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Abstract 
 
 

Chemical structures are usually stored in a database using unique keys as an identifier. 

However, many of the present chemical database systems use keys that may not allow the 

chemical structure to be derived. This is an aspect of usefulness of the unique keys. In 

contrast, some keys that are useful may not be unique enough. In a recent publication, the 

SMILES algorithm is suggested to be producing non-unique identifiers (Robert Grossman et 

al, 2005). In this paper, we debate the usefulness and uniqueness of SMILES algorithm to a 

certain extent, show how the SMILES algorithm fails to produce unique identifiers and show 

how we can adapt from the SMILES algorithm to produce identifiers that are unique and 

useful. We also developed an algorithm named Graph Linear Representer (GLR) that 

constructs a unique identifier for chemical structures. The algorithm was tested against 

10,000 random structures obtained from the national cancer institute database. In this paper, 

we also show that the new algorithm produces unique keys that are useful , unique and 

flexible. 
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1 Introduction 
The amount of biological and chemical information has been increasing at a very fast rate 

(Robert Grossman et al 2005). As of 2008, the national cancer institute database has 250,251 

structures, the chemical abstracts service database has close to 29 million structures and 

increasing at a rate of 3,000 structures per day (sources taken from cas website), and the 

pubchem database has close to 19 million compounds and 40 million substances both 

growing dynamically. These statistics infer the need for efficient and effective ways to store 

these data. One of the problems associated to these concerns is related to assigning unique 

identifiers for each chemical structure. The reason is that a mistake in entering two identical 

structures into a database can have a heavy impact, implying that data is increasing at an 

unnecessary rate. This report is concerned with assigning unique identifiers for chemical 

substances using features present in chemical structures, addressing the concerns mentioned 

above. 

 

1.1 Research Background 

As of today, chemical databases employ different ways to identify the chemical structures. 

For example, the chemical abstracts service uses a unique CAS number as foreign key (ibid), 

while other databases may depend on the CAS number or use other commonly used unique 

keys like the INChi chemical identifier or the SMILES unique keys. A recent study has been 

done by Robert Grossman et al to access these unique identifiers (ibid). The study claimed a 

few counter examples for the SMILES unique keys and also identified a few issues 

concerning the usefulness of other methods. For example, a naïve method to distinguish two 

identical structures would be to compare two graphs with a graph isomorphism algorithm. 

However such a method would not be useful because the discrimination between two graphs 

requires a lot of computing and does not provide any unique identifier. In addition, a useful 

identifier should be one such that the chemical structure can be derived. In view of this, the 

CAS number may not be a useful chemical identifier.  

 

1.2 Research Motivation 

The motivation for research arises from the counter examples provided by Robert Grossman 

et al. The study showed that although the SMILES identifier is useful because of its ability to 

derive the chemical compound from the identifier itself, it is not unique. Hence, it is worthy 



Linear Representation of Graphs  2008 
 

‐ 7 ‐ 
 

to understand what had failed in the SMILES algorithm and further identify how an identifier 

can be designed to so that it is both useful and unique. In addition, we have also identified 

some mistakes made by Robert Grossman et al when attempting to show that the SMILES 

algorithm does not provide a unique identifier. This allows us further insights to the real 

reason behind why the SMILES algorithm did not produce a unique identifier. 

 

1.3 Research Contributions 

We believe that our paper makes the following research contributions: 

1. We show that Grossman’s conclusion about the SMILES algorithm was not 

correct. 

2. We further explain what the problem with the SMILES algorithm was and how 

we can use what was working in the SMILES algorithm and discard what that did 

not work. 

3. We produce a new algorithm to derive unique identifiers from chemical structures. 

 

1.4 Outline of Report 

The report will be organized in two following manner. Section 2 discusses the SMILES 

technique and how it had failed to produce a unique identifier with reference to Grossman et 

al, we also include our interpretation since we discovered that they had made a few mistakes. 

Section 3 discusses a new design of unique identifier and why the new design works. In 

section 4 we describe what can be done to further improve on this new design. Finally in 

section 5, we give some references. 

 

2 The SMILES algorithm 
The unique SMILES algorithm is divided into two stages. In the first stage, the algorithm 

attempts to provide a canonical labeling of the graphs’ nodes (CANON) and in the second 

stage, the algorithm produces an identifier by producing a depth-first traversal (GENES). 

Grossman identified that the key procedure in defining unique identifiers lies in the canonical 

labeling stage of the algorithm.  It is thus worthy to understand the CANON algorithm. 

 

2.1 The CANON algorithm 

The key idea behind the CANON algorithm is the use of properties in graphs that does not 

change in all isomorphic forms of the same graph. These are termed as graph invariants and 
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the CANON algorithm proposes the use of six invariants ranked in order as follows (with 

reference to Grossman): 

 

1. Number of connections 

2. Number of non-hydrogen bonds 

3. Atomic number 

4. Sign of charge 

5. Absolute charge 

6. Number of attached hydrogen 

 

 Briefly, the algorithm can be described as the following : 

 

Step1: Rank each node according to graph invariants (described above), in its 

corresponding order. 

Step2:  Each rank is associated with a prime number sorted in ascending order. 

Step3: For each node, a score is assigned. The score is obtained by multiplying its 

direct neighbor’s associated prime number. 

Step4: The nodes are ranked again with respect to the score obtained in step 3. 

Step5: Repeat step 1 until the ranking does not change. 

Step6: If the algorithm stops at step 5, check if each node is ranked uniquely.  i.e. the 

highest rank is the total number of nodes. If the nodes are not ranked uniquely, the 

rank of the first node sharing the same rank is decreased by 1 and step 1-6 is repeated 

until each node is ranked uniquely.  

 

2.2 Analysis of the CANON algorithm 

An interesting fact behind this algorithm is that at step 5 of the algorithm, the nodes are said 

to be in their equivalence classes. Figure 1 provides a clear picture on equivalence classes 

with each node marked uniquely according to their equivalence classes. It can be seen that 

any two nodes sharing the same class are symmetrical to each other. 
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Figure 1. Equivalence class of a graph. 

An ambiguity arises in step 6 where the CANON algorithm proposes to decrease the first 

node that shares the same rank. Grossman argued that there can be many ways to decrease 

these rankings depending on the initial node ordering. This could result in a non-unique 

identifier produced at the later stage.  To further understand the implication of this ambiguity, 

we refer to Grossman’s counter example demonstrated in table 1 and figure 2.  

 
Figure 2a. A counter example proposed by Grossman 
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Figure 2b. An alternative numbering of graph in Figure 2a. 

Table 1. An instance of CANON algorithm executed graph in figure 2a. by Grossman. 

According to the CANON algorithm, the algorithm pauses when the ranking does not change 

as demonstrated at step H of table 1. At this point, the nodes are said to be in equivalence 

classes. We observe that there are two nodes that belong to the equivalence class of rank 1 at 

the final step. Grossman et al claimed that because of this, there are two ways to choose 

reduce the rank in one equivalence class. He further showed that by choosing each node in 

the same equivalence class independently, the graphs would result in a non-unique canonical 

order. However, we discovered a mistake because the nodes were ranked wrongly at step F as 

shown, circled in table 1. This is an obvious mistake because node 9’s score (147) is less than 

node 4’s score (169) and should be given a lower rank. We present a corrected version in 

table 2.  

