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Abstract 

 

Functional sites such as transcription start sites, translation initiation sites and 

polyadenylation sites influence virtually all aspects of the gene expression process. A 

general approach for computational recognition of these sites consists of feature 

generation, feature selection, feature integration and possibly also the construction of 

cascade classifiers. In this report, I have described a software tool, Sirius Prediction 

Systems Builder (PSB) which I have built, that supports this approach. Using PSB, I have 

built two prediction models, one for the recognition of Arabidopsis polyadenylation sites 

and another for the subcellular localization of proteins. Both systems have superseded 

current-state-of-art models based on evaluation of public datasets. On top of being able to 

produce high-quality results, the other key features of PSB lies in the fact that it is hassle-

free and that the time required to build a prediction model is greatly reduced. In place of 

programming languages is a user-friendly graphical user interface, taking the burden of 

programming off users. Genetic algorithm assists in the feature generation step, and users 

no longer need to spend extended periods deciding on the features to generate. Prediction 

models built can easily be saved and reused, and can even by put online as prediction 

servers. 
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 I.2 Artificial Intelligence 

 I.5 Pattern Recognition 

 I.6 Simulation and Modeling 
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1. Introduction 

  

The Human Genome Project was started formally in 1990, and one of its goals was to 

determine the sequences of the 3 billion chemical base pairs that make up human DNA. 

Due to the Human Genome Project, sequencing technologies have advanced 

tremendously in terms of both cost and time. From US$10 per finished base to 10 

finished base per US$1 (Shendure, Mitra, Varma, and Church, 2004). From 13 years to 

finish the first human genome to, in 2007, sequencing James Watson's genome in just two 

months (Chi, 2008). Sequencing will only get cheaper and faster in the years to come.  

 

 At the moment, the full genome sequences of many different organisms are 

available. With these next-generation sequencing technologies, it is expected that more 

genome will be sequenced. Using sequencing, it is also possible to get protein sequences 

via mRNA. By obtaining the mRNA sequence, we can use the RNA codon table to 

convert it into peptide sequences. With so much data, the next challenge would be to 

derive meaningful knowledge from these huge amounts of data. 

 

 In particular, when given a DNA sequence, finding its functional sites such as 

transcription start sites, translation initiation sites, and polyadenylation sites have always 

been of interest to biologists as functional sites influence virtually all aspects of the gene 

expression process. In another example, the ability to determine the subcellular 

localization of the protein from a protein sequence, can give biologists clues to the 

functions of the protein. 

  

 Biologists would usually depend on the predictions of computer systems to 

determine possible locations of functional sites or possible subcellular localization of 

proteins. From there, they would then design experiments accordingly to validate the 

predictions. The computational step is important because it would greatly reduce the 

number of experiments that needs to be carried out subsequently. One general approach 

for computational recognition of functional sites has been developed to build such a 

prediction system. The approach consists of the following sequential steps: 1) Feature 
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Generation, 2) Feature Selection, 3) Feature Integration (Liu and Wong, 2003a) and 4) 

Cascade Classifier (Koh and Wong, 2007).   

 

 Several high quality prediction systems for functional sites have been developed 

using the approach (Koh et al, 2007 and Liu, Han, Li and Wong, 2005). It will also be 

shown in this report that this approach could also be used to build a prediction system for 

subcellular localization of proteins which is comparable to some well-known prediction 

systems for this problem. 

 However, each prediction system is developed by skilled programmers to solve 

just one particular problem. For example, Koh et al (2007) developed a system to do 

prediction of polyadenylation sites for Arabidopsis genomic sequences using Java 

programming language. Building such a system is time-consuming and requires 

specialized skills, and when such a system is built, it is very specific in that it carries out 

prediction only for a particular functional site of a particular organism. As such, the Koh 

et al (2007) system can neither carry out prediction for other functional sites except 

polyadenylation sites for Arabidopsis genomic sequences nor can it be used to do 

prediction for polyadenylation sites on organisms other than Arabidopsis. 

