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Summary

With more and more biological information generated, the most pressing task of bioinformatics

has become to analyse and interpret various types of data, including nucleotide and amino acid

sequences, protein structures, gene expression profilingsand so on. In this thesis, we apply

the data mining techniques of feature generation, feature selection, and feature integration with

learning algorithms to tackle the problems of disease phenotype classification and patient survival

prediction from gene expression profiles, and the problems of functional site prediction from

DNA sequences.

When dealing with problems arising from gene expression profiles, we propose a new fea-

ture selection process for identifying genes associated with disease phenotype classification or

patient survival prediction. This method,ERCOF(Entropy-based Rank sum test and COrre-

lation Filtering), aims to select a set of sharply discriminating genes with little redundancy by

combining entropy measure, Wilcoxon rank sum test and Pearson correlation coefficient test.

As for classification algorithms, we focus on methods built on the idea of ensemble of decision

trees, including widely used bagging, boosting and random forests, as well as newly published

CS4. To compare the decision tree methods with other state-of-the-art classifiers, support vector

machines (SVM) andk-nearest neighbour are also used. Various comparisons among different

feature selection methods and different classification algorithms are addressed based on more

than one thousand tests conducted on six gene expression profiles and one proteomic data.

In the study of patient survival prediction, we present a newidea of selecting informative

training samples by defining long-term and short-term survivors. ERCOF is then applied to

identify genes from these samples. A regression function built on the selected samples and genes

by a linear kernel SVM is worked out to assign a risk score to each patient. Kaplan-Meier plots

xii



for different risk groups formed on the risk scores are then drawn to show the effectiveness of the

model. Two case studies, one on survival prediction for patients after chemotherapy for diffuse

large-B-cell lymphoma and one on lung adenocarcinomas, areconducted.

In order to apply data mining methodology to identify functional sites in biological se-

quences, we first generate candidate features usingk-gram nucleotide acid or amino acid pat-

terns and then transform original sequences respect to the new constructed feature space. Feature

selection is then conducted to find signal patterns that can distinguish true functional sites from

those false ones. These selected features are further integrated with learning algorithms to build

classification and prediction models. Our idea is used to recognize translation initiation sites

and polyadenylation signals in DNA and mRNA sequences. For each application, experimental

results across different data sets (including both public ones and our own extracted ones) are

collected to demonstrate the effectiveness and robustnessof our method.
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Chapter 1

Introduction

The past few decades witness an explosive growth in biological information generated by the

scientific community. This is caused by major advances in thefield of molecular biology, coupled

with advances in genomic technologies. In turn, the huge amount of genomic data generated not

only leads to a demand on the computer science community to help store, organize and index the

data, but also leads to a demand for specialized tools to viewand analyze the data.

“Biology in the 21st century is being transformed from a purely lab-based science to an

information science as well”[3].

As a result of this transformation, a new field of science was born, in which biology, com-

puter science, and information technology merge to form a single discipline [3]. This isbioin-

formatics.

“The ultimate goal of bioinformatics is to enable the discovery of new biological insights

as well as to create a global perspective from which unifyingprinciples in biology can be dis-

cerned” [3].

1.1 Motivation

At the beginning, the main role of bioinformatics was to create and maintain databases to store

biological information, such as nucleotide and amino acid sequences. With more and more data

generated, nowadays, the most pressing task of bioinformatics has moved to analyse and interpret

various types of data, including nucleotide and amino acid sequences, protein domains, protein
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structures and so on. To meet the new requirements arising from the new tasks, researchers in the

field of bioinformatics are working on the development of newalgorithms (mathematical formu-

las, statistical methods and etc) and software tools which are designed for assessing relationships

among large data sets stored, such as methods to locate a genewithin a sequence, predict protein

structure and/or function, understand diseases at gene expression level and etc.

Motivated by the fast development of bioinformatics, this thesis is designed to apply data

mining technologies to some biological data so that the relevant biological problems can be

solved by computer programs. The aim of data mining is to automatically or semi-automatically

discover hidden knowledge, unexpected patterns and new rules from data. There are a variety

of technologies involved in the process of data mining, suchas statistical analysis, modeling

techniques and database technology. During the last ten years, data mining is undergoing very

fast development both on techniques and applications. Its typical applications include market

segmentation, customer profiling, fraud detection, (electricity) loading forecasting, credit risk

analysis and so on. In the current post-genome age, understanding floods of data in molecular bi-

ology brings great opportunities and big challenges to datamining researchers. Successful stories

from this new application will greatly benefit both computerscience and biology communities.

We would like to call thisdiscovering biological knowledge “in silico” by data mining.

1.2 Work and Contribution

To make use of original biological and clinical data in the data mining process, we follow the

regular process flow in data mining but with emphasis on threesteps of feature manipulation,

viz. feature space generation, feature selection and feature integration with learning algorithms.

These steps are important in dealing with biological and clinical data.

(1) Some biological data, such as DNA sequences, have no explicit features that can be easily

used by learning algorithms. Thus, constructing a feature space to describe original data

becomes necessary.

(2) Quite a number of biological and clinical data sets possess many features. Selecting sig-

nal features and removing noisy ones will not only largely reduce the processing time and

greatly improve the learning performance in the later stage, but also help locate good pat-
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terns that are related to the essence of the study. For example, in gene expression data

analysis, feature selection methods have been widely used to find genes that are most as-

sociated with a disease or a subtype of certain cancer.

(3) Many issues arising from biological and clinical data, in the final analysis, can be treated as

or converted into classification problems and then can be solved by data mining algorithms.

In this thesis, we will mainly tackle gene expression profiles and DNA sequence data.

For gene expression profiles, we apply our method to solve twokinds of problems: pheno-

type classification and patient survival prediction. In these two problems, genes serve as features.

Since profile data often contains thousands of genes, we put forward a new feature selection

method ERCOF to identify genes most related to the problem. ERCOF conducts three-phase

of gene filtering. First, it selects genes using an entropy-based discretization algorithm, which

generally keeps only 10% of discriminating genes. Secondly, these remaining genes are further

filtered by Wilcoxon rank sum test, a non-parametric statistic alternative to thet-test. Genes

passing this round of filtering are automatically divided into two groups: one group consists of

genes that are highly expressed in one type of samples (such as cancer) while another group

consists of genes that are highly expressed in another type of samples (such asnon-cancer). In

the third phase, correlated genes in each group are determined by Pearson correlation coefficient

test and only some representatives of them are kept to form the final set of selected genes.

When applying learning algorithms to classify phenotypes,we focus on classifiers built on

the idea of an ensemble of decision trees, including the newly published CS4 [63, 62], as well as

state-of-the-art Bagging [19], Boosting [38], and Random forests [20]. More than one thousand

tests are conducted on six published gene expression profiling data sets and one proteomic data

set. To compare the performance of these ensembles of decision tree methods with those widely

used learning algorithms in gene expression studies, experimental results on support vector ma-

chines (SVM) andk-nearest neighbour (k-NN) are also collected. SVM is chosen because it is

a representative of kernel function.k-NN is chosen because it is the most typical instance-based

classifier. To demonstrate the main advantage of the decision tree methods, we present some of

decision trees induced from data sets. These trees are simple, explicit and easy to understand.

For each classifier, besides ERCOF, we also try features selected by several other entropy-based

filtering methods. Therefore, various comparisons of learning algorithms and feature selection
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methods can be addressed.

In the study of using gene expression profiles to predict patient survival status, we present

a new idea of selecting informative training samples by defining “long-term” and “short-term”

survivors. After identifying genes associated with survival via ERCOF, a scoring model built on

SVM is worked out to assign risk score to each patient. Kaplan-Meier plots for different risk

groups formed on the risk scores are then drawn to show the effectiveness of the model.

Another biological domain to which the proposed 3-step feature manipulation method is

applied is the recognition of functional sites in DNA sequences, such as translation initiation

sites (TIS) and polyadenylation (poly(A)) signal. In this study, we put our emphasis on feature

generation —k-gram nucleotide acid or amino acid patterns are used to construct the feature

space and the frequency of each pattern appearing in the sequence is used as value. Under the

description of the new features, original sequence data arethen transformed to frequency vector

data to which feature selection and classification can be applied. In TIS recognition, we test

our methods on three independent data sets. Besides the cross validation within each dat set,

we also conduct the tests across different data sets. In the identification of poly(A) signal, we

make use of both public and our own collected data and build different models for DNA and

mRNA sequences. In both studies, we achieve comparable or better prediction accuracy than

those reported in the literature on the same data sets. In addition, we also verify some known

motifs and find some new patterns related to the identification of relevant functional sites.

The main contributions of this thesis are

(1) articulating a 3-step feature manipulation method to solve some biological problems;

(2) putting forward a new feature selection strategy to identify good genes from a large amount

of candidates in gene expression data analysis;

(3) presenting a new method for the study on patient survivalprediction, including selecting

informative training samples, choosing related genes and building an SVM-based scoring

model;

(4) applying the proposed techniques to published gene expression profiles and proteomic

data, and addressing various comparisons on classificationand feature selection methods

from a large amount of experimental results;
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(5) pointing out significant genes from each analysed data set, comparing them with literature

and relating some of them to the relevant diseases;

(6) recognizing two types of functional sites in DNA sequence data by usingk-gram amino

acid or nucleotide acid patterns to construct feature spaceand validating learning models

across different independent data sets.

1.3 Structure

Chapter 2 first defines terms and introduces some concepts of supervised machine learning. Then

it reviews some learning algorithms and techniques, including support vector machines (SVM),k-nearest neighbour (k-NN) and decision tree induction. Presenting methods of ensemble deci-

sion trees is the emphasis of this chapter and state-of-the-art algorithms, such as Bagging, Boost-

ing, Random forests, are described in detail. Newly implemented and published CS4 (cascading-

and-sharing for decision trees) is illustrated at the end, which makes use of different top-ranked

features as the root node of a decision tree in an ensemble.

Chapter 3 surveys feature selection techniques for data mining. It begins with introducing

two broad categories of selection algorithms — filter and wrapper, and indicating that filter is

more suitable to solve biological problems. Then it presents a variety of common filter methods,

such ast-statistic measure, Wilcoxon rank sum test, entropy-basedmeasures, principal compo-

nents analysis and so on. Following these methods, there comes ERCOF, our proposed 3-phase

feature filtering strategy for gene expression data analysis. The chapter ends with a discussion

on applying feature selection to bioinformatics.

Chapter 4 is a literature review of microarray gene expression data studies. The idea of mi-

croarray experiments and the problems arising from gene expression data are introduced before

the extensive survey on various technologies that have beeninvolved in this research area. These

technologies are described in terms of data preprocessing,gene selection, supervised learning,

clustering, and patient survival analysis.

Chapter 5 describes in detail my experimental work on phenotype classification from gene

expression data. The chapter starts with illustrating the proposed feature selection and super-

vised learning scenarios, experimental design and evaluation methods. Then, it presents more
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than 1,000 experimental results obtained from six gene expression profiles and one proteomic

data. For each data set, not only the classification and prediction accuracy is given, but also the

selected discriminatory genes are reported and related to the literature and the disease. Some

comparisons among feature selection methods and learning algorithms are also made based on

the large amount of experimental results. ERCOF and CS4 are shown to be the best feature

selection method and ensemble tree algorithm, respectively.

Chapter 6 presents my work on patient survival prediction using gene expression data. A

new method is illustrated in detail according to the order ofselecting informative training sam-

ples, identifying related genes and building an SVM-based scoring model. Case studies, on

survival prediction for patients after chemotherapy for diffuse large-B-cell lymphoma and Stage

I and III lung adenocarcinomas, are presented following thedescription of the method.

Chapter 7 is my work on applying data mining technologies to recognize functional sites

in DNA sequences. The chapter begins with describing our method of feature manipulation for

dealing with sequence data, with the stress on feature generation usingk-gram nucleotide acid or

amino acid patterns. Then the method is applied to identify translation initiation site (TIS) and

polyadenylation (poly(A)) signal. The presentation orderfor each application is: background

knowledge, data sets description, experimental results, and discussion. For both TIS and poly(A)

signal recognitions, results achieved by our method are comparable or superior to previously

reported ones, and several independent data sets are used totest the effectiveness and robustness

of our prediction models.

Chapter 8 makes conclusions and suggests future work.

Figure 1.1 shows the structure of this thesis in a graph.
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Chapter 2

Classification — Supervised Learning

Data mining is to extract implicit, previously unknown and potentially useful information from

data [134]. It is a learning process, achieved by building computer programs to seek regularities

or patterns from data automatically. Machine learning provides the technical basis of data mining.

One major type of learning we will address in this thesis is called classification learning, which

is a generalization of concept learning [122]. The task of concept learning is to acquire the

definition of a general category given a set of positive classand negative class training instances

of the category [78]. Thus, it infers a boolean-valued function from training instances. As a more

general format of concept learning, classification learning can deal with more than two class

instances. In practice, the learning process of classification is to find models that can separate

instances in the different classes using the information provided by training instances. Thus,

the models found can be applied to classify a new unknown instance to one of those classes.

Putting it more prosaically, given some instances of the positive class and some instances of

the negative class, can we use them as a basis to decide if a newunknown instance is positive

or negative [78]. This kind of learning is a process from general to specific and is supervised

because the class membership of training instances are clearly known.

In contrast to supervised learning is unsupervised learning, where there is no pre-defined

classes for training instances. The main goal of unsupervised learning is to decide which in-

stances should be grouped together, in other words, to form the classes. Sometimes, these two

kinds of learnings are used sequentially — supervised learning making use of class information

derived from unsupervised learning. This two-step strategy has achieved some success in gene
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Table 2.1: An example of gene expression data. There are two samples, each of which is
described by 5 genes. The class label in the last column indicates the phenotype of the sample.

Gene1 Gene2 Gene3 Gene4 Gene5Class
298 654 1284 800 163 ALL
2947 1811 198 679 225 AML

expression data analysis field [41, 6], where unsupervised clustering methods were first used

to discover classes (for example, subtypes of leukemia) so that supervised learning algorithms

could be employed to establish classification models and assign a phenotype to a newly coming

instance.

2.1 Data Representation

In a typical classification task, data is represented as a table of samples(also known asinstances).

Each sample is described by a fixed number offeatures(also known asattributes) and a label that

indicated itsclass[44]. For example, in studies of phenotype classification, gene expression data

onm genes fornmRNA samples is often summarized by ann�(m+1) table(X;Y ) = (xij ; yi),
wherexij denotes the expression level of genej in mRNA samplei, andyi is the class (e.g.

acute lymphoblastic leukemia) to which samplei belongs (i = 1; 2; : : : ; n andj = 1; 2; : : : ;m).

Table 2.1 shows two samples from a leukemia data set.

2.2 Results Evaluation

Evaluation is the key to making real progress in data mining [134]. To evaluate performance

of classification algorithms, one way is to split samples into two sets, training samples and test

samples. Training samples are used to build a learning modelwhile test samples are used to

evaluate the accuracy of the model. During validation, testsamples are supplied to the model,

having their class labels “hidden”, and then their predicted class labels assigned by the model

are compared with their corresponding original class labels to calculate prediction accuracy. If

two labels (actual and predicated) of a test sample are same,then the prediction to this sample is

counted as asuccess; otherwise, it is anerror [134]. An often used performance evaluation term

is error rate, which is defined as the proportion of errors made over a wholeset of test samples. In
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Figure 2.1: Confusion matrix for two-class classification problem.

some cases, we just simply use number of errors to indicate the performance. Note that, although

the error rate on test samples is often more meaningful to evaluate a model, the error rate on the

training samples is nevertheless useful to know as well since the model is derived from them.

Let’s see the confusion matrix illustrated in Figure 2.1 of atwo-class problem. Thetrue

positive(TP) andtrue negative(TN) are correct classifications in samples of each class, respec-

tively. A false positive(FP) is when a classB sample is incorrectly predicted as a classA
sample; afalse negative(FN) is when a classA sample is predicted as a classB sample. Then

each element of a confusion matrix shows the number of test samples for which the actual class

is the row and the predicted class is the column. Thus, the error rate is just the number of

false positives and false negatives divided by the total number of test samples (i.e. error rate =(FP + FN)=(TP + TN + FP + FN)).
Error rate is a measurement of overall performance of a classification algorithm (also known

as a classifier); however, a lower error rate does not necessarily imply better performance on a

target task. For example, there are 10 samples in classA and 90 samples in classB. If TP = 5
andTN = 85, thenFP = 5, FN = 5 and error rate is only 10%. However, in classA, there are

only 50% samples are correctly classified. To more impartially evaluate the classification results,

some other evaluation metrics are constructed:

1. True positive rate (TP rate) =TP=(TP + FN), also known assensitivityor recall, which

measures the proportion of samples in classA that are correctly classified as classA.

2. True negative rate (TN rate) =TN=(FP+TN), also known asspecificity, which measures

the proportion of samples in classB that are correctly classified as classB.

3. False positive rate (FP rate)= FP=(FP + TN) = 1� spe
ifi
ity.
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Figure 2.2: A sample ROC curve. The dotted line on the 45 degree diagonal is the expected curve
for a classifier making random predictions.

4. False negative rate (FN rate)= FN=(TP + FN) = 1� sensitivity.

5. Positive predictive value (PPV)= TP=(TP +FP ), also known asprecision, which mea-

sures the proportion of the claimed classA samples are indeed classA samples.

In classification, it is a normal situation that along with a higher TP rate, there comes a higher FP

rate, and same to the TN rate and FN rate. Thus, the receiver operating characteristic (ROC) curve

was invented to characterize the tradeoff between TP rate and FP rate. The ROC curve plots TP

rate on the vertical axis against FP rate on the horizontal axis. With an ROC curve of a classifier,

the evaluation metric will be the area under the ROC curve. The larger the area under the curve

(the more closely the curve follows the left-hand border andthe top border of the ROC space), the

more accurate the test. Thus, the ROC curve for a perfect classifier has an area of 1. The expected

curve for a classifier making random predictions will be a line on the 45 degree diagonal and its

expected area is 0.5. Please refer to Figure 2.2 for a sample ROC curve. ROC curve is widely used

in bioinformatics domain, for example, it has been adopted to implement the evaluation scoring

system of KDD Cup 2001 (http://www.cs.wisc.edu/˜dpage/kddcup2001/ ) and

KDD Cup 2002 (http://www.biostat.wisc.edu/˜craven/kddcup/ ), both of them

were about classifying biological data.

If the number of samples for training and testing is limited,a standard way of predicting

the error rate of a learning technique is to use stratifiedk-fold cross validation. Ink-fold cross

validation, first, a full data set is divided randomly intok disjoint subsets of approximately equal

size, in each of which the class is represented in approximately the sample proportions as in the
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full data set [134]. Then the above process of training and testing will be repeatedk times on

thek data subsets. In each iteration, (1) one of the subsets is held out in turn, (2) the classifier is

trained on the remainingk � 1 subsets to build classification model, (3) the classification error

of this iteration is calculated by testing the classification model on the holdout set. Finally, thek
number of errors are added up to yield an overall error estimate. Obviously, at the end of cross

validation, every sample has been used exactly once for testing.

A widely used selection fork is 10. Why 10? “Extensive tests on numerous different data

sets, with different learning techniques, have shown that ten is about the right number of folds to

get the best estimate of error, and there is also some theoretical evidence that backs this up” [134].

Although 10-fold cross validation has become the standard method in practical terms, a single

10-fold cross validation might not be enough to get reliableerror estimate [134]. The reason is

that, if the seed of the random function that is used to dividedata into subsets is changed, the

cross validation with the sample classifier and data set willoften produce different results. Thus,

for a more accurate error estimate, it is suggested to repeatthe 10-fold cross validation process

ten times and average the error rates. This is called ten 10-fold cross validation and naturally, it

is a computation-intensive undertaking.

Instead of running cross validation ten times, another approach for a reliable results is called

leave-one-outcross validation (LOOCV). LOOCV is simplyn-fold cross validation, wheren is

the number of samples in the full data set. In LOOCV, each sample in turn is left out and the

classifier is trained on all the remainingn� 1 samples. Classification error for each iteration is

judged on the class prediction for the holdout sample, success or failure. Different fromk-fold

(k < n) cross validation, LOOCV makes use of the greatest possibleamount of samples for

training in each iteration and involves no random shuffling of samples.

2.3 Algorithms

There are various ways to find models that separate two or moredata classes, i.e. do classifica-

tion. Models derived from the same sample data can be very different from one classification

algorithm to another. As a result, different models represent the knowledge learned in different

formats as well. For example, decision trees represent the knowledge in a tree structure; instance-

based algorithms, such as nearest neighbour, use the instances themselves to represent what is
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learned; naive Bayes method represents knowledge in the form of probabilistic summaries. In

this section, we will describe a number of classification algorithms that have been used in the

biomedical domain, includingk-nearest neighbour, support vector machines and decision tree

induction methods.

2.3.1 K-nearest neighbourK-nearest neighbour (k-NN) is a typical instance-based classification and prediction algorithm.

Learning in this kind of methods consists of simply storing the training data [78]. When a new

instance comes, a set of similar related instances is retrieved from memory and used to classify

the new instance. Byk-NN, the class label of a new testing sample is decided by the majority

class of itsk closest training samples. The distance between two samplesis measured by a certain

metric. Generally, the standard Euclidean distance is used. If there arem features to describe a

samplex andfi(x) denotes the value ofith feature (i = 1; 2; � � � ;m), then the Euclidean distance

between two samplesx1 andx2 is defined to bed(x1; x2), whered(x1; x2) �vuut mXi=1(fi(x1)� fi(x2))2 (2:1)
Note that using above distance metric assumes that the features are numeric, normalized and

are of equal importance. If different features are measuredon different scales and Euclidean

distance is still used directly, the effect of some featuresmight be completely dwarfed by others

that have larger scales of measurement. Therefore, in such case, normalization must be conducted

in advance. For nominal features whose values are symbolic rather than numeric, the distance

between two values is often taken to be 1 if the values are not same, to be 0 if the values are same.

No scaling is necessary in this case since only the values 0 and 1 are used. As for the selection

of k, it can be done by running cross validation on training samples. Thek for which the cross

validation error rate is smallest is retained for use on further testing and prediction. In practice,

1, 3 and 5 are the generally adopted values fork.

Although the class prediction for a new sample relies on itsk closest neighbours, the con-

tribution of thesek neighbours could not be treated equally since some of them might be a bit far

from the target sample while some are closer to it. Thus, one refinement tok-NN algorithm is
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to weight the contribution of each of thek nearest neighbours according to their distance to the

testing sample, assigning bigger weight to closer neighbours. For example, use1=distan
e as

the weight.

The nearest neighbour idea originated many decades ago, andk-NN started to be analyzed

by statisticians in early 1950s [134]. Fix and Hodges published their pioneering analysis of the

nearest neighbour in 1951 [37], and Johns first reported its usage in classification problem in

1961 [52]. Recently,k-NN has been widely used in classifying biomedical data — forexample,

gene expression data [135, 67, 140, 35, 10], and translationinitiation site prediction in DNA

sequences [142, 72]. However, there are some disadvantagesof instance-based approaches.

(1) Generally, the cost of classifying new instances can be high. This is due to the fact that

almost all computation happens at the classification time rather than when the training

samples are loaded.

(2) Since there is no separate learning phase, all training samples have to be stored in the

memory when class prediction for a new sample is done. This may consume a long-term

unrealistic amounts of storage.

(3) Typically, instance-based algorithms, especiallyk-NN, consider all features when finding

similar training samples from memory. This makes them very sensitive to feature selection.

(4) Most of the algorithms do not output explicit knowledge that is learned. When dealing

with biomedical data, this drawback is conspicuous since comprehensible knowledge is

expected by biologists and medical doctors.

2.3.2 Support vector machines

Support vector machines (SVM) is a kind of a blend of linear modeling and instance-based

learning [134], which uses linear models to implement nonlinear class boundaries. It originates

from research in statistical learning theory [130]. An SVM selects a small number of critical

boundary samples from each class of training data and buildsa linear discriminant function (also

called maximum margin hyperplane) that separates them as widely as possible. The selected

samples that are closest to the maximum margin hyperplane are calledsupport vectors. Then the

discriminant functionf(T ) for a test sampleT is a linear combination of the support vectors and
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Figure 2.3: A linear support vector machine.

its constructed as: f(T ) =Xi �iyi(Xi � T ) + b (2:2)
where the vectorsXi are the support vectors,yi are the class labels (which are assumed to have

been mapped to 1 or -1) ofXi, vectorT represents a test sample. (Xi � T ) is thedot product

of the test sampleT with one of the support vectorsXi. �i andb are numeric parameters (like

weights) to be determined by the learning algorithm. Pleasesee Figure 2.3 for representation of

a linear SVM.

In the case that no linear separation is possible, the training data will be mapped into a

higher-dimensional spaceH and an optimal hyperplane will be constructed there. The mapping is

performed by a kernel functionK(�; �) which defines an inner product inH. Different mappings

construct different SVMs. When there is a mapping, the discriminant function is given like:f(T ) =Xi �iyiK(Xi; T ) + b (2:3)
An SVM is largely characterized by the choice of its kernel function. There are two types of

widely used kernel functions [24]:polynomialkernel and Gaussianradial basis functionkernel

(RBF).� A polynomial kernel isK(X1;X2) = (X1 � X2 + 1)d, the value of powerd is called

degree and generally is set as 1, 2 or 3. Particularly, the kernel becomes a linear function

if d = 1. It is suggested to choose the value of degree starting with 1and increment it

until the estimated error ceases to improve. However, it hasbeen observed that the degree
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of a polynomial kernel plays a minor role in the final results [106] and sometime, linear

function performs better than quadratic and cubic kernels due to overfitting of the latter

kernels.� An RBF kernel has the formK(X1;X2) = exp(� jjX1�X2jj22�2 ), where� is the width of the

Gaussian. The selection of parameter� can be conducted via cross validation or some other

manners. In [23], when using SVM with RBF kernel on gene expression data analysis,

Brownet alset� equal to the median of the Euclidean distances from each positive sample

(sample with class label as 1) to the nearest negative sample(sample with class label as

-1).

Besides polynomial kernel and Gaussian RBF kernel, other kernel functions include sigmoid

kernel [108],Bn-spline kernel [108], locality-improved kernel [145], andso on. A tutorial of

SVM can be found in [24].

In order to determine parameters� and b in (2.3), the construction of the discriminant

function finally turns out to be a constrained quadratic problem on maximizing the Lagrangian

dual objective function [131]:max� W (�) = nXi=1 �i � 12 nXi;j=1�i�jyiyjK(Xi;Xj) (2:4)
under constraints nXi=1 �iyi = 0; �i � 0; (i = 1; 2; � � � ; n) (2:5)
wheren is the number of samples in training data. However, the quadratic programming (QP)

problem in equation (2.4) can not be solved easily via standard techniques since it involves a

matrix that has a number of elements equals to the square of the number of training samples. To

efficiently find the solution of the above QP program, Platt developed the sequential minimal op-

timization (SMO) algorithm [93] — one of the fastest SVM training methods. Like other SVM

training algorithms, SMO breaks the large QP problem into a series of smaller possible QP prob-

lems. Unlike other algorithms, SMO tackles these small QP problems analytically, which avoids

using a time-consuming numerical QP optimization as an inner loop. The amount of memory

required by SMO is linear with number of training samples [93]. SMO has been implemented

into Weka, a data mining software package [134].
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SVMs have been shown to perform well in multiple areas of biological analysis, such as

detecting remote protein homologies, recognizing translation initiation sites [145, 142, 72], and

prediction of molecular bioactivity in drug design [132]. Recently, more and more bioinfor-

maticians employ SVMs in their research on evaluating and analyzing microarray expression

data [23, 39, 140]. SVMs have many mathematical features that make them attractive for gene

expression analysis, including their flexibility in choosing a similarity function, sparseness of so-

lution when dealing with large data sets, the ability to handle large feature spaces, and the ability

to identify outliers [23]. Among many published works in this area, Brownet al [23] studied

an expression data set from 2467 genes from the budding yeastSaccharomyces cerevisiae mea-

sured in 79 different DNA microarray hybridization experiments. Their results show that SVMs

outperformed Parzen window, Fisher’s linear discriminantand two decision tree classifiers (C4.5

and MOC1). Fureyet al [39] analysed three data sets: ovarian cancer [109], colon cancer [84]

and subtype leukaemia [41]. They reported low test errors onthese data sets despite the small

number of tissue samples available for investigation.

On the other hand, in [76], Meyeret al did a bench mark study on comparison of SVMs

with 16 classification methods based on their performance on21 data sets from widely used UCI

machine learning database [15]. These classifiers includek-NN, classification trees (bagging,

random forests and multiple additive regression trees), linear/quadratic discriminant analysis,

neural networks and so on. For SVMs, they used the C++ libraryLIBSVM at http://www.

csie.ntu.edu.tw/˜cjlin/libsvm . They evaluated the performance of an algorithm by

classification error and mean squared error. They drew theirconclusions that: “support vector

machines yielded good performance, but were not top ranked on all data sets. Simple statistical

procedures and ensemble methods proved very competitive, mostly producing good results ‘out

of the box’ without the inconvenience of delicate and computationally expensive hyperparameter

tuning. ...... In short, our results confirm the potential ofSVMs to yield good results, but their

overall superiority can not be attested”.

In many practical data mining applications, success is measured more subjectively in terms

of how acceptable the learned description — rules, decisiontrees, or whatever — are to a hu-

man user [134]. This measurement is especially important tobiomedical applications such as

cancer studies where comprehensive and correct rules are crucial to help biologists and doctors
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understand the disease.

2.3.3 Decision trees

Decision tree induction is among the most popular classification methods. As mentioned above,

decision tree has an important advantage over other machinelearning algorithms such ask-NN

and SVM, in a qualitative dimension: rules produced by decision tree induction are easy to

interpret and understand, and hence, can help greatly in appreciating the underlying mechanisms

that separate samples in different classes.

In general, decision trees try to find an optimal partitioning of the space of possible obser-

vations, mainly by the means of subsequent recursive splits. Most of the algorithms implement

this induction process in atop-downmanner: (1) determining the root feature that most discrim-

inatory with regard to the entire training data; (2) using the root feature to split the data into

non-overlapping subsets; (3) selecting a significant feature of each of these subsets to recursively

partition them until reaching one of stopping criteria. This idea was first developed by Ross Quin-

lan and his classic paper was published in 1986 [96]. Figure 2.4 is a decision tree example from

a study of gene expression in two subtypes of acute leukemias, acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). To classify a new sample, a decision tree sorts the

sample down the tree from the root to some leaf node, which provides the classification of the

sample. Established decision trees can also be re-presented as sets ofif-then rules to improve

human readability. For example, from the left-most branch of the decision tree illustrated in Fig-

ure 2.4, a decision rule can be derived as “ifAttribute2233�80.34andAttribute4847�506.77,

thenthe sample is an ALL sample”.

Among many decision tree based classifiers, C4.5 [97] is a well-established and widely used

algorithm. C4.5 uses the informationgain ratio criterion to determine the most discriminatory

feature at each step of its decision tree induction process.In each round of selection, the gain ratio

criterion chooses, from those features with an average-or-better information gain, the feature that

maximizes the ratio of its gain divided by its entropy. C4.5 stops recursively building sub-trees

when (1) an obtained data subset contains samples of only oneclass ( then the leaf node is labeled

by this class); or (2) there is no available feature (then theleaf node is labeled by the majority

class); or (3) when the number of samples in the obtained subset is less than a specified threshold
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Attribute2233

<= 80.34 > 80.34 

Attribute4847 ALL

<= 506.77 > 506.77 

ALL AML

Figure 2.4: A decision tree for two types (ALL v.s. AML) acuteleukemias classification.
Branches correspond to the values of attributes (genes); leaves indicate classifications.

(then leaf node is labeled by the majority class). The precise definition and calculation formulae

of information gain and gain ratio are given in Section 3.22 of Chapter 3. After obtaining a

learned decision tree, C4.5 conducts treepost-pruningto make a decision tree simple and reduce

the probability of over-fitting the training data.

This pruning is known asreduced error pruning. For each of the nodes in the tree, the

traditional process of this pruning consists of removing the subtree rooted at a node, making it

a leaf node and assigning it the most common class of the training samples affiliated with that

node. A node is removed only if the resulting pruned tree performs no worse than the original

over the cross validation set [78]. Since the performance ismeasured on validation set, this

pruning strategy suffers from the disadvantage that the actual tree is based on less data. However,

in practice, C4.5 makes some estimate of error based on training data itself — using the upper

bound of a confidence interval (by default is 25%) on the resubstitution error. The estimated

error of the leaf is within one standard deviation of the estimated error of the node. Besides

reduced error pruning, C4.5 also provides another pruning option known assubtree raising. In

subtree raising, an internal node might be replaced by one ofnodes below and samples will

be redistributed. For a detailed illustration on how C4.5 conducts its post-pruning, please refer

to [97, 134].

Other algorithms for decision tree induction include ID3 (predecessor of C4.5) [96], C5.0
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(successor of C4.5), CART (classification and regression trees) [22] (http://www.salford

-systems.com/ ), LMDT (Linear Machine Decision Trees) [128], OC1 (obliqueclassifier

1) [81] and so on. This group of algorithms are most successful for analysis of clinical data

and diagnosis from clinical data. Some examples include locating protein coding regions in

Human DNA [104], prediction of post-traumatic acute lung injury [99], identification of acute

cardiac ischemia [110], prediction of neurobehavioral outcome in head-injury survivors [120].

