2 = 0, the two attribute vectors are statistically 

independent. The χ2 is computed by: 

( )
∑

−
=

exp

2
exp2

f
ffobsχ  

where fexp refers to the expected frequency of an attribute pair in the contingency table and fobs 

is the observed frequency.  
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Table 5.4: Attribute subspaces derived in RBank using χ2  

Subspace Attributes 

1 Freq, Add1, Add2, Transaction/Acct to, Transaction/Bank to, Payment order/Acct to 

2 Loan/Amount, Loan/Duration, Loan/Payment 

3 Payment order/Bank to, Payment order/Amount, Payment order/Type 

4 
Transaction/Type, Transaction/Operation, Transaction/Amount, Transaction/Balance, 

Transaction/K-symbol 

 

Table 5.4 shows the groups of attributes derived from the relational table using χ2. It 

makes sense that the region(Add1) or district(Add2) where the customer open his bank 

account is likely dependent on the banks he often transacts to, it is not surprising to find that 

Transaction/Bank to, Transaction/Acct to, and Payment order/Acct to are correlated to the 

Bank branch addresses (Add1 and Add2) in Subspace 1. We apply the same outlier scoring 

and selection algorithms to the relational subspaces. Figure 5.8 shows the performance of 

XODDS compared with the relational approach at varying noise levels. As discussed in 

Section 5.2, the poor performance of the latter approach may be due to the increased 

redundancy when an object is replicated across multiple tuples when “flattened”, and thus 

affecting the distribution of each dimension in the converted relational table.  

XODDS consistently performs better compared to the relational approach with F-

scores of between 63%-86%. As the noise level increases, the correlation between the 

attributes decreases, thus affecting the accuracy of the outlier detection. Overall, the accuracy 

using xQ-measure in XODDS is slightly higher than with xO-measure, particularly when the 

level of noise increases.  In fact, even on the Bank Account data set with 10% noise, the F-

score achieved using XODDS with xQ-measure is 70%. 
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Figure 5.8: Performance of XODDS compared to the relational approach 
 

5.5.1.4 Aggregate attributes 

The purpose of aggregate attributes is to summarize nested XML structures so that detection 

of attribute outliers at higher level of abstraction is possible. We introduced 5 aggregate 

attributes to the Bank Account data set: TR_count and TR_avg are the number of transactions 

and the average amount of transactions of an account. PO_count and PO_avg are the number 

of payment orders and the average amount of the payment orders. LN_amt is the loan amount. 

Since each account is restricted to one loan, the loan amount is merely “promoted” to the 

account level. 

The aggregate attributes are compared across all 4,500 accounts in the Bank Account 

data set; the outliers identified are shown in Figure 5.9. We are interested to determine any 

inherent outliers in the raw data set. We anticipated that removing 4,884 transactional records 

with possible outliers in the transaction subspace may not necessarily “clean up” the account 

subspace. This is justified by applying XODD on the clean data set which does not contain 

any inserted outliers. Some of the interesting inherent outliers which are uncovered are: 

1. An account which has less than 10 transactional records. 

2. Loan amount of less than $1,000 issued to 2 accounts. 

3. Loan amount of more than $100,000 issued to 1 account. 
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4. 18 accounts in Hl.m. Praha city of Czech Republic have transactional averages less 

than $100. These accounts are highlighted because the typical transactional averages 

of accounts opened in Hl.m. Praha is usually in magnitude more than $100. 

In general, the number of aggregate attribute outliers does not increase significantly 

as noise level increases, even for the averaging attributes. Inserting fraudulently high 

transactional amount to the transaction object may increase the outliers at the account level 

(e.g. transactional average increases) but it may also average out the outlier behavior. 
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Figure 5.9: Number of aggregate outliers in the account subspace across varying noise 

5.5.1.5 Running time at varying data size 

We evaluate the running time of XODDS across varying data size. As shown in Figure 5.10, 

XODDS increases exponentially. At 9,000 account nodes, XODDS requires 38 minutes. 

Moreover, pruning of attribute outliers that have supports greater than minsup significantly 

reduce the execution time (details in Section 5.3.2). 
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Figure 5.10: Running time of XODDS at varying data size 

5.5.2 UniProt Data Set 

The second part of the experiments evaluate the performance of XODDS in detecting 

annotation errors in a the UniProt/TrEMBL data set, and shows that XODDS is achieve better 

accuracy compare to the ODDS method proposed in Chapter 4. 