 

 Furthermore, with sequencing technologies advancing so rapidly, the rate of 

producing high quality prediction systems has to improve or it might become a bottleneck 

step. Currently, there exists no other software that supports the abovementioned 

approach. The closest software that lends some support to the methodology would be 

machine learning packages. One popular machine learning package that is often used to 

carry out the feature selection and feature integration step is Waikato Environment for 

Knowledge Analysis (WEKA). WEKA is a free machine learning software package 

written in Java and developed at University of Waikato (Witten and Frank, 2005). 

 

 There are two main obstacles when using WEKA to build classifiers for 

sequences. Firstly, as WEKA is a general machine learning package, it does not support 

the feature generation step for sequences and cascade classifier step, which is often used 

in analysing biological sequences. Therefore, many additional programs have to be 
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written to interface with WEKA to achieve the desired results. Secondly, WEKA does not 

offer straightforward ways to save and reuse trained classifiers. 

 

 In an attempt to enable prediction systems to be built, saved and used with ease 

and speed using the mentioned approach, I developed a software tool named Sirius 

Prediction System Builder (Sirius PSB). Sirius PSB exudes user-friendliness in that it is 

equipped with a nice Graphical User Interface that will allows anyone with just some 

basic knowledge in data mining to be able to build a prediction system without any 

programming involved. 

  

 At the moment, Sirius PSB can handle both DNA and protein sequences. It can 

build prediction models that make predictions for any of the following; on all position of 

a sequence, only when a motif is encountered, or one prediction for each sequence.   

 

 To elaborate, Sirius PSB has the ability to build prediction systems to solve 

several different types of sequence prediction problems. For instance, it can be used to 

build prediction systems for both DNA and protein sequences. For DNA sequences, it can 

build models that carry out predictions for functional sites with or without highly 

conserved motifs as anchors. In the latter, it can build models that predict the localization 

of the protein and it can also build models that can find the cleavage sites.  

 

 In this report, two prediction models have been built using real datasets to show 

the capabilities of Sirius PSB. Both models have managed to achieve results comparable 

to the current state of art. 
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2. Feature Generation, Feature Selection, Feature Integration and Cascade 

Classifier 

 

In this section, we will discuss a general approach- feature generation, feature selection, 

feature integration and cascade classification, which have been used repeatedly to do 

functional sites prediction. This approach can also be easily generalized to build models 

to do prediction on subcellular localization of proteins. 

 

2.1 Feature Generation 

 

In the feature generation step, a set of candidate features are generated based on the 

sequences as sequences are usually not suitable to be used directly on machine learning 

techniques. 

 

 In this step, one common feature type that is frequently used is the k-gram feature. 

It is typically used because it is an easy type of feature to extract and compute. It also 

been shown that just by using them, high-quality classifiers can be produced (Koh et al, 

2007 and Liu, Han, Li and Wong, 2003b). 

 

 A k-gram feature is simply a string of k consecutive characters and the frequency 

of that string in a window location. The characters are usually one of the symbols 

according to the IUPAC (International Union of Pure and Applied Chemistry) depending 

on whether the sequence of interest is a genomic or peptide sequence. Window location 

tells us which part of the sequence we should look at to calculate the number of 

occurrences of the string. 

 

 Other features that are closely related to k-gram feature are ratio of k-gram 

features and multiple k-gram features. Ratio of k-gram feature is where we calculate the 

ratio of two k-gram features in a certain window location. Multiple k-grams are two or 

more k-gram features that occur one after another within a specific distance range of each 

other in the window. 
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 Note that in this feature generation step, it is not purely limited to k-gram feature 

or its closely-related counterparts. It really depends on the imagination of one to decide 

what type of features to extract when given a sequence. 

 

 It is not difficult to see that the feature generation step is the most critical step of 

all. When given a “correct” set of candidate features, one can easily build a high accuracy 

classifier from them. However, the task of finding the “correct” set of candidate features 

is similar to the motif finding problem given a set of sequences, which is known to be 

NP-hard. 

 

2.2 Feature Selection 

 

Usually, in the feature generation step, a large set of candidate features will be generated. 

This will pose two immediate problems. Firstly, with too many candidate features comes 

the curse of dimensionality. Secondly, many of these features could possibly be noise or 

irrelevant features. Having such features for training of most machine learning techniques 

would often lead to over fitting. 