More recently, they have been used to learn from gene expression data to reconstruct molecular

networks [117] or classify tumors [35].

2.3.4 Ensemble of decision trees

Ensemble methodsare learning algorithms that construct a set of classifiers and then classify new

samples by taking a vote of their predictions [33]. Generally speaking, an ensemble method can

increase predictive performance over a single classifier. In [33], Dietterich gave three funda-

mental reasons for why ensemble methods are able to outperform any single classifier within the

ensemble — in terms of statistical, computational and representational issues. Besides, plenty

of experimental comparisons have been performed to show significant effectiveness of ensemble

methods in improving the accuracy of single base classifiers[98, 13, 34, 20, 107].

The original ensemble method is Bayesian averaging [33], but bagging (bootstrap aggre-

gation) [19] and boosting [38] are two of most popular techniques for constructing ensembles.

Next, we will introduce how these two ideas and some other ensemble methods are implemented

to generate decision tree committees.

Bagging of decision trees

The technique of bagging was coined by Breiman [19], who investigated the properties of bag-

ging theoretically and empirically for both classificationand numeric prediction. Bagging of

trees combines several tree predictors trained on bootstrap samples of the training data and gives

prediction by taking majority vote. In bagging, given a training setS with n samples, a new train-

ing setS0 is obtained by drawingn samples uniformly with replacement fromS. When there

is a limited amount of training samples, bagging attempts toneutralize the instability of single

decision tree classifier by randomly deleting some samples and replicating others. The instability
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Generation of trees:
Let n be the number of samples in the training dataS.
For each ofk iterations:

Obtain a new training setS0 by drawingn samples with replacement fromS.
Apply the decision tree algorithm toS0.
Store the resulting tree.

Classification:
Given a new sample.
For each of thek trees:

Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.5: Algorithm for bagging.

inherent in learning algorithms means that small changes tothe training set cause large changes

in the learned classifier. Figure 2.5 is the algorithm for bagging.

Boosting of decision trees

Unlike bagging where individual trees are built independently, each new tree generated in boost-

ing is influenced by the performance of those built previously. Boosting encourages new trees to

become “experts” for samples handled incorrectly by earlier ones [134]. When making classifi-

cation, boosting weights a tree’s contribution by its performance, rather than giving equal weight

to all trees which is adopted by bagging.

There are many variants on the idea of boosting. The version introduced below is called

AdaBoostM1which was developed by Freund and Schapire [38] and designedspecifically for

classification. The AdaBoostM1 algorithm maintains a set ofweights over the training data setS and adjusts these weights after each iteration learning of the base classifier. The adjustments

increase the weight of samples that are misclassified and decrease the weight of samples that are

properly classified. By weighting samples, the decision trees are forced to concentrate on those

samples with high weight. There are two ways that AdaBoostM1manipulates these weights to

construct a new training setS0 to feed to the decision tree classifier [134]. One way is called

boosting by sampling, in which samples are drawn with replacement fromS with probability

proportional to their weights. Another way isboosting by weighting, in which the presence of

sample weights changes the error calculation of tree classifier — using the sum of the weights
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Generation of trees:
Let n be the number of samples in the training dataS.
Assign equal weight1=n to each sample inS.
For each ofk iterations:

Apply decision tree algorithm to weighted samples.
Compute errore of the obtained tree on weighted samples.
If e is equal to zero:

Store the obtained tree.
Terminate generation of trees.

If e is greater or equal to 0.5:
If the obtained tree is the first tree generated:

Store the obtained tree.
Terminate generation of trees.

For each of samples inS:
If sample is classified correctly by the obtained tree:

Multiply weight of the sample bye=(1 � e).
Normalize weight of all samples.

Classification
Given a new sample.
Assign weight of zero to all classes.
For each of the tree stored:

Add�log(e=(1 � e)) to the weight of the class predicted by the tree.
Return class with highest weight.

Figure 2.6: Algorithm for AdaBoostM1.

of the misclassified samples divided by the total weight of all samples, instead of the fraction of

samples that are misclassified. Please refer to Figure 2.6 for a detailed algorithm of AdaBoostM1

using boosting by weighting.

Please note that the approach of boosting by weighting can beused only when the learning

algorithm can cope with weighted samples. If this is not the case, an unweighted data set is gen-

erated from the weighted data by resampling. Fortunately, C4.5 decision tree induction algorithm

has been implemented to deal with weighted samples. For moredetails about this, please refer

to [98].

Besides bagging and boosting, Dietterich put forward an alternative but very simple idea,

randomization trees, to build ensemble trees. With this idea, the split at eachinternal node

is selected at random from thek (20 by default) best splits. In case of continuous attributes,

each possible threshold is considered to be a distinct split, so thek best splits may all involve

splitting on the same attribute. Experimentally, Dietterich [34] also compared randomization with
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bagging and boosting of constructing ensembles of C4.5 decision trees using 33 data sets. His

experimental results showed that (1) when there is little orno classification noise, randomization

is competitive with (sometime is slightly superior to) bagging but not as accurate as boosting;

(2) where there is substantial classification noise, bagging is much better than boosting, and

sometimes better than randomization.

Random forests

Random forestsis based on bagged trees, but in addition uses random featureselection at each

node for the set of splitting variables [20].

A more precise definition of random forests given in [20] is: “a random forest is a classifier

consisting of a collection of tree-structured classifiersh(X;Vk) (k = 1; � � �), where theVk are

independent identically distributed random vectors and each tree casts a unit vote for the most

popular class at inputX”. Using random forests, in thekth iteration, a random vectorVk is

generated, independent of the past random vectors but with the same distribution. For instance,Vk is generated by drawing samples with replacement from original training data. Based on

the bootstrapped data, in [20], the forests using randomly selected attribute or combinations of

attributes at each node were studied. In the former case, at each node,mtry number of candidate

features are selected from allm features and the best split on thesemtry is used to split the

node.mtry is defined by the user, and has the same value for each tree grown in the ensemble.

It can take any value in the range of 1 tom. In [20], two values ofmtry were tried — 1 andint(log2m+1). The experimental results illustrated that the algorithm is not very sensitive to the

value ofmtry. In the latter case, more features are defined by taking random linear combinations

of a number of the original input attributes. This approach is used when there are only a few

attributes available so that higher correlations between individual classifiers are expected. After

a splitting feature is determined, random forests grow the tree using CART [22] methodology to

maximum size and do not prune. Different from C4.5, CART selects splitting feature using GINI

impurity criterion. Please refer to Figure 2.7 for the general algorithm of random forests.

In [21], Breiman claimed that “in random forests, there is noneed for cross-validation or a

separate test set to get an unbiased estimate of the test set error.” The reason was as follows. In

each ofk iterations, about one-third of the samples are left out of the new bootstrap training set
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Generation of trees:
Let n be the number of samples in the training dataS,k be the number of trees to grow,mtry be an integer andmtry << m, (m is the number of features).
For each ofk iterations:

Obtain a new training setS0 by drawingn samples with replacement fromS.
Grow a tree, where at each node, the best split is chosen amongmtry randomly selected features.

Classification:
Given a new sample.
For each of thek trees:

Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.7: Algorithm for random forests.

and not used in the construction of the tree [20]. These samples are called “out-of-bag” (OOB)

samples to which the tree built in this iteration will be applied to get classification. In this way, a

test set classification is obtained for each sample in about one-third of the constructed trees. The

final classification for a sample is the class having the most votes from the trees in the forest.

Then the final classifications are compared with the real class labels of the OOB samples to

achieve an OOB error estimation.

Although in random forests, the feature selection at each node is random, an upper bound

for its generalization error still can be derived in terms ofstrengthof the individual decision

tree classifiers and theircorrelations[20]. This not only measures how accurate the individual

classifiers are and the dependence between them, but also gives insight into the ability of the

random forest to predict. The estimation for strength and correlation is conducted by the above

out-of-bag idea. Please see Appendix II of [20] for more information about this issue. Random

forests was claimed to achieve comparable or better accuracy than AdaboostM1 did. Besides, it

is [20] (a) relatively robust to outliers and noise, (b) faster than bagging and boosting, (c) simple

and easily parallelized. In addition, (d) useful internal estimates of error, strength, correlation

and variable importance are possible to obtain.
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CS4 — a new method of ensemble of decision trees

CS4 stands forcascading-and-sharing fordecision trees. It is a newly developed classification

algorithm based on an ensemble of decision trees. The main idea of this method is to use dif-

ferent top-ranked features as the root node of a decision tree in an ensemble (also named as a

committee) [62, 63]. Different from bagging or boosting which uses bootstrapped data, CS4 al-

ways builds decision trees using exactly the same set of training samples. The difference between

this algorithm and Dietterich’s randomization trees is also very clear — the root node features

of CS4 induced trees are different from each other while every member of a committee of ran-

domized trees always shares the same root node feature (the random selection of the splitting

feature is only applied to internal nodes). On the other hand, compared with the random forests

method which selects splitting features randomly, CS4 picks up root node features according to

their rank order of certain measurement (such as entropy, gain ratio). Thus, CS4 is claimed as a

novel ensemble tree method.

In detail, to constructk number of decision trees (k � m, m is the number of features

describe the data), we have following steps:

(1) Ranking all them features according to a certain criterion, with the best feature at the first

position.

(2) i = 1.

(3) Using theith feature as root node to constructith decision tree using base classifier.

(4) If i < k, increasingi by 1 and goto (3); otherwise, stop.

In this thesis, we use C4.5 as the base classifier of CS4 and informationgain ratio (Sec-

tion 3.22 of Chapter 3) as the measure to rank features.

In the classification phase, CS4 defines thecoverageof a rule in a tree as the percentage of

the samples in its class satisfying the rule. Suppose we havediscoveredk decision trees from

our training set containing classA and classB samples. Then, all the rules derived from thek
trees can be categorized into two groups: one group only containing rules forA samples, another

containing rules forB samples. In each group, we rank the rules in descending orderaccording
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to their coverage, such as ruleA1 ; ruleA2 ; � � �
and ruleB1 ; ruleB2 ; � � �
Given a test sampleT , each of thek trees will have a rule to fit this sample and therefore, give

a prediction for this sample. Suppose thatT satisfies the followingk1 rules of classA samples

andk2 of classB samples: rule(T )A1 ; rule(T )A2 ; � � � ; rule(T )Ak1 ;
and rule(T )B1 ; rule(T )B2 ; � � � ; rule(T )Bk2 :
Where0 � k1; k2 � k andk1 + k2 = k. The order of these rules is also based on their coverage.

When we make a prediction forT , two scores will be calculated as follows:S
ore(T )A = k1Xi=1 
overage(rule(T )Ai )
overage(ruleAi ) =k (2:6)
S
ore(T )B = k2Xi=1 
overage(rule(T )Bi )
overage(ruleBi ) =k (2:7)

If S
ore(T )A � S
ore(T )B, thenT will be predicted as a classA sample; Otherwise,T pre-

dicted as a classB sample. In practice, the tie-score case occurs rarely [62].

The algorithm of CS4 can be easily applied to solve multi-class problems. If the given data

set containsp classes samples (p � 2), similarly, we can sortp groups of topk rules according

to their coverage. When classifying a sampleT , those rules in thek trees which are satisfied byT are found and sorted. Then the classification score for a specific classC is calculated byS
ore(T )C = kCXi=1 
overage(rule(T )Ci )
overage(ruleCi ) =k (2:8)
The effectiveness of CS4 has been tested on some UCI data sets[15] as well as some public
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gene expression profiles that are described by more than 10,000 features [62]. One of the main

works of this thesis is to do further comparison of CS4 with bagging, boosting, random forests

as well as SVM andk-NN using a huge number of experimental results obtained from various

biological data sets.

2.4 Chapter Summary

In this chapter, we introduced the concept of classificationin data mining as well as the ways to

evaluate the classification performance. We selected to present in detail some of classification al-

gorithms — putting the emphasis on several methods using ensemble of decision trees, including

bagging, boosting, randomization tree, random forests andthe newly invented CS4. Besides, two

widely used classifiers, SVM andk-NN were also described so that comparisons among decision

tree methods, kernel function approaches and instance-based techniques can be addressed in the

later chapters using experimental results.
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Chapter 3

Feature Selection for Data Mining

A known problem in classification (in general machine learning) is to find ways to reduce the

dimensionality of the feature space to overcome the risk of over-fitting. Data over-fitting happens

when the number of features is large (“curse of dimensionality”) and the number of training

samples is comparatively small (“curse of data set sparsity”). In such a situation, a decision

function can perform very well on classifying training data, but does poorly on test samples.

Feature selection is concerned with the issue of distinguishing signal from noise in data analysis.

3.1 Categorization of Feature Selection Techniques

Feature selection techniques can be categorized accordingto a number of criteria [46]. One pop-

ular categorization is based on whether the target classification algorithm will be used during the

process of feature evaluation. A feature selection method,that makes an independent assessment

only based on general characteristics of the data, is named “filter” [134]; while, on the other hand,

if a method evaluates features based on accuracy estimates provided by certain learning algorithm

which will ultimately be employed for classification, it will be named as “wrapper” [55, 134].

With wrapper methods, the performance of a feature subset ismeasured in terms of the learning

algorithm’s classification performance using just those features. The classification performance

is estimated using the normal procedure of cross validation, or the bootstrap estimator [134].

Thus, the entire feature selection process is rather computation-intensive. For example, if each

evaluation involves a 10-fold cross validation, the classification procedure will be executed 10
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times. For this reason, wrappers do not scale well to data sets containing many features [45].

Besides, wrappers have to be re-run when switching from one classification algorithm to another.

In contrast to wrapper methods, filters operate independently of any learning algorithm and the

features selected can be applied to any learning algorithm at the classification stage. Filters have

been proven to be much faster than wrappers and hence, can be applied to data sets with many

features [45]. Since the biological data sets discussed in the later chapters of this thesis often

contain a huge number of features (e.g. gene expression profiles), we concentrate on filter meth-

ods.

Another taxonomy of feature selection techniques is to separate algorithms evaluating the

worth or merit of a subset features from those of individual features. Most of the feature selection

methods introduced in this chapter evaluate how well an individual feature contributes to the

separation of samples in different classes and produce a simple feature ranking. However, there

is also one method in this chapter, correlation-based feature selection, that assesses and selects a

subset of features. We will also present a new feature selection algorithm, ERCOF, which first

evaluates features individually and then forms the final representative feature set by considering

the correlations between the features.

There are some other dimensions to categorize feature selection methods. For example,

some algorithms can handle regression problem, that is, theclass label is numeric rather than

a discrete valued variable; and some algorithms evaluate and rank features independently from

class, i.e. unsupervised feature selection. We will restrict our study to the data sets with discrete

class label since this is the case of the biological problemsanalysed in later chapters of this thesis,

though some algorithms presented can be applied to numeric class label as well.

3.2 Feature Selection Algorithms

There are various ways to conduct feature selection. Let us start with introducing some often

used methods conducted by analysing the statistical properties of the data.
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3.2.1 T -test, signal-to-noise and Fisher criterion statistical measures

Highly consistent with the well-known ANOVA principle, a basic concept for identifying a rele-

vant feature from an irrelevant one is the following: if the values of a feature in samples of classA are significantly different from the values of the same feature in samples of classB, then the

feature is likely to be more relevant than a feature that has similar values inA andB. More

specifically, in order for a featuref to be relevant, its mean value�Af inA should be significantly

different from its mean value�Bf in B. However, if the values of a featuref varies greatly within

the same class of samples, even if�Af differs greatly from�Bf , the featuref is not a reliable one.

This situation leads us to a second basic concept: the standard deviation�Af and variance(�Af )2
of f in A and the standard deviation�Bf and variance(�Bf )2 of f in B should be small.

The classicalt-statistic is constructed to test the difference between means of two groups

of independent samples. So if samples in different classes are independent, thet-statistic can be

used to find features that has big difference in mean level between the two classes. These features

can be then considered to have ability to separate samples between different classes.

Given a data setX consisting ofn sample vectors:Xi = (xi1; � � � ; xim; yi) (3:1)
where1 � i � n, m is the number of features andyi is the class label ofXi. Each sample

belongs to one of two classesA (i.e. yi = A) andB (i.e. yi = B) (such astumorv.s. normal).

Similarly, a feature in the data set can be denoted asfj andxij stands for its value in samplei
(1 � j � m). In addition,nA (resp. nB) is the number of samples in classA (resp. B). For

each featurefj, the mean�Aj (resp.�Bj ) and the standard deviationÆAj (resp.ÆBj ) using only the

samples labeledA (resp.B) are calculated by�Aj = Pyk=AxkjnA (3:2)
ÆAj =vuut Pyk=A(xkj � �Aj )2nA (3:3)
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A t scoret(fj) for featurefj then can be obtained byt(fj) = j�Aj � �Bj jr (ÆAj )2nA + (ÆBj )2nB (3:4)
Thet-test statistical measure is known [105] to follow a Studentdistribution with� (�Aj )2nA + (�Bj )2nB �2� (�Aj )2nA �2nA�1 + � (�Bj )2nB �2nB�1 (3:5)

degrees of freedom. A featurefj can be considered better than a featurefl (l 6= j) if t(fj) >t(fl). Thus, when making feature selection, we can simply sort candidate features by theirt
scores and pick those with largest scores. In [82],t score is used to select important genes for

classification after applying the algorithm of partial least squares to the original high dimension

gene expression data.

In [41, 116, 39], a slightly different statistical measure from t-test was proposed to find

discriminatory genes that can distinguish tumor cells fromnormal ones using gene expression

profilings. This tests is namedsignal-to-noisestatistical measure and is constructed ass(fj) = j�Aj � �Bj jÆAj + ÆBj (3:6)
As with t-test, when using signal-to-noise statistical measure, a featurefj can be considered

better than a featurefl(l 6= j) if s(fj) > s(fl), so we always pick those features with largest

scores. Compared witht-test, the statistical property of signal-to-noise is not fully understood.

Another statistical measure that is closely related to thet-test is theFisher criterion score,

defined as fisher(fj) = (�Aj � �Bj )2(ÆAj )2 + (ÆBj )2 (3:7)
A featurefj can be considered better than a featurefl (l 6= j) if fisher(fj) > fisher(fl). In

[68], Fisher criterion score is used to select genes to distinguish two subtypes of leukemia from

expression profilings.T -test, signal-to-noise and Fisher criterion statistical measures are easy to compute and thus
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straightforward to use. However, there are three considerations that may make them ineffective

for feature selection [72]. The first consideration is that use of these tests are justified only

if it can be assumed that the data have a normal distribution,and this is almost not the case

of biological data. The second consideration is that the sample sizesnA and nB should be

sufficiently large; otherwise, underestimates of the standard deviations and variances will occur.

The third consideration is more subtle and we illustrate it using an example.

Let f1 andf2 be two features. Supposef1 has values ranging from 0 to 99 in classA with�A1 = 75 and has values ranging from 100 to 199 in classB with �B1 = 125. Supposef2 has

values ranging from 25 to 125 in classA with �A2 = 50 and has values ranging from 100 to 175

in classB with �B2 = 150. We see that�B2 ��A2 = 100 > 50 = �B1 ��A1 . Suppose the variances

of f1 andf2 in A andB are comparable. Then according to thet, s andfisher measures,f2 is

better thanf1. However, we note that the values off1 are distributed so that all those inA are

below 100 and all those inB are at least 100. In contrast, the values off2 in A andB overlap in

the range 100 to 125. Then clearlyf1 should be preferred. The effect is caused by the fact thatt, s andfisher are sensitive to all changes in the values off , including those changes that may

not be important. When dealing with gene expression data, one of the pre-processing works is to

transform the data into the space of log-ratios by taking thelogarithm of each gene (i.e. feature)

divided by the median of that gene across a set of experiments[85]. It has been shown that

the rankings of same set of candidate features, that based ont, s or fisher statistical measures,

might be different before and after this logarithm transformation.

3.2.2 Wilcoxon rank sum test

In order to avoid the assumption that feature values have to follow normal distribution, one can

use non-parametric tests. One of the best known non-parametric tests isWilcoxon rank sum test,

or the equivalent Mann-Whitney test. Wilcoxon rank sum test[133] is an alternative tot-test for

testing the quality of two populations’ mean or medians. It is a kind of non-parametric test since

it is based on rank of samples rather than distribution parameters such as mean and standard

deviation. It does not require the two populations to conform to a normal distribution, but to

the same shape [105]. However, it may not be as powerful ast-test, signal-to-noise or Fisher

criterion statistical measures, if the normality assumption is correct [105].
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The Wilcoxon rank sum test statistical measure of a featurefj,w(fj), can be obtained using

following procedure:

(1) Sort the valuesx1j ; x2j ; � � � ; xnj of fj across all then samples in ascending order.

(2) Assign rank (from 1)r(xij) to each valuexij above and use average of the ranks for ties.

Then,1 � r(xij) � n.

(3) Use the sum of the ranks for the class, which has smaller number of samples, as test

statistic,w(fj). For example, classA has fewer samples than classB, thenw(fj) = Xyi=A r(xij) (3:8)
whereyi is the class label of sampleXi. If the number of samples is same in each class,

the choice of which class to use for the test statistic is arbitrary.

To use the Wilcoxon rank sum test to decide if a featuref is relevant, we set up the null

hypothesis that: the values off have the same continuous distribution inA andB. Thenw(f) is

used to accept or reject the hypothesis. To decide whether toaccept or reject the null hypothesis,

we comparew(f) with the upper and lower critical values derived from a significant level�. For

small numbers of samples in classA andB, e.g. < 10, the critical values have been tabulated

and can be found in most of textbooks of statistics, such as [105]. If eithernA or nB is larger

than what is supplied in the table, the following normal approximation can be used [105]. The

expected value ofw is (assuming classA has fewer samples than classB does):� = nA(nA + nB + 1)2 (3:9)
The standard deviation ofw is:Æ = snAnB(nA + nB + 1)12 (3:10)

The formula for calculating the upper and lower critical values is:��z�Æ (3:11)
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wherez� is thez score for significant level�. If a featuref ’s testw(f) falls in the range given

by the upper and lower critical values, then we accept the null hypothesis; otherwise, we reject

the hypothesis, and this indicates that the values of feature f have different distribution between

samples in classA andB. Thus, those features whose Wilcoxon rank sum test statistic rejects

the hypothesis will be considered as signals.

The non-parametric Wilcoxon rank sum test has several advantages overt-test, signal-to-

noise and Fisher criterion statistical measures [87]. The first one is its robustness. Because it uses

ranks rather than actual values of a feature, it is more robust to outliers. This feature is important

to biological data, which may need many steps of experimentsin the laboratory and may have

many potential sources of error. The second advantage is related to data transformation, such as

normalization and logarithm transformations that are often used in preprocessing of microarray

gene expression data. The rank sum test is not affected by anyof these transformations since the

ordering of the expression levels remains unchanged.

3.2.3 X 2 statistical measureX 2 measure evaluates features individually by measuring theX 2-statistic with respect to the

class. Different from the preceding methods,X 2 measure can only handle features with discrete

values.X 2 measure of a featuref with w discrete values is defined asX 2(f) = wXi=1 kXj=1 (Aij �Eij)2Eij (3:12)
wherek is the number of classes,Aij is the number of samples withith value off in jth class,Eij is the expected frequency ofAij andEij = Ri � Cj=n (3:13)Ri is the number of samples havingith value off , Cj is the number of samples in thejth class,

andn is the total number of samples.

We consider a featurefj to be more relevant than a featurefl (l 6= j) if X 2(fj) > X 2(fl).
Obviously, the worstX 2 value is 0 if the feature has only one value. The degree of freedom

of theX 2-statistic measure is(w � 1) � (k � 1) [71]. With the degree of freedom known, the
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critical value for certain significant level can be found from most statistics books, such as [105].

However, note that, the valuew might be varied from feature to feature.

To applyX 2 measure to numeric features, a discretization preprocessing has to be taken.

The most popular technique in this area is the state-of-art supervised discretization algorithm

developed by Fayyad and Irani [36] based on the idea of entropy. At same time, feature selection

can be also conducted as a by-product of discretization.

3.2.4 Entropy based feature selection algorithms

Entropy is a measure commonly used in information theory, which characterizes the (im)purity

of a collection of samples [112, 78]. Given a collectionS, containing samples ink classes, the

entropy ofS relative to thisk classes classification is defined asEnt(S) � kXi=1�pi � log2pi (3:14)
wherepi is the proportion ofS belonging to classi. There are several points worth noting.

1. The logarithm is base 2 because entropy is a measure of the expected encoding length

measured in bits [112].

2. In all calculations involving entropy, we define0 � log20 = 0
3. Ent(S) reaches its minimum value 0, if all the samples ofS belong to the same class. For

example, all samples are in classA, thenpi = ( 1 (i = A);0 (i 6= A).
(3:15)

Thus,Ent(S) = �1 � log21 = 0.

4. Ent(S) reaches its maximum valuelog2k, if S contains equal number of samples in each

class. In this case,pi = 1=k, for anyi 2 [1; k℄. Thus,Ent(S) = �k � ( 1k log2 1k ) = log2k (3:16)
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Figure 3.1: Entropy function of a two-class classification,p1 is the proportion of samples in one
class, with range [0,1].

Figure 3.1 shows the form of the entropy function whenk = 2 (i.e. two classes), asp1 varies

between 0 and 1.

Fayyad’s discretization algorithm

The essential idea of this discretization algorithm is to find some cut point(s) for a numeric

feature’s value range to make the resulting value intervalsas pure as possible. Formally, let cut

pointT of featuref partition the sample setS into subsetsS1 andS2. Then, theclass information

entropyof the partition, denotedEnt(f; T; S), is given by [36]:Ent(f; T; S) = jS1jjSj Ent(S1) + jS2jjSj Ent(S2) (3:17)
whereEnt(Sj); (j = 1; 2) is the class entropyof a subsetS. Assuming there arek classesC1; � � � ; Ck, let P (Ci; Sj) be the proportion of samples inSj that have classCi. According to

the definition in (3.14), Ent(Sj) = � kXi=1 P (Ci; Sj) � log2P (Ci; Sj) (3:18)
A binary discretization forf is determined by selecting the cut pointTf for whichEnt(f; Tf ; S)

is minimal amongst all the candidate cut points [36]. The selection ofTf can be achieved by re-

cursively partitioning the rangesS1 andS2 until some stopping criteria is reached. A stopping

criteria is needed because otherwise, we can always achieveperfect entropy by partitioning the
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range into many small intervals, each containing exactly one sample. A commonly used stop-

ping criteria is the so-calledminimal description length(MDL) principle described in [101, 36].

According to this principle, recursive partitioning within a rangeS stops iffS is partitioned into

rangesS1 andS2 such that:Gain(f; T; S) < log2(n� 1)n + Æ(f; T; S)n (3:19)
wheren is the number of samples in the setS, and,Gain(f; T; S) = Ent(S)�Ent(f; T; S) (3:20)
and Æ(f; T; S) = log2(3k � 2)� [k � Ent(S)� k1 � Ent(S1)� k2 � Ent(S2)℄ (3:21)
whereki is the number of class labels represented in the rangeSi. In the right side of (3.19),

the first component is the amount of information needed to specify the partitioning point; the

second one is a correction due to the need to transmit which classes correspond to upper and

lower subintervals [36, 134]. With MDL principle, a featuref can not be discretized, if there is

no such kind of cut pointT whoseGain(f; T; S) (defined in (3.20)) is greater than or equal to

the right side of (3.19).

In [71], Setiono and Liu noted that discretization has the potential to perform feature selec-

tion among numeric features. If the distribution of a numeric feature’s value is relatively random,

then the feature would be treated as irrelevant to the classes and can be safely removed from

the data set. In this case, there is no suitable cut point to split feature’s value range, or, in other

words, the feature can be only discretized to a single value.On the other hand, if a resulting value

interval induced by the cut points of a feature contains onlythe same class of samples, then this

partitioning of this feature has an entropy value of 0. This is an ideal case since the feature can

clearly distinguish samples in the different classes. Please refer to Figure 3.2 for an illustration

on entropy measure, cut point and intervals. Generally, under the entropy measure, featurefj
is more useful than featurefl (l 6= j) if Ent(fj; Tfj ; S) < Ent(fl; Tfl ; S). Thus, when using

entropy measure to select features, we sort the class entropy in an ascending order and consider
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h: class 1 sample, ฀: class 2 sample

(a) A feature with high entropy.

(b) A feature with low entropy.

(c) A feature with zero entropy.

interval 2interval 1

interval 2

h ฀ h ฀ h ฀ h h ฀ h h ฀     ฀

+f-f

h h h ฀ h h   h h         ฀ ฀ ฀ ฀ ฀
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Cut point

interval 1

Figure 3.2: We place the values of a feature on the horizontalaxis. There are 13 samples in two
classes, class 1 and class 2. (a) shows a feature that is a poorsignal and there is no cut point can
be found to distinguish samples in the different classes; (b) shows a feature that is a potentially
good signal and indicates a possible cut point. (c) shows a feature that is a strongest signal and
indicates a cut point — different resulting intervals contains samples of different class.

those features with lowest values. In most of the cases, we are just interested in features having

cut point(s) found for their value range.

For discrete features, we still can use entropy measure to select features since the “cut

points” for each feature have been given naturally. Thus theclass entropy of a featuref with w
different values, can be simply derived byEnt(f; S) = wXi=1 jSijjSj Ent(Si) (3:22)
whereS1 throughSw are thew subsets of samples resulting from partitioning ofS by f andEnt(Si) can be calculated from (3.18).

Actually, X 2 measure is one of the refinements of entropy measure. Other than the class

entropy value of a feature, it uses theX 2-statistic of the partitionsS1 andS2 of the feature

induced by the class entropy. Some other refinements includeinformation gain measure and
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information gain ratio measure that are used respectively in ID3 [96] and C4.5 [97] to induce the

splitting node of a decision tree.

Information gain and information gain ratio

Information gainis simply the expected reduction in entropy by partitioningthe samples accord-

ing to this feature, that is the amount of information gainedby looking at the value of this feature.

More precisely, the information gainGain(f; S) of a featuref , relatively to a set of samplesS,

is defined as Gain(f; S) � Ent(S)�Ent(f; Tf ; S) (3:23)
whereEnt(S) can be calculated from equation (3.14) andEnt(f; Tf ; S) is the class entropy

of the feature (for a numeric featuref , Tf is the best partition tof ’s value range under certain

criteria, such as MDL principle). SinceEnt(S) is a constant onceS is given, the information

gain and entropy measures are equivalent when evaluating the relevance of a feature. In contrast

to the rule “the smaller the class entropy value, the more important the feature is” that is used

in entropy measure, we consider a featurefj to be more relevant than a featurefl (l 6= j) ifGain(fj; S) > Gain(fl; S). In fact, the ID3 [96] decision tree induction algorithm uses infor-

mation gain as the measure to pick discriminatory features for tree nodes. Besides, information

gain is also involved in some recent studies of feature selection on biological data. For exam-

ples, Xinget al [136] used it as one filter to select genes from gene expression data and the

winner of KDD Cup 2001 [25] also employed it as a measurement to reduce the dimensionality

of a feature space containing 139,351 binary features in a thrombin data set provided by Dupont

Pharmaceuticals Research Laboratories.

However, there is a natural bias in the information gain measure — it favors features with

many values over those with few values. An extreme example isa feature having different values

in different samples. Although the feature perfectly separates the current samples, it is a poor

predictor on subsequent samples. One refinement measure that has been used successfully is

called information gain ratio. The gain ratio measure penalizes features that with many values

by incorporating amount ofsplit information, which is sensitive to how broadly and uniformly
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the feature splits the data [78]:SplitInformation(f; S) � � wXi=1 jSijjSj � log2 jSijjSj (3:24)
whereS1 throughSw are thew subsets of samples resulting from partitioning ofS byw-valued

discrete orw-value-intervaled numeric featuref . Then, thegain ratio measure is defined in

terms of the earlier information gain measure and this splitinformation, as follows:GainRatio(f; S) � Gain(f; S)SplitInformation(f; S) (3:25)
Note that split information is actually the entropy ofS with respect to the values of featuref and

it discourages the selection of features with many values [78]. For example, if there are total num-

ber ofn samples inS, the split information of a featuref1, which has different values in different

samples, islog2n. In contrast, a boolean featuref2 that splits the samen samples exactly in half

will have split information of 1. If these two features produce the equivalent information gain,

then clearly featuref2 will have a higher gain ratio measure. Generally, a featurefj is considered

to be more significant than a featurefl (l 6= j) if GainRatio(fi; S) > GainRatio(fl; S). When

using gain ratio measure (or information gain measure) to select features, we sort the values of

gain ratio (information gain) in an descending order and consider those features with highest

values.

3.2.5 Principal components analysis

Principal components analysis(PCA) [53] is widely used in signal processing, statistics and

neural computing. It selects features by transforming a number of original (high-dimensional)

features into a smaller number of uncorrelated features called principal components. The first

principal component accounts for as much of the variabilityin the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible. The math-

ematical technique used in PCA is called eigen analysis [2].The eigenvector associated with

the largest eigenvalue has the same direction as the first principal component; the eigenvector

associated with the second largest eigenvalue determines the direction of the second principal

component, and so on.
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Feature selection through PCA can be performed in followingseveral steps.

