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Abstract. A complete set of frequent itemsets can get undesirably large due to redundancy
when the minimum support threshold is low or when the database is dense. Several concise
representations have been previously proposed to eliminate the redundancy. Generator based
representations rely on a negative border to make the representation lossless. However, the
number of itemsets on a negative border sometimes even exceeds the total number of frequent
itemsets. In this paper, we propose to use a positive border together with frequent generators
to form a lossless representation. A positive border is usually orders of magnitude smaller
than its corresponding negative border. A set of frequent generators plus its positive border
is always no larger than the corresponding complete set of frequent itemsets, thus it is a
true concise representation. The generalized form of this representation is also proposed. We
develop an efficient algorithm, called GrGrowth, to mine generators and positive borders as
well as their generalizations. The GrGrowth algorithm uses the depth-first-search strategy to
explore the search space, which is much more efficient than the breadth-first-search strategy
adopted by most of the existing generator mining algorithms. Our experiment results show that
the GrGrowth algorithm is significantly faster than level-wise algorithms for mining generator
based representations, and is comparable to the state-of-the-art algorithms for mining frequent
closed itemsets.

1. Introduction

Frequent itemset mining is an important problem in the data mining area. It was
first introduced by Agrawal et al. [1] in the context of transactional databases.
The problem can be described as follows. Let I = {a1, a2, · · · , an} be a set of
items and D = {t1, t2, · · · , tN} be a transaction database, where ti (i ∈ [1, N ]) is a
transaction and ti ⊆ I. Each subset of I is called an itemset. If an itemset contains
k items, then it is called a k-itemset. The support of an itemset l in D is defined
as support(l)=|{t|t ∈ D and l ⊆ t}| or support(l)=|{t|t ∈ D and l ⊆ t}|/|D|.
Given a transaction database, denoted as D, and a predefined minimum support
threshold, denoted as s, if the support of an itemset in D is no less than s, then
the itemset is called a frequent itemset. The task of frequent itemset mining is to
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find all the frequent itemsets with respect to a given minimum support threshold
from a given transaction database.

The number of frequent itemsets can be undesirably large, especially on dense
datasets where long patterns are prolific. Many frequent itemsets are redundant
because their support can be inferred from other frequent itemsets. Generating
too many frequent itemsets not only requires extensive computation cost and
I/O cost but also defeats the primary purpose of data mining in the first place.
Increasing the minimum support threshold may reduce the number of itemsets,
but some useful itemsets may be missed because they fail to pass the high min-
imum support threshold. Therefore, it is desirable to remove the redundancy to
make the result size manageable even when the minimum support is low and/or
the dataset is dense.

Several concepts have been proposed to eliminate the redundancy from a
complete set of frequent itemsets, including frequent closed itemsets [23], gener-
ators [3] and generalizations of generators [9, 19]. Frequent closed itemsets are
the maximal itemsets among the itemsets appearing in the same set of transac-
tions and generators are the minimal ones. Frequent closed itemset mining has
been well studied and several efficient algorithms have been proposed to mine
frequent closed itemsets [22, 24, 26, 28, 29]. However, little efforts have been put
on developing efficient algorithms for mining generator based representations.
In some applications, generators are more preferable than closed itemsets. For
example, generators are more appropriate for classification than closed itemsets
because closed itemsets contain some redundant items that are not useful for
classification, which also violates the minimum description length principle.

A representation is lossless if we can decide for any itemset whether it is
frequent and we can determine the support of the itemset if it is frequent, using
only information of the representation without accessing the original database.
Frequent generators alone are not adequate for representing a complete set of
frequent itemsets because if an itemset is not included in the set of frequent gen-
erators, there is no way to know whether it is because the itemset is not frequent
or because the itemset is not a generator. Existing generator based representa-
tions [9, 18, 19] use a negative border together with frequent generators to form
a lossless representation. A negative border is composed of the itemsets whose
subsets are frequent generators but themselves are not frequent. There can be
numerous infrequent itemsets on a negative border. We have observed that neg-
ative borders are often very large, sometimes the negative border alone is larger
than the corresponding complete set of frequent itemsets. For example, the total
number of frequent itemsets is 122450 in dataset BMS-POS [30] with minimum
support of 0.1%, while the number of itemsets on the negative border is 236912.
To solve this problem, we propose a new concise representation of frequent item-
sets, which uses a positive border together with frequent generators to form a
lossless representation. All the itemsets on a positive border are frequent but are
not generators, therefore the size of frequent generators and their positive border
is always no larger than the complete set of frequent itemsets.

Existing algorithms for mining generator based representations adopt the
candidate generate-and-test approach and use the breadth-first-search strategy
to explore the search space, which needs to scan the database multiple times and
generate and test a large number of candidate itemsets. It has been shown that
the breadth-first-search strategy is inferior to the depth-first-search strategy and
becomes very inefficient on dense datasets. In this paper, we propose an efficient
algorithm, called GrGrowth, to mine generator based representations. GrGrowth
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adopts the pattern growth approach and uses the depth-first-search strategy to
explore the search space. An appropriate exploration order is chosen so that
non-generators can be pruned during the mining process to save mining cost.

The main contributions of the paper are summarized as follows: (1) We pro-
pose a new concise representation of frequent itemsets, which uses a positive
border instead of a negative border together with frequent generators to repre-
sent a complete set of frequent itemsets. The size of the new representation is
guaranteed to be no larger than the total number of frequent itemsets, thus it is a
true concise representation. Our experiment results show that a positive border is
usually orders of magnitude smaller than its corresponding negative border. (2)
The completeness of the new representation is proved, and an algorithm is given
to derive the support of an itemset from the new representation. We also present
an algorithm to regenerate the complete set of frequent itemsets from the pro-
posed concise representation. (3) We develop an efficient algorithm GrGrowth to
mine frequent generators and positive borders. The GrGrowth algorithm and the
concept of positive borders can be both applied to generalizations of generators,
such as disjunction-free sets and generalized disjunction-free sets [18,19].

The rest of the paper is organized as follows. Section 2 presents related work.
The formal definitions of generators and generator based representations are
given in Section 3. Section 4 describes the GrGrowth algorithm. The experiment
results are shown in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

The problem of removing redundancy while preserving semantics has drawn
much attention in the data mining area. Several concepts have been proposed to
remove redundancy from a complete set of frequent itemsets, including frequent
closed itemsets [23], generators [3] and generalizations of generators [7,9–11,19].