 

 Therefore, it is with hope that by employing this feature selection step, noise and 

irrelevant features will be severely reduced. Various techniques may be used to carry out 

the differentiation between meaningful and useless features. Techniques like signal-to-

noise measure, statistical measure, entropy measure, information gain measure, 

correlation-based measure and so forth can all be used for this cause.  

 

2.3 Feature Integration 

 

After feature selection, those features that have selected will be used to train a machine 

learning method. This trained feature integration classifier is then ready to be used. 

  

 For sequence prediction, there are generally three different categories. One is 
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where prediction will only be made once for each sequence (e.g. subcellular localization 

of proteins). Another would be where there exists known anchor motif and prediction 

would only be made when the anchor motif is encountered. The last type is where there 

does not exist any anchor motif and every position of the sequence is a candidate site and 

prediction has to be made on every position of the sequence. 

 

 For the first two types of problems, simply using the first 3 step of the approach is 

sufficient to build decent prediction models. For the last category, an additional step is 

employed, that is, cascade classifier. 

 

2.4 Cascade Classifier 

 

The reason for an additional step is because previously, problems that have been tackled 

using the feature generation, feature selection and feature integration always have anchor 

points to base the predictions upon. For example, Liu et al (2003b) does prediction of 

polyadenylation sites of humans. The authors would first scan for a AATAAA motif in the 

sequence and then predict if that is a true polyadenylation site. However, using such a 

scanning method has a disadvantage, that is, although 58.2% of human polyadenylation 

site contains an AATAAA upstream, there are motifs other than AATAAA can also be a 

true polyadenylation site (Beaudoing, Freier, Wyatt, Claverie and Gautheret, 2000). 

Therefore, the prediction model will surely fail to recognize those sites. 

 

 Also, not all functional sites have an anchor motif. For example, the most 

frequently occurring motif (AATAAA) for Arabidopsis polyadenylation sites is found 

only in about 10% of Arabidopsis genes (Loke, Stahlberg, Strenski, Haas, Wood and Li, 

2005). 

 For sequences without an anchor motif, feature integration will first be used to 

create an output with a prediction score for each position on the sequence. Thereafter, 

these prediction scores will be used as a feature to train a cascade classifier using 

machine learning. Any machine learning technique that can handle numerical features can 

be used here. 
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3. Sirius Prediction System Builder 

 

This software tool aims to assist anyone with some basic knowledge in data mining to be 

able to build, save and use a classifier in a hassle-free and fast way using the feature 

generation, feature selection, feature integration and possibly cascade classification 

approach. Sirius, which is also commonly known as the "Dog Star", is based on the fact 

that I am born also in the year of Dog according to lunar calendar, which is why I have 

decided to name the software tool Sirius Prediction System Builder. 

 

3.1 Overview 

 

Figure 1. Overview of Sirius PSB 

 

Sirius PSB consists of two applications namely Trainer and Predictor. Trainer serves to 

build a classifier from scratch and all the user has to do is to prepare sequences which 

typically contain a set of “positive” sequences and a set of “negative” sequences. This can 

often be done using publicly available database servers, or obtain datasets that are already 

prepared by others. “Positive” sequences here refer to a set of known related sequences. 
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For example, if the user is interested in subcellular localization of proteins, a set of 

protein sequences that are known to be found in mitochondria would be the “positive” 

sequences whereas the “negative” would be any protein sequences that are known not to 

be found in mitochondria. 

 

 Predictor allows users to use classifiers that they have saved previously using 

Trainer. After loading the classifier, users can load in new sequences and do prediction on 

them.  

 

 The following sections serve to describe the basic features and some capabilities 

of Sirius PSB rather than a step-by-step user manual guide. A step-by-step user manual 

guide is currently unavailable. However, users who are familiar with WEKA should not 

encounter much difficulty while using Sirius PSB. 

 

3.2 Trainer 

 

The usage of Trainer is straightforward as it will be guided using 4 different tabs. Each 

tab consists of something that the user needs to do before proceeding on to the next tab. 

  

 Although WEKA has its limitations in supporting the approach mentioned, but it 

can support part of the approach - feature selection and feature integration. Furthermore, 

it is a popular and powerful general machine learning tool which is familiar to many. 

Hence, incorporating it would make learning and using Sirius PSB much easier. In 

Trainer, some of the capabilities of WEKA are incorporated into it. 
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3.2.1 Step 1: Define Data 

 

 
Figure 2. ‘Step1: Define Data’ tab 

 

In this tab, the user should first decide on a working directory where all the output files 

will be saved. The user will then have to direct Sirius PSB as to where the “positive” and 

“negative” sequences can be obtained. All sequences are to be in FASTA format. Sirius 

PSB needs to know if the sequences are that of DNA or proteins by having the user select 

the corresponding radio button. Finally, the user has to tell Sirius PSB how the sequences 

are to be used. Dataset 1 would be used for training of Feature Integration classifier. 

Dataset 2 would be used for training of Cascade Classifier. Dataset 3 would be used as 

blind test set. 

  

 As there is quite a bit of information to feed to Sirius PSB, the user also has the 

option to save the settings so that he can skip this step the next time. The user can then 

click on the “Next” button to proceed to next step. 
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3.2.2 Step 2: Define Feature 

 

 
Figure 3. ‘Step 2: Define Feature’ tab 

 

This tab corresponds to the Feature Generation step of the approach. Therefore, in this 

tab, the user basically has to decide upon the candidate features to generate. The 3 

different types of features that are currently supported by Sirius PSB are k-grams feature, 

multiple k-gram feature and ratio of k-gram feature. 

 

 For each of them, the user can choose to generate all permutations given a fixed 

window or just one particular instance. For example, figure X depicts how the user can 

generate all the possible permutations of 3-gram for DNA sequence with the A, C, T, G 

characters with window location being (-30, 30). Once the user click the “OK” button, 43 

= 64 different k-gram features will be generated. 

 

 The user can then choose to remove some features using the “Remove Marked 

Features” button if there are any features the user decides should not be included in the 
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set of candidate features. 

 

 As discussed in section 2.1, users may not always know what features to generate, 

though granted, users can look up literature for the more prominent motifs. However, 

there may be times where literature on the particular topic may be limited. Therefore, I 

have implemented a genetic algorithm in attempt to mine interesting features from the 

training sequences provided by user. (More details of the implemented Genetic Algorithm 

can be found in Appendix A) 

 

 Likewise, in this step, the user can also choose to save the settings, which is the 

set of candidate features that the user has generated for future reuse. 

 

 After finalising the set of candidate features that the user is interested in, the user 

should click on “Generate Feature” button to do computation of the features for Dataset 

1. Once the computation is done, the screen will be switched to the next step. 
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3.2.3 Step 3: Select Feature 

 

 
Figure 4. ‘Step 3: Select Feature’ tab 

 

This tab is where Sirius PSB carries out feature selection. As mentioned earlier, this step 

uses some APIs provided by WEKA. Therefore, Sirius PSB is not limited to only a few 

feature selection methods as it contains all the feature selection methods available in 

WEKA. Furthermore, it will be automatically upgraded with each newer version of 

WEKA as Sirius PSB calls for WEKA APIs instead of embedding them. Sirius PSB also 

displays the class distribution graph and some statistics of each feature which are also 

extracted from WEKA. 

 

 Note that the interface of Sirius PSB in this step is a deliberate attempt in 

mimicking that of WEKA so that users who are familiar with WEKA will feel more at 

ease using Sirius PSB.  

 

 After the user is done with feature selection on the set of candidate features, the 
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user can click on the “Next” button to move on to the final tab of Trainer. 

 

3.2.4 Step 4: Choose Classifier 

 

 
Figure 5. ‘Step 4: Choose Classifier’ tab – Performance Measures Summary 
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Figure 6. ‘Step 4: Choose Classifier’ tab – Graph 

 

 

What occurs in this tab is the encompassing of the feature integration and cascade 

classification step of the approach. Here, level one classifier refers to the feature 

integration classifier while level two classifier refers to the cascade classifier. Again, as 

Sirius PSB uses APIs directly from WEKA, it offers all the machine learning techniques 

that WEKA offers. As before, it will be also automatically upgraded together with newer 

releases of WEKA as Sirius PSB calls for WEKA APIs instead of embedding them. 