(1) Calculating the covariance matrixC of a data collectionX defined in Equation (3.1), whereX is a matrix withn rows (i.e. samples) andm columns (i.e. features). Each column data

of X may have to be normalized. Each element
ij (i; j = 1; 2; � � � ;m) of matrixC is the

linear correlation coefficient between the elements of columns (i.e. features)i andj of X
and is calculated as: 
ij = 1n nXk=1(xki � �i�i )(xkj � �j�j ) (3:26)
wherexki (xkj) is the elementk in column i (j) of X, and�i (�j) and�i (�j) are the

mean and standard derivation of columni (j) of X, respectively. It is easy to prove that

the covariance matrixC is real and symmetric.

(2) Extracting eigenvalues�i (i = 1; 2; � � � ;m) by equation,jC � �iIj = 0 (3:27)
whereI is an identity matrix.

(3) Computing eigenvectorsei (i = 1; 2; � � � ;m), which are the so-called “principal compo-

nents”, from (C � �iI)ei = 0 (3:28)
(4) Ranking eigenvectors according to the amount of variation in the original data that they

account for, which is given by V arian
ei = �imPk=1�k (3:29)
(5) Selecting features that account for most of the variation in the data. In this step, eigenvec-

tors (i.e. principal components) that account for some percentage (for example: 95%) of

the variance in the original data will be chosen while the rest features will be discarded.

Indeed, it can be proven that the representation given by PCAis an optimal linear dimension

reduction technique in the mean-square sense [53]. It is worth noting that, different from other
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methods introduced in this chapter, PCA is anunsupervised(in contrast tosupervised) feature

selection method since it makes no use of the class attribute.

3.2.6 Correlation-based feature selection

All of the preceding measures evaluate features in terms of their individual relevance to separat-

ing samples in different classes. However, rather than ranking individual features, we can also

scores the worth of subsets of features.Correlation-based feature selection(CFS) [44] is such a

method which is built on the belief that “good feature subsets contain features highly correlated

with the class, yet uncorrelated with each other”. At the heart of the CFS algorithm is a sub-

set evaluation heuristic that takes into account not only the usefulness of individual features for

predicting the class, but also the level of inter-correlation among them [46].

CFS first calculates a matrix of feature-class and feature-feature correlations. Then a score

of a subset of features is assigned using the following heuristic:MeritS = kr
fqk + k(k � 1)rff (3:30)
whereMeritS is the heuristic merit of a feature subsetS containingk features,r
f is the average

feature-class correlation, andrff is the average feature-feature inter-correlation. The numerator

can be thought of as giving an indication of how predictive the subset of features are while the

denominator indicates how much redundancy there is among them [46].

In order to apply Equation (3.30), it is necessary to calculate the correlation between fea-

tures. In this step, CFS usessymmetrical uncertaintiesto estimate the degree of association

between discrete features or between features and classes [44]. The formula (3.31) below mea-

sures the inter-correlation between two features or the correlation between a feature and a class

which is in the range[0; 1℄ (f1 andf2 are both presented features or one is feature, one is class).rf1f2 = 2:0 � �H(f1) +H(f2)�H(f1; f2)H(f1) +H(f2) � (3:31)
where the numerator is the information gain between features and classes,H(f) is the entropy of

the featuref defined in (3.14). CFS starts from the empty set of features and uses the best-first-

search heuristic with a stopping criterion of 5 consecutivefully expanded non-improving subsets.
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The subset with the highest merit found during the search will be selected.

3.2.7 Feature type transformation

At the end of introduction on feature selection methods, there are several points that need to be

addressed:� Converting feature type from discrete to numeric. This kindof conversion will be useful for

those algorithms that can only handle numeric features, such ast-test, signal-to-noise, PCA

and so on. When dealing with ak-valued discrete feature, one can convert it tok binary

features. Each of these new features has a “1” for every occurrence of the correspondingkth value of the original discrete feature, and a “0” for all other values [46]. Then the new

binary features are treated as numeric features.� Converting feature type from numeric to discrete. Some feature selection methods, such

asX 2-statistic measure, need numeric features to be discretized. Fayyad’s algorithm de-

scribed in Section 3.2.4 or other discretization methods have to be applied.� Dealing with multiple classes problem. If a data set contains more than two class samples,

a pairwised feature selection has to be conducted.

3.3 ERCOF: Entropy-based Rank sum test and COrrelation Filter-

ing

In this section, we will put forward a new strategy to conductfeature selection, mainly aiming

to find significant genes in supervised learning from gene expression data. In our strategy, we

combine the above presented methods of entropy measure and Wilcoxon rank sum test, as well

as Pearson correlation coefficient test together to form a three-phase feature selection process.

We name this combined feature selection process asERCOF— stands for Entropy-based Rank

sum test and COrrelation Filtering.

In phase I, we apply Fayyad’s entropy-based discretizationalgorithm described in Sec-

tion 3.2.4 to all the numeric features. We will discard a feature, if the algorithm can not find a

suitable cut point to split the feature’s value range. One point needs to be emphasized here is that
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we will use numeric features all the way, though a discretization algorithm is involved to filter

out some features in this phase.

In phase II, we conduct Wilcoxon rank sum test only on features output from phase I.

For a featuref , the test statistical measurew(f) can be calculated by the way described in

(3.2.2). Ifw(f) falls outside the interval[
lower; 
upper℄, where
lower and
upper are the lower

and upper critical test values that given in Formula (3.11),we will reject the null hypothesis and

this indicates that the values of featuref are significantly different between samples in different

classes. In the calculation of the two critical values
lower and
upper, the standard 5% or 1%

significant level is generally used. Therefore, by this phase, we are left with two groups of

features: one group contains featuresf1 such thatw(f1) < 
lower, the other group contains

featuresf2 such thatw(f2) > 
upper. Features in same group are supposed to have similar

behavior — having relatively larger values in one class of samples and relatively smaller values

in another class of samples. In a gene expression data analysis, it is of a great interest to find

which genes are highly expressed in a special type of samples(such as tumor samples, or patients

with certain disease).

In phase III, for each group of features, we examine correlations of features within the

group. For those features that are in the same group and are highly correlated, we select only

some representatives of them to form the final feature set. Ingene expression study, high cor-

relation between two genes can be a hint that the two genes belong to the same pathway, are

co-expressed or are coming from the same chromosome. “In general, we expect high correlation

to have a meaningful biological explanation. If, e.g. genesA and B are in the same pathway,

it could be that they have similar regulation and therefore similar expression profiles” [51]. We

propose to use more uncorrelated genes for classification since if we have lots of genes from one

pathway, the classification result might be skewed.

Since with entropy measure, one is more likely to select all the genes in a primary path-

way and neglect those of secondary pathways, we have to try tosort out the genes that passed

Phase I and Phase II filterings into pathways. Currently, we adopt the commonly used Pear-

son correlation coefficient to measure the correlation between features. It has been applied

to analyse gene expression data by some researchers [16, 40]. Pearson correlation coefficient

(also known as the centred Pearson correlation coefficient)is a linear correlation metric. In gen-
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eral, the Pearson correlation coefficient between any two featuresfi = (x1i; x2i; � � � ; xni) andfj = (x1j ; x2j ; � � � ; xnj) (defined in (3.1)),r(fi; fj), is given as:r(fi; fj) = 1n nXk=1(xki � �i�i )(xkj � �j�j ) (3:32)
where�i (�j) and�i (�j) are the mean and standard derivation offi (fj), respectively. The

value ofr is between -1 and 1. In our case, we just consider two featuresto be correlated if

their correlation coefficient is 1 or near 1 and ignore negative correlations since the features in

same group are expected to have similar behavior. A threshold r
 of r is set in advance, so that ifr(fi; fj) > r
, then featurefi andfj are considered correlated.

Given a group of features, we subgroup features in this groupbased on correlation coeffi-

cient. First, we sort the features according to their class entropy measure in an ascending order

(i.e., with best feature at first position). Then we pick up the best featuref1, and calculate its

Pearson correlation coefficient with all other features. Then we form a subgroup consisting off1
and all features that are correlated tof1. The features that have been assigned to this subgroup are

not considered again in the later rounds of correlation test. In the second round of subgrouping,

we pick up the best one from remaining features, and form another subgroup of features. This

correlation test proceeds until all the features in the group have been assigned to a subgroup.

Note that it is possible for a subgroup to have only one feature. So, the groups of features are

sub-grouped; in each subgroup, features are all correlatedto a best feature such asf1. Figure 3.3

gives the pseudo codes of this method.

Next, we select representative features from each subgroupto form the final feature set.

In each subgroup, since the features are sorted by their class entropy measure, we calculate the

average of the entropy values of all these features (namedmean entropy valueof this subgroup)

and choose those top ones whose entropy measure is smaller than this mean entropy value. In

case of only one feature in a subgroup, this feature is automatically selected. These representative

features from all the subgroups are our final set of features.See Figure 3.4 for a whole picture of

feature identification and selection by ERCOF.

Using ERCOF in gene expression data analysis where there is often more than thousands

of features, we expect to identify of a subset ofsharply discriminatingfeatures withlittle redun-

dancy. The entropy measure is effective for identifying discriminating features. After narrowing
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1. k = 1.
2. Rank all features in groupF on class entropy in an ascending order,f1; f2; � � � ; fl.
3. LetSk = ff1g and removef1 from F .
4. For eachfi(i > 1)

calculate Pearson correlation coefficientr(f1; fi);
if r(f1; fi) > r


addfi into Sk and remove it fromF ;
5. k = k + 1 and goto step 2 untilF = ;.

Figure 3.3: Feature subgrouping by correlation testing.r
 is the Pearson correlation coefficient
threshold, which should be near 1.0.

down by the Wilcoxon rank some test, the remaining features become sharply discriminating.

Then, with the correlation examination, some highly correlated features are removed to reduce

redundancy. We do not use CFS introduced in Section 3.2.6 in Phase III of ERCOF, because

CFS sometimes returns too few features to comprehensively understand the data set. For exam-

ple, CFS selects only one feature if the class entropy of thisfeature is zero. However, Pearson

correlation coefficient also has a shortcoming — the calculation of correlation is dependent on

the real values of features — it is sensitive to some data transformation operations. Therefore,

other algorithms are being implemented to group correlatedfeatures.

3.4 Use of Feature Selection in Bioinformatics

The feature selection techniques reviewed in the precedingsections have been used as a key

step in the handling of high-dimensional biomedical data. For example, their use is prevalent

in the analysis of microarray gene expression data (an extensive review on this can be found in

Chapter 4). Besides, they have been also used in the prediction of molecular bioactivity in drug

design [132], and more recently, in the analysis of the context of recognition of functional site in

DNA sequences [142, 72, 69].

One issue should be addressed here is the so-called “multiple comparisons problem” [85]

which happens when we select features by choosing a statistical confidence level (like standard

5% or 1%) fort-test,X 2-test, and other statistical measures. The description of the problem is:

when performingm multiple independent significance tests, each at the� level, the probability

of making at least one Type I error (rejecting the null hypothesis inappropriately) is1�(1��)m.
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Figure 3.4: A diagram of ERCOF: Entropy-based Rank sum test and COrrelation Filtering, a
three-phase feature selection process combining conceptsof entropy, Wilcoxon rank sum test
and Pearson correlation coefficient.

For example, suppose we considerm = 200 features and perform independent statistic tests to

each of them at the standard� = 5% level, then the probability of getting at least one significant

result is1� 0:95200 = 0:99996 [85]. So, when we get a significant feature among the tests, how

can we believe that it is “indeed” significant. In fact, underthis setting, we would still expect to

observe approximately 10 (= 200 � 0:05) “significant” features, even when there were actually

no features that can distinguish the two classes. Obviously, the problem becomes serious when

the total number of considered features is large, which is the case in some biological data such

as gene expression profilings.
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A standard conservative solution to this problem is the Bonferroni correction [100], which

divides the test significant level by the number of tests, i.e. �=m. In the above example, it will be0:05=200 = 0:00025. Thus, for 200 features, the cutoff for significance would be0.00025 instead

of previous 0.05! In spite of its simplicity, the Bonferronimethod has some shortcomings [91].

The biggest problem is that it is too conservative: each individual test is held to an unreasonably

high standard and this will increase the probability of a Type II error where legitimate signal

features will fail to be discovered. On the other hand, the method is applicable only to tests with

known statistical distributions. For measures with unknown statistical distribution, permutation-

based approaches are practically used .

In a permutation-based method, the adjusted significant level (also known asp-values)

based on the number of tests undertaken is also computed, butin a way less conservative than

the Bonferroni method. When conducting permutation, we assume that there is no relationship

between features and classes so that new samples can be drawnby reassigning permuted class

labels to original data. Thep-value then can be calculated based on the feature statistics on many

these kind of pseudo data sets. However, the conclusion thatwe really want to draw from the

permutation test might be:if we have selectedw features using a particular statistic, what pro-

portion of these features are likely to be false positive? To make such a conclusion, one can

follow the steps illustrated in Figure 3.5 for a testing at� level. Alternatively, in stead of single

cutoff value, we can set up a series of thresholds and computethep-value for each of them based

on the permutation test, so that a tableT of threshold versusp-value can be created. If we want

no more thanq% of the features selected in the original (non-permuted) experiment to be false

positive, then we should look up tableT usingq for the threshold�q and use�q as the statistic

threshold to pick up features from original experiment.

Although the permutation is designed to take the place of theBonferroni correction, it is

often found that the critical values determined in this method are nearly as conservative as those

based on the Bonferroni adjustment [85]. However, it has no assumption on the distribution of

the selected test statistic. As indicated earlier, anothercritical consideration of the permutation

test is that the procedure does not address whether featuresare correlated. In the case of a large

number of strongly correlated features versus a relative small number of samples, the test statistic

on each permutation will not significantly change. Then the permutation becomes meaningless.
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1. Select a statistic which will be used to measure differences between classes.
2. Determine the threshold of the statistic according to significant level�.
3. Calculate the test statistic for each of totalm features
4. Get the number of features selected by the threshold, record asw.
5. Forith permutation test iteration (i = 1; 2; � � � ; t):

generate a pseudo data set by randomly permuting the class labels of all the samples,
calculate the same test statistic for every feature,
record how many features are selected by the threshold, denote it aski.

6. Compute the percentage of features selected during the permutation test,p = Pti=1 kit�m
calculatep� w to be the expected number of false positive.

Figure 3.5: A diagram of a permutation-based method for feature selection. In practice, the
significant level� is often set as 5% or 1%, the permutation timest should be very large, say
10,000 times, or for all possible permutations of the class labels.

Unfortunately, in many biological domain, features have strong correlations from sample to sam-

ple.

3.5 Chapter Summary

In this chapter, we reviewed feature selection techniques for data mining. There are two broad

categories of selection algorithms, filter and wrapper, andwe indicated that filter approaches

are more suitable to be applied to solve biological problems. We presented a variety of filter

methods, such ast-statistic measure, Wilcoxon rank sum test, entropy-basedmeasures, principal

components analysis and so on. We also put forward a new feature selection strategy, ERCOF,

which is a 3-phase feature filtering process aiming to identify a subset of sharply discriminating

features with little redundancy from gene expression profiles. The chapter was ended with a

discussion on using feature selection in bioinformatics.
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Chapter 4

Literature Review on Microarray Gene

Expression Data Analysis

One of the important recent breakthroughs in experimental molecular biology is microarray tech-

nology. This novel technology allows the monitoring of expression levels in cells for thousands of

genes simultaneously and has been increasingly used in cancer research [7, 41, 6] to understand

more of the molecular variations among tumors so that a more reliable classification becomes

possible.

There are two main types of microarray systems [35]: the cDNAmicroarrays developed

in the Brown and Botstein Laboratory at Stanford [32] and thehigh-density oligonucleotide

chips from the Affymetrix company [73]. The cDNA microarrays are also known as spotted ar-

rays [77], where the probes are mechanically deposited ontomodified glass microscope slides us-

ing a robotic arrayer. Oligonucleotide chips are synthesized in silico (e.g., via photolithographic

synthesis as in Affymetrix GeneChip arrays). For a more detailed introduction and comparison

of the biology and technology of the two systems, please refer to [47].

Gene expression data from DNA microarrays are characterized by many measured variables

(genes) on only a few observations (experiments), althoughboth the number of experiments and

genes per experiment are growing rapidly [82]. The number ofgenes on a single array is usually

in the thousands while the number of experiments is only a fewtens or hundreds. There are

two different ways to view data: (1) data points as genes, and(2) data points as samples (e.g.

patients). In the way (1), the data is presented by expression levels across different samples, thus
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there will be a large number of features and a small number of samples. In the way (2), the data

is represented by expression levels of different genes, thus the case will be a large number of

samples with a few attributes. In this thesis, all the discussions and studies on gene expression

profiles are based on the first manner of data presentation.

Microarray experiments raise many statistical questions in many diversified research fields,

such as image analysis, experimental design, cluster and discriminant analysis, and multiple

hypothesis testing [35]. The main objectives of most microarray studies can be broadly classified

into one of the following categories: class comparison, class discovery, or class prediction [77].� Class comparisonis to establish whether expression profiles differ between classes. If they

do, what genes are differentially expressed between the classes, i.e.gene identification. For

example, which genes are useful to distinguish tumor samples from non-tumor ones.� Class discoveryis to establish subclusters or structure among specimens oramong genes,

for example, to define previously unrecognized tumor subtypes [41, 140].� Class predictionis to predict a phenotype using information from a gene expression pro-

file [77]. This includes assignment of malignancies into known classes (tumor or non-

tumor) or tumor samples into already discovered subtypes, prediction of patients outcome

such as which patients are likely to experience severe drug toxicity versus who will have

none, or which breast cancer patients will relapse within five years of treatment versus who

will remain disease free. Figure 4.1 shows a work flow of classprediction.

In this thesis, we will focus on the class comparison and class prediction. For these two

tasks, supervised analysis methods that use known class information are most effective [77]. In

practice, feature selection techniques are used to identify discriminatory genes while classifica-

tion algorithms are employed to build models on training samples and predict the phenotype of

blind test cases.

4.1 Preprocessing of Expression Data

As with most of the data fed to machine learning algorithms, gene expression data also need

necessary preprocessing before being further analysed. Based on the characteristics of the exper-
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Figure 4.1: A work flow of class prediction from gene expression data. A collection of expression
profiles with known class label (+ or -) is the input of a supervised learning algorithm. After
being trained on these profiles, the prediction model built by the learning algorithm will be able
to predict the class label of a new case of expression profile.The picture is captured from [77].

imental data, the normal preprocessing steps include scaletransformation, data normalization,

missing value management, replicate handling and so on [49].

4.1.1 Scale transformation and normalization

In cDNA microarray experiments utilizing “spotted arrays”, the two mRNA samples, known as

targets, are reverse transcribed into cDNA (labeled using two different fluorophores — usually

a red fluorescent dye cyanine 5 and a green fluorescent dye cyanine 3), and mixed in equal

proportions and hybridized simultaneously to the glass slide [35]. Intensity values generated

from hybridization to individual DNA spots are indicative of gene expression levels. Then the

ratio of the red and green fluorescence for each spot is used tomeasure the change between

samples. In order to accurately and precisely measure gene expression changes, it is important to

understand sources of variance in expression data. In everymicroarray experiment, experimental

randomness and systematic variations [139] are the two mainsources of variance. For example,

a well-known systematic variation originates the biases associated with the different fluorescent

dyes. If two identical mRNA samples are labeled with different dyes and hybridized to the same

slide, it is rare to have the dye intensities equal across allspots between these two samples [139].

Since we are looking at expression ratios, we expect the patterns in an asymmetrical scale:

over-expressions will have values between 1 and infinite while under-expression will between 0

and 1. In order to give the same weight to both over-expressions and under-expressions, we need

to transform the scale. A simple and common way is to do log-transformation. Normally this is

done by takinglog2 of the ratio, such aslog2(Cy5=Cy3). Besides, considering data in log-space
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can also help reduce the effects of outliers [85].

In order to minimize systematic variations in gene expression levels of two co-hybridized

mRNA samples, normalization should be conducted for spotted cDNA microarrays. This will

help easily distinguish biological differences between two samples and make the comparison of

expression levels across slides reasonable. There are several ways to conduct normalization. For

example, in one of the general methods, the intensity valuesare normalized according to the

formula: NV = (V �Min)=(Max �Min), whereNV is the normalized value,V the raw

value,Min (Max) the minimum (maximum) intensity among all samples for the gene. After the

normalization, each intensity value is to fall within the range of 0 to 1. Another common practice

is to center the data by the median or mean ratio, and possiblyto scale the data by the standard

deviation [85]. Recently, Yanget al proposed a composite normalization procedure in [139],

based on robust local regression, to account for intensity and spatial dependence in dye biases

for different types of cDNA microarray experiments. They constructed a novel control sample

named MSP including all genes present on the microarray, andtitrated it over the intensity range

of a microarray experiment. Under the composite idea, low intensity values will be normalized

based on all genes in the corresponding intensity range while higher values will be normalized

based on the MSP titration series.

When we illustrate our work on some gene expression profilings one by one in the next

chapter, we will indicate whether a preprocessing (log-transformation, normalization and so on)

has been conducted on a particular data set. However, basically, as stated in [85], the normaliza-

tion is not technically required, though it will help reducethe effects of varying dynamic range

from sample to sample for cDNA microarray data.

4.1.2 Missing value management

One of the characteristics of the gene expression profile is the existence of missing values in the

data set. There are diverse reasons that cause missing values, including insufficient resolution,

image corruption, or simply due to dust or scratches on the slide [125]. In practice, missing data

also occur systematically as a result of the robotic methodsused to create them. Unfortunately,

many data analysis algorithms require a complete matrix of gene array values as input [125]. For

example, standard hierarchical clustering methods andk-means clustering are not robust to the
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excess of missing values since the calculations in the algorithms are based on a distance matrix.

Even with a few missing values, they may lose effectiveness.More strictly, some methods like

principal components analysis can not deal with missing values at all. Therefore, methods for

imputing missing data are needed, not only to minimize the effect of incomplete data on further

analyses, but also to increase the range of data sets to whichlearning algorithms will be applied.

There are some general solutions to impute missing values, though there is not a large

literature that were specific to gene expression data. Here,we list four commonly used strategies:

(1) filling blanks with zeros; (2) replacing with the gene’s average expression levels over all

experiments; (3) replacing with the median of the gene’s expression levels over all experiments;

(4) using weightedk-NN imputation method. Thek-NN-based method is to use thek-nearest

neighbours to estimate the missing values, wherek is a user-defined parameter. The selection of

“neighbours” can be done via calculating certain similarity metric between genes, such as widely

used Euclidean distance, Pearson correlation, variance minimization and etc [125]. For example,

if geneA has one missing value in experiment 1, thek-NN-based method will findk other genes,

which have a value present in experiment 1 and have most similar expression values toA in other

experiments. The values of thesek nearest genes in experiment 1 are then averaged by a weight

metric and used as the estimated value of geneA in experiment 1. In the weighted average, the

contribution of each gene is weighted by similarity of its expression levels to geneA.

Troyanskayaet al [125] compared three missing value imputation methods by testing them

on three microarray data sets. Three imputation methods were simple gene average, weightedk-NN and their proposed singular value decomposition (SVD) based method. The mechanism

of SVD-based algorithm is to (1) use singular value decomposition to obtain a set of mutually

orthogonal expression patterns that can be linearly combined to approximate the expression of all

genes in the data set, (2) refer these patterns as eigengenes(like principal components) and selectk most significant eigengenes by sorting their correspondingeigenvalue, (3) estimate a missing

value in geneA by regressing geneA against thek eigen genes and then use the coefficients

of the regression to reconstruct a replacement value from a linear combination of thek eigen

genes. Their results showed that weightedk-NN appeared to be the most accurate and robust

method, and both weightedk-NN and SVD-based techniques surpass the commonly used simple

average method. This conclusion is very natural since the winning methods take advantage of

55



the correlation structure of the data to estimate missing expression values.

Although we can efficiently handle missing values in microarray data by using weightedk-

NN imputation method, the method itself requires that we have enough complete genes (clones)

(i.e. genes with no missing values) in the data set so that finding real neighbours can be ensured.

When there are too many missing values in an original data set, one can consider to filter some

genes based on amount of missing elements. For example, in a study on diffuse large-B-cell

lymphoma addressed in [60], genes (clones) having more than20% missing values were removed

before any analysis being conducted. Please note that, in [6, 140], the missing values in the gene

expression data sets were excluded in the analyses.

4.1.3 A web-based preprocessing tool

An interactive web-based software for preprocessing microarray gene expression data was intro-

duced in [49], which was implemented in a Perl CGI script. Besides the functions mentioned

above, such as log-transformation, normalization and missing values management, it also pro-

vides a way to handle replicate. The replicate here means thesame cDNA clone that spotted

several times or different cDNAs representing the same geneon the cDNA array. The usage

of replicates is mainly for quality checking. Generally, inan experiment, several expression

values of a replicated gene will be output, though only one isneeded in the further analysis.

How to derive a proper expression level from several output values? The provided solution

is quite simple: using the average or the median value of all the replicates upon checking the

consistency among them. During the consistency checking, the median of all the values is cal-

culated and then the replicates whose expression value is beyond the threshold from the me-

dian are removed. The threshold is a user-defined value. The web interface of this tool is at

http://gepas.bioinfo.cnio.es/cgi-bin/preprocess .

4.2 Gene Identification and Supervised Learning

Supervised learning algorithms are used to establish models to classify samples in different

classes of gene expression profiles while gene identifications answer which genes are differ-

entially expressed between the classes, i.e. feature selection. Generally, gene identification is
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carried out before learning algorithms are used.

4.2.1 Gene identification

In a pioneer study in 1999, Golubet al [41] analysed gene expression profiles of 27 Acute Lym-

phoblastic Leukemia (ALL) samples and 11 Acute Myeloid Leukemia (AML) samples. They

identified genes with differential expression between ALL and AML samples using the signal-

to-noise measure that we introduced in Section 3.2.1 of Chapter 3. According to signal-to-noise

statistic, the coefficient correlation between geneg and classes,s(g), is defined as:s(g) = �A(g)� �B(g)ÆA(g) + ÆB(g) (4:1)
where�(g) andÆ(g) are the mean and standard deviation of the gene expression values for geneg for all the patients of classA (ALL) or classB (AML). Large positive value ofs(g) indicates

strong correlation with classA whereas large negative value ofs(g) indicates strong correlation

with classB [41]. Then an equal number of genes with positive and with negative correlation

values were selected to integrate into the learning algorithm. The number of informative genes

they chose was 50, but they stated in the paper that “the (prediction) results were insensitive to

the particular choice: predictors based on between 10 and 200 genes were all found to be 100%

accurate, reflecting the strong correlation of genes with the AML-ALL distinction”.

Similar to Golubet al, there were some other researchers who used statistical tools to dis-

cover differentially expressed genes between sample classes, such ast-statistic and its variation

(like signal-to-noise, Fisher criterion score), Wilcoxonrank sum test and so on. For examples,

in [12], genes selected byt-statistic were fed to a Bayesian probabilistic framework for sample

classification. Olshenet al [85] suggested to combinet-statistic, Wilcoxon rank sum test or theX 2-statistic with a permutation-based model to conduct gene selection. In their model, the sig-

nificance of genes is determined by the associated statisticand a critical value calculated on the

same statistic using the permuted labels. The permutation of sample class labels were conducted

for a few thousands times. Wilcoxon rank sum test is another measure favored by researchers

mainly due to its non-parametric characteristic.

Park et al built a scoring system in [87] to assign each gene a score based on training

samples. For a gene, they first sorted training samples according to the expression levels of this
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gene — from the smallest expression level to the largest one.Second, they swap the class labels

of the samples to make the gene into a perfectly discriminating marker — all high expression

values belong to one class of samples and all low expression values belong to the other class.

Then the score of the gene was the minimum number of the necessary swaps. Finally, a small set

of differently expressed genes, which had smaller score, were discovered. They claimed that this

scoring approach was robust to outliers and different normalization schemes because it used ranks

rather than actual expression levels. Essentially, this score is identical to Wilcoxon rank sum test

statistic [51]. Some researchers also conducted comparisons between Wilcoxon rank sum test

and some other statistical measures on gene selection. For example, Troyanskayaet alcomparedt-statistic, Wilcoxon rank sum test and a heuristic method based on Pearson correlation in [126].

Their results showed that overall speaking, the rank sum test appeared most conservative, which

may be advantageous if the further biological or clinical usages of the identified genes are taken

into account.

Jaegeret al [51] designed three pre-filtering methods to retrieve groups of similar genes.

Two of them are based on clustering and one is on correlation.A statistical test then was applied

to these groups to finally select genes. The statistical tests used in their study included Fisher

criterion score, signal-to-noise, Wilcoxon rank sum test,t-statistic and TnoM (Thresholded-

number-of-Misclassifications), which calculates a minimal error decision boundary and counts

the number of misclassifications done with this boundary. Based on the test results on three

public gene expression data sets using the selected genes and support vector machines classifica-

tion algorithm, they concluded that feature selection can greatly help improve the classification

accuracy, but there is no absolute winner among their proposed pre-filtering methods and the

five statistical tests. Another comparison of using different statistics in gene identification was

conducted by Thomaset al in [121], they presented a statistical regression modelingapproach to

discover genes that are differentially expressed between two classes of samples. Their modeling

approach used known sample group membership to focus on expression profiles of individual

genes. They tested their methodology on the AML-ALL leukemia data set of Golub [41] and

compared their results with those obtained usingt-statistic or Wilcoxon rank sum test. Their

model made no distributional assumptions about the data andaccounted for high false-positive

error rate. However, in practice, theZ-scores they proposed are expected to be similar tot-
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statistics, when the distribution of expression levels canbe approximated by the normal distribu-

tion. In a recent review of several statistical methods in term of their effectiveness to discover

differentially expressed genes, Pan [86] comparedt-statistic, the regression modeling approach

against a mixture model approach proposed by him. Differentfrom t-statistic and the above

regression modeling approach that sets strong assumptionson the null distribution of the test

statistics, the mixture model estimated the null distribution directly. He pointed out that although

the three methods were all based on using the two-samplet-statistic or its minor variations, they

differed in how to associate a statistical significance level to the corresponding statistic so that

large differences in the resulting significance levels and the numbers of genes discovered were

possible [86]. The Bonferroni method described in Section 3.4 of Chapter 3 was used in his study

to adjust the significant level.

SAM (Significance Analysis of Microarrays), a software developed at Stanford Univer-

sity (http://www-stat.stanford.edu/˜tibs/SAM/ ), is designed to find significant

genes in a set of microarray experiments based on strong statistical study on genes [127]. SAM

first computes a statistic to each gene on the basis of change in gene expression relative to the

standard deviation of repeated measurements for the gene. Then for those genes whose statistic

is greater than an adjustable threshold, SAM uses permutations of the data to estimate the per-

centage of genes identified by chance (known as false discovery rate (FDR)). The threshold for

significance is determined by atuning parameterÆ, chosen by the user based on FDR, or afold

changeparameter to ensure that the selected genes change at least apre-specified amount [26].

Besides gene expression profiles for phenotype classification, SAM can be applied to other types

of experimental data [127]. For example, to identify genes whose expression correlates with sur-

vival time, the assigned score is defined in terms of Cox’s proportional hazards function, which

is a popular method for assessing a covariate’s effect on patients remain alive or censored dur-

ing the follow-up at the time of the study. To identify genes whose expression correlates with a

quantitative parameter (e.g. a numeric type class label), such as tumor stage, the assigned score

can be defined in terms of the Pearson correlation coefficient.

Besides statistical measures, other dimension reduction methods were also adopted to se-

lect genes from expression data. Nguyenet al [82] proposed an analysis procedure for gene

expression data classification, involving dimension reduction using partial least squares (PLS)
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and classification using logistic discrimination (LD) and quadratic discriminant analysis (QDA).

They compared PLS to the well known dimension reduction method of principal components

analysis (PCA). PCA reduced the high dimensional data to only a few gene components which

explained as much of the observed total gene expression variation as possible and PLS chose

components to maximize the sample covariance between the class and a linear combination of

the genes. The essential difference between these two methods is that PLS is a supervised method

while PCA is an unsupervised method since it selects features without regard to the class infor-

mation of the samples. For more about PCA, please refer to Section 3.2.5 in Chapter 3. After

applying PLS to original high dimension data, a simplet-statistics was used to conduct a further

gene selection. Finally, 50 genes were provided to the classification step.

4.2.2 Supervised learning to classify samples

Various machine learning algorithms have been applied to conduct classification from gene ex-

pression data. Let’s still start with the AML-ALL leukemia study conducted by Golubet al

in [41]. The classification method they proposed was a weighted gene voting scheme, which

was a combination of multiple “univariate” classifiers [43]. In detail, they definedag = s(g)
(reflects the correlation between the expression levels of gene g and distinction), andbg =[�A(g) + �B(g)℄=2 (the average of the mean expression values in the two classes). The s(g)
was the signal-to-noise measure of geneg that they used to select genes. When doing prediction

for a new sampleT , let tg denote the expression value of geneg in the sample. The vote of geneg wasVg = ag � (tg� bg), with a positive value indicating a vote for classA and a negative value

indicating a vote for classB. The total vote for classA was obtained by adding up the absolute

values of the positive votes over the selected informative genes, while the total vote for classB
was obtained by adding up the absolute values of the negativevotes. In order to avoid arbitrary

prediction when the margin of victory is slight, they defined“prediction strength” (PS) to mea-

sure the margin of a winner class. A threshold of PS was established to minimize the chance of

making an incorrect prediction.

