
Linear Representation of Graphs 2008

‐ 1 ‐

Undergraduate Research Opportunity Research

(UROP) Project Report

Linear Representation of Graphs

By
Lim Junliang Kevin

Department of Computer Science
School of Computing

National University of Singapore
2007/2008

Linear Representation of Graphs 2008

‐ 2 ‐

Undergraduate Research Opportunity Program
(UROP) Project Report

Linear Representation of Graphs
By

Lim Junliang Kevin

Department of Computer Science
School of Computing

National University of Singapore
2007/2008

Project No: U114080
Advisor: Prof Wong Limsoon
Deliverables:
 Report: 1 Volume

Linear Representation of Graphs 2008

‐ 3 ‐

Abstract

Chemical structures are usually stored in a database using unique keys as an identifier.

However, many of the present chemical database systems use keys that may not allow the

chemical structure to be derived. This is an aspect of usefulness of the unique keys. In

contrast, some keys that are useful may not be unique enough. In a recent publication, the

SMILES algorithm is suggested to be producing non-unique identifiers (Robert Grossman et

al, 2005). In this paper, we debate the usefulness and uniqueness of SMILES algorithm to a

certain extent, show how the SMILES algorithm fails to produce unique identifiers and show

how we can adapt from the SMILES algorithm to produce identifiers that are unique and

useful. We also developed an algorithm named Graph Linear Representer (GLR) that

constructs a unique identifier for chemical structures. The algorithm was tested against

10,000 random structures obtained from the national cancer institute database. In this paper,

we also show that the new algorithm produces unique keys that are useful , unique and

flexible.

Subject Descriptor:

 G.1.0 General

J.3 Life and Medical Sciences

Keywords:

Chemical Databases, Biological Data, Linear Representation of Graphs, Graph Databases.

Linear Representation of Graphs 2008

‐ 4 ‐

Acknowledgements

I hereby thank all those who have contributed and rendered help towards making this project

possible. I would like to thank Prof Wong Limsoon, my advisor who has provided great

insights and valuable advice. I would also like to thank Chen Xian Kun for providing me

with randomly generated graphs for testing.

Linear Representation of Graphs 2008

‐ 5 ‐

Table of Contents

1. Introduction…………………………………………………………………………6

1.1 Research Background………………………………………………………6

1.2 Research Motivation………………………………………………………...6

1.3 Research Contributions……………………………………………………..7

1.4 Outline of Report……………………………………………………………7

2. The SMILES Algorithm…………………………………………………………….7

2.1 The CANON algorithm……………………………………………………..7

2.2 Analysis of the CANON Algorithm………………………………………..8

3. Graph Linear Representer – The GLR Algorithm………………………………12

3.1 Motivation to the GLR Algorithm………………………………………...12

3.2 The GLR Algorithm………………………………………………………..13

3.2.1 Definitions and Theorems……………………………………………...13

3.2.2 Review of the GLR Algorithm…………………………………………15

3.2.3 Analysis of the GLR Algorithm………………………………………..16

4. Suggestions for Improvement……………………………………………………...18

5. References…………………………………………………………………………..20

6. Appendix A………………………………………………………………………….21

7. Appendix B………………………………………………………………………….25

Linear Representation of Graphs 2008

‐ 6 ‐

1 Introduction
The amount of biological and chemical information has been increasing at a very fast rate

(Robert Grossman et al 2005). As of 2008, the national cancer institute database has 250,251

structures, the chemical abstracts service database has close to 29 million structures and

increasing at a rate of 3,000 structures per day (sources taken from cas website), and the

pubchem database has close to 19 million compounds and 40 million substances both

growing dynamically. These statistics infer the need for efficient and effective ways to store

these data. One of the problems associated to these concerns is related to assigning unique

identifiers for each chemical structure. The reason is that a mistake in entering two identical

structures into a database can have a heavy impact, implying that data is increasing at an

unnecessary rate. This report is concerned with assigning unique identifiers for chemical

substances using features present in chemical structures, addressing the concerns mentioned

above.

1.1 Research Background

As of today, chemical databases employ different ways to identify the chemical structures.

For example, the chemical abstracts service uses a unique CAS number as foreign key (ibid),

while other databases may depend on the CAS number or use other commonly used unique

keys like the INChi chemical identifier or the SMILES unique keys. A recent study has been

done by Robert Grossman et al to access these unique identifiers (ibid). The study claimed a

few counter examples for the SMILES unique keys and also identified a few issues

concerning the usefulness of other methods. For example, a naïve method to distinguish two

identical structures would be to compare two graphs with a graph isomorphism algorithm.

However such a method would not be useful because the discrimination between two graphs

requires a lot of computing and does not provide any unique identifier. In addition, a useful

identifier should be one such that the chemical structure can be derived. In view of this, the

CAS number may not be a useful chemical identifier.

1.2 Research Motivation

The motivation for research arises from the counter examples provided by Robert Grossman

et al. The study showed that although the SMILES identifier is useful because of its ability to

derive the chemical compound from the identifier itself, it is not unique. Hence, it is worthy

Linear Representation of Graphs 2008

‐ 7 ‐

to understand what had failed in the SMILES algorithm and further identify how an identifier

can be designed to so that it is both useful and unique. In addition, we have also identified

some mistakes made by Robert Grossman et al when attempting to show that the SMILES

algorithm does not provide a unique identifier. This allows us further insights to the real

reason behind why the SMILES algorithm did not produce a unique identifier.

1.3 Research Contributions

We believe that our paper makes the following research contributions:

1. We show that Grossman’s conclusion about the SMILES algorithm was not

correct.

2. We further explain what the problem with the SMILES algorithm was and how

we can use what was working in the SMILES algorithm and discard what that did

not work.

3. We produce a new algorithm to derive unique identifiers from chemical structures.

1.4 Outline of Report

The report will be organized in two following manner. Section 2 discusses the SMILES

technique and how it had failed to produce a unique identifier with reference to Grossman et

al, we also include our interpretation since we discovered that they had made a few mistakes.

Section 3 discusses a new design of unique identifier and why the new design works. In

section 4 we describe what can be done to further improve on this new design. Finally in

section 5, we give some references.

2 The SMILES algorithm
The unique SMILES algorithm is divided into two stages. In the first stage, the algorithm

attempts to provide a canonical labeling of the graphs’ nodes (CANON) and in the second

stage, the algorithm produces an identifier by producing a depth-first traversal (GENES).

Grossman identified that the key procedure in defining unique identifiers lies in the canonical

labeling stage of the algorithm. It is thus worthy to understand the CANON algorithm.

2.1 The CANON algorithm

The key idea behind the CANON algorithm is the use of properties in graphs that does not

change in all isomorphic forms of the same graph. These are termed as graph invariants and

Linear Representation of Graphs 2008

‐ 8 ‐

the CANON algorithm proposes the use of six invariants ranked in order as follows (with

reference to Grossman):

1. Number of connections

2. Number of non-hydrogen bonds

3. Atomic number

4. Sign of charge

5. Absolute charge

6. Number of attached hydrogen

 Briefly, the algorithm can be described as the following :

Step1: Rank each node according to graph invariants (described above), in its

corresponding order.

Step2: Each rank is associated with a prime number sorted in ascending order.

Step3: For each node, a score is assigned. The score is obtained by multiplying its

direct neighbor’s associated prime number.

Step4: The nodes are ranked again with respect to the score obtained in step 3.

Step5: Repeat step 1 until the ranking does not change.

Step6: If the algorithm stops at step 5, check if each node is ranked uniquely. i.e. the

highest rank is the total number of nodes. If the nodes are not ranked uniquely, the

rank of the first node sharing the same rank is decreased by 1 and step 1-6 is repeated

until each node is ranked uniquely.

2.2 Analysis of the CANON algorithm

An interesting fact behind this algorithm is that at step 5 of the algorithm, the nodes are said

to be in their equivalence classes. Figure 1 provides a clear picture on equivalence classes

with each node marked uniquely according to their equivalence classes. It can be seen that

any two nodes sharing the same class are symmetrical to each other.

Linear Representation of Graphs 2008

‐ 9 ‐

Figure 1. Equivalence class of a graph.

An ambiguity arises in step 6 where the CANON algorithm proposes to decrease the first

node that shares the same rank. Grossman argued that there can be many ways to decrease

these rankings depending on the initial node ordering. This could result in a non-unique

identifier produced at the later stage. To further understand the implication of this ambiguity,

we refer to Grossman’s counter example demonstrated in table 1 and figure 2.

Figure 2a. A counter example proposed by Grossman

Linear Representation of Graphs 2008

‐ 10 ‐

Figure 2b. An alternative numbering of graph in Figure 2a.

Table 1. An instance of CANON algorithm executed graph in figure 2a. by Grossman.

According to the CANON algorithm, the algorithm pauses when the ranking does not change

as demonstrated at step H of table 1. At this point, the nodes are said to be in equivalence

classes. We observe that there are two nodes that belong to the equivalence class of rank 1 at

the final step. Grossman et al claimed that because of this, there are two ways to choose

reduce the rank in one equivalence class. He further showed that by choosing each node in

the same equivalence class independently, the graphs would result in a non-unique canonical

order. However, we discovered a mistake because the nodes were ranked wrongly at step F as

shown, circled in table 1. This is an obvious mistake because node 9’s score (147) is less than

node 4’s score (169) and should be given a lower rank. We present a corrected version in

table 2.

G1 1 2 3 4 5 6 7 8 9 10 11

Rank 1 2 4 3 4 2 1 3 4 1 3

Linear Representation of Graphs 2008

‐ 11 ‐

Prime 2 3 7 5 7 3 2 5 7 2 5

Multiply 3 14 75 49 75 14 3 49 50 7 49

Rank 1 3 6 4 6 3 1 4 5 2 4

Prime 2 5 13 7 13 5 2 7 11 3 7

Multiply 5 26 245 169 245 26 5 143 147 11 143

Rank 1 3 7 6 7 3 1 4 5 2 4

Prime 2 5 17 13 17 5 2 7 11 3 7

Multiply 5 34 455 289 455 34 5 187 147 11 187

Rank 1 3 7 6 7 3 1 5 4 2 5

Prime 2 5 17 13 17 5 2 11 7 3 11

Multiply 5 34 715 289 715 34 5 119 363 7 119

Rank 1 3 7 5 7 3 1 4 6 2 4

Prime 2 5 17 11 17 5 2 7 13 3 7

Multiply 5 34 385 289 385 34 5 221 147 13 221

Rank 1 3 7 6 7 3 1 5 4 2 5

Table 2. A corrected instance of CANON algorithm on graph in figure 2a.

This correction allows us to have further insights to the CANON algorithm. To further

analyze the uniqueness of the canonical labeling, we first present the two final canonical

labeling from Grossman’s analysis compared to our corrected version presented in figure 3a/b.

The graph on the left in figure 3 was obtained after node 1’s rank was reduced. The graph on

the right in figure 3 was obtained after node 7’s rank was reduced. It is easy to see that the

graphs from the corrected canonical node labeling in figure 3b are identical and can be seen

by a 180° rotation along the x axis followed by a 60° rotation along the z axis. This

information allowed us to conclude that Grossman’s claim was wrong because we are able to

show that the CANON algorithm could indeed produce a unique canonical label no matter

which node’s rank is reduced if and only if they are in the same equivalence class and

consistently chosen. We explain this consistency following.

Figure 3a. Grossman’s canonical node labeling.

Linear Representation of Graphs 2008

‐ 12 ‐

Figure 3b. A corrected canonical node labeling.

On further examination, the CANON algorithm only failed to present a canonical labeling

when the algorithm is not consistent in choosing one of the two nodes in the same

equivalence class, in which case, the resulting graphs were similar to those that Grossman

had produced as shown in figure 3a. This is because when steps 1-5 were repeated, the

algorithm pauses a couple of times. At each pause, the algorithm determines one node from a

symmetry class to reduce its rank. If this node is not consistently chosen at each pause, the

algorithm fails to produce a canonical labeling.

From this point of view, we have identified the disadvantages of the CANON algorithm. The

disadvantage is clearly that it does not always produce a unique canonical graph labeling.

However, it is also worthy to highlight the use of symmetry will still work if there is a way to

consistently choose amongst those in the same symmetry classes.

3 Graph Linear Representer – The GLR algorithm
The GLR algorithm was created in an attempt to preserve what which was supposed to work

in the CANON algorithm and discard what did not work in it. To reiterate, the main idea was

to find a way to consistently differentiate which of the nodes to choose within a symmetric

class. It is also worthy to first discuss the other motivations and original intentions to create a

unique identifier before proceeding with the GLR algorithm.

3.1 Motivation to the GLR Algorithm

The motivation towards the initial idea was related to graph searching. In a recent work,

GString, Jiang et al described a way to index chemical structures by converting them into

linear strings (Haoliang Jiang et al, 2007). The goals in graph searching and graph

identification are different. This is in part due to the different problem requirements. A

Linear Representation of Graphs 2008

‐ 13 ‐

typical graph search problem is concerned with finding a way to quantify similarities in

graphs. In the GString algorithm, basic and frequently occurring subgraphs were chosen as

features to be extracted out from a graph. These features were converted to strings, which

were in turn, a basis for graph indexing. Following up on this idea, one could generate

common subgraphs up to a certain threshold and search them on any given graph using a

valid subgraph isomorphism algorithm. Following that, the problem is reduced to

representing the order of subgraphs in linear form. The disadvantage of this method is that

subgraph isomorphism is an NP complete problem requiring a lot of computing. In addition,

there is much ambiguity when generating common subgraphs because some areas of the

graphs may not be detected by these subgraphs. Moreover, to produce a unique identifier

based on the location of subgraphs, one has to first anchor these subgraphs by providing a

canonical labeling of the nodes. This method did not work in part because it was adapted

from a different problem requirement. In contrast, it worked well in a graph search problem

because graph indexing did not require a strict identity between two graphs as compared to

creating unique identifiers. However, this setback allowed us to gain a major insight towards

finding unique graph identifiers that it suffices to say that finding a unique graph identifier

cannot be done without first providing a canonical labeling of the nodes in a graph.

3.2 The GLR Algorithm

It is essential to first provide a few definitions and concepts based on our aforementioned

motivations.

3.2.1 Definitions and Theorems

Definition 3.2.1.1: A node in a graph that has degree higher than 3 is a highly connected

node (or hicon in short).

Definition 3.2.1.2: A subgraph neighborhood of a hicon node a in a graph is defined as all

nodes in all paths starting from node a to its nearest hicon neighbor or to a node that

terminates at its end.

Definition 3.2.1.3: The condition local symmetry is defined on two hicon nodes a and b

such that the subgraph neighborhood of a and b is the exactly isomorphic to each other.

Notes on definition 3.2.1.3: If a and b are symmetric then our goal is to find a characteristic 1-to-1

mapping from the subgraph neighborhood of a and b to a unique number.

Linear Representation of Graphs 2008

‐ 14 ‐

Definition 3.2.1.4: The condition global symmetry is defined on two hicon nodes a and b

such that the graph centered on a and the graph centered on b are isomorphic to each other.

Definition 3.2.1.5: A unique number that is characteristic of the subgraph neighborhood of

a hicon node a, is called a sufficient function of a, such that any other hicon node b has its

sufficient function producing a same number as that of a if and only if they have the same

subgraph neighborhood. In other words, a and b are locally symmetric if they have the same

number.