 

 In this tab, there are options to either use cross-validation or blind test set (Dataset 

3) to test for the accuracy of the trained classifiers. The user also has the option of 

forgoing the testing. If users choose to test the trained classifiers, either by using cross-

validation or blind test set, a comprehensive summary of the classifier performance will 

be displayed (refer to Figure 5). Furthermore, there is also a graph showing the fraction 

vs. threshold of various performance measurement (refer to Figure 6). 
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 After training the classifiers, the user can then choose to save them. The saved 

classifiers can later be used in Predictor or set up as a prediction server. 

 

3.3 Predictor 

 

 
Figure 7. Predictor 

 

Predictor provides the capabilities to load a classifier and run it on sequences to generate 

prediction scores. After loading a classifier, the user can load in a file of sequences stored 

in FASTA format. Once a classifier had been run on a set of sequences, Predictor will 

graphically display the prediction scores of the classifier on the sequences.  

  

 The user also has the option to decide on whether to make prediction on all 

positions of the sequence or only on user-specified motifs. The all positions mode would 

be useful when each position of the sequence is a possible candidate site. The user-

specified motifs mode would come in handy when the user knows that only certain 

sequences can be the 'real' site. 
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4. Prediction Systems built using Sirius PSB 

 

After creating Sirius PSB, the next obvious step would be to demonstrate that Sirius PSB 

is indeed capable of producing decent prediction systems for real-life applications. 

Therefore, I have built two prediction models using Sirius PSB. One is for prediction of 

subcellular localization of proteins and the other, for recognition of Arabidopsis 

polyadenylation site. It took me approximately one week to build them. 

 

4.1. Subcellular Localization of Proteins 

  

4.1.1 Introduction 

  

Given a protein sequence, it would be interesting to know the subcellular localization of 

the protein as it can allow us to better understand its function. Many prediction models 

have been constructed previously to predict a protein subcellular localization based on its 

sequence. In particular, TargetP (Emanuelsson, Nielsen, Brunak and Heijne, 2000) is one 

such model. It has achieved a high sensitivity (>85%) and is still often used by biologists 

till today. Hence, I will compare my protein localization model against TargetP. 

 

4.1.2 Datasets 

 

The dataset used here is downloaded from the TargetP website. All sequences were 

extracted from SWISS-PROT and redundancy reduced. Please refer to Emanuelsson et al 

(2000) for more details on the preparation of the dataset.  

 The dataset has two version, plant and non-plant. For the plant version, it contains 

141 cTP, 368 mTP, 269 SP and 162 “other” sequences. For the non-plant version, it 

contains 371 mTP, 715 SP and 1652 “other” sequences. 

 The abbreviations used subsequently are as follows: cTP stands for chloroplast 

transit peptides, mTP stands for mitochondrial targeting peptides, SP stands for signal 

peptides and “other” stands for peptides in other localizations. 
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4.1.3 Methods 

 

TargetP is built using neural networks and consists of two layers. The first layer is a 

dedicated network for each presequence (cTP, mTP, SP), and the second layer is an 

integrating network that outputs the actual prediction. A non-plant version of TargetP that 

distinguishes only between mTP, SP and “other” has also been constructed. 

 

 For my protein localization model (PL model), I employed the first 3 step of the 

approach- Feature generation, feature selection and feature integration.  

 

 For the feature generation step, I used straightforward features of 1, 2 and 3-gram 

with window (0,100). Note that there are 20 different amino acids. This means I have 20 

+ 202 + 203 = 8420 features. I will then calculate the occurrence of the 8420 features for 

the first 101 characters of each sequence. For the feature selection step, I filtered away 

those with chi-square value <= 0. As for the feature integration step, I used Support 

Vector Machine (Cortes and Vapnik, 1995) with polynomial kernel of degree two. Like 

TargetP, I also have seven different SVM classifiers for each type of presequence. 

 

4.1.4 Results 

 
Table 1. Prediction performance based on 5-fold cross-validation of TargetP, PL model and Upgraded PL 

model. 

 TargetP PL model Upgraded PL model 

Set Category Size TP FN SN TP FN SN TP FN SN 

Plant cTP 141 120 21 0.851 127 14 0.901 

 mTP 368 300 68 0.815 297 71 0.807 

 SP 269 245 15 0.911 253 16 0.941 

 other 162 137 25 0.846 142 20 0.877 

Plant Sensitivity 0.856 0.882 

 



18 

Non-

plant 

mTP 371 330 41 0.889 344 27 0.927 

 SP 715 683 32 0.955 204 511 0.285 466 79 0.855 

 other 1652 1451 201 0.878 1552 100 0.939  

Non-plant Sensitivity 0.907 0.717 0.907 

Overall Sensitivity 0.878 0.811 0.892 

   

The results for TargetP are extracted from Emanuelsson et al (2000). Since the authors 

used 5-fold cross-validation, in order to compare with TargetP, I also ran 5-fold cross-

validation on PL model and Upgraded PL model. 

 

 As the initial results of the SVM classifier for non-plant SP sequence were not 

satisfactory, I re-trained it using new features generated from genetic algorithm. The only 

difference between Upgraded PL model and PL model are the features used to train non-

plant SP SVM classifier.  

 

 170 sequences from non-plant SP were randomly chosen to run genetic algorithm. 

Therefore, the Upgraded PL model only used 545 (715 – 170) sequences for the cross-

validation to prevent obtaining over-optimistic results. 

  

 

4.1.5 Discussion 

 

From the results, it is clear that using the approach (feature generation, feature selection 

and feature integration) is able to obtain comparable if not better performance for the 

prediction of subcellular localization of proteins. 

 It is not surprising to see why PL model is able to achieve good results simply 

based on the features that only consider the first 101 positions of each sequences, as 

biological facts tell us that the first part of protein sequences contains its “address”. 

 One highly probable reason as to why PL model does not perform up to par on 

non-plant SP sequences could be that those sequences do not have any distinguishing 
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characteristics in the first 101 positions to allow the classifier to differentiate non-plant 

SP sequences from the rest. 

 After running genetic algorithm, I simply selected the top 120 features from the 

set of features generated after some filtering. With only these 120 features, Upgraded PL 

model was able to produce a much improved classifier. This shows that the implemented 

genetic algorithm indeed is able to mine “interesting” features. 

 Finally, all this was done in simply one week using Sirius PSB. During the one 

week, I was also concurrently working on building a prediction model for 

polyadenylation sites of Arabidopsis, which I will discuss in the next section. 
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4.2 Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences 

 

4.2.1 Introduction 

 

Polyadenylation is a post-transcriptional process. The process basically cleaves and adds 

approximately 200-300 adenosine residues to the pre-mRNA 3' end. This process has 

been shown to be an essential processing event and an integral part of gene expression 

(Loke et al, 2005). Having the ability to accurately predict them allows us to define gene 

boundaries, predict the number of genes as well as better understand the process. 

 Currently, the best prediction model for recognition of polyadenylation site for 

Arabidopsis sequences is designed by Koh et al (2007). Therefore, I will compare my 

Arabidopsis polyadenylation site model (APS model) against Koh et al (2007) model. 

 

4.2.2 Datasets 

 

The dataset used here are provided by Qingshun Quinn Li (Ji et al, 2007). For any two 

sequences with more than 70% similarity using pair-wise global alignment, one is 

removed. After redundancy is reduced, the dataset contains 6209 sequences with EST-

supported polyadenylation sites, 1501 coding region sequences, 864 5'UTR region 

sequences and 1581 intronic region sequences. Each sequence is of length 400 and for the 

EST-supported sequences; the polyadenylation site is at position 301.The dataset are split 

and used in the following ways: 

Dataset A (Used for training Feature Integration Classifier) 

  2640 (+ve) sequences with EST-supported polyadenylation sites 

  900 (-ve) coding region sequences 

  476 (-ve) 5'UTR region sequences 

  954 (-ve) intronic region sequences 

 Dataset B (Used for training Cascade Classifier) 

  1500 (+ve) sequences with EST-supported polyadenylation sites 

  100 (-ve) coding region sequences 

  100 (-ve) 5'UTR region sequences 
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  100 (-ve) intronic region sequences 

 Dataset C (Used for testing) 

  2069 (+ve) sequences with EST-supported polyadenylation sites 

  501 (-ve) coding region sequences 

  288 (-ve) 5'UTR region sequences 

  527 (-ve) intronic region sequences 

 Both models use the same number of sequences in the same way. This is possible 

because both Koh et al (2007) model and APS model follow the same general approach. 