Dudoit et al [35] conducted a comparison of using some discriminant methods for classifi-

cation of gene expression data. These well-known classification methods included Fisher linear

discriminant analysis (FLDA), maximum likelihood discriminant rules (such as linear discrimi-
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nant analysis (LDA), diagonal quadratic discriminant analysis (DQDA) and diagonal linear dis-

criminant analysis (DLDA, also known as naive Bayes)),k-nearest neighbours (k-NN) classifier,

classification and regression trees (CART) and aggregatingCART trees by boosting procedure.

Before classification, a gene filtering was performed based on the ratio of genes between-group

to within-group sums of squares. For a genej, this ratio,BW (j), was given byBW (j) = PiPk I(yi = k)(�xkj � �xj)2PiPk I(yi = k)(xij � �xkj)2 (4:2)
whereyi was the class label of samplei andI(�) was an indicator function — equaling 1 if the

condition in the following parentheses was true and 0 otherwise; �xj and�xkj were the average ex-

pression level of genej across all the samples and across samples belonging to classk only [35].

Then a certain number of genes with the largest BW ratios wereselected for classification. They

did experiments on three data sets. Their results showed that k-NN classifiers and DLDA had the

lowest error rates, whereas FLDA had the highest. CART-based classifiers performed intermedi-

ately, with aggregated classifiers being more accurate thana single tree. They explained that the

poor performance of FLDA was most likely caused by the fact that data sets contained a large

number of genes but a limited number of samples. Under such a situation, the ratios of between-

group and within-group sums of squares and cross-products became quite unstable and provided

poor estimates of the corresponding population quantities. They also showed that the perfor-

mance of FLDA improved when the number of selected genes was decreased to 10. Although

CART-based classifiers did not achieve the best performance, they could exploit and reveal inter-

actions between genes as well as relationship between genesand phenotypes. Most importantly,

decision trees/rules output by these methods are easy to interpret and understand. In addition,

their results also demonstrated that the unstableness of a single classification tree on prediction

could be greatly improved when it was used in combination with aggregation techniques.

As mentioned previously in Chapter 2, support vector machines (SVM) have been exten-

sively used in biological data analysis. It is also playing avery active role in classifying gene

expression data. SVM has many mathematical features that make it attractive for gene expres-

sion analysis, such as its flexibility in choosing a similarity function, sparseness of solution when

dealing with large data sets, the ability to handle large feature spaces, and the ability to identify

outliers [23]. For example, in an early work done by some researchers in MIT [80], a linear
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SVM classifier with a rejection level based on confidence values was applied to classify Golub’s

AML-ALL subtypes leukemia disease. They achieved a better performance on this task than

Golubet al did [41]. Fureyet al [39] further tested the efficiency of SVM on several other gene

expression data sets and also obtained good results. Both ofthem selected discriminatory genes

via signal-to-noise measure.

Besides the above techniques, Bayes model, a classical and effective method, has been

also applied to gene expression study. For example, two new Bayesian classification algorithms

were investigated in Liet al [68] which automatically incorporated a feature selectionprocess.

The fundamental technique of the algorithms was a Baysian approach named automatic relevance

determination (ARD), which was employed to construct a classifier that was sparse in the number

of samples, i.e. the relevance vector machine (RVM). Li Y.et al [68] adopted the idea of ARD

to gene expression study. They developed two algorithms. One was the standard RVM with

sparsity obtained in the feature set. Another performed feature selection by isolating the feature

dependence in the log-marginal likelihood function. The conclusion they obtained was that these

algorithms had comparable performance to SVM when dealing with gene expression data.

4.2.3 Combing two procedures — wrapper approach

In some studies, procedures of gene selection and supervised learning were not separated dis-

tinctly. Similar to the wrapper approach illustrated in Chapter 3, identification of significant

genes were incorporated with learning process. For example, Westonet al [131] integrated fea-

ture selection into the learning procedure of SVM. The feature selection techniques they used

included Pearson correlation coefficients, Fisher criterion score, Kolmogorov-Smirnov test and

generalization selection bounds from statistical learning theory. Going a step further, Guyonet

al [43] presented an algorithm called recursive feature elimination (RFE), by which features were

successively eliminated during the training of a sequence of SVM classifiers.

There are some other examples of using the wrapper idea in gene expression data analysis.

Gene selection was performed in [50] by a sequential search engine, evaluating the goodness of

each gene subset by a wrapper method. The method executed thesupervised algorithm to ob-

tain its accuracy estimation by a leave-one-out process. The supervised classification algorithms

reported in this paper included IB1 (i.e. 1-NN), Naive-Bayes, C4.5 and CN2. The paper demon-
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strated that the accuracy of all these learning algorithms was significantly improved by using the

gene selection procedure. Another example of using the wrapper method was [67], where Liet

al combined a genetic algorithm (GA) and thek-NN method to identify a subset of genes that

could jointly discriminate between different classes of samples. First, GA was used to obtain

many such “near optimal” subsets of differentially expressed genes independently. Then, the

relative importance of genes for sample classification werechosen by examining the frequency

of membership of the genes in these sets.

Culhaneet al [31] applied Between-Group Analysis (BGA) to microarray data. BGA was

based on conducting an ordination of groups of samples, using a standard method such as corre-

spondence analysis (COA) or principal components analysis(PCA). ForN groups, BGA could

findN �1 eigenvectors (or axes) to maximize the between-group variance. Each of eigenvectors

could be used as a discriminator to separate one of the groupsfrom the rest. After a BGA, the

samples are separated along axes. The genes that were most responsible for separating the groups

were those with the highest or lowest coordinates along these axes. One advantage of BGA is

that it can be safely used with any combinations of numbers ofgenes and samples so that no

advanced gene selection is necessary.

PAM (Prediction Analysis for Microarrays), developed at Stanford University (http:

//www-stat.stanford.edu/˜tibs/PAM/ ), is a class prediction software for genomic

expression data mining. It performs sample classification from gene expression data based on

the nearest shrunken centroidmethod proposed by Tibshiraniet al [123]. This method com-

putes a standardized centroid for each class — the average gene expression for each gene in each

class divided by the within-class standard deviation for that gene. This standardization has the

effect of giving higher weight to genes whose expression is stable within samples of the same

class [123]. The main feature of nearest shrunken centroid classification from standard nearest

centroid classification is that it ”shrinks” each of the class centroids toward the overall centroid

for all classes by an amount namedthreshold. The selection of the threshold can be determined

by the results of cross-validation for a range of candidate values. When classifying a new sam-

ple, it follows the usual nearest centroid rule, but using the shrunken class centroids. The idea of

shrinkage has two advantages: (1) it achieves better performance by reducing the effect of noisy

genes, and (2) it does automatic gene selection. In particular, if a gene is shrunk to zero for all
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classes, then it will be removed from further consideration. PAM has been applied to several

DNA microarray data sets to do classification [123, 124], such as small round blue cell tumor

data of childhood [54], diffuse large B-cell lymphoma [6], AML-ALL leukemia [41]. Recently,

PAM is also used to classify patients into appropriate clinical subgroups (e.g. high risk and low

risk groups) identified by clustering algorithms on gene expression profiles [11].

4.3 Applying Clustering Techniques to Analyse Data

Another early work on analyzing gene expression data was done by Alon et al [7]. Their data

contained the expression of the 2000 genes with highest minimal intensity across 62 tissues,

including 22 normal and 40 colon cancer. Their study was based on top down hierarchical clus-

tering, a method of unsupervised learning. They demonstrated two kinds of groupings that (1)

genes of related functions could be grouped together by clustering according to similar temporal

evolution under various conditions, and (2) different tissues formed different clusters, i.e. most

normal samples clustered together while most cancer samples clustered together. Although they

showed that some genes are correlated with the normal versuscancer separation, they do not

suggest a specific method of gene selection in the paper.

Since [7], quite a few researchers have applied clustering techniques to gene expression

data, including self organizing maps, simulated annealingand graph theoretic approaches. In [111],

the input data was represented as a weighted graph, where vertices corresponded to samples

and edge weights reflected pairwise similarity between the corresponding samples. Then the

weight of an edge was believed to reflect the likelihood that its endpoints originated from the

same clustering under some simplified probabilistic assumptions [111]. An algorithm named

CLICK (CLuster Identification Connectivity Kernels) was invented to partition the graph using

a minimum-cut algorithm, which minimizes the sum of the weights of the edges joining the two

parts. However, one disadvantage of this approach is that there is little guarantee that the algo-

rithm will not go astray and generate partitions that are highly unbalanced. To avoid this, Xing

et al [136] proposed CLIFF (CLustering via Interactive Feature Filtering) to combine clustering

and feature selection in a bootstrap-like process. Their algorithm interacted between feature fil-

tering process and clustering process in a such way that eachprocess used the output of the other

process as an approximate input. They applied Approximate Normalized Cut, a graph partition
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algorithm, to generate a dichotomy of samples during each iteration. In the feature selection pro-

cess, they used the unsupervised independent feature modeling technique to rank all features in

terms of their power to discriminate. Then an initial partition based on thek most discriminative

features was generated (valuek was pre-defined). Based on this partition, they applied supervised

algorithms, information gain ranking and Markov blanket filtering, to determine feature subset

from which new partition would be generated. In turn, the newly generated partition could be

used to further improve the feature selection. CLIFF was applied by another paper [135] to se-

lect genes from the leukemia data set [41] and good classification results were obtained via three

learning algorithms: a Gaussian classifier, a logistic regression classifier and a nearest neighbour

classifier.

In a recent work conducted by Xuet al [137], gene expression data was presented as a Min-

imum Spanning Tree (MST), a concept from graph theory. By this presentation, each cluster of

the expression data corresponded to one subtree of the MST, which rigorously converted a highly

computationally intensive multi-dimensional clusteringproblem to a simplified tree partitioning

problem. Based on the MST representation, they developed a number of efficient clustering al-

gorithms and integrated them into a software named EXCAVATOR (EXpression data Clustering

Analysis and VisualizATion Resource).

4.4 Patient Survival Analysis

Gene expression profiles with clinical outcome data enable monitoring of disease progression

and prediction of patient survival at the molecular level. Afew published studies have shown

promising results for outcome prediction using gene expression profiles for certain diseases [102,

14, 129, 140, 88, 60].

Cox proportional hazard regression [30, 74] is a common method to study patient out-

comes. It has been used by Rosenwaldet al to analyse survival after chemotherapy for diffuse

large-B-cell lymphoma (DLBCL) patients [102], and by Beeret al to predict patient out of lung

adenocarcinoma [14]. With this method, genes most related to survival are first identified by a

univariate Cox analysis, and a risk score is then defined as a linear weighted combination of the

expression values of the identified genes.
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Ando et al [9] fed gene expression profiles to a fuzzy neural network (FNN) system to

predict survival of patients. Their method contained several steps. (1) Predicting the outcome

of each patient using one gene at one time. (2) Ranking genes by their accuracy — the gene

with the highest prediction accuracy had the highest rank. (3) Selecting partner genes for highest

ranked gene. They fixed the gene with the highest rank (named as “1st gene”) and used a similar

prediction method to select a partner gene (named as “2nd gene”) who gave the highest accuracy

in combination with the “1st gene”. Similarly, they fixed “1st gene” and the “2nd gene” to find

a 3rd gene. This procedure stopped after six rounds or when there was no gain on accuracy. (4)

Applying the procedure described in (3) to the ten highest ranked genes. (5) Using each of the ten

highest ranked genes and its selected partner genes to do prediction. (6) Optimizing the resulting

ten FNN models built on the combinatorial genes by the back-propagation method.

Parket al [88] linked gene expression data to patient survival times using the partial least

squares regression technique, which is a compromise between principal component analysis and

ordinary least squares regression. Shippet al [114] employed the weighted voting algorithm to

identify cured versus fatal for outcome of diffuse large B-cell lymphoma. The algorithm calcu-

lated the weighted combination of selected informative marker genes to make a class distinction.

In a recent publication [60], LeBlancet aldeveloped a gene index technique to identify the

associations between gene expression levels and patient outcome. Genes were ordered based on

linking their expression levels both to patient outcome andto a specific gene of interest. To select

such a reference gene, one was recommended to consider the gene that had been identified to be

most strongly related to the outcome or suggested from external data such as a protein analysis

or other experimental work. The core of their proposal was tocombine the correlation between

genes with the correlation between genes and patient outcome as well as class membership. They

demonstrated their method using the DLBCL data set collected by Rosenwaldet alconsisting of

160 patients [102].

4.5 Chapter Summary

Using gene expression data to analyse human malignancies has attracted many researchers these

years. In this chapter, we did an extensive review on the technologies applied to gene expression

studies, focusing on data preprocessing, gene selection and sample supervised learning. The op-

66



erations of data preprocessing mainly include scale transformations, data normalization, missing

value management, replicate handling, and flat pattern filtering. In the studies of gene selection,

statistical methods were widely adopted while feature wrapper idea and clustering algorithms

also demonstrated their efficiency. To solve the classification problem arising from gene expres-

sion data, many traditional and newly invented supervised learning approaches have been applied

to distinguish tumor from non-tumor samples, one subtype from other subtypes of certain dis-

ease and so on. From the extensive literature review in this chapter, we can see that approaches to

gene expression data analysis were not uniform; indeed, almost every paper presented a different

method or described a novel manner/procedure to analysis.
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Chapter 5

Experiments on Microarray Data —

Phenotype Classification

In this chapter, our proposed gene selection process ERCOF (detailed technology description

can be found in Section 3.3 of Chapter 3) and the ensemble of decision trees method CS4 (Sec-

tion 2.3.4 of Chapter 2) will be applied to some bench-mark microarray gene expression and

proteomic data sets to classify phenotypes. Phenotype classification is typically performed on

binary type, such as tumor against non-tumor (i.e. normal).For each data set, experimental re-

sults using some other related feature filtering methods andclassification algorithms will also be

presented, so that reasonable comparisons can be addressed.

5.1 Experimental Design

We test our methodology on several high-dimensional data sets, which were published recently

in Science, Nature,and other prestigious journals. All these data sets have been accumulated at

http://sdmc.i2r.a-star.edu.sg/rp/ and transformed into .data, .names format that

is widely used by the software programs for data mining, machine learning and bioinformatics.

See Appendix B for more detail about this data repository.
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5.1.1 Classifiers and their parameter settings

In order to compare CS4 with other ensemble of decision treesmethods, Bagging, AdaBoostM1

and Random forests are also run on the same data sets. Widely used state-of-the-art machine

learning algorithms in gene expression analysis, support vector machines (SVM) andk near-

est neighbours (k-NN are tested as well. The software implementation of theseclassification

algorithms (except CS4) used in the experiments isWeka(Bagging, AdaBoostM1, SVM andk-NN in version 3.2 and Random forests in version 3.3.6), a free (under GNU) machine learn-

ing software package written in Java and developed at University of Waikato in New Zealand

(http://www.cs.waikato.ac.nz/˜ml/weka/ ).

For most of the algorithm parameters, we adopt the default setting of Weka’s implementa-

tion. Particularly,Wekaimplemented SVM using sequential minimal optimization (SMO) algo-

rithm [93] to train the model (see section 2.3.2 for more information about SMO). Other default

settings of SVM include: conducting data normalization, using polynomial kernel functions, and

transforming the output into probabilities by a standard sigmoid function. Most of the time, the

linear kernel function is used unless stated otherwise. As for k-NN, we also use normalized data

and set the value ofk to 3 (default value is 1)— i.e. 3 nearest neighbours (i.e. 3-NN) will be used

in prediction.

Breiman noted in [19] that most of the improvement from bagging is evident withinten

replications. Therefore, we set 20 (default value is 10) as the number of bagging iterations for

Bagging classifier, the number of maximum boost iterations for AdaBoostM1, and the number

of trees in the forest for Random forests algorithm. Below, we list the default settings inWeka

for these three classifiers.� Bagging. The random seed for resampling is 1.� AdaBoostM1. Useboosting by weighting.� Random forests. The number of feature candidate to consideris int(log2m+1), wherem
is the total number of features. The random seed to pick up a feature is 1.

In addition, the implementation of the base classifier C4.5 in Wekaversion 3.2 was based

on its revision 8, which was the last public version before itwas commercialized. We follow
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the default settings that tree pruning and subtree raising are conducted. The CS4 algorithm was

implemented usingWekaAPIs (Version 3.2) and has been integrated intoWekapackage as one

of its classifiers. By default, we also build 20 trees from each time of learning. In case the

number of available features is less than 20, the number of trees will be decreased accordingly

and automatically.

5.1.2 Entropy-based feature selection

In the feature selections conducted by ERCOF, we select 5% significant level (for Wilcoxon rank

sum test) and 0.99 Pearson correlation coefficient threshold. For each data set, besides ERCOF,

we also try the following entropy-based filtering scenariosto conduct feature selection.� All-entropy : choose all the features whose value range can be partitioned into intervals

by Fayyad’s discretization algorithm [36] (also see Section 3.2.4 of Chapter 3), i.e. all the

output features from the Phase I of ERCOF.� Mean-entropy: choose features whose entropy measure is smaller than the mean entropy

value of all the genes selected by above “all-entropy” strategy [64].� Top-number-entropy: choose a certain number of top-ranked features according to en-

tropy measure, such as top 20, 50, 100 and 200 genes.

In addition, performance on original intact data (i.e. whole feature space, no gene selection)

are also obtained and presented under columnAll in the result table of each data set. Please note

that the type of features is always numeric.

5.1.3 Performance evaluation

Since the number of samples (i.e. experiments) is small in gene expression profiles, we simply

usenumber of misclassified samplesin each class as the main evaluator. The format of perfor-

mance presentation isZ(X : Y ), whereX (or Y ) is number of misclassified samples in the first

(or second) class andZ = X + Y . Other evaluation measures, such as sensitivity, specificity

and precision are also calculated when necessary. In most ofcases, we present results obtained

from a 10-fold cross validation on all samples of each data set. The samples are shuffled (with
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Figure 5.1: A process diagram fork-fold cross validation.

random seed 1) and stratified byWekaprogram version 3.2. In a 10-fold cross validation, since

the feature selection is conducted for each fold independently, the identified genes on same data

set will be vary from fold to fold. Figure 5.1 is a diagram of our process to conductk-fold cross

validation on gene expression data. Especially,k-fold cross validation becomesleave-one-out

cross validation (LOOCV, also known as “jack-knife”) whenk equals the number of samples.

5.2 Experimental Results

Here, we will present our experimental results of several public gene expression profiles and one

proteomic data set.

5.2.1 Colon tumor

This data set was first analysed by Alonet al in [7]. Its task is to distinguish cancer from normal

tissue using microarray data (Affymetrix oligonucleotidearray). 2000 out of around 6500 genes

were selected based on the confidence in the measured expression levels. These 2000 genes have
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Table 5.1: Colon tumor data set results (22 normal versus 40 tumor) on LOOCV and 10-fold
cross validation. Numbers presented in bold type is the bestresult achieved by the corresponding
classifier among 8 gene selection scenarios.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

LOOCV
SVM 10(5:5) 12(5:7) 9(4:5) 9(4:5) 8(4:4) 9(4:5) 13(8:5) 7(3:4)
3-NN 18(11:7) 10(5:5) 12(6:6) 10(6:4) 12(6:6) 10(5:5) 10(5:5) 10(4:6)
Bagging 10(7:3) 11(7:4) 11(7:4) 11(5:6) 11(5:6)10(5:5) 10(5:5) 10(5:5)
AdaBoostM1 13(8:5) 11(6:5) 13(8:5) 13(8:5) 13(7:6) 13(8:5) 14(9:5) 11(6:5)
RandomForests 16(11:5) 15(10:5) 15(10:5) 14(8:6) 14(8:6)15(8:7) 14(8:6) 13(8:5)
CS4 11(7:4) 11(7:4) 11(7:4) 12(7:5) 11(7:4) 11(7:4)9(6:3) 12(4:8)

10-fold cross validation
SVM 11(5:6) 9(5:4) 9(5:4) 8(4:4) 8(4:4) 9(5:4) 10(5:5) 8(4:4)
3-NN 19(12:7) 9(5:4) 11(5:6) 12(8:4) 10(5:5) 10(5:5) 11(6:5) 9(5:4)
Bagging 12(7:5) 12(7:5) 10(5:5) 11(5:6) 12(7:5) 10(5:5)9(4:5) 10(5:5)
AdaBoostM1 12(8:4) 10(5:5) 12(8:4) 14(8:6) 13(7:6) 13(8:5) 14(9:5) 9(5:4)
RandomForests 12(5:7) 13(6:7) 13(9:4) 15(9:6)11(7:4) 13(8:5) 12(6:6) 12(7:5)
CS4 14(9:5) 11(7:4) 12(7:5) 13(8:5) 12(7:5) 9(5:4) 13(8:5) 10(5:5)

highest minimal intensity across the 62 tissues collected from colon-cancer patients, including

40 tumor biopsies from adenocarcinoma and 22 normal biopsies from healthy parts of the colons

of the same patients [7]. The raw data can be found athttp://microarray.princeton.

edu/oncology/affydata/index.html.

Table 5.1 shows the performance of different classifiers among total 8 gene selection sce-

narios. For this data set, since it contains a relatively smaller number of samples, we list out both

LOOCV and 10-fold cross validation results.

There are 7 common genes selected by each fold ERCOF feature selection in 10-fold cross

validation test. Table 5.2 lists their feature series number, GenBank accession number, sequence

and name. Several of these identified features, such as features 377, 625 and 1772, were also

highlighted in [68], where Bayesian algorithms incorporating feature selection were applied to

the same data set. Particularly, the finding of feature 377, that corresponds to the mRNA for

uroguanylin precursor, is consistent with the statement in[84] that “guanylin and uroguanylin

are markedly reduced in early colon tumors with very low expression in adenocarcinoma of the

colon and also in its benign precursor, the adenoma”.

The best performance on LOOCV is achieved by SVM under ERCOF feature selection

scenario (7 biopsies are misclassified, including 3 normal and 4 tumor samples). So far, this is

also among the best prediction accuracy on this data set whencompared with published results.
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Table 5.2: 7 common genes selected by each fold of ERCOF in 10-fold cross validation test for
colon tumor data set. UTR stands for untranslated region.

Feature Accession Sequence Name
number number
377 Z50753 gene H.sapiens mRNA for GCAP-II/uroguanylin precursor
780 H40095 3’ UTR MACROPHAGE MIGRATION INHIBITORY FACTOR (HUMAN)
513 M22382 gene MITOCHONDRIAL MATRIX PROTEIN P1 PRECURSOR (HUMAN)
625 X12671 gene Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP)

core protein A1
1582 X63629 gene H.sapiens mRNA for p cadherin
1771 J05032 gene Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds
1772 H08393 3’ UTR COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

Although CS4 performs worse than SVM does in terms of accuracy, it provides some learning

rules. For example, Figure 5.2 gives a decision tree output by CS4 on this data set. From this

tree, 5 rules can be derived directly:

(1) “If attribute625�226.6, then the sample is normal”. There are 11 of normal samples

(labeled as “positive”) that satisfy this rule.

(2) “If attribute625>226.6^ attribute1772�82.0^ attribute377�224.1, then the sample is

tumor”. This rule is true for 10 of the tumor samples (labeled as “negative”).

(3) “If attribute625>226.6^ attribute1772�82.0^ attribute377>224.1^ attribute625�331.1,

thenthe sample is tumor”. This rule is true for 2 of the tumor samples.

(4) “If attribute625>226.6^ attribute1772�82.0^ attribute377>224.1^ attribute625>331.1,

thenthe sample is normal”. There are 10 of the normal samples that satisfy this rule.

(5) “If attribute625>226.6^ attribute1772>82.0, thenthe sample is tumor”. This is a domi-

nant rule for tumor samples since it is true for 28 (70%) of them; however, there is also 1

normal sample meets this rule.

5.2.2 Prostate cancer

Prostate tumors are among the most heterogeneous of cancers, both histologically and clini-

cally [115]. Here, we will study gene expression patterns from 52 tumor and 50 normal prostate

specimens. The data was obtained from oligonucleotide microarrays containing probs for ap-

proximately 12,600 genes and ESTs. According to the supplemental documents of [115], where
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Figure 5.2: A decision tree output from colon tumor data set.The upper part is the tree presented
in text format while the lower is the same tree in tree format.The pictures are captured from the
result panel ofWeka. In this chapter, we will mostly use the text format to illustrate a decision
tree.

the data was first analysed, all expression files in a given experiment were scaled to a refer-

ence file based upon the mean average difference for all genespresent on the microarray. All

genes with average differences (calculated by Affymetrix GeneChip software) below the mini-

mum threshold of 10 were set at the minimum threshold while the maximum threshold was set at

16,000. The raw data can be downloaded fromhttp://microarray.princeton.edu/

oncology/affydata/index.html.

Table 5.3 shows our 10-fold cross validation performance onthis prostate cancer data set.

SVM achieves 95% accuracy (5 errors out of total 102 samples,with 2 misclassified tumor sam-

ples and 3 misclassified normal samples) under both ERCOF andtop 100 genes selected by

entropy measure. CS4 also obtains good accuracy as high as 93% with 7 classification errors. In

[115], greater than 90% LOOCV accuracy was claimed by using asmall number of genes (from 4

to 256) selected by signal-to-noise measure andk-nearest neighbours classification algorithm. In

fact, our LOOCV accuracy under ERCOF is also 95% for SVM and 93% for CS4 using average

500 genes (detailed data not shown).

There are 54 common genes selected by each fold ERCOF featureselection in 10-fold cross
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Table 5.3: Prostate cancer data set results (52 tumor versus50 normal) on 10-fold cross valida-
tion.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 7(5:2) 8(5:3) 6(4:2) 6(4:2) 7(4:3) 5(3:2) 7(3:4) 5(3:2)
3-NN 18(8:10) 10(6:4) 8(5:3) 9(3:6) 8(4:4) 7(4:3) 9(5:4) 8(5:3)
Bagging 10(8:2) 9(7:2) 10(5:5) 8(4:4) 8(4:4) 11(5:6) 9(5:4) 9(5:4)
AdaBoostM1 14(7:7) 10(6:4) 8(5:3) 9(5:4) 12(6:6) 14(3:11) 10(4:6) 10(6:4)
RandomForests 21(10:11) 11(7:4) 11(6:5) 9(5:4) 10(7:3) 9(5:4) 7(4:3) 10(5:5)
CS4 9(7:2) 9(7:2) 8(6:2) 8(4:4) 7(5:2) 9(6:3) 9(6:3) 8(6:2)

Table 5.4: Classification errors on the validation set of lung cancer data, consisting of 149 sam-
ples (15 MPM versus 134 ADCA).

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 1(0:1) 1(0:1) 0 1(0:1) 2(1:1) 1(0:1) 0 0
3-NN 3(2:1) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0 1(1:0) 1(1:0)
Bagging 4(0:4) 5(0:5) 5(0:5) 20(3:17) 12(2:10) 8(1:7) 6(0:6) 6(0:6)
AdaBoostM1 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23)
RandomForests 5(0:5) 7(0:7) 3(2:1) 8(1:7) 3(1:2) 3(1:2) 2(0:2) 2(0:2)
CS4 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2)

validation test. Table A.1 in the Appendix lists their probenumber, GenBank accession number,

and name. Some of them were also announced by [115] as significant genes to distinguish tumor

from normal prostate samples. For examples, AF037643, M17885, AL031228, and X07732 and

so on.

5.2.3 Lung cancer

This data set is about the distinction between malignant pleural mesothelioma (MPM) and adeno-

carcinoma (ADCA) of the lung by using the gene expression profiles on 181 tissue samples (31

MPM and 150 ADCA) obtained from oligonucleotide chips. Eachsample is described by 12,533

genes. In [42], where this data was first studied, samples wasdivided into a training set consist-

ing 16 MPM and 16 ADCA, and a validation set containing the rest 149 samples. The raw data

can be found fromhttp://www.chestsurg.org/microarray.htm. Table 5.4 shows

the errors on test set using our proposed scenarios.

This data set has several features: (1) The size of training set is small, but the number of

samples in each class is balanced. Test set contains more than three times samples than those in

the training set, and the number of MPM samples is only one ninth of that of ADCA samples. (2)
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There are as many as 16 genes having zero entropy value on training samples. This means that

using any one of them can separate MPM and ADCA completely. Thus, in the construction of a

C4.5 decision tree, a tree will contain only one feature and two rules, one rule for MPM samples

and another one for ADCA samples. In this case, since the baseclassifier C4.5 has no training

error, the algorithm of AdaBoostM1 will not proceed to generate new trees and therefore, it is

equivalent to C4.5. Unfortunately, none of these genes can 100% classify the samples in the

validation set alone — the best one misclassifies 4 samples. Table 5.5 gives the cut point for each

of these 16 genes that can separate MPM and ADCA samples in thetraining set completely, as

well as the testing error of C4.5 decision tree built only on that gene. The cut point is the middle

point of the gene’s boundary expression value in each class.For example: if the maximum

expression value of a gene having zero entropy in MPM class samples is 100 while the minimum

expression value of the same gene in ADCA samples is 500, thenthe cut point value of this gene

will be 300 and we say the gene has lower expression level in MPM samples and higher level

in ADCA samples. (3) Although there is no single gene that cangive 100% correct prediction

on the testing samples, the combination of all of them will lead to a near perfect accuracy —

99.3% prediction accuracy with only one MPM sample misclassified by SVM and 3-NN. (4)

Furthermore, when more genes are considered, 100% accuracyon testing is achieved by SVM

using mean-entropy, top 200 entropy or ERCOF selected features, or by 3-NN using top 100

entropy measure genes.

In the study on the data set in [42], marker genes with a highlysignificant difference (p <2 � 10�6;� 8�fold) in average expression levels between 16 MPM and 16 ADCAtraining

samples were explored. From them, 8 genes with the most statistically significant differences

and a mean expression level> 600 in at least one of the two training sample sets were chosen

to form 15 expression ratio patterns. The best test accuracyreported was also 99.3% (with 1

error). Among the 8 significant genes, we find 3 of them with zero entropy. They are highlighted

with bold font in Table 5.6 where the probe name, GenBank accession number and gene name

of those 16 zero entropy genes are listed. The remaining 5 genes also have relatively smaller

entropy values, they are X56667 (GenBank accession number), entropy rank 31; X16662, rank

32; AJ011497, rank 33; AB023194, rank 37; and U43203, rank 56.

By the way, we also obtain the 10-fold cross validation results on this data set and list them
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Table 5.5: 16 genes with zero entropy measure in the trainingset of lung cancer data. Cut
point is the expression value of the gene that can be used to separate MPM and ADCA samples
completely. The column “lower” ( or “higher”) indicates theclass that all of its samples have
their expression values of this genenot greater than(or greater than) the cut point.

Probe Name Cut Point Lower Higher Test Error
2047 s at 571.1 MPM ADCA 27(4:23)
266 s at 76.95 MPM ADCA 20(2:18)
32046at 103.2 MPM ADCA 16(3:13)
32551at 73.45 MPM ADCA 15(1:14)
33245at 48.3 MPM ADCA 12(1:11)
33833at 453.7 ADCA MPM 10(2:8)
35330at 25.3 ADCA MPM 31(1:30)
36533at 193.25 ADCA MPM 8(2:6)
37205at 78.8 ADCA MPM 14(3:11)
37716at 197.75 ADCA MPM 4(4:0)
39795at 1167 ADCA MPM 14(1:13)
40936at 430.6 ADCA MPM 9(3:6)
41286at 41.5 MPM ADCA 28(2:26)
41402at 54.6 MPM ADCA 26(2:24)
575 s at 149.75 MPM ADCA 8(1:7)
988 at 31 MPM ADCA 17(2:15)

in Table 5.7. Many scenarios have less than 4 misclassified samples, achieving overall accuracy

above 98%. Remarkably, random forests makes no error using mean-entropy selected genes.

5.2.4 Ovarian cancer

Different from other data sets studied in this chapter, thisdisease analysis is about usingpro-

teomicspectra generated from mass spectrometer for ovarian cancer detection. The initial publi-

cation [92] on this new diagnostic approach was inLancetin February 2002, in which analysis

of serum from 50 unaffected women and 50 patients with ovarian cancer were conducted and a

proteomic pattern that completely discriminated cancer from non-cancer was identified. As de-

scribed in [29], when we use proteomic patterns to diagnose disease, the sample drawn from the

patient is first applied to a protein chip which is made up of a specific chromatographic surface,

and then analysed via mass spectrometry. The result is simply a mass spectrum of the species

that bound to and subsequently desorbed from the array surface. The pattern of peaks within the

spectrum is studied to diagnose the source of the biologicalsample. A process diagram of how

to diagnose disease using proteomic patterns is captured from [29] and given in Figure 5.3. One

obvious advantage of this process is that raw biofluids, suchas urine, serum and plasma, can be

directly applied to the array surface. On the other hand, as pointed out in [29], there are criticisms
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Table 5.6: GenBank accession number and name of 16 genes withzero entropy measure in the
training set of lung cancer data. Three genes in bold font were also selected by [42].