The concept of frequent closed itemsets is proposed by Pasquier et al. [23].
An itemset is closed if all of its supersets are less frequent than it. A level-wise
algorithm A-Close is developed to mine frequent closed itemsets, which uses fre-
quent generators as intermediate results to mine frequent closed itemsets. The
A-Close algorithm is not very efficient. Several algorithms have been proposed to
mine frequent closed itemsets more efficiently. The CHARM algorithm [29] uses
the vertical mining technique. Algorithms CLOSET [26] and CLOSET+ [28]
are based on the pattern growth algorithm FP-growth [15]. Bonchi and Lucch-
ese propose a framework to mine closed itemsets that also satisfy user-specified
constraints [5]. Pan et al. [22] consider the situation where the datasets con-
tain a large number of columns but a small number of rows, and propose the
CARPENTER algorithm, which performs a row-wise enumeration instead of
the column-wise enumeration adopted by previous work. Pei et al. [25] propose
a more restrictive concept, condensed frequent pattern base, to further reduce
result size. An itemset is a condensed frequent pattern base if all of its proper su-
persets are significantly less frequent than it. Chi et al [13] address the problem of
mining closed frequent itemsets over a data stream sliding window using limited
memory space. There is also some work on mining Top-k closed patterns [16,27].

The concept of generators is first introduced by Bastide et al. [3]. They
use generators together with frequent closed itemsets to mine minimal non-
redundant association rules. The same group of authors also use generators and a
counting inference technique [4] to improve the performance of the Apriori algo-
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rithm [2]. Bykowski et al. [9] propose another concept—disjunction-free generator
to further reduce result size. Generators or disjunction-free generators alone are
not adequate to represent a complete set of frequent itemsets. Bykowski et al.
use a negative border together with disjunction-free generators to form a lossless
representation. Kryszkiewicz et al. [19] generalize the concept of disjunction-free
generator and propose to mine generalized disjunction-free generators. Boulicaut
et al. [7] generalize the generator representation from another direction and pro-
pose the δ-free-sets representation. Itemset l is δ-free if the support difference
between l and l’s subsets is less than δ. Boulicaut et al. also use a negative
border together with δ-free-sets to form a concise representation. The δ-free-sets
representation is not lossless unless δ=0.

Mannila et al. [21] first propose the notion of condensed representation, and
they show that using the inclusion-exclusion principle one can obtain approx-
imate confidences of arbitrary boolean rules. Based on the inclusion-exclusion
principle, Calders et al. [10] propose the concept of non-derivable frequent item-
sets, which is equivalent to ∞-disjunction-free sets. Calders et al. develop a
level-wise algorithm NDI [10] and a depth-first algorithm dfNDI [12] to mine
non-derivable frequent itemsets. The dfNDI algorithm is shown to be much more
efficient than the NDI algorithm. Calders et al. [11] review previous concise rep-
resentations and propose the concept of k-free sets and several types of borders
to form lossless representations. However, the computation cost for inferring sup-
port from the concise representations using these borders is very high.

In our previous work [20], we have proposed a concise representation of fre-
quent itemsets using frequent generators and a positive border. In this paper,
besides adding more detailed explanations on the proposed concise represen-
tation, we present an optimization technique to further reduce the size of the
positive border based representation, and experiments are conducted to show the
reduction. We also describe the GrGrowth algorithm in much more details and
add more experimental results. Furthermore, we present an algorithm to recover
the complete set of frequent itemsets from the proposed concise representation,
and have conducted experiments to compare the time used to regenerate the
complete set of frequent itemsets from the positive border based representation
with that from the negative border based representation.

3. Positive Border Based Representations

In this section, we give the formal definitions of generators and positive borders,
and prove that the set of frequent generators in a database and its positive border
form a lossless representation of the complete set of frequent itemsets. We also
give an algorithm to infer the support of an itemset and an algorithm to recover
the complete set of frequent itemsets from positive border based representations.

3.1. Definitions

Definition 1 (Generator). Itemset l is a generator if there does not exist l′

such that l′ ⊂ l and support(l′) = support(l).

Equivalent definitions for generators have been given in [3,18,19]. According
to the definition, the empty set φ is a generator in any database. If an itemset
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Tid Transactions
1 a, b, c, d, e, g
2 a, b, d, e, f
3 b, c, d, e, h, i
4 a, d, e, m
5 c, d, e, h, n
6 b, e, i, o

Frequent itemsets
φ:6, e:6, d:5, b:4, a:3, c:3, h:2
i:2, ed:5, be:4, bd:3, bde:3, ae:3
ad:3, ade:3 ab:2, abe:2, abd:2
abde:2, ce:3, cd:3, cde:3, cb:2
cbe:2, cbd:2, cbde:2, he:2, hc:2
hce:2, hd:2, hde:2, hcd:2
hcde:2, ie:2, ib:2, ibe:2

(a) (b)
Frequent Generators
φ:6, d:5, b:4, a:3, c:3, h:2
i:2, bd:3, ab:2, bc:2

Positive Border
〈φ, e〉:6, 〈a, d〉:3, 〈c, d〉:3
〈h, c〉:2, 〈h, d〉:2, 〈i, b〉 : 2

(c) (d)

Table 1. An example (min sup=2)

is a generator in a database and its support is no less than a given minimum
support threshold, we call the itemset a frequent generator. Generators also have
the anti-monotone property as shown in [18].

Property 1 (anti-monotone property). If l is not a generator, then ∀ l′ ⊃ l,
l′ is not a generator.

Property 1 implies that if itemset l is a generator, then all of its subsets are
generators. The reason being that if one of the subsets of l is not a generator,
then l cannot be a generator according to Property 1.

Example 1. Table 1(a) shows an example transaction database containing 6
transactions. With minimum support of 2, the set of frequent itemsets are shown
in Table 1(b) and the set of frequent generators are shown in Table 1(c). For
brevity, a frequent itemset {a1, a2, · · · , am} with support s is represented as
a1a2 · · · am : s. Many frequent itemsets are not generators. For example, itemset
e is not a generator because it has the same support as φ. Consequently, all the
supersets of e are not generators.

Frequent generators alone are not adequate for representing the complete
set of frequent itemsets. Some researchers use a negative border together with
frequent generators to make the representation lossless [18, 19]. The negative
border of a set of frequent generators FG, denoted as NBd(FG), is defined as
NBd(FG) = {l|l is not frequent ∧ l /∈ FG ∧ (∀l′ ⊂ l, l′ ∈ FG)}1. As we have
observed, a negative border is often larger than the corresponding complete set
of frequent itemsets. In this paper, we propose the concept of positive border to
make generator based representations lossless and truly concise.

Definition 2 (The positive border of FG). Let FG be the set of frequent
generators in a database with respect to a minimum support threshold. The
positive border of FG is defined as PBd(FG) = {l | l is frequent ∧ l /∈ FG ∧
(∀l′ ⊂ l, l′ ∈ FG)}.

Example 2. Table 1(d) shows the positive border of frequent generators with

1 Bykowski et al. [9] define negative border as NBd(FG) = {l|l /∈ FG ∧ (∀l′ ⊂ l, l′ ∈ FG)},
which is the union of the negative border defined by Kryszkiewicz et al. [18,19] and the positive
border defined in this paper. In this paper, we use the definition given by Kryszkiewicz et al.
since it is smaller.
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minimum support of 2 in the database shown in Table 1(a). We represent an
itemset l on a positive border as a pair 〈l′, x〉, where x is an item, l′=l−{x} and
support(l′) = support(l). For example, itemset e is on the positive border and
it has the same support as φ, hence it is represented as 〈φ, e〉. The second pair
〈a, d〉 represents itemset ad.