 

4.2.3 Methods 

 

Feature generation, feature selection, feature integration and cascade classification is the 

methodology used by both Koh et al (2007) model and APS model. The settings for 

feature selection (chi-square with threshold 0) and feature integration (support vector 

machine) for both models are the same. The difference between the two models is in the 

feature generation and cascade classification steps. 

 Koh et al (2007) model generates 261 candidate features based on biological 

knowledge from literature and uses 81 scores output by feature integration classifier (-

40,41) relative to a candidate site for cascade classification. APS model generates 173 

candidate features based on running genetic algorithm on Dataset A and uses (-10, 11). 

 

4.2.4 Results 

 
Table 2. Equal-error-rate of Koh et al (2007) model and APS model. 

Control 

Sequences 

 Koh et al (2007) model 

Sensitivity & Specificity 

APS model 

Sensitivity & Specificity 

Coding  SN_0 0.943 0.955 

 SN_10 0.965 0.971 

 SN_30 0.975 0.978 

5'UTR SN_0 0.849 0.854 

 SN_10 0.892 0.891 
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 SN_30 0.915 0.912 

Intronic SN_0 0.711 0.724 

 SN_10 0.788 0.791 

 SN_30 0.830 0.833 

 

 

The performance measure used is equal-error-rate value (i.e. the points where sensitivity 

= specificity).  

Sensitivity (SN) = TP/ (TP + FN) 

Specificity (SP) = TN / (TN + FP)  

where TP (True Positive) is the total number of EST-supported polyadenylation sites that 

are correctly predicted. FN (False Negative) is the total number of EST-supported 

polyadenylation sites that are not identified. TN (True Negative) is the total number of 

sites with prediction score <= threshold in the (-ve) sequences. FP (False Positive) is the 

total number of sites with score > threshold in the (-ve) sequences. 

 SN_0 means that the predicted polyadenylation site is exactly the same as the 

EST-supported polyadenylation site. SN_10 means the EST-supported polyadenylation 

site is within 10 nucleotides of the predicted polyadenylation site. SN_30 means the EST-

supported polyadenylation site is within 30 nucleotides of the predicted polyadenylation 

site. 

 

4.2.5 Discussion 

 

From the results, APS model has shown slightly better performance over Koh et al (2007) 

model. What I would like to stress here is that even though both methods followed the 

same approach, but Koh et al (2007) model was designed by writing many programs and 

having to change the codes in the programs whenever the authors wanted to try different 

settings or generate different features. In contrast, APS model was produced by using 

Sirius PSB and settings can be changed simply by a few mouse clicks using the Graphical 

User Interface of Sirius PSB. 

 Another important difference is that the 261 candidate features generated by Koh 
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et al (2007) are decided upon after the authors spent a lot of time and effort searching and 

reading literature about Arabidopsis polyadenylation process. Compare this with APS 

model that generated the 173 features simply by running the genetic algorithm (provided 

by Sirius PSB) using Dataset A. This shows that with Sirius PSB's genetic algorithm, 

prior knowledge about the dataset is not required. 

 Due to these differences, Koh et al (2007) model took the authors about nine 

months to complete whereas APS model took me less than one week. 
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5. Conclusion 

 

 In this report, I have described a software tool named Sirius Prediction System 

Builder. Sirius PSB aims to allow users to be able to build high-quality prediction models 

using the feature generation, feature selection, feature integration and cascade 

classification approach in a manner that is hassle-free yet rapid. 

 Having the easy-to-use graphical user interface, even people without prior 

programming knowledge would be able to build a prediction model. As demonstrated 

using the two prediction models I have built using Sirius PSB, not only can those 

prediction models match current-state-of-art models in terms of accuracy, but the time 

required to build them is also significantly reduced. 