Probe Accession Gene name
name number
2047 s at M23410 Human plakoglobin (PLAK) mRNA, complete cds
266 s at L33930 Homo sapiens CD24 signal transducer mRNA, complete cds and 3 region
32046at D10495 Homo sapiens mRNA for protein kinase C delta-type,complete cds
32551at U03877 Human extracellular protein (S1-5) mRNA, complete cds
33245at AF004709 Homo sapiens stress-activated protein kinase 4mRNA, complete cds
33833at J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRNA, complete cds
35330at AJ012737 Homo sapiens mRNA for filamin, muscle isoform
36533at D83402 Homo sapiens gene for prostacyclin synthase
37205at AB020647 Homo sapiens mRNA for KIAA0840 protein, partialcds
37716at X05323 Human MRC OX-2 gene signal sequence
39795at D63475 Human mRNA for KIAA0109 gene, complete cds
40936at AI651806 Homo sapiens cDNA, 3’end
41286at X77753 H.sapiens TROP-2 gene
41402at AL080121 Homo sapiens mRNA; cDNA DKFZp564O0823 (from clone DKFZp564O0823)
575 s at M93036 Human (clone 21726) carcinoma-associated antigen GA733-2 (GA733-2) mRNA,

exon 9 and complete cds
988 at X16354 Human mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA)

Table 5.7: 10-fold cross validation results on whole lung cancer data set, consisting of 31 MPM
and 150 ADCA samples.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0)
3-NN 11(11:0) 3(3:0) 2(2:0) 1(1:0) 2(2:0) 2(2:0) 2(2:0) 1(1:0)
Bagging 6(5:1) 6(5:1) 6(5:1) 7(5:2) 5(4:1) 5(4:1) 6(5:1) 6(5:1)
AdaBoostM1 6(3:3) 7(3:4) 5(2:3) 3(2:1) 2(1:1) 2(1:1) 3(2:1) 6(3:3)
RandomForests 2(2:0) 2(2:0) 0 1(1:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0)
CS4 2(2:0) 2(2:0) 1(1:0) 3(3:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0)

of using proteomic patterns for diagnostic purpose — mainlybecause the identity of the proteins

or peptides giving rise to the key m/z features is not known. However, this debate is beyond the

scope of this thesis.

After the first publication about using proteomic spectra todetect cancer, a series of new

data and discussions on proteomic patterns were put on the FDA-NCI Clinical Proteomics Pro-

gram Databank web site athttp://clinicalproteomics.steem.com/. Recently (up-

dated in August 2003), an important development about usinga higher resolution mass spectrom-

eter to generate proteomic patterns was announced publicly. Compared with the configuration of

the old Ciphergen instrument (about 100 to 200 spots), thereis a tremendous increase in resolu-

tion of the new Q-Star instrument (>9000 at m/z 1500). Besides, mass accuracy is also improved

— Q-Star 10ppm versus Ciphergen 1000ppm.
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Figure 5.3: Disease diagnostics using proteomic patterns.Picture is from [29]. m/z stands for
mass to charge ratio and SELDI-TOF MS for surface-enhanced laser desorption/ionization time-
of-flight mass spectrometry.

Here, we apply our proposed feature selection and machine learning approach to an ovarian

proteomic data set named “6-19-02”. This sample set included 91 controls and 162 ovarian

cancers. The raw SELDI (surface-enhanced laser desorption/ionization) data constructed using

the Ciphergen WCX2 ProteinChip had 15154 molecular m/z (mass to charge ratio) identities

ranging from 0.0000786 to 19995.513. The relative amplitude of the intensity at each m/z identity

was normalized against the most intense and the least intense values in the data stream according

to the formula NV = (V � Vmin)(Vmax � Vmin) (5:1)
where NV is the normalized value, V the raw value,Vmin the minimum andVmax the maximum

raw data of the identity across all the samples, respectively. After this linear normalization, all

the m/z intensities fell within the range [0,1]. Table 5.8 lists the 10-fold cross validation results

on 253 samples with normalized intensities using our proposed scenarios. Notably, both SVM

and CS4 achieve 100% accuracy under certain feature selection methods. This may indicate that

machine learning technologies can also be used to find proteomic patterns.

In the above mentioned web site, associated with this “6-19-02” ovarian cancer data, there

was also a list of seven key m/z values which was announced as an example of the best models
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Table 5.8: 10-fold cross validation results on “6-19-02” ovarian proteomic data set, consisting of
162 ovarian cancer versus 91 control samples.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 0 0 0 4(1:3) 0 0 0 0
3-NN 15(6:9) 11(3:8) 10(3:7) 4(1:3) 2(0:2) 3(0:3) 4(0:4) 3(1:2)
Bagging 7(3:4) 6(3:3) 5(3:2) 7(4:3) 5(3:2) 6(3:3) 5(3:2) 6(3:3)
AdaBoostM1 10(4:6) 9(4:5) 8(4:4) 6(4:2) 4(4:0) 5(4:1) 6(4:2) 5(4:1)
RandomForests 19(6:13) 8(1:7) 5(0:5) 7(3:4)3(0:3) 4(0:4) 6(1:5) 5(1:4)
CS4 0 0 1(0:1) 5(2:3) 1(0:1) 0 0 0

found to 100% correctly separate ovarian cancer and non-cancer samples. These m/z identities

are: MZ2760.6685, MZ19643.409, MZ465.56916, MZ6631.7043, MZ14051.976, MZ435.4652

and MZ3497.5508. However, among these seven M/Z values, we find 3 of them will be fil-

tered out by the Phase I of ERCOF, i.e. the entropy algorithm can not find cut point for their

value ranges. They are: MZ2760.6685, MZ19643.409 and MZ6631.7043. With the remaining

4 identities, SVM can still achieve 100% accuracy on 10-foldcross validation and some simple

rules are found to separate cancer and non-cancer samples completely by decision tree method.

For example, the simple rule, “ifMZ435.46452>0.335733̂ MZ465.56916<0.666745, thenthe

sample is ovarian cancer”, is true for 148 of 162 cancer samples.

A recent paper presented the work on this data set is [118], which used non-parametric

Wilcoxon rank sum test statistics and stepwise discriminant analysis to develop patterns and

rules from proteomic profiling. Using Wilcoxon test, the paper reported that 685 out of total

15154 m/z values differing between the cancer and non-cancer populations with ap-value of less

than10�6. On the other hand, refer to our 10-fold cross validation results in Table 5.8, the top

50 entropy measure selected features can lead to a 100% accuracy and we further find there are

as many as 39 common m/z values among each time feature selection for 10 folds. These 39

m/z identities are all in the ERCOF selected common featuresfor 10-fold cross validation. In the

Appendix, we list in Table A.3 these m/z values, their corresponding Wilcoxon testp-values and

entropy measure on the entire data set. Thep-values are derived from the supplementary figures

of paper [118]. Notably, their Wilcoxonp-values are all very small (< 10�21). With these 39

m/z identities, CS4 outputs several decision trees, and each of them can separate cancer from

non-cancer completely. Figure 5.4 shows only four of them.
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Figure 5.4: Four decision trees output by CS4 using 39 commonfeatures selected by top 50 en-
tropy measure on 10-fold cross validation on ovarian cancerproteomic profiling. All these trees
are constructed on the entire 253 samples and can separate cancer and non-cancer completely.

5.2.5 Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin’s lym-

phoma. Although around 40% of DLBCL patients are cured with current therapy and have pro-

longed survival, the remainder succumb to the disease [6]. Recently, DLBCL was widely studied

at molecular level using gene expression profilings [6, 102,114]. Alizadehet al [6] identified

two distinct forms of DLBCL which had gene expression patterns indicative of different stages

of B-cell differentiation.Germinal center B-likeDLBCL expresses genes normally seen in ger-

minal center B cells, whileactivated B-likeDLBCL expresses genes that are induced duringin

vitro activation of peripheral blood B cells. They showed that patients with germinal center B-

like DLBCL had a significantly better overall survival than those with activated B-like DLBCL.

Thus, accurately classifying germinal center B-like DLBCLand activated B-like DLBCL will

help with survival prediction.

The DLBCL gene expression data studied in [6] contains 4026 genes across 47 samples,
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Table 5.9: 10-fold cross validation results on DLBCL data set, consisting of 24 germinal center
B-like DLBCL versus 23 activated B-like DLBCL.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 6(3:3) 3(1:2) 2(1:1) 6(4:2) 3(1:2) 4(2:2) 3(1:2) 2(1:1)
3-NN 13(1:12) 5(2:3) 5(2:3) 5(3:2) 5(3:2) 3(1:2) 5(2:3) 4(2:2)
Bagging 6(3:3) 6(3:3) 7(3:4) 8(3:5) 8(3:5) 8(3:5) 6(3:3) 8(3:5)
AdaBoostM1 11(4:7) 11(5:6) 10(4:6) 8(4:4) 9(4:5) 11(5:6) 10(4:6) 10(5:5)
RandomForests 5(4:1) 1(0:1) 4(3:1) 3(2:1) 4(3:1) 6(2:4) 3(2:1) 3(2:1)
CS4 5(2:3) 5(2:3) 5(2:3) 6(2:4) 4(2:2) 5(2:3) 5(2:3) 5(2:3)

including 24 germinal center B-like DLBCL and 23 activated B-like DLBCL. The data and

associated information can be found athttp://llmpp.nih.gov/lymphoma/ . The raw

data were originally filtered by several criteria and log-transformed (base 2). For details of data

preprocessing, please refer to [6]. Table 5.9 shows the 10-fold cross validation results on this

DLBCL data set under our proposed scenarios. The results demonstrate that, overall speaking,

germinal center B-like DLBCL and activated B-like DLBCL canbe classified. Random forests

achieves best cross validation results — having only one sample misclassified using all entropy

measure selected genes. SVM still performs well — giving only two misclassified samples in

two cases. In addition, using ERCOF as feature selection method, the number of misclassified

samples in LOOCV test for SVM, CS4 and random forests are 2(1:1), 4(2:2) and 3(2:1), respec-

tively.

Table 5.10 lists the 9 common genes selected by each fold ERCOF feature selection in the

10-fold cross validation test. All of them are in the “list ofbest class-predicting genes supporting

the GC-B Like v.s. Activated B-Like class distinction” of paper [6] (see supplemental Figure 3

on the data web site given above). Besides, our identified genes are also highly consistent with

those reported in [126], wheret-test, Wilcoxon rank sum test and a heuristic method were applied

to select genes on the same data set. Notably, we find that the GENE1207X (or FLIP), whose

products inhibit programmed cell death, highly expressed in activated B-like DLBCL. According

to [6], “FLIP is a dominant-negative mimic of caspase 8 (FLICE) which can block apoptosis

mediated by Fas and other death receptors.....FLIP is highly expressed in many tumor types and

its constitutive expression in activated B-like DLBCLs could inhibit apoptosis of tumor cells

induced by host T cells expressing Fas ligand”. On the other hand, simply using these 9 genes, 3-

NN and Random forests can separate 24 germinal center B-likeDLBCL from 23 activated B-like
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Table 5.10: 9 common genes selected by each fold of ERCOF in 10-fold cross validation test on
DLBCL data set. The third column indicates the DLBCL sub-class that the gene was relatively
highly expressed.

GID Gene name HighlyExpressed in
GENE3328X Unknown UG Hs.136345 ESTs; Clone=746300 GC-B Like
GENE3314X *Unknown; Clone=1353041 GC-B Like
GENE1252X *Cyclin D2/KIAK0002=3’ end of KIAK0002 cDNA; Clone=1357360 activated B-like
GENE3325X Unknown UG Hs.120245 Homo sapiens mRNA for GC-B Like

KIAA1039 protein, partial cds; Clone=1268870
GENE3946X *PTP-1B=phosphotyrosyl-protein phosphatase;Clone=472182 activated B-like
GENE2106X Similar to intersectin=adaptor protein with two GC-B Like

EH and five SH3 domains; Clone=1339781
GENE2291X Unknown; Clone=1340742 activated B-like
GENE3258X *JAW1=lymphoid-restricted membrane protein; Clone=815539 GC-B Like
GENE1207X *FLICE-like inhibitory protein long form=I-FLICE=FLAME-1 activated B-like

=Casper=MRIT=CASH=cFLIP=CLARP; Clone=711633

DLBCL completely while both SVM and CS4 only misclassify oneactivated B-like DLBCL.

Figure 5.5 displays some decision trees output from runningCS4 on these 9 genes.

5.2.6 ALL-AML leukemia

This leukemia data first reported by Golubet al [41] is among the most extensively analysed gene

expression profilings. Many researchers have tested their clustering, gene selection and/or clas-

sification algorithms on this bench mark data set [39, 136, 87, 123, 86, 85, 31, 68, 82, 51]. The

original training data consists of 38 bone marrow samples with 27 ALL (acute lymphoblastic

leukemia) and 11 AML (acute myeloid leukemia) from adult patients. The test data set con-

sisted of 24 bone marrow samples and 10 peripheral blood specimens from adults and children,

including 20 ALL and 14 AML. The gene expression profile were obtained from Affymetrix

high-density oligonucleotide microarrays containing 7129 probes for 6817 human genes. The

raw data can be downloaded fromhttp://www.broad.mit.edu/cgi-bin/cancer/

datasets.cgi .

In Table 5.11, we list results on 34 test samples as well as 10-fold cross validation and

LOOCV on entire 72 samples using our proposed gene selectionand classification scenarios.

Our best result of both testing and cross validation is to misclassify only one sample. In fact, this

misclassified AML sample was reported by most of other investigators.

ERCOF selects 280 genes from training set samples. Table A.4in the Appendix lists

the probe and name of these genes. In [41], 50 genes found by signal-to-noise measurement
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Figure 5.5: Four decision trees output by CS4 using 9 common features selected by ERCOF on
10-fold cross validation on DLBCL data. All these trees are constructed on the entire 47 samples,
including 24 germinal center B-like DLBCL and 23 activated B-like DLBCL.

that most highly correlated with ALL and AML distinction from the training samples were re-

ported. Remarkably, 49 of them are also in our 280 genes list and indicated with bold font in

Table A.4. In addition, Olshen and Jain [85] reported 40 significant genes identified byt-test

with a permutation-based adjustment. These genes are all included in our list, but some of them

(13 out of 40) are not in Golub’s 50-gene list. On the other hand, there are 80 common genes

selected by ERCOF in each fold of 10-fold cross validation onthe entire 72 samples. Fifty of

them are in the list of Table A.4 in the Appendix. Based on training set samples, there is one gene

(Zyxin) with zero entropy (1017.58 is the cut point and it highly expressed in AML samples).

However, with only this one gene, classification algorithmscan not achieve good testing results

on validation set. At this point, Golubet al commented “in any case, we recommend using at

least 10 genes ...... Class predictors using a small number of genes may depend too heavily on

any one gene and can produce spuriously high prediction strengths”.

Using SAM described in Section 4.2.1, a statistical software designed for identifying signif-

icant genes in a set of microarray experiments, total of 2857genes are output with the thresholdÆ at 0.4789. Table 5.12 lists the classification results on 34 testing samples using different top

genes ranked by SAM score. We can see that SVM,k-NN and random forests can not achieve

good testing results using SAM selected genes on this data set, but AdaBoostM1 achieves bet-
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Table 5.11: ALL-AML leukemia data set results (ALL versus AML) on testing samples, as well
as 10-fold cross validation and LOOCV on the entire set.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 5(0:5) 1(0:1) 1(0:1) 4(0:4) 5(1:4) 1(0:1) 1(0:1) 1(0:1)
3-NN 10(1:9) 6(0:6) 2(0:2) 3(0:3) 4(1:3) 2(0:2) 1(0:1) 1(0:1)
Bagging 3(0:3) 4(0:4) 4(0:4) 2(1:1) 4(0:4) 4(0:4) 4(0:4) 4(0:4)
AdaBoostM1 3(2:1) 3(2:1) 3(2:1) 3(2:1) 3(2:1) 3(2:1) 3(2:1) 3(2:1)
RandomForests 9(0:9) 4(0:4) 6(0:6) 4(1:3) 5(0:5)2(0:2) 2(0:2) 3(0:3)
CS4 4(0:4) 4(0:4) 3(0:3) 2(1:1) 4(0:4) 3(0:3) 3(0:3) 3(0:3)

10-fold cross validation
SVM 1(0:1) 2(1:1) 2(1:1) 2(1:1) 5(2:3) 3(2:1) 2(1:1) 2(1:1)
3-NN 10(1:9) 2(0:2) 1(0:1) 4(3:1) 4(2:2) 4(2:2) 2(1:1) 2(0:2)
Bagging 5(0:5) 6(0:6) 5(0:5) 4(0:4) 6(1:5) 6(1:5) 6(1:5) 6(2:4)
AdaBoostM1 13(6:7) 11(5:6) 12(5:7) 6(3:3) 7(4:3) 10(6:4) 10(5:5) 9(4:5)
RandomForests 6(0:6) 5(0:5) 4(1:3) 4(0:4) 4(1:3)3(0:3) 5(0:5) 5(2:3)
CS4 1(0:1) 2(0:2) 2(0:2) 3(1:2) 2(1:1) 1(0:1) 2(0:2) 2(1:1)

LOOCV
SVM 1(0:1) 1(0:1) 2(1:1) 4(2:2) 5(2:3) 4(2:2) 2(1:1) 1(0:1)
3-NN 10(1:9) 1(0:1) 1(0:1) 4(3:1) 5(3:2) 2(1:1) 3(2:1) 1(0:1)
Bagging 7(3:4) 6(1:5) 5(0:5) 5(0:5) 5(0:5) 6(1:5) 6(1:5) 5(1:4)
AdaBoostM1 11(6:5) 10(5:5) 11(5:6) 6(3:3) 6(3:3) 7(4:3) 10(5:5) 7(4:3)
RandomForests 8(0:8) 6(2:4) 4(1:3) 4(0:4) 5(2:3) 5(2:3) 6(3:3) 4(1:3)
CS4 2(1:1) 2(1:1) 2(1:1) 1(0:1) 1(0:1) 2(1:1) 2(1:1) 1(0:1)

ter results (with top 350, 280 or 200 genes) than using our proposed gene selection schemes.

Remarkably, bagging makes no testing error on top 350 SAM selected genes. As for CS4, the

performance is relatively stable by using 100 to 350 SAM selected genes. When we compare the

genes identified by SAM with those 280 selected by ERCOF, we only find 125 and 17 common

genes from all 2857 and top 280 SAM selected genes, respectively.

Using PAM described in Section 4.2.3, a class prediction software for genomic expression

data mining based on nearest shrunken centroid method, Tibshirani et al reported 2 misclassified

Table 5.12: ALL-AML leukemia data set results (ALL versus AML) on testing samples by using
top genes ranked by SAM score. *: the number is approximate tothe number of all-entropy
selected genes; **: the number is approximate to the number of mean-entropy selected genes;
***: the number is approximate to the number of ERCOF selected genes.

Classifier 2857 800� 350�� 280��� 200 100 50 20
SVM 3(0:3) 4(0:4) 4(1:3) 5(1:4) 6(2:4) 10(4:6) 11(3:8) 11(0:11)
3-NN 11(1:10) 11(1:10) 10(0:10) 10(0:10) 10(0:10) 11(0:11) 13(1:12) 12(0:12)
Bagging 2(0:2) 2(0:2) 0 2(1:1) 2(1:1) 2(1:1) 9(0:9) 8(1:7)
AdaBoostM1 3(0:3) 3(1:2) 1(0:1) 1(0:1) 1(0:1) 2(0:2) 12(4:8) 8(1:7)
RandomForests 13(0:13) 9(0:9) 8(0:8) 6(0:6) 6(0:6) 6(0:6) 11(0:11) 11(0:11)
CS4 6(1:5) 4(1:3) 2(0:2) 3(0:3) 4(0:4) 2(1:1) 8(0:8) 9(2:7)
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test samples by using only 21 genes with an amount of shrinkage Æ at 4.06 [123]. ThisÆ value is

not the optimal one where the minimum cross-validation errors occurs since there will be more

than 1000 genes associated with the optimalÆ value. Anyway, our classification results are very

competitive on this data set — misclassifying only 1 test sample.

5.2.7 Subtypes of pediatric acute lymphoblastic leukemia

Pediatric acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer.

However, with modern cancer therapy, its overall long-termevent-free survival rates is as high

as 80% [140]. Treatment of pediatric ALL is based on the concept of tailoring the intensity of

therapy to a patient’s risk of relapse. Thus, it becomes veryimportant to accurately assign indi-

vidual patients into specific risk groups; otherwise, it would cause under-treatment (which causes

relapse and eventual death) or over-treatment (which causes severe long-term side-effects). Al-

though current risk assignment is mainly dependent on a variety of clinical and laboratory param-

eters requiring an extensive range of procedures includingmorphology, immunophenotyping, cy-

togenetics, and molecular diagnostics, it has been noticedthat the genetic alterations that under-

lie the pathogenesis of individual leukemia subtypes are also playing important roles [95, 140].

Though it looks identical under the microscope, pediatric ALL is a highly heterogeneous disease,

with as many as 6 different subtypes that have widely differing treatment outcome. The purpose

of the analysis on this data set is to accurately classify subtypes of pediatric ALL using gene

expression profiling so that the correct intensity of therapy can be delivered to ensure that the

child would have the highest chance for cure.

The data is a collection of 327 gene expression profiles of pediatric ALL diagnostic bone

marrows with Affymetrix oligonucleotide microarrays containing 12,600 probe sets [140]. The

raw data can be found fromhttp://www.stjuderesearch.org/data/ALL1/ . These

samples contain all known biologic ALL subtypes, includingT lineage leukemias (T-ALL), B

lineage leukemias that contain t(9;22) (BCR-ABL), t(1;19) (E2A-PBX1), t(12;21) (TEL-AML1),

rearrangement in the MLL gene on chromosome 11, band q23 (MLL), and a hyperdiploid kary-

otype (i.e.> 50 chromosomes) (Hyperdip>50) [140]. In [140], where the data was first analysed,

327 samples were divided into two groups — a training group consisting of 215 samples and a

testing group consisting of 112 samples. Table 5.13 lists the number of samples of each subtype
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Table 5.13: Number of samples in each of subtypes in pediatric acute lymphoblastic leukemia
data set.

Subtype Number of training samples Number of testing samples total
T-ALL 28 15 43
E2A-PBX1 18 9 27
TEL-AML1 52 27 79
BCR-ABL 9 6 15
MLL 14 6 20
Hyperdip>50 42 22 64
Rest 52 27 79
Total 215 112 327

in training and testing groups, and the diagnostic samples that did not fit into any one of the above

subtypes are put under “Rest”.

In [140], classification was designed following a decision tree format, in which the first

decision was T-ALL (T lineage) versus non-T-ALL (B lineage)and then within the B lineage

subset. If a case is decided to be a non-T-ALL, it will be sequentially classified into the known

risk groups characterized by the presence of E2A-PBX1, TEL-AML1, BCR-ABL, MLL, and

lastly hyperdip>50. A very high prediction accuracy on the blinded test samples was achieved

for each ALL subtypes using SVM and genes selected byt-statistic,X 2-statistic or other met-

rics: 100% on T-ALL, E2A-PBX1 and MLL samples, 99% on TEL-AML1 samples, 97% on

BCR-ABL samples, and 96% on Hyperdip>50 samples. However, in this thesis, we will not fol-

low this tree structure to sequentially classify samples; instead, we will treat all subtypes equally

and distinguish one subtype samples from all the other samples. Therefore, for each of the 6

classification problems, number of training and testing samples are always 215 and 112, respec-

tively. For example, for subtype BCR-ABL, the 215 training samples consist of 9 BCR-ABL

cases versus 206 “OTHERS” while 112 testing samples consistof 6 BCR-ABL cases versus 106

“OTHERS”. The samples labeled as ”OTHERS” here include all the cases other than BCR-ABL.

Next, we will report classification results on the validation samples and 10-fold cross validation

on the entire data set under our proposed gene selection and classification scenarios.

T-ALL versus OTHERS

The training set contains 28T-ALLand 187OTHERSsamples while the test set contains 15T-ALL

and 97OTHERS. Table 5.14 shows the results of this test. Under most of our scenarios, the T-
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Table 5.14: Pediatric ALL data set results (T-ALL versus OTHERS) on 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 0 0 0 0 0 0 0 0
3-NN 3(3:0) 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 4(4:0) 0 0 1(1:0) 0 0 1(1:0) 0
CS4 0 0 0 0 0 0 0 0

10-fold cross validation
SVM 1(1:0) 0 0 1(1:0) 0 0 0 0
3-NN 8(8:0) 3(3:0) 0 1(1:0) 1(1:0) 1(1:0) 0 1(1:0)
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
RandomForests 11(11:0) 0 0 0 0 0 1(1:0) 0
CS4 1(0:1) 1(1:0) 1(1:0) 0 2(1:1) 3(2:1) 2(2:0) 0

ALL samples can be distinguished completely from non-T-ALLcases. Remarkably, we find one

gene, AA919102 (GenBank accession number), has zero entropy value from training samples

with cut point 20062.86 (highly expressed in T-ALL cases) and this gene can also completely

separates T-ALL from all other ALL cases in the testing set. This gene was also reported in [140]

where other feature selection metrics were used. Besides, the genes selected by ERCOF in each

fold testing of 10-fold cross validation are highly consistent, having as many as 253 common

genes. However, it seems that using small amount of good features identified by entropy measure

is enough to separate T-ALL cases in this application, we list out in Table 5.15 the top 20 genes

found from training samples.

E2A-PBX1 versus OTHERS

The training set contains 18E2A-PBX1and 197OTHERSsamples while the test set contains 9

E2A-PBX1and 103OTHERS. Table 5.16 shows the results of this test. With feature selection,

the testing E2A-PBX1 samples can be distinguished completely from other subtypes of ALL

cases. Similarly, in 10-fold cross validation test, there are quite a few scenarios that achieve

100% accuracy. There are 5 genes whose entropy value is zero in training samples. With these

genes, all the classification algorithms can achieve 100% prediction accuracy on testing samples.

In table 5.17, we list all of them. In addition, all these 5 genes are in the “good genes list”

reported in [140] to distinguish E2A-PBX1 cases. In the supplemental documents of [140],
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Table 5.15: Top 20 genes selected by entropy measure from thetraining data set of T-ALL versus
OTHERS in subtypes of pediatric ALL study. The last column indicates the sample class in
which the gene is relatively highly expressed.

Probe Accession No. Description HighlyExp in
38319at AA919102 Homo sapiens cDNA, 3’ end T-ALL
1096 g at M28170 Human cell surface protein CD19 (CD19) gene OTHERS
38242at AF068180 Homo sapiens B cell linker protein BLNK mRNA, OTHERS

alternatively spliced
41723s at M32578 Human MHC class II HLA-DR beta-1 mRNA (DR2.3), 5’ end OTHERS
32794g at X00437 Human mRNA for T-cell specific protein T-ALL
37988at M89957 Human immunoglobulin superfamily member B cell receptor OTHERS

complex cell surface glycoprotein (IGB) mRNA
37344at X62744 Human RING6 mRNA for HLA class II alpha chain-like product OTHERS
38095i at M83664 Human MHC class II lymphocyte antigen (HLA-DP) OTHERS

beta chain mRNA
38017at U05259 Human MB-1 gene OTHERS
35016at M13560 Human Ia-associated invariant gamma-chain gene OTHERS
36277at M23323 Human membrane protein (CD3-epsilon) gene T-ALL
39318at X82240 H.sapiens mRNA for Tcell leukemia/lymphoma 1 OTHERS
38147at AL023657 Homo sapiens SH2D1A cDNA, formerly known as DSHP T-ALL
32649at X59871 Human TCF-1 mRNA for T cell factor 1 (splice form C) T-ALL
38833at X00457 Human mRNA for SB classII histocompatibility antigen OTHERS

alpha-chain
33238at U23852 Human T-lymphocyte specific protein tyrosine kinase T-ALL

p56lck (lck) abberant mRNA
37039at J00194 human hla-dr antigen alpha-chain mrna & ivs fragments OTHERS
38051at X76220 H.sapiens MAL gene exon 1 (and joined CDS) T-ALL
38096f at M83664 Human MHC class II lymphocyte antigen (HLA-DP) OTHERS

beta chain mRNA
2059 s at M36881 Human lymphocyte-specific protein tyrosine kinase T-ALL

(lck) mRNA

good genes identified by the self-organizing map (SOM) and discriminant analysis with variance

(DAV) programs to separate each of the six known subtypes ALLwere reported.

TEL-AML1 versus OTHERS

The training set contains 52TEL-AML1and 163OTHERSsamples while the test set contains 27

TEL-AML1and 85OTHERS. Table 5.18 shows the results of this test. Although the validation

result on classification of TEL-AML is not as good as that of subtype T-ALL or E2A-PBX1,

there are still some proposed scenarios can accurately distinguish TEL-AML and non-TEL-AML

cases. Notably, using ERCOF selected features, SVM, 3-NN, Random forests and CS4 achieve

100% prediction accuracy on the testing samples. The numberof features selected by ERCOF

from training cases is around 400 and they include 37 of 46 genes that reported in [140] to

separate TEL-AML1 from other subtypes of ALL cases under their proposed tree structure of
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Table 5.16: Pediatric ALL data set results (E2A-PBX1 versusOTHERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 0 0 0 0 0 0 0 0
3-NN 0 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 3(0:3) 0 0 0 0 0 0 0
CS4 0 0 0 0 0 0 0 0

10-fold cross validation
SVM 1(1:0) 1(1:0) 1(1:0) 0 0 0 0 0
3-NN 1(1:0) 1(1:0) 1(1:0) 0 0 1(1:0) 1(1:0) 0
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
RandomForests 16(16:0) 3(3:0) 1(1:0) 0 0 0 0 0
CS4 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0

Table 5.17: Five genes with zero entropy measure on the training data set of E2A-PBX1 versus
OTHERS in subtypes of pediatric ALL study. The last column indicates the sample class in
which the gene is highly expressed (above the mean value across all the samples).

Probe Accession No. Description HighlyExpressed in
32063at M86546 H.sapiens PBX1a and PBX1b mRNA E2A-PBX1
41146at J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1
430 at X00737 Human mRNA for purine nucleotide E2A-PBX1

phosphorylase (PNP; EC 2.4.2.1)
1287 at J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1
33355at AL049381 Homo sapiens mRNA; cDNA DKFZp586J2118 E2A-PBX1

(from clone DKFZp586J2118)

classification. In Table A.10 of the Appendix, we list these 37 highlighted genes. In Figure 5.6,

we present some decision trees output by CS4 using ERCOF selected features. It can be seen

that CS4 makes use of different features as root node and combines them to achieve a perfect

prediction accuracy on the testing samples.

BCR-ABL versus OTHERS

The training set contains 9BCR-ABLand 206OTHERSsamples while the test set contains 6

BCR-ABLand 106OTHERS. Table 5.19 shows the results of this test. Since the number of avail-

able BCR-ABL cases is very small, most error predications made are on BCR-ABL samples in

almost all the scenarios. This leads to a very low sensitivity, especially in 10-fold cross validation

test. However, under ERCOF and some other gene selection methods, SVM and CS4 still can
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Table 5.18: Pediatric ALL data set results (TEL-AML1 versusOTHERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 10(0:10) 0 0 2(1:1) 1(0:1) 1(0:1) 1(0:1) 0
3-NN 5(4:1) 0 0 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0
Bagging 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0)
AdaBoostM1 4(2:2) 4(3:1) 3(2:1) 2(2:0) 4(2:2) 4(3:1) 5(2:3) 4(3:1)
RandomForests 11(11:0) 0 1(1:0) 1(1:0) 2(2:0) 0 1(1:0) 0
CS4 2(1:1) 2(1:1) 2(1:1) 3(3:0) 1(1:0) 1(1:0) 1(1:0) 0

10-fold cross validation
SVM 4(1:3) 3(1:2) 4(1:3) 7(2:5) 8(2:6) 5(2:3) 5(2:3) 2(0:2)
3-NN 14(5:9) 4(0:4) 4(0:4) 8(3:5) 6(2:4) 7(3:4) 4(1:3) 3(0:3)
Bagging 12(5:7) 11(5:6) 10(4:6) 11(5:6) 10(4:6) 11(5:6) 11(5:6) 10(4:6)
AdaBoostM1 9(4:5) 13(7:6) 14(9:5) 8(3:5) 8(5:3) 13(10:3) 13(8:5) 10(4:6)
RandomForests 20(17:3) 7(3:4) 7(3:4) 5(0:5) 5(1:4) 4(0:4) 6(2:4) 4(1:3)
CS4 6(2:4) 6(2:4) 6(2:4) 10(5:5) 5(1:4) 6(2:4) 6(2:4) 5(1:4)

correctly predict most of the testing samples with only one BCR-ABL case misclassified. This

misclassified BCR-ABL sample was also reported by [140]. Thenumber of features selected by

ERCOF from training cases is around 70 and they include 11 of 21 genes that reported in [140]

to separate BCR-ABL from other subtypes of ALL cases under their proposed tree structure of

classification. In Table 5.20, we list these 11 highlighted genes.

MLL versus OTHERS

The training set contains 14MLL and 201OTHERSsamples while the test set contains 6MLL

and 106OTHERS. Table 5.21 shows the results of this test. Most of our scenarios achieve 100%

accuracy on testing samples to separate MLL from other subtypes of ALL cases. Using only 20

genes selected by entropy measure, SVM, 3-NN, Bagging and CS4 can make perfect prediction.

