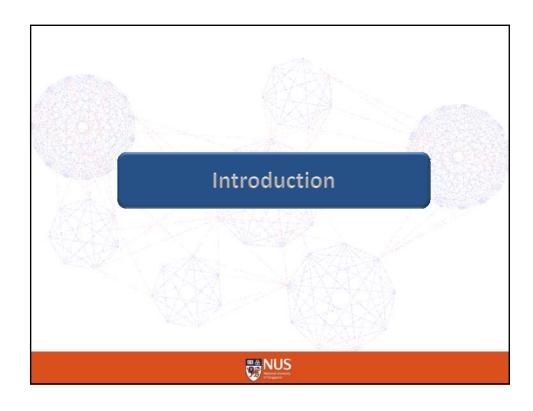
CS4101 B.Comp. Dissertation

Inferring Protein Function Module From Protein Interaction Information


Presented by: Lim Junliang Kevin Supervised by: Prof Wong Limsoon

Agenda

- Introduction
- Related Works
- Possible Approaches
- Protein Complex Finder (PCF) Algorithm
- Results
- Further Works
- Conclusion

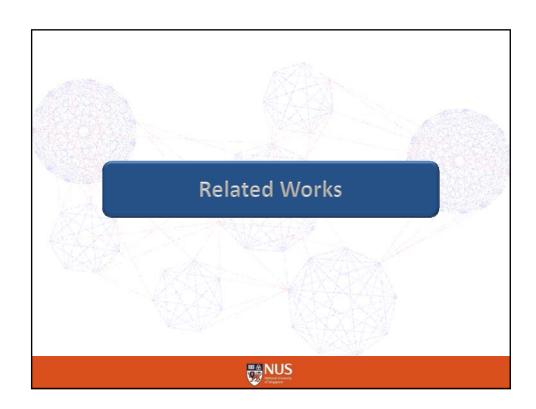
Introduction

- Recent completion of the Human Genome Project (2003) has indicated a move towards the post-genomic era
- More works have been concentrated on proteomics
- In the course of proteomics, biologists discover protein-protein interaction via wet-lab experiments
- This forms a database of interactions
- · We can also represent it as a graph

Introduction

- Formal definition of an interaction network:
 - A Graph is a pair G[~](V,E) where V represents the proteins and E represents the interactions between proteins
- The increase in interaction data has spurred potential research problems
- "Given an interaction network, can one infer protein complexes therein?"

Introduction


- Motivation:
 - Biological experiments to determine complexes are time consuming
 - Certain proteins may not have functional annotation, complex prediction allows one to make such inferences by "guilt by association"
 - Has potential in finding undiscovered key proteins involved in diseases

Problem

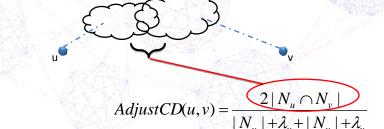
- Problem formulation:
 - Given a protein interaction network, find subsets (possibly overlapping) of proteins and predict them as complexes
- How?
 - Hypothesis:
 - Protein complexes are likely to be tightly connected clusters within the graph
- Reduced to clustering within cluster there are many connections, between clusters there are few connections
- Problem is made worse by unreliable data, which are primarily due to laboratory errors

- Stochastic methods
 - Markov Clustering (MCL) (van Dongen)
- Local Neighborhood Density Search
 - Molecular COmplex Detection (Bader et al)
- Clique finding based methods
 - Protein Complex Prediction (PCP) (Chua et al)
 - Clustering based on Maximal Cliques (CMC) (Liu et al)

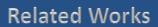
Related Works

- MCL
 - Key ideas:
 - Suppose we simulate some k-random walks in the graph, such that k is small enough
 - We would find most paths end up in the same cluster
 - Note:
 - MCL does not pre-process to filter unreliable interactions

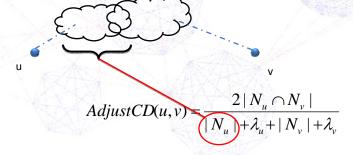
- CMC
 - Key ideas:
 - Reliability of interactions can be inferred from connection shared by neighbors
 - Tightly connected nodes likely to be complexes
 - Merge tightly connected clusters to get better results



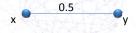
Related Works


- CMC
 - Pre-processing step:

• Example:


Measure reliability of interactions using AdjustCD

- CMC
 - Pre-processing step:
 - Example:


- CMC
 - Pre-processing step:
 - Example:

Max(0,Average neighbors of network – neighbors of u)

$$AdjustCD(u,v) = \frac{2 |N_u \cap N_v|}{|N_u + \lambda_u + |N_v| + \lambda_v}$$

- CMC
 - Pre-processing step:
 - Iterated AdjustCD example:

Note: $w^0(u,v) = AdjustCD(u,v)$

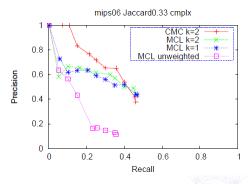
$$w^{k}(u,v) = \frac{\sum_{x \in |N_{u} \cap N_{v}|} (w^{k-1}(x,u) + w^{k-1}(x,v))}{\sum_{x \in N_{u}} w^{k-1}(x,u) + \lambda_{u}^{k} + \sum_{x \in N_{v}} w^{k-1}(x,v) + \lambda_{v}^{k}}$$

where
$$\lambda_{y}^{k} = \max\{0, \frac{\sum_{x \in V} \sum_{z \in N_{x}} w^{k-1}(x, z)}{|V|} - \sum_{x \in N_{y}} w(x, y)\}\}$$

Related Works

- CMC
 - Algorithm:
 - Step 1: Find all maximal cliques
 - Step 2: Merging Operation
 - Sort cliques according to average AdjustCD score
 - For each clique A
 - For each clique B that has lower score
 - If overlap is above a threshold
 - Measure connectivity between A and B
 - If they are highly connected above a threshold
 - Merge(A,B)
 - Otherwise discard clique B

- CMC
 - Score for interconnectivity:


$$Inter-cluster(C_{i},C_{j}) = \sqrt{\frac{\sum_{u \in (C_{i}-C_{j})} \sum_{v \in C_{j}} w(u,v)}{|C_{i}-C_{j}| \cdot C_{j}}} \times \frac{\sum_{u \in (C_{j}-C_{i})} \sum_{v \in C_{i}} w(u,v)}{|C_{j}-C_{i}| \cdot C_{i}}$$

 Measure of whether nodes in the cluster share many neighbors

Related Works

- Analysis of related works:
 - MCL & CMC
 - Low coverage on MIPS yeast complexes

- Can we find meaningful subsets of proteins other than based on the hypothesis that complexes form tight clusters?
- Can we try to improve existing models to increase their coverage of real complexes?

- Frequent Sub-graph mining:
 - Key idea:
 - Look through each real complex
 - Find frequently occurring sub-graph patterns
 - Look for these sub-graphs in the interaction network
 - Improve these sub-graph clusters using some scoring function

Possible Approaches

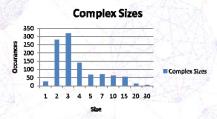
- Frequent Sub-graph Mining:
 - Problems
 - 1. Requires sub-graph isomorphism testing:
 - NP-complete problem
 - 2. No known correlation between frequent sub-graphs and protein complexes
 - 3. Validation can be a problem

- Classifying detected cliques in a feature space
 - Motivation:
 - Main problem of CMC
 - Merging of cliques based on inter-connectivity
 - No biological model behind it
 - Some clusters having an already good representation of complexes before merging

Possible Approaches

- Classifying detected cliques in a feature space
 - Forming a hypothesis:

We hypothesize that protein complexes form when individual proteins have a specific proportion of molecular weight. Moreover, each protein with a particular molecular weight might have specific connection features.



- We collected a few features from real complexes:
 - Maximum molecular weight protein in complex
 - Minimum molecular weight protein in complex
 - Average molecular weight protein in complex
 - Degree of maximum molecular weight protein in complex
 - Degree of minimum molecular weight protein in complex
 - Average degree of connection in complex
 - Total number of proteins in complex

Possible Approaches

- · Negative samples?
 - Find the distribution of complex sizes

- Follows a gamma distribution α =2.5793 β =1.665
- Sample from a random gamma distribution a number, p, to represent complex size
- Randomly pick from a pool of proteins to form a complex of size p

 Using SVM we obtain the following validation results:

- Accuracy: 83.97%

– Precision:

• Complex: 0.901

• Non-Complex: 0.788

– Recall:

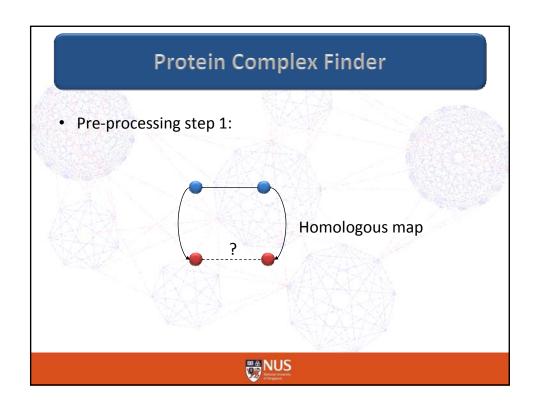
• Complex : 0.782

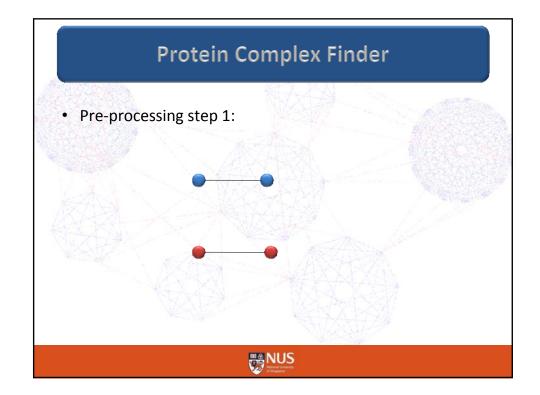

• Non-Complex: 0.904

Possible Approaches

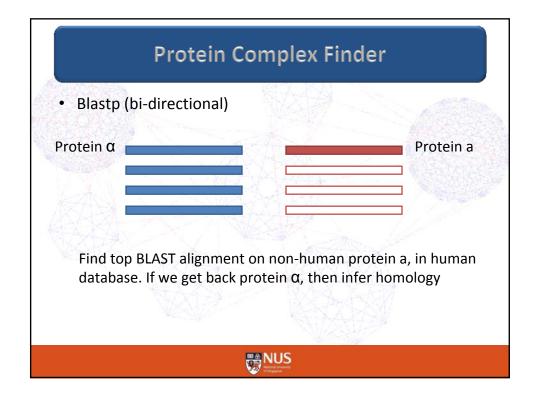
- · Problems:
 - Negative samples too far from real complexes
 - Need to consider a few things:
 - · Generation of a random network
 - Generation of clusters that have an minimum average connection between vertices
 - Not feasible because there are many ways to choose subsets of proteins, which might not conform to the points mentioned above

- We introduce a new algorithm that makes use of concepts from CMC and try to improve results
- Key ideas:
 - Data pre-processing step
 - Main Algorithm
 - Data post-processing step




- Pre-processing step 1:
 - Motivation:
 - AdjustCD can already determine quality of network, by virtue of shared degree-1 neighbors
 - Problem is that there could be missing interactions that are not detectable by looking at degree-1 neighbors
 - Can we try to improve the quality by looking at interactions from other species?

- Pre-processing step 1:
 - Key Ideas:
 - Look at interactions in species A
 - Find their corresponding homolog in species B
 - Add an interaction in species B network if they do not already exist


- How do we define homology?
 - COG database (Tatusov et al)
 - Blastp (sequence comparison tool)

- Problems with using COG database:
 - Different table identifiers used
 - No 1-1 relationship between identifiers between two different databases
 - Affects running time
 - Introduces many unverified interactions

Protein Complex Finder • Blastp (bi-directional) Protein α Protein a Find top BLAST alignment on human protein α, in non-human database. Call it protein a

- Pre-processing step 2:
 - Used AdjustCD as according to Liu et al, 2008

- · Algorithm:
 - Motivation:
 - In CMC, the merging operation might discard some cliques without verifying whether parts of the clique is still important
 - We hypothesize that important clusters are tightly connected components after removing non-important interactions resulting from already predicted cliques

- · Algorithm:
 - Key Idea:
 - Run CMC to find initial clusters of predicted proteins
 - Remove some of the interactions resulting from predicted cliques that are non-important
 - Run CMC again to find important clusters

- How do we define what is an important interaction?
 - Hypothesis formulation:
 - Based on observation, some proteins belong to many complexes
 - These proteins are important in that if we remove them, we might not be able to recover important cliques that were discarded
 - We call these proteins "core" proteins
 - Proteins that were belonging to many clusters in the interaction network were assumed to be such core proteins, so we will not try to remove them

Protein Complex Finder Core proteins: Potential complex

Predicted clusters

Protein Complex Finder

• How many is many?

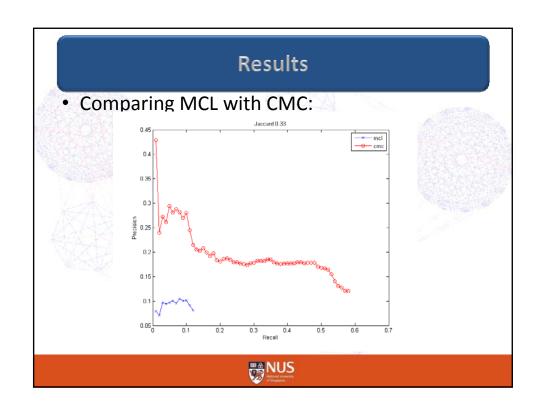
- E.g.

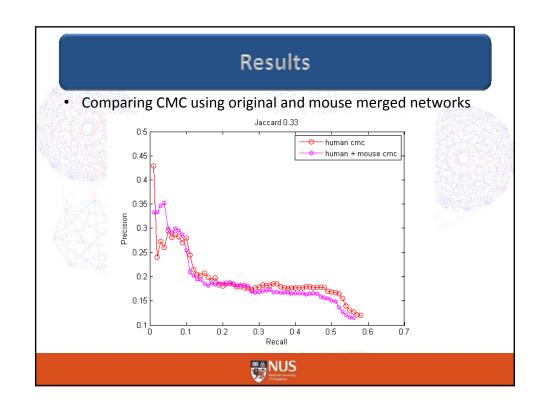
- For each protein we find how many clusters it belongs to
- Let X be the number of clusters a protein belong to
- We find X_{μ} and X_{σ} , core proteins are those such that $X > X_{\mu} + X_{\sigma}$

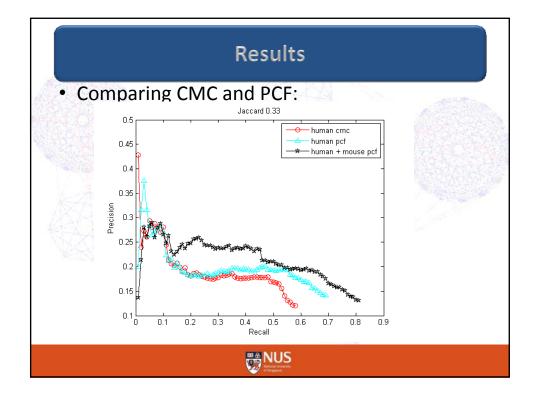
- We find that PCF generally returns a lot more predicted complexes
- Possible post-processing step:
 - For each cluster
 - For each protein
 - Find common annotations that are relevant
 - If many share the same annotation above a certain threshold
 - » Keep that prediction
 - Otherwise discard it

Results

- We obtained human interaction information from BioGRID
- Validation data (real human complexes) from MIPS
- We compared MCL, CMC and PCF
- MCL performs very badly
- For CMC and PCF, we tried a combination of preprocessing techniques
 - Orignial Human + AdjustCD
 - Human merged with mouse + AdjustCD


Results


- Validation criteria:
 - A hit is defined by the Jaccard Co-efficient


$$\frac{|Vs \cap Vc|}{|Vs \cup Vc|}$$

- Vs predicted cluster
- Vc real complex

Results

- · Results:
 - We also found that PCF predict much more complexes (1877) than real complexes (289), this results in low precision
 - One may ask if it is possible to randomly select 1877 and get hit 80% of real complexes?
 - We show that it is unlikely
 - Suppose probability of choosing one real complex randomly in a network with 5000 proteins is given by

$$\frac{n}{\sum_{i=2}^{m} \binom{5000}{i}}$$

 Where n is the number of real complexes and m is the maximum size of a complex. The expected number of real complexes when we select 1877 times, is very small. If m=4, expected real complexes is 2.0*10⁻⁷

Future Work

- Future work:
 - Classifying cliques revisited:
 - Instead of generating random negative samples, we could use false positives generated from the algorithm as negative samples
 - Require robust validation methods

Future Work

- Future work:
 - The success of PCF demonstrates the possibility of doing iterated removal and detection techniques
 - We can also experiment different combination of thresholds for each iteration
 - E.g. If we feel that some complexes are not going to be tight clusters, we can modify the thresholds in the second iteration accordingly

Conclusion

- · Conclusion:
 - What we have discussed so far:
 - Related works and their limitations
 - Possible approaches and their limitations
 - Motivation towards PCF and how it PCF works
 - Results show that PCF improves coverage on real complexes
 - Potentials in future work

Questions and Answer

Thank you for listening