 Furthermore, with the genetic algorithm provided in Sirius PSB, users need not 

even worry about what features to generate. As I have shown that the genetic algorithm is 

able to generate “useful” features where excellent prediction models can be subsequently 

built from them. 

 With Sirius PSB, I am confident that more high-quality prediction models will be 

produced using the feature generation, feature selection, feature integration and cascade 

classification methodology. These prediction models built can easily be saved and reused, 

and can even by put online as prediction servers. 
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Appendix A - Genetic Algorithm 

 

 I have decided to use genetic algorithm to search the enormous possible feature 

space mainly due to two reasons. Firstly, genetic algorithm has been proven in many 

other applications to have produced excellent results (Bartels et al, 2000, Preble, Lipson 

and Lipson, 2005, Sam and Mani, 1996). Secondly, it is a highly flexible search 

algorithm. At any stage of the algorithm, you can stop it, evaluate the current features and 

then continue running the algorithm later with new features or adjusted settings. 

 

1. Initialize Population 

- Each individual is a feature (K-gram, Ratio of K-gram or Multiple K-

gram) 

- Unless the user provides the initial population, it will be randomly 

generated 

- K-gram features consists of two parts, (k-gram and x mistake allowed) and  

 (window location) 

- Ratio of K-gram features basically consists of three parts, (k-gram and x 

mistakes allowed), (l-gram and y mistakes allowed) and (window location) 

- Multiple K-gram features consists of one (window location) and at least 

two or more (ki-gram and xi mistakes allowed) and (min yi-gap and max 

zi-gap) 

2. Evaluation 

- The fitness score used is the chi-square value of each feature calculated 

based on Dataset 1 sequences 

3. Selection 

- Select (selection percent (user-specified) / 100 * population size (user-

specified)) into the next generation directly 

- Features are selected with a probability directly proportionate to its chi-

square value 

4. Crossover  

- Do (100 - selection percent) * (population size / 2) number of crossover 



 

- Select two different features as parents  

- Again, the feature with the higher score has a higher probability to be 

selected as a parent 

- Generate two offspring (by taking parts from the parents) which will be 

added to the next generation 

 Example:  

One k-gram feature (AACTGGA with 2 mistakes allowed) and 

(Window Location: -110 to 5) and one multiple of k-gram feature 

(ACTG with 0 mistakes allowed), (Gap: 10 to 30), (AXTTTT with 

0 mistakes allowed) and (Window Location: 30 to 90) are selected 

as parents. 

Two possible offspring that could be generated are ratio k-gram 

features (AACTGGA with 2 mistakes allowed), (ACTG with 0 

mistakes allowed) and (Window Location: 30 to 90) and k-gram 

features (ACTG with 0 mistakes allowed) and (Window Location: 

-110 to 5). 

- Offspring generate here is ensured to be different from the parent so as to 

allow for diversity in the population 

5. Mutation 

- Select ((mutation percent (user-specified) / 100) * population size) to do 

point mutation randomly 

- Selection of features are done randomly 

- Then randomly choose a part of the feature and mutate (change) one of the 

values 

 Example: 

  K-gram feature (AACTGGA with 2 mistakes allowed) and (Window 

 Location: -110 to 5) will possibly be mutate into (AACTGG with 2 

mistakes allowed) and (Window Location: -110 to 5) or (AACTGGA with 

0 mistakes allowed) and (Window Location: -110 to 5) or (AACTGGA 

with 2 mistakes allowed) and (Window Location: -110 to -20) or 

(AACTGGA with 2 mistakes  allowed) and (Window Location: -70 to 5)  



 

6. Eliminate Similar Features 

- Eliminate features that are highly similar (>80%) within the population. 

This is to prevent population being dominated by similar features 

- Features are (>80%) similar if their window location overlaps by more 

than 80% and when the rest of the parts are almost identical 

7. Replenish 

   - Generate new features randomly to replenish the population to the desired 

size 

8. Return to step 2 unless termination generation (user-specified) is reached 

 
 
 