These genes can be found in Table A.11 of the Appendix. When weapply Pearson correlation

coefficient to the 20 genes (all of them can pass Wilcoxon ranksum test) , we filter out only one

gene . With the remaining 19 genes, 100% prediction can also be achieved. On the other hand,

there are 34 genes reported in [140] to be significant to separate MLL from other ALL subtypes

under their proposed tree structure classification. Among them, 24 genes are also selected by our

ERCOF and we list them in Table A.12 of the Appendix, where thegenes with bold font are also

appear in Table A.11.
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Table 5.19: Pediatric ALL data set results (BCR-ABL versus OTHERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 4(4:0) 1(1:0) 2(1:1) 2(1:1) 2(1:1) 1(1:0) 1(1:0) 1(1:0)
3-NN 6(6:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 4(4:0) 4(4:0) 2(2:0)
Bagging 5(5:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 3(3:0) 3(3:0) 3(3:0)
AdaBoostM1 8(4:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4)
RandomForests 6(6:0) 6(6:0) 2(2:0) 1(1:0) 2(2:0) 6(6:0) 4(4:0) 2(2:0)
CS4 6(6:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)

10-fold cross validation
SVM 12(12:0) 8(6:2) 8(7:1) 6(5:1) 9(7:2) 4(4:0) 8(6:2) 6(5:1)
3-NN 15(14:1) 9(9:0) 10(9:1) 9(7:2) 10(9:1) 8(8:0) 10(10:0) 7(7:0)
Bagging 13(13:0) 12(11:1) 12(11:1) 10(10:0) 12(11:1) 11(11:0) 12(11:1) 10(10:0)
AdaBoostM1 22(13:9) 18(11:7) 15(10:5) 8(7:1) 15(10:5) 16(9:7) 16(10:6) 16(12:4)
RandomForests 15(15:0) 10(10:0) 7(7:0) 6(6:0) 7(7:0) 11(11:0) 12(12:0) 9(9:0)
CS4 8(8:0) 7(7:0) 6(6:0) 8(7:1) 5(5:0) 6(6:0) 7(7:0) 7(6:1)

Table 5.20: Eleven genes selected by ERCOF on training samples and reported in [140] to
separate BCR-ABL from other subtypes of ALL cases in pediatric ALL study. All these genes
are relatively highly expressed (above the mean value across all the samples) in BCR-ABL
samples.

Probe Accession No. Description
37600at U68186 Human extracellular matrix protein 1 mRNA
38312at AL050002 Homo sapiens mRNA; cDNA DKFZp564O222
39730at X16416 Human c-abl mRNA encoding p150 protein
40051at D31762 Human mRNA for KIAA0057 gene
40504at AF001601 Homo sapiens paraoxonase (PON2) mRNA
34362at M55531 Human glucose transport-like 5 (GLUT5) mRNA
36591at X06956 Human HALPHA44 gene for alpha-tubulin, exons 1-3
40196at D88153 Homo sapiens mRNA for HYA22
1635 at U07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon 1a and exons 2-10
1636 g at U07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon 1a and exons 2-10
330 s at HG2259- Tubulin, Alpha 1, Isoform 44

HT2348
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Figure 5.6: Six decision trees output by CS4 using ERCOF selected features on TEL-AML
subtype classification of pediatric ALL data.

Hyperdip>50 versus OTHERS

The training set contains 42Hyperdip> 50 and 173OTHERSsamples while the test set contains

22 Hyperdip> 50 and 90OTHERS. Table 5.22 shows the results of this test. Although the cross

validation results is not very encouraging, some of our scenarios still achieve 100% prediction

accuracy on the testing samples, such as SVM using all-entropy, mean-entropy, top 200 entropy

and ERCOF selected features. Based on training cases, ERCOFselects around 300 genes, which

include 19 of the 26 genes that reported in [140] to separate Hyperdip>50 from other subtype

ALL cases. These 19 highlighted genes are listed in Table A.13 of the Appendix.

A brief summary

As mentioned, different from [140] where the pediatric ALL data set was first analysed and

the classification was based on a given tree structure to sequentially classify a new case into a

subtype of ALL, our study focused on distinguishing a subtype of samples from all other cases.

Therefore, the number of samples in the different classes are more unbalanced in both training
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Table 5.21: Pediatric ALL data set results (MLL versus OTHERS) on 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 0 0 0 0 0 0 0 0
3-NN 2(2:0) 0 0 0 1(1:0) 0 0 0
Bagging 2(2:0) 1(1:0) 0 0 0 0 0 0
AdaBoostM1 4(2:2) 1(0:1) 1(0:1) 2(1:1) 2(1:1) 1(0:1) 1(0:1) 1(0:1)
RandomForests 5(5:0) 2(2:0) 1(1:0) 0 1(1:0) 0 1(1:0) 1(1:0)
CS4 0 0 0 0 0 0 0 0

10-fold cross validation
SVM 7(7:0) 2(2:0) 2(1:1) 7(6:1) 2(1:1) 0 2(1:1) 2(2:0)
3-NN 9(9:0) 5(5:0) 4(3:1) 8(7:1) 7(6:1) 8(8:0) 5(4:1) 4(2:2)
Bagging 10(9:1) 9(8:1) 8(7:1) 8(7:1) 9(8:1) 9(8:1) 8(7:1) 5(5:0)
AdaBoostM1 13(7:6) 14(9:5) 18(13:5) 14(12:2)12(10:2) 14(12:2) 18(13:5) 13(6:7)
RandomForests 18(18:0) 10(10:0) 7(7:0) 9(8:1) 7(6:1) 8(7:1) 9(9:0) 9(9:0)
CS4 7(6:1) 5(4:1) 6(5:1) 7(6:1) 10(7:3) 5(4:1) 5(4:2) 4(4:0)

Table 5.22: Pediatric ALL data set results (Hyperdip>50 versus OTHERS) on 112 testing sam-
ples, as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

Test
SVM 18(18:0) 0 0 4(1:3) 4(1:3) 1(0:1) 0 0
3-NN 4(3:1) 2(0:2) 0 5(1:4) 1(1:0) 2(2:0) 2(1:1) 3(1:2)
Bagging 6(4:2) 6(4:2) 5(4:1) 6(4:2) 7(4:3) 9(4:5) 8(4:4) 6(3:3)
AdaBoostM1 10(4:6) 12(3:9) 10(4:6) 5(3:2) 2(1:1) 3(1:2) 2(2:0) 10(4:6)
RandomForests 9(8:1) 3(2:1) 3(2:1) 5(2:3) 3(2:1) 3(2:1) 2(1:1) 1(1:0)
CS4 4(3:1) 4(3:1) 3(2:1) 8(3:5) 5(1:4) 2(1:1) 2(1:1) 3(2:1)

10-fold cross validation
SVM 11(8:3) 9(6:3) 11(9:2) 15(8:7) 15(10:5) 15(10:5) 18(11:7) 8(6:2)
3-NN 21(16:5) 13(9:4) 16(13:3) 15(9:6) 14(9:5) 17(11:6) 12(9:3) 12(8:4)
Bagging 19(16:3) 19(15:4) 20(16:4) 17(11:6) 17(12:5) 18(12:6) 18(14:4) 19(15:4)
AdaBoostM1 23(14:9) 24(16:8) 14(10:4) 17(9:8) 17(10:7) 14(9:5) 17(11:6)) 14(9:5)
RandomForests 31(28:3) 19(15:4) 15(12:3) 17(11:6) 14(10:4) 18(13:5) 15(10:5) 13(9:4)
CS4 14(10:4) 14(10:4) 15(11:4) 20(10:10) 17(9:8) 17(10:7)12(9:3) 14(10:4)
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Table 5.23: Total number of misclassified testing samples over six subtypes of pediatric ALL
study. Number with bold font in each row indicates the best result achieved by the corresponding
classifier.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 32 1 2 8 8 3 2 1
3-NN 20 5 2 8 7 7 6 5
Bagging 14 12 9 8 12 13 12 11
AdaBoostM1 26 22 19 13 13 13 13 20
RandomForests 38 11 7 8 8 9 9 4
CS4 12 7 6 12 7 4 4 4

and testing sets, which is easier to cause bias in prediction. However, some of our proposed

classification algorithms and feature selection methods still achieved excellent testing results on

all the six known subtypes classification. In addition, for 10-fold cross validation on the entire

data set we also obtained very good results on classificationof subtypes T-ALL, E2A-PBX1 and

MLL.

In Table 5.23, for each of our scenarios, we add up the number of misclassified testing

samples over all six known subtypes. Remarkably, SVM, Random forests and CS4 achieved their

best prediction accuracy under ERCOF — misclassified 1, 4 and4 testing samples, respectively.

In addition, we also demonstrated the advantage of CS4 by presenting some of the decision trees

output by the algorithm.

5.3 Comparisons and Discussions

We have conducted more than one thousand experiments on six gene expression profiles and one

proteomic data set using proposed feature selection and classification methods. From the large

amount of results presented above, we can address various comparisons and discussions. In the

following comparisons, we will use the results of these 20 tests: (1) 10-fold cross validation on

colon tumor, prostate cancer, lung cancer, ovarian disease, DLBCL, ALL-AML leukemia and six

subtypes of pediatric ALL (total 12 tests); (2) validation on the testing samples of lung cancer,

ALL-AML leukemia and six subtypes of pediatric ALL (total 8 tests).
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5.3.1 Classification algorithms

We employed six classification algorithms in the experiments, four ensemble of decision trees

methods, SVM andk-NN.

Comparison among ensemble of decision trees methods

First, let’s do a comparison among the four ensemble of decision trees classification methods —

Bagging, AdaBoostM1, Random forests and CS4. Table 5.24 shows the best classifier(s) (of these

four methods) for each experiment under different feature selection scenarios. From the summary

in the last row of the table, We can see that under every proposed feature selection scenario, the

performance of CS4 was much superior than that of Bagging andAdaBoostM1. Besides, CS4

performed much better than Random forests did under four feature selection scenarios and did

equally good under the other cases. On the other hand, because CS4 only makes use of unchanged

original training samples (in contrast to bootstrapped data), the decision trees/rules output are

more reliable. This concern is crucial in bio-medical applications, such as understanding and

diagnosis of a disease.

Note that, AdaBoostM1 performed poorly in these experiments. The main reason is that,

when its base classifier C4.5 makes no training error, AdaBoostM1 only constructs a single tree

and thus loses the power of combining different decision trees. A typical example can be found

in the prediction on lung cancer validation samples where AdaBoostM1 made 27 misclassified

predictions under every feature selection scenario, whichin fact, is the same as C4.5. Recall that,

with the training samples of this data set, there are 16 geneshaving zero entropy value. This leads

to a very simple decision tree consisting only one feature and having 100% training accuracy.

Unfortunately, this feature is not good enough to give good prediction on testing samples. By the

way, let’s explore more on the prediction power of combiningdecision trees in CS4.

Power of combining decision trees in CS4

In each experiment, CS4 built 20 decision trees using different features as the root node. First,

let’s look at the prediction power of each single decision tree. Table 5.25 illustrates the number

of misclassified training and testing samples of each singletree in the experiments on the pedi-

atric ALL data to classify TEL-AML1 and Hyperdip>50 subtypes using ERCOF selected genes.
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Table 5.24: Comparison among four ensemble of decision trees methods under different feature
selection scenarios using the results of the 640 (=4x8x20) experiments on the six gene expres-
sion profiles and one proteomic data set. Symbol “C” stands for Bagging classifier, “D” for
AdaBoostM1, “E” for Random forests, and “F” for CS4. Each cell indicates the symbol(s) of the
classifier(s) that achieved best performance in the relevant experiment under the corresponding
feature selection scenario. For each feature selection scenario, the last row indicates the total
number of experiments that individual decision tree based classifier achieved best prediction ac-
curacy (including tie cases). If we add up the numbers acrosseight feature selection scenarios,
the final result is — Bagging 42, AdaBoostM1 36, random forests 72 and CS4 108.

Experiment All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

ColonTumor C,D,E D C C E F C D
Prostate F C,F D,F C,F F E,F E F
Lung test F F E,F F E,F E,F E E
Lung E,F E,F E E E E E E,F
Ovarian F F F F F F F F
DLBCL E,F E E E E,F F E E
ALLAML test C,D D D,F C,F D E E D,E,F
ALLAML F F F F F F F F

Pediatric ALL data — test
T-ALL C,D,F C,D,E,F C,D,E,F C,D,F C,D,E,F C,D,E,F C,D,F C,D,E,F
E2A-PBX1 C,D,F C,D,E,F C,D,E,F C,D,E,F C,D,E,F C,D,E,F C,D,E,F C,D,E,F
TEL-AML1 C E E C,E C,F E C,E,F E,F
BCR-ABL C F F C,E,F F F F F
MLL F F C,F C,E,F C,F C,E,F C,F C,F
Hyperdip>50 F F E,F D,F D F D,E,F E

Pediatric ALL data — 10-fold cross validation
T-ALL C,D,F E E E,F E E E E
E2A-PBX1 C,D,F C,D,F C,D,E,F E E E E E,F
TEL-AML1 F F F E E,F F E E
BCR-ABL F F F E F F F F
MLL F F F F E F F F
Hyperdip>50 F F D C,D,E C,D,F D F E

Sum C: 8 C: 4 C: 5 C: 9 C: 5 C: 3 C: 5 C: 3
D: 6 D: 5 D: 6 D: 4 D: 5 D: 3 D: 3 D: 4
E: 3 E: 6 E: 9 E: 11 E: 10 E: 10 E: 11 E: 12
F: 16 F: 15 F: 14 F: 12 F: 13 F: 14 F: 11 F: 13

From the figures displayed in the table, we can observe that: (1) these single decision trees con-

structed using different good features as root node possesssimilar merit with little difference.

Although some single trees gave much better prediction (e.g. tree no. 5) while other trees did

very bad (e.g. tree no. 2) on the same test (TEL-AML1 versus OTHERS), there are no rules that

can be drawn across experiments. Especially, the first tree is not always the best one. (2) A single

tree can achieve good training accuracy, but poor testing results, such as tree no. 1 and tree no.

2 of the test on Hyperdip>50. (3) A single tree contains fewer number of features so that it is

easy to be understood and interpreted. However, as shown in Figure 5.4, 5.5 and 5.6, different

trees produce different rules so that thesingle coverage constraintproblem in a single tree can
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Table 5.25: The training and testing errors of 20 single decision trees generated by CS4 using
ERCOF selected features on testings of TEL-AML1 versus OTHERS and Hyperdip>50 versus
OTHERS in pediatric ALL data set. The row “No. features” gives the number of features used
in the tree.

Tree No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TEL-AML1 versus OTHERS — testing
Train 0 3 0 1 1 2 2 3 0 3 0 1 1 0 1 1 3 0 2 2
Test 8 12 3 5 1 5 8 8 4 6 5 11 8 4 9 4 11 2 7 7
No. features 4 3 4 4 4 3 4 4 5 3 5 5 5 6 5 5 3 6 4 4

Hyperdip>50 versus OTHERS — testing
Train 0 0 2 1 2 1 3 3 3 1 1 1 0 0 1 2 3 1 0 1
Test 10 10 11 11 7 15 13 11 6 10 8 15 7 13 7 7 12 9 9 8
No. features 7 7 8 8 8 8 6 6 5 6 8 8 8 8 8 8 7 7 8 8
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Figure 5.7: Power of ensemble trees in CS4 — number of combined trees versus number of
misclassified testing samples.

be rectified. Single coverage constraint means every training sample is covered by exactly one

rule [66].

Secondly, we examine the performance of combining these single trees. For the test on

TEL-AML1 versus OTHERS, if we combine the first four trees, CS4 will make 6 mistakes; if we

combine the first five trees, the number of mistake predictions drops to 1 and to 0 when using the

first seven trees. In Figure 5.7, we plot the curves of number of combined trees versus number of

misclassified testing samples for TEL-AML1 and Hyperdip>50 subtypes prediction. The curves

show an obvious decreasing trend on the number of testing errors when first several trees are

combined to give prediction and after that, the accuracy tends to be stable. Therefore, intuitively,

we see the power of using our ensemble of decision trees method CS4. Besides, the two curves

also demonstrate that 20 trees are enough to give good prediction.
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Table 5.26: Comparison between CS4 and SVM under different feature selection scenarios
using the results of the 320 (=2x8x20) experiments on the sixgene expression profiles and one
proteomic data set. Symbol “A” stands for SVM classifier and “F” for CS4. Each cell indicates
the symbol(s) of the classifier(s) that achieved best performance in the relevant experiment
under corresponding feature selection scenario. For each feature selection scenario, the last row
indicates the total number of experiments in which SVM performed better, CS4 did better and
the tie case. If we add up the numbers across feature selection scenarios, the final result is —
SVM won 86, CS4 won 22, and tie 52.

Experiment All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

ColonTumor A A A A A A A A
Prostate A A A A A,F A A A
Lung test A A A A A A A A
Lung A A A,F A F A,F A A,F
Ovarian A,F A,F A A A A,F A,F A,F
DLBCL F A A A,F A A A A
ALLAML test F A A F F A A A
ALLAML A,F A,F A,F A F F A,F A,F

Pediatric ALL data — test
T-ALL A,F A,F A,F A,F A,F A,F A,F A,F
E2A-PBX1 A,F A,F A,F A,F A,F A,F A,F A,F
TEL-AML1 F A A A A,F A,F A,F A,F
BCR-ABL A A F F F A,F A,F A,F
MLL A,F A,F F A,F A,F F A,F A,F
Hyperdip>50 F A A A A A A A

Pediatric ALL data — 10-fold cross validation
T-ALL A,F A F F A A A A,F
E2A-PBX1 A,F A,F A A A A A A,F
TEL-AML1 A A A A F A A A
BCR-ABL F F A A F A F A
MLL A,F A A,F A,F A A A A
Hyperdip>50 A A A A A A F A

Sum A:7 A:13 A:12 A:12 A:9 A:12 A:11 A:10
F:5 F:1 F:3 F:3 F:6 F:2 F:2 F:0
Tie:8 Tie:6 Tie:5 Tie:5 Tie:5 Tie:6 Tie:7 Tie:10

Comparison of CS4 with SVM andk-NN

First, we compare CS4 with SVM. Table 5.26 lists the classifier(s) (of SVM and CS4) that

achieved best validation accuracy for each experiment. Overall speaking, the performance of

SVM is superior to that of CS4.

Secondly, similarly, we compare CS4 withk-NN. Table 5.27 lists the classifier(s) (ofk-NN

and CS4) that achieved best validation accuracy for each experiment. Among 160 cases,k-NN

won 48, CS4 won 55, and tie 57. The performance of CS4 is slightly better than that ofk-NN.

SVM is the representative of the classifiers built on kernel functions whilek-NN is the most

typical instance-based learning algorithm. Different from decision tree methods which use only
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Table 5.27: Comparison between CS4 andk-NN under different feature selection scenarios
using the results of the 320 (=2x8x20) experiments on the sixgene expression profiles and one
proteomic data set. Symbol “B” stands fork-NN classifier and “F” for CS4. Each cell indicates
the symbol(s) of the classifier(s) that achieved best performance in the relevant experiment
under corresponding feature selection scenario. For each feature selection scenario, the last row
indicates the total number of experiments in whichK-NN performed better, CS4 did better and
the tie case. If we add up the numbers across feature selection scenarios, the final result is —k-NN won 48, CS4 won 55, and tie 57.

Experiment All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

ColonTumor F B B B B B B B
Prostate F F B,F F F B B,F B,F
Lung test B,F B B B B B B B
Lung F F F B F B,F B,F B,F
Ovarian F F F B F F F F
DLBCL F B,F B,F B F B B,F B
ALLAML test F F B F B,F B B B
ALLAML F B,F B F F F B,F B,F

Pediatric ALL data — test
T-ALL F B,F B,F B,F B,F B,F B,F B,F
E2A-PBX1 B,F B,F B,F B,F B,F B,F B,F B,F
TEL-AML1 F B B B B,F B,F B,F B,F
BCR-ABL B,F F F B,F F F F F
MLL F B,F B,F B,F F B,F B,F B,F
Hyperdip>50 B,F B B B B B,F B,F B,F

Pediatric ALL data — 10-fold cross validation
T-ALL F F B F F B B F
E2A-PBX1 B,F B,F B,F B B B,F B,F B,F
TEL-AML1 F B B B F F B B
BCR-ABL F F F F F F F B,F
MLL F B,F B F B F B,F B,F
Hyperdip>50 F B F B B B,F B,F B

Sum B:0 B:6 B:9 B:10 B:6 B:6 B:5 B:6
F:15 F:7 F:5 F:6 F:10 F:6 F:3 F:3
Tie:5 Tie:7 Tie:6 Tie:4 Tie:4 Tie:8 Tie:12 Tie:11

a small subset of features, SVM andk-NN involve all the features in their classification models.

Although the overall performance of SVM is better than that of CS4, prediction models built by

SVM are difficult to understand, interpret and apply to practical disease diagnosis. In this aspect,

CS4 has its big advantage over SVM.

SVM — linear versus quadratic kernel

“Will quadratic polynomial kernel functions perform better?” To answer this question, we apply

SVM with the quadratic polynomial kernel function to the data sets. The results show that in

most of cases, SVM with quadratic kernel function performs the same as that with the simple
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linear kernel; and in some cases, it even does worse. For the experiments described in this

chapter, quadratic kernel seldom performs better than linear kernel. For example, among the

twenty experiments using ERCOF selected features, linear kernel achieved better accuracy in 7

of them while they tied in the rest 13 cases (detailed data is not shown). Note that, quadratic

kernels need much more time on training process, especiallyfor high-dimensional data.

5.3.2 Feature selection methods

The experimental results show that for all the classifiers, in most of cases, they performed better

(or not worse) with the selected features than they did with the original feature space. In the

following discussions, we will focus on comparing our ERCOFwith other proposed entropy-

based feature selection methods.

Comparison of ERCOF with all-entropy and mean-entropy

Since ERCOF is built on all-entropy (the Phase I feature filtering of ERCOF), first, let’s compare

the performance of ERCOF and all-entropy. Table 5.28 lists the feature selection method(s) (of

ERCOF and all-entropy) that achieved best validation accuracy for each experiment. Among 120

cases, all-entropy won 4, ERCOF won 60, and tie 56. Obviously, the performance of ERCOF is

better than that of all-entropy.

In our previous work presented in [64], mean-entropy methodwas claimed to be superior

to all-entropy on high-dimensional biomedical data. Next,we will compare the performance

of ERCOF with mean-entropy. Table 5.29 lists the feature selection method(s) (of ERCOF and

mean-entropy) that achieved best validation accuracy for each experiment. Among 120 cases,

mean-entropy won 18, ERCOF won 42, and tie 60. Overall speaking, the performance of ERCOF

is better than that of mean-entropy, though among 50% of cases they had equal performance.

Note that, compared with all-entropy, mean-entropy and ERCOF use fewer features. To

have an intuitive sense of amount of features selected by these three methods, in Table 5.30 we

list number of features in the original data sets as well as inthe dimensional-reduced data sets.

From the table, we can see that:

(1) Feature reduction is mostly done by the entropy measure.As our “base” selection method,

entropy measure (i.e. All-entropy) on the average filters out as many as 88.5% (=1-11.5%)
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Table 5.28: Comparison between ERCOF and all-entropy undersix different classifiers using the
results of the 240 (=2x6x20) experiments on the six gene expression profiles and one proteomic
data set. Symbol “A” stands for feature selection using all-entropy method and “C” for ERCOF.
Each cell indicates the symbol(s) of the feature selection method(s) that achieved minimum
number of misclassified samples in the relevant experiment using relevant classifier. For each
classifier, the last row indicates the total number of experiments in which all-entropy performed
better, ERCOF did better and the tie case. If we add up the numbers across classifiers, the final
result is — all-entropy won 4, ERCOF won 60, and tie 56.

Experiment SVM 3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C A,C C C C C
Prostate C C A,C A,C C C
Lung test C A,C A A,C C A,C
Lung A,C C A,C C C C
Ovarian A,C C A,C C C A,C
DLBCL C C A C A A,C
ALLAML test A,C C A,C A,C C C
ALLAML A,C A,C A,C C A,C A,C

Pediatric ALL data — test
T-ALL A,C A,C A,C A,C A,C A,C
E2A-PBX1 A,C A,C A,C A,C A,C A,C
TEL-AML1 A,C A,C A,C A,C A,C C
BCR-ABL A,C C A,C A,C C A,C
MLL A,C A,C C A,C C C
Hyperdip>50 A,C A A,C C C C

Pediatric ALL data — 10-fold cross validation
T-ALL A,C C A,C A,C A,C C
E2A-PBX1 C C A,C A,C C C
TEL-AML1 C C C C C C
BCR-ABL C C C C C A,C
MLL A,C C C C C C
Hyperdip>50 C C A,C C C A,C

Sum A:0 A:1 A:2 A:0 A:1 A:0
C:8 C:12 C:5 C:10 C:14 C:11
Tie:12 Tie:7 Tie:13 Tie:10 Tie:5 Tie:9

of the features in original data. From the above performanceanalysis, this round of heavy

dimensionality reduction not only brings us much faster speed of classification, but also

leads to more accurate predictions.

(2) During the second phase of filtering in ERCOF, 33% of all-entropy selected features are

further removed by Wilcoxon rank sum test. After this round of narrow down, the remain-

ing features become sharply discriminating.

(3) After the correlation checking in Phase III, the final ERCOF keeps only 4.5% representa-

tive features of original data. This means that 40% of the highly correlated features left in

Phase II are deducted in this round of filtering.
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Table 5.29: Comparison between ERCOF and mean-entropy under six different classifiers
using the results of the 240 (=2x6x20) experiments on the sixgene expression profiles and one
proteomic data set. Symbol “B” stands for feature selectionusing mean-entropy method and “C”
for ERCOF. Each cell indicates the symbol(s) of the feature selection method(s) that achieved
minimum number of misclassified samples in the relevant experiment using relevant classifier.
For each classifier, the last row indicates the total number of experiments in which mean-entropy
performed better, ERCOF did better and the tie case. If we addup the numbers across classifiers,
the final result is — mean-entropy won 18, ERCOF won 42, and tie60.

Experiment SVM 3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C C B,C C C C
Prostate C B,C C B C B,C
Lung test B,C B,C B B,C C B,C
Lung B,C C B,C B B B,C
Ovarian B,C C B C B,C C
DLBCL B,C C B B,C C B,C
ALLAML test B,C C B,C B,C C B,C
ALLAML B,C B B C B B,C

Pediatric ALL data — test
T-ALL B,C B,C B,C B,C B,C B,C
E2A-PBX1 B,C B,C B,C B,C B,C B,C
TEL-AML1 B,C B,C B,C B C C
BCR-ABL C B,C B B,C B,C B,C
MLL B,C B,C B,C B,C B,C B,C
Hyperdip>50 B,C B B B,C C B,C

Pediatric ALL data — 10-fold cross validation
T-ALL B,C B B,C B,C B,C B,C
E2A-PBX1 C C B,C B,C C C
TEL-AML1 C C B,C C C C
BCR-ABL C C C B B B
MLL B,C B,C C C B C
Hyperdip>50 C C C B,C C C

Sum B:0 B:3 B:6 B:4 B:4 B:1
C:7 C:9 C:4 C:5 C:10 C:7
Tie:13 Tie:8 Tie:10 Tie:11 Tie:6 Tie:12

(4) Number of features selected by mean-entropy is very close to that by ERCOF — only 40%

of all-entropy selected features are kept. Note that, overall speaking, both mean-entropy

and ERCOF performed better than all-entropy did.

Comparison of ERCOF with top-number-entropy

For each data set, we also did experiments on some numbers of top features selected by entropy

measure. Here, for each test, we will pick up the best one of them to compare with ERCOF.

Table 5.31 shows that among 120 comparisons, ERCOF won 17, the best top-number-entropy

won 45, and they did equally good in more than 50% of them. However, the best top-number-

entropy is different from data to data and from classifier to classifier. There is no regular pattern
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Table 5.30: Number of features selected by each method. For across validation, the average
number of the selected features in each fold’s test is used. Column All gives the number of
features in the original intact data. Under ERCOF, the number of remaining features after
Wilcoxon rank sum test (i.e. Phase II) is given in Columnafter RSTwhile the final number of
selected features (i.e. Phase III) is in ColumnFinal. The percentage of the selected features on
original feature space is indicated in the brackets. The last row Averageis the average percentage
across the total 20 tests.

Experiment All All-entropy Mean-entropy ERCOF
after RST Final

ColonTumor 2000 131(6.6%) 58(2.9%) 77(3.9%) 58(2.9%)
Prostate 12600 1429(11.3%) 528(4.2%) 963(7.6%) 516(4.1%)
Lung test 12533 2173(17.3%) 777(6.2%) 1116(8.9%) 673(5.4%)
Lung 12533 4530(36.1%) 1747(13.9%) 3169(25.3%) 1728(13.8%)
Ovarian 15154 5930(39.1%) 2752(18.2%) 4016(26.5%) 2847(18.8%)
DLBCL 4026 392(9.7%) 141(3.5%) 199(4.9%) 112(2.8%)
ALLAML test 7129 866(12.1%) 350(4.9%) 519(7.3%) 280(3.9%)
ALLAML 7129 890(12.5%) 397(5.6%) 618(8.7%) 322(4.5%)

Pediatric ALL data — test
T-ALL 12558 1309(10.4%) 415(3.3%) 869(6.9%) 458(3.7%)
E2A-PBX1 12558 718(5.7%) 235(1.9%) 404(3.2%) 235(1.9%)
TEL-AML1 12558 1309(10.4%) 427(3.4%) 721(5.7%) 461(3.7%)
BCR-ABL 12558 84(0.6%) 31(0.2%) 84(0.6%) 76(0.6%)
MLL 12558 327(2.6%) 124(0.9%) 147(1.2%) 86(0.6%)
Hyperdip>50 12558 914(7.3%) 328(2.6%) 691(5.5%) 315(2.5%)

Pediatric ALL data — 10-fold cross validation
T-ALL 12558 1667(13.3%) 731(5.8%) 1329(10.6%) 695(5.5%)
E2A-PBX1 12558 1021(8.1%) 401(3.2%) 604(4.8%) 326(2.6%)
TEL-AML1 12558 1563(12.4%) 698(5.6%) 1351(10.8%) 748(5.6%)
BCR-ABL 12558 147(1.2%) 56(0.5%) 96(0.7%) 50(0.4%)
MLL 12558 519(4.1%) 147(1.2%) 350(2.8%) 196(1.6%)
Hyperdip>50 12558 1222(9.7%) 536(4.3%) 1013(8.1%) 787(6.3%)

Average 11.5% 4.6% 7.7% 4.5%

to follow. To further illustrate this point, for each of six classifiers, in Figure 5.8, we draw the

plots of top number of entropy selected features versus number of prediction errors on the testing

samples of the ALL-AML leukemia data set and Hyperdip>50 subtype of the pediatric ALL data

set. From the plots, there is no optimal number of features can be found.

After above comparisons, we can claim that ERCOF is an efficient way to select features

from high-dimensional gene expression data. In Phase I of ERCOF, entropy-based method elim-

inates those genes who do not separate the samples well, but you have observed that using all-

entropy selected genes does not give the best results. This implies that some features with small

entropy are not useful. To avoid restricting ourselves to anarbitrary cut off (like top-number-

entropy), in Phase II of ERCOF, we resort to a non-parametricstatistical test to help decide

which of the genes left in Phase I are more relevant than others. The Phase III of ERCOF corre-
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Table 5.31: Comparison between ERCOF and top-number-entropy (i.e. top 20, 50, 100 and
200) under six classifiers using the results of the 600 (=5x6x20) experiments on the six gene
expression profiles and one proteomic data set. Symbol “C” stands for ERCOF and “D” for the
best feature selection of top-number-entropy. Each cell indicates the symbol(s) of the feature
selection method(s) that achieved best performance in the relevant experiment using relevant
classifier. For each classifier, the last row indicates the total number of experiments in which
ERCOF performed better, top-number-entropy did better andthe tie case. If we add up the
numbers across classifiers, the final result is — ERCOF won 17,the best top-number-entropy
won 45, and tie 58.

Experiment SVM 3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C,D C C C D D
Prostate C,D D D D D D
Lung test C,D D C,D C,D C,D C,D
Lung C,D C,D D D C,D C,D
Ovarian C,D D D D D C,D
DLBCL C D D D C D
ALLAML test C,D C,D D C,D D D
ALLAML C,D C,D D D D D

Pediatric ALL data — test
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C,D
TEL-AML1 C C D D C,D C
BCR-ABL C,D D D C,D D C,D
MLL C,D C,D C,D C,D D C,D
Hyperdip>50 C,D D C,D D C D

Pediatric ALL data — 10-fold cross validation
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C
TEL-AML1 C C C,D D C,D C,D
BCR-ABL D C C,D D D D
MLL D C C D D C
Hyperdip>50 C C,D D C,D C D

Sum C:4 C:5 C:2 C:1 C:2 C:3
D:2 D:7 D:9 D:10 D:9 D:8
Tie:14 Tie:8 Tie:9 Tie:9 Tie:9 Tie:9

sponds to some biological considerations — sorting out the features into pathways and for each

pathway, picking out sufficient number of genes to representthat pathway.

5.3.3 Classifiers versus feature selection

Here, we will discuss two issues: (1) which feature selection method is in favour of which clas-

sification algorithm, and (2) sensitivity of the classifiersto the feature selection methods. To

have an overall and intuitive feeling of the relationship between the performance of classifiers

and feature selection methods, for each of the classifiers, we count for each of the feature selec-

tion methods (includingAll where all features were used) the total number of winning times and
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(A) ALL-AML data
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(B) Hyperdip>50 subtype of pediatric ALL data

Figure 5.8: Plots of top number of features versus number of errors made on testing samples
of (A) ALL-AML leukemia data and (B) Hyperdip>50 subtype of pediatric ALL data. In (A),
mean-entropy and all-entropy selected 350 and 866 featuresfrom training data, respectively. In
(B), mean-entropy and all-entropy selected 328 and 914 features, respectively. The two plots on
the left side are drawn for four ensemble of decision trees classifiers while the two on the right
side are for SVM and 3-NN.

misclassified samples across the 20 validation tests on the six gene expression profiles and one

proteomic data set. The results are summarized in Table 5.32.

Now, we start to address the first issue. In terms of both totalwinning times and number

of misclassified samples, among eight feature selection methods, ERCOF is the best for SVM,

3-NN, Random forests and CS4. Besides, under ERCOF, Baggingachieved its smallest total

number of misclassified samples. AdaBoostM1 performed relatively better using top 20 features

selected by entropy measure, but compared with the other fiveclassifiers, its performance is not

good. As mentioned earlier, the main reason might be that boosting loses its power of using multi-

ple decision trees when the single C4.5 tree has no error on training samples. When this happens,

boosting is equivalent to the single tree C4.5 method. Unfortunately, in high-dimensional data,

we often see that single C4.5 trees have perfect training accuracy. A special case is that there

are features having zero entropy value on training samples,such as lung cancer data and T-ALL,
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Table 5.32: A summary of the total winning times (including tie cases) of each classifier (under
different feature selection methods) across the 20 validation tests on the six gene expression
profiles and one proteomic data set. The number with bold fontin each row indicates the feature
selection method that owns most winning times for the relevant classifier. In the brackets, there
is the total number of misclassified samples across the same 20 validation tests. Similarly, the
figure with bold font in the brackets in each row is the minimumnumber of total misclassified
samples among feature selection methods for the classifier.

Classifier All All-entropy Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 4(100) 9(52) 11(48) 6(76) 6(74) 11(52) 11(59) 16(38)
3-NN 1(187) 5(87) 8(77) 6(88) 4(81) 6(77) 5(73) 12(61)
Bagging 7(123) 5(117) 8(115) 11(123) 11(122) 7(122) 9(114) 8(112)
AdaBoostM1 5(191) 8(181) 8(166) 11(138) 10(144) 10(157) 9(162) 10(154)
RandomForests 0(228) 5(111) 5(93) 6(96) 7(83) 8(96) 5(90)9(80)
CS4 5(87) 6(77) 6(76) 7(101) 10(81) 9(74) 8(74) 12(66)

E2A-PBX1 subtypes of pediatric ALL data.

Let’s move to the second issue. From Table 5.32, we observe that some classifiers are

sensitive to the feature selection. The good examples are SVM andk-NN — their classification

performances were improved significantly by using selectedfeatures; however, on the other hand,

they could not achieve good performance either if the feature space is too small. Thus, feature

selection is important to SVM andk-NN when dealing with high-dimensional biomedical data.

This conclusion is in consistent with the principles of the both algorithms that all the features are

used in the classification models. Again, ERCOF is a suitablefeature selection method for these

two classifiers. Different from SVM andk-NN, decision tree methods do not use all the input

features in their classification models (i.e. decision trees) so that they are relatively not sensitive

to the feature selection. For example, Bagging and CS4 performed quite reasonably well on the

original intact data. As illustrated in Table 5.25, a decision tree often contains very few number

of features, say around 5 in each tree. We called these features asbuilt-in features[65]. The

selection of these built-in features is dependent on the individual decision tree algorithms. For

example, information gain ratio measure is employed by C4.5, our base decision tree classifier.

This round of feature selection conducted by the classifier itself might be one of the main reasons

that classifiers based on decision tree are relatively resistant to other “pre-feature-selections”.

Nevertheless, properly selecting features can also help improve the performance of ensemble

of decision trees methods — Random forests and CS4 achieved very good classification results

using ERCOF selected features.
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5.4 Chapter Summary

In this chapter, we applied some entropy-based feature selection methods and classification tech-

niques to six gene expression profiles and one proteomic data. These data sets are described by at

least 2000 features and some of them are by more than 12,000 features. For each data set, we car-

ried out various experiments and compared our results with the published ones (where available).

The large amount of experimental results showed that in mostof cases, our proposed methods

achieved comparable or better classification performance than those previously reported. Be-

sides, we also listed the good features (i.e. genes for all the data sets except ovarian disease)

identified by our method, compared them with literature, andrelated some of them with the dis-

ease studied. To emphasize the advantages of decision treesmethods in bio-medical domain, we

presented many simple, explicit and comprehensible trees learned from the data.

We also addressed various comparisons among classifiers andfeature selection methods. In

the aspect of classifiers, SVM demonstrated its power on classification accuracy and our ensem-

ble of decision trees method CS4 also achieved good results.Among the decision tree methods,

the performance of CS4 is superior to Bagging, AdaBoostM1 and Random forests. The main

advantage of CS4 over SVM is that its output is easy to be interpreted and applied to practical

disease diagnosis. We also clearly observed the performance improvements of all the classi-

fiers under the proposed feature selection scenarios. Amongthe various entropy-based feature

selection methods, ERCOF has demonstrated its efficiency and robustness when dealing with

high-dimensional gene expression data.
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Chapter 6

Experiments on Microarray Data —

Patient Survival Prediction

In this chapter, a new computational process for patient survival prediction using microarray gene

expression data will be presented. Different from all previous works, in the first step, we carefully

form the training set samples by selecting onlyshort-term survivorswho died within a short

period andlong-term survivorswho were still alive after a relatively long follow-up time.This

idea is motivated by our belief that short-term and long-term survivors are more informative and

reliable (than those cases in between) for building and understanding the relationship between

genes and patient survival. In the second step, ERCOF is usedto identify genes most associated

with survival. In the third step, a linear kernel support vector machine (SVM) is trained on the

selected samples and genes to build a scoring model. The model assigns each validation sample

a risk score to predict patient survival.

6.1 Methods

We will describe in detail the new method for patient survival prediction, focusing on selecting

an informative subset of training samples and building SVM-based scoring function.
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6.1.1 Selection of informative training samples

One of the main features of our new method is to select informative training samples. Since our

focus is on the relationship between gene expression and survival, the survival time associated

with each sample plays an important role here — two types of extreme cases, patients who died in

a short period (termed as “short-term survivors”) and who were alive after a long period (termed

as “long-term survivors”), should be more valuable than those in the “middle” status. Thus, we

use only a part of samples in training and this is clearly different from other approaches that use

all training samples.

Formally, for a sampleT , if its follow-up time isF (T ) and its status at the end of follow-up

time isE(T ), then T is8>>><>>>: short-term survivor, ifF (T ) < 
1 ^ E(T ) = 1
long-term survivor, ifF (T ) > 
2
others, otherwise

(6:1)E(T ) = 1 stands for “dead” or an unfavorable outcome,E(T ) = 0 stands for “alive” or a

favorable outcome,
1 and 
2 are two thresholds of survival time for selecting short-term and

long-term survivors. Note that long-term survivors also include those patients who died after the

specified long period.

The two thresholds,
1 and
2, can vary from disease to disease, from data set to data set.

For example, in the survival study of early-stage lung adenocarcinomas that will be presented

later, we choose short-term survivors as those who died within one follow-up year (i.e.
1 is

1 year) and long-term survivors as those who were alive afterfive follow-up years (i.e.
2 is 5

years). There are total 31 extreme training samples (10 short-term survivors and 21 long-term

survivors) among a total of 86 available primary lung adenocarcinomas. These 21 long-term

survivors include 2 patients whose status at the end of follow-up time was “dead”, but follow-up

times were 79.5 months and 84.1 months, respectively. Our basic guide lines for the selection of
1 and
2 are that the informative subset should (1) contain enough training samples for learning

algorithms to learn (typically>15 samples in each class and total is between one third and one

half of all available samples), but (2) not have too many samples to avoid including non-extreme

cases.
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After choosing informative training samples, we apply ERCOF to them to identify genes

most associated with survival status. With the selected samples and genes, in the next step, we

will build a scoring function to estimate the survival risk for every patient.

6.1.2 Construction of an SVM scoring function

The regression scoring function proposed for survival riskestimation is based on support vector

machines (SVM) described in Section 2.3.2 of Chapter 2. Recall that the final discriminant

function f(T ) for a test sampleT given in Formula (2.3) of Chapter 2. If the linear kernel

function is used,f(T ) will become a linear combination of the expression values ofthe identified

genes. In this study, we map class label of “short-term survivors” to 1 and “long-term survivors”

to -1. Note thatf(T ) > 0 if the sampleT is more likely to be a “short-term survivor”, andf(T ) < 0 if the sampleT is more likely to be a “long-term survivor”.

To normalizef(T ), we use a transformation functions(T ) defined as:s(T ) = 11 + e�f(T ) (6:2)
Thus,f(T ) is normalized bys(T ) into the range(0; 1). Note that the smaller thes(T ) value is,

the better survival the patient corresponding to sampleT will have. We terms(T ) the risk score

of T .

If one only categorizes patients into high risk or low risk groups, the value 0.5 is a natural

cutoff for s(T ), where ifs(T ) > 0:5 then the patient corresponding to sampleT will have higher

risk; otherwise, the patient will have lower risk. If more than two risk groups are considered —

such as high, intermediate, and low — then other cutoffs can be set based on the risk scores of

training samples. E.g., in training set, if most of short-term survivors have a risk score greater

thanr1 and most of long-term survivors have a risk score smaller than r2, then,T is8>>><>>>: high risk, if s(T ) > r1
low risk, if s(T ) < r2
intermediate risk, ifr2 � s(T ) � r1 (6:3)

Generally,r1 > 0:5, r2 < 0:5, and they can be derived from the risk scores assigned to the

training samples.

To evaluate the results, after assigning patients into different risk groups, we draw Kaplan-
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Meier plots [8] to compare the survival characteristics between groups.

6.1.3 Kaplan-Meier analysis

Kaplan-Meier analysis estimates a population survival curve from a set of samples. A survival

curve illustrates the fraction (or percentage) survival ateach time. Since in realistic clinical trial

it often takes several years to accumulate the patients for the trial, patients being followed for

survival will have different starting times. Then the patients will have various length of follow-up

time when the results are analysed at one time. Therefore, the survival curve can not be estimated

simply by calculating the fraction surviving at each time. For example, in the following study of

lung adenocarcinomas, the patients follow-up time is varying from 1.5 months to 110.6 months.

A Kaplan-Meier analysis allows estimation of survival overtime, even when patients drop

out or are studied for different lengths of time [1]. For example, an alive patient with 3 years

follow-up time should contribute to the survival data for the first three years of the curve, but

not to the part of the curve after that. Thus, this patient should be mathematically removed from

the curve at the end of 3 years follow-up time and this is called “censoring” the patient. On a

Kaplan-Meier survival curve, when a patient is censored, the curve does not take a step down as

it does when a patient dies; instead, a tick mark is generallyused to indicate where a patient is

censored and each death case after that point will cause a little bit larger step down on the curve.

An alternative way to indicate a censored patient is to show the number of remaining cases “at

risk” at several time points. Patients who have been censored or died before the time point

are not counted as “at risk”. In Figure 6.1, picture (A) is a complete sample of Kaplan-Meier

survival curve with a tick mark representing a censored patient (captured fromhttp://www.

cancerguide.org/scurve_km.html ), while picture (B) illustrates how to calculate the

fraction of survival at a time (captured from [1]).

To compare the survival characteristics between differentrisk groups for our survival pre-

diction study, we draw Kaplan-Meier survival curves of the risk groups in one picture and use

logrank testto compare the curves. The logrank test generates ap-value testing the null hypoth-

esis that the survival curves are no difference between two groups. The meaning ofp-value is

that “if the null hypothesis is true, what is the probabilityof randomly selecting samples whose

survival curves are different from those actually obtained?”. In this chapter, all the Kaplan-Meier
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(A)

(B)

Figure 6.1: Samples of Kaplan-Meier survival curves. (A) isan example of a Kaplan-Meier
survival curve. This group of patients has a minimum follow-up of a little over a year. (B) is an
illustration on how to calculate the fraction of survival ata time.
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Figure 6.2: A process diagram of patient survival study, including three training steps as well as
testing and results evaluation.

survival curves are generated byGraphPad Prism(http://www.graphpad.com ) and we

always indicate the two-tailedp-value. Figure 6.2 shows a diagram of patient survival prediction

using our proposed method.

6.2 Experiments and Results

We apply the procedure of survival study above to two gene expression data sets.

6.2.1 Lymphoma

Survival after chemotherapy for diffuse large-B-cell lymphoma (DLBCL) patients was previ-

ously studied by Rosenwaldet al [102] using gene expression profiling and Cox proportional-

hazards model. In that study, expression profiles of biopsy samples from 240 patients were

used [102]. The data include a preliminary group consistingof 160 patients and a validation

group of 80 patients, each of them is described by 7399 microarray features.
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Survival curves showing clear distinction

As an initial step, we pre-process the data to remove those genes that are absent in more than

10% of the experiments in the preliminary group. There remains 4937 features after having 2462

genes removed.

Then, we select short-term survivors and long-term survivors to construct an informative

subset of training samples. For this study, we set
1 = 1 year and
2 = 8 years in Formula

(6.1). Among the preliminary 160-patient group, 47 short-term survivors (who died within one

follow-up year) and 26 long-term survivors (who were alive after eight follow-up years) are thus

chosen. So, a total of 73 samples are in this informative subset of training samples (46% of the

preliminary group) .

In the second step, we apply ERCOF to these 73 samples and identify 78 genes that are

related to patient survival status at 5% significant level (for Wilcoxon rank sum test) and 0.99

Pearson correlation coefficient threshold. Some of our selected genes are also listed in Table 2

of [102], where these genes were found to be significantly associated with survival (p < 0:01).

E.g., AA805575 (GenBank accession number) is ingerminal-center B-cell signature, X00452

and M20430 inMHC class II signature, and D87071 is inlymph-node signature. The gene

signatures were formed by a hierarchical clustering algorithm in [102]. Besides, some top-ranked

genes (with smaller entropy value) identified by ERCOF are also in one of these gene signatures.

E.g., BC012161, AF061729 and U34683 are inproliferation signature, BF129543 is ingerminal-

center B-cell signature, and K01144 and M16276 are inMHC class II signature.

In the third step, an SVM model is trained on the 73 extreme training samples with the 78

identified features. We find that the well-learned linear kernel SVM can separate the 47 short-

term survivors and 26 long-term survivors completely — the lowest risk score assigned to the

short-term survivors is above 0.7 and most of the long-term survivors has risk score lower than

0.3. Then, we calculate risk scores for all the other samples, namely the remaining (non-extreme)

87 samples in the original preliminary group and the 80 samples in the validation group. These

167 samples are treated as our test set.
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(A) Test cases (p < 0:0001) (B) All cases (p < 0:0001)

Figure 6.3: Kaplan-Meier plots illustrate the estimation of overall survival among different risk
DLBCL patients in the testing set containing 167 samples (Panel (A)) and all 240 samples (Panel
(B)). The risk groups are formed on our SVM-based scoring function. A tick mark on the plot
indicates that one sample is censored at the corresponding time. The 5-year overall survival for
high risk versus low risk groups of patients for testing samples is 32% versus 91%, for all samples
is 20% versus 95%.

We categorized patients into four risk groups as follows:T is8>>>>>><>>>>>>: high risk, ifS(T ) > 0:7
intermediate-high risk, if0:5 < S(T ) � 0:7
intermediate-low risk, if0:3 � S(T ) � 0:5
low risk, if S(T ) < 0:3 (6:4)

where the threshold 0.5 is the mean value of 0.7 and 0.3. The Kaplan-Meier curves of overall

survival are drawn in Figure 6.3, where we can see clear differences at the five-year survival rates

for the high risk and low risk groups, in both testing sample set (Panel (A)) and all samples (Panel

(B)). Although we cannot see distinct overall survival between the two intermediate groups, the

5-year survival rates of these two groups are obviously different from that in the high risk group

or the low risk group. This also suggests that three or two risk groups would be sufficient for

these DLBCL samples. So in the rest of this study, we simply merge high and intermediate-high

risk patients into a single high risk category, and low and intermediate-low risk patients into a

single low risk category.

Having the risk score, when a new case comes, we will be able toassign it to the corre-

sponding risk group easily. This kind of prediction was not addressed in [102] where the DL-

BCL patients were ranked by their gene-expression-based outcome-predictor score but divided

into several groups with equal number of samples. For an example: 80 samples in the validation

group were stratified according to the quartiles of the scores with each of quartiles consisting of

20 patients. With that kind of categorization, one cannot find an explicit measure to evaluate a
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new case.

Comparison with International Prognostic Index

Various clinical features — such as stage, performance status, lactate dehydroginase levels —

which are known to be strongly related to patient survival, have been combined to form the

International Prognostic Index (IPI) [113]. The IPI has been effectively adopted to separate

aggressive lymphomas into several groups with significantly different responses to therapy and

survival. Since IPI is only built on the consideration of clinical factors, it provides little insight

into disease biology [60].

The risk score obtained from our method is based on gene expression in biopsy specimens

of the lymphoma, so it is an independent predictor from IPI. In fact, we find that patients in the

high IPI group — and similarly for the intermediate and the low IPI groups — when partitioned

by our risk score into high risk and low risk categories, havesignificantly different outcomes.

In Figure 6.4, Kaplan-Meier plots show significant difference on overall survival for our high

risk and low risk groups among the patients with IPI low (and similarly for intermediate and

high) risk index. In particular, among 21 IPI high risk patients in our testing set, 15 of them are

assigned by our method to the high risk category and 6 of them to the low risk category. When

we check the survival status of these patients, we find 14 of the 15 patients belonging to our high

risk category are indeed dead while only 2 of the 6 patients belonging to our low risk category are

dead. Similarly, for all 32 patients in the whole data set with high IPI, 23 of them (22 dead) are

assigned by our method to the high risk category and 9 (5 dead)of them are assigned to low risk

category. This suggests that our method may be a more effective predictor of DLBCL survival

outcome than the IPI.

6.2.2 Lung adenocarcinoma

Adenocarcinoma is the major histological subtype of non-small cell lung cancer (NSCLC). There

is a need to better predict tumor progression and clinical outcome in lung adenocarcinoma. The

lung adenocarcinoma data set contains 86 primary lung adenocarcinomas. These experiments

include 67 stage I and 19 stage III tumors, each of them is described by 7129 genes. The data

set was first analysed in [14] where a risk index was derived based on the top 50 good genes
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(A) IPI low - test cases (p = 0:0063) (B) IPI intermediate - test cases (p = 0:0003)

(C) IPI high - test cases (p = 0:0195) (D) IPI low - all cases (p < 0:0001)

(E) IPI intermediate - all cases (p < 0:0001) (F) IPI high - all cases (p = 0:0182)

Figure 6.4: Kaplan-Meier Estimates of survival among high risk and low risk DLBCL patients
(according to our method) in each IPI defined group. Plots (A), (B) and (C) are based on 167
testing samples while (D), (E) and (F) are for all 240 cases.
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(A) Test cases (p = 0:0036) (B) All cases (p < 0:0001)

Figure 6.5: Kaplan-Meier plots illustrate the estimation of overall survival among high risk and
low risk lung adenocarcinoma patients in the testing set containing 55 samples (Panel (A)) and
all 86 samples (Panel (B)).

that were identified to be most related to survival by univariate Cox analysis. In that study, tests

were conducted by randomly splitting 86 samples into equal sized training and testing sets and

by “leave-one-out” cross validation.

First, we form our training set by setting
1 = 1 year and
2 = 5 years in Formula (6.1).

10 short-term survivors and 21 long-term survivors are thuschosen. Applying ERCOF to these

31 training samples, we find 402 genes that are related to outcome. Our top-ranked feature by

entropy measure, the ATRX gene, is a putative transcriptionregulator. It is also reported by

Borczuket al in their recent paper [17] on NSCLC. Our second-ranked gene,ENPP2, is part of

stress pathways involved in oncogenesis. Yanget al [138] also detected it in NSCLC.

Then we train a linear kernel SVM to obtain the weight for eachidentified gene based on

the training data. The trained SVM can separate these 31 samples very well, assigning very high

risk scores to short-term survivors (lowest score is as highas 0.73) while very low risk scores to

long-term survivors (highest score is as low as 0.25).

After training, we calculate risk score for each of the remaining 55 samples which are used

for test purpose. These samples are then classified as high risk group consisting samplesT withs(T ) > 0:5, or as low risk group consisting samplesT with s(T ) � 0:5. The Kaplan-Meier

curves in Figure 6.5 show clear difference of survival for patients in our high and low risk groups

for both testing cases and all cases. Since we pick out all short-term and long-term survivors

to form the training set, there is no “death” event happened in the first 12 months time and no

sample censored after 60 months time in the plot drawn only onthe test cases (Panel (A)).

In order to understand the relationship between our prediction and tumor stage (I or III). We
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(A) Stage I - test cases (p = 0:0344) (B) Stage I - all cases (p < 0:0001)

(C) Stage III - test cases (p = 0:3007) (D) Stage III - all cases (p = 0:1622)

Figure 6.6: Kaplan-Meier plots illustrate the estimation of overall survival among high risk and
low risk lung adenocarcinoma patients conditional on tumorstage.

also draw Kaplan-Meier curves to delineate survival difference between our high and low risk

patients conditioned on tumor stage. From Figure 6.6, we cansee that outcomes of patients with

stage I lung adenocarcinoma in our high and low risk groups differ from each other, for both test

cases (Panel(A)) and all cases (Panel(B)). Again remarkably, for 13 stage III cases in the testing

set, we assigned 11 (5 dead, 6 alive) of them to high risk group, and the 2 of them assigned to

low risk group were all alive at the end of the follow-up time.Among all 19 stage III cases, 17

(11 dead, 6 alive) of them were assigned to high risk group according to our risk score.

6.3 Discussions

In the step of training set construction, we select only two extreme cases — long-term and short-

term survivors. See Table 6.1 for size change trends from theoriginal training samples to the

informative training samples on DLBCL and lung adenocarcinomas data sets. The figures illus-

trate that we used a small part of samples as training.

On the other hand, if we do not select those extreme cases, andinstead use all available

training samples, then what will be the results? To illustrate this, we select genes and train SVM

model on the 160 samples in the preliminary group of DLBCL study. Although the training
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Table 6.1: Number of samples in original data and selected informative training set. (*):
there are 48 DLBCL samples, whose relevant patient was dead at the end of follow-up time,
are selected as informative, 47 of them are short-term survivors while 1 of them is long-term
survivor. (**): there are 12 lung adenocarcinomas, whose corresponding patients were dead,
are selected as informative, 10 of them are short-term survivors while 2 of them are long-term
survivors.

Application Data set Status Total
Dead Alive

DLBCL Original 88 72 160
Informative 47+1(*) 25 73

Lung Original 24 62 86
adenocarcinoma Informative 10+2(**) 19 31

(A) All genes (p = 0:21) (B) ERCOF selected genes (p = 0:38)

Figure 6.7: Kaplan-Meier plots illustrate no clear difference on the overall survival among high
risk and low risk DLBCL patients formed by the 80 validation samples based on their risk scores
that assigned by our regression model built on all 160 training samples. (A) Using all genes. (B)
Using genes selected by ERCOF.

accuracy is good, Kaplan-Meier plots do not show significantsurvival difference between the

high and low risk groups formed by the 80 validation samples based on their risk scores that

assigned by the trained SVM model. In detail, using all 4937 genes, thep value of the survival

curves is 0.21 ((A) in Figure 6.7); using 40 genes selected byERCOF, thep value is 0.38 ((B) in

Figure 6.7). Therefore, we claim that our proposed idea of selecting informative training samples

is an effective method.

As pointed out in Section 6.1.1, we have some basic guide lines to determine the thresholds
1 and 
2 that defined in Formula (6.1). Bearing these minimum constraints in mind, we try

several
1 and
2 values in our study. In Table 6.2,p-value (of the logrank test) associated with

the Kaplan-Meier survival curves of validation samples under different selections of the
1 and
2 from DLBCL study are listed. All results are based on ERCOF selected genes. We can see

that (1) for a range of
1 and
2 (i.e. 
1 less than 3 years and
2 greater than 8 years), we can
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Table 6.2: Results for different thresholds
1 (years) and
2 (years) on DLBCL study. All results
are based on ERCOF selected genes and on validation samples only.
1 
2 p-value No. short-term survivors No. long-term survivors No. genes

1 5 0.2962 47 57 121
1 7 0.0110 47 36 79
1 8 0.0067 47 26 78
1 9 0.0570 47 22 40
2 8 0.0049 61 26 55
3 8 0.0761 76 26 51

achieve better predictions by selecting extreme samples. (2) A betterp-value (0.0049) obtained

at 
1 =2 years and
2 =8 years than that we reported in Section 6.2.1 for
1 = 1 year and
2 =
8 years. However, when we trace back to the risk scores of training samples, one of the long-

term survivors selected under
1 =2 years and
2 =8 years has a risk score as high as 0.73. In

addition, the number of selected short-term survivors is 2.4 times of the number of long-term

survivors under this choice. In any case, the selection of
1 and 
2 can be further refined by

running cross-validation on training samples.

In the step of gene identification, built on statistical knowledge, our three-phase filtering

process discards many unrelated genes and only keeps a smallnumber of informative representa-

tives. According to our experience on gene expression data analysis, generally, entropy measure

can filter out about 90-95% of the total number of genes [64]. This point has been verified again

in this study on survival prediction: entropy measure retains only 132 genes in DLBCL study

(there are around 5000 genes after removing missing values)and 884 genes in lung adenocar-

cinoma study (original data contain 7129 genes). After further filtering by Wilcoxon rank sum

test and Pearson correlation coefficient test, the final selected genes are with smaller size and

less correlated with each other. Table 6.3 shows the number-change trend of features from the

entropy selection, to Wilcoxon test, and to correlation coefficient selection. It can be seen that

the feature reduction is mostly by the entropy selection.

For comparison, in DLBCL study, we also do experiments usingall the 4937 genes, the 132

genes output from the Phase I of ERCOF, and the 84 genes outputfrom the Phase II of ERCOF.

The results show that in each of these cases, the overall survival difference between the high

and low risk groups formed by our risk scores on the testing samples can be seen as well. In

Figure 6.8, we draw the corresponding Kaplan-Meier survival curves. Although the model built
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Table 6.3: Number of genes left after feature filtering for each phase of ERCOF. The percentage
in the brackets indicates the proportion of the remaining genes on original feature space. (*): the
number is after removing genes who were absent in more than 10% of the experiments.

Gene selection DLBCL Lung adenocarcinoma
Original 4937(*) 7129
Phase I 132 (2.7%) 884 (12.4%)
Phase II 84 (1.7%) 591 (8.3%)
Phase III 78 (1.6%) 402 (5.6%)

on 3-phase ERCOF makes use the smallest number of genes, it achieves bestp value. Again, the

good results also demonstrate the effectiveness of selection the informative samples. In addition,

in the study of lung adenocarcinoma, using all genes (i.e. without gene selection) cannot predict

outcome at all (p > 0:1).

In the step of prediction, a simple linear kernel SVM is trained on the selected samples and

genes to build a regression model. The model then assigns each validation sample a risk score

to predict patient outcome. Based on the training results, we can derive explicit thresholds (e.g.,

0.5, 0.3, 0.7) of our risk score to categorize patients into different risk groups. Thus, when a new

case comes, we are able to assign it to the corresponding riskgroup easily according to its risk

score. This prediction ability is important in patient survival study.

For both studies on DLBCL and lung adenocarcinoma, we associate our results with some

clinical features. For example, in the DLBCL study, our highand low risk groups also demon-

strate significantly different outcomes in the analysis of patients with low or intermediate risk

according to their International Prognostic Index (IPI) scores constructed on some clinical fea-

tures. E.g., for patients having high IPI, we assign most of them into our high risk category and

some into our low risk category, and our assignment is bettercorrelated to survival outcome of

these patients. Some of the genes identified to have strong association with survival by ERCOF

also fall within four biologic groups defined on the basis of gene expression signatures. In the

lung adenocarcinoma study, most of the samples are from stage I tumors. Among these sam-

ples, although our high and low risk groups differ significantly from each other, we put quite

a few of them into high risk group. This finding “indicates the important relationship between

gene expression profiles and patient survival, independentof disease stage”, which is one of the

conclusions drawn in [14].
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(A) All genes (p = 0:0095) (B) Genes of Phase I ERCOF (p = 0:0147)

(C) Genes of Phase II ERCOF (p = 0:009) (D) Genes of Phase III ERCOF (p = 0:0067)

Figure 6.8: Kaplan-Meier plots illustrate the estimation of overall survival among high risk and
low risk patients in the validation group of DLBCL study. (A)Using all 4937 genes. (B) Using
132 genes output from the Phase I of ERCOF. (C) Using 84 genes output from the Phase II of
ERCOF. (D) Using 78 genes output from the Phase III of ERCOF.

6.4 Chapter Summary

In this chapter, we have applied statistical and machine learning technologies to predict patient

survival using gene expression profiles. Different from other works, we first picked out extreme

cases to form the training set, consisting of only short-term survivors and long-term survivors.

Naturally, if there are genes indeed associated with outcome, then the different expression values

of these genes should be monitored by analysing these two types of samples. Secondly, ERCOF

was applied to the selected informative samples to identifygenes most associated with survivals.

Thirdly, linear kernel SVM was trained on the selected samples and genes to form a regression

model, which can calculate a risk score to each sample. Our proposed methodology was tested

on two gene expression profiles: diffuse large-B-cell lymphoma and lung adenocarcinoma. For

both studies, the Kaplan-Meier plots showed clear survivaldifference on high and low risk group

patients that formed by the assigned risk scores.
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Chapter 7

Recognition of Functional Sites in

Biological Sequences

Not all biomedical data contain explicit signals or features as those in the classification problems

arised by gene expression profilings. For example, DNA sequences and protein sequences rep-

resent the spectrum of biomedical data that possess no explicit features. Generally, a genomic

sequence is just a string consisting of the letters “A”, “C”,“G”, and “T” in a “random order”.

Yet a genomic sequence possesses biologically meaningful functional sites, which play impor-

tant roles in the process of protein synthesis from DNA sequences. Figure 7.1 shows a picture

of this process (captured from the “bioinformatics class notes” of Dr. Nina Rosario L. Rojas

at http://aegis.ateneo.net/nrojas/ ). This process can be divided into two stages:

transcription and translation.

1. Transcription . In this stage, the information in DNA is passed on to RNA. This takes place

when one strand of the DNA double helix is used as a template bythe RNA polymerase

to create a messenger RNA (mRNA). Then this mRNA moves from the nucleus to the

cytoplasm. In fact, in the cell nucleus, the DNA with all the exons and introns of the gene

is first transcribed into a complementary RNA copy named “nuclear RNA” (nRNA). This

is indicated as “primary transcription” in the picture of Figure 7.1. Secondly, non-coding

sequences of base pairs (introns) are eliminated from the coding sequences (exons) by

RNA splicing. The resulting mRNA is the edited sequence of nRNA after splicing. The

coding mRNA sequence can be described in terms of a unit of three nucleotides called a
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Figure 7.1: Process of protein synthesis.

codon.

2. Translation. In this stage, the information that has been passed to RNA from DNA is used

to make proteins. At theinitiation phase of translation, ribosome binds to the mRNA when

it reaches an AUG (adenine, uracil, guanine) sequence on theRNA strand in a suitable

context. The ribosome is made of protein and ribosomal RNA (rRNA). The start codon

AUG is called translation initiation site (TIS) and is only recognized by the initiator tRNA

(transfer RNA). After binding to the mRNA, the ribosome proceeds to theelongationphase

of protein synthesis by sequentially binding to the appropriate codon in mRNA to form

base pairs with the anticodon of another tRNA molecule. Hence, with the ribosome moving

from codon to codon along the mRNA, amino acids are added one by one, translated into

polypeptide sequences. At the end, the newly formed strand of amino acids (complete

polypeptide) is released from the ribosome when a release factor binds to the stop codon.

This is theterminationphase of translation.

The functional sites in DNA sequences include transcription start site (TSS), translation

initiation site (TIS), coding region, splice site, polyadenylation (cleavage) site and so on that are

associated with the primary structure of genes. Recognition of these biological functional sites

in a genomic sequence is an important bioinformatics application [72].
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In order to apply traditional machine learning techniques to above functional sites recogni-

tion problem, we propose a 3-step work flow as follows. In the first step, candidate features are

generated usingk-gram nucleotide acid or amino acid patterns and then sequence data are trans-

formed with respect to the newly generated feature space. Inthe second step, a small number of

good features are selected by a certain algorithm. In the third step, a classification model is built

to recognize the functional site.

7.1 Method Description

The first and the most important step of our method is to generate a new feature space under which

the original sequences can be transformed to the format to which general machine learning tools

can be easily applied.

7.1.1 Feature generation

We generate the new feature space usingk-gram (k = 1; 2; 3; :::) nucleotideor amino acid pat-

terns. A k-gram is simply a pattern ofk consecutive letters, which can be amino acid symbols

or nucleic symbols [143, 72]. We use eachk-gram nucleotide or amino acid pattern as a new

feature. For example, nucleotide acid pattern “TCG” is a 3-gram pattern while amino acid pat-

tern “AR” is a 2-gram pattern constituted by an alanine followed by an arginine. Our aim is to

recognize functional site in a sequence by analysingk-gram patterns around it. Generally, up-

stream and down-streamk-gram patterns of a candidate functional site (for example,every ATG

is a candidate of translation initiation site) are treated as different features. Therefore, if we use

nucleotide patterns, for eachk, there are2� 4k possible combinations ofk-gram patterns; if we

use amino acid patterns, since there are 20 standard amino acids plus 1 stop codon symbol, there

are2 � 21k possiblek-gram patterns for eachk. If the position of eachk-gram pattern in the

sequence fragment is also considered, then the number of features will increase dramatically. We

call these features as position-specifick-gram patterns. Besides,k-gram can also be restricted

thosein-frameones.