Theorem 3.2.1.1: The fundamental theorem of arithmetic states that any positive integer

can only be represented by only one way as a product of one or more prime numbers.

uppp =...... 321
γβα

The theorem can also be written in an equivalent manner.

δγβαδγβα δγβα ====⇔=∀ dcbappppppppdcba dcba ,,,......,,,,,,, 43214321

Corollary 3.2.1.1: A function that depends on the multiplication of primes can be a

sufficient function.

Proof to corollary 3.2.1.1: Let α, β, γ, δ… be the lengths of all possible paths in a subgraph

neighborhood of a hicon node a, sorted in ascending order, then its sufficient function is

s(a)=2α.3β.5γ.7δ… From the fundamental theorem of arithmetic, s(a) is a unique 1-to-1 characteristic

score of node a and hence any other node that has the same score must have the same subgraph

neighborhood as that of a.

Notes to corollary 3.2.1.1: Note that corollary 3.2.1.1 is only defined on a subgraph neighborhood of

a and does not imply a stricter global symmetry condition.

Definition 3.2.1.6: A unique number that is characteristic of a hicon node a in its global

position is called a complete function of a, such that another hicon node b has that same

number if and only if they are globally symmetric to each other.

Corollary 3.2.1.2: A function that depends on the multiplication of primes can be a

complete function.

Proof to corollary 3.2.1.2: Let d(x), d(y), d(z)… be the shortest path length from all hicon nodes to

the node being evaluated i.e. node a. And let s(x), s(y), s(z)… be the sufficient functions of x,y,z…

respectively. Then ...5.3.2)('
)(')(')(')(')(')(' 3.23.23.2 zszdysydxsxd

as = is a complete function where

Linear Representation of Graphs 2008

‐ 15 ‐

{(d’(x), s’(x)), (d’(y), s’(y)), (d’(z), s’(z))} are pairs of path length and sufficient functions sorted in

lexicographical order. It follows from the fundamental theorem of arithmetic that such a function has

a unique number. Any two hicon nodes having the same number from their complete functions will be

having the same shortest path length and sufficient score numbers of hicon nodes around it globally.

Hence, they must be globally symmetric to each other.

Notes to corollary 3.2.1.2: Notice that although we only proved that any two hicon nodes that have

global symmetry must have the same complete function number, there may be cases where non-global

symmetry may have produced the same complete function number. However, at this point, no

counter-examples could be found. In addition, an observant reader might also realize that the nested

exponentials tend to infinity at a very fast rate. We offer an approximate solution taking the logarithm

of the exponent term. This may have complicated implications because the fundamental theorem of

arithmetic is not applicable to real numbers. However, we also observe that even for any two

complete function numbers to be the same, the likelihood is very low because of the following reasons.

Firstly, the logarithm function is also a 1-to-1 function; hence the exponent terms are essentially

unique. The only cause for non-uniqueness is the multiplication of prime numbers each with an

exponent term that is a real number. We cannot prove that it will always be unique but we suggest that

the probability of non-uniqueness occurring is relatively low. We also have not found any counter-

examples to non-uniqueness of the approximation. We will analyze the effectiveness of using such an

approximation at the later sections.

3.2.2 A Review of the GLR Algorithm

At this point, we make the following assumptions. A graph only has single bonds and all

elements in the graph are Carbon atoms. We propose that by the same principles of prime

multiplication, the sufficient and complete functions can be extended to include multiple

bonds and elements. The GLR algorithm takes as input an adjacency matrix representing all

the connections in a randomly ordered graph and performs the following steps:

Step1: Identify all hicon nodes from an input adjacency matrix. This can be done by

simplying summing up all the horizontal components in the matrix.

Step2: Extract all paths associated to a hicon node that is within its own subgraph

neighborhood.

Step3: For each hicon node, compute its sufficient function based on the path

extraction.

Linear Representation of Graphs 2008

‐ 16 ‐

Step4: Extract shortest path information of all hicon nodes using Floyd’s all-pairs

shortest path algorithm. This can be done by dynamic programming (Cormen, 1990).

Step5: From step3 and 4, group the computed numbers as a pair associated with their

respective hicon nodes. Rank them in lexicographical order.

Step 6: For each hicon node, compute its complete function.

Step 7: Number the graph starting from the hicon node with lowest complete function

number. Since we assumed that any two nodes having the same complete function are

globally symmetric to each other, it does not matter to choose any one node to number

first. Within the subgraph neighbor of any hicon node selected, number from the one

with the lowest path score first.

Step8: A depth first traversal can be employed similar to the GENES stage of the

SMILES algorithm to obtain a unique identifier. Another way to obtain a unique

identifier is to enumerate the edges of the canonical labeled nodes according to the

smallest number.

3.2.3 An Analysis of the GLR Algorithm

To analyze the whether the algorithm produces unique identifiers; it suffices to show that a

canonical labeling must have been produced by step 7 of the algorithm. As an example, we

produce a canonical labeling of the counter-example Grossman had used in figure 4. The

graph on the left in figure 4 identifies the hicon nodes labeled as a, b and c. Note that nodes a

and c are symmetric to each other. The graph in the middle is a randomly numbered graph

and the algorithm always produce the same output graph shown on the right no matter a or c

were chosen first.

Figure 4b. Canonical labeling using the GLR algorithm. a and c are symmetric.

Linear Representation of Graphs 2008

‐ 17 ‐

In contrast with the CANON algorithm, the GLR algorithm offers a unique advantage. By

only considering the highly connected nodes, the GLR algorithm reduces the need to compare

unnecessary symmetry classes. In figure 1, we showed all the symmetrical classes of the

same test graph used above. The CANON algorithm attempts to number the graph from one

symmetrical class to another, effectively considering all 7 symmetry classes. In our case, we

reduced the number of symmetry classes to be considered to 2, as indicated in figure 4b. We

reiterate the problem discussed in section 2 for clarity. In section 2, we have identified that

symmetry in graph is an important property since we can choose to number from any two

nodes that are symmetrical. The problem with the CANON algorithm only comes in when the

rank of any node in a symmetry class needs be reduced consistently if the same node rankings

were considered more than once by the algorithm. In our case, the algorithm only considers

the nodes in the same symmetry class once. Hence, the consistency problem does not exist in

our model.

Under notes to corollary 3.2.1.2 in the previous section, we highlighted two issues with our

current model. Firstly, although we had shown that two node that are symmetrical to each

other will always have the same score, we do not have sufficient prove to show that any two

nodes that are not symmetrical to each other will not have the same the same score. Secondly,

the approximation for sufficient and complete functions could have produced non-unique

numbers. As a result, we have to resort to empirical testing to show the number of graphs that

could be canonically labeled by our algorithm. We provide our test cases taken from the

national cancer institute, as 10,000 randomly selected structures out of the total 250,251

structures. Each of the 10,000 structures was permutated 100 times such that they have

different initial node orderings. In our test, all 10,000 structures produced the same canonical

labeling from all 100 random initial orderings. We have included the first 100 structures and

their adjacency matrix after canonical labeling together with the source code of the program

for reference. Instructions on how the program should be run are found in appendix B. For a

more specific example, we have included a visualization of the test example shown in figure

4b, with the original random labeling as the left graph and the canonical labeling under the

GLR algorithm as the graph on the right, in appendix A.

The time complexity of the algorithm is the maximum of time complexity of the 7 steps

described in section 3.2.2. If we assume computation of numbers to be of linear time, then the

time complexity of the GLR algorithm is bounded by the time complexity required to

Linear Representation of Graphs 2008

‐ 18 ‐

perform Floyd’s all-pairs shortest path algorithm which is in O(n3). This is a surprising result

because graph isomorphism testing is known to be in NP but neither known to be in

polynomial time or NP-complete (Cormen, 1990). We suggest that these could show that our

algorithm might fail due to the discussion mentioned in section 3.2.1.2. However, our test

results appear to be consistent since all 1000,000 instances of which 10,000 structures were

each producing 100 identical canonical labeling. In view of this, we suggest that graph

isomorphism testing could be a polynomial time, but have no proof to it.

4 Suggestions for Improvement

The GLR algorithm can be modified to account for all the assumptions suggested in section 3.

It can be easy to see that multiple bonds and elements can be included in a sufficient function

by making use of nested exponentials as demonstrated earlier. However, the caveat to this is

that a logarithm might be necessary to reduce the size of numbers and may have hidden

complications as aforementioned.

We can also further improve our algorithm by taking into account other forms of chemical

isomers. We show all possible chemical isomers in figure 5 and following, a discussion on

what chemical isomers have already been taken into consideration by the GLR algorithm and

what remains uncovered.

Figure 5. All possible chemical isomers

Linear Representation of Graphs 2008

‐ 19 ‐

The GLR has covered structural isomers as it is intrinsically identical to the graph

isomorphism model we have introduced. The only other chemical isomers that need to be

considered are those of three dimensional chemical isomers for example the enantiomers.

These can be also included into the GLR by modifying the sufficient and complete functions

respectively. However, this also means that extra input information has to be given because

there is no way to differentiate three dimensional structures from an input two dimensional

adjacency matrix.

In conclusion, we suggest that the GLR algorithm is flexible because of its ability to adapt to

include more features so that complicated chemical structures can also have a unique

identifier. The GLR algorithm also produces a useful identifier because the chemical

structure can be easily derived from a depth-first traversal list.

Linear Representation of Graphs 2008

‐ 20 ‐

5 References

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to

Algorithms, first edition, MIT Press and McGraw-Hill, pp. 558-565

D. Tchekhovskoi, S. Stein, S. Heller, The IUPAC Internationl Chemical Identifier (InChI)

David Eppstein, (1995) Subgraph isomorphism in planar graphs and related problems,

Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,

p.632-640, January 22-24, 1995, San Francisco, California, United States.

David Weininger, Arthur Weininger and Joseph L. Weininger. (1989) SMILES 2: Algorithm

for Generation of Unique SMILES Notation, Daylight Chemical Information Systems,

Irvine, California 92714, 1989. Note that although the Unique SMILES

implementation has been changed by the Daylight Chemical Information System, this

appears to be the most recent publication describing the algorithm.

Haoliang Jiang Haixun Wang Yu, P.S. Shuigeng Zhou. (2007) GString: A Novel

Approach for Efficient Search in Graph Databases. In proceedings of the Data

Engineering, 2007. ICDE 2007. IEEE 23rd International Conference, Istanbul, 2007,

pp. 566-575.

Messmer and Bunke. (1995) Subgraph isomorphism in polynomial time.

Robert Grossman, Donald Hamelberg, Pavan Kasturi and Bing Liu. (2005) Experimental

Studies of the Universal Chemical Key Algorithm on the NCI Database Of Chemical

Compounds, Proceedings of the 2003 IEEE Computer Society Bioinformatics

Conference.

Robert L.Grossman, Greeshma Neglur and Bing Liu. (2005) Assigning Unique Keys to

Chemical Compounds for Data Integration: Some Interesting Counter Examples.

X. Yan, P.S. Yu, J. Han. (2004), Graph Indexing: a Frequent Structure-Based Approach,

International Conference of Management of Data.

Linear Representation of Graphs 2008

‐ 21 ‐

Appendix A

Linear Representation of Graphs 2008

‐ 22 ‐

Appendix A

Linear Representation of Graphs 2008

‐ 23 ‐

Appendix A

Linear Representation of Graphs 2008

‐ 24 ‐

Appendix A

Linear Representation of Graphs 2008

‐ 25 ‐

Appendix B

The GLR algorithm can be run as follows. Open Netbeans IDE, File > Open project > Select

the GLR folder.

Compile project.

Execute the main file.

Press 1 for a simulation to view graphs.

Press 2 for an automated simulation of 10,000 random structures from nation cancer institute

database.

Results can be viewed in the results folder.