G1 1 2 3 4 5 6 7 8 9 10 11 

Rank 1 2 4 3 4 2 1 3 4 1 3 
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Prime 2 3 7 5 7 3 2 5 7 2 5 

Multiply 3 14 75 49 75 14 3 49 50 7 49 

Rank 1 3 6 4 6 3 1 4 5 2 4 

Prime 2 5 13 7 13 5 2 7 11 3 7 

Multiply 5 26 245 169 245 26 5 143 147 11 143 

Rank 1 3 7 6 7 3 1 4 5 2 4 

Prime 2 5 17 13 17 5 2 7 11 3 7 

Multiply 5 34 455 289 455 34 5 187 147 11 187 

Rank 1 3 7 6 7 3 1 5 4 2 5 

Prime 2 5 17 13 17 5 2 11 7 3 11 

Multiply 5 34 715 289 715 34 5 119 363 7 119 

Rank 1 3 7 5 7 3 1 4 6 2 4 

Prime 2 5 17 11 17 5 2 7 13 3 7 

Multiply 5 34 385 289 385 34 5 221 147 13 221 

Rank 1 3 7 6 7 3 1 5 4 2 5 

Table 2. A corrected instance of CANON algorithm on graph in figure 2a. 

This correction allows us to have further insights to the CANON algorithm. To further 

analyze the uniqueness of the canonical labeling, we first present the two final canonical 

labeling from Grossman’s analysis compared to our corrected version presented in figure 3a/b. 

The graph on the left in figure 3 was obtained after node 1’s rank was reduced. The graph on 

the right in figure 3 was obtained after node 7’s rank was reduced. It is easy to see that the 

graphs from the corrected canonical node labeling in figure 3b are identical and can be seen 

by a 180° rotation along the x axis followed by a 60° rotation along the z axis. This 

information allowed us to conclude that Grossman’s claim was wrong because we are able to 

show that the CANON algorithm could indeed produce a unique canonical label no matter 

which node’s rank is reduced if and only if they are in the same equivalence class and 

consistently chosen. We explain this consistency following. 

 
Figure 3a. Grossman’s canonical node labeling.  
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Figure 3b. A corrected canonical node labeling. 

On further examination, the CANON algorithm only failed to present a canonical labeling 

when the algorithm is not consistent in choosing one of the two nodes in the same 

equivalence class, in which case, the resulting graphs were similar to those that Grossman 

had produced as shown in figure 3a. This is because when steps 1-5 were repeated, the 

algorithm pauses a couple of times. At each pause, the algorithm determines one node from a 

symmetry class to reduce its rank. If this node is not consistently chosen at each pause, the 

algorithm fails to produce a canonical labeling. 

From this point of view, we have identified the disadvantages of the CANON algorithm. The 

disadvantage is clearly that it does not always produce a unique canonical graph labeling.  

However, it is also worthy to highlight the use of symmetry will still work if there is a way to 

consistently choose amongst those in the same symmetry classes. 

 

3 Graph Linear Representer – The GLR algorithm 
The GLR algorithm was created in an attempt to preserve what which was supposed to work 

in the CANON algorithm and discard what did not work in it. To reiterate, the main idea was 

to find a way to consistently differentiate which of the nodes to choose within a symmetric 

class. It is also worthy to first discuss the other motivations and original intentions to create a 

unique identifier before proceeding with the GLR algorithm. 

 

3.1 Motivation to the GLR Algorithm 

The motivation towards the initial idea was related to graph searching. In a recent work, 

GString, Jiang et al described a way to index chemical structures by converting them into 

linear strings (Haoliang Jiang et al, 2007). The goals in graph searching and graph 

identification are different. This is in part due to the different problem requirements. A 
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typical graph search problem is concerned with finding a way to quantify similarities in 

graphs. In the GString algorithm, basic and frequently occurring subgraphs were chosen as 

features to be extracted out from a graph. These features were converted to strings, which 

were in turn, a basis for graph indexing. Following up on this idea, one could generate 

common subgraphs up to a certain threshold and search them on any given graph using a 

valid subgraph isomorphism algorithm. Following that, the problem is reduced to 

representing the order of subgraphs in linear form. The disadvantage of this method is that 

subgraph isomorphism is an NP complete problem requiring a lot of computing. In addition, 

there is much ambiguity when generating common subgraphs because some areas of the 

graphs may not be detected by these subgraphs. Moreover, to produce a unique identifier 

based on the location of subgraphs, one has to first anchor these subgraphs by providing a 

canonical labeling of the nodes. This method did not work in part because it was adapted 

from a different problem requirement. In contrast, it worked well in a graph search problem 

because graph indexing did not require a strict identity between two graphs as compared to 

creating unique identifiers.  However, this setback allowed us to gain a major insight towards 

finding unique graph identifiers that it suffices to say that finding a unique graph identifier 

cannot be done without first providing a canonical labeling of the nodes in a graph. 