Thefrequencyof ak-gram pattern is used as the value of this feature. For example,

1. UP-X (DOWN-X), which counts the number of times the letterX appears in the up-stream

129



(down-stream) part of a functional site in its nucleotide acid or amino acid sequence.

2. UP-XY (DOWN-XY), which counts the number of times the two letters XY appear as a

substring in the up-stream (down-stream) part of a functional site in its nucleotide acid or

amino acid sequence.

where X and Y range over the 4 nucleotide acid letters or the standard 20 amino acid letters and

the special stop codon symbol.

In the framework of the new feature space, the initial nucleotide sequences need to be

transformed. The transformation is constructed as follows. Given a DNA nucleotide sequence, a

sequence window is set aside for each candidate functional site with it in the center and certain

bases up-stream (named asup-stream window size) and certain bases down-stream (named as

down-stream window size). If a candidate functional site does not have enough up-stream or

down-stream context, we pad the missing context with the appropriate number of dont-care (“?”)

symbols.

If features are made from amino acid patterns, we will code every triplet nucleotides, at

both up-stream and down-stream of the centered candidate functional site in a sequence window,

into an amino acid using the standard codon table. A triplet that corresponds to a stop codon is

translated into a special “stop” symbol. Thus, every nucleotide sequence window is coded into

another sequence consisting of amino acid symbols and “stop” symbol. Then the nucleotide or

amino acid sequences are converted into frequency sequencedata under the description of our

new features. Later, the classification model will be applied to the frequency sequence data,

rather than the original cDNA sequence data or the intermediate amino acid sequence data.

7.1.2 Feature selection and integration

In most cases, the number of candidate features in the feature space is relatively big. It is reason-

able to expect that some of the generated features would be irrelevant to our prediction problem

while others are indeed good signals to identify the functional site. Thus, in the second step,

feature selection is applied to the feature space to find those signals most likely to help in dis-

tinguishing the true functional site from a large number of candidates. Besides, feature selection

also greatly speeds up the classification and prediction process, especially when the number of
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samples is large. Among the many feature selection techniques presented in Chapter 3, we em-

ploy the simpleentropy measure(Section 3.2.4) in our following two applications. As used in

gene expression data analysis (with name “all-entropy”), we choose all the features whose value

range can be partitioned into intervals by Fayyad’s discretization algorithm [36] (Section 3.2.4

of Chapter 3).

To achieve the ultimate goal of predicting the true functional site, our next step is to integrate

the selected features by a classification algorithm. At thisstep, in the following two applications,

we will focus on the results achieved by support vector machines (SVM) (with linear or quadratic

polynomial kernel function) and our ensemble method CS4. Detailed techniques of SVM and

CS4 can be found in Section 2.3.2 and Section 2.3.4 of Chapter2, respectively.

In the following two sections, we will make use of our proposed work flow to predict

translation initiation site and polyadenylation signals.

7.2 Translation Initiation Site Prediction

7.2.1 Background

The translation initiation site (TIS) prediction problem is about how to correctly identify TIS in

mRNA, cDNA, or other types of genomic sequences. At the translation stage of protein synthesis

process, in eukaryotic mRNA, the context of the start codon (normally “AUG”) and the sequences

around it are crucial for recruitment of the small ribosome subunit. Thus, the characterization

of the features around TIS will be helpful in a better understanding of translation regulation and

accurate gene predication of coding region in genomic and mRNA/cDNA sequences. This is an

important step in genomic analysis to determine protein coding from nucleotide sequences.

Since 1987, the recognition of TIS has been extensively studied using biological approaches,

data mining techniques, and statistical models [56, 57, 58,89, 59, 103, 83, 145, 90, 48, 142]. Ped-

ersen and Nielsen [89] directly fed DNA sequences into an artificial neural network (ANN) for

training the system to recognize true TIS. They achieved a result of 78% sensitivity on start

ATGs (i.e. true TISs) and 87% specificity on non-start ATGs (i.e. false TISs) on a vertebrate

data set, giving an overall accuracy of 85%. Zienet al [145] studied the same vertebrate data

set, but replaced ANN with support vector machines (SVM) using different kinds of kernel func-
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tions. They believe that carefully designed kernel functions are useful for achieving higher TIS

prediction accuracy. One of their kernel functions is called “locality-improved” kernel, which

emphasizes correlations between any two sequence positions that are close together, and a span

of 3 nucleotides up- and down-stream is empirically determined as optimal. Recently, Hatzigeor-

giou [48] built a multi-step ANN system named “DIANA-TIS” tostudy the recognition problem.

This ANN system combines a consensus ANN and a coding ANN withthe ribosome scanning

model. They obtained an overall accuracy of 94% on a data set containing full-length human

cDNA sequences. All of these methods use nucleotide sequence data directly; they do not gen-

erate any new and explicit features for the differentiationbetween true and false TISs.

There are some related works that use statistical features.The programATGpr [103] uses

a linear discriminant function that combines some statistical features derived from the sequence.

Each of those features is proposed to distinguish true TIS from false TIS. In a more recent

work [83], an improved version ofATGpr calledATGpr sim was developed, which uses both

statistical information and similarities with other knownproteins to obtain higher accuracy of

fullness prediction for fragment sequences of cDNA clones.In our previous study [72], the same

vertebrate data set was analyzed by generating features using nucleotide acid patterns.

7.2.2 Data

We collected three data sets for this study.

The first data set (data set I) is provided by Dr. Pedersen. It consists of vertebrate sequences

extracted from GenBank (release 95). The sequences are further processed by removing possible

introns and joining the remaining exon parts to obtain the corresponding mRNA sequences [89].

From these sequences, only those with an annotated TIS, and with at least 10 up-stream nu-

cleotides as well as 150 down-stream nucleotides are considered in our studies. The sequences

are then filtered to remove homologous genes from different organisms, sequences added multi-

ple times to the database, and those belonging to same gene families. Since the data are processed

DNA, the TIS site is ATG — that is, a place in the sequence where“A”, “T”, and “G” occur in

consecutive positions in that order. We are aware that some TIS sites may be non-ATG; however,

this is reported to be rare in eukaryotes [59] and is not considered in this study.

An example entry from this data set is given in Figure 7.2. There are 4 ATGs in this
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299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT
................................................... ......... 80
................................iEEEEEEEEEEEEEEEEEE EEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 7.2: An example annotated sequence from data set I. The 4 occurrences of ATG are
underlined. The second ATG is the TIS. The other 3 ATGs are non-TIS. The 99 nucleotides
up-stream of the TIS are marked by an overline. The 99 nucleotides down-stream of the TIS
are marked by a double overline. The “.”, “i”, and “E” are annotations indicating whether the
corresponding nucleotide is up-stream (.), TIS (i), or down-stream (E).

example. The second ATG is the TIS. The other 3 ATGs are non-TIS (false TIS). ATGs to the

left of the TIS are termedup-stream ATGs. So the first ATG in the figure is an up-stream ATG.

ATGs to the right of the TIS are termeddown-stream ATGs. So the third and fourth ATGs in the

figure are down-stream ATGs. The entire data set contains 3312 sequences. In these sequences,

there are a total number of 13375 ATGs, of which 3312 ATGs (24.76%) are true TISs, while

10063 (75.24%) are false. Of the false TISs, 2077 (15.5%) areup-stream ATGs.

The second data set (data set II) is provided by Dr. Hatzigeorgiou. The data collection

was first made on the protein database Swissprot. All the human proteins whose N-terminal

sites are sequenced at the amino acid level were collected and manually checked [48]. Then the

full-length mRNAs for these proteins, whose TIS had been indirectly experimentally verified,

were retrieved. The data set consists of 480 human cDNA sequences in standard FASTA format.

In these sequences, there are as many as 13581 false TIS, 96.59% of total number of ATGs.

However, only 241 (1.8%) of them are up-stream ATGs.

Besides these two data sets that have been analyzed by others, we also formed our own

genomic data set (data set III) by extracting a number of well-characterized and annotated human

genes of Chromosome X and Chromosome 21 from Human Genome Build30 [70]. Note that we

eliminated those genes that were generated by other prediction tools. The resulting set consists

of 565 sequences from Chromosome X and 180 sequences from Chromosome 21. These 745

sequences containing true TIS are used as positive data in our experiment. Meanwhile, in order

to get negative data, we extracted a set of sequences around all ATGs in these two chromosomes
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but excluded annotated ones.

7.2.3 Feature generation and sequence transformation

As every 3 nucleotides code for an amino acid, in this study, we usek-gram (k = 1; 2) amino

acid patterns as candidate features. Thus, there are 924 (= (21 + 212)� 2) possible amino acid

patterns, i.e. new features.

In the sequence transformation, we set both up-stream window size and down-stream win-

dow size to 99 bases — given a cDNA or mRNA nucleotide sequencecontaining ATGs, a window

is set for each ATG with the ATG in the center and 99 bases up-stream and 99 bases down-stream

(excluding the ATG itself) aside. As such, for data set I, we get 3312 sequence windows contain-

ing true TIS and 10063 containing false TIS; for data set II, 480 sequence windows containing

true TIS and 13581 containing false TIS. All the windows havesame size, i.e. containing 201

nucleotides. For ease of discussion, given a sequence window, we refer to each position in the

sequence window relative to the target ATG of that window. The “A” in the target ATG is num-

bered as +1 and consecutive down-stream positions — that is,to the right — from the target ATG

are numbered from +4 onwards. The first up-stream position — that is, to the left — adjacent

to the target ATG is –1 and decreases for consecutive positions towards the 5’ end — that is, the

left end of the sequence window [72]. These sequence windowscontaining nucleotide letters are

further transformed to amino acid sequences by coding everytriplet nucleotides into an amino

acid or a stop codon. At last, the amino acid sequences are converted into frequency sequence

data under the description of feature space.

Apart from thek-gram amino acid patterns, we also derive three new featuresfrom some

known bio-knowledge: two are based on the famous Kozak’s consensus matrix and one is on the

scanning model. From the original work for the identification of the TIS in cDNA sequences,

Kozak developed the first weight matrix from an extended collection of data [56]. The consensus

motif from this matrix is GCC[AG]CCATGG, where (1) a G residue tends to follow a true TIS,

which indicates that a “G” appears in position +4 of the original sequence window; (2) a purine

(A or G) tends to be found 3 nucleotides up-stream of a true TIS, which indicates that an “A” or

a “G” appears in position -3 of the original sequence window.Also, according to the ribosome

scanning model [27, 57, 4], an mRNA sequence is scanned from left (5’) to right (3’), and the
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scanning stops as soon as an ATG is recognized as TIS. The restof the ATGs in the mRNA

sequence to the right of this ATG are then treated as non-TIS.To incorporate these knowledge

to our feature space, we add three Boolean features “DOWN4-G”,“UP3-AorG” and “UP-ATG”.

Here, UP-ATG means whether an in-frame up-stream ATG exists. In a nucleotide sequence

window extracted for each candidate TIS, we call those 3-grams in positions� � �, -9, -6, and -3,

the in-frame up-stream 3-gram patterns; and those 3-grams in positions +4, +7, +10,� � �, the

in-frame down-stream 3-gram patterns. Finally, there are 927 features in the new feature space.

After this process of feature generation and data transformation, we get 3312 true TIS

samples and 10063 false TIS samples from data set I, 480 true TIS samples and 13581 false

TIS samples from data set II. Each sample is a vector of 924 integers and three boolean values.

Figure 7.3 presents a diagram for the data transformation with respect to our new feature space.

7.2.4 Experiments and results

To verify the effectiveness of our method from different aspects, we designed a series of experi-

ments on the three data sets:

a. Conducting computational cross validations in data set Iand data set II separately.

b. Selecting features and building classification model using data set I. Applying the well-

trained model to data set II to obtain a blind testing accuracy.

c. Incorporating the idea of ribosome scanning into the classification model.

d. Applying the model built in experiment-b to genomic sequences.

Validation in different data sets

To strictly compare with the results presented in [142, 72],we conduct the same 3-fold cross

validation. Table 7.1 shows our results on the data set I and data set II using the features selected

by the entropy-based algorithm. With the simple linear kernel function, SVM achieves accuracy

of 92.04% at 81.13% sensitivity and 95.63% specificity on data set I. This is better than the

accuracy of 89.4% at 74.0% sensitivity and 94.4% specificity, which is the previous best result

reported on the same data set [142]. On data set II, SVM achieves an accuracy of 98.42% at

135



amino acid sequenceamino acid sequence

cDNA

sequence

further transformation

codinga (false) TIS window
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A, DOWN-R, ….,

DOWN-N
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1, 3, 5, 0, 4, … 6, 2, 7, 0, 5, … N, N, N, False

6, 5, 7, 9, 0, … 2, 0, 3, 10, 0, … Y, Y, Y, True

Figure 7.3: A diagram for data transformation aiming for thedescription of the new feature
space.

63.33% sensitivity and 99.66% specificity. Note that we can not find previously reported results

on this data set under similar cross validation.

Validation across two data sets

The good cross validation results achieved within the individual data set encourage us to extend

our study to span the two data sets. In this experiment, we usethe whole data set I as training

data to select features and build the classification model, then we evaluate the well-trained model

on data set II to get a test accuracy.

To reduce thesimilarity between the training and testing data, aBLASTsearch between the
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Table 7.1: The results by 3-fold cross validation on the two data sets (experiment-a).
SVM(linear/quad) means the classification model is built bylinear/quadratic polynomial kernel
function.

Data Algorithm Sensitivity Specificity Precision Accuracy
I SVM(linear) 81.13% 95.63% 85.93% 92.04%

SVM(quad) 80.19% 96.17% 87.34% 92.22%
CS4 76.18% 96.14% 86.67% 91.20 %

II SVM(linear) 63.33% 99.66% 86.86% 98.42%
SVM(quad) 71.25% 99.42% 81.24% 98.46%
CS4 83.54% 97.67% 55.93% 97.19%

Table 7.2: Classification accuracy when using data set I as training and data set II as testing
(experiment-b). The row of II** is the testing accuracy on data set II before similar sequences
being removed.

Data Algorithm Sensitivity Specificity Precision Accuracy
I (train) SVM(linear) 80.68% 96.75% 89.10% 92.77%

SVM(quad) 86.05% 98.14% 93.84% 95.15%
CS4 85.54% 97.91% 93.10% 94.85%

II (test) SVM(linear) 96.28% 89.15% 25.31% 89.42%
SVM(quad) 94.14% 90.13% 26.70% 90.28%
CS4 92.02% 92.71% 32.52% 92.68%

II** (test) SVM(linear) 95.21% 89.74% 24.69% 89.92%
SVM(quad) 94.38% 89.51% 24.12% 89.67%
CS4 87.70% 93.26% 28.60% 92.11%

data set I and II is performed. Two sequences are considered similar if they produce a BLAST

hit with an identity> 75%. We find 292 similar sequences and removed them from data set II.

As a result, after being removed similar sequences, data setII contains 188 real TIS, while there

are total number of 5111 candidates [70].

We train SVM model on data set I and obtain training accuracy 92.77% at 80.68% sensi-

tivity and 96.75% specificity. Using this model, we get a testaccuracy of 89.42% at 96.28%

sensitivity and 89.15% specificity on data set II. We note that the testing accuracy on the original

data set II (without the removal of the similar sequences) isquite similar. See Table 7.2 for a

summary of these results.

Remarkably, this cross-validation spanning the two data sets achieves a much better sensi-

tivity on data set II than that obtained in the 3-fold cross-validation on this data set. A reason

may be that only 3.41% of candidate ATGs in data set II are trueTISs, which leads to an ex-

tremely unbalanced numbers of samples between the two classes. However, this bias is rectified

137



significantly by the model built on data set I where the population size of true TIS versus false

TIS is more balanced.

Incorporation of scanning model

Hatzigeorgiou [48] reported a high accuracy on data set II byan integrated method which com-

bines a consensus ANN with a coding ANN together with a ribosome scanning model. The

model suggests to scan from the 5’ end of a cDNA sequence and predicts TIS at the first ATG in

a good context [27, 57, 4]. The rest of the ATGs in the cDNA sequence to the right of this ATG

are then automatically classified as non-TIS. Thus, one and only one ATG is predicted as TIS per

cDNA sequence.

We also incorporate this scanning model into our experiment. This time, in a sequence,

we test ATGs in turn from left to right, until one of them is classified as TIS. A prediction on a

sequence is correct if and only if the TIS itself is predictedas a TIS. Since the scanning model

indicates that the first ATG that in an optimal nucleotide context would be TIS, a higher prediction

accuracy is expected if only up-stream ATGs and true TIS are used in training. Thus, we ignore

all down-stream ATGs in data set I and obtain a new training set containing only true TISs and

their up-stream ATGs. Then feature selection and classification model learning are based on this

new training data. Table 7.3 shows our results with scanningmodel being used.

Under this scanning model idea, Artemis reported that 94% ofthe TIS were correctly pre-

dicted on data set II [48]. As mentioned in her paper [48], thedata set was split into training and

testing parts in some way, the results reported there are notdirectly comparable with our results.

Testing on genomic sequences

In order to further evaluate the feasibility and robustnessof our method, we apply our model

built in experiment-b to our own prepared data (data set III), which contain gene sequences of

Chromosome X and Chromosome 21. Using the simple linear kernel function, SVM gives 397

correct prediction out of a total of 565 true TISs found in Chromosome X while 132 correct

prediction out of a total of 180 true TISs in Chromosome 21. The sensitivities are 70.27% and

73.33%, respectively. To obtain the specificity of our models, we randomly select the same

number of sequences containing non-start ATGs (false TIS) from our own extracted negative
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Table 7.3: Classification accuracy under scanning model when using data set I (3312 sequences)
as training and data set II (188 sequences) as testing (experiment-c). The row of II** is the
testing accuracy on data set II before similar sequences being removed (480 sequences). NoCor-
rectlyPredicted is the number of sequences whose TIS is correctly predicted.

Data Algorithm NoCorrectlyPredicted Accuracy
I SVM(linear) 3161 95.44%

(train) SVM(quad) 3156 95.29%
CS4 3083 93.09%

II SVM(linear) 174 92.55%
(test) SVM(quad) 172 91.49%

CS4 176 93.62%
II** SVM(linear) 453 94.38%
(test) SVM(quad) 450 93.75%

CS4 452 94.17%
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Figure 7.4: ROC curve of SVM and CS4 on prediction TIS in genomic data Chromosome X and
Chromosome 21 (experiment-d). The SVM model is built on the linear kernel function. The area
under the ROC curve: SVM 0.837, CS4 0.772.

data set. SVM correctly predicts 626 of these 745 non-start ATGs, obtaining a specificity at

84.02%. In the same test, CS4 achieves 52.48% sensitivity and 89.80% specificity. One point

needs to be addressed here is that in this validation, we remove the feature built on the ribosome

scanning model since that model is not true for genomic data.To illustrate the tradeoff between

the prediction sensitivity and specificity, Figure 7.4 gives the ROC curves of SVM and CS4

showing the changes of prediction accuracy on true and falseTISs.
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7.2.5 Discussion

Significant Features

“What are the key features to predict TIS?” To answer this question, let us have a look of an

interesting discovery on the features selected in the 3-fold cross validation on data set I in our

experiment-a. Table 7.4 shows the ranking positions of the 10 top-ranked features based on their

entropy value for the each fold. Observe that they are the same features though their ordering is

slightly different from one fold to another. This suggests that these features, or exactly amino acid

patterns, are indeed patterns around true or false TISs. Furthermore, “UP-ATG” can be explained

by the ribosome scanning model [27, 4] — seeing such an up-stream ATG makes the candidate

ATG less likely to be the TIS. “DOWN-STOP” is the in-frame stop codons down-stream from

the target ATG and it is consistent with the biological process of translating in-frame codons

into amino acids stops upon encountering an in-frame stop codon — seeing such a down-stream

stop codon makes the candidate protein improbably short. “UP3-AorG” is correspondence to the

well-known Kozak consensus sequence [56]. Most of the otherfeatures were also identified in

our previous study [142], in which the feature space is builtdirectly on nucleotides. Remarkably,

these amino acid patterns, except “DOWN-L”, all contain “G”residue. Note also that “UP-M”

is one of the top features in each fold, but we exclude it as it is redundant given that UP-ATG is

true if and only if UP-M> 0. The significance of these features is further verified whenwe find

that both sensitivity and specificity drop down greatly if these features are all excluded from the

classification model. However, we do not observe obvious decrease when we remove any one of

them from the model. This may suggest that in real biologicalprocess of translation there are

some factors other than Kozak consensus that may regulate the recognition of TIS.

In addition to the result when only selected features are used, we also obtain cross-validation

results on the whole feature space (i.e. without feature selection). We find that using the whole

feature space can not let us achieve better results on all of our experiments. For example, SVM

with linear kernel function achieves accuracy 90.94% at 79.86% sensitivity and 94.58% speci-

ficity for data set I when running 3-fold cross validation on data set I. This result is not as good

as that on the selected features.
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Table 7.4: Ranking of the top 10 features based on their entropy value as relevant in each of
the 3 folds of data set I. Feature “UP-ATG” indicates whetheran in-frame up-stream ATG exists
(boolean type). Feature “UP3-AorG” tests whether purine A or G tends to be found 3 nucleotides
up-stream of a true TIS (boolean type). Feature “UP(DOWN)-X” counts the occurrence that an
in-frame (relative to the candidate ATG) triplet coding forthe amino acid letter X appears in the
up-stream (down-stream) part of a candidate ATG. Feature “DOWN-STOP” is the occurrence of
in-frame stop codons down-stream of a candidate ATG.

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-
ATG STOP AorG A V A L D E G

1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10

Classification algorithms

For the classification methods, overall speaking, SVM performs slightly better than our CS4

method, in terms of prediction accuracy. However, CS4 achieves very good sensitivity when

running 3-fold cross validation on data set II where the number of true TISs is much less than the

number of false TISs. On the prediction of TIS in genomic sequences, the performance of CS4

is close to that of SVM. This can be illustrated by the ROC curves drawn in the Figure 7.4 — the

areas under the curves are SVM 0.837 and CS4 0.772, respectively. Besides, decision trees can

output comprehensive rules to disclose the essence of learning and prediction. Some discovered

interesting and biologically sensible rules with large coverage are listed below.

1. If UP-ATG=‘Y’ andDOWN-STOP>0, then prediction isfalse TIS.

2. If UP3-AorG=‘N’ andDOWN-STOP>0, then prediction isfalse TIS.

3. If UP-ATG=‘N’ andDOWN-STOP=0 andUP3-AorG=‘Y’, then prediction istrue TIS.

On the other hand, in our series of experiments, SVM built on quadratic polynomial ker-

nels do not show much advantage over those built on simple linear kernel functions. Note that

quadratic kernels need much more time on training process.

Comparison with model built on nucleotide acid patterns

In [142], data set I was studied usingk-gram nucleotide acid patterns and several classification

methods including SVMs, Naive Bayes, Neural Network and decision tree. In that study, feature
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selection was also conducted, but by CFS (Correlation-based Feature Selection) which is intro-

duced in Section 3.2.6 of Chapter 3. The best accuracy achieved on the 3-fold cross validation

was 89.4% at 74.0% sensitivity and 94.4% specificity when some 3-gram nucleotide acid pat-

terns were used. This result is not as good as that presented in this section — 92.45% accuracy

at 80.19% sensitivity and 96.48% specificity. However, the good features selected by these two

experiments are highly consistent. Besides those 3 features built on bio-knowledge, CFS picked

out down-stream TAA (stop codon), TAG (stop codon), TGA (stop codon), CTG (amino acid

L), GAC (D), GAG (E) and GCC (A). If we code these 3-gram nucleotide patterns into 1-gram

amino acid patterns, we will find they are all among the best features listed in Table 7.4. On

the other hand, although there are no 2-gram amino acid patterns among the 10 best features in

Table 7.4, some of them are indeed included in the set of selected features that has been used to

achieve better results in this study. Note that, our previous study [142] also illustrated that using

4-gram, 5-gram nucleotide acide patterns could not help improve the prediction performance.

Comparison with ATGpr

As mentioned earlier,ATGpr [103, 83] is a TIS prediction program that makes use of a linear

discriminant function, several statistical measures derived from the sequence and the ribosome

scanning model. It can be accessed viahttp://www.hri.co.jp/atgpr/ . When search-

ing TIS in a given sequence, the system will output several (5by default) ATGs in the order of

decreasing confidence. Let us take the ATG with highest confidence as TIS. Then for the 3312

sequences in our data set I,ATGprcan predict correctly true TIS in 2941 (88.80%) of them. This

accuracy is 6.64% lower than that we achieved. For our data set II, true TIS in 442 (92.0%) of

480 sequences are properly recognized, which is about 2.38%lower than the accuracy obtained

by us. Our results quoted here are based on SVM model using thelinear kernel function.

When we feed the genomic data used in our experiment-d toATGpr, the program gives cor-

rect TIS predictions on 128 (71.11%) of 180 Chromosome 21 gene sequences and 417 (73.81%)

of 565 Chromosome X gene sequences, giving the overall sensitivity as 73.15%. On the other

hand,ATGpr achieves 70.47% prediction accuracy on the same number of negative sequences

that were used in our experiment-d. From the ROC curves shownin Figure 7.4, we can find our

prediction specificities are around 80% (SVM) and 73% (CS4) when sensitivity is 73.15% —
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9.5% and 2.5% higher than that ofATGpron specificity. This indicates that our program may

also outperformATGprwhen dealing with genomic data sequences.

7.3 Polyadenylation Signal Prediction

7.3.1 Background

The general polyadenylation machinery of mammalian cells has been well studied for decades.

The polyadenylation (poly(A)) reaction of mammalian pre-mRNAs proceeds in two phases: the

cleavage of pre-mRNA and the addition of poly(A) tail to the newly formed 3’ end. The cleav-

age reaction requires the cleavage/poly(A) specificity factor (CPSF), the cleavage stimulation

factor (CStF), the cleavage factors I and II (CF I and CF II), and poly(A) polymerase (PAP) in

most cases. CPSF, PAP and poly(A) binding protein 2 are involved in poly(A) [144]. The as-

sembly of the cleavage/poly(A) complex, which contains most or all of the processing factors

and the substrate RNA, occurs cooperatively. CPSF consistsof four subunits and binds to the

highly conserved AAUAAA hexamer up-stream of the cleavage site. CStF, which is necessary

for cleavage but not for the addition of poly(A) tail, interacts with the U/GU rich element located

down-stream of the AAUAAA hexamer. Two additional factors,the cleavage factor I and II (CF

I and CF II) act only in the cleavage step. CF I has been purifiedto homogeneity and shown to

be an RNA-binding factor. CF II has been only partially purified so far, and its function is not

known.

After the formation of the cleavage/polyadenylation complex, the selection of poly(A) site

is primarily determined by the distance between a hexamericpoly(A) signal (PAS) of sequence

AAUAAA (or a one-base variant) and the down-stream element(denoted as DSE). The spacing

requirements for the PAS and DSE reflect the spatial requirements for a stable interaction be-

tween CPSF and CStF. The DSE is poorly conserved and two main types have been described

as a U-rich, or GU-rich element, which locates 20 to 40 bases down-stream of the cleavage site

(for reviews, please refer to [28, 144, 141]). DSE is presentin a large proportion of genes and

can affect the efficiency of cleavage [75, 141]. Although in afew cases, an up-stream element

(denoted as USE) is required for the poly(A) signal to be fully activated [5, 18, 79], the position

and sequence of the USE are undefined. In summary, the organization of mammalian poly(A)
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Figure 7.5: Schematic representation of PAS in human mRNA 3’end processing site. Distances
are as described in [28].

sites may have an unexpected flexibility and their activity depends on not only the hexameric

signal but also the up/down elements. Figure 7.5 is a schematic representation of PAS in human

mRNA 3’end processing site [144].

There are several software programs that have been developed to detect PASes in human

DNA and mRNA sequences by analysing the characteristics of up-stream and down-stream se-

quence elements around PASes. In one of early studies, Tabaska and Zhang [119] developed

a program namedPolyadq, which finds PASes using a pair of quadratic discriminant functions.

Besides, they also created a database of known active poly(A) sites and trained their program on

280 mRNA sequences and 136 DNA sequences. In their tests of finding PASes, they claimed a

correlation coefficient of 0.413 on whole genes and 0.512 in the last two exons of genes.Polyadq

is available athttp://argon.cshl.org/tabaska/polyadq_form.html . Recently,

Legendre and Gautheret [61] used bioinformatics analysis of EST and genomic sequences to

characterize biases in the regions encompassing 600 nucleotides around the cleavage site. The

computer program they developed is calledErpin which uses 2-gram position-specific nucleotide

acid patterns to analyse 300 bases up-stream and down-stream region of a candidate PAS. Being

trained by 2327 terminal sequences,Erpin was reported to achieve a prediction specificity of

75.5% to 90.4% for a sensitivity of 56% on several sets of validation data. The program can be

found athttp://tagc.univ-mrs.fr/pub/erpin/ .

In this study, we will apply our method to characterize the features in the regions encom-

passing 200 nucleotides around the PAS, i.e. with PAS in the centre and both up-stream window

size and down-stream window size as 100 bases.
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7.3.2 Data

In a series of experiments, a large number of sequences are used to train and test our classification

model. They are from two sources.

(1) Training and testing sequences used by programErpin [61]. The training set contains 2327

terminal sequences including 1632 “unique” and 695 “strong” poly(A) sites. The testing

set consists of 982 positive sequences containing annotated PASes from EMBL and four

sets of same sized negative sequences: 982 CDS sequences, 982 intronic sequences of the

first intron, 982 randomized UTR sequences of same1st order Markov model as human

3’ UTRs, and 982 randomized UTR sequences of same mono nucleotide composition as

human 3’ UTRs. The 2327 training sequences can be downloadedfrom http://tagc.

univ-mrs.fr/pub/erpin/ and have been trimmed in accordance to our window

segments i.e. every sequence contains 206 bases, having a PAS in the center. We obtained

testing data sets from Dr Gautheret via personal communication.

(2) Human RefSeq mRNA data set: we obtained 312 human mRNA sequences from RefSeq

[94] release 1. Each of these sequences contains a “polyA-signal” feature tag carrying an

“evidence=experimental” label. We use these sequences to build model for PAS prediction

in mRNA sequences. Besides, we also extracted a set of human mRNA sequences from

RefSeq containing a “polyA-site” feature tag carrying an “evidence=experimental” label.

In this set, we removed the sequences that have been includedin the training set used

in building our model. We use these sequences for testing purpose assuming that the

annotated PAS positions are correct. Our negative data set was generated by scanning for

the occurrences of AATAAA at coding region and those AATAAA sites near the end of

sequence were excluded purposely.

7.3.3 Experiments and Results

First, we use simple 1-gram, 2-gram and 3-gram nucleotide acid patterns to construct feature

space [69]. Thus, there are 168 (= (4 + 42 + 43)� 2) features.
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Table 7.5: Validation results by different programs on a setof 982 annotated UTR sequences
from the EMBL database [61]. TP is the number of true positives. FN is the number of false
negatives.

Program TP FN Sensitivity
Erpin 549 433 55.9%
Polyadq 547 435 55.7%
Ours 553 429 56.3%

Preliminary results

In the first experiment, we use the 2327 sequences introducedin [61] (data source (1)) as our

true PAS training data. To obtain negative sequences, same sized false PAS data is randomly

selected from our own extracted negative data set (data source (2)). Using entropy-based feature

selection algorithm and linear kernel SVM classifier, the sensitivity and specificity of 10-fold

cross-validation on training data are 89.3% and 80.5%, respectively. In order to compare with

other programs, we test our model on the same validation setswhose testing results on programs

Erpin andPolyadqwere reported in [61]. As described in data source (1) , thesevalidation sets

include true PASes sequences came from 982 annotated UTRs and four same sized control sets

known not to contain PASes: coding sequences (CDS), intronsand randomized UTRs (simply

shuffled UTRs and1st order Markov model UTRs). For a direct comparison, we also adjust the

prediction sensitivity on the 982 true PASes to around 56.0%so that evaluation can be made on

the predictions for those four control sets.

Table 7.5 shows the validation results on true PASes and Table 7.6 illustrates the results on

four control sets. Figure 7.6 is the ROC curve for this seriesof tests. All the numbers regarding to

the performance of programsErpin andPolyadqin Table 7.5 and Table 7.6 are copied or derived

from [61]. The results in Table 7.6 demonstrate that our model can give better performance than

Erpin andPolyadqdid on false PASes prediction of CDS, intron and simple shuffling sequences,

and almost same prediction accuracy on sequences with1st order Markov randomization.

In this experiment, we select 113 features via entropy measure. These features are then

integrated with SVM to form the classification and prediction model. Table 7.7 lists the top

10 of these features ranking by their entropy values (the less the entropy value is, the more

important the feature is). Some of these top features can be interpreted by those reported motifs,

for example, it clearly visualizes both USE and DSE as characterized by G/U rich segments since
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Table 7.6: Validation results by different programs on different sequences not contain-
ing PASes: coding sequences (CDS), introns, and two types ofrandomized UTR se-
quences (simple shuffling and1st order Markov simