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Summary 
In this thesis, I explore graph-based methods for the important task of automated protein 

function prediction. The thesis is organized into five chapters:  

The first chapter provides a concise background on the field of automated protein function 

prediction as well as a brief introduction to the chapters that follow.  

In the second chapter, the potential of indirect functional association in protein-protein 

interaction data is proposed and studied using a graph-based model. A technique is also 

developed to exploit this concept for protein function prediction, followed by rigorous studies 

proving that the technique is useful for real interaction data. 

The third chapter follows up on the previous chapter, and extends the technique to several 

less-studied genomes using the popular Gene Ontology unified vocabulary. Further studies are 

also made to examine the robustness of the technique against noisy and incomplete interaction 

data. The biological significance of indirect functional association is examined and discussed 

using some specific examples. 

The fourth chapter explores how indirect functional association can also be applied to the 

well-studied problem of clustering protein-protein interactions for protein complex / functional 

module discovery. Using concepts developed and explored in the previous two chapters, a pre-

processing approach is developed to modify a protein-protein interaction network by introducing 

indirect interactions and removing less reliable interactions. A clique-based method is also 

introduced to demonstrate how better clusters may be obtained by utilizing the edge weights 

computed during the pre-processing steps. 

In the fifth and final chapter, I take a step back from protein-protein interactions to look at the 

bigger picture in function prediction. I recognize that a more complete automated functional 
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inference can only be achieved via the integration of multiple heterogeneous types of data due to 

the multi-faceted nature of protein function. However, existing techniques that adopt this 

approach in function prediction are headed towards obtaining minor improvement in prediction 

accuracy using complex solutions. I find this contradictory to the motivation for integration, 

which is to encompass as much information as possible, so that functional information can be 

captured and identified in its entirety. A flexible and scalable graph-based prediction framework 

is developed to address this concern. Unlike conventional approaches, the method can be 

implemented to make use of relational databases for making real-time predictions from updated 

databases, making it a potentially useful tool for biologists. In addition to its relative efficiency, 

the framework also performs exceptionally well compared to existing techniques, and can easily 

incorporate more data such as cross-genome information to further enhance prediction 

performance. 
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Chapter 1 Introduction 

1.1 Automated Protein Function Prediction 

With the completion of the Human Genome Project (HGP) in 2003, new challenges lie ahead 

in deciphering the complex functional and interactive processes between proteins and multi-

component molecular machines that contribute to the majority of operations in cells, as well as 

the transcriptional regulatory mechanisms and pathways that control these cellular processes [1]. 

With large amount of biological data from high-throughput  processes such as genomic and 

proteomic sequencing, gene expression profiling, immuno-precipitation, mass spectrometry and 

more recently, flow cytometry, it is now possible to study the characteristics and interactions of 

cellular components from a global perspective. 

The elucidation of protein function has been, and remains, one of the most central problems in 

computational biology. A recent review noted that a large fraction of currently sequenced 

complete genomes has at least half of their gene entries having ambiguous annotations [2]. Many 

characteristics of proteins related to functionality have been studied intensively in the past 

decade, including sequence homology [3, 4, 5, 6, 7, 8, 9], sequence motifs [10, 11, 12, 13], 

secondary [14, 15] and tertiary structure [18, 19, 20], and gene expression profiles [21]. 

Sequence homology offers a quick and effective way of suggesting possible functions for novel 

proteins, but its applicability is limited when no known proteins with similar sequences are 

found. Moreover, the approach is only effective if functions are inferred for sequences with great 

similarity (above 20% sequence identity [22]). Hence sequence homology can only tell part of 

the story in the quest for protein functions. Secondary structures can be effectively predicted 



2 

 

 

from sequences [23] and used to complement sequence homology for function prediction [14, 

15]. Tertiary structures represent the actual physical models of translated proteins, and offer 

greater insight into the actual mechanics of protein functionality [16, 17, 18, 19], but these 

cannot be reliably predicted from protein sequences. Most tertiary structures are derived using 

relatively costly and time-consuming experimental techniques such as X-ray crystallography 

(about 90%) and Protein nuclear magnetic resonance spectroscopy (NMR) (about 9%). 

Currently, the relatively low coverage of tertiary structures limits their coverage in function 

prediction. However, this may be set to change with emerging technologies in the future. 

Meanwhile, the maturation of high-throughput techniques for various genome analyses makes 

available a large quantity and variety of genomic information. These offer possible avenues to 

shed light on the functions of proteins which cannot be easily characterized by sequence 

homology alone by providing complementary information related to the functionality and 

behavior of proteins. The explosive rate of growth in biological data also makes manual 

annotation of protein function an increasingly daunting task. This paves the way to the 

emergence and popularization of automated function prediction. Many such approaches have 

been studied, including the use of sequence homology [6, 7, 8, 9], protein-protein interactions 

[24, 25, 26, 27, 28, 29, 30], protein structure [14, 15, 18, 19, 20], expression profiles [21], 

phylogenetic profiles [31, 32], co-occurrence of proteins in operons or genome context [33, 34, 

35], common domains in fusion proteins [36, 37, 38], etc. The ever-increasing flood of diverse 

biological information from concerted efforts in genomic and proteomic research also triggered 

the advancement of prediction approaches towards integrative approaches that combine multiple 

heterogeneous data to make better predictions [39, 40, 41, 42, 43, 44, 45]. The tools developed 
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from automated function prediction provide systematic identification of potential novel 

annotations for experimental verification. This makes large scale functional annotation of 

proteins much more plausible compared to exhaustively probing each protein for a large number 

of possible annotations through experimental assay. The works mentioned here do not represent 

an exhaustive list of automated protein function prediction methods. An excellent review on 

approaches in automated protein function prediction is provided in [2]. 

1.2 Challenges in Automated Protein Function Prediction 

Regardless of the type of biological information used or the technique involved, approaches to 

automated function prediction face several challenges: 

1.2.1 Incomplete Data 

Many biological data do not provide complete information due to the nature and limitations of 

the experiments used to derive them. Expression profiles from microarray experiments can only 

provide a rough estimate of the relative expression levels between time intervals. Moreover, 

expression profiles can be very similar for a large number of genes, such as household genes or 

cell cycle genes [46]. Some experiments, such as co-immunoprecipitation (see Figure 1-1), 

require known antibodies for a target protein and hence cannot provide interaction information 

for all proteins. Even with complete sequence information, sequence homology can only 

associate functional similarity between proteins with substantial sequence similarity. 
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Figure 1-1. Co-immunoprecipitation process. 

1.2.2 Noisy Data 

Some biological data, such as high-throughput yeast two-hybrid experiments (see Figure 1-2) 

[47], also tend to be noisy (i.e. contain many false positives) due to sticky proteins which can 

activate the reporter genes of non-interacting proteins. The level of noise in yeast two-hybrid 

experiments has been estimated to be as high as 50% [48, 49, 50, 51]. More discussion on noise 

in two-hybrid experiments can be found later in Section 2.9. Approaches that make use of such 

biological data will need to take noise into consideration to achieve consistent prediction 

performance. 
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Figure 1-2. Yeast Two-hybrid process. 

1.2.3 Availability of an Unified Annotation Scheme 

Critical to the feasibility of automated functional prediction and annotation is a systematic 

scheme of standardized vocabulary for function definitions [52]. One of the earliest standardized 

schemes is the EC nomenclature [53] developed by the Enzyme Commission of the International 

Union of Biochemistry and Molecular Biology in the 1950s for classifying enzymes based on 

their chemical properties. Structural Classification of Proteins (SCOP) [54] was developed in 

1995 to classify proteins based on structure and phylogenetic relationship. The first generalized 

scheme for classifying protein function was introduced in [55] in 1993 for classifying 

Escherichia Coli proteins. These classification schemes annotate either a subset of proteins, 

specific genomes, or particular aspects of proteins. 

In recent years, a more comprehensive functional categorization scheme, the FunCat [52] (and 

subsequently FunCat 2.0) was introduced by the Munich Information Center for Protein 

Activation Site DNA-Binding Domain (BD) 

Reporter Gene 

Activating Domain (AD) 

Transcription 
Factor Prey Protein 

BD and AD are separated and fused to the Bait and Prey proteins 
respectively. If Bait and Prey interact, Reporter Gene will be 

expressed.

Bait Protein

Reporter Gene activated by Transcription Factor that comprises AD 
and BD. BD binds to the Activation Site; AD activates transcription. 
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Sequences (MIPS) [56]. This scheme is generic enough to be used for different species. However 

it is not widely adopted in other databases. In 1998, the Gene Ontology (GO) [57] was initiated 

as a collaborative effort to address the lack of consistent annotations for gene products in 

different databases. The GO consists of 3 structured controlled vocabularies, or ontologies, for 

describing molecular function, biological process and cellular component. Each ontology is an 

acyclic graph of terms related by two relationships: is_a and part_of. Children terms are more 

specialized than their parent terms. GO began as a collaboration between FlyBase [58], the 

Saccharomyces Genome Database (SGD) [59], and the Mouse Genome Database (MGD) [60], 

but has grown to include annotations from a large number of databases. It has since gained 

popularity quickly; and has been used in a large number of works on function prediction, 

including [43, 44, 45]. 

1.2.4 Lack of a Common Protein Naming Convention 

Many useful biological databases contain overlapping or complementary information on the 

same proteins. The mapping between genes and names is many-to-many. Multiple names may 

refer to the same genes and multiple genes may also be referred to by the same name, For 

example, references to the same yeast protein may be found as a gene product in the 

Comprehensive Yeast Genome Database (CYGD) of the MIPS [56] or the Saccharomyces 

Genome Database (SGD) [59]; as an interacting entity in the Biomolecular Interaction Network 

Database (BIND) [61] or the General Repository for Interaction Data (GRID) [62]; as a sequence 

in the EMBL Nucleotide Sequence Database (EMBL-Bank) [63], GenBank [64], SwissProt or 
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TREMBL [65, 66]; or as an annotated protein in Gene Ontology [56]. Each of these databases 

may refer to the same protein using different names. 

The yeast gene product GIP4, for example, is identified by an EMBL accession number 

(U12980) in EMBL-Bank, a RefSeq accession number (NP_009371) in GenBank, an UniProt ID 

(P39732) in UniProt, a systematic name (YAL031C) in CYGD, and an SGD ID (S000000029) in 

SGD. Interaction databases may adopt some of these naming convention, e.g. GenBank 

accession numbers in BIND, and CYGD systematic name in GRID. 

The individual databases adopt different naming conventions due to various reasons, 

including historical reasons, or the nature of the data represented (e.g. sequences vs. genes). This 

poses problems to automated protein function prediction when an integration of information 

from different databases is needed. While external referencing tables are provided in one or more 

of these databases, these are often incomplete and not up-to-date, especially for the less well 

studied genomes such as the mammalian species. Without complete cross-referencing between 

different databases, automated function prediction using cross database information will face 

problems of redundancy and incomplete association between proteins.  

This problem has already been recognized a few years back, and initiatives such as the 

International Protein Index (IPI) [74] and the UniProt Universal Protein Resource [66] have been 

established to provide complete cross-referencing information as well as unique, non-redundant 

identifiers for distinct proteins. UniProt provides a unique identifier to every distinct protein 

sequence, while the IPI provides a unique identifier for every distinct annotated protein. These 

resources show great foresight, and are the key to integrating all available biological databases 
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into one coherent web of information that can work in synergy for applications such as 

automated protein function prediction. 

1.3 Overview 

In the chapters that follow, I will be looking at graph-based methods for protein function 

prediction. Here, I will give a brief overview on these methods. 

1.3.1 Indirect Functional Association 

In the next chapter, I will propose and study the phenomenon of function sharing between 

non-interacting proteins, which can be exploited for protein function prediction using a graph-

based approach. The bulk of this thesis will revolve around this concept. 

Conventional methods that use protein-protein interactions for protein function prediction rely 

on the basis that interacting proteins share functions. While some approaches propagate 

functional annotations through multiple levels of interactions, the same basis is employed, i.e. a 

protein will only be annotated with a function if at least one of its neighbors has, or is predicted 

to have that function.  

Using functional annotations and protein-protein interactions from the Saccharomyces 

cerevisiae (bakers’ yeast) genome, I find that in many cases, a protein does not share any 

function with any of its interaction partner, but shares some functions with a protein that shares 

common interaction partners with it. This observation leads us to hypothesize that some 

functions may be associated through the sharing of interaction partners. This seems to make 

biological sense since two proteins will require some similar biochemical properties to dock to a 
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particular binding site on a common neighbor, and are likely to participate in similar pathways if 

they interact with similar type of proteins. However, this will be difficult to show since many 

proteins share common interaction partners without sharing function due to a host of other 

reasons such as if they interact with these interaction partners at different times, or in different 

pathways. Using the basis for our hypothesis, I formulate a topological measure to reduce such 

false positives, and show that indirect functional association between non-interacting proteins 

with common interaction partners are supported with strong evidence, and can be used to achieve 

predictions with greater coverage and precision.  

Taking into account indirect function association and the existence of substantial noise in 

certain interaction data, I developed a graph-based method for protein function prediction that 

performs significantly better than conventional approaches.  

1.3.2 Indirect Functional Association in Other Genomes 

In Chapter 3, I extend the concept of Indirect Functional Association to several other genomes 

using the Gene Ontology functional annotation scheme. I find that despite large variations in the 

availability of interaction and annotation data among different genomes studied, the phenomenon 

of indirect functional association is clearly evident, and can be used to substantially enhance 

function prediction.  

The variations in the availability of data provide an opportunity for us to identify limitations 

of our graph-based approach. Further analysis of our approach revealed that it is very robust 

against random noise typically appear in yeast two-hybrid experiments. A couple of case studies 

illustrate indirect functional association between non-interacting proteins are also made. 
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1.3.3 Indirect Functional Association for Complex Discovery 

In Chapter 4, I apply Indirect Functional Association to the related task of complex discovery 

[67, 68, 69, 70, 71, 72, 73]. Observations that proteins in the same complex may not interact in a 

clique-like fashion led us to suggest that the association between non-interacting proteins with 

common interaction partners may be useful. By introducing such associations as indirect 

interactions into the interaction network, I find that conventional methods for complex discovery 

can achieve better predictions. I also proposed a protein complex discovery method based on 

clique finding and merging using topological weighting introduced in Chapter 1, and find it 

performs relatively well, especially when indirect interactions are introduced. Several examples 

are provided to illustrate how some complexes can be discovered with greater completeness with 

the introduction of indirect interactions. 

1.3.4 Integrating Multiple Heterogeneous Data Sources for Function Prediction 

In the final chapter, I move away from protein-protein interaction to look at other sources of 

information that may be useful for function prediction. As these sources of information can differ 

substantially in nature and representation, I propose a graph-based framework to combine them 

for protein function prediction.  

Each source of information is transformed into an undirected weighted graph. A unified 

weighting scheme is proposed to assign weights to the edges of these graphs. This weighting 

scheme is generic enough to accommodate any information source that can be represented as 

binary relationships between proteins. It does not require any external information other than 
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annotations in the training data. Existing weights in certain information source, such as 

homology scores or expression profile correlation is also taken into account. 

Graphs from multiple data sources are combined into one unified graph by superimposing 

them on top of each other. Edge weights in the combined graph are determined from the edge 

weights of the individual graphs. Functions are predicted for each protein using a weighted 

averaging method based on its neighbors in the graph. 

I showed that this framework is able to achieve better prediction performance than several 

existing techniques that can perform large-scale protein function predictions. It is also more 

efficient than these techniques and can scale to include more information. By including 

information from other genomes, such as sequence homology and domain similarity, I can 

further improve the prediction performance of the framework. 

I wish to emphasize and compliment the importance of the work done by researchers in 

establishing unified annotation schemes [56, 57] and protein identifiers [66, 74], as these are key 

resources on which the studies in this thesis leverage and depend on. 
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Chapter 2 Using Indirect Interaction Neighbors for 
Protein Function Prediction 

2.1 Overview 

In this chapter, I will look at current methods that use protein-protein interactions for function 

prediction. While various approaches have been developed for this task, they leverage on the 

same basis: interaction correlates to functional similarity. I attempt to look beyond this and 

observe another relationship that may be useful for function prediction – the sharing of 

interaction partners. A series of studies is made to prove the correctness and usefulness of our 

hypothesis using the well-studied Saccharomyces cerevisiae (bakers’ Yeast) genome. I also 

develop a computational technique to utilize this knowledge for protein function prediction and 

compare this method to existing prominent approaches.  

This work has been published as a full paper in the Bioinformatics journal [84] and also 

presented as an invited keynote talk at the PAKDD 2006 Workshop on Data Mining for 

Biomedical Applications [85]. 

2.2 Function Prediction Using Protein-Protein Interactions 

While sequence similarity search has been useful in many cases, it has fundamental 

limitations. First, newly discovered sequences may not have identifiable homologous genes in 

current databases. Second, the most prominent vertebrate organisms in GenBank do not have  

their entire genomes present in finished sequences at the time of this work. As such, many 



13 

 

 

approaches have also been proposed for utilizing protein–protein interaction data for functional 

inference [24, 25, 26, 27, 28, 29, 30, 39, 75, 76].  

2.2.1 Neighbor Counting 

A simple but effective approach is to assign a protein with the function that occurs most 

frequently in its interaction partners [24]. The method is popularly referred to as Neighbor 

Counting. For each protein u, each function x is ranked based on the frequency of its occurrence 

in the interaction partners (level-1 neighbors) of u. The rank of each function is used as its score 

for u: 

( ) ( )⎟⎟
⎠

⎞
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⎝
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∈ uNv
x xvrankuf ,δ  

Equation 2-1. Ranked Neighbor Counting scoring function 

δ(v, x) = 1 if v has function x, 0 otherwise;  

rank(q(x)) refers to the rank of the function x relative to all functions based on q(x). 

Nx refers to interaction partners of protein x.  

2.2.2 Chi-Square 

The Neighbor Counting approach is further improved in the Chi-Square method [25], which 

predicts function based on chi-square statistics instead of frequency. The approach scores each 

function x observed in the neighbors of a protein u using the Chi-Square statistics. The statistical 

measure computes the deviation of the observed occurrence of function x in the neighbors of u 

from its expected occurrence: 
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Equation 2-2. Chi-Square scoring function 

ex is the expected number of proteins with function x among the interaction partners of u, 

computed by multiplying the number of annotated interaction partners of u with the frequency of 

function x among annotated proteins in the interaction map 

 

In [25], the function with the largest chi-square value is assigned to u. To assign multiple 

functions to each protein, the rank of each function can be used as its score instead: 
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Equation 2-3. Ranked Chi-Square scoring function 

2.2.3 Prodistin 

PRODISTIN [26] uses the Czekanowski-Dice distance between each pair of proteins as a 

distance metric and clusters the proteins using the BIONJ clustering algorithm [77]. The 

Czekanowski-Dice distance between two proteins u and v is given by: 
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Equation 2-4. Czekanowski-Dice distance 

N’x refers to the set that contains x and its level-1 neighbors 

X Δ Y refers to the symmetric difference between two sets X and Y.  
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D(u,v) < 1 if u and v are level-1 neighbors. If Nu = Nv, D(u,v) will be evaluated to 0. On the other 

extreme, if Nu ∩ Nv = ∅, D(u,v) will be evaluated to 1. 

Only the largest connected component in a protein interaction network is used. The BIONJ 

algorithm produces a hierarchical classification tree. A PRODISTIN functional class for a 

function is defined to be the largest possible subtree in the classification tree that: 1) contains at 

least three proteins having the function; and 2) has at least 50% of its annotated members having 

the function. Un-annotated proteins in the functional class are then predicted with the function.  

2.2.4 Samanta et al. 2003 

Like PRODISTIN, Samanta et al. [27] also applied clustering techniques to partition the 

proteome into functional modules, but using a different distance metric. A P-value between two 

proteins is computed as follows: 
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Equation 2-5. Samanta et al. P-value 

N refers to all proteins in the interaction network 

m = |Nu∩Nv| 

n1 = |Nu| 

n2 = |Nv| 
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The P-value is reflective of the likelihood of proteins u and v sharing m neighbors given that u 

has n1 neighbors and v has n2 neighbors. A similar measure known as the Hypergeometric 

distance is also introduced in [78] for estimating interaction reliability: 
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Equation 2-6. Hypergeometric distance 

Using the P-value as a distance metric, proteins are clustered using a hierarchical clustering 

approach. Begin with each protein as a cluster. The two clusters with the smallest P-value are 

merged to form a cluster. The P-value between two clusters is computed by the geometric mean 

of the P-value of its components.  

2.2.5 Markov Random Fields 

Deng et al. [29] proposed a global optimization method based on Random Markov Fields and 

belief propagation to compute a probability that a protein has a function given the functions of all 

other proteins in the interaction dataset. It was shown in [75] that the simulated annealing 

approach of [30] models a special case of the Markov Random Fields in [29] while the approach 

taken by [28] is essentially similar to [29]. These approaches have shown promising results.  
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2.2.6 Support Vector Machines 

Lanckriet et al. [39] introduced an integrated Support Vector Machines classifier for function 

prediction, in which protein-protein interaction data was used to derive one of the kernels using 

pairwise interaction similarity between proteins based on interaction data. 

2.2.7 Functionalflow 

Nabieva et al. [76] proposes a network-based algorithm that simulates functional flow 

between proteins. Proteins are initially assigned infinite potential for a function if a protein is 

annotated with that function and 0 potential otherwise. Functions are then simulated to flow from 

proteins with higher potential to their level-1 neighbors that have lower potential. The amount of 

flow is influenced by the reliability of the interactions between interaction partners, which is 

derived similarly as in our approach.  

2.3 Looking Beyond Interaction Neighbors 

2.3.1 Direct Functional Association 

While the various existing approaches demonstrated that the use of a variety of machine 

learning and statistical techniques can yield improved prediction performance, they bank on the 

same fundamental concept. That is, proteins that interact are likely to share functions. The 

rationale for this concept falls upon this reasoning: proteins in a functional pathway interact to 

perform a synergized biological function; if proteins A and B interact, they are likely to belong 
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to the same functional pathway, and hence share some function. I refer to this relationship 

between interaction and functional similarity as direct functional association.  

2.3.2 Indirect Functional Association 

Looking beyond the interaction partners of a protein, I propose the concept of indirect 

functional association. When two proteins interact with some other common proteins, it is likely 

that they may share some physical or biochemical characteristics that make binding with these 

proteins feasible. This means that if the two proteins interact with many common proteins, the 

likelihood that they share some function becomes higher. However, it is possible that the two 

proteins may bind to different part of the same protein, or may interact with the same protein in 

different pathways, or at different times (in the case of transient interactions). 

Direct and Indirect functional associations are independent and either or both may be 

observed in the interaction neighborhood of a protein. While indirect neighbors may have been 

utilized in deriving functional distances for some clustering techniques [26,27], these are indirect 

results of adapting popular measures from the fields of Graph Theory and Probability. 

Nonetheless, the success of these techniques lends some support to the feasibility of indirect 

functional association. Some methods also incorporate some multi-link information from 

protein-protein interactions into their prediction model [39, 76], these do not reflect the indirect  

functional association that I propose here. 
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2.4 Datasets 

The studies in this chapter are based on functional annotations and protein-protein interactions 

from the Saccharomyces cerevisiae (bakers’ yeast).  

2.4.1 MIPS Functional Classes and Annotations 

For functional annotations, I obtained the most recent FunCat 2.0 functional classification 

scheme and annotations [52] from the Comprehensive Yeast Genome Database (CYGD) of the 

Munich Information Center for Protein Sequences (MIPS) [56] at the time of this work (May 

2005). This version of the FunCat scheme consists of 473 Functional Classes (FCs) arranged in a 

hierarchical order. A protein annotated with a Functional Class (FC) is also annotated with all 

superclasses of that FC. To avoid arriving at misleading conclusions caused by biases in the 

annotations, I adopt the concept of informative functional classes from [21] for the annotations. I 

define an informative Functional Class (FC) as one having: (1) at least 30 proteins annotated 

with it; and (2) no child class satisfying requirement (1). In this way, 117 informative FCs are 

derived from the MIPS functional annotations, which covers 3,324 of the 4,162 annotated 

proteins. Note that function prediction using our method is not limited to these informative FCs. 

Rather, informative FCs are chosen to be used for evaluation to avoid using overlapping or 

under-represented FCs. Since methods that rely on association through protein-protein 

interactions for function prediction are limited by the availability of annotated proteins within the 

genome, confining evaluation to informative FCs would not provide any unfair advantage to our 

technique. 
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2.4.2 GRID  Protein-Protein Interactions 

Protein-protein interaction data are obtained by downloading the most recent release 

(18042005) of the yeast protein-protein interactions from the General Repository for Interaction 

Data (GRID) database [62] at the time of this work. This release reports 19,452 pairs of 

interactions between yeast proteins, of which 17,811 are unique. The dataset comprises a total of 

6,701 proteins, of which 4,162 are annotated. 

2.5 A Graph Model for Protein-Protein Interactions  

To increase the clarity of further discussion, I introduce a graph-based representation for 

protein-protein interactions. A protein-protein interaction network can be represented as an 

undirected graph G = (V, E) with a set of vertices V and a set of edges E. Each vertex u ∈ V 

represents a unique protein, while each edge (u, v) ∈ E represents an observed interaction 

between proteins u and v. I define a pair of proteins u and v as level-k neighbors if there exists a 

path φ = (u, …, v) of length k in G. I define the set of all pairs of level-k neighbors as Sk. Note 

that any pair of proteins can be both level-k and level-k’ neighbors, where k ≠ k’. Hence any two 

sets Sk and Sk’, k ≠ k’, may intersect. 

2.6 Indirect Functional Association 

To investigate the viability of the indirect functional association concept, I perform a series of 

studies: 
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2.6.1 Preliminary Observations 

Using protein-protein interactions from the Saccharomyces cerevisiae (bakers’ yeast) genome 

in GRID and functional annotations from MIPS as described above in Section 2.4, I try to find 

examples in which proteins share no function with their interaction partners (level-1 neighbors), 

but share some function with their level-2 neighbors. Since no common functions are found with 

the interaction partners, any function shared with the level-2 neighbors can be possibly explained 

by indirect functional association.  

I find that among the 4,162 annotated yeast proteins, only 1999 or 48.0% share some function 

with its level-1 neighbors. Of the remaining proteins, 943 share some similarity with at least one 

of its level-2 neighbors, making up around 22.7% of the ORFs. Less than 2% of the annotated 

proteins share functions exclusively with level-1 neighbors. The statistics are summarized in 

Table 2-1. Assuming that there is no unobserved interaction or annotation, indirect functional 

association would be a reasonable explanation for this observation.  

Shared Functions with Fraction 

Level-1 neighbors exclusively 0.01634 
Level-2 neighbors exclusively 0.2266 
Level-1 and Level-2 neighbors 0.4640 
Level-1 or Level-2 neighbors 0.7069 

Table 2-1. fraction of annotated yeast proteins that share function with 1) level-1 neighbors 
exclusively; 2) level-2 neighbors exclusively; 3) level-1 and level-2 neighbors; and 3) level-1 or level-

2 neighbors 

Figure 2.1 shows two examples that I found in which a protein shares some function with its 

level-2 neighbors without sharing any function with its level-1 neighbors. 
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Figure 2-1. Examples of Indirect Functional Association in Yeast proteins. CYS3 and RPS8A are 

presented as the roots of trees in which their level-1 and level-2 neighbors corresponds to the level-1 
and level-2 child nodes. The level-2 neighbors share some functions (underlined) with the root 

protein while the level-1 neighbors do not share any functions with the root protein in both cases. 

PRP6 (Splicing 
factor) 
|11.4.3.1 

HOM2 
(Aspartate kinase) 
|1.1.6.5 
|1.1.9 

JSN1 (Member of Puf  
RNA-binding proteins) 
|1.3.16.1 
|16.3.3 

SRT1 (cyclase-
associated protein) 
|42.1 

ATG5 
(Autophagy-
related protein) 
|14.4 
|20.9.13 
|42.25 

YPL088W 
(Putative aryl 
alcohol 
dehydrogenase) 
|2.16 
|1.1.9 

ADE4 
(Phosphoribosylpyropho
sphate amidotransferase) 
|1.3.1 

CYS3 (Cystathionine gamma-lyase) 
|1.1.6.5 
|1.1.9 

VBA (Permease of basic amino 
acids in the vacuolar membrane) 
|16.19.3 
|42.25 
|1.1.3 
|1.1.9 

RPS8A (Protein component of the 
small (40S) ribosomal subunit) 
|12.1.1 

RPL20B (Protein 
component of the large 
(60S) ribosomal 
subunit) 
|12.1.1 

SKT5 
(Activator of 
Chs3p) 
|1.5.4 
|10.3.3 
|18.2.1.1 
|32.1.3 
|42.1 
|43.1.3.5 
|1.5.1.3.2 

RPL14A (N-
terminally 
acetylated protein 
component of the 
large (60S) 
ribosomal subunit) 
|12.1.1 
|16.3.3 

RSA1 (Protein 
involved in the 
assembly of 60S 
ribosomal 
subunits) 
|12.1.1 

CHS5 (Protein 
of unknown 
function) 
|1.5.4 
|34.11.3.7 
|41.1.1 
|43.1.3.5 
|43.1.3.9 

YLR140W 
(Dubious open 
reading frame) 

RPP1A 
(Ribosomal 
protein P1 
alpha) 
|12.1.1 

RLI1 (Essential 
iron-sulfur protein 
required for 
ribosome 
biogenesis and 
translation 
initiation) 
|1.4.1 
|12.1.1 
|12.4.1 
|16.19.3 

MRPS16 
(Mitochondrial 
ribosomal protein 
of the small 
subunit) 
|12.1.1 
|42.16 

NUP116 
(Subunit of 
the nuclear 
pore 
complex) 
|11.4.2 
|14.4 

CHS3 (Chitin 
synthase III) 
|10.3.3 
|32.1.3 
|34.11.3.7 
|42.1 
|43.1.3.5 
|43.1.3.9 
|1.5.1.3.2 
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2.6.2 Significance of Indirect Functional Association 

We have seen from Table 2-1 that the possible coverage of indirect functional association is 

substantial. However, in order for such relationships to be useful in function prediction, there 

must be reasonable precision. As a simple gauge, I consider 5 sets of protein pairs, and compute 

the fraction of pairs in each set that exhibit some functional similarity based on different levels of 

the FunCat annotation scheme. A higher level in the scheme corresponds to more specific 

functional annotations and vice versa. The 5 sets of protein pairs are:  

1. Level-1 neighbors that are not Level-2 neighbors (i.e. S1 - S2);  

2. Level-2 neighbors that are not Level-1 neighbors (i.e. S2 - S1);  

3. Level-3 neighbors that are not Level-1 or Level-2 neighbors (i.e. (S3– (S2 ∪ S1));  

4. Level-1 neighbors that are also Level-2 neighbors (i.e. S1 ∩ S2);  

5. All protein pairs in the dataset 

Examples of sets 1-4 are depicted in Figure 2-2. The set of all protein pairs (set 5) is used as a 

placebo, since its computed fraction will simply be the likelihood that any pair of proteins taken 

randomly from the dataset share some function. 

 
Figure 2-2. Example to illustrate the neighbor pairs (S1-S2), (S2-S1) and (S1 ∩ S2) 

The corresponding fractions are presented in Figure 2-3.  

a 

b 

c 

f 

d 
e S1 – S2  = {(a,b), (b,c), (d,e)} 

S2 – S1  = {(a,c), (b,f), (b,d), (c,e), (e,f)} 
S1 ∩ S2 = {(c,d), (c,f), (d,f)} 
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Figure 2-3. Fraction of different sets of protein pairs with functional similarity over different levels 

of MIPS annotations. Higher annotation levels translate to more specific annotations. 

We observe that protein pairs that are both level-1 and level-2 neighbors (S1 ∩ S2) have the 

highest likelihood of sharing functions. This is expected since these neighbors exhibit both direct 

and indirect functional associations with each other. The set of strict level-2 neighbors (S2 - S1) 

displays a higher likelihood of sharing functions than by random (All protein pairs). The set of 

strict level-3 neighbors (S3 - (S2 ∪ S1)) are less likely to share functions although the likelihood 

is still higher than random. This is also expected since level-3 neighbors are transitively related 

via direct and/or indirect associations. 

From these observations, we find that the level-2 and level-3 neighbors of a protein may be 

potentially used in for inferring its functions, but their likelihood of sharing function is rather low 

due to two possible reasons: 1) as mentioned earlier, two proteins may interact with the same 

protein at different binding sites, or in a different pathway, or at different times. Hence only a 

fraction of level-2 interactions actually exhibit indirect functional association; 2) higher level 

neighbors are defined over more interaction links (or a longer path), hence functional association 
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between them is inevitably more sensitive to noise in the interaction data. Protein interaction 

data, as with other high throughput biological data, contain much noise. In fact, it has been 

shown that the reliability of high throughput yeast two-hybrid assays is only about 50% 

[50,48,51,51]. Using higher-level neighbors in function prediction therefore also increases the 

impact of noise to predictions. Table 2 shows the number of pairs in each set of protein pairs. 

With each increasing level k, the number of level-k neighbors substantially overwhelms those 

from the previous levels (1, … , k-1). Hence for higher-level neighbors to be of use in function 

prediction, I must first be able to reduce false positives effectively. 

Annotation Level S1 – S2 S2 - S1 S3– (S2 ∪ S1) S1 ∩ S2 

0 6,979 269,398 1,725,704 8,169 
1 6,895 266,953 1,703,907 8,150 
2 6,250 237,835 1,521,682 7,400 
3 3,136 121,867 728,976 4,718 
4 497 18,579 94,592 1,014 
5 1014 80 250 11 

Table 2-2. Number of protein pairs from different sets over different levels of MIPS annotations. 

2.6.3 Impact on Function Prediction 

We have seen from Figure 2-3 that level-2 neighbors do exhibit a higher than random 

likelihood of sharing functions. Next, I want to find out how well level-2 neighbors can be 

predictive of protein function. Using the Neighbor Counting method [24], I predict the 

annotations of each protein using three different sets of neighbors: (S1 - S2), (S2 - S1) and (S1 ∩ 

S2). A Leave-One-Out cross validation is performed: each annotated protein is predicted by 

temporarily hiding its annotations. 
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The Neighbor Counting method predicts the functions of each protein by counting the 

frequency in which its neighbor has each function. The function that is the nth most frequent in a 

protein’s level-1 neighbors will be predicted as the nth most probable function of the protein (See 

Section 2.2.1). The performance of the predictions is evaluated by plotting precision against 

recall over varying thresholds as adopted in [29]. For a given threshold β, Precision and Recall 

are defined as: 
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Equation 2-7. Precision and Recall for function prediction 

np is the no. of known functions of protein p; 

mp,β is the no. of functions predicted for protein p at threshold β; and 

kp,β is the no. of functions predicted correctly for protein p at threshold β. 

Figure 2-4 shows Precision plotted against Recall for predictions made by Neighbor Counting 

using each set of neighbors over varying thresholds. Over the same recall range, the predictions 

made by using the set (S2 - S1) have greater precision compared to those using set (S1 - S2). A 

much larger range of recall is also achieved due the increased coverage from level-2 neighbors. 

We have seen earlier from Figure 2-3 that strict level-2 neighbors (S2 - S1) are less likely to share 

functions relative to strict level-1 neighbors (S1 - S2). Hence the superior prediction performance 

achieved by using the set (S2 - S1) may be due to the larger, yet reasonably consistent 

neighborhood information for each protein. We also observe that using the set (S1 ∩ S2) yields 

the best performance, though over a smaller range of recall.  
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Figure 2-4. Precision vs. Recall for prediction of protein function using Neighbor Counting with 

different subsets of interaction neighbors 

2.7 Topological Weight 

In Section 2.6.2, I mentioned that not all level-2 neighbors exhibit indirect functional 

association since two proteins may interact with a common protein at different binding sites, in 

different pathways, or at different times. However, when two proteins share many common 

interaction partners, the likelihood of binding at common sites and/or being involved in a 

common pathway naturally increases. This is especially plausible if the two proteins also do not 

have many uncommon interaction partners. Hence, I can use some form of topology weight to 

assign a weight to level-2 neighbors based on this concept. 

2.7.1 Czekanowski-Dice Distance 

Some existing approaches have already suggested the use of common interacting partners 

between two proteins as a similarity measure [26, 27]. PRODISTIN [26] uses the Czekanowski-

Dice distance (CD-Distance) as a metric for functional linkage (See Equation 2-4). Figure 5 
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illustrates the computation of the CD-Distance. Although this metric is adapted from a statistical 

measure for categorical data, its computational basis coincides with the concepts of direct and 

indirect functional association. The weight between two proteins is higher if they share a large 

fraction of their interaction partners, and vice versa. The level-1 and level-2 neighbors of a 

protein have a CD-Distance of less than 1 from it while other proteins will have a CD-Distance 

of 1 from it.  

 
Figure 2-5. Czekanowski-Dice Distance computation for a pair of proteins u and v. 

Given that proteins u and v interact with some common proteins, CD-Distance computes the 

fraction of the level-1 neighbors of both proteins that are common. However, as mentioned 

earlier, two proteins may interact with a common protein at different binding sites; hence I think 

we may be able to better model the functional association between two proteins using a 

probabilistic approach. 

2.7.2 Function Similarity Weight 

When a fraction x of protein u’s neighbors is common to protein v’s neighbors, x is 

proportional to the probability that u’s functions are shared with v through the common 

neighbors. Vice versa, if a fraction y of protein v’s neighbors is common to protein u’s 

neighbors, y is proportional to the probability that v’s functions are shared with u through the 

u v 

|Nu∆ Nv| = 3 
|Nu∩ Nv| = 2 
|Nu∪ Nv| = 5 
 
CD-Distance(u,v)  
= 3 / (5+2) 
= 0.429 
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common neighbors. Taking the two probabilities to be independent, I estimate the probability 

that u shares function with v as the product of x and y. 

From this reasoning, I devise a new measure, Functional Similarity Weight (FS-Weight):  
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Equation 2-8. Functional Similarity Weight 

λu,v is defined as: 

( )( )vuvuavgvu NNNNn ∩+−−= ,0max,λ  

λu,v is included in the computation to penalize similarity weights between protein pairs when any 

of the proteins has very few level-1 neighbors. 

navg is the average number of level-1 neighbors that each protein has in the dataset.  

Similar to the CD-distance measure, FS-Weight assigns greater weight to common neighbors 

over non-common ones. Figure 6 illustrates the computation of FS-Weight for proteins A and B. 

For simplicity λ is not included in the computation. 

 
Figure 2-6. Czekanowski-Dice Distance and FS-Weight computation. 

2.7.3 Evaluating the Effectiveness of Topological Weights 

To evaluate the effectiveness of the two measures as an estimator for functional similarity 

between protein pairs, I compute the Pearson’s correlation between CD-Distance and functional 

CD-Distance(u, v)  
= 4 / (6+2) 
= 0.5(Similarity = 0.5) 
 
FS-Weight(u, v)  
= 4/(1+2(2)) x 4/(3+2(2)) 
= 0.457 

u 
v 
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similarity for all level-1 and level-2 neighbor pairs from our dataset. I define functional 

similarity between two proteins u and v, S(u, v), as: 

vu

vu
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∪
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=),(  

Equation 2-9. Functional Similarity 

where Fp is the set of functions that protein p has. 

I categorize the protein pairs into 3 sets: S1, S2 and S1 ∪ S2. Table 3 shows the respective 

correlation values. We can see that FS-Weight has greater correlation with functional similarity 

then CD-Distance for all cases. 

Neighbors CD-Distance FS-Weight FS-Weight R Transitive FS-Weight R

S1 0.4718 0.4987 0.5326 0.5326 
S2 0.2247 0.2988 0.3753 0.3820 
S1 ∪ S2 0.2246 0.2963 0.3630 0.3694 

Table 2-3. Pearson correlation values between different metrics and functional similarity for 
different sets of interaction neighbors. 

2.7.4 Incorporating the Reliability of Experimental Sources 

In Section 2.6.3, I brought up the impact of noise in interaction data on the false positive rates 

of higher level neighbors. To address this issue, I devise a method to provide an estimation of the 

reliability of each edge in the interaction network by looking at the experimental sources in 

which the interaction is observed in. It is proposed in [76] that different experimental sources of 

deriving protein-protein interaction may have different reliability. Nabieva et al. [76] showed 

that prediction result can be substantially improved if such differences in reliability are taken into 

consideration. Follow the approach devised by Nabieva et al. in [76], I estimate the reliability of 
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each experimental source simply by computing the fraction of interaction pairs from each source 

in which interaction partners share at least one function. The corresponding reliability values 

derived for the experimental sources in our dataset are presented in Table 2-4.  

Source Reliability 

Affinity Chromatography 0.8231 
Affinity Precipitation 0.4559 
Biochemical Assay 0.6667 
Dosage Lethality 0.5000 
Purified Complex 0.8915 
Reconstituted Complex 0.5000 
Synthetic Lethality 0.3739 
Synthetic Rescue 1.0000 
Two Hybrid 0.2654 

Table 2-4.  Estimated reliability for each experimental source in the GRID protein-protein 
interactions computed using Equation (4). 

Using these reliability values, the reliability of the edge connecting proteins u and v is 

estimated using: 
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Equation 2-10. Reliability scoring function for edges 

ri is the reliability of experimental source i,  

Eu,v is the set of experimental sources in which interaction between u and v is observed, and  

ni,u,v is the number of times which interaction between u and v is observed from experimental 

source i. 

The reliability of an interaction increases with the number of times it is observed. 

Observations from different experimental sources contribute to the overall reliability in different 

degrees. With the estimated edge reliabilities, I can modify the FS-Weight measure defined 

earlier in Equation 2-8 to incorporate these: 
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Equation 2-11. Functional Similarity Weight (with Reliability weighting) 

λu,v is modified to take into account only reliable links: 

   ( )( )vuvuavgvu NNNNrn ∩+−−= int, ,0maxλ  

rint is the fraction of all interaction pairs that share some function. 

Using the evaluation method described in Section 2.7.3, the modified FS-Weight measure is 

compared to the original FS-Weight (See Section 2.7.2) and CD-Distance (See Section 2.7.1) in 

Table 2-3 under the label FS-Weight R. The modified measure displays markedly greater 

correlation with functional similarity for all the sets of neighbors. 

2.7.5 Transitive Functional Association 

If protein u is similar to protein w, and protein w is similar to protein v, by transitivity, 

proteins u and v may also show some degree of similarity. I refer to this as transitive functional 

association. Independent of other information, we can estimate the functional similarity between 

u and v with the product of S(u,w) and S(w,v), the functional similarity between u and w, and 
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between w and v respectively. We can further modify the FS-Weight measure to take this into 

account: 

( ) ( ) ( ) ( )⎟
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Equation 2-12. Functional Similarity Weight (with Reliability weighting and Transitivity) 

SR(u,v) is the FS-Weight score between u and v defined in Equation 2-11.  

I refer to this new measure as Transitive FS-Weight R and again evaluated its correlation with 

functional similarity in Table 2-3. This new measure shows slightly improved correlation with 

functional similarity over the earlier measures. However, since this new measure introduces 

substantial increase in computation complexity without significant improvement in correlation, I 

will use Equation 2-11 for the computation of edge weights. 

2.8 Function Prediction 

2.8.1 Significance of Indirect Functional Association with FS-Weight 

In our earlier discussion, I speculated that level-2 neighbors contain too much false positive to 

be of significant use to functional prediction. Using the FS-Weight measure proposed in Section 

2.7.4 (Equation 2-11), we can reduce the impact of these false positives by assigning lower 

weight to them. I investigate the effectiveness of FS-Weight by repeating the statistical 

computations done in Section 2.6.3 (See Figure 2-3) after computing FS-Weight for all edges in 

the interaction network and filtering out edges with weight < 0.2. The corresponding results are 

displayed in Figure 2-7. Comparing the two figures, we can see that the fraction of the set S2-S1 
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(exclusively level-2 neighbors) with similar functions increased substantially with the removal of 

low-weight edges, and is even greater that of the set S1-S2 (exclusively level-1 neighbors). This 

illustrated that FS-Weight possesses considerable ability to differentiate edges that share 

functions from those that do not.  
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Figure 2-7. Fraction of different set of protein neighbor pairs with functional similarity over 

different levels of MIPS annotations. The protein pairs are filtered with a FS-Weight threshold of 
0.2.  

To further investigate how level-2 neighbors can provide practical improvement in the 

prediction of protein functions, I modify the widely used Neighbor Counting method (see 

Section 2.2.1) to include level-2 neighbors weighted with FS-Weight. To distinguish between the 

contribution of topological weighting and that of indirect functional association, I study three 

variants of Neighbor Counting: 1) the original Neighbor Counting method; 2) Neighbor 

Counting with neighbors weighted using FS-Weight; and 3) Neighbor Counting with neighbors 

weighted with FS-Weight and including level-2 neighbors. The corresponding precision vs. 

recall graphs are plotted and presented in Figure 2-8. We observe that significant improvements 
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can be made to prediction performance of this simple prediction method both by the use of FS-

Weight and by the inclusion of level-2 neighbors.  

Precision VS Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Recall

Pr
ec

is
io

n
Neighbour Counting /w  w eight & L2
Neighbour Counting /w  w eights
Neighbour Counting

 
Figure 2-8. Precision vs. Recall curves for 1) Neighbor Counting; 2) Neighbor Counting with FS-

Weight; and 3) Neighbor Counting with FS-Weight and level-2 neighbors. 

2.8.2 Weighted Averaging 

Using the FS-Weight measure, I propose a weighted averaging method, FS-Weighted 

Averaging, to predict the function of a protein based on the functions of its level-1 and level-2 

neighbors. The likelihood that a protein p has a function x is estimated by: 
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Equation 2-13. FS-Weighted Averaging function 

STR(u,v) is the Transitive FS-Weight R score for u and v defined in (6);  

rint is the fraction of all interaction pairs that share some function as defined in (5); 

δ(p, x) = 1 if p has function x, 0 otherwise; 

πx is the frequency of function x in annotated proteins; 
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0 ≤ λ ≤ 1 is the weight representing the contribution of background frequency to the score; and 

Z is the sum of all weights, given by: 
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Akin to the Neighbor Counting method, the FS-Weighted Averaging function fx(u) uses the 

frequency of occurrence of a function in the local neighborhood of a protein to estimate the 

likelihood of the protein having that function. However, there are several key differences:  

1. Level-2 neighbors are included in the counting of function frequency; 

2. The instance of each protein is counted, i.e. if a level-2 neighbor interacts with two 

different level-1 neighbors, it will be counted twice; level-1 neighbors that are also level-2 

neighbors will also contribute more to the score. 

3. A weight is assigned to each neighbor using the FS-Weight measure. 

4. The background frequency of function x, πx, contributes to the score with a weight λ. When 

a protein has very few known neighbors or if the neighbors have very small weights, the 

background frequency will contribute more to the score. I set λ = 1. λ is a heuristic value 

and may be empirically determined based on classification performance. 

5. When the reliability is low, FS-Weight will compute lower scores for each neighbor pair. 

Since the estimation of background frequency will also be inaccurate, λ is multiplied with 

rint. 
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2.8.3 Comparison with Existing Approaches 

To evaluate the performance of Functional Similarity Weighted Averaging in function 

prediction, I compare it against some of the leading existing approaches. Due to the lack of 

details provided in some algorithms, as well as a lack of access to implementations, I will 

compare with some approaches based on their datasets. Five methods are included in our 

comparison, namely Neighbor Counting [24] (Section 2.2.1), Chi-Square [25] (Section 2.2.2), 

PRODISTIN [26] (Section 2.2.3), Markov Random Fields (MRF) [29] (Section 2.2.5) and 

FunctionalFlow [76] (section 2.2.7). I implemented the Functional Flow algorithm according to 

the detailed description of the authors in [76]. 

2.8.3.1 Our Dataset 

In the first comparison, I use our dataset described in Section 2.6.1, which consists of 

interaction data from GRID and functional annotations from MIPS FunCat. All methods 

mentioned above except MRF are included in this comparison. I did not compare against MRF in 

this case as I did not implement the approach. Proteins without known interaction partners are 

removed from the dataset following the methodology described in [29] to provide a fairer 

comparison to methods that can only make predictions for proteins with at least one annotated 

neighbor. This reduces the number of proteins from 4162 to 4062, of which 3326 are annotated. 

A Leave-One-out cross validation (described in Section 2.6.1) is performed using each method to 

make predictions for these remaining proteins. Given that the yeast genome has substantial 

duplication, it may make sense to first purge paralogs from the dataset. However, since I am 

using protein-protein interactions instead of sequence information for function prediction, and 
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paralogs do not necessary interact; the impact of this step on performance evaluation is not as 

severe. Also, since the same dataset is used for each method, any over-optimism will apply 

across the methods. The predictions made using each method are evaluated using the precision 

vs. recall measure described by Equation 2-7 and presented in Figure 2-9. 
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Figure 2-9. Precision vs. Recall curves for Neighbor Counting (NC), Chi-Square, PRODISTIN and 
FS-Weighted Averaging in predicting the MIPS Functional Categories for proteins from the GRID 

interaction dataset 

We can see that FS-Weighted Average significantly outperforms the other approaches in the 

comparison. The next best performing approach in the comparison is PRODISTIN. PRODISTIN 

can only give a prediction for a smaller number of proteins but is able to achieve much better 

sensitivity than Neighbor Counting and Chi-Square within its recall range.  

2.8.3.2 Dataset from Deng et al. 

To compare against the Markov Random Fields approach, I used the datasets and results 

provided by the authors in [29], which consisted of protein-protein interaction data from MIPS 

and functional annotations from the Yeast Proteome Database (YPD) [79]. The functional 
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annotation comprises three categories: Biochemical function, Subcellular localization and 

Cellular Role. As the interaction data for this dataset do not include well-defined experimental 

sources, I categorized the interactions into several general types manually so that I can estimate 

their reliability using the method described in Section 2.7.4. These are predicted separately using 

Leave-One-Out cross validation. The resulting precision vs. recall graphs for each method is 

plotted and presented in Figure 2-10.  

We observe that FS-Weighted Averaging outperforms MRF as well as the rest of the methods 

in all the 3 categories of protein characterization. The relative performances of the different 

methods are also consistent over the two datasets which used different interaction data, 

functional annotations and functional categorization schemes. 
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Figure 2-10. Precision vs. Recall curves for Neighbor Counting (NC), Chi-Square(Chi2), Markov 
Random Fields (MRF), PRODISTIN and FS-Weighted Averaging in predicting the Biochemical, 

Subcellular Locations and Cellular Role of proteins from protein interaction data. 

2.9 FS-Weight as a Reliability Measure for Protein-Protein Interactions 

Recent works on protein-protein interactions [50, 48, 51, 51] have shown that interaction data 

obtained by the popular yeast two-hybrid assay may contain as much as 50% false positives and 

false negatives. In a yeast two-hybrid experiment, two target proteins are fused separately with a 
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DNA-binding domain and a transactivation domain of a transcription factor; the expression of 

the reporter gene is then revealed if the two target proteins interact [26]. As some “sticky” 

proteins can activate the reporter gene of other proteins without actually interacting with them, 

there are a large number of false positives in such experiments. 

2.9.1.1 Interaction Generality 

Saito et al. [81] made two important observations about these sticky proteins: 1) they tend to 

have a large number of interaction partners in the yeast-two-hybrid experiments; and 2) the 

bogus interaction partners typically are not involved in much interaction among themselves. 

Based on these observations, Saito et al. introduced the Interaction Generality (IG) index, 

defined as: 

( ) { } { } ( ){ }1'deg,,',,'|','1),( =∉∈∈+= vvuvvuuEvuvuIG  

Equation 2-14. The Interaction Generality (IG) Index 

deg(u) = |{v | (u,v) ∈ E}| is the degree of the node u in the undirected graph G. 

Given an interaction pair (u,v), The IG index simply counts the interaction partners of u and v, 

excluding u and v, that interact only with u or v.  

Interaction Reliability by Alternate Pathways 
Extending on Saito et al’s basis for assessing interaction reliability, Chen et al. [82] proposed 

the Interaction Reliability by Alternate Pathways (IRAP) index, which estimates the reliability of 

the interaction between two proteins by the confidence of the strongest irreducible alternate path 

connecting the proteins. A path φ connecting a pair of proteins u and v is irreducible if there is no 

shorter path φ’ connecting u and v that shares some common intermediate nodes with the path φ. 
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The confidence of each interaction in a path is assumed to be independent, and the confidence of 

a path is obtained by the product of the confidence of its edges. 

The IRAP index for the interaction between a proteins u and v is defined as: 

( )
( )

( )
{ }
∏

∈
Φ∈

=
φφ ',',

','max,
vuvu

vuconfvuIRAP  

Equation 2-15. The Interaction Reliability by Alternate Pathways (IRAP) index 

Φ(u,v) is the set of all possible irreducible paths between u and v , excluding the edge (u,v); and 

conf(u,v) is an estimated confidence of the edge (u,v), defined by: 
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 I have shown earlier that the CD-Distance measure (Equation 2-4), as well as FS-Weight R 

measure (Equation 2-11), correlates well with function similarity. Since functional similarity are 

more likely to be seen between interacting partners than random protein pairs, I postulate that 

these topological measures should also be useful for estimating the reliability of interactions. In 

this section, I will compare CD-Distance and FS-Weight R with IG and IRAP using several 

datasets and evaluative measures. 

2.9.1.2 Datasets 

Three interaction datasets varying in chronology and size are used to evaluate the various 

reliability measures:  

1. MIPS 12082003 – This interaction data is obtained from MIPS [56] (released on 

12/08/2003). It contains 4,341 ORFs (4,293 proteins) involved in 10,125 Interactions, of 

which 8,415 interactions are unique. 
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2. MIPS 18012005 –This interaction data is obtained from MIPS (released on 18/01/2005). It 

contains 4,569 ORFs (4,528 proteins) involved in 15,133 Interactions, of which 12,301 

interactions are unique. 

3. GRID 18042005 – This interaction data is obtained from GRID (released on 18/04/2005). It 

contains 4,918 ORFs (4,910 proteins) involved in 19,452 Interactions, of which 17,811 

interactions are unique. 

2.9.1.3 Evaluation Measures 

Following evaluation methods used in [81] and [82], I evaluate the various reliability 

measures using the following analyses: 

Correlation with Functional Similarity 
Proteins that interact are likely to share some functions. As the threshold of each measure 

increases, the coverage (proportion above threshold) of the interactions pairs will reduce. The 

fraction of the remaining interactions pairs at various thresholds that share at least 1 function is 

plotted against coverage.  

Average Co-expression between Interacting Proteins 
Proteins that interact are more likely to be co-expressed. The mean Pearson’s correlation 

coefficient of the expression profiles of the remaining interactions pairs at various thresholds is 

plot against coverage. I use the expression profiles from the Spellman dataset [46] to perform 

this evaluation. 

Reproducibility of Interactions 
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True interactions are more likely to be observed in independent experiments of various types. 

The fraction of the remaining interactions pairs at various thresholds that are observed more than 

once is plotted against coverage. 

Correlation with Subcellular Localization 
Proteins that interact are likely to share some functions. As the threshold of each measure 

increases, the coverage (proportion above threshold) of the interactions pairs will reduce. The 

fraction of the remaining interactions pairs at various thresholds that share at least 1 subcellular 

localization is plotted against coverage. 

2.9.1.4 Comparison between Reliability Measures 

The graphs obtained using the four evaluative measures (see Section 2.9.1.3) for the three 

datasets (see Section 2.9.1.2) are presented in Figure 2-11, Figure 2-12 and Figure 2-13. We 

observe that while IRAP correlates relatively well with functional similarity, co-expression, 

reproducibility and localization in the smaller and older interaction dataset MIPS 12082003 (See 

Figure 2-11) , it seems to be much less effective with the newer and bigger interaction datasets 

MIPS 18012005 and GRID 18042005 (See Figure 2-12 and Figure 2-13). With more interactions 

in the larger datasets, few proteins have neighbors with only one interaction neighbors. Hence 

the IG value for a large fraction of the proteins is 1 (the best reliability value according to IG). 

This limits the usefulness of IG as an indicator of reliability since the range of IG values 

becomes limited. As IRAP uses IG for the estimation of edge confidence, the same limitation 

applies. CD-Distance and FS-Weight, on the other hand, seems to be much better indicators of 

interaction reliability for larger interaction datasets. This comparison was presented as a part of a 

keynote speech at the 17th International Conference on Genome Informatics (GIW2006) [86]. 
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Figure 2-11. 1) Fraction of interactions in which interacting proteins sharing at least 1 function 
(top-left); 2) Average correlation in the expression profiles of interacting proteins (top-right); 3) 

Fraction of interactions observed in multiple independent experiments (bottom-left); 4) Fraction of 
interactions in which interacting protein share subcellular localization; upon filtering interactions 
from MIPS interactions (released on 12/03/2003) with varying thresholds using various reliability 

measures. 
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Figure 2-12. 1) Fraction of interactions in which interacting proteins sharing at least 1 function 
(top-left); 2) Average correlation in the expression profiles of interacting proteins (top-right); 3) 

Fraction of interactions observed in multiple independent experiments (bottom-left); 4) Fraction of 
interactions in which interacting protein share subcellular localization; upon filtering interactions 
from MIPS interactions (released on 18/01/2005) with varying thresholds using various reliability 

measures.  
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Figure 2-13. 1) Fraction of interactions in which interacting proteins sharing at least 1 function 
(top-left); 2) Average correlation in the expression profiles of interacting proteins (top-right); 3) 

Fraction of interactions observed in multiple independent experiments (bottom-left); 4) Fraction of 
interactions in which interacting protein share subcellular localization; upon filtering interactions 
from GRID interactions (released on 18/04/2005) with varying thresholds using various reliability 

measures. 

2.10 Conclusions 

In this chapter, I have proposed the concept of Indirect Functional Association in protein-

protein interactions, and have proven its feasibility as well as applicability to protein function 

predictions with the help of the FS-Weight measure. I have also developed a function prediction 

method, FS-Weighted Averaging, which makes use of indirect functional association and FS-
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Weight for function prediction. In the next chapter, I will extend this approach to more genomes 

and study the characteristics, as well as limitations, of this approach in greater detail. 



49 

 

 

Chapter 3 Predicting Gene Ontology Functions Using 
Indirect Protein-Protein Interactions 

3.1 Overview 

In the last chapter, I proposed the concept of Indirect Functional Association between level-2 

neighbors in a protein-protein interaction network. I also studied how to effectively reduce false 

positives in both level-1 and level-2 neighbors by weighting edges using FS-Weight and edge 

reliability estimation (see Section 2.7.4) so that they could be used to achieve better performance 

in protein function prediction. This approach has been proven to be useful through experiments 

described in Section 2.8.1. Based on this approach of edge-weighting, I developed a weighted 

averaging method, FS-Weighted Averaging (see Section 2.8.2), to predict functions for proteins 

based on weighted edges in the level-1 and level-2 neighborhood. Through comparisons with 

leading existing approaches in protein function prediction using protein-protein interactions (see 

Section 2.8.3), we find that FS-Weighted Averaging performs favorably. 

While the effectiveness of the approach has been proven satisfactory in datasets from the 

Saccharomyces Cerevisiae genome, the real value of the approach depends on whether it is 

general enough to be applicable to other genomes, especially those which are less well studied. 

In this chapter, I will investigate whether key concepts developed in the last chapter are general 

and robust enough to be applicable on protein–protein interactions from seven different 

genomes. I will also study how our prediction technique, FS-Weighted Averaging, is affected by 

varying amount of noise in the interaction data, as well as its applicability to predicted 

interactions. From the predictions made for yeast, I will examine some examples in which 
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indirect functional association is predominantly used to assign novel functions for 

uncharacterized proteins and discuss the biological significance involved. Finally, I will also 

discuss some limitations of the FS-Weight measure. 

This work was presented as a talk in the 2nd Automated Function Prediction Special Interest 

Group Meeting (AFP2006) at the University of California, San Diego. It was also subsequently 

published as a supplement for the meeting in the BMC Bioinformatics journal [87]. 

3.2 Interaction and Annotation Datasets for Multiple Genomes 

3.2.1 Protein-Protein Interactions 

This study involves interaction and functional annotation data from seven genomes: 

Saccharomyces cerevisiae (bakers’ yeast), Drosophila melanogaster (fruit fly), Caenorhabditis 

elegans (roundworm), Arabidopsis thaliana (mouse-ear cress), Rattus norvegicus (Norway rat), 

Mus musculus (house mouse), and Homo sapiens (human). Protein–protein interactions for D. 

melanogaster, C. elegans, and S. cerevisiae are obtained from the latest release (2.0.20) of the 

BioGRID [101] (formerly GRID [62]) database. Protein-protein interactions for A. thaliana, R. 

norvegicus, M. musculus, and H. sapiens are obtained from the Biomolecular Interaction 

Network Database (BIND) [61]. 

3.2.2 Gene Ontology Function Annotations 

To avoid possible bias in genome-specific function annotation schemes and to provide a 

common basis for comparison, I use function annotations from a unified annotation scheme, the 
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Gene Ontology [56], for all the seven genomes. Gene Ontology (GO) terms are arranged in a 

hierarchical manner with more general terms at the lower level and more specific terms at the 

higher level. I define the GO namespaces “biological process”, “molecular function” and 

“cellular component” as level 0 terms, their children terms as level 1, and so on. Annotations 

follow the true path rule—a protein annotated with a GO term is also annotated with all its 

ancestor terms. 

Genome Interactions 
involving annotated 

proteins 

Annotated 
Proteins 

Avg. no. of 
annotated 

neighbors per 
protein 

S. cerevisiae 50,434 4,005 21.67 
D. melanogaster 24,991 2,763 4.282 
A. thaliana 909 382 1.839 
H. sapiens 5,784 5,784 1.676 
M. musculus 1,892 1,892 1.360 
R. norvegicus 590 590 0.9803 
C. elegans 4,349 382 0.7382 
S. cerevisiae 
(predicted) 

145,003 3,987 64.60 

Table 3-1. Statistics of interaction data from seven genomes 

Table 3-1 shows some statistics of each interaction dataset. Only annotated proteins are 

included in these statistics since our interest is in function inference and I can only validate 

predictions for annotated proteins. As the lower levels in the GO hierarchy can be very general, I 

refer to a protein as “annotated” if it is being annotated with at least one level-4 GO term. The 

first column depicts the number of interactions between annotated proteins. The second column 

shows the number of proteins that are annotated and have at least one interaction partner. The 

third column shows the average number of annotated neighbors per (annotated) protein. I use this 
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as a simple indicator of the completeness of the interaction network as well as annotation 

information. 

The S. cerevisiae dataset has the most complete interaction and annotation information, 

followed by D. melanogaster and H. Sapiens datasets. The R. norvegicus and C. elegans datasets 

have less complete interaction and annotation information, with less than one annotated neighbor 

per annotated protein on the average. The S. cerevisiae (predicted) dataset comprises of protein-

protein interactions predicted from non-interaction genomic information (see Section 3.6.4) and 

has a much larger number of interactions then known interactions from BIOGRID. 

3.3 Key Concepts 

In this section I shall briefly recapitulate the key concepts developed in the previous chapter. 

3.3.1 Direct and Indirect Interactions 

In the previous chapter, I introduced the definition of level-n neighbors (see Section 2.5). I 

found that traditional approaches to using protein-protein interactions for protein function 

prediction used level-1 neighbors, or the direct interaction partners, of a protein to predict its 

function (see Section 2.2). I introduced the concept of indirect functional association, in which 

proteins share functions through the sharing of common interaction partners. In this way, the 

relationship between two proteins which do not interact, but share common interaction partners 

(i.e. level-2 neighbors) can also be used for function prediction. 

In this chapter, I further simplify level-1 and level-2 neighbors to direct and indirect 

interactions. I define a direct interaction as an actual interaction between proteins in the protein–
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protein interaction data (or the relationship between level-1 neighbors). I define an indirect 

interaction as the sharing of common interaction partners between two proteins (or the 

relationship between level-2 neighbors). 

 
Figure 3-1. Direct and indirect interactions. Nodes represent proteins, while edges represent 

interactions. Direct interactions between labeled proteins are indicated by red lines, while indirect 
interactions between labeled proteins are indicated by blue lines. 

Figure 3-1 illustrates the concept of direct and indirect interactions. In the graph, nodes 

represent proteins, while edges represent protein–protein interactions. There is a direct 

interaction between proteins A and B and an indirect interaction between proteins A and C. A 

pair of proteins may also have both direct and indirect interactions, as illustrated by proteins A 

and D in Figure 3-1. It is likely for indirect interactions to be predictive of functional annotations 

from all three namespaces in the Gene Ontology. Two proteins involved in an indirect interaction 

are able to interact with similar proteins; thus they have a higher likelihood of having similar 

molecular functions. The fact that they interact with similar proteins also means they are likely to 

be in the same pathway and contribute to the similar biological processes. Subcellular 

localization correlates substantially with molecular function [80], hence the proteins are also 

likely to reside in similar cellular components.  

A

D 

B 

A 

C 
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3.3.2 Topological Weighting 

Unlike direct interactions, not all indirect interactions indicate function sharing. Indirect 

relationships are defined upon direct ones and are subjected to noise in the interaction network. 

Also, while two proteins can interact with a common protein, they may not bind to the common 

protein at the same site, or time, or in the same pathway (see Section 2.6.3). To identify which 

indirect interactions are more likely to share functions, I proposed a topological weighting 

scheme, FS-Weight, which is defined by Equation 2-11 (see Section 2.7.4).  

FS-Weight addresses the abovementioned problems in two ways. First, the edges in the 

interaction network are weighted using reliability values estimated for contributing experimental 

sources (see Section 2.7.4). This will assign lower weights to edges in which interactions are 

observed from less reliable sources, which will reduce the impact of noise. Second, the weight is 

determined by the topology in the local neighborhood which depends on the fraction of common 

interaction partners shared between the two proteins (see 2.7.2).  

3.3.3 Reliability of Experimental Sources 

The reliability of each experimental source of interaction information may be estimated by 

experts based on domain knowledge. Alternatively, a simple estimate can be made based on 

consistency with known annotations (see Section 2.7.4). As mentioned in Section 3.2.2, lower 

levels in the Gene Ontology can be very general. Hence, in this study, I estimate the reliability of 

each experimental source by the fraction of unique interactions detected by the experimental 

source in which at least one level-4 Gene Ontology term is shared. This is done using annotated 

proteins in the training data during cross validation. The reliability of interactions observed in 
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many independent experimental sources will be combined as described in Equation 2-10. 

Indirect interactions are not used in the estimation of reliability since not all indirect neighbors 

will share function as mentioned earlier in Section 3.3.2 

3.4 Coverage of Protein–Protein Interactions 

An important question to the use of protein-protein interactions for protein function 

predictions is whether protein–protein interactions actually provide any additional coverage over 

sequence homology in function prediction. If most functions that may be inferred through 

protein-protein interactions can already be inferred by sequence similarity, then it would not 

make sense to use protein-protein interactions for function prediction. 

To answer this question, I examine two well-studied genomes, S. cerevisiae and D. 

melanogaster, and find out:  

1. How many known functions can be inferred from other proteins with sequence similarity in 

the genome; 

2. How many more functions can be suggested from interaction partners on top of (1); and 

3. How many more functions can be suggested from indirect interaction partners on top of (1) 

and (2).  

To find the coverage of sequence homology, each protein sequence in the genome is searched 

for sequence similarity against all protein sequences in the Gene Ontology Database 

(http://www.godatabase.org) using the Basic Local Alignment Search Tool (BLAST) [3] using a 

range of varying E-value thresholds between 1e-10 to 1. A higher E-value threshold will provide 
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better coverage at the expense of lower precision and vice versa. Proteins with close homologs 

(E-Value <= 1e-25) are excluded from the analysis.  

For each E-value threshold, I compute the fraction of known annotations that can be possibly 

inferred using “guilt by association” from sequence homology search. Next, I compute the 

fraction of known annotations that can be further suggested by direct and indirect interactions. 

The corresponding values are presented in Figure 3-2.  
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Figure 3-2. Functional coverage of protein–protein interactions. The fraction of known functional 

annotations that can be suggested through BLAST homology search; and the additional 
annotations that can be suggested through: 1) direct protein interactions (PPI) and 2) indirect 
protein interactions. A range of BLAST E-value cutoffs between 1 to 1e-10 is used. BLAST is 

performed on sequences from the gene ontology database. Proteins with very close homologs (E-
value ≤ 1e-25) are excluded from analysis. The top row shows the results from S. cerevisiae, and the 

bottom row shows the results from D. melanogaster. The three columns depict results on the 
biological process (left), molecular function (center) and cellular component (right) categories of the 

Gene Ontology. 

We observe that protein–protein interactions provide substantial coverage over annotations 

that cannot be inferred from sequence homology, especially for biological process and cellular 
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component. We also observe that indirect interactions provide significant additional coverage 

over annotations that cannot be inferred from both sequence homology and direct interactions. 

3.5 Effectiveness of FS-Weight 

I have illustrated the effectiveness of the FS-Weight measure for distinguishing interactions 

that involve function sharing from those that do not in Section 2.7.2 and Section 2.8.1. Here I 

study how well FS-Weight scores reflect function similarity for other genomes and with Gene 

Ontology annotations. All direct and indirect interactions are first weighted using FS-Weight. 

For each unique score, I compute the fraction of interactions with weights higher than or equal to 

this score that share at least one level-4 GO term. The Pearson’s correlation coefficient between 

FS-Weight score and this computed fraction is then computed. This coefficient indicates how 

well the FS-Weight score of an interaction correlates to the likelihood of function being shared 

between the proteins involved. The corresponding correlation values are presented in Table 3-2. 

Genomes Biological Process Molecular Function Cellular Component 

S. cerevisiae 0.846 0.782 0.858 
D. melanogaster 0.744 0.817 0.921 
A. thaliana 0.938 0.872 0.728 
H. sapiens 0.899 0.813 0.923 
M. musculus 0.911 0.574 0.890 
R. norvegicus 0.904 0.423 0.854 
C. elegans 0.673 - - 

Table 3-2. Pearson’s coefficient between FS-Weight and function sharing likelihood for each 
genome and GO category 

The coefficient values are > 0.7 for most cases, indicating that FS-Weight correlates strongly 

with the likelihood of function sharing. The correlation is lower for molecular function in the M. 

musculus and R. norvegicus genomes, but the value is still positive, indicating weaker 
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correlation. No results are available for the molecular function and the cellular component of C. 

elegans due to limited annotation information. 

To illustrate how we can isolate function sharing direct and indirect interactions using FS-

Weight, I compute the fraction of interactions that share some GO function from each level of 

the GO hierarchy. The same fraction is computed again after interactions with FS-Weight < 0.2 

are removed. The corresponding values for the S. cerevisiae, D. melanogaster and A. thaliana 

genomes are computed and presented in Figure 3-3. 
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Figure 3-3. Fraction of interactions with function similarity before and after filtering using FS-

Weight ≥ 0.2 for the S. cerevisiae, D. melanogaster and A. thaliana genomes. 

We can see that after removing interactions with low FS-Weight, the fraction of interactions 

that share function increases significantly, especially for indirect interactions and higher level 

GO terms. 
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3.6 Function Prediction 

We have seen the prediction performance of FS-Weighted Averaging relative to many 

existing approaches on the yeast genome in Section 2.8.3. Here I will study the performance of 

the approach on various other genomes using two classical methods, Neighbor Counting and 

Chi-Square, as a benchmark. These genomes vary greatly in the availability of annotations and 

interaction data, which provides a good setup to study the strengths and limitations of the 

technique. The Neighbor Counting and Chi-Square methods are described earlier in Sections 

2.2.1 and 2.2.2 respectively. The FS-Weighted Averaging method is described in Section 2.8.2. 

In Equation 2-13, I added the background frequency of function x to the summation of weights in 

fx(u). This is done so that a protein can be given a more realistic prediction based on background 

frequency when the reliability weight of all the edges in are very low, or when very few edges 

exists in the local neighborhood. However, as many of the genomes in this study are not as well-

studied as yeast, derived reliability weights for edges are very low. As a result, the background 

frequency will be given excessive weight, which negatively affects predictions results. Hence I 

exclude here the background frequency component in FS-Weighted Averaging. 

3.6.1 Prediction Performance Evaluation 

For the evaluation of prediction performance of each approach, I use two popular validation 

methods, precision–recall analysis and receiver operating characteristics. 
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3.6.1.1 Precision–Recall Analysis 

The first method is to plot the precision against recall for the predictions made. The definition 

of precision and recall is given earlier in Equation 2-7 under Section 2.6.3. Precision–recall 

analysis indicates the overall prediction performance of a prediction method. It also reflects the 

ability of a method to assign scores to predictions across different GO terms since it does not 

differentiate between scores assigned for different terms.  

3.6.1.2 Receiver Operating Characteristics 

While precision–recall analysis summarizes the overall prediction performance of a prediction 

method, it does not evaluate the prediction performance separately for each term. Since it does 

not differentiate between predictions made for different terms, it also penalizes methods that do 

not assign scores that reflect prediction confidence uniformly across different terms. I choose to 

complement precision–recall analysis with another validation method. The Receiver operating 

characteristics (ROC) [88] score is the area under the curve derived from plotting true positives 

as a function of false positives. The ROC score is computed separately for each informative GO 

term and measures the ability of a method to distinguish true positives from false positives. A 

higher ROC score indicates a better classifier, and the perfect classifier has an ROC score of 1. 

For any given GO term, if no prediction is made for a protein, I assume that the lowest possible 

score is assigned. The ROC does not reflect the recall of a method and does not differentiate 

between a method with very low recall and a method with high recall but low precision. Hence 

the two validation methods are complementary. 
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3.6.2 Informative GO Terms 

Since statistical measures are used for the validation of predictions, I only consider terms that 

are annotated to a reasonably large number of proteins to ensure that any conclusions made 

based on these measures are statistically sound. To do this, I adopt the approach of informative 

functional classes used in [21], and described earlier in Section 2.4.1. For each of the 3 GO 

categories—biological process, molecular function, and cellular component—I define an 

informative GO term as a term which is annotated to at least n proteins and does not have any 

child term that is annotated to at least n proteins. I use n = 30 for the S. cerevisiae, D. 

melanogaster, M. musculus, and H. sapiens genomes. For the other genomes, I used n = 10 since 

there will be very few or no informative terms for validation if n = 30 is used. Only level-4 or 

higher GO terms are considered.  

3.6.3 Function Prediction Using FS-Weighted Averaging 

Ten-fold cross validation is performed on each genome using Neighbor Counting, Chi-

Square, and FS-Weighted Averaging. Proteins with known annotations are randomly divided 

into ten groups predicted over ten separate runs. In each run, the annotations for the proteins in 

one group will be hidden and predicted using all other information available. The hidden 

annotations will not be available to any preprocessing steps such as reliability estimation and 

edge weighting. Using the two evaluation methods described earlier in Section 3.6.1, the 

predictions made by each method are assessed and compared. Only informative GO terms (see 

Section 3.6.2) are used in the validation process. 
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3.6.3.1 Precision–Recall Analysis 

Figure 3-4 shows the precision versus recall graphs of the predictions of informative GO 

terms from the biological process category by each algorithm for each genome. FS-Weighted 

Averaging makes predictions with significantly better precision and recall than the two other 

methods for most of the genomes. The precision of FS-Weighted Averaging for R. norvegicus is 

less consistent due to the relative incompleteness of annotation and interaction information. 

Similar conclusions can be drawn for the molecular function and cellular component categories. 

In these two categories, no result is available for C. elegans due to insufficient annotation 

information. We observe that the superiority in the performance of FS-Weighted Averaging over 

the two other methods is more significant in genomes with more complete annotation and 

interaction data (i.e., S. cerevisiae and D. melanogaster). Graphs for the molecular function (see 

Figure A-1) and cellular component (see Figure A-2) categories are provided in Appendix A. 
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Figure 3-4. Precision–recall analysis of predictions by three methods. Precision vs. recall graphs of 
the predictions of informative GO terms from the Gene Ontology biological process category using 

1) Neighbor Counting (NC); 2) Chi-Square; and 3) FS-Weighted Averaging (WA) for seven 
genomes. 



65 

 

 

3.6.3.2 Receiver Operating Characteristics 

Since there are a number of informative GO terms, I compare the receiver operating 

characteristics (ROC) of predictions by computing the number of informative GO terms that can 

be predicted with an ROC score ≥ k, over a range of k from 0.1 to 1 inclusive. For the predictions 

made by each of the three methods for the seven genomes, the number of informative GO terms 

from the biological process category that can be predicted with ROC ≥ k is plotted against k and 

presented in Figure 3-5. For most of the seven genomes, FS-Weighted Averaging is able to make 

predictions with higher ROC scores for more informative GO terms compared to the other two 

methods. Again, we observe that the superiority in the performance of FS-Weighted Averaging 

over the two other methods is more significant in genomes with more complete annotation and 

interaction data. Similar observations are made for predictions made for the molecular function 

(see Figure A-3) and cellular component (see Figure A-4) categories, which are provided in 

Appendix A. 
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Figure 3-5. ROC analysis of predictions by three methods. Graphs showing the number of 

informative terms from the Gene Ontology biological process category that can be predicted above 
or equal various ROC thresholds using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) FS-

Weighted Averaging (WA) for seven genomes. 
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3.6.4 Function Prediction Using Predicted Protein–Protein Interactions 

One of the main limitations in using protein–protein interactions for function prediction is the 

lack of complete interaction data. This limitation may be alleviated by the use of predicted 

interactions. To investigate the feasibility of this, I incorporate predicted interactions for S. 

cerevisiae from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

database [83] into the existing interaction data from BioGRID and study if any improvement can 

be made in prediction performance. The STRING database contains physical interactions as well 

as interactions predicted from genomic context, gene co-expression, and previous knowledge. 

145,003 unique interactions for S. cerevisiae are obtained from the most recent release of 

STRING database at http://string.embl.de/ [83] at the time of this work (October 2006). 

Using 1) only interactions from BioGRID (50,434 unique pairs); and 2) a combination of 

BioGRID interactions and STRING interactions (173,797 unique pairs), ten-fold cross validation 

is performed for each of the three prediction methods. The resulting precision-recall and ROC 

graphs for informative GO terms from the biological process category are presented in Figure 

3-6.  
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Figure 3-6. Incorporating predicted interactions for function prediction. Top—Graphs showing the 

number of informative terms from the Gene Ontology biological process category that can be 
predicted greater than or equal to various ROC thresholds for the same methods on BioGRID 
interactions (left) and a combination of BioGRID interactions and predicted interactions from 

STRING (right). Bottom—Precision vs. recall graphs for predictions of informative terms from the 
Gene Ontology biological process category using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) 

FS-Weighted Averaging (WA) on BioGRID interactions (left) and a combination of BioGRID 
interactions and predicted  interactions from STRING (right). 

Neighbor Counting and Chi-Square achieved significant improvement with the combined 

interactions using both the precision–recall and ROC evaluation measures. The performance of 

FS-Weighted Averaging has also improved substantially with the use of the added predicted 

interactions, but not as significantly as that of the other two methods. This is due to the fact that 

the predicted interactions from STRING in fact already include many indirect interactions. From 

Table 3-1, the average number of annotated neighbors per annotated protein in the STRING 

interactions is nearly 65, which is much higher than the projected average direct interaction 
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partner per protein of 5 estimated in [89]. Nonetheless, FS-Weighted Averaging is still able to 

achieve better prediction performance over the two other methods using the combined interaction 

data. One interesting point to note is that FS-Weighted Averaging can already achieve 

outstanding recall and precision as well as ROC performance using the much smaller BioGRID 

only dataset, which is less than one-third the size of the combined interactions. 

3.7 Robustness of FS-Weighted Averaging Against Noise and Missing Data 

As mentioned in Section 2.7.4, the FS-Weight measure incorporates two forms of 

countermeasure against noisy interaction data—estimation of the reliability of experimental 

sources and topological weight. In this section, I investigate how the prediction performance of 

FS-Weighted Averaging is affected by noise in the interaction data.  

3.7.1 Experimental Noise 

Interactions are derived from experiments in which noise may be introduced. Using the 

original interaction data from BioGRID, I introduce noise in the form of random additions to 

simulate false positives in experimentally derived interactions. This is performed on the S. 

cerevisiae genome since it has a more complete interaction and annotation information. Different 

amount of noise is introduced ranging from 10% to 50% of the number of original interactions. 

The number of informative GO terms that can be predicted above various ROC thresholds by 

FS-Weighted Averaging and Neighbor Counting using the various perturbed networks are shown 

in Figure 3-7. Interestingly, we observe that the prediction performance of FS-Weighted 

Averaging actually improves with random additions, while the performance of Neighbor 



70 

 

 

Counting deteriorates with added noise. This is consistently observed over repeated experiments, 

and is suggestive that a small amount of noise actually improves recall without reducing 

precision. A small amount of the noise edges added might actually be false negatives in the 

original input graph. As shown earlier in Section 2.9, FS-Weight has good ability to detect false 

interactions and is thus able to retain these small amounts of “noise” edges that are likely to be 

false negatives and uses them to improve function sharing prediction.  
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Figure 3-7. Effect of noisy interaction data on FS-Weighted Averaging. Graphs showing the 
number of informative terms from the Gene Ontology biological process category that can be 

predicted greater than or equal various ROC thresholds using FS-Weighted Averaging (top) and 
Neighbor Counting (bottom) on synthetically modified interaction data. Interactions are randomly 
1) added to the interaction network (left) and 2) removed from the interaction network (right) in 

varying degrees from 10% to 50% of the number of interactions in the original interaction. 
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3.7.2 Incomplete Information 

Incomplete interaction data is another problem that affects prediction performance. To study 

how the prediction performance of FS-Weighted Averaging is affected by incomplete interaction 

data, I randomly remove interactions from the original interaction network. The number of 

random deletions is varied from 10% to 50% of interactions in the original network. As a 

comparison, I repeated the predictions using Neighbor Counting. The number of informative GO 

terms that can be predicted above various ROC thresholds by FS-Weighted Averaging and 

Neighbor Counting methods using the various perturbed interaction networks are shown in 

Figure 3-7. The performances of both methods are more significantly affected by random 

deletions than by random additions. With random deletions, the performance of FS-Weighted 

Averaging deteriorates slightly faster than that of Neighbor Counting even though the former 

performed better in all cases. These observations indicate that while FS-Weighted Averaging is 

robust to false positives in the interaction data, its edge over neighbor counting deteriorates when 

the interaction network is less complete. This is due to the lack of sufficient local topology 

information, which is the very basis for FS-Weighted Averaging. 

3.8 Limitations of FS-Weighted Averaging With Incomplete Interaction Data 

In Section 3.6.3, we have observed that the edge that FS-Weighted Averaging has over the 

two other methods in terms of prediction performance is less significant in the genomes that have 

less complete interaction networks. We also observed in Section 3.7.2 that the performance of 

FS-Weighted Averaging deteriorates faster with random deletions. Together, these observations 
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indicate that the effectiveness of FS-Weighted Averaging is reduced with incomplete interaction 

data. 

Two factors contribute towards this phenomenon. First, the number of indirect interactions is 

lower in incomplete networks. Since indirect interactions are defined upon direct ones, the 

number of indirect interactions will be even lower in these networks. Second, the performance of 

FS-Weighted Averaging is dependent on the effectiveness of the FS-Weight measure, which is 

limited when the local interaction neighborhood is sparse. 

3.8.1 FS-Weight and the Local Interaction Neighborhood 

FS-Weight is computed based on the common interaction neighbors of the network. When the 

interaction network is very sparse, there is often insufficient information in the local topology for 

FS-Weight to get a confident estimate on functional similarity between proteins. In such cases, 

FS-Weight assigns a low weight to the interaction. As such, it may limit the contribution of some 

function-sharing interactions to the function prediction mechanism in FS-Weighted Averaging. 

Nonetheless, we can see this as a feature rather than a limitation. When a protein interacts with 

very few proteins, any form of measure that assigns a high reliability score or high confidence in 

sharing function without additional evidence will be very susceptible to noise and will not give 

consistent performance over different datasets. 
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3.9 Identifying GO Terms Better Predicted With Indirect Neighbors 

 

 
Figure 3-8. Effect of indirect interactions on prediction performance for individual GO terms. 2D 
Plot of ROC scores of predictions made by Neighbor Counting versus FS-Weighted Averaging for 

Level-4 biological process GO terms that are annotated to at least 30 proteins. 

I have shown in Section 3.6.3 that FS-Weighted Averaging, with its use of indirect 

interactions and topological weighting, can make better predictions than the Neighbor Counting 

and Chi-Square methods. The next thing I want to find out is which are the GO terms that are 

better identified using FS-Weighted Averaging. To do this, I compute the ROC [88] scores of 

predictions made by 1) Neighbor Counting (NC) and 2) FS-Weighted Averaging (WA) for each 

Level-4 GO term annotated to at least 30 proteins. Due to limited annotation and interaction data, 

I study only 4 genomes: S. cerevisiae, D. melanogaster, H. sapiens, and M. musculus. 
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Figure 3-8 shows a 2D plot of ROC scores for each these GO terms from biological process 

using Neighbor Counting versus FS-Weighted Averaging. Each point on the graph represents a 

Level-4 GO term annotated to at least 30 proteins. If a point lies above the diagonal, the GO term 

represented by it is predicted with a better ROC score using FS-Weighted than using Neighbor 

Counting, and vice versa. From Figure 3-8, we observe that for all four genomes, most points on 

the graph lie above the diagonal, which indicates that FS-Weighted Averaging can predict most 

of these GO terms with a better ROC than Neighbor Counting. 

To identify GO terms that can be better predicted using FS-Weighted Averaging compared to 

Neighbor Counting, I look at the level-4 GO terms that appear in at least two of the four 

genomes. For each of these terms, I define a score that reflects the relative ROC score of FS-

Weighted Averaging against Neighbor Counting as follows: 

( ) ( )
( )∑

∈

=
xGg NC

WA

x
L gxROC

gxROC
G

xF
,
,1

2  

Equation 3-1. Relative ROC score of FS-Weighted Averaging against Neighbor Counting 

ROCWA(x,g) is the ROC score for term x based on the predictions made by FS-Weighted 

Averaging for genome g;  

ROCNC(x,g) is the ROC score for term x based on the predictions made by Neighbor Counting for 

genome g; and 

Gx is the subset of the four genomes in which term x is applicable. 

The top five terms with the highest FL2 scores from each GO category are presented in Table 

3-3. 



75 

 

 

 

GO term Avg. FL2 score 

Biological process 
Cellular biosynthesis 1.238 
Regulation of kinase activity 1.216 
Regulation of biosynthesis 1.155 
Cellular macromolecule metabolism 1.141 
Response to pest, pathogen, or parasite 1.137 
Molecular function 
Phosphotransferase activity, alcohol group as acceptor 1.176 
Transcription factor activity 1.167 
Kinase activity 1.164 
Transcription cofactor activity 1.164 
Calcium ion binding 1.131 
Cellular component 
Eukaryotic 48S initiation complex 1.639 
Eukaryotic 43S preinitiation complex 1.425 
Cytosol 1.263 
Intrinsic to plasma membrane 1.163 
Intracellular non-membrane–bound organelle 1.139 

Table 3-3.  Level-4 GO terms annotated to at least 30 proteins in at least two genomes with the top 
five FL2 scores for each category of the Gene Ontology 

3.10 Indirect Functional Association: Case Studies 

From the predictions made, I examine two examples to illustrate how indirect interactions can 

provide functional association that cannot be captured through direct interactions.  
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3.10.1 Indirect Functional Association of Biological Process 

 
Figure 3-9. Example of indirect functional association of biological process. Graph depicting the 
local interaction neighborhood of protein HMS2 (shown in red). Proteins shown as green nodes 

share the biological process pseudohyphal growth with HMS2. 

Figure 3-9 shows the level-1 and level-2 interaction neighborhood of a protein, HMS2 (shown 

in red). The description for HMS2 from the Saccharomyces genome Database (SGD) [59] is 

“Protein with similarity to heat shock transcription factors; overexpression suppresses the 

pseudohyphal filamentation defect of a diploid mep1 mep2 homozygous null mutant”. HMS2 

has unknown molecular function, and is involved in pseudohyphal growth.  

HMS2 interacts with only one protein, MEP1, which is an ammonium permease and is not 

annotated with the biological process pseudohyphal growth. Hence it is not possible to assign 

HMS2 with the biological process pseudohyphal growth from MEP1. MEP1 is actually one of 

the three MEP ammonium transport proteins in S. cerevisiae. MEP2 and MEP3 are the other two 

MEP proteins. The MEP proteins help to scavenge ammonium from the environment for use as a 
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nitrogen source when nitrogen source is limited [90]. MEP2 is observed to act as an ammonium 

sensor required for pseudohyphal growth induced by ammonium limitation [91].  

If we look beyond direct interactions, we find that several level-2 neighbors of HMS2 

participate in pseudohyphal growth (green nodes in Figure 3-9), which includes MEP2. 

3.10.2 Indirect Functional Association of Molecular Function 

 
Figure 3-10. Example of indirect functional association of molecular function. Graph depicting the 

local interaction neighborhood of protein YPT10 (shown in red). Proteins shown as green node 
shares the molecular function GTPases activity with YPT10. 

Figure 3-10 shows the local interaction neighborhood of another protein, YPT10. Shown as a 

red node in the figure, YPT10 is a GTP-binding protein. Only level-2 neighbors with FS-weight 

>= 0.05 are shown. We can see that all nine interaction partners of YPT10 do not share its 
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molecular function, GTPase activity. On the other hand, five of six level-2 neighbors shown are 

annotated with this function. These are shown as green nodes.  

We observe that each of YPT10 and its level-2 neighbors interacts with four common 

proteins: YIP4, YIF1, YIP3, and GDI1. In other words, they form a bipartite graph with these 

four proteins. Of these four proteins, YIP4  is a YPT-interacting protein that interacts with Rab 

GTPases; GDI1 is a GDP dissociation inhibitor that regulates vesicle traffic in secretory 

pathways by regulating the dissociation of GDP from GTP binding proteins; YIF1 and YIP3 

have no known molecular function but are known to be involved in ER to Golgi transport. It is 

possible that YIF1 and YIP3, which have no known molecular function, may have molecular 

functions that involve interaction with GTPases.  

The level-2 neighbors of YPT10 are: YPT52, YPT1, SEC4, YPT32, YPT11, YPT31, and 

YIP1. With the exception of SEC4 and YIP1, these proteins belong to the group of YPT (Yeast 

Protein Two) proteins, which are GTPases. SEC4 is a secretory vesicle-associated Rab protein 

essential for exocytosis. Rab proteins are small GTPases. We notice that YIP1 is the only 

member on its side of the bipartite graph that does not have the molecular function GTPase 

activity. YIP1 is known to be an integral membrane protein required for the biogenesis of ER-

derived COPII transport vesicles and has no known molecular function. From the graph alone, it 

seemed likely that YIP1 may share the molecular function GTPase activity with YPT10. 

However, looking beyond Figure 3-10, we will find that YIP1 also interacts with many YPT 

proteins.  

Figure 3-11 shows the level-1 and level-2 neighbors of YIP1. Again, indirect interactions with 

FS-Weight < 0.05 are removed to reduce clutter. GTPases are shown as green nodes. We find 
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that YIP1 interacts with many proteins, among which YPT10 is the only topologically significant 

level-2 neighbor. YIP1 shares substantial interaction partners with YIP4 (15), YIF1 (14) and 

GDI1 (10), which are not GTPases, but interacts with many GTPases. On the other hand, YIP1 

also interacts with a large number of GTPases (green nodes). Hence it is not clearly conclusive 

whether YIP1 is a GTPase, or has a molecular function that involves interaction with GTPases 

(e.g. GDP dissociation inhibitor). 

 
Figure 3-11. Graph depicting the local interaction neighborhood of protein YIP1 (shown in red). 

Proteins shown as green node has molecular function GTPases activity. YPT10 is the only indirect 
neighbor of YIP1 in this graph. 
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3.10.3 Novel Predictions for S. cerevisiae 

Using FS-Weighted Averaging, I predict GO functions for uncharacterized proteins in the 

interaction network of S. cerevisiae. From these predictions, I select predictions with higher 

confidence by:  

1. Excluding GO terms that are associated with fewer than 30 annotated proteins; 

2. Excluding GO terms that  have an ROC of less than 0.7 during cross validation; 

3. For each remaining GO term, retaining only novel predictions that have a score greater than 

or equal to at least 70% of annotated proteins with the term. 

4. Propagating predictions to include ancestor terms for consistency. 

These predictions are publicly available at http://srs2.bic.nus.edu.sg/~kenny/fsweightedavg/.  

3.11 Conclusions 

In this chapter, I have extended the concepts developed in the previous chapter to six other 

genomes using a popular unified annotation scheme, the Gene Ontology. I showed that by 

incorporating topological weighting and indirect neighbors, FS-Weighted Averaging can predict 

protein function effectively for all three categories of the Gene Ontology. Results are consistent 

across the seven genomes, indicating that the approach is robust and likely to be generally 

applicable. I have also studied the impact of noise in interaction data and find FS-Weighted 

Averaging to be robust against random perturbations in the interaction network. From the studies 

made, I observed that the effectiveness of FS-Weighted Averaging and the FS-Weight measure is 
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greater when interaction and annotation data is more complete as the weighting mechanism 

requires sufficient local network information. 
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Chapter 4 Using Indirect Protein-Protein Interactions for 
Protein Complex Discovery 

4.1 Overview 

The identification of functional modules in protein interactions network is a first step in 

understanding the organization and dynamics of cell functions. Protein-protein interaction 

networks (PPIs) are rapidly becoming larger and more complete as research on proteomics and 

systems biology proliferates [92]. Protein complexes represent natural functional modules in a 

protein-protein interaction network, and there has been great interest to identify them [56]. A 

protein complex is a form of quaternary structure consisting of two or more associated proteins. 

Similar to phosphorylation, complex formation often serves to activate or inhibit one or more of 

the associated proteins. Many protein complexes have been established, particularly in the model 

organism Saccharomyces cerevisiae (bakers’ yeast). With a wealth of and constantly increasing 

size of PPI datasets, efficient and accurate intelligent tools for identification of protein 

complexes are of great importance. 

From the previous chapters, I have discovered that proteins that do not interact, but share 

interaction partners (level-2 neighbors) can also share biological functions, and the strength of 

functional association can be estimated using a topological weight, FS-Weight. In this chapter, I 

will investigate if the indirect relationship between level-2 neighbors (level-2 interactions) can be 

useful to the task of protein complex prediction. I first study several ways in which indirect 

interactions can be incorporated into an existing protein-protein interaction network, and how 

this affects the performance of existing clustering algorithms. I will also propose a novel 
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algorithm that searches for cliques in the modified network, and merge cliques to form clusters 

using a “partial clique merging” method. This work has been accepted as a full paper for the 6th 

International Conference on Computational Systems Bioinformatics, CSB2007. 

4.2 Existing Methods 

There are currently several approaches to the protein complex prediction problem [67, 68, 69, 

70, 71]. Spirin et al. [67] proposed using clique finding and super-paramagnetic clustering with 

Monte Carlo optimization to find clusters of proteins. They found a significant number of protein 

complexes that overlap with experimentally derived ones. While clique finding [67] imposes 

stringent search criterion, and generally results in greater precision, recall is limited because: 1) 

protein interaction networks are incomplete; and 2) protein complexes may not necessary be 

complete subgraphs. Another approach, such as MCODE [69], is clustering-based. MCODE 

makes use of local graph density to find protein complex. PPI networks are transformed to 

weighted graphs in which vertices are proteins and edges represent protein interactions. The 

algorithm operates in three stages: vertex weighting, complex prediction and optimal post-

processing. Each stage involves several parameters that can be fine-tuned to get better 

predictions. However, clustering approaches [67, 71] yield good recall but sacrifice precision. To 

make clustering-based approaches more viable, [68] show that it is possible to identify high 

precision subsets of clusters from clustering results by post-processing based on functional 

homogeneity, cluster size and interaction density. While post processing significantly improves 

precision, recall is drastically reduced. Moreover, the approach makes use of functional 

information, which limits its applicability in less-studied genomes such as Homo sapiens, Mus 
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musculus and Arabidopsis thaliana. Recently, a popular clustering algorithm, Markov clustering 

algorithm (MCL) [93], has also been shown to perform well in an evaluation of algorithms for 

protein clustering in PPI networks [94]. MCL partitions the graph by discriminating strong and 

weak flow in the graph, which is shown to be very robust against graph alternations.  

Of these methods, I will use RNSC [68], MCODE [69] and MCL [93] for comparison in this 

paper. These approaches have been recognized as the state of the art for the task of complex 

discovery and have been recently reviewed and compared in [94]. Table 4-2 summarizes the 

main features of these algorithms. 

 RNSC MCODE  MCL 
Type Local 

search cost 
based 

Local 
neighborhood 
density search 

Flow 
simulation

Multiple 
assignment 
of protein  

No Yes No 

Weighted 
edge 

No No Yes 

Figure 4-1. Main features of protein complex prediction algorithms. 

4.3 Introduction of Indirect Neighbors for Complex Discovery 

In Chapter 2, I have proposed and verified the concept of indirect functional association, 

which describes the functional similarity that can exist between two proteins that do not interact, 

but share common interaction partners (level-2 neighbors). Level-2 neighbors that share function 

can be screened using a topological weight, FS-Weight (See Section 2.7.4). We have also seen 

from Chapter 3 that indirect interaction neighbors identified in this way exhibit high likelihood 

of sharing molecular functions, biological processes and subcellular localization. The concept of 
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direct and indirect interactions is described in detail under Section 3.3.1. In this chapter I will be 

using level-1 interactions and direct interactions interchangeably. I will also use level-2 

interactions and indirect interactions interchangeably. 

Here, I propose incorporating such indirect interactions into protein-protein interaction 

networks as a preprocessing step to complex prediction. Members in a real complex may not 

have physical interactions with all other members; hence conventional methods (clique-based, 

density-based) may miss the detection of many members. Since proteins within a complex 

interact to perform common functions we may be able to capture members with less physical 

involvement in the complex by introducing indirect interactions with strong functional 

association. 

All level-1 and level-2 interactions in the protein-protein interaction network are given a 

weight using the topological weight, FS-Weight, defined earlier in Equation 2-11. Based on these 

computed weights, the interaction network is modified in the following manner:  

1. Direct interactions in the network that have low weight (below a certain threshold, FS-

Weightmin) are removed from the network; 

2. Indirect interactions with large weights (≥ FS-Weightmin) are added into the network.  

FS-Weightmin is determined empirically. This preprocessing step will produce a modified 

interaction network which can be used as an input network for any existing protein complex 

prediction algorithms.  
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4.4 PCP Algorithm 

I have also designed a novel algorithm, ProteinComplexPrediction (PCP), for predicting 

protein complexes using the modified protein-protein interaction network produced by the 

preprocessing step proposed in Section 4.3. This method involves two main steps. The first step 

finds all maximal cliques from the input network and resolves overlaps between them. The 

second step merges these cliques iteratively to form larger clusters. With the introduction of 

indirect interactions, PCP attempts to achieve high precision attained by clique-finding 

algorithms whilst providing greater recall and computational tractability without using any 

external information. In real protein complexes, a protein can be involved in multiple complexes. 

PCP can allow a protein to be assigned to multiple complexes by omitting the step to remove 

overlaps after clique-finding. However, if we allow this, evaluation will become much more 

complex, since it is non-trivial to decide which predicted cluster matches which complex. The 

limit on the number of clusters predicted will also be very much larger. It is also unfair to make 

comparisons between approaches that allow multiple assignment of proteins to complex with 

those do. 

4.4.1 Maximal Clique Finding 

The first step of the PCP algorithm involves finding all maximal cliques in the modified 

protein-protein interaction network. I adopt the maximal clique finding algorithm described in 

[95], which has been shown to be very efficient on sparse graphs. All cliques of at least size 2 is 

reported. As the criterion for the definition of a clique is very stringent, there are bound to be 
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many similar cliques differing in very few members. Hence, I resolve overlaps between cliques 

to by assigning any overlapped members between cliques to only one clique.  

Since FS-Weight is an estimate for the likelihood of sharing functions, a cluster with a larger 

average FS-Weight would more likely represent a subset of a real complex. I define the Average 

FS-Weight of a subgraph S with edges Es as: 

( )
s

Evu
avg E

vuFS
SFS s

∑
∈= ),(

),(
 

Equation 4-1. Average FS-Weight 

Ideally, I want to find the best way to remove overlaps so that the total average FSavg of all the 

final non-overlapping cliques is maximized. However, since this is a NP-hard problem, I propose 

a heuristics approach. All cliques are first sorted by decreasing FSavg. The clique with the highest 

FSavg is selected and compared with the rest of the cliques. Whenever an overlap is found with 

another clique, the overlapping nodes are assigned to one of the two cliques such that both the 

two cliques have higher average FSavg. An example of overlap resolution between two 

overlapping cliques is given in Figure 4-2. 
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Figure 4-2. Example of overlap resolution between two cliques {a,b,c} and {b,c,d}. Line thickness 
depicts the relative FS-Weight scores of edges. 

4.4.2 Merging Cliques 

A protein complex consists of densely inter-connected proteins in the interaction network, but 

may not necessarily be dense enough to form a clique. As a result, maximal cliques found in 

section 4.4.1 are relatively small and are likely to be partial representations of real complexes. To 

reconcile these smaller protein clusters into larger clusters that form fuller representation of real 

complexes, we will need to merge them. 

4.4.2.1 Inter-Cluster Density  

We want to find protein clusters that are tightly interconnected, but not dense enough to form 

cliques by merging cliques with strong inter-connectivity with each other. To do this, I define 

Inter-Cluster Density (ICD), which is a measure of interconnectedness between two subgraphs, 

as a criterion for merging clusters. The ICD essentially computes the FS-Weight density of inter-

cluster interactions between the non-overlapping proteins of two clusters. High ICD indicates 

that the two clusters are highly connected. Using ICD to impose criteria for merging ensures that 
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merged clusters retain a certain degree of interconnectedness between its members. The Inter-

Cluster Density (ICD) between subgraphs Sa and Sb is defined as: 

( ) ( ) ( ) ( ) ( )
abba

abbaFS
ba VVVV

EjiVVjVVijiS
SSICD

−⋅−

∈−∈−∈
= ∑ ,,,|,

,  

Equation 4-2. Inter-Cluster Density 

Vx is the set of vertices of subgraph Sx.  

An example of ICD computation is given in Figure 4-3. 

 
Figure 4-3. Example of ICD computation. There are two clusters, and solid lines are used for ICD 

calculation.  

4.4.2.2 Partial Clique Merging 

 
The protein-protein interaction network is modeled as a graph G=(V, E). Each vertex vk∈V 

represents a protein, while each edge {vi,vj}∈E represents an interaction between the proteins vi 

and vj. To merge cliques found in the PPI network, I define the term “partial cliques” as strongly 

connected subgraphs formed from the amalgamation of one or more cliques. Trivially, all cliques 

in the PPI network G are partial cliques. We begin with an initial graph Gp
0

 in which each vertex 

represents a partial clique, and add an edge (u, v) between any pair of partial cliques u and v in 

Gp
0 if ICD(u,v)≥ICDthres. From Gp

0, we can again find maximal cliques among the vertices. Each 

ICD(Sa, Sb) =(0.8+0.5+0.7+0.6+0.9+0.8)/(3*4)=0.36

0.5

Sa Sb 

0.8

0.7

0.60.9

0.8
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clique in Gp
0 is therefore a cluster of partial cliques from G, where all pairs of partial cliques in 

the cluster fulfils a minimum level of interconnectedness defined by ICD. In other words, the 

vertices in each clique from Gp
0 can be merged to form a larger partial clique. 

This process is then repeated to form bigger partial cliques. In each iteration i, a graph Gp
i is 

formed from PCi-1, the partial cliques from the previous iteration, i.e. Gp
i = (PCi-1, {(u,v) | 

ICD(u,v)≥ICDthres, u,v∈PCi-1}). From Gp
i, we can again find maximal cliques among the vertices 

(partial cliques in Gp
i-1) and merge the proteins in these cliques to form bigger partial cliques. 

This is done until no further merge can be made. In order for the more connected partial cliques 

to merge first, I first perform the merge using ICDthres = 1. The merging process is then 

repeatedly reinitiated while reducing ICDthres by 0.1 until ICDthres ≤ ICDmin. ICDmin is a threshold 

to be determined empirically. A smaller ICDmin will yield bigger clusters and vice versa. I refer 

to this merging method as “partial clique merging”. 

4.5 Datasets 

4.5.1 PPI Datasets 

Two high-throughput datasets are used for the studies made in this chapter. The first dataset is 

a combination of six protein-protein interaction networks from the Saccharomyces cerevisiae 

(bakers’ yeast) genome. These includes interactions characterized by mass spectrometry 

technique from Ho et al. [96], Gavin et al. [97], Gavin et al. [98] and Krogan et al. [99], as well 

as two-hybrid interactions from Uetz et al. [92] and Ito et al. [100]. I shall refer to this dataset as 

PPICombined. The second dataset is taken from a current release of the BioGRID database [101]. I 
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only consider interactions derived from mass spectrometry and two-hybrid experiments since 

these represents physical interactions and co-complexed proteins. I shall refer to this dataset as 

PPIBioGRID. 

4.5.2 Protein Complex Datasets 

Protein complex data is obtained from the MIPS database [56]. To examine if false positives 

in predictions may turn out to be novel annotations, two different releases of the MIPS complex 

data are used in our studies. The first version was released on 03/30/2004 while the other was 

released two years later on 05/18/2006. I refer to the two protein complex datasets as PC2004 and 

PC2006, respectively. PC2004, contains 815 complexes while PC2006, contains 907 complexes. The 

average complex size in the two datasets are 8.86 and 8.48 respectively. During validation, 

proteins that cannot be found in the input interaction network are removed from the complex 

data since these proteins can never be reported by the different algorithms. 

4.6 Implementation and Validation 

4.6.1 Experiment Settings and Datasets 

I implemented the preprocessing step using Perl and the PCP algorithm using C++. The 

implementation of the RNSC [68] algorithm was obtained from one of its authors, Igor Jurisca, 

while the implementations for MCODE [69] and MCL [93] algorithms used in [94] were 

obtained from the main author of [94], Sylvian Brohée. The experiments were performed on a 
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computer with a Pentium 4 CPU (Clock speed 3.0 GHz), 1.0 GB of RAM, and running a Linux 

operating system. 

4.6.2 Cluster Scoring 

Out of the three algorithms studied, only MCODE [69] provided a score for predicted protein 

clusters. Here I adopt the scoring method used by MCODE. The Density of a graph G = (V,E) is 

defined as: 

max
EEDG =       

Equation 4-3. Graph Density 

|E|max = |V| (|V|+1)/2 for a graph with loops;  

|E|max = |V| (|V|-1)/2 for a graph with no loops.  

DG is a real number that ranges between 0.0 and 1.0. Each predicted cluster C = (VC,EC) are 

scored and ranked by the cluster score, which is defined as: 

( ) CC VDCreClusterSco ×=  

Equation 4-4. Cluster Score 

 This score ranks larger, denser clusters higher in the predicted clusters. 

4.6.3 Validation Criterion 

4.6.3.1 Complex Matching Criteria 

To evaluate the relative performance of existing algorithms as well as our prediction method 

ProteinComplexPrediction (PCP), I need to define a criterion to determine whether a predicted 
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protein cluster matches a true protein complex. Bader et al. [69] defined the matching criterion 

using the overlap between a protein cluster S and a true protein complex C: 

( )
CS

CS

VV
VV

CSOverlap
⋅

∩
=

2

,  

Equation 4-5. Overlap between a predicted cluster and a known protein complex 

Vs are the vertices of the subgraph defined by S; and Vc are the vertices of the subgraph defined 

by C. 

In [69], an overlap threshold of 0.2 was used to determine a match. King et al. [68] used a 

modified version of the overlap which is more stringent but involves many empirically derived 

parameters which may not be applicable across different datasets. To simplify comparison, I use 

a more stringent overlap threshold of 0.25 as the criteria for a match between a predicted protein 

cluster and a real protein complex. Predicted clusters that match one or more true complexes 

with an overlap above 0.25 are identified as “matched predicted complexes”, while the 

corresponding complexes are referred to as “matched known complexes”.  

4.6.3.2 Precision-Recall Analysis Based On Cluster-Complex Matches 

To evaluate the predictive performance of the various methods, I adapted the Precision vs. 

Recall analysis used in Section 3.6.1.1 for evaluating complex predictions. Precision and recall 

are defined on function predictions in Section 3.6.1.1. Here I re-define precision and recall based 

on cluster and complex matches: 
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clusters

clusters

predicted
matchedprecision =

complexes

complexes

known
matched

recall =  

Equation 4-6. Precision and Recall for complex prediction 

where predictedclusters and knowncomplexes  are the number of predicted clusters and the number of 

known (real) complexes, respectively. 

Note that the number of “matched clusters”, matchedcluster, may differ from the number of 

“matched complex”, matchedcomplex because one known complex can be matched by more than 

one predicted clusters and vice versa. The many-to-many relationship between matching 

predicted protein clusters and protein complexes makes the evaluation of performance less 

straightforward. To reduce possible bias resulting from large differences in the sizes of predicted 

clusters between methods, I define precision based on matched clusters and recall based on 

matched complexes. As matches between clusters and complexes of smaller sizes have relatively 

high probabilities of occurring by chance [68], I will exclude any cluster or complex with fewer 

than 4 protein members. Note that unlike the validation measures used in [93], I do not seek to 

evaluate the clustering properties of each algorithm. Rather, I am concerned about the actual 

usefulness of the algorithms in detecting clusters that match real complexes reasonably well. 

4.6.3.3 Precision-Recall Analysis Based On Protein Cluster/Complex Membership 

To avoid bias that may arise from large variations in the size of predicted complexes, I also 

introduce another precision-recall analysis based on protein membership assignment. For this 

analysis, I defined two terms: protein-cluster pair (PCl) and protein-complex pair (PCo). Each PCl 

represents a unique protein-cluster relationship. For example, given two predicted clusters Cl(A) 
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= {P1, P2} and Cl(B) = {P1, P3}, I have four PCls, namely (Cl(A), P1), (Cl(A), P2), (Cl(B), P1) 

and (Cl(B), P3). Similarly, each PCo represents a unique protein-complex relationship. 

A protein-cluster pair (PCl) is considered to be matched if its protein belongs to some complex 

that matches its cluster. The definition of a match between a predicted cluster and a complex is 

described earlier in this section. Precisionprotein is defined as: 

||
||

PCl

PCl
protein predicted

matched
precision =  

Equation 4-7. Precision based on protein membership assignment 

A protein-complex pair (PCo) is considered to be matched if its protein belongs to some 

cluster that matches its complex. Recallprotein is defined as: 

||
||

PCo

PCo
protein known

matched
recall =  

Equation 4-8. Recall based on protein membership assignment 

4.7 Parameters Determination 

4.7.1 Optimal Parameters for RNSC, MCODE And MCL 

The optimal parameters for the RNSC, MCODE and MCL algorithms have been studied in 

[93] and are summarized in Table 4-1. 
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lgorithm Parameter Optimal value
RNSC No. of experiments 3 
 Tabu length 50 
 Scaled stopping tolerance 15 
MCODE Depth 100 
 Node score % 0 
 Haircut True 
 Fluff False 
 % of complex fluffing 0.2 
MCL Inflation 1.8 

Table 4-1. Optimal parameters for RNSC, MCODE and MCL algorithms. 

4.7.2 Optimal FS-Weightmin for Preprocessing 

In Section 2.8.1 and Section 3.5, I showed that filtering level-1 and level-2 interactions with a 

FS-Weight threshold of 0.2 resulted in interactions that have a significantly higher likelihood of 

sharing functions. In the preprocessing step proposed in Section 4.3, FS-Weightmin serves a 

similar purpose for filtering out level-1 and level-2 interactions. To determine the optimal value 

for FS-Weightmin, I perform protein complex prediction using the PCP algorithm over a range of 

FS-Weightmin with ICDmin fixed at 0.1 to determine which value can yield the best prediction 

performance. The PPICombined interaction network and the PC2004 protein complex data are used 

for making the predictions. The corresponding precision and recall of the predictions based on 

complex-cluster matches are presented in Figure 4-4. We find that FS-Weightmin=0.4 yields the 

best precision against recall, and use this for the rest of our experiments. 
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Precision vs Recall for different FSWeight Thresholds
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Figure 4-4. Effect of FS-Weightmin on Precision and Recall graphs for the PPICombined dataset. 

4.7.3 Optimal ICDmin for ProteinComplexPrediction 

There is only one tunable parameter for the ProteinComplexPrediction (PCP) algorithm: 

ICDmin. ICDmin determines the Inter-Cluster Density (See Section 4.4.2.1) threshold for which 

two clusters are allowed to merge during clustering in the second step (See Section 4.4.2.2) of 

the PCP algorithm. A lower ICDmin results in more clusters being merged and vice versa. To 

determine the optimal value of ICDmin, I perform complex prediction using PCP over a range of 

ICDmin values between 0.1 and 0.5 without applying preprocessing to the input interaction 

network. Again, the PPICombined interaction network and the PC2004 protein complex data are used 

for making the predictions. The corresponding precision and recall of the predictions made are 

presented in Figure 4-5. We find that ICDmin=0.1 yields the best precision against recall and use 

this for the rest of our experiments. 
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Figure 4-5. Effect of ICDmin on Precision and Recall graphs for the PPICombined dataset. 

Ideally, the optimal parameters for each method, including FS-Weightmin and ICDmin, should 

be customized to each method and dataset. However, since the emphasis of this work is to show 

the positive effect of introducing weighting and indirect interactions, rather than optimizing each 

method, we do not exhaustively determine optimal parameters. An approach for determining FS-

Weightmin that is not specific to a particular algorithm, such as the analysis done in Section 4.8.2, 

would seem more appealing. However, the complex nature of evaluating complex-cluster 

matches would make such an approach infeasible; using only links that are very likely to share 

complexes may result in less links, which may in turn negatively affect clustering results.  

4.8 Complex Prediction 

4.8.1 Introduction of Indirect Interactions 

The introduction of indirect interactions as a preprocessing step to complex discovery is the 

key concept of this chapter. To study how different ways of incorporating indirect interactions 
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affect the prediction performance of each algorithm, I perform complex prediction using the 

various algorithms with the four different preprocessed protein-protein interaction networks: 

1. The original  network, i.e. all level-1 interactions; 

2. All level-1 and level-2 interactions; 

3. All level-1 interactions, as well as level-2 interactions with FS-Weight ≥ FS-Weightmin; 

4. Level-1 and level-2 interactions with FS-Weight ≥ FS-Weightmin. 

Due to the large number of indirect interactions in (2), results can only be obtained within 

reasonable time for MCL and RNSC, which do not employ clique-finding. Below is an 

illustration of these four variants of the PPICombined network: 

1. The PPICombined consists of are 20,461 direct interactions (network variant 1).  

2. With the introduction of level-2 interactions, the number of interactions increased to 

404,511 (network variant 2).  

3. After filtering level-2 interactions based on FS-Weight, we are left with 23,356 interactions 

(network variant 3).  

4. Finally, upon filtering both level-1 and level-2 interactions, we are left with only 7,303 

interactions (network variant 4). 

4.8.2 Preliminary Investigation on the Viability of Indirect Interactions 

As a preliminary investigation of the viability of using indirect interactions and FS-Weight as 

a preprocessing step for complex prediction, I compute the fraction of interactions in the 4 
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transformed networks that are intra-complex. I define an interaction as being intra-complex if the 

two proteins involved in the interaction belong to some common known protein complex. Since 

proteins are clustered based on interactions during complex discovery, a higher fraction of intra-

complex interactions will naturally yield more accurately predicted clusters.  

In Figure 4-6, I present the corresponding fractions for two PPI networks, PPICombined and 

PPIBioGRID using the known protein complexes in PC2004. We observe that the fraction of intra-

complex interactions did not change significantly after adding filtered level-2 interactions into 

the network. However, if both level-1 and level-2 interactions are filtered, the fraction of intra-

complex interactions becomes significantly higher. Without any filtering, level-2 interactions 

will contain too many false positives to be useful, as reflected by the very small fraction of intra-

complex interactions. This is consistent with the findings for function similarity in Section 2.8.1 

and Section 3.5. Filtered level-1 interactions are most likely to be involved in similar complex, 

followed by filtered level-1 and level-2 interactions. However, we have seen earlier that there are 

very few filtered level-1 interactions, which would affect the recall of the predictions. These 

observations suggest that using a PPI network with filtered level-1 and level-2 interactions would 

likely yield the best results for protein complex prediction.  
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Figure 4-6. Fraction of intra-complex interactions with nodes sharing some complex membership 

for different PPI networks. 

4.8.3 Effect of Preprocessing On Complex Discovery 

Using the four variants of preprocessed networks from the two datasets PPICombined and 

PPIBioGRID, I compared clusters predicted using four clustering algorithms: MCL, RNSC, 

MCODE and PCP. PC2004 is used to represent real protein complex against which the results 

from these algorithms are validated.  

Table 4-2 summarizes some general features of the two datasets, as well as some general 

characteristics of clusters predicted by four clustering algorithms. PPIBioGRID is more recent, and 

larger than PPICombined. With the introduction of filtered level-2 interactions, predicted clusters 

generally decrease while average cluster sizes increase. This is due to greater connectivity in the 

graph since more edges are added among the same number of nodes. We also observe that the 

average sizes of clusters predicted by the MCODE and MCL algorithms are larger than those 

predicted by the RNSC and PCP algorithms. After filtering both level-1 and level-2 interactions 
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using FS-Weight, all algorithms produced less clusters. With the exception of MCODE, the 

average cluster sizes of clusters predicted by the various algorithms are also larger. 

Dataset Nodes Edges PPI No. of Clusters Avg. Cluster Size 
    RNSC MCODE MCL PCP RNSC MCODE MCL PCP 
PPICombined 4,672 20,461 1) 2,332 121 936 1,537 2.00 5.75 4.99 3.04
  404,511 2) 874 - 209 - 5.34 - 22.35 -
  23,356 3) 2,233 120 720 1,499 2.09 6.48 6.49 3.12
  7,303 4) 699 92 259 417 2.44 5.83 6.59 4.09
PPIBioGRID 5,036 27,560 1) 2,404 152 830 1,764 2.20 3.98 6.38 2.85
   2) 811 - 159 - 6.21 - 31.67 -
   3) 2,331 142 681 1,557 2.16 5.69 7.40 3.23
   4) 901 121 285 555 2.36 5.51 7.46 3.83

Table 4-2. The features of the datasets, and the features of the clusters that are predicted by 
different algorithms. The column PPI refers to the networks obtained after different ways of 

preprocessing described in Section 4.8.1. Results for 2) is unavailable for MCODE and PCP as 
these networks are too big to be clustered in reasonable time using this algorithms. 

I have also studied the average density of the clusters predicted by the four different 

algorithms using the different networks. Generally, all algorithms predicted clusters with the 

highest density using only level-1 interactions, followed by using level-1 and filtered level-2 

interactions. Using filtered level-1 and level-2 interactions resulted in clusters of lower density. 

When level-1 and level-2 interactions without filtering are used, the clusters found have the 

lowest density. RNSC yielded clusters with the highest density, followed by MCODE, PCP and 

MCL. Interestingly, I found that the average density of real protein complexes is quite low, 

around 0.55, which suggests that the density of predicted clusters do not correlate with prediction 

accuracy. 

Figure 4-7 presents the precision-recall analysis (see Section 4.6.3.2) of the predictions made 

by the four algorithms. By varying a threshold on cluster score (see Section 4.6.2), I can obtain a 

range of recall and precision for the predictions from each algorithm. 
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(c)    (d) 

Figure 4-7. The precision vs. recall graphs of RNSC, MCODE, MCL and PCP algorithms on 
PPICombined with (a) original level-1 interactions, (b) level-1 and level-2 interactions, (c) original 

level-1 and filtered level-2 interactions, and (d) filtered level-1 and level-2 interactions. 

From Figure 4-7(a)-(d) on the PPICombined dataset, we observe that RNSC performs the best in 

precision and recall on the original network (level-1 interactions). With the introduction of level-

2 interactions, the precision and recall deteriorates significantly (Figure 4-7 (b)). This is due to 

the overwhelming false positives in the unfiltered indirect interactions. When these level-2 

interactions are filtered using FS-Weightmin, precision and recall are improved compared to using 

direct interactions alone for MCODE and MCL, but deteriorates slightly for RNSC and PCP 

(Figure 4-7 (c)). When both level-1 and level-2 interactions are filtered using FS-Weightmin, all 

methods except RNSC show significant improvement in precision compared to using direct 
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interactions alone. In the methods/network combinations studied, PCP with filtered level-1 and 

level-2 interactions performs the best (Figure 4-7 (d)). 

Precision vs  Recall 
(Biogrid, L1)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3
Recall

Pr
ec

is
io

n

MCL
RNSC
MCODE
PCP

Precision vs Recall 
(Biogrid, L1&L2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3
Recall

Pr
ec

is
io

n

MCL
RNSC

 
(a)     (b) 

Precision vs  Recall 
(Biogrid, L1+Filtered L2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3
Recall

Pr
ec

is
io

n

MCL
RNSC
MCODE
PCP

Precis ion vs  Recall 
(Biogrid, Filtered L1&L2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3
Recall

Pr
ec

is
io

n

MCL
RNSC
MCODE
PCP

 
(c)     (d) 

Figure 4-8. The precision vs. recall graphs of RNSC, MCODE, MCL and PCP algorithms on 
PPIBioGRID with (a) original level-1 interactions, (b) level-1 and level-2 interactions, (c) original level-

1 and filtered level-2 interactions, and (d) filtered level-1 and level-2 interactions 

A similar trend is observed in the bigger PPIBioGRID dataset (Figure 4-8 (a)-(d)). Precision is 

improved in most algorithms with the introduction of filtered level-2 neighbors, and further 

improvement is achieved when level-1 interactions are also filtered based on FS-Weight with the 

exception of RNSC. In particular, the performance of MCODE and MCL improved substantially 

with the introduction of level-2 interactions and FS-Weight filtering. Again, PCP with filtered 

level-1 and level-2 interactions performs the best (Figure 4-8 (d)). Precision vs. recall graphs 
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based on protein cluster/complex membership (see Section 4.6.3.3) for the two interaction 

networks are also consistent with the graphs based on complex matching. These graphs can be 

found in Appendix B. 

To illustrate the significance of the preprocessing step and PCP for complex prediction, I 

compare predictions made by each algorithm natively (i.e. RNSC, MCODE, MCL on original 

level-1 interactions against PCP on filtered level-1 and level-2 interactions) in Figure 4-9. We 

observe that PCP, with the preprocessing step, outperforms the other algorithms significantly 

(Figure 4-9 (a) and (b)). I arrived at similar conclusions using precision-recall analysis based on 

protein membership assignment (Figure 4-9 (c) and (d)).  
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(c)     (d) 

Figure 4-9. Precisions-recall analysis of RNSC, MCODE, MCL and PCP algorithms on (a) 
PPICombined and (b) PPIBioGRID using native settings (RNSC, MCODE, MCL on original level-1 

interactions, and PCP on filtered level-1 and level-2 interactions); Precision-recall analysis based on 
protein membership assignment on the same predictions on (c) PPICombined and (d) PPIBioGRID. 

Results are based on comparison with PC2004 protein complex dataset. 

4.8.4 Examples of Predicted Complexes 

I have proposed two new concepts in this paper: the introduction of indirect interactions as a 

preprocessing step, and the PCP clustering algorithm. To illustrate how these concepts can help 

to predict protein clusters that better match real complexes, I examine some examples of protein 

clusters predicted by the PCP based on the modified network, as well as RNSC and MCL 

algorithms based on the original network, and how they correspond to real protein complexes in 
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the PC2006 dataset. Figure 4-10 shows two examples where PCP can predict protein clusters that 

match a real complex more precisely than other algorithms.  

In the first example (Figure 4-10  (a)), PCP predicted a cluster that matches a 4-member 

protein complex completely, while RNSC’s 3-member cluster has only one member, DPB4, that 

matches the same complex. This is probably due the fact that members in RNSC’s cluster are 

well connected by level-1 interaction. But by including level-2 interactions and filtering 

unreliable interactions, their connections are shown not to be strong enough to be in one cluster. 

Therefore PCP is able to identify the correct complex. Similarly, the cluster predicted by MCL 

only overlaps with two members of the complex, while the other 6 members of the cluster do not 

belong to the real complex.  

The second example (Figure 4-10  (b)) shows a 5-member protein cluster predicted by PCP, 

which is a subset of an 8-member protein complex. The best match with the same complex from 

RNSC is a 7-member cluster, in which only 2 belongs to a subset of the real complex. Though 

PCP’s predicted cluster matched 5 proteins and MCL also matched 5 proteins, but the latter 

predicted 6 proteins that are not in the complex. A closer look will reveal that PCP’s cluster 

member do not have any interactions among them, and this subset of the real protein complex 

can only be identified by level-2 interactions with the rest of the complex members. PCP is 

unable to discover the rest of the complex as their connectivity with the other members is very 

weak or unknown. SOF1 is overlooked by PCP as a member of the cluster because it interacts 

with a large number of proteins, and hence its interactions with the members of the cluster have 

low FS-Weight scores. “Hub proteins” like SOF1 are automatically penalized by the FS-Weight 

measure. 
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(b) 
Figure 4-10. Example of predicted and matched complexes. Complexes in PC2006, the predicted 

clusters by MCL, RNSC and PCP are shown in different boxes. (a) A complex in PC2006 of size 4, 
PCP’s cluster matched it perfectly, while MCL and RNSC’s clusters matched 1 and 2 of the 

proteins in the complex, respectively. (b) In this complex in PC2006 of size 8, RNSC’s predicted 

                    PC2006 complex 
               MCL cluster 

                RNSC cluster 
            PCP cluster 
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cluster matched only 2 proteins, while PCP’s predicted cluster matched 5 proteins, MCL also 
matched 5 proteins, but predicted 6 proteins that are not in the complex. 

4.8.5 Validation on Newer Protein Complex Data 

A comparison of prediction performance validated against an old protein complex dataset and 

a newer, more updated standard protein complex dataset can reveal the parameter-independent 

identification power of the different algorithms. I have previously assessed the RNSC, MCODE, 

MCL and PCP algorithms with PC2004. Here, I validate the predicted clusters of PCP and other 

algorithms against a more recent and more updated protein complex dataset, PC2006.  

I shown earlier in Figure 4-7 and Figure 4-8 that protein-protein interactions networks 

(PPICombined and PPIBioGRID) with level-1 and level-2 interactions filtered using FS-Weightmin 

yields the best performance for most of the algorithms studied. Here, I validate the predictions 

made using the preprocessed network PC2006. The corresponding precision-versus-recall graphs 

are presented in Figure 4-11. Comparing Figure 4-11 against Figure 4-8, we find that against the 

same recall range, the precision of all algorithms studied has increased substantially when 

validating against PC2006 for both PPI network datasets. This indicates that a significant number 

of predictions that have been considered as false positives when validated against PC2004 are now 

found to match against known complexes in PC2006. This suggests that both the preprocessing 

step and the PCP algorithm are able to make some correct novel predictions. 
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(a)      (b) 

Figure 4-11. The precisions and recalls of different algorithms on (a) PPICombinedf and (b) PPIBioGRID 
with filtered level-1 and level-2 interactions. Results are based on comparison with PC2006 protein 

complex dataset. 
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(b) 
Figure 4-12. Examples of predicted and matched complexes based on old and new PPI networks. 

Complexes in PC2004, PC2006 and the predicted PCP clusters are shown in different boxes for 
comparison. (a) The complex in PC2004 is of size 4, while in PC2006, its size is 5.  PCP predicted 4 

proteins in this complex correctly. (b) This complex is of size 5 in PC2004, for which PCP predicted 
all 5 protein correctly. In PC2006, its size is 11, while PCP algorithm predicted 6 of them correctly. 

In Figure 4-12, I present two illustrative examples in which PCP predicted novel members to 

some complexes, which are later verified in the newer complex dataset.  

             PC2006 complex 
       PCP cluster 

             PC2004 complex 
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In the first example (Figure 4-12 (a)), PCP predicted a cluster of 4 proteins. The cluster is 

found to match well with a real 4-member complex from PC2004 that contains 3 of the proteins in 

the predicted cluster. A comparison with PC2006, reveals that the predicted cluster matched a real 

complex in the dataset that contains all the 4 proteins. The protein complex also has another 

member SMC1, which has level-1 interactions with the other 3 proteins, but was not captured by 

PCP since the FS-Weight of these interactions are low.  

In the second example (Figure 4-12 (b)), PCP predicted YHR033W to be in the same cluster 

as the other 5 proteins, and this is consistent with PC2006 but not PC2004. The remaining 5 proteins 

in the new complex are not captured by PCP as they do not have substantial connectivity with 

the predicted cluster. NPA3 is predicted by PCP to be part of the cluster, but is not found in new 

protein complex. This protein also interacts with TCP1 and CCT5 in several other complexes 

[68], which led us to believe that even though this protein is not in the complex depicted in 

Figure 4-12 (b), it could be in the same “function unit” [67] with some members of the complex. 

4.9 Robustness against Noise in Interaction Data 

As I have mentioned in Section 2.6.2, high throughput protein-protein interactions are very 

prone to noise. To assess the robustness of the PCP algorithm, I study how the complex 

prediction performance of PCP is affected when different types and quantity of noise are 

randomly injected into the PPICombined network.  

A typical robustness experiment would introduce noise by swapping edges, or through the 

random assignment of node labels. Such methods are used for estimating p-values or the 

uniqueness of network motifs while preserving the inherent topological properties of the 
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network. Here, I wish to emulate errors introduced by high-throughput PPI experiments, which 

are present in the form of missing edges (not detected) or sticky proteins (random additions). To 

simulate missing edges, I randomly delete edges from the interaction network. Similarly, to 

simulate false positives, I randomly add edges to the network. I refer to a combination of 

addition and deletions as “reroutes”. Such alterations to the network are varied from 10% to 50% 

of the initial edges in the network. The complex-matching based precision vs. recall of the 

predicted clusters from the various perturbed datasets are shown in Figure 4-13. 
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(c) 

Figure 4-13. The precision and recall of predictions made by the PCP algorithm when different 
types and amount of noise are introduced into the reliable PPI network. Three ways of perturbing 

the network are studied: (a) Random addition (b) Random deletion (c) Random deletion and 
addition (reroute). 

We can see from Figure 4-13 (a) that the precision against recall of the clusters predicted by 

PCP remains fairly consistent even with random additions of interactions up to 50% of the 
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original interactions in PPICombined. This is a clear indication that PCP algorithm is robust against 

spurious interactions. The filtering of the PPI network based on FS-Weight removes most of 

these random additions, and retains only confident interactions for clustering. Random deletion 

of interactions has a greater impact on clustering performance, as can be seen in Figure 4-13 (b). 

This is analogous to a lack of information, leading a reduction in recall. As FS-Weight is a local 

topology measure, it becomes less effective when the interaction network become very sparse, 

since there will be insufficient interactions in the local neighborhood to give a confident score. 

The formulation of the measure will assign low weights in these cases, which will cause many 

interactions to be filtered. Nonetheless, precision remains high for clusters that can be 

discovered. A combination of random addition and deletions results in a simultaneous reduction 

in precision and recall. 

4.10  Conclusion 

In this chapter, I have extended the concept of indirect functional association introduced in 

Chapter 2 to the task of protein complex discovery. I proposed a preprocessing step on protein-

protein interactions (PPI) networks to introduce indirect interactions using the FS-Weight 

measure (see Section 2.7) into the network before complex prediction. From our experiments, I 

have shown that existing clustering algorithms are able to produce clusters that match protein 

complexes with significantly higher precision based on the preprocessed PPI networks. 

I also proposed the ProteinComplexPrediction (PCP) clustering algorithm which incorporated 

the FS-Weight values computed during the preprocessing with a clique finding and merging 

approach for predicting protein complexes from the preprocessed network. I have compared PCP 
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with the RNSC, MCODE and MCL algorithms and showed that PCP produced predictions with 

better precision. By validating against newer complex data, I have shown that PCP can discover 

novel members of complexes which are only found in the newer complex data. Through 

simulated noise analysis, I also showed that PCP maintains high precision even when used on 

significantly noisier datasets.  

Nonetheless, some limitation still plagues current approaches as well as PCP:  1) complexes 

with subsets of proteins that are not tightly connected to the rest of the complex members cannot 

be identified, as illustrated in Figure 4-12(b). This is inevitable since clustering methods are 

highly dependent on interaction density. One possibility of overcoming this limitation may be to 

incorporate other sources of biological information to represent a more reliable and complete 

network of relationships between proteins for complex prediction. 2) Real complexes represent 

many-to-many relationships with proteins, rather than mere partitions in protein-protein 

interactions, as suggested by many existing approaches in complex prediction. Accommodating 

such a more realistic model in complex prediction will introduce complexity in both computation 

and the evaluation of predicted complexes. 
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Chapter 5 Efficient Integration of Heterogeneous Sources 
of Evidence for Protein Function Prediction using a Graph-
Based Approach 

5.1 Overview 

So far, I have been looking at how one source of information, protein-protein interactions, can 

be used for protein function prediction. In particular, I have observed how protein-protein 

interactions can provide evidence of functional association that sequence homology may fail to 

detect (See Section 3.4), as well as how indirect interactions between proteins can be used to 

enhance protein function prediction (See Chapter 2 and Chapter 3), and complex/functional 

module detection (see Chapter 4).  

From a broader perspective, combining different types of biological data will give us more 

complete information about protein functionalities of varying nature. This concept is not new, 

and a handful of approaches to integrating multiple heterogeneous sources of data for function 

prediction have already been explored [39, 40, 41, 42, 43, 44, 45]. Many of these are adapted 

from existing techniques, such as machine learning and probabilistic methods, which have been 

proven successful on specific data types.  

While these approaches have shown that the integration of many sources of data can produce 

more complete and accurate predictions, the impact of integration-based function prediction is 

hindered by a couple of factors. Firstly, little comparison was made between existing approaches. 

This is in part due to a divergence in the focus adopted by different works, which makes 

comparison difficult or even fuzzy. Secondly, these approaches largely adopted computationally 
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demanding machine learning methods, which run counter to the exponential surge in biological 

data.  

Analogous to the success of (Basic Local Alignment Search Tool) BLAST [3] for sequence 

homology search, I believe that the ability to tap escalating quantity, quality and diversity of 

biological data is crucial to the success of automated function prediction as a useful instrument 

for the advancement of proteomic research. In this chapter, I attempt to address these problems 

by: 1) providing a useful comparison between some prominent methods; 2) proposing Integrative 

Weighted Averaging (IWA) – a scalable, efficient and flexible function prediction framework 

that integrates diverse information using simple weighting strategies and a local prediction 

method. The simplicity of the approach makes it possible to make predictions based on on-the-

fly information fusion. I will show that in addition to its greater efficiency, IWA also performs 

exceptionally well against existing approaches. In the presence of cross-genome information, 

which is overwhelming for existing approaches, IWA makes even better predictions.  

5.2 Existing Methods 

Work on integrating multiple sources of heterogeneous data for protein function prediction 

can be generally divided into two camps. 

5.2.1 Machine Learning Based 

The first group formulates the function prediction task into a classification problem which is 

then solved using popular machine learning methods [39, 40, 42, 44]. Methods from this group 

focus on the prediction of a few general function categories and do not take the hierarchical 
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nature of annotation schemes into consideration. Some methods from the first group are 

described below. 

5.2.1.1 Markov Random Field 

Deng et al. [44] uses global optimization method based on Random Markov Fields and belief 

propagation to compute a probability that a protein has a function given the functions of all other 

proteins in the interaction dataset. Similar approaches have been used for predicting protein 

functions from protein-protein interactions. [28, 29, 30] 

5.2.1.2 Fusion Kernels 

Lanckriet et al. [39] uses Semi-Definite Programming (SDP) to combine heterogeneous data 

sources for function prediction using Support Vector Machines (SVM). A separate kernel is 

generated from each data source using customized techniques. SDP is then used to obtain an 

optimal combination of the kernels for SVM learning. From known comparisons with some other 

works [42, 44], Fusion Kernels has been shown to perform favorably. However, this method is 

computationally complex and does not scale well to large number of annotations. Hence I will 

only include it in comparisons using Dataset A. Yamanishi et al. [105, 106] describe a similar 

kernel integration method for predicting protein-protein interactions. 

5.2.2 Probabilistic / Network Based 

Methods from the second group tackle the function prediction task using probabilistic and 

network-based formulations [41, 43, 45]. These works are targeted towards predicting a much 
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larger number of specific functional annotations from hierarchical annotation schemes such as 

the Gene Ontology [56]. Some methods from this group are described below. 

5.2.2.1 Gain 

GAIN [45] models an input functional linkage network as a discrete-state Hopfield network in 

which function assignments are propagated to achieve globally consistent annotations. In our 

experiments, I use GAIN-1.8, publicly available at 

https://bioinformatics.cs.vt.edu/~murali/software/gain/. Following the description from [45], 

gene pairs from gene expression data are weighted using Pearson Correlation. Protein pairs from 

other datasets are given a weight of 1. As GAIN takes a single functional linkage network as an 

input without differentiating between data sources, I do not use the scoring functions described 

in Section 2.6 for each data source. 

5.2.2.2 Gump 

GUMP [41] extracts feature vectors for each protein based on the functions of associated 

proteins and the corresponding sources of evidence. The extracted feature vectors are then 

trained using artificial neural networks. GUMP do not use any weighting scheme. In our 

experiments, I use the MATLAB implementation of GUMP that is available with the online 

publication at http://www.biomedcentral.com/1471-2105/7/268. Following the procedure 

described by the authors, experiments are repeated while varying parameter values over a given 

range to obtain optimal parameters 
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5.2.2.3 Genefas 

GeneFAS [43] combines information from different data sources using a probabilistic 

approach. For each data source, the probability that a protein pair from that data source shares a 

particular function is estimated. This is done for each function and data source. The probability 

of a protein having a function is then computed by combining the pre-computed probabilities for 

all associated proteins using a naïve Bayesian method. This is referred to as local prediction. 

Using these local predictions as weights, a customized simulated annealing method is then used 

to achieve global optimization. GeneFAS accepts 3 kinds of data types: unweighted protein-

protein interactions, phylogenetic profiles, and microarray data. In our experiments, gene 

expression datasets are provided to GeneFAS as microarray data, while other datasets are 

provided to GeneFAS as unweighted protein-protein interactions. The GeneFAS software is 

publicly available at http://digbio.missouri.edu/software/genefas/. 

In general, methods that take the first approach make use of more computationally demanding 

methods, and perform better but slower. Methods from the second group make use of less 

computationally demanding optimization as well as network-based approaches. These methods 

can scale better to larger amount of data, as well as larger number of data sources, and are able to 

make predictions for a larger number of functional annotations, such as the controlled vocabulary 

used in the Gene Ontology. 
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5.3 Limitations of Current Methods 

5.3.1 Lack of Comparison 

Within the first group (see Section 5.2.1), Lanckriet et al. [39] has been shown to perform the 

best. However, little comparisons have been made between methods in the second group (see 

Section 5.2.2), or between the two groups, making the evaluation of existing methods difficult. 

5.3.2 Scalability 

All the methods described in Section 5.2 employ some form of machine learning or 

optimization methods such as Bayesian Networks [40], Markov Random Field [44], Support 

Vector Machines [39], Convex Optimization [42], Hopfield Network [45], Simulated Annealing 

[43], and Artificial Neural Networks [41]. This limits the scalability of each approach to larger 

datasets depending on their complexity. Here, I refer to complexity as a combination of: 1) The 

number of proteins to be predicted with annotations; 2) The number of possible annotations to be 

predicted; 3) the number of data sources used for prediction; and 4) the number of proteins 

described by each data source. 

With the rapidly increasing amount of biological data available, the performance differences 

that can be gleaned from using a more sophisticated optimization method is likely be 

overshadowed by the ability to make use of larger and more data sources. In fact, a recent study 

has shown that the use of global optimization may not actually yield significant improvement 

over simpler local prediction methods [107]. This propelled us to look at protein function 

prediction based on fusing more data using a simple local prediction method. I refer to local 
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prediction as making predictions based on direct evidence, as opposed to using propagated 

information [41,  43, 45] or optimizing the overall consistency of all annotations [39, 40, 42, 44]. 

5.3.3 Currency of Predictions 

Many less well-studied genomes has very limited amount of related biological data. It is 

therefore important to keep predictions updated as soon as more data is available. Current 

methods lack the scalability as well as efficiency to provide constantly updated predictions using 

a combination of not only heterogeneous, but also cross-genomic sources, of information. A 

prediction framework that can be generic enough to extract data from a large variety of existing 

databases to provide constantly updated predictions will be very useful. 

5.4 Datasets  

Due to the limited scalability of some approaches, comparison between different approaches 

is done using two separate datasets. 

5.4.1 Dataset A 

5.4.1.1 Function Annotation 

This first dataset is used in [44] and subsequently in [39]. This dataset is available online at 

http://www-hto.usc.edu/msms/IntegrateFunctionPrediction/. The dataset comprises a total of 

6355 yeast proteins, of which 3588 are annotated with one or more of 12 functional annotations 

from the most general level of functional classes from the Munich Information Center for Protein 

Sequences (MIPS) [56]. The 12 functional classes are shown in Table 5-1. 
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 Category Size 

1 Metabolism 1,048 
2 Energy 242 
3 Cell cycle & DNA processing 600 
4 Transcription 753 
5 Protein synthesis 335 
6 Protein fate 578 
7 Cellular transport & transport 

mechanism 
479 

8 Cell rescue, defense & 
virulence 

264 

9 Interaction with the cellular 
environment 

193 

10 Cell fate 411 
11 Control of cellular organization 192 
12 Transport facilitation 306 
Table 5-1. 12 functional classes from MIPS 

5.4.1.2 Functional Association Data Sources  

 Datasets from four different sources that are suggestive of functional association is used to 

predict functions for these annotated proteins to assess the different integration methods. These 

datasets are: MIPS genetic and physical interactions [56], Tandem Affinity Precipitation (TAP) 

protein complex data, Pfam [10] domains and gene expression correlations: 

1. Protein-Protein Interaction. There are a total of 2,448 unique protein pairs involving 1,884 

proteins defined by the MIPS physical and genetic interaction datasets.  

2. Protein Complexes. The protein complex information from the TAP dataset yields 30,731 

unique pairs among 1,354 proteins. 
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3. Pfam Domains. The Pfam domain dataset contains 28,616 unique protein pairs that share at 

least one Pfam domain.  

4. Expression Correlation. 1,366 unique protein pairs with highly correlated (Pearson’s 

correlation coefficient >= 0.8) expression profiles involving 585 proteins are extracted from 

the Spellman cell cycle microarray data [46].  

These datasets are provided to GAIN [45] and GUMP [41] as unweighted binary pairs. 

Following the procedures outlined in [41], predictions using GUMP is repeated over a range of 

parameters to find the best parameters for the dataset. 

5.4.2 Dataset B 

5.4.2.1 Function Annotation 

In order to make use of information across different genomes, I need an annotation scheme 

that is coherent between different genomes. The popularity and coverage of the Gene Ontology 

[56] makes it a natural choice for this task. The entire set of annotations is obtained from Gene 

Ontology (http://www.geneontology.org). These annotations cover a large number of genomes. 

Table 5-2 summarizes the genomes covered by these annotations, as well as their source of 

annotation. 
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Annotation Source Genomes 
SGD Saccharomyces cerevisiae 
FlyBase Drosophila melanogaster 
MGI Mus musculus 
TAIR/TIGR Arabidopsis thaliana 
WormBase Caenorhabditis elegans 
RGD Rattus norvegicus 
Gramene Oryza sativa 
ZFIN Danio rerio 
DictyBase Dictyostelium discoideum 
CGD Candida albicans 
TIGR Bacillus anthracis Ames 

Coxiella burnetii RSA 493 
Campylobacter jejuni RM1221 
Dehalococcoides ethenogenes 
Geobacter sulfurreducens PCA 
Listeria monocytogenes 4b F2365 
Methylococcus capsulatus Bath 
Pseudomonas syringae DC3000 
Shewanella oneidensis MR-1 
Silicibacter pomeroyi DSS-3 
Trypanosoma brucei chr 2 
Vibrio cholerae 

GO Annotations @ EBI Gallus gallus 
Bos Taurus 
Homo sapiens 

Sanger GeneDB Leishmania major 
Plasmodium falciparum 
Schizosaccharomyces pombe 
Trypanosoma brucei 
Glossina morsitans 

Table 5-2. Genomes covered by annotations from Gene ontology and their annotation sources 

Gene Ontology (GO) annotations are labeled with evidence codes that indicate the type of 

evidence used in their derivation. Annotations with evidence code “IEA” (Inferred from 

Electronic Annotation) depend directly on computation and are not manually verified. I exclude 

these annotations since they are inconclusive and may lead to circular reasoning. I also exclude 

annotations from Uniprot and PDB since these overlaps with annotations for specific genomes, 
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and have relatively few non-IEA coded annotations. Predictions are validated separately for each 

of the 3 GO namespaces: molecular function, biological process, and cellular component.  

5.4.2.2 Informative GO Terms 

Gene Ontology (GO) annotations are arranged in directed acyclic graphs. Defining the 3 base 

namespaces “molecular_function”, “biological_process”, and “cellular_component” as level 0, 

there are 19655 terms up to 15 levels of annotation. Lower-level terms are more generic while 

higher-level terms are more specific. The 3 base categories, obsolete terms, as well as 3 other 

vague terms: “GO:0005554 molecular function unknown”, “GO:0000004 biological process 

unknown” and “GO:0008372 cellular component unknown”, are excluded from the dataset. 

GO annotations follows the “true path” rule, i.e. a protein that is annotated with a GO term is 

also annotated with all its ancestor terms. A child term is a more specific subset of the parent 

term. A function that is well studied can have many more descendant terms than one that is less 

known. Hence if all GO terms are used for validation, better studied functions will be given 

much greater weight during performance evaluation and may result in biased conclusions. One 

simple way to address this problem is to consider GO terms from a particular level in the 

hierarchy. However, due to differences in nature of the GO terms, the same level in the ontology 

may not be uniformly reflective of the specificity of the terms. Moreover, some terms may not 

have sufficient annotations for the correspondingly computed statistical measure to be 

conclusive. To avoid the above problems, I again adopt the concept of informative Functional 

Class [21, 170] to selectively identify GO terms for validation. 

The concept of informative Functional Class (described earlier in Section 2.4.1 and Section 

3.6.2) is used to capture the most specific terms which are statistically significant. This will also 
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prevent validation on overlapping GO terms. The definition of an informative GO is given in 

Section 3.6.2. Only informative terms are used for prediction performance validation. This 

ensures that terms used for validation has a reasonable number of annotations and do not have 

overlapping descriptions. The definition of informative GO terms also means that the most 

specific descendant terms that can be conclusively validated are selected. There are 56, 105, and 

43 informative GO terms for the namespaces “molecular_function”, “biological_process”, and 

“cellular_component” respectively in this dataset. 

5.4.2.3 Yeast Proteins 

There are 5,448 proteins from the S. cerevisiae genome in the GO annotations from the 

Saccharomyces Genome Database (SGD) [108], of which 4,197 are annotated with 

“molecular_function” GO terms; 4,889 are annotated with “biological_process” GO terms; and 

5,448 are annotated with “cellular_component” GO terms.  

5.4.2.4 Functional Association Data Sources  

I use datasets from five different sources that are suggestive of functional association: 

1. Sequence Homology. Protein sequences are downloaded from the Gene Ontology database 

(http://archive.godatabase.org). Each yeast sequence is aligned with all other sequences 

using BLAST. The top 5 hits with an E-value <= 1 is used to define binary relationships. 

This yields 9,736 distinct protein pairs among 4,376 proteins when BLAST is performed 

only against yeast sequences, and 23,282 distinct protein pairs among 19,985 proteins when 

BLAST is performed against all sequences. 
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2. Protein-Protein Interactions. Interaction data for yeast proteins is obtained from a recent 

release of BIOGRID [101]. There are a total of 50,434 distinct interaction pairs between 

5,298 yeast proteins. 

3. Pfam Domains. Pfam domain information of the sequences is extracted from the 

SwissPfam database at (http://www.sanger.ac.uk/Software/Pfam/ftp.shtml). The SwissPfam 

database contains precomputed Pfam domains for SwissProt and TrEMBL proteins with an 

E-value threshold of 0.01. A total of 129,541 unique pairs between 23,298 proteins are 

obtained. 

4. Pubmed Abstracts. Pubmed abstracts are obtained by searching each protein’s name and 

aliases on NCBI Entrez Pubmed (http://www.ncbi.nlm.nih.gov/entrez/). Only the first 1000 

abstracts returned are used. For each protein u, the names and aliases of every other protein 

v from the same genome are then searched in the abstracts associated with protein u. A 

relationship is defined between protein u and v if v is found in these abstracts. A total of 

43,678 distinct pairs between 4,275 yeast proteins are obtained. 

5. Predicted interactions. Predicted interactions are obtained from the Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) [83] database at http://string.embl.de/. 

There are a total of 145,003 distinct protein pairs involving 4,424 yeast proteins. 

6. Gene expression data. Two widely used gene expression profiles are obtained from [102] 

and [103]. Gene pairs with a correlation score >= 0.7 are used. 

All GO terms are predicted, but only informative terms are used for validation. I have made 

this dataset is publicly available at http://srs2.bic.nus.edu.sg/~kenny/integration.  
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5.5 A Graph-Based Framework For Integrating Heterogeneous Data For 

Protein Function Prediction  

Lee et al. [104] used a unified log likelihood scoring function to combine several sources of 

binary gene relationship data into a graph, which can be clustered into groups that show strong 

similarity in function. This illustrates the fact that different data source has different degree of 

correlation with function similarity. Hence to achieve effective integration, it is necessary to 

assign weights to each data source based on some common yardstick (i.e. function similarity).  
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Figure 5-1. Uniform weighting scheme to combine different data sources. G1, G2 and G3 are graphs 
representing three data sources. Each node is a protein, while each edge is a binary relationship. 
Initial edge weights from each data source are discretized into intervals using Equation 5-1, and 

reweighted into common weight that is consistent across different data sources using Equation 5-2. 
G1, G2 and G3 are then combined to form the final graph G’. Edge weights in G’ are computed 

using Equation 5-3). Weights are derived separately for each function. 

Here, I propose a simple framework, Integrative Weighted Averaging (IWA), for combining 

multiple sources of evidence based on a similar approach for protein function prediction. Figure 

5-1 illustrates our approach to integrating multiple data sources using a uniform weighting 

scheme. This prediction framework involves 3 steps: 
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1. Each data source is modeled as an undirected graph G = 〈V, E〉, where V and E are the set 

of vertices and edges in the graph G, with each vertex representing a protein and each edge 

(u, v) representing a relationship between proteins u and v. Graphs G1, G2 and G3 in the 

figure depict graphs that represent three data sources. The edges in each graph may have a 

different weighting scheme (e.g. G1 and G2), or may be unweighted (e.g. G3). Edge weights 

from each data source are first discretized into uniform intervals (described later in 

Equation 5-1), and subsequently re-weighted using a common benchmark, i.e. consistency 

with known annotations, described later in Equation 5-2. 

2.  Multiple graphs derived from different data sources in this way can be combined to form a 

larger and more complete graph G’. Each edge in G’ can be weighted based on the data 

sources that contributed to the edge (described later in Equation 5-3). Each edge weight 

estimates the confidence in which a particular function will be shared between two 

proteins.  

3. Each protein is predicted with annotations based on a weighted voting function that 

involves only its neighbors in the graph.  

The simplicity of the approach makes it very scalable to large amount of data. Each data 

source can be dynamically re-weighted as more data becomes available. Since predictions 

depend only on the local neighborhood in the final graph, predictions can be made on-the-fly for 

each protein simply by combining all related information in each data source. 
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5.5.1 Discretization of Data Source With Existing Scoring Functions 

As mentioned in Section 5.5.2, some data sources may embed weighting or scoring 

information. Take for instance a sequence homology dataset generated from BLAST [3] 

searches. Each alignment result not only defines an edge between two proteins, but also provides 

a weight – the E-Score generated by BLAST. Protein pairs with lower E-scores are relatively 

more likely to correlate with function association than protein pairs with higher E-scores. Hence 

it may be useful to take such weights into consideration when computing the confidence of 

edges. 

However, not all types of weights correlate with function association, and different weighting 

schemes or scoring functions can differ in how they correlate to similarity in function. To make 

use of such weighting information, I subdivide data sources into subtypes based on their 

embedded score. Given a set of edges E from a data source k where both vertices of each edge in 

E have at least one functional annotation, I subdivide E into subtypes using a straightforward 

approach: 

1. Edges in E are parsed to find the maximum and minimum scores, Sk,max and Sk,min 

respectively;  

2. Edges in E are sorted into n bins, b1, … , bn , of equal intervals between Sk,min and Sk,max; 

3. Each bin bi is used as a different subtype for which confidence will be evaluated 

individually using equation (1); 

4. Given an observation, Oe,k,S, of edge e from data source k with score S, its subtype or bin 

will be determined by:  
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Equation 5-1. Binning index computation  

5. If S >= Sk,min, the confidence of e based on observation Oe,k,S is estimated by the confidence 

of the subtype defined by the bin identified by BinIndexk(S). 

6. If S < Sk,min, the confidence of e based on observation Oe,k,S is taken to be 0 since there is no 

training data to estimate its confidence. 

No assumption is made on the range or nature (e.g. positive, negative or no correlation with 

function similarity, linear or parametric etc.) of the pre-computed scores. In our experiments, I 

use n = 20. 

5.5.2 Estimating the Confidence of Data Sources 

Edges defined by different types of evidence can vary in their reliability in reflecting function 

similarity. For example, proteins with sequence homology may be more likely to share functions 

than proteins with similar gene expression profiles. Even with the same type of data such as 

protein-protein interaction data, different experiments may differ in the degree of correlation 

with function similarity, subjected to factors such as noise, environment and the nature of the 

procedures used. Correlation with function similarity not only varies with the nature of the data, 

but also with the nature of the function. For example, sequence similarity is more likely to 

indicate sharing of molecular functions rather than biological processes from the Gene Ontology. 
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Moreover, some types of evidence may embed some form of scoring information. Edges with 

different scores may also differ significantly in the degree of correlation with function similarity. 

Hence data sources can be further subdivided into smaller groups based on available information 

such as experimental source or embedded scores. To capture these variations, I evaluate the 

confidence of each data source, as well as their subsets separately for each function. The 

probability that a data source k transfers function f, is estimated using: 
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Equation 5-2. Confidence of data source 

Ekf is the subset of edges of data source k where each edge has either one or both of its vertices 

annotated with function f; 

Sf(u,v) = 1 if u and v shares function f, 0 otherwise. 

When |Ek,f| is small, the variance of p(k,f) is high. A pseudo count of 1 is added to the 

denominator  

Table 5-3 illustrates p(k,f) computed for one GO annotation and a variety of data sources from 

the datasets described in Section 5.4.2. 
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Subtype Confidence 
(GO:0006402) 

PFam  (1≤S < 3 ) 0.118 

PFam (6 ≤ S < 7 ) 0.835 

BIOGRID (0.0896 ≤ S < 
0.134) 

0.148 

BIOGRID (0.534 ≤ S < 
0.579) 

0.934 

BLAST (99.9 ≤ S < 150) 0.267 

BLAST (150 ≤ S < 200) 0.668 

Pubmed (0.0999 ≤S < 
0.149) 

0.0751 

Pubmed (0.545 ≤ S < 
0.595) 

0.751 

Table 5-3. Examples of data types and their computed confidence for the GO term GO:0006402 
(mRNA catabolism). S refers to the scores based on the scoring function for each corresponding 

data source. Details of scoring functions are described in section 3.2. 

5.5.3 Estimating The Confidence Of An Edge In The Combined Graph 

After the confidence of edges in the graph representing each data source is derived, these 

graphs can be combined into a larger, more complex graph G’ which contains all edges and 

nodes in the component graphs. Essentially, two nodes in G’ are connected if and only if they are 

connected in some of the component graphs. The confidence of each edge (u,v) in G’ for each 

function f is estimated by the subtypes in which (u,v) is observed: 
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Equation 5-3. Confidence computation for edges 

Du,v is the set of subtypes of data sources which contains edge (u,v). 
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5.5.4 Assigning the Score of an Annotation to a Protein 

Function f is assigned a score Sf(u) for protein u using a weighted averaging method, defined 

by:  
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∑
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Equation 5-4. Data Fusion scoring function 

Sf(u) is the score of function f for protein u; 

ef(v) = 1 if protein v has function f, 0 otherwise 

Nu is the set of proteins that are linked by an edge to protein u; 

ru,v,f is the link confidence between protein u and protein v 

5.5.5 Scoring Functions 

Integrative Weighted Averaging (IWA) requires the dataset from each data source to be 

modeled as weighted binary associations. Datasets described in Section 5.4 are converted into 

this form in the following way: 

1. BLAST results. The negative log E-Scores between each protein pair is used as the score of 

that pair. For pairs with zero E-Score, a score of 999 is used to avoid an infinity score. 

2. Protein-protein interactions. FS-Weight  (described in Section 2.7.4 and Section 3.3.2) has 

been shown to provide a good estimate of functional similarity between interacting protein 

pairs (direct interactions), as well as between protein pairs that do not interact but share 

common interaction partners (indirect interactions). To keep our comparison simple, I only 
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use direct interaction pairs here. Each interacting protein pair is scored using the simplified 

variant of the FS-Weight measure defined by Equation 2-8 with λu,v is set to 1:  
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Equation 5-5. Simplified FS-Weight 

Np refers to the set that contains p and its interaction neighbors. 

 I do not use FS-Weight with reliability information (See Section 2.7.4) here to avoid having 

to recompute the FS-Weights for each interaction during each fold in the cross validation. 

3. PFam domains. The protein pairs are scored by the number of common domains they 

share: 

vupfam DDvuS ∩=),(  

Equation 5-6. Scoring function based on common Pfam domains 

Dk is the set of Pfam domains found in protein k 

4. Pubmed abstracts. The relationship between proteins u and v is scored as follows: 
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Equation 5-7. Scoring function based on co-occurrence in Pubmed literature 

Ax is set of Pubmed abstracts that contain protein x. 

5. Gene expression profiles. Each pair of genes is given a score using the Pearson’s 

correlation coefficient between their expression profiles. Gene pairs with correlation below 
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0.7 are discarded. Gene expression information from Dataset A is already processed when 

obtained from [44]: gene pairs with correlation >= 0.8 are weighted with 1, while others are 

discarded. 

5.6 Validation Methods 

5.6.1 Dataset A 

For comparisons on dataset A, validation is done following the experimental procedures 

stipulated in [39]. The 3588 annotated proteins are predicted using 3 repetitions of 5-fold cross 

validation. The area under the Receiver Operating Characteristics [88] graph is computed for 

each functional class and averaged over the predictions in all 15 folds. A perfect classifier for a 

class will have an ROC score of 1 for the class, while a random classifier will yield an ROC 

score close to 0.5. Validation results on the dataset using Deng et al’s Markov Random Field 

[44] and Lanckriet et al’s SDP/SVM methods are taken from [39], while the other methods are 

run and validated using available implementations from the authors. 

5.6.2 Dataset B 

For each GO namespace, I perform 10-fold cross validation on 5,448 annotated yeast proteins 

from SGD and validate each method using only the informative GO terms. The annotated 

proteins are randomly divided into 10 equal-sized groups. Each time the annotations for proteins 

from a group are hidden and predicted using annotations for proteins from the other 9 folds as 

training data. Only annotations and functional linkage data involving yeast proteins are used in 
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this experiment due to the memory limitations of GeneFAS on our machine. Two measures are 

used to measure performance here: 

5.6.2.1 Receiver Operating Characteristics 

The Receiver Operating Characteristics (ROC) graph is described in Section 3.6.1.2. Here I 

compute the area under the ROC graph of each informative GO term. Due to the large number of 

terms involved, I compare the different approaches by plotting the number of informative GO 

terms that can be predicted with ROC scores better or equal to various ROC thresholds. 

5.6.2.2 Precision-Recall Analysis 

As mentioned in Section 3.6.1.2, ROC does not tell us how well the prediction scores of a 

method reflect the confidence of predictions. For example, a prediction score of 0.6 may indicate 

a likely true positive for one term, but the same value may also indicate a likely false positive for 

another. This makes it difficult for a user to interpret prediction results. To capture how well the 

prediction scores of a method reflect the confidence of predictions, I adopt the precision vs. 

recall analysis used in [29] and [44]. The definitions of precision and recall are provided in 

Equation 2-7 under Section 2.6.3. Using varying thresholds on prediction scores, a range of 

precision and recalls can be plotted for each method. Only informative GO terms are used in the 

computation of precision and recall. 
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5.7 Function Prediction Performance 

5.7.1 Comparison Using Dataset A 

The five methods described in Section 5.2, as well as Integrative Weighted Averaging (IWA), 

are compared using Dataset A based on the evaluation procedure described in Section 5.6.1. 

Figure 5-2 presents the Receiver Operating Characteristics (ROC) for each of the 12 MIPS 

functions computed from the predictions made using: 1) Markov Random Field [44]; 2) 

SVM/SDP kernel methods [39]; 3) GUMP [41]; 4) GAIN [45]; 5) GeneFAS [43]; and 6) IWA. 

Lanckriet et al’s SVM/SDP kernel method performs the best, followed by GeneFAS, GAIN and 

IWA, which achieve similar performances. GUMP falls considerably behind, and MRF yielded 

the lowest ROC scores. IWA performs rather well for a simple voting method which neither 

makes use of optimization methods nor functional propagation 
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Figure 5-2. Average ROC scores for predicting annotated yeast proteins with 13 MIPS functional 
classes using 3 different approaches: 1) Markov Random Field; 2) Fusion Kernels; 3) GUMP; 4) 

GAIN; 5) Integrated Weighted Averaging (IWA) and; 6) IWA with newer datasets (IWA*) 

To illustrate the impact of tapping into more diverse and up-to-date information for function 

prediction, I also made predictions using IWA on a larger variety of newer data sources from 

Dataset A. This includes cross-genomic information such as BLAST results and PFam 

information. Details on dataset are described in Section 5.4.2. Since I only have Gene Ontology 

annotations for other genomes, these GO annotations are mapped to the 12 MIPS functions using 

MIPS2GO mappings from MIPS [56]. Only 7 of the 12 MIPS functions have can be mapped 

from GO. The corresponding ROC scores computed from the predictions made for each of the 7 

functions using IWA are presented as IWA* in Figure 5-2. Using the larger and more updated 

datasets, IWA produced predictions with better ROC scores than all other methods in the 

comparison for 11 of the 12 functions.  
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5.7.2 Comparison Using Dataset B 

Despite superior prediction performance, complex optimization techniques are less well suited 

to large-scale predictions involving large number of more specific annotations. Several works 

[41, 43, 45] have addressed this and proposed more scalable methods that make predictions using 

a large number of comprehensive annotations from the controlled vocabulary in the Gene 

Ontology [57].  

  Of the five existing approaches discussed in this chapter, GUMP, GAIN and GeneFAS 

provide scalable solutions for integrating multiple data sources. GUMP requires many rounds of 

retraining to obtain optimal parameters and is excluded in this comparison as it will take more 

than reasonable time to do this for such a large dataset (the neural network needs to be retrained 

6 times for a scaling parameter and 11 times for the number of hidden nodes). To gauge IWA 

performance in such large-scale predictions, I compare it against GAIN and GeneFAS using 

Dataset B. 

In this comparison, GO functions are predicted for yeast proteins using more recent datasets, 

some of which involves cross-genome information. Details on the dataset are described in 

Section 5.4.2. However, annotations from genomes other than yeast will not be used in the 

comparison as GeneFAS is unable to run on our machine with these included. 
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Figure 5-3.  (a) The number of informative GO from: i) molecular function (top); ii) biological 
process (middle); and iii) cellular component (bottom); that can be predicted better or equal to 
various thresholds using data from 6 heterogeneous sources with GeneFAS, GAIN, Integrative 

Weighted Averaging (IWA) and IWA with cross-genomic information (IWA*) (left). (b) Precision 
vs. Recall of predictions made using data from 6 heterogeneous sources with GeneFAS, GAIN, IWA 

and IWA with cross-genomic information (IWA*) (right).  
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Figure 5-3 (left column) shows the number of informative GO terms that can be predicted 

with an ROC score above or better than various thresholds using the three approaches. 

Integrative Weighted Averaging (IWA) is able to fulfill most ROC thresholds for the highest 

number of GO terms for all three GO namespaces. GeneFAS falls slightly behind for the higher 

ROC thresholds (>=0.8). GAIN realizes similar ROC targets for significantly lower number of 

GO terms. Unlike GeneFAS and IWA, GAIN did not incorporate any unified weighting scheme 

for different data sources. The limited size of datasets and the generality of the functions used in 

Dataset A limited the impact of weighting. However, with bigger datasets and more specific 

functional terms in Dataset B, the consequence of this limitation becomes apparent.  

Figure 5-3 (right column) shows the precision-recall analysis of the three approaches for each 

GO namespace. IWA obtains significantly higher precision over the entire recall range compared 

to GeneFAS and GAIN. This indicates that the prediction scores computed by IWA reflects the 

confidence of the predictions much better than the other two approaches across all informative 

GO terms in each namespace. This means that the prediction scores of IWA are more consistent 

between different terms, making it easier for users to interpret prediction results. Interestingly, 

while no propagation of functional assignments are made in IWA, the recall of its predictions is 

not in any observable sense inferior to the two other approaches. This indicates that the 

effectiveness of functional propagation could be rather limited given sufficient data. 
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5.7.2.1 Evaluation on Level-3 GO Terms 

Table 5-4. Average ROC score for predictions made by GeneFAS, GAIN, Integrated Weighted 
Averaging and Integrated Weighted Averaging with cross-genomic information when validated 

using (a) Informative GO Terms; and (b) level-3 GO Terms.  

To show that using only informative GO terms for the evaluation of prediction performance 

do not introduce significant bias, I also repeat the evaluation using only level-3 GO terms. The 

corresponding average ROC scores for the four methods, when evaluated using informative and 

level-3 GO terms respectively, are presented in  

Table 5-4. IWA achieved the highest average ROC scores when validation is done using both 

informative and level-2 GO terms. The ROC scores computed for Level-3 GO terms follows a 

similar trend with those computed for Informative GO terms, indicating that the use of 

Informative GO terms do not introduce any bias to the conclusion while ensuring that validation 

results are statistically conclusive. Substantially higher ROC is achieved when cross-genomic 

information is used with IWA. 

5.7.2.2 Evaluation using datasets tailored for GeneFAS 

Since the optimal data types for GeneFAS are protein-protein interactions, microarray data 

and phylogenetic profiles, I also compare the three approaches using only these data types. 

 Informative GO Terms Level-3 GO Terms 

 MF BP CC MF BP CC 

Terms 105 56 43 63 173 50 
GAIN 0.890 0.917 0.907 0.755 0.788 0.907 
GeneFAS 0.891 0.919 0.857 0.759 0.791 0.861 
IWA 0.912 0.931 0.923 0.759 0.814 0.927 
IWA* 0.946 0.948 0.936 0.885 0.840 0.935 

 Informative GO Terms Level-3 GO Terms 

 MF BP CC MF BP CC 

Terms 105 56 43 63 173 50 
GAIN 0.890 0.917 0.907 0.755 0.788 0.907 
GeneFAS 0.891 0.919 0.857 0.759 0.791 0.861 
IWA 0.912 0.931 0.923 0.759 0.814 0.927 
IWA* 0.946 0.948 0.936 0.885 0.840 0.935 
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Protein-protein interactions and microarray data are used as described earlier. Phylogenetic 

profiles across 24 different species for yeast proteins are obtained from the authors of GeneFAS. 

The phylogenetic profiles are provided to GeneFAS without further processing. For IWA and 

GAIN, each pair of genes is scored using the absolute Pearson’s correlation coefficient between 

their phylogenetic profiles. Gene pairs with correlation below 0.7 are discarded. 

Fig. 4. (a) The number of informative GO from biological process that can be predicted 

better or equal to various thresholds using data from 6 heterogeneous sources with GeneFAS, 

GAIN and Integrated Weighted Averaging (left). (b) Precision vs Recall of predictions made 

using data from 6 heterogeneous sources with GeneFAS, GAIN and Integrated Weighted 

Averaging (right). 

As GeneFAS takes an exceptionally long time to process the phylogenetic profiles, I only 

perform the comparison on informative GO terms from the biological process namespace. Figure 

4 shows the ROC and precision vs. recall graphs for each method. The results are consistent with 

the previous experiments, suggesting that IWA performs better that GAIN and  GeneFAS. 

5.7.3 Computational Time 

Since the major benefit of Integrated Weighted Average (IWA) is efficiency, I would like to 

compare the computational efficiency of IWA, GeneFAS and GAIN. The theoretical complexity 

of each method is highly dependent on the topology of the input network and cannot be easily 

determined. Hence, I will simply compute the actual CPU time required by each method to 

complete the same prediction task described in Section 5.7.2. 
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Table 5-5. CPU user time taken by the implementation of GeneFAS, GAIN and Integrated 
Weighted Average to complete the same prediction task. 

The implementations of GeneFAS, GAIN and IWA are programmed in Java, C++ and Perl 

respectively. Hence GAIN may have a slight advantage since it is implemented in compiled code 

while the others are implemented in interpreted codes. Predictions using the three 

implementations are performed on the same machine, which is equipped with a single Pentium 4 

CPU running at 3.0 GHz, 512KB cache, and 4.0 GB RAM. I capture the CPU time in which each 

process takes by initiating each implementation through a perl script and computing the user time 

taken by the child process. The corresponding time taken by each implementation to complete 

the prediction task is presented in Table 5-5. 

GeneFAS and IWA involve time taken to process and weight each data source, which is 

reflected in Table 5-5 as training time. GAIN does not perform weighting for data sources and 

hence do not incur any training time. GeneFAS took significant more time for training. IWA 

took substantially less time to make predictions (testing) compared to the other two 

implementations. It also took the least total time (training and testing) for the prediction task 

Implementation CPU Time (seconds) 

Training Testing  Total 

GeneFAS 200,476.78 53,227.42 253,704.20 
GAIN - 368,194.86 368,194.86 
IWA 9,831.72 10,282.56 20,114.28 
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5.7.4 Using Cross-Genome Information 

To investigate whether cross-genome information can boost the prediction performance of 

Integrative Weighted Averaging (IWA), I repeat the experiment in Section 5.7.2 using IWA 

without excluding information from other genomes. This includes BLAST searches, PFam 

domains sharing, and Gene Ontology annotations. The corresponding validation results using 

ROC and Precision-Recall analysis are included in Figure 5-3 using the label IWA*. Based on 

both measures, significant improvement in the prediction performance of IWA is observed for 

informative GO terms from molecular function and biological process. Slight improvement is 

observed for terms from cellular component. This trend is anticipated since cross-genomic 

information in the dataset is limited to sequence-based information which is more reflective of 

molecular functions. Non sequenced-based information can be easily incorporated using the 

IWA framework, which will potentially improve prediction performance for functional terms 

from biological process and cellular component.  
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5.8 Contribution of Individual Data Sources 

 
Figure 5-4. 1) Precentage of known GO annotations for biological process that is suggested by 

different number of data sources (left); and 2) the fraction of suggested annotations by different 
number of data sources that coincides with known annotations (right); using seven data sources 
from: 1) BIOGRID; 2) PFAM; 3) PUBMED; 4) BLAST on multiple genomes (BLAST_ALL); 5) 

STRING; 6) Expression correlations from Eisen et al’s microarray data; 7)  Expression 
correlations from the Rosetta microarray data. 

Figure 5-4 (left) shows the percentage of known GO biological process annotations that can 

be suggested by different number of data sources. A significant percentage of known annotations 

(more than 80%) are suggested by 3 or more sources of data. This indicates that the various data 

sources overlap substantially. Figure 5-4 (right) shows the fraction of GO biological process 

annotations suggested by different number of data sources that correspond to known annotations, 

i.e. the precision of the suggested annotations. Annotations suggested by more data sources 

exhibit significantly higher precision. These observations exemplify the advantages of 

integrating heterogeneous data sources for protein function prediction.   

The relative predictive capability of each data source is compared by repeating the predictions 

done in Section 5.7.4 using only each individual data source described in Section 5.4.2.4 with 
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Integrative Weighted Averaging (IWA). The resulting precision vs. recall and ROC graphs are 

presented in Figure 5-5. The precision vs. recall graph (Figure 5-5 left column) for predictions 

made using a combination of all data sources with IWA is also included as a benchmark. We 

observe that the sequence homology dataset is significantly more predictive of molecular 

functions than terms in the two other GO namespaces. The two gene expression data sources 

provide very little coverage. Predictions made by combining all the data sources have 

significantly higher precision than using any individual data source. Similar conclusions can be 

derived from the ROC graphs (Figure 5-5 right column). These observations corroborate the 

rationale for integrating heterogeneous data sources for protein function prediction. 



152 

 

 

 

Figure 5-5. (Left Column) Precision vs. Recall and (Right Column) ROC curves of predictions 
made by Integrative Weighted Averaging (IWA) for Informative GO terms in  molecular function 

(top), biological process (middle) and cellular component (bottom), using IWA on binary 
associations from 1) BIOGRID; 2) PFAM; 3) PUBMED; 4) BLAST on multiple genomes 

(BLAST_ALL); 5) STRING; 6) Expression correlations from Eisen et al’s microarray data; 7)  
Expression correlations from the Rosetta microarray data; and 8) Combination of 1-7. 
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5.9 Comparison with Direct Homology Inference from BL AST 

While BLAST searches produced alignment results and E-scores, they do not directly provide 

predictions for protein function. I am interested to find out if the Integrative Weighted Averaging 

(IWA), with its unified weighting scheme, can provide better predictions using BLAST results as 

opposed to interpreting the search results directly.  

To represent a direct interpretation of BLAST results, I emulate a common way of function 

inference from BLAST results. Given an unknown protein, I perform BLAST on its sequence 

using an E-value cutoff of 1, and retrieve the top 5 hits. The GO terms associated with the 

protein in each hit is then assigned to the unknown protein using the negative log E-value of the 

result. Note the same information is used in Section 5.4.2.4 as an input for IWA. Two sets of 

BLAST searches are used: one against yeast proteins from SGD only; and the other against all 

proteins in the dataset. This procedure is used to predict GO terms for unannotated yeast proteins 

from SGD. Using the precision-recall analysis described in Section 5.6.2.2, I compare 

predictions made this way with predictions made using the same information with IWA. The 

resulting precision vs. recall graphs are presented in Figure 5-6. From the graph for molecular 

function, we observe that using IWA yielded predictions with greater precision over most of the 

recall range. The inclusion of cross-genome homology search also substantially improves 

prediction performance. The same conclusions can be drawn from predictions for GO terms from 

biological process and cellular component. 
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Figure 5-6. Precision vs. Recall of predictions made for Informative GO terms from molecular 

function (top left), biological process (top right) and cellular component (bottom) using: 1) function 
transfer from top  5 BLAST hits against yeast genome (BLAST_SGD TOP); 2) function transfer 
from top 5 BLAST hits against multiple genomes (BLAST_ALL TOP); 3) Integrative Weighted 

Averaging (IWA) using binary associations from top 5 BLAST hits against yeast genome 
(BLAST_SGD); 4) IWA using binary associations from top 5 BLAST hits against multiple genomes 

(BLAST_ALL); 5) IWA  using binary associations from all sources (ALL SOURCES). 

5.10 Significance of Weighting Scheme 

To illustrate the significance of our weighting scheme on the prediction performance of 

Integrative Weighted Averaging (IWA), I repeat IWA using all available data and the following 

weighting schemes:  
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1. Using the complete weighting method described in Section 5.5;  

2. Without subdividing data sources into subtypes (see Section 5.5.1) during weighting; and  

3. Without weighting.  

The corresponding precision-recall curves of predictions made using the three weighting 

schemes for informative GO terms are shown in Figure 5-7. The relative performances for all 

three GO namespaces are consistent. If each data source is not subdivided into subtypes based on 

pre-computed scores, precision is reduced over the entire recall range. Furthermore, if weighting 

is completely omitted, precision falls significantly. These observations exemplify the importance 

of applying appropriate weighting in the data fusion task. 
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Figure 5-7. Precision vs. Recall of predictions made for Informative GO terms from molecular 
function (top left), biological process (top right) and cellular component (bottom) by Integrative 

Weighted Averaging using: 1) complete weighting method; 2) weighting without subdividing data 
sources based on pre-computed scores; and 3) no weighting. 

5.11 Limitations of IWA 

Like other protein function prediction methods that uses functional association between 

proteins [39, 40, 41, 42, 43, 44, 45], Integrated Weighted Averaging (IWA) will not be able to 

make any predictions if no association is available, such as in the case of a novel genome with no 
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known sequence or domain homology with known sequences. In these cases, ab initio function 

prediction approaches such as [109] may be useful. Alternatively, features such as predicted 

localization and post-translational information used in ab initio approaches may also be used to 

generate binary relationships between proteins in the novel genome and known proteins. This 

association information can then be used with association-based methods like the IWA. The 

feasibility of such an approach, however, is beyond the scope of this study. 

5.12 Conclusions 

In this chapter, I have presented Integrative Weighted Averaging (IWA), a simple yet 

effective framework for integrating large amount of diverse information for function prediction. 

While perfecting prediction techniques with increasingly complex methods may yield minor 

incremental improvements, creating a framework that is simple enough to scale up to both the 

diversity and sheer quantity of rapidly growing information is likely to create greater impact in 

proteomic research. Despite the simplicity of its formulation, IWA yields favorable performance 

compared to state-of-the-art approaches. Moreover, it yields prediction scores that are more 

consistent across different functions, making them easy to interpret without further manipulation. 

Using our approach, I have shown that cross-genome information can be tapped to further 

improve prediction performance. Finally, I have also demonstrated the significance of applying 

suitable weighting when integrating multiple data sources for protein function predictions. 
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Conclusion 
In this thesis, I have introduced graph-based methods for protein function prediction, as well 

as for complex / functional module discovery. Several key concepts are proposed and studied, 

including: 

1. Indirect functional association between level-2 neighbors in protein-protein interaction 

networks; 

2. The FS-Weight topological measure, which is used to estimate functional similarity 

between direct and indirect neighbors; 

3. The FS-Weighted Averaging method, which combines direct and indirect neighbors for 

function prediction using a weighted voting methodology; 

4. The use of FS-Weight as a reliability estimation measure for protein-protein interactions; 

5. The use of indirect interactions and FS-Weight as a preprocessing step for complex 

discovery; 

6. The Integrative Weighted Averaging (IWA) framework, a scalable approach to integrating 

multiple heterogeneous data sources for function prediction; 

7. The introduction of a unified weighting scheme that is generic enough to handle weighted 

and unweighted binary associations in the IWA framework. 

Through our work, I hope to contribute towards the quest for automated protein function 

prediction by: 1) providing a methodology to tap indirect protein-protein interactions for function 

prediction and complex discovery; 2) exemplifying the impact and significance of weighting 
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scheme for function prediction; and 3) providing a framework to which updated biological 

information, as well as new sources of information, can be easily and effectively integrated for 

function prediction.  

The work described in this thesis also serves as a starting point on which much more work can 

be extended upon. Possible extension of the work includes:  

1. Incorporation of indirect functional association into the IWA framework. The IWA 

framework currently uses only direct association information. It would be possible to study 

if indirect association can improve performance such as that shown for protein-protein 

interactions. 

2. Implementation of the IWA framework as a dynamic prediction service which can integrate 

data in real time. The efficiency of the framework makes it possible to provide such a 

service. Weights may be updated occasionally, while information for each data source can 

be dynamic. The general nature of the framework makes it easy to add new information 

sources. 

3. Examining specific methodologies in extracting information from individual data source, 

such as using text-mining or natural language processing on biological and medical 

literatures. Currently, in the IWA framework, Pubmed information for proteins is extracted 

using simple keyword search. Using more complex extraction and scoring methods may 

improve prediction performance. 

4. Validating and reporting of inconsistencies in annotation databases. Predicted functions for 

annotated proteins can be compared against available annotations for inconsistency. High 



160 

 

 

confidence predictions that are not currently known may be novel, while known 

annotations that are predicted with low confidence may be possible annotation errors. 

Incremental updates of annotation databases over time can be used as training data to learn 

parameters for this process.   
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Appendices 

Appendix A - Function Prediction performance for Molecular Function and 
Cellular Component GO Terms 
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Figure A-1. Precision–recall analysis of predictions by three methods. Precision vs. recall graphs of 
the predictions of informative GO terms from the Gene Ontology molecular function category 

using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) FS-Weighted Averaging (WA) for seven 
genomes. 
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Precision vs. Recall 
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Figure A-2. Precision–recall analysis of predictions by three methods. Precision vs. recall graphs of 
the predictions of informative GO terms from the Gene Ontology cellular component category 

using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) FS-Weighted Averaging (WA) for seven 
genomes. 
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Figure A-3. ROC analysis of predictions by three methods. Graphs showing the number of 
informative terms from the Gene Ontology molecular function category that can be predicted 

above or equal various ROC thresholds using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) 
FS-Weighted Averaging (WA) for seven genomes. 
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Figure A-4. ROC analysis of predictions by three methods. Graphs showing the number of 
informative terms from the Gene Ontology cellular component category that can be predicted 

above or equal various ROC thresholds using 1) Neighbor Counting (NC); 2) Chi-Square; and 3) 
FS-Weighted Averaging (WA) for seven genomes. 

 

Appendix B - Complex Prediction performance based on Protein Membership 
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Precision vs Recall 
(Combined, L1+Filtered L2)
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Figure B-1. The precisionprotein vs. recallprotein graphs of RNSC, MCODE, MCL and PCP algorithms 
on PPICombined with (a) original level-1 interactions, (b) level-1 and level-2 interactions, (c) 

original level-1 and filtered level-2 interactions, and (d) filtered level-1 and level-2 interactions. 
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Figure B-2. The precisionprotein vs. recallprotein graphs of RNSC, MCODE, MCL and PCP algorithms 
on PPIBiogrid with (a) original level-1 interactions, (b) level-1 and level-2 interactions, (c) original 

level-1 and filtered level-2 interactions, and (d) filtered level-1 and level-2 interactions. 
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