 

 

Figure 5.11: Simplified UniProt XML 
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The original UniProt XML schema is extensive. For purpose of this study, we 

simplify the UniProt XML (Figure 5.11) and only focused on selected subspaces of the Gene 

Ontologies and the Keywords. Each protein object in UniProt/TrEMBL is annotated with a 

set of Gene ontology nodes corresponding to the Gene ontology controlled vocabulary of 

proteins’ properties. Similarly, a protein contains a number of keyword subject references. 

Table 5.5 shows the detected outliers. The k-neighbourhoods indicate the size of the 

neighbourhoods of the outliers. 

Table 5.5: Outliers detected from the UniProt/TrEMBL Gene Ontologies and Keywords 

annotations 

k-Neighborhoods GO (OM) GO(QM) KW(OM) KW(QM) 

3 46 184 5 40 

4 91 491 6 53 

5 54 251 49 30 

6 60 85 53 25 

7 10 13 75 11 

8 904 473 65 2 

9 532 99 215 228 

10 9 9 43 44 

11 3712 9595 4 4 

12 1621 4252 1 1 

13 524 1391 2 2 

14 117 317 - - 

15 16 45 - - 

16 1 3 - - 

17 3 5731 - - 

18 1208 765 - - 

19 75 50 - - 

Total 8983 23754 418 440 

 

A biologist through manual verification verifies the detected attribute outliers. Table 

5.6 shows the accuracy of the Gene ontology outliers detected using ODDS (with O-

measure). True positive TP indicates an uncommon association of the target attribute with the 

other attributes in the projected relation. False positive FP indicates that no peculiarity is 
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found in the correlation behaviour of the target attribute. Indeterminable means that further 

investigation is required. 

The manual verification step largely depends on the knowledge level of the biologist 

and his decisive-ness. Table 5.6 shows that a large percentage 43% of the outliers require 

further investigation because the biologist lacks the domain knowledge to justify if the 

annotation is erroneous or it is only exceptional. Only 3% out of those which can be 

annotated are false positives. The remaining 97% of the gene ontology outliers are confirmed 

erroneous annotations. This is a significant improvement over the 19%-55% positive 

predictive rate (PPV) achieved by ODDS (details in Chapter 4, Section 4.5.2).  

Table 5.6: Annotation results of outliers detected from the UniProt/TrEMBL Gene 

ontologies 

k-Neighborhoods TP FP Indeterminable 

3 9 12 25 

4 28 7 56 

5 23 3 28 

6 35 0 25 

7 6 0 4 

8 283 48 573 

9 189 39 304 

10 4 1 4 

11 2347 5 1360 

12 1167 0 454 

13 419 0 105 

14 102 0 15 

15 15 0 1 

16 1 0 0 

17 1 0 2 

18 354 33 821 

19 21 1 53 

Total 5004 149 3830 

 

To mention a few interesting examples, a Mitochondrion protein Q35127 which 

occurs outside the nucleus is annotated to be involved in “DNA repair” - a process which 
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occurs only inside the nucleus, a Chloroplast protein Q5UVG7 which is a plant cell organelle, 

is involved in “defense response to pathogen” and another Mitochondrion protein Q9B8V5 is 

annotated to contain a “nucleus”. Some of these erroneous annotations are corrected in the 

latest UniProtKB/TrEMBL release.  

5.6 Concluding Section 

In this chapter, we have presented a novel framework called XODDS that utilizes the 

correlations between attributes to identify, attribute outliers. We introduced in XODDS, two 

new concepts of correlated subspace and aggregate attributes which are derived from the 

hierarchical structural of XML data models. We also develop two attribute outlier metrics - 

xO-measure and xQ-measure. Through evaluation with synthetic and real-world data, we 

have shown that XODDS can achieve F-score of up to 80% and it can determine up to 97% 

erroneous annotations on a real-world protein data set. 
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Chapter 6: Duplicate Detection from 
Association Mining 

Nothing in life is to be feared, it is only to be understood. 

 

Marie Curie 
Chemist and Physicist (1867 - 1934) 
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Duplicate detection is an important data cleaning problem; duplicates cause over-

representation of patterns and affect the accuracy of the data mining results. Existing 

duplicate detection methods consider redundancy as a Boolean operation – if two records are 

sufficiently similar, they are identified as duplicates and are merged. However, for many real-

world databases, multiple facets of duplication exist and the merging step depends on the 

types of redundancy detected. Not all duplicates can be trivially combined. One such example 

is the biological data. In Chapter 3 (Section 3.2.2.2), we discuss the limitations of using a 

simplified rule to detect varying types of duplicates. 

This chapter explores a learning approach towards detecting multiple types of 

duplicate relations. Leveraging on the correlations between attributes, duplicate rules for 

different types of duplicate relations are induced from a known set of duplicates using 

association mining. The method is used to identify 5 types of duplicates in biological data – 

duplicates, structural isoforms, cross-species duplicates, sequence fragments, and cross-

annotation variants.  

Evaluation of the proposed approach on a protein data set shows that the duplicate 

rules are capable of identifying up to 97.3% of the varying types of duplicates. Slight 

improvement is achieved over other classifiers, but the approach has practical advantage of 

requiring only the positive training set of duplicates. Other classifiers are highly dependent on 

the completeness of the comparatively larger negative training set. 

6.1 Introduction 

Extensive diversity in data formats, schemas, nomenclatures as well as in geographical 

distribution introduces in high level of information redundancy among the biological 

databases. The same sequence may have inconsistent, overlapping, or partial information in 

heterogeneous representations in heterogeneous data sources. The various causes of 

redundancy in biological data are described in Chapter 3 (Section 3.1.3). 

In a comprehensive study of the structural and functional annotations of scorpion 

toxins [SGT+02], we observed through collecting and merging the scorpion toxin records 
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from 6 source databases: 143 out of 211 (68% redundancy) scorpion toxin proteins are 

replicated across 2 to 5 data sources; 13 are found in 5 database sources (Figure 6.1). 
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Figure 6.1: Extent of replication of scorpion toxin proteins across multiple databases 

 

For merely 211 records, it is possible to delete or merge-join duplicates manually. But this is 

not viable for large-scale functional and structural studies of other organisms such as fugu 

(more than 2,000 protein records in GenBank as of Dec 2006) or mouse (more than 180,000 

protein records in GenBank as of Dec 2006), let alone human (more than 320,000 protein 

records in GenBank as of Dec 2006). 

Typically, cleaning of biological data is carried out in proprietary or ad-hoc manner, 

sometimes even manual. Systematic processes for biological data cleaning are lacking. 

Rather, specific procedures are designed for cleaning certain datasets. For example, in 

[Tha99], stringent selection criteria are used to select complete and unique records of Homo 

sapiens splice sites from EMBL database. Requirements for complete coding region, genuine 

human nuclear DNA, non-pseudogene, absence of alternative gene products, among others, 

reduced the initial 4,300 raw records to 400 records. Retaining only one sequence among any 

group of sequences with more than 80% identity reduced the dataset further to 310 records. 

Such approaches of eliminating all incomplete records (sequences) can result in loss of 

information from cases of partially determined or partially annotated yet non-redundant 

sequences.  
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6.1.1 Motivating Example 

Existing duplicate detection methods focus primarily on well-defined records such as 

customer contact information. On the other hand, biological data records have more than one 

facet of duplication. For example, the known duplicate relations of annotated protein 

sequences in the NCBI entrez searchable protein databases (GenPept, Swiss-Prot, PDB, PIR, 

among others) are described in Table 6.1.  

Table 6.1: Multiple types of duplicates that exist in the protein databases 

Duplicate type Description 

1. Duplicates  Identical protein sequences with different annotations (one may be a 

structure record) due to: 

• Sequences submitted by different annotators 

• Sequences submitted more than once to same database 

• Sequences submitted to different databases 

2. Structural 

isoforms 

Same protein sequence but records have different orientations or 

conformations due to: 

• Difference in partial organisation of proteins (Chain A and B) 

• Structural modeling of the same protein by different methods or by 

different researchers  

• Cleavage resulting in different foldings 

• Protein complexes 

• Sequence from structural inhibition study 

3. Cross-species 

duplicates 

Identical protein sequences exist in different genus/species (not 

subspecies) 

4. Sequence 

fragments 

One sequence is a segment of a more complete sequence due to: 

• Partially determined sequence fragment 

• Precursor/mature protein pairs (both are complete sequences) 

5. Cross-

annotation 

variants 

Highly similar sequences but not identical sequences with different 

features in annotation due to: 

• Sequence variants with different functions 

• Synthetic sequences for the study of functional residues 

• Different annotations given by separate annotators 
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Duplicates refer to proteins which are recorded in more than one database entries due 

to different data sources, varying views of the proteins (PDB protein structures versus Swiss-

Prot protein annotations), or repeated submissions of the sequence by the same or different 

annotators. Usually, duplicates contain partial information of the same protein sequence and 

should be merged into a single entity. Structural isoforms are database records describing 

different structural conformations or orientations of the same protein. Cross-species 

duplicates are identical protein sequences belonging to different species. Sequence fragments 

contain partial information of the complete sequence, and are typically merged into the latter. 

Traditionally, incomplete sequences are eliminated during data cleaning processes. This 

approach, however, may result in loss of important information. Cross-annotation variants 

are highly similar sequences with slight difference in sequence features. Biologically, cross-

annotation variants are particularly useful in identifying specific residues that are critical in 

determining the protein’s functional properties. 

Generally, the actions taken upon detecting the varying types of duplicates depend on 

the objectives of the users as well as on the type of the duplicate relations. For example, 

duplicates may be directly merged to form complete sequences while cross-annotation 

variants will need to be inspected separately by the expert annotators. Merging structural 

isoforms depends on the nature of the analysis; whether the analysis is based on the protein 

structures or the primary sequences. 

The same multiplicity of duplicate relations also exists in non-biological domain. For 

example, two patient records that differ only in the blood group cannot be directly combined. 

Possible contamination during blood tests may result in labelling of incorrect blood groups. 

This in turn may result in serious loss of lives [KCD99]. Such duplicate records must be 

highlighted so that additional blood tests are conducted. 

Specific contributions from this work include: 

1. We introduce the notion of multiple types of duplicate relations, as opposed to 

traditional concept that redundancy is a boolean property. 
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2. We propose a correlation-based method for learning the duplicate rules of varying 

types of duplicate relations. Different duplicate rules are induced from a known set of 

duplicates using association mining.  

The rest of the chapter is organised as follows: In section 6.2, we briefly describe 

association mining – the basis of our duplicate learning approach. Section 6.3 details the 

materials and methods. In section 6.4, we discuss results of our experiments and we conclude 

in section 6.5. 

6.2 Background 

Learning techniques that rely on supervised classifiers for duplicate detection are not new. 

[SB02] proposed an iterative de-duplication system that actively learns using Decision Tree 

C4.5, Support Vector Machine (SVM), and Naïve Bayes as the classifiers. [EVE02] utilizes 

probabilistic, induction and clustering based decision models to classify the records into two 

classes – duplicates and non-duplicates. Unlike these methods which require a negative 

training set of non-duplicates, the input to the association mining are pairs of duplicates. 

Through association-based classifier approach, each type of duplicate relations is 

characterized by both the similarities of the attributes (which we call matching criteria) as 

well as the correlation patterns among the attributes. 

In Section 6.4 of this chapter, we will show that association-based classifier 

outperforms other classifiers. 

6.2.1 Association mining 

Association mining or induction is commonly used in market basket analysis to find items 

frequently bought together by shoppers. The first algorithm for mining frequent item sets is 

Apriori [AIS93]. Association rules are induced from items that are most frequently occurred 

together, known as the frequent item set. For example, a rule of the form “Buy(A) ^ Buy(B) 

→ Buy(C)” indicates that a customer who buys item A and item B buys C, with the 

interestingness of this rule measured from the support and confidence of the rule. The support 
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is the percentage of transactions in the input database that contain A, B and C. The 

confidence is the percentage of transactions that contain A and B (the antecedent) also 

containing C (the consequent).  

Association rule mining has been applied to other data cleaning problems [MML01, 

LLH04] but not in duplicate detection. As such, this is the first application of association 

mining methods on duplicate detection problem. To the best of our knowledge, this is also the 

first comprehensive work that addresses redundancy in biological data. 

6.3 Materials and Methods 

This section details the duplicate detection framework. 

6.3.1 Duplicate Detection Framework 

 

Figure 6.2: Duplicate detection framework 

 

Figure 6.2 depicts the association-based duplicate detection framework. First, matching 

criteria for comparing record pairs are selected from the input data set. Selected attributes 

based on these matching criteria of each duplicate record pairs are measured using varying 

similarity functions, depending on the data types of the attributes. The similarity values for 

each pair of records in the training data are discretized. Duplicate rules mined from subsets of 

attributes and their similarity measures, each describing a type of duplicate relation are used 

to detect duplicates in biological datasets. 



 131

6.3.2 Matching Criteria 

Protein records from Entrez  are comparable across 9 matching criteria as shown in Figure 

6.3. A protein record contains 3 main types of data fields: (1) Protein and DNA  primary 

sequences, (2) categorical fields, and (3) free-text strings, each requiring different similarity 

functions to measure the degree of similarity of two corresponding fields. 

 

Figure 6.3: Matching criteria of an Entrez protein record 
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Protein or DNA sequences are matched using their percentage identity scores 

computed from BLAST 2 sequences (bl2seq) algorithm [TM99]. Bl2seq utilize the gapped 

BLAST algorithm [AMS+97] to align and compare pairs of DNA-DNA or protein-protein 

sequences, and the percentage identity scores reflect the degree of similarity of the two 

sequences. We denote the sequence similarity function as S. 

Categorical fields contain values belonging to a fixed value-set. For example, the 

organism fields in Entrez records are derived from the standardized taxonomy of the 

organisms. If two categorical fields have the same values, they are given a similarity score of 

1; otherwise 0. We denote this Boolean match as similarity function M. 

The third type of data fields are the free-text strings. The most common method for 

comparing string is the edit distance or Levenshtein distance [Lev66]. The edit distance 

computes the minimum number of edit operations (insertions, deletions, and substitutions) to 

transform from one string to another, and we denote the edit distance by E.  

Table 6.2 shows an example of the similarity scores of the ORIGIN sequence field, 

the ORGANISM field (category of species) and the free-text DEFINITION of two scorpion 

venom records from the GenPept and Swiss-Prot database respectively. 

Table 6.2: Similarity scores of Entrez records 1910194A and P45639 

Field 1910194A P45639 Score 

ORIGIN MCMPCFTTDHQMAR

KCDDCCGGKGRGKC

YGPQCLCR 

MCMPCFTTDHQMARK

CDDCCGGKGRGKCYG

PQCLCR 

1 

ORGANISM Leiurus quinquestriatus 

quinquestriatus 

Leiurus quinquestriatus 

quinquestriatus 

1 

DEFINITION chlorotoxin. Chlorotoxin 0.92 
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6.3.3 Conjunctive Duplicate Rules 

The overall similarity of two database records is determined from the similarities of 

individual fields of the records. Taking into consideration the correlations of fields and their 

similarity measures, a conjunctive clause of the matching criteria represents a duplicate 

relation. We call them duplicate rules, also known as merging rules. An example of a 

duplicate rule is:  

Identical protein sequences ^ same length ^ same species → duplicate 

The conjunctive clause is translated into a set of matching criteria and corresponding 

thresholds. This can be calculated by applying data type specific similarity functions (S for 

sequence similarity, N for numerical ratio and M for Boolean matching) on the sequence, 

sequence length and species fields respectively. 

S(Seq)=1.0 ^ N(Seq Length)=1.0 ^ M(species)=1 → duplicate 

If we encode the matching values as items, the rule takes the form of an association rule and 

we can easily apply association rule mining to induce models of the duplicate relations from 

dataset of known duplicates.  

SE1.0 ^ LE1.0 ^ SP1 → duplicate 

6.3.4 Association Mining of Duplicate Rules 

The training dataset contains the similarity scores of pairs of records across the 9 criteria. To 

generate the items from the scores, we encode the values with field labels. For continuous 

values such as the sequence similarity scores which range from 0 to 1.0, the values are 

partitioned into equiwidth bins of 0.1. Hence, sequence similarity score item “SQ0.95” 

becomes “SQ0.9”. Figure 6.4 shows an input data set for association-based supervised 

classifier.  
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Figure 6.4: Field labels from each pair of duplicates in training dataset 

6.4 Performance Evaluation 

The dataset is a combination of two set of records. The first data set consists of 520 scorpion 

toxin proteins retrieved from Entrez using the keywords “scorpion AND (venom OR toxin)”. 

The second set contains 780 snake PLA2 venom proteins retrieved from Entrez using the 

keywords “serpentes AND venom AND PLA2”. The 1300 records were annotated separately 

by two biologists; 1328 duplicate pairs were identified collectively (Table 6.3). 

Table 6.3: Different types of duplicate pair in training data set 

Types of duplicates Scorpion toxin Snake PLA2 toxin Combined 

1. Structural isoform 19 187 206 

2. Duplicate 251 444 695 

3. Cross-species duplicate 13 27 40 

4. Sequence fragment 97 181 278 

5. Cross-annotation variant 90 19 109 

Total 470 858 1328 

 

Experiments were performed on a Pentium-M 1.6GHz computer with 1GB of main 

memory, and running Windows XP. Association mining is carried out using CBA [LHM99]  

(Classification Based on Association) while other classifiers methods are  evaluated using 

WEKA [HDW94].Figure 6.5 shows the accuracy results using different classifiers. 

AAG39642 AAG39643 AC0.9 LE1.0 DE1.0 DB1 SP1 RF1.0 PD0 FT1.0 SQ1.0 

AAG39642 Q9GNG8 AC0.1 LE1.0 DE0.4 DB0 SP1 RF1.0 PD0 FT0.1 SQ1.0 

P00599  PSNJ1W AC0.2 LE1.0 DE0.4 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0 

P01486 NTSREB AC0.0 LE1.0 DE0.3 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0 

O57385 CAA11159 AC0.1 LE1.0 DE0.5 DB0 SP1 RF0.0 PD0 FT0.1 SQ1.0 

S32792  P24663 AC0.0 LE1.0 DE0.4 DB0 SP1 RF0.5 PD0 FT1.0 SQ1.0 

P45629  S53330 AC0.0 LE1.0 DE0.2 DB0 SP1 RF1.0 PD0 FT1.0 SQ1.0 
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Figure 6.5: Accuracy of detecting duplicates using different classifiers 
 

In general, association-based classifier yields better accuracy, achieving a positive 

predictive rate of 97.2%. Figure 6.6 shows the breakdown of the results into various types of 

duplicate relation. Cross-annotation variants are less predictive because variant sequences are 

usually considered as “similar” and the two biologists have different perspectives over what 

is considered “significantly similar”. This fuzzy characteristic is inherent in biological data. 
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Figure 6.6: F-score of detecting different types of duplicates 
 

Apart from the relative higher accuracy, the association mining approach has a practical 

advantage over other approaches; it does not require the negative data set of non-duplicates. 

First, it is difficult to collect a complete set of non-duplicates, and in addition, the input data 
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would be highly skewed because the negative training set is naturally much larger than the 

positive counterparts. Table 6.4 shows part of the 181 duplicate rules induced from CBA. 

Table 6.4: Examples of duplicate rules induced from CBA 

Rule Conf % Sup % 

1. M(PDB)=1 ^ M(Ref)=1.0 → Structural Isoform 100 9.5 

2. M(Feature)=1 ^ M(PDB)=1 ^ E(Accession)=0.8 → Structural Isoform 100 7.8 

3. M(Ref)=1 ^ M(Species)=1 ^ M(DB)=0 ^ E(Definition)=0.3 ^  

S(Sequenc)=1 →Duplicate 

100 5.0 

4. M(PDB)=0  ^ E(Definition)=0.9 ^ M(Seq length)=1 ^ E(Accession)=0.8 → 

Variant 

100 0.15 

5. M(Species)=1 ^ M(Similarity)=0.9 → Fragment 100 3.0 

 

For example, rule (1) indicates that a pair of sequence records from the same data 

source of PDB (meaning they are both translated from structural proteins) and contains the 

same references are structural isoforms. Rule (2) indicates that structural isoforms have 

identical features and their accession differs only slightly. It makes sense as structural 

duplicates representing different chains differ by a chain suffix, such as 1DJT_A and 

1DJT_B. Rule (3) shows that identical sequences from the same species and relates to the 

same research articles, but from different data sources, are likely duplicates. 

 

6.5 Concluding Section 

In this chapter, we presented an application of correlation-based learning technique for 

duplicate detection. The chapter achieved preliminary contributions to duplicate detection for 

biological data. It explores scoring functions and criteria for matching sequence records. 

Also, it introduces a new method for modeling different types of duplicate relations using 

association rules and we compare with other classifiers including decision tree C4.5, Naïve 

Bayes and SVM. The duplicate rules identified from this work can be used for eliminating 

duplicates in protein sequence databases. 
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Chapter 7: Discussion 

Every great mistake has a halfway moment, a split second when it can be recalled and 
perhaps remedied. 

 

Pearl Buck 
Author (1892 - 1973) 
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The information overload era result in a manifestation of low quality data in real-world 

databases. The demand for high quality data surges and opens new challenges for data 

cleaning. This thesis aims at tackling the data quality problem through an in-depth study of 

the data quality problem and the development of data cleaning techniques. We holistically 

addressed the problem of data artifacts in real-world biological databases and proposes 3 new 

general correlation-based data cleaning methods.  

The completion of this research project made 4 specific contributions to the research 

in data cleaning as well as bioinformatics. Specific results and findings from each problem 

researched in this thesis are summarized in this chapter. 

7.1 Review of Main Results and Findings 

7.1.1 Classifications of Biological Data Artifacts 

Chapter 3 of this thesis examines the varying types of artifacts in biological data. We 

observed that the data quality problem is a collective result of 11 types and 28 sub-types of 

artifacts at the field, record, single and multiple-database levels. It is also a combinatory 

problem of the bioinformatics that deals with the syntax and semantics of data collection, 

annotation, and storage, as well as the complexity of biological data. We developed both 

physical and conceptual classifications of these data artifacts; these classifications can be 

used as a “roadmap” for cleaning biological data. Representative examples of each type of 

artifacts are extracted from real-world biological databases and documented into an online 

catalogue called BioDArt (http://antigen.i2r.a-star.edu.sg/BioDArt/). To the best of our 

knowledge, this is the first complete study of biological data artifacts, with the objective of 

gaining holistic insights into the data quality problem and the adequacy of current data 

cleaning techniques. 

Some artifacts can be addressed using existing data cleaning technique, while other 

more complicated artifacts require new methods. For example, these exists no known data 
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cleaning method to resolve annotation errors, which affect 5% to 40% of the public protein 

and nucleotide sequences. Also, the problem of sequence redundancy is unlike the classical 

definition of duplicates in data cleaning; varying types of duplicate relations exist. The rest of 

the thesis is motivated at resolving these two data artifacts through new correlation-based 

data cleaning approaches. 

7.1.2 Attribute Outlier Detection using ODDS 

Chapter 4 focuses on the ODDS correlation-based detection method for attribute outliers. 

Unlike traditional class outlier detection research which consider outlier-ness as a global 

property applicable to all dimensions of the data set, our notion of attribute outlier-ness is a 

bivariate property of an attribute value and the subspace where it exhibits abnormal 

correlation. This is because for attribute outliers, rarity does not equate attribute outlier-ness 

but rather, the deviating correlation behaviour. Therefore, the ODDS algorithm involves 

finding both the attributes as well as the associated subspaces.  

We also devised 3 new metrics O-measure, Q-measure and Of-measure to quantify 

attribute outlier-ness. Experiments with synthetic data shown that O-measure is the most 

accurate while Q-measure is computationally less intensive. Of-measure is devised for sparse 

data sets containing vast occurrences of rare attribute values which are not outliers. The 

number of attribute outliers differ from one dataset to another, depending on the noise level. 

Therefore, we developed an adaptive Rate-of-change factor to select optimal thresholds for 

distinguishing the outliers from non-outliers in any given data set. These automatic and data-

dictated thresholds remove dependency on user-defined parameter. Because of the high time-

cost of enumerating subspaces, we also introduced two strategies to filter subspaces that do 

not contain attribute outliers. 

ODDS achieves an F-score of up to 88% in a synthetic data set for database tuples 

containing between 1 to 3 attribute outliers. Experiments with the UniProtKB/TrEMBL 

protein data set shown that ODDS achieve a positive predictive value (PPV) of up to 55% in 

detecting erroneous annotations.   
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7.1.3 Attribute Outlier Detection in XML using XODDS 

Increasing biological databases are converted into XML formats in order to facilitate data 

exchange, including the protein databases. However, current outlier detection methods for 

relational data models are not directly adaptable to XML documents. Chapter 5 proposes 

XODDS - a four steps framework towards identifying attribute outliers in XML documents. 

Besides utilizing correlations between attributes to adaptively identify attribute 

outlier, XODDS leverages on the hierarchical structure of the XML document to provide 

contextual information lacking in relational data, with the aim of improving both the 

effectiveness as well as efficiency of identifying attribute outliers. Specifically, 2 novel 

concepts of correlated subspaces and aggregate attributes in XML were introduced. 

Respectively, they reduce the time complexity of the attribute outlier method by separating 

the XML document into several natural partitions and enable summarization of group of 

nodes for data cleaning at higher level of abstractions. 

We also develop for XODDS, the xO-measure and xQ-measure outlier scoring 

metrics which were adapted from O-measure and Q-measure. Experimental evaluation of xO-

measure and xQ-measure with other correlation-based measures show that they significantly 

outperform other measures namely the Piatetsky-Shapiro rule interest, Interest factor, Jaccard 

coefficient, Hmeasure and Probability. XODDS also consistently performs better compared 

to the relational approach with F-scores of between 63%-86%. The introduction of aggregate 

attributes additionally identifies inherent attribute outliers. 

When applied to the detectoin of annotation errors in UniProt/TrEMBL, XODDS 

attains a 97% positive predictive value (PPV), with significant improvement over ODDS.  

7.1.4 Detection of Multiple Duplicate Relations 

Chapter 6 of this thesis proposes a new approach to detect the varying types of duplicate 

relations. Unlike traditional duplication detection approaches, we consider the multi-facets of 

redundancy and develop a association rule induction method to model the various types of 
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duplication. The method is used to identify 5 types of duplicates in biological data – 

duplicates, structural isoforms, cross-species duplicates, sequence fragments, and cross-

annotation variants.  

Experimental evaluation on a scorpion and snake venom protein data set with known 

duplicates shows that duplicate rules learned from association-based classifiers are capable of 

identifying up to 97.3% of the varying types of duplicates. Slight improvement is achieved 

over other classifiers, but the approach has practical advantage of requiring only the positive 

training set of duplicates.  

 

7.2 Future Works 

Overall, there remains several aspects of data cleaning that require further research. This 

section proposes two key research directions. 

7.2.1 Biological Data Cleaning 

Data quality is a multifactorial problem. In Chapter 3, we determined that for biological data, 

data quality problem is the combine effect of 11 types and 28 sub-types of data artifacts. To 

detect and to correct each type of artifact is an extensive data cleaning project of its own. The 

data cleaning methods proposed in this thesis focus on the detection of annotation errors and 

duplicates that cover only 2 of the known artifacts in the classification. Developing the 

detection methods already constitutes to more than 3 years of research. There are several 

other interesting research problems in biological data cleaning which have not been 

completely resolved. For instance, the problem of term disambiguation have also drawn 

increasing attention in the recent years. Moreover, only partial solutions have been 

developed. As with many other data cleaning problems for biological data, the difficulty of 

untangling the “web” of synonymy and homonymy in molecular entities stems from the 

inherent complexity of biology as an empirical science. 
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In addition, current approaches to data cleaning (including the methods proposed in 

this thesis) largely focus on the detection of the artifacts and not their correction, which in 

turn, requires new algorithms and methods. Clearly, the development of data cleaning 

techniques is at its infancy and it is becoming more critical in the bioinformatics domain as 

data continue to accumulate at an exponential rate and artifacts are proliferating among the 

diversified data sources, handicapping large-scale analysis.  

Further work is needed to tackle the depreciating data quality problem in 

bioinformatics; a spectrum of data cleaning approaches addressing the assorted types of data 

artifacts from varying origins or sources, and affecting different parts of the databases is 

required. The classifications of biological data artifacts that we proposed in Chapter 3 of this 

thesis serve as a “roadmap” for the continuation of future work in biological cleaning 

research. 

7.2.2 Data Cleaning for Semi-structured Data 

Current works in data cleaning have primarily focused on structured databases to discover 

duplicate records and outliers. Semi-structured data models such as XML is rapidly 

proliferating as a new standard for data representation and exchange on the World Wide Web. 

As the world head towards the paper-less society, digital libraries containing unstructured 

data are also becoming increasingly popular for extracting information and text-mining.  

On the other hand, the intrinsic structural differences between relational and XML or 

unstructured data models limit the direct adaptation of conventional data cleaning methods. 

Morever, the hierarchical structure of XML data provides additional semantic context that 

can be exploited to enhance the data cleaning method. We have shown in Chapter 5 that the 

hierarchical structure of XML enables the identification of semantic correlated subspaces 

within a XML document and the definition of aggregate attributes to summarize complex 

objects so that they can be compared at higher level of abstraction. And we demonstrate that 

the use of these two concepts significantly improve the accuracy of the outlier detection 

process. These are probably two examples of utilizing the structural models of XML as a 
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means to enhance the data mining process. Further research is required to fully exploit the 

structural differences of XML and relational data to derive contextual information lacking in 

the latter and use it to improve our data mining techniques. 
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