Note that for any non-generator itemset l, there must exist item x ∈ l such
that the itemset obtained by removing x from l has the same support as l,
that is, support(l′)=support(l), where l′ = l − {x}. The reason being that if
no such item x exists, then l must be a generator according to Definition 1.
Item x is called a redundant item of l. The itemsets on positive borders are not
generators, therefore any itemset l on a positive border can be represented as a
pair 〈l′, x〉 such that l′ = l−{x} and support(l′) = support(l). For itemset l on a
positive border, there are possibly more than one pairs of l′ and x satisfying that
l′ = l−{x} and support(l′) = support(l). Any pair can be chosen to represent l.

Proposition 1. Let FI and FG be the complete set of frequent itemsets and
the set of frequent generators in a database respectively, and PBd(FG) be the
positive border of FG, we have FG

⋂
PBd(FG)=φ and FG

⋃
PBd(FG) ⊆ FI,

thus |FG| + |PBd(FG)| ≤ |FI|.

The above Proposition is true by the definition of frequent generators and posi-
tive borders. Proposition 1 states that a set of frequent generators plus its positive
border is always a subset of the complete set of frequent itemsets, thus it is a
true concise representation. Next we prove that this representation is lossless.
We say a representation of frequent itemsets is lossless if given any itemset, we
can infer whether the itemset is frequent from the representation and get the
support of the itemset if it is frequent.

Proposition 2. ∀ frequent itemset l, if l /∈ FG and l /∈ PBd(FG), then ∃
l′ ∈ PBd(FG) such that l′ ⊂ l.

Proof. We prove the proposition using induction on the length of the itemsets.
The empty set is a generator, so any frequent length-1 itemsets must either be
in FG or be in PBd(FG).
Let |l|=2. The fact that l /∈ FG and l /∈ PBd(FG) means that ∃l′ ⊂ l such that
l′ /∈ FG. Itemset l′ cannot be φ because φ ∈ FG. Hence l′ must be a length-1
frequent itemset and l′ ∈ PBd(FG). The above proposition is true for l=2.
Assume that the above proposition is true for |l| ≤ k (k ≥ 0).
Let |l| = k + 1. The fact that l /∈ FG and l /∈ PBd(FG) means that ∃l′ ⊂ l such
that l′ /∈ FG. If l′ ∈ PBd(FG), then the proposition is true. Otherwise by using
the assumption, there must exist l′′ ⊂ l′ such that l′′ ∈ PBd(FG). Hence the
proposition is also true because l′′ ⊂ l′ ⊂ l. �

Proposition 3. ∀ itemset l and item a, if support(l)= support(l
⋃
{a}), then ∀

l′ ⊃ l, support(l′)= support(l′
⋃
{a}).

Proof. The fact that support(l) = support(l
⋃
{a}) implies that for any transac-

tion t containing l, t must also contain item a. Given any transaction t containing
l′, t contains l because l ⊂ l′, hence t must also contain a. So we have support(l′)
= support(l′

⋃
{a}). �

Theorem 1. Given FG and PBd(FG) and the support of the itemsets in
FG

⋃
PBd(FG), for any itemset l, we can determine: (1) whether l is frequent,

and (2) the support of l if l is frequent.
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Algorithm 1 InferSupport Algorithm
Input:

l is an itemset;
FG is the set of frequent generators;
PBd(FG) is the positive border of FG;

Output:
the support of l if l is frequent, otherwise -1;

Description:
1: if l ∈ FG or l ∈ PBd(FG) then
2: return support(l);
3: else
4: for all l′ ⊂ l AND l′ ∈ PBd(FG) do
5: Let a be the item such that l′′=l′ −{a} and l′′ ∈ FG and support(l′′) = support(l′);
6: l = l − {a};
7: if l ∈ FG or l ∈ PBd(FG) then
8: return support(l);
9: else

10: return -1;

Proof. If l ∈ FG or l ∈ PBd(FG), we can obtain the support of l directly.
Otherwise if there exists itemset l′ such that l′ ⊂ l and l′ ∈ PBd(FG), let l′′

be the itemset such that l′′ = l′ − {a}, support(l′′)=support(l′) and l′′ ∈ FG,
we have support(l′′)=support(l′′

⋃
{a}) and l′′=l′ − {a} ⊂ l − {a}. According to

Proposition 3, we have support(l − {a})=support(l). We remove item a from l.
This process is repeated until there does not exist l′ such that l′ ∈ PBd(FG)
and l′ ⊂ l. The resultant itemset is denoted as l̄, and l̄ can be in two cases: (1)
l̄ ∈ FG or l̄ ∈ PBd(FG), then l must be frequent and support(l)=support(l̄)
according to Proposition 3; and (2) l̄ /∈ FG and l̄ /∈ PBd(FG), then l must be
infrequent because otherwise it conflicts with Proposition 2. �

It directly follows from Proposition 1 and Theorem 1 that the set of frequent
generators in a database and its positive border form a concise and lossless
representation of the complete set of frequent itemsets.

3.2. Regenerating frequent itemsets

3.2.1. Inferring the support of a single itemset

From the proof of Theorem 1, we can get an algorithm for inferring the support
of an itemset from positive border based concise representations. Intuitively, if an
itemset is not a generator, then the itemset must contain some redundant items
which make the itemset a non-generator. Removing these redundant items does
not change the support of the itemset. We represent an itemset l on a positive
border as 〈l′, a〉, where l′=l−{a} and support(l′)=support(l), so the redundant
items can be easily identified. When inferring the support of an itemset, we first
use positive borders to remove redundant items from the itemset. If the resultant
itemset is a generator, then the original itemset is frequent and its support equals
to the resultant itemset, otherwise the itemset is infrequent. Algorithm 1 shows
the pseudo-codes of the algorithm.

Example 3. To check whether itemset bcde is frequent and obtain its support
if it is frequent, we first search in the positive border shown in Table 1(d) for
the subsets of bcde. We find 〈φ, e〉, so item e is removed. Then we continue to
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Algorithm 2 RecoverCompleteFI Algorithm
Input:

l is a frequent itemset;
E(l) is the set of candidate extensions of l;
FG is the set of frequent generators;
PBd(FG) is the positive border of FG;

Description:
1: Fl = φ;
2: for all item i ∈ E(l) do
3: sup = InferSup(l ∪ {i}, FG, PBd(FG));
4: if sup > 0 then
5: Output itemset l ∪ {i} and its support sup;
6: Fl= Fl

S
{i};

7: Sort items in Fl into descending order of their supports;
8: E(l′) = φ;
9: for all i ∈ Fl do

10: l′ = l ∪ {i};
11: RecoverCompleteFI(l′, E(l′), FG, PBd(FG));
12: E(l′) = E(l′) ∪ {i};

search for the subsets of bcd and find 〈c, d〉. Item d is removed and the resultant
itemset is bc. There is no subset of bc in Table 1(d). We search bc in Table 1(c)
and find bc is a generator. Therefore, itemset bcde is frequent and its support is
2.
To check whether itemset acdh is frequent and obtain its support if it is frequent,
we first search for its subsets in Table 1(d). We find 〈c, d〉, so item d is removed.
We continue the search and find 〈h, c〉 is a subset of ach, so item c is removed.
There is no subset of ah in Table 1(d). Itemset ah does not appear in Table 1(c)
either, so itemset acdh is not frequent.

3.2.2. Recovering the complete set of frequent itemsets

To recover the complete set of frequent itemsets from FG and PBd(FG), we not
only need to infer the support of the itemsets that are neither frequent generators
nor on the positive border, but also need to generate the itemsets themselves.
We enumerate these frequent itemsets following the mining framework of the
pattern-growth approach [15].

The pseudo-codes for generating the complete set of frequent itemsets from
FG and PBd(FG) are shown in Algorithm 2. Algorithm 2 traverses the search
space in depth-first order, and grows a frequent itemset from its prefix as the
pattern growth approach. When Algorithm 2 is first called, l is set to φ and E(l)
is set to the set of items appearing in the database. For each frequent itemset
l, Algorithm 2 generates the set of items in E(l) that are frequent with l (line
2-6), denoted as Fl, and then extends l by each of the items in Fl recursively
(line 9-12). The items in Fl are sorted into descending order of their supports
(line 7), and the candidate extensions of itemset l ∪ {i}, where i ∈ Fl, includes
all the items that are before i in Fl (line 12).

The main difference between Algorithm 2 and a pattern growth algorithm
such as FP-growth is that the support of an itemset is inferred from FG and
PBd(FG) in Algorithm 2 (line 3), while the support of an itemset is obtained
by scanning conditional databases in FP-growth.
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3.3. Generalized forms of positive borders

We can also define positive borders for k-disjunction-free sets, which are gener-
alized forms of generators.

Definition 3 (k-disjunction-free set). Itemset l is a k-disjunction-free set if there
does not exist itemset l′ such that l′ ⊂ l, |l| − |l′| ≤ k and support(l) =∑

l′⊆l′′⊂l(−1)|l|−|l′′|−1 · support(l′′).

According to Definition 3, if an itemset is a k-disjunction-free set, it must be a
(k-1)-disjunction-free set. Generators are 1-disjunction-free sets. The disjunction-
free sets proposed by Bykowski et al [9] are 2-disjunction-free set. The generalized
disjunction-free sets proposed by Kryszkiewicz et al. [19] are ∞-disjunction-free
sets. If the support of a k-disjunction-free set is no less than a given mini-
mum support threshold, then the k-disjunction-free set is called a frequent k-
disjunction-free set.

Example 4. In the example shown in Table 1, itemset bd is a generator, but
it is not a 2-disjunction-free set because support(bd)=−support(φ)+support(b)
+support(d).

Definition 4 (The positive border of FGk). Let FGk be the set of frequent
k-disjunction-free sets in a database with respect to a minimum support thresh-
old. The positive border of FGk is defined as PBd(FGk) = {l|l is frequent∧ l /∈
FGk ∧ (∀l′ ⊂ l, l′ ∈ FGk)}.

Proposition 4. Given a transaction database and a minimum support thresh-
old, we have FGk

⋂
PBd(FGk)=φ and (FGk+1

⋃
PBd(FGk+1)) ⊆ (FGk

⋃

PBd(FGk)) ⊆ FI, where k=1, 2, · · ·.

Proof. According to Definition 4, FGk

⋂
PBd(FGk) = φ.

∀ l ∈ FGk+1

⋃
PBd(FGk+1), if l ∈ FGk+1, then l ∈ FGk according to Definition

3.
If l is in PBd(FGk+1), then l can be in two cases: (1) l ∈ FGk; or (2) l /∈ FGk. In
the second case, l must be in PBd(FGk)) because ∀ l′ ⊂ l, l′ ∈ FGk+1 ⊆ FGk. In
both cases, we have l ∈ FGk

⋃
PBd(FGk). Therefore, FGk+1

⋃
PBd(FGk+1)

is a subset of FGk

⋃
PBd(FGk).

This proposition indicates that with the increase of k, the concise representations
using frequent k-disjunction-free sets and positive borders become more and more
concise. However, the cost for deriving the support of an itemset increases. There
is a trade-off between the size of a representation and the deriving cost when
choosing a concise representation.

The set of frequent k-disjunction-free sets (k > 1) in a database and its
positive border also form a lossless concise representation of the complete set of
frequent itemsets. The proof is similar to the proof of Theorem 1. We omit it
here.

3.4. Discussion

The size of FG
⋃

PBd(FG) can be further reduced without harming its com-
pleteness. Given an itemset l ∈ FG, if there exist l′ ∈ PBd(FG) such that
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Frequent Generators
d:5, b:4
bd:3, ab:2, bc:2

Positive Border
〈φ, e〉:6, 〈a, d〉:3, 〈c, d〉:3
〈h, c〉:2, 〈h, d〉:2, 〈i, b〉:2

(a) (b)

Table 2. Reduced FG

l′ = l
⋃
{a}, support(l′)=support(l) and l′ is represented as 〈l, a〉, then itemset l

can be eliminated from FG because its support can be inferred from l′.

Example 5. In the database shown in Table 1(a) with minimum support of 2,
the reduced set of frequent generators is shown in Table 2(a) and the positive
border is shown in Table 2(b). Five itemsets are removed from Table 1(c). For
example, itemset φ:6 is removed because of 〈φ, e〉:6, and itemset a:3 is eliminated
because of 〈a, d〉:3.

We denote the reduced set of frequent generators in a database as FG−.
The cost for inferring the support of an itemset using FG− and PBd(FG) is
almost the same as that using FG and PBd(FG): (1) if itemset l ∈ PBd(FG)
or l ∈ FG−, then the support of l is obtained directly; (2) if itemset l is not
in FG− but one of l’s supersets is in PBd(FG) and the superset is represented
as 〈l, a〉, then l must have the same support as the superset; otherwise (3) we
remove the redundant items from l as described in Algorithm 1, if the resultant
itemset l̄ is in FG−

⋃
PBd(FG) or one of l̄’s supersets is in PBd(FG), then l is

frequent and its support can be obtained, otherwise l is infrequent.

4. The GrGrowth Algorithm

In this section, we first describe how to mine frequent generators and positive
borders, and then describe how to extend the GrGrowth algorithm to mine k-
disjunction-free sets and their positive borders.

The GrGrowth algorithm adopts the pattern growth approach. It constructs a
conditional database for each frequent generator. According to the anti-monotone
property, if an itemset is not a generator, then none of its supersets can be a
generator. It implies that if a frequent itemset is not a generator, then there is no
need to construct its conditional database because none of the frequent itemsets
discovered from its conditional database can be a generator. The GrGrowth
algorithm prunes non-generators during the mining process to save mining cost.

4.1. Conditional database construction

The GrGrowth algorithm uses the compact data structure FP-tree [15] to store
conditional databases. An FP-tree is constructed from the original database in
two database scans. In the first database scan, frequent items are counted and
sorted into descending frequency order, denoted as F . Frequent items that appear
in every transaction of the original database are removed from F because they
are not generators, nor the itemsets containing them can be generators based on
the anti-monotone property. In the second database scan, the FP-tree storing all
the conditional databases of the frequent items in F are constructed.

We use an example to show how an FP-tree is constructed from a transaction
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F={d:5, b:4, a:3, c:3, h:2, i:2}
TID Transactions Projected Transactions

1 a, b, c, d, e, g d, b, a, c
2 a, b, d, e, f d, b, a
3 b, c, d, e, h, i d, b, c, h, i
4 a, d, e, m d, a
5 c, d, e, h, n d, c, h
6 b, e, i, o b, i

Table 3. The projected database

root

d:5

h:1

c:1
i:1a:1

b:1

c:1

i:1

h:1c:1

b:3

d : 5

b : 4

a : 3

c : 3

h : 2

i : 2

header table

a:2

Fig. 1. The FP-tree

database. The second column of Table 3 shows an example transaction database
containing 6 transactions, which is the same as the example database used in
the previous section. The minimum support threshold is set to 2. We first scan
the database to count frequent items. There are seven items frequent in the
database and they are sorted into descending frequency order: F={e:6, d:5, b:4,
a:3, c:3, h:2, i:2}. Item e appears in all the transactions in the database, that is,
support(e)=support(φ). Therefore, itemset e is not a generator, nor any itemset
containing item e can be a generator based on the anti-monotone property. We
remove item e from F . The resulting F is used for constructing the header table
of the FP-tree. We divide the search space into six sub search spaces according
to the 6 frequent items in the header table: (1) itemsets containing only item d;
(2) itemsets containing item b but not any item after b; (3) itemsets containing a
but not any item after a; (4) itemsets containing item c but not any item after c;
(5) itemsets containing item h but not containing i; and (6) itemsets containing
item i. Accordingly, six conditional databases are constructed from the original
database such that all the itemsets in item ai’s search space can be discovered
from ai’s conditional database.

In the second database scan, the GrGrowth algorithm constructs an FP-tree
that stores all the conditional databases. For each transaction, infrequent items
and items appearing in every transaction are removed and the remaining items
are sorted according to their order in F . The resulting transactions are called
projected transactions and they are shown in the third column of Table 3. The
projected transactions are inserted into the FP-tree as shown in Figure 1.

In an FP-tree, the conditional database of item ai, denoted as Dai
, consists

of all the branches starting from a node containing item ai up to the root. For
example, item c’s conditional database consists of 3 branches cabd : 1, cbd : 1
and cd : 1, which represent transactions 1, 3 and 5 in Table 3 and the frequent
items after item c are excluded. To facilitate the traversal of the conditional
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databases, a node-link pointer and a parent pointer are maintained at each FP-
tree node. The node-link pointers link all the FP-tree nodes containing the same
item together. The first FP-tree node of each frequent item is maintained in
the header table. Starting from the first FP-tree node maintained in the header
table and traversing along the node-links of a frequent item, we can obtain all
the branches contained in the conditional database of the item.

The FP-tree constructed from the original database contains the complete
information for mining frequent itemsets. Once the FP-tree is constructed from
the original database, the remaining mining is conducted on the FP-tree and
there is no need to access the original database. Mining individual conditional
databases is similar to mining the original database. It also has two steps. When
mining itemset l’s conditional database Dl, we first scan Dl to find frequent
items in Dl, denoted as Fl. Let ai be a frequent item in Dl. If l

⋃
{ai} is not

a generator, then ai is removed from Fl. In the second step, a new FP-tree is
constructed from Dl if the number of frequent items in Fl is greater than 1.
Otherwise, the mining on Dl is finished.

4.2. Search space exploration order

The GrGrowth algorithm explores the search space using the depth-first-search
strategy. During the mining process, the GrGrowth algorithm needs to check
whether an itemset is a generator by comparing the support of the itemset with
that of its subsets. To be able to do the checking, the subsets of an itemset
should be discovered before the itemset. The GrGrowth algorithm sorts frequent
itemsets in descending order of their frequency, and the sub search space of a
frequent item includes all the items before it in the order. In other words, the
most frequent item has the smallest sub search space, which is actually empty,
and the most infrequent item has the largest sub search space, which includes all
the other frequent items. To guarantee that all the subsets of a frequent itemset
are discovered before that itemset, the GrGrowth algorithm traverses the search
space tree in descending frequency order. In the example shown in Table 3 and
Figure 1, the conditional database of item d is first processed, and then the
conditional databases of item b, item a and so on. The conditional database of
item i is processed last.

4.3. Pruning non-generators

When mining itemset l’s conditional database Dl, the GrGrowth algorithm first
traverses Dl to find the frequent items in Dl, denoted as Fl={a1, a2, · · ·, am},
and then construct a new FP-tree which stores the conditional databases of the
frequent items in Fl. According to the anti-monotone property, there is no need
to include item aj ∈ Fl into the new FP-tree if l

⋃
{aj} is not a generator.

Non-generators are identified in two ways in the GrGrowth algorithm. One
way is to check whether support(l

⋃
{ai})=support(l) for all ai ∈ Fl. This check-

ing is performed immediately after all the frequent items in Dl are discovered and
it incurs little overhead. The second way is to check whether there exists itemset
l′ such that l′ ⊂ (l

⋃
{ai}) and support(l′)=support(l

⋃
{ai}) for all ai such that

support(l
⋃
{ai}) < support(l). It is not necessary to compare l

⋃
{ai} with all
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of its subsets. Based on the anti-monotone property of frequent generators, it is
adequate to compare l

⋃
{ai} with its length-|l| subsets.

During the mining process, the GrGrowth algorithm maintains the set of
frequent generators that have been discovered so far in a hash table to facilitate
the subset checking. The hash function hashes an itemset to an integer and it is
defined as follows:

H(l) = (
∑

i∈l

h(i)) mod Ltable (1)

h(i) = 2i mod 32 + i + 2order(i) mod 32 + order(i) + 1 (2)

where l is a generator, order(i) is the position of item i if the frequent items in
the original database are sorted into descending frequency order, and Ltable is
the size of the hash table and it is a prime number. In the above hash function,
both the id of an item and the position of an item in descending frequency order
are used. The purpose is to reduce the possibility that two different items are
mapped into the same value. The reason being that the position of an item
in descending frequency order depends on the frequency of the item and it is
independent of the id of the item. Our experiment results have showed that the
above hashing function is very effective in avoiding conflicts.

The FP-tree structure provides additional pruning capability. If itemset l’s
conditional database Dl contains only one branch, then there is no need to con-
struct a new FP-tree from Dl even if there are more than one frequent items in Dl

that can be appended to l to form frequent generators. The reason being that if
Dl contains only one branch, then ∀ ai ∈ Dl and aj ∈ Dl, l

⋃
{ai, aj} cannot be a

generator because support(l
⋃
{ai, aj}) = min{support(l

⋃
{ai}), support(l

⋃
{aj})}.

4.4. Generating positive borders

In the GrGrowth algorithm, generating positive borders incurs no additional
cost. When checking whether frequent itemset l is a generator, there are three
possibilities: (1) All the subsets of l are generators and all of them are more
frequent than l. In this case, itemset l is a generator. (2) All the subsets of l are
generators but there exists l′ ⊂ l such that support(l)=support(l′). In this case,
itemset l is on the positive border according to Definition 2. (3) Not all of the
subsets of l are generators. In this case, itemset l is neither a generator nor on
the positive border, and it should be discarded.

Algorithm 3 shows the pseudo-codes of the GrGrowth Algorithm. During the
mining process, the GrGrowth algorithm maintains the set of frequent generators
discovered so far in a hash table. At line 3, the GrGrowth algorithm checks
whether itemset l

⋃
{i} is a generator by searching the immediate subsets of

l
⋃
{i} in the hash table. If l

⋃
{i} is not a generator, then it is removed from Fl

(line 4), otherwise it is inserted into the hash table (line 8).

Theorem 2 (Correctness of GrGrowth). Given a transaction database and a
minimum support threshold, Algorithm 3 discovers all frequent generators and
the positive border, and only frequent generators and the positive border are
produced.

Proof. The GrGrowth algorithm explores the search space systematically in
depth-first order, and only non-generators that are not on the positive border
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Algorithm 3 GrGrowth Algorithm
Input:

l is a frequent itemset
Dl is the conditional database of l
min sup is the minimum support threshold;
FG is the set of generators discovered so far and they are stored in a hash table;

Description:
1: Scan Dl to count frequent items and sort them into descending frequency order, Fl={i1,

i2,· · ·, in};
2: for all item i ∈ Fl do
3: if support(l

S
{i})=support(l) OR ∃l′ ∈ FG such that l′ ⊂ l

S
{i} and

support(l′)=support(l
S
{i}) then

4: Fl = Fl − {i};
5: if ∀l′ ⊂ (l

S
{i}), l′ ∈ FG then

6: Put l
S
{i} into the positive border;

7: else
8: FG = FG

S
{l
S
{i}};

9: if ‖Fl‖ ≤1 then
10: return ;
11: if Dl contains only one branch then
12: return ;
13: for all transaction t ∈ Dl do
14: t = t

T
Fl;

15: Sort items in t according to their orders in Fl;
16: Insert t into the new FP-tree.
17: for all item i ∈ Fl, from i1 to in do
18: GrGrowth(l

S
{i}, Dl∪{i}, min sup);

are pruned during the mining process based on Property 1, therefore, GrGrowth
discovers the complete set of frequent generators and the positive border. For
every itemset generated during the mining process, GrGrowth check whether it
is a generator or on the positive border, therefore only frequent generators and
the positive border are produced by GrGrowth. �

4.5. Mining k-disjunction-free sets

The algorithm for mining frequent k-disjunction-free sets (k>1) and their posi-
tive borders is almost the same as Algorithm 3. The only difference is the subset
checking at line 3 in Algorithm 3. When checking whether itemset l is a gener-
ator, we need to compare l only with its length-(|l|-1) subsets. When checking
whether itemset l is a k-disjunction-free set (k>1), we need to retrieve all of its
subsets of length no less than |l| − k and check whether there exists l′ ⊂ l such

that |l′| ≥ (|l| − k) and support(l) =
∑

l′⊆l′′⊂l(−1)|l|−|l′′|−1 · support(l′′).

5. A Performance Study

In this section, we study the size of positive borders and negative borders, and
the efficiency of the GrGrowth algorithm. The experiments were conducted on
a 3.00Ghz Pentium IV with 2GB memory running Microsoft Windows XP pro-
fessional. All codes were complied using Microsoft Visual C++ 6.0.

Table 4 shows the datasets used in our performance study. All these datasets
are available at http://fimi.cs.helsinki.fi/data/. Table 4 shows some sta-
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Datasets Size #Trans #Items MaxTL AvgTL
accidents 34.68MB 340,183 468 52 33.81
BMS-POS 11.62MB 51,5597 1,657 165 6.53

BMS-WebView-1 0.99MB 59,602 497 268 2.51
BMS-WebView-2 2.34MB 77,512 3,340 162 4.62

chess 0.34MB 3,196 75 37 37.00
connect-4 9.11MB 67,557 129 43 43.00
mushroom 0.56M 8,124 119 23 23.00

pumsb 16.30MB 49,046 2,113 74 74.00
pumsb star 11.03MB 49,046 2,088 63 50.48

retail 4.07MB 88,162 16,470 77 10.31
T10I4D100k 3.93MB 100,000 870 30 10.10
T40I10D100k 15.12MB 100,000 942 78 39.61

Table 4. Datasets

tistical information of the datasets used in our performance study, including the
size of the datasets, the number of transactions, the number of distinct items,
the maximal transaction length (column “MaxTL”) and the average transaction
length (column “AvgTL”). Dataset accidents is provided by Karolien Geurts,
and it contains traffic accident data. BMS-POS, BMS-WebView-1 and BMS-
WebView-2 are three sparse datasets containing click-stream data [30]. Datasets
chess, connect-4, mushroom and pumsb are obtained from the UCI machine
learning repository2 and they are very dense. Dataset pumsb star is a synthetic
dataset produced from pumsb by Roberto J. Bayardo [17]. Dataset retail is pro-
vided by Tom Brijs and it contains the retail market basket data from an anony-
mous Belgian retail store [8]. The last two datasets are two synthetic datasets
generated using IBM synthetic dataset generation code 3.

5.1. Size comparison between negative borders and positive
borders

The first experiment is to compare the size of positive borders with that of
negative borders. In all our experiments, we use the negative border defined by
Kryszkiewicz et al. [18,19], which is smaller than the negative border defined by
Bykowski et al. [9].

Table 5 shows the total number of frequent itemsets (the “FI” column), the
number of frequent generators (the “FG” column), the size of the negative border
of FG (the “NBd(FG)” column), the size of the positive border of FG (the
“PBd(FG)” column), the number of frequent ∞-disjunction-free generators (the
“FG∞” column), the size of the negative border of FG∞ (the “NBd(FG∞)”
column) and the size of the positive border of FG∞ (the “PBd(FG∞)” column).
The minimum support thresholds are shown in the second column. Here we do
not use the optimization technique described in Section 3.4.

The numbers in Table 5 indicate that negative borders are often signifi-
cantly larger than the corresponding complete sets of frequent itemsets on sparse
datasets. For example, in dataset retail with minimum support of 0.005%, the
number of itemsets on the negative border of FG is 64914318, which is about

2 http://www.ics.uci.edu/~mlearn/MLRepository.html
3 http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html\
#assocSynData
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Datasets min sup FI FG NBd(FG) PBd(FG) FG∞ NBd(FG∞) PBd(FG∞)
accidents 10% 10691550 9958684 134282 851 532458 77227 142391
accidents 30% 149546 149530 5096 1 24650 4596 5415
BMS-POS 0.03% 1939308 1761611 1711467 57404 1466347 1690535 160690
BMS-POS 0.1% 122450 122370 236912* 68 117520 236743* 906

BMS-WebView-1 0.05% 485490182335 485327 315526 460523 284640 282031 549252
BMS-WebView-1 0.1% 3992 3979 66629* 12 3971 66629* 19
BMS-WebView-2 0.005% 60193074 1929791 8305673 599909 1071556 8201293 813152
BMS-WebView-2 0.05% 114217 79345 1743508* 1887 39314 1740476* 7646

chess 20% 289154814 25031186 705394 838 24769 6749 12517
chess 45% 2832778 716948 27396 88 3347 1275 1882

connect-4 10% 58062343952 8035412 175990 146 19494 8388 9676
connect-4 35% 667235248 328345 11073 95 1137 645 1388
mushroom 0.1% 1727758092 323432 78437 20035 118475 42354 30400
mushroom 1% 90751402 103377 40063 10690 35007 22251 15926

pumsb 50% 165903541 22402412 1052671 45 29670 6556 20396
pumsb 75% 672391 248299 24937 20 3410 2739 2332

pumsb star 5% 4067591731305 29557940 567690 52947 1686082 247841 558253
pumsb star 20% 7122280454 253107 14638 1625 39051 12327 13316

retail 0.005% 1506776 532343 64914318* 110918 500814 64909090* 133658
retail 0.01% 240853 191266 40565727* 13877 184965 40564812* 18557

T10I4D100k 0.005% 1923260 994903 24669957* 374562 978510 24669812* 384667
T10I4D100k 0.05% 52623 46751 678244* 1257 38566 678180* 5093
T40I10D100k 0.1% 69843960 18735859 39072907 285654 4183009 38959221 1358020
T40I10D100k 1% 65237 65237 521359* 0 33883 510861* 7372

Bold: The lossless representation is not really concise, for example, |FG ∪ NBd(FG)| > |FI| or
|FG∞ ∪ NBd(FG∞)| > |FI|

* : |NBd(FG)| > |FI|.

Table 5. Size comparison between different representations

43 times larger than the total number of frequent itemsets and about 585 times
larger than the number of itemsets on the positive border of FG. The nega-
tive borders shrink little with the increase of k on sparse datasets. Even with
k = ∞, it is still often the case that negative borders are much larger than
the corresponding complete sets of frequent itemsets on sparse datasets. This is
unacceptable for a concise representation. On the contrary, the positive border
based representations are always smaller than the corresponding complete sets
of frequent itemsets, thus are true concise representations.

When k=1, positive borders are usually orders of magnitude smaller than the
corresponding negative borders as shown in the 5th and 6th column of Table 5.
When k = ∞, the size of positive borders becomes larger than that of negative
borders on some datasets, especially dense datasets. Nevertheless, the set of k-
disjunction-free sets in a database plus its positive border is always no larger,
usually significantly smaller, than the complete set of frequent itemsets for any
k, while the negative borders of frequent ∞-disjunction-free sets are still tens of
times larger than the complete set of frequent itemsets on some datasets.

An interesting observation from Table 5 is that with the increase of k, the
size of negative borders decreases because FGk shrinks, but the size of positive
borders usually increases. The reason being that when negative borders are used
in concise representations, the frequent itemsets in (FGk−FGk+1) are discarded
when k increases, but some of the itemsets in (FGk − FGk+1) are put into
PBd(FGk+1) when positive borders are used. Therefore, on some datasets, the
size of positive borders eventually exceeds, but is still comparable to, that of
negative borders. Table 6 shows the value of k and the size of positive borders
and negative borders when |PBd(FGk)| < |NBd(FGk)| and |PBd(FGk+1)| >
|NBd(FGk+1)| on these datasets. The new itemsets in PBd(FGk+1) come from
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Datasets min sup k FGk NBd(FGk) PBd(FGk) FGk+1 NBd(FGk+1) PBd(FGk+1)
accidents 10% 4 674517 85433 88562 562850 78945 124455
accidents 30% 4 27529 4659 3908 24995 4598 5143

chess 20% 2 105062 15694 8332 30623 7191 9846
chess 45% 2 9369 2334 879 3750 1309 1593

connect-4 10% 3 22163 9973 8227 19513 8388 9657
connect-4 35% 2 5955 2371 367 1144 645 1381
pumsb 50% 2 1318591 75113 12168 69391 9393 9945

pumsb star 5% 2 4503853 341939 216845 2230214 270929 382385
pumsb star 20% 3 43125 12404 10954 39410 12333 13032

Table 6. The value of k and the size of positive borders and negative borders when
|PBd(FGk)| < |NBd(FGk)| and |PBd(FGk+1)| > |NBd(FGk+1)|

Datasets min sup PBd(FG) #PatRmd Datasets min sup PBd(FG) #PatRmd
accidents 10% 851 851 mushroom 0.1% 20035 8628
accidents 30% 1 1 mushroom 1% 10690 4747
BMS-POS 0.03% 57404 57400 pumsb 50% 45 21
BMS-POS 0.1% 68 68 pumsb 75% 20 9

BMS-WebView-1 0.05% 460523 136295 pumsb star 5% 52947 34443
BMS-WebView-1 0.1% 12 12 pumsb star 20% 1625 894
BMS-WebView-2 0.005% 599909 365092 retail 0.005% 110918 87898
BMS-WebView-2 0.05% 1887 1720 retail 0.01% 13877 12117

chess 20% 838 735 T10I4D100k 0.005% 374562 296479
chess 45% 88 64 T10I4D100k 0.05% 1263 1055

connect-4 10% 146 47 T40I10D100k 0.1% 296722 207521
connect-4 35% 95 33 T40I10D100k 1% 0 0

Table 7. Number of frequent generators removed using the optimization techniques described
in Section 3.4

FGk −FGk+1, so the increase of the size of PBd(FGk+1) is bounded by |FGk −
FGk+1|.

As discussed in Section 3.4, the size of FG∪PBd(FG) can be further reduced
by removing frequent generators which have a superset in PBd(FG). Table 7
shows the number of frequent generators removed using this optimization tech-
nique (the “#PatRmd” column). In most cases, the number frequent generators
removed is close to the size of the corresponding positive borders, which means
that the size of FG− ∪ PBd(FG) is close to that of FG.

5.2. Recovering time of the complete set of frequent itemsets

Table 8 shows the time used to recover the complete set of frequent itemsets
from the positive border based representation and the negative border based
representation. Here we did not use the optimization technique described in
Section 3.4. The running time is the average of 10 runs, and it includes the
time for loading frequent generators and itemsets on the borders into the main
memory, but does not include the time for outputting frequent itemsets. On
dataset retail with minimum support of 0.005% and T40I10D100k with minimum
support of 0.1%, negative borders are too large to fit into the main memory, so
the time for NBd(FG) is not shown.

We use the same algorithm as Algorithm 2 to recover the complete set of
frequent itemsets from the negative border based representation. The support
of an itemset l is inferred from FG and NBd(FG) as follows. We first check
whether there exists an itemset l′ in NBd(FG) such that l′ is a subset of l. If
such l′ exists, then l is not frequent, otherwise, the support of l is set to be the
minimal support of its subsets. For both the positive border based representation
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Datasets min sup PBd(FG) NBd(FG) #TotalChecks #CheckedFreq
accidents 10% 17.12 16.98 10117189 9983226
accidents 30% 0.24 0.24 154159 149498
BMS-POS 0.03% 6.69 4.90 3565120 1849538
BMS-POS 0.1% 0.40 0.44 358246 122001

BMS-WebView-1 0.05% 5.41 6.83 2292471 1749552
BMS-WebView-1 0.1% 0.08 0.12 71205 3647
BMS-WebView-2 0.005% 27.2 27.78 12626041 3300928
BMS-WebView-2 0.05% 1.37 2.61 1828061 84122

chess 20% 66.52 185.31 26442979 25736972
chess 45% 1.19 1.65 762147 734775

connect-4 10% 25.87 139.76 10448541 10272539
connect-4 35% 0.86 1.58 410738 399751
mushroom 0.1% 2.11 4.23 802880 668617
mushroom 1% 0.50 0.75 266521 215694

pumsb 50% 92.14 440.04 24515186 23462307
pumsb 75% 0.56 0.66 277488 254637

pumsb star 5% 246.10 3659.44 46598074 45994056
pumsb star 20% 0.94 4.12 404297 391183

retail 0.005% 110.59 - 66519448 655314
retail 0.01% 48.45 122.15 40863787 198143

T10I4D100k 0.005% 62.11 58.42 27273508 1398712
T10I4D100k 0.05% 0.63 0.95 759206 47666
T40I10D100k 0.1% 174.20 - 61991498 21651427
T40I10D100k 1% 0.27 0.77 599290 64481

Table 8. Recovering time using PBd(FG) and NBd(FG)

and the negative border based representation, we use the hash table structure
described in Section 4.3 to store frequent generators and the itemsets on the
borders to accelerate subset searching.

Table 8 shows that on sparse datasets, the recovering time using NBd(FG)
is similar to that using FBd(FG), while on dense datasets, recovering the com-
plete set of frequent itemsets from FG and PBd(FG) is significantly faster than
that from FG and NBd(FG). The reason being that NBd(FG) is faster for
determining infrequent itemsets, while PBd(FG) is more efficient for retriev-
ing the support of frequent itemsets. On dense datasets, most of the candidate
itemsets checked by procedure InferSup are frequent as shown in the last two
columns of Table 8. The “#TotalChecks” column shows the total number of calls
of procedure InferSup in Algorithm 2, and the “#CheckedFreq” column shows
the number of calls of procedure InferSup that return positive support. One spe-
cial case is that on dataset retail, only a small number of the calls of procedure
InferSup return positive support, but the recovering time using PBd(FG) is
much less than that using NBd(FG). The reason being that the negative bor-
ders on dataset retail are hundreds or even thousands of times larger than the
corresponding positive borders. It indicates that positive borders can also benefit
from its small size for inferring the support of itemsets.

5.3. Mining time

The second experiment is to study the efficiency of the GrGrowth algorithm.
We compare the GrGrowth algorithm with two algorithms. One is the FPClose
algorithm [14], which is one of the state-of-the-art frequent closed itemset mining
algorithms. The other is a level-wise algorithm for mining frequent generators
and positive borders, denoted as “Apriori-FG” in the figures. We implement the
level-wise algorithm based on Christian Borgelt’s implementation of the Apriori
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Fig. 2. Comparison of mining time

algorithm [6]. We pick six datasets for this experiment. Figure 2 shows the run-
ning time of the three algorithms. The running time includes both CPU time
and I/O time.

Overall, the GrGrowth algorithm outperforms the other two algorithms. In
particular, it is much (usually one or two orders of magnitude) faster than the
level-wise algorithm Apriori-FG for the same task of mining frequent generators
and positive borders. On datasets accidents and BMS-POS, GrGrowth and FP-
Close show similar performance; and both of them are significantly faster than
the level-wise algorithm Aprioir-FG. On sparse dataset retail, GrGrowth per-
forms much better than Apriori-FG and also than FPClose. For the three dense
datasets (chess, connect-4 and pumsb), Apriori-FG constantly shows the worst
performance among the three algorithms. However, the GrGrowth algorithm is
about 2 time faster than FPClose on chess and about 3 times faster than FP-
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Close on connect-4, and is comparable to FPClose on pumsb. The slightly inferior
performance of GrGrowth compared to FPClose on dataset pumsb is caused by
the longer output time of GrGrowth than that of FPClose. On dataset pumsb,
the number of frequent generators is about 3 times larger than the number of
frequent closed itemsets on pumsb with minimum support of 50%. Though the
number of frequent generators is significantly larger than the number of fre-
quent closed patterns in some cases, we observed in this work that the number
of frequent generators is often close to the number of frequent closed itemsets.
The main reason that the GrGrowth algorithm can be faster than FPClose in
many cases is that FPClose checks whether an itemset is closed through superset
searching, while GrGrowth checks whether an itemset is a generator by searching
the immediate subsets of the itemset. The number of immediate subsets of an
itemset is bounded by the length of the itemset, while the number of potential
supersets of an itemset is exponential to the number of items not in the item-
set, so checking whether an itemset is a generator is usually much cheaper than
checking whether an itemset is closed.

6. Conclusion

In this paper, we have proposed a new concise representation for frequent item-
sets, which uses a positive border instead of a negative border together with fre-
quent generators to form a lossless concise representation. Positive border based
representations are true concise representations in the sense that the number of
frequent generators plus the number of itemsets on the positive border is always
no more than the total number of frequent itemsets. This is not true for negative
border based representations. An efficient depth-first algorithm GrGrowth has
been developed to mine frequent generators and positive borders. It has been
shown to be much faster than a classic level-wise algorithm.

We have proposed a generalization form of the positive border and also a
generalization form of the new representation. The GrGrowth algorithm can be
easily extended for mining the generalized positive borders and the generalized
representations, thus we provide a unified framework for concisely representing
and efficiently mining frequent itemsets through generators, positive borders and
their respective generalizations.
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