 

3.2 The  GLR Algorithm 

It is essential to first provide a few definitions and concepts based on our aforementioned 

motivations.  

 

3.2.1 Definitions and Theorems 

Definition 3.2.1.1: A node in a graph that has degree higher than 3 is a highly connected 

node (or hicon in short). 

Definition 3.2.1.2: A subgraph neighborhood of a hicon node a in a graph is defined as all 

nodes in all paths starting from node a to its nearest hicon neighbor or to a node that 

terminates at its end. 

Definition 3.2.1.3: The condition local symmetry is defined on two hicon nodes a and b 

such that the subgraph neighborhood of a and b is the exactly isomorphic to each other.  

Notes on definition 3.2.1.3: If a and b are symmetric then our goal is to find a characteristic 1-to-1 

mapping from the subgraph neighborhood of a and b to a unique number. 
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Definition 3.2.1.4: The condition global symmetry is defined on two hicon nodes a and b 

such that the graph centered on a and the graph centered on b are isomorphic to each other. 

Definition 3.2.1.5: A unique number that is characteristic of the subgraph neighborhood of 

a hicon node a, is called a sufficient function of a, such that any other hicon node b has its 

sufficient function producing a same number as that of a if and only if they have the same 

subgraph neighborhood. In other words, a and b are locally symmetric if they have the same 

number. 

Theorem 3.2.1.1: The fundamental theorem of arithmetic states that any positive integer 

can only be represented by only one way as a product of one or more prime numbers. 

uppp =...... 321
γβα

 

The theorem can also be written in an equivalent manner. 

δγβαδγβα δγβα ====⇔=∀ dcbappppppppdcba dcba ,,,......,,,,,,, 43214321  

Corollary 3.2.1.1: A function that depends on the multiplication of primes can be a 

sufficient function. 

Proof to corollary 3.2.1.1: Let α, β, γ, δ… be the lengths of all possible paths in a subgraph 

neighborhood of a hicon node a, sorted in ascending order, then its sufficient function is 

s(a)=2α.3β.5γ.7δ… From the fundamental theorem of arithmetic, s(a) is a unique 1-to-1 characteristic 

score of node a and hence any other node that has the same score must have the same subgraph 

neighborhood as that of a. 

Notes to corollary 3.2.1.1: Note that corollary 3.2.1.1 is only defined on a subgraph neighborhood of 

a and does not imply a stricter global symmetry condition. 

Definition 3.2.1.6: A unique number that is characteristic of a hicon node a in its global 

position is called a complete function of a, such that another hicon node b has that same 

number if and only if they are globally symmetric to each other. 

Corollary 3.2.1.2: A function that depends on the multiplication of primes can be a 

complete function. 

Proof to corollary 3.2.1.2: Let d(x), d(y), d(z)… be the shortest path length from all hicon nodes to 

the node being evaluated i.e. node a. And let s(x), s(y), s(z)… be the sufficient functions of x,y,z… 

respectively. Then ...5.3.2)('
)(')(')(')(')(')(' 3.23.23.2 zszdysydxsxd

as =  is a complete function where 
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{(d’(x), s’(x)), (d’(y), s’(y)), (d’(z), s’(z))} are pairs of path length and sufficient functions sorted in 

lexicographical order. It follows from the fundamental theorem of arithmetic that such a function has 

a unique number. Any two hicon nodes having the same number from their complete functions will be 

having the same shortest path length and sufficient score numbers of hicon nodes around it globally. 

Hence, they must be globally symmetric to each other. 

Notes to corollary 3.2.1.2: Notice that although we only proved that any two hicon nodes that have 

global symmetry must have the same complete function number, there may be cases where non-global 

symmetry may have produced the same complete function number. However, at this point, no 

counter-examples could be found. In addition, an observant reader might also realize that the nested 

exponentials tend to infinity at a very fast rate. We offer an approximate solution taking the logarithm 

of the exponent term. This may have complicated implications because the fundamental theorem of 

arithmetic is not applicable to real numbers. However, we also observe that even for any two 

complete function numbers to be the same, the likelihood is very low because of the following reasons. 

Firstly, the logarithm function is also a 1-to-1 function; hence the exponent terms are essentially 

unique. The only cause for non-uniqueness is the multiplication of prime numbers each with an 

exponent term that is a real number. We cannot prove that it will always be unique but we suggest that 

the probability of non-uniqueness occurring is relatively low. We also have not found any counter-

examples to non-uniqueness of the approximation. We will analyze the effectiveness of using such an 

approximation at the later sections.  

 

3.2.2 A Review of the GLR Algorithm 

At this point, we make the following assumptions. A graph only has single bonds and all 

elements in the graph are Carbon atoms. We propose that by the same principles of prime 

multiplication, the sufficient and complete functions can be extended to include multiple 

bonds and elements. The GLR algorithm takes as input an adjacency matrix representing all 

the connections in a randomly ordered graph and performs the following steps:  

Step1: Identify all hicon nodes from an input adjacency matrix. This can be done by 

simplying summing up all the horizontal components in the matrix. 

Step2: Extract all paths associated to a hicon node that is within its own subgraph 

neighborhood. 

Step3: For each hicon node, compute its sufficient function based on the path 

extraction. 
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Step4: Extract shortest path information of all hicon nodes using Floyd’s all-pairs 

shortest path algorithm. This can be done by dynamic programming (Cormen, 1990). 

Step5: From step3 and 4, group the computed numbers as a pair associated with their 

respective hicon nodes. Rank them in lexicographical order. 

Step 6: For each hicon node, compute its complete function. 

Step 7: Number the graph starting from the hicon node with lowest complete function 

number. Since we assumed that any two nodes having the same complete function are 

globally symmetric to each other, it does not matter to choose any one node to number 

first. Within the subgraph neighbor of any hicon node selected, number from the one 

with the lowest path score first. 

Step8: A depth first traversal can be employed similar to the GENES stage of the 

SMILES algorithm to obtain a unique identifier. Another way to obtain a unique 

identifier is to enumerate the edges of the canonical labeled nodes according to the 

smallest number. 

 

3.2.3 An Analysis of the GLR Algorithm 

To analyze the whether the algorithm produces unique identifiers; it suffices to show that a 

canonical labeling must have been produced by step 7 of the algorithm. As an example, we 

produce a canonical labeling of the counter-example Grossman had used in figure 4. The 

graph on the left in figure 4 identifies the hicon nodes labeled as a, b and c. Note that nodes a 

and c are symmetric to each other. The graph in the middle is a randomly numbered graph 

and the algorithm always produce the same output graph shown on the right no matter a or c 

were chosen first. 

Figure 4b. Canonical labeling using the GLR algorithm. a and c are symmetric. 
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In contrast with the CANON algorithm, the GLR algorithm offers a unique advantage. By 

only considering the highly connected nodes, the GLR algorithm reduces the need to compare 

unnecessary symmetry classes. In figure 1, we showed all the symmetrical classes of the 

same test graph used above. The CANON algorithm attempts to number the graph from one 

symmetrical class to another, effectively considering all 7 symmetry classes. In our case, we 

reduced the number of symmetry classes to be considered to 2, as indicated in figure 4b. We 

reiterate the problem discussed in section 2 for clarity. In section 2, we have identified that 

symmetry in graph is an important property since we can choose to number from any two 

nodes that are symmetrical. The problem with the CANON algorithm only comes in when the 

rank of any node in a symmetry class needs be reduced consistently if the same node rankings 

were considered more than once by the algorithm. In our case, the algorithm only considers 

the nodes in the same symmetry class once. Hence, the consistency problem does not exist in 

our model. 

Under notes to corollary 3.2.1.2 in the previous section, we highlighted two issues with our 

current model. Firstly, although we had shown that two node that are symmetrical to each 

other will always have the same score, we do not have sufficient prove to show that any two 

nodes that are not symmetrical to each other will not have the same the same score. Secondly, 

the approximation for sufficient and complete functions could have produced non-unique 

numbers. As a result, we have to resort to empirical testing to show the number of graphs that 

could be canonically labeled by our algorithm. We provide our test cases taken from the 

national cancer institute, as 10,000 randomly selected structures out of the total 250,251 

structures. Each of the 10,000 structures was permutated 100 times such that they have 

different initial node orderings. In our test, all 10,000 structures produced the same canonical 

labeling from all 100 random initial orderings. We have included the first 100 structures and 

their adjacency matrix after canonical labeling together with the source code of the program 

for reference. Instructions on how the program should be run are found in appendix B. For a 

more specific example, we have included a visualization of the test example shown in figure 

4b, with the original random labeling as the left graph and the canonical labeling under the 

GLR algorithm as the graph on the right, in appendix A. 

The time complexity of the algorithm is the maximum of time complexity of the 7 steps 

described in section 3.2.2. If we assume computation of numbers to be of linear time, then the 

time complexity of the GLR algorithm is bounded by the time complexity required to 
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perform Floyd’s all-pairs shortest path algorithm which is in O(n3). This is a surprising result 

because graph isomorphism testing is known to be in NP but neither known to be in 

polynomial time or NP-complete (Cormen, 1990). We suggest that these could show that our 

algorithm might fail due to the discussion mentioned in section 3.2.1.2. However, our test 

results appear to be consistent since all 1000,000 instances of which 10,000 structures were 

each producing 100 identical canonical labeling. In view of this, we suggest that graph 

isomorphism testing could be a polynomial time, but have no proof to it.  

 

4 Suggestions for Improvement 

The GLR algorithm can be modified to account for all the assumptions suggested in section 3. 

It can be easy to see that multiple bonds and elements can be included in a sufficient function 

by making use of nested exponentials as demonstrated earlier. However, the caveat to this is 

that a logarithm might be necessary to reduce the size of numbers and may have hidden 

complications as aforementioned.  

We can also further improve our algorithm by taking into account other forms of chemical 

isomers. We show all possible chemical isomers in figure 5 and following, a discussion on 

what chemical isomers have already been taken into consideration by the GLR algorithm and 

what remains uncovered. 

 

 
Figure 5. All possible chemical isomers 
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The GLR has covered structural isomers as it is intrinsically identical to the graph 

isomorphism model we have introduced. The only other chemical isomers that need to be 

considered are those of three dimensional chemical isomers for example the enantiomers. 

These can be also included into the GLR by modifying the sufficient and complete functions 

respectively. However, this also means that extra input information has to be given because 

there is no way to differentiate three dimensional structures from an input two dimensional 

adjacency matrix. 

In conclusion, we suggest that the GLR algorithm is flexible because of its ability to adapt to 

include more features so that complicated chemical structures can also have a unique 

identifier. The GLR algorithm also produces a useful identifier because the chemical 

structure can be easily derived from a depth-first traversal list.  
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Appendix B 

The GLR algorithm can be run as follows. Open Netbeans IDE, File > Open project > Select 

the GLR folder. 

Compile project. 

Execute the main file.  

Press 1 for a simulation to view graphs. 

Press 2 for an automated simulation of 10,000 random structures from nation cancer institute 

database. 

Results can be viewed in the results folder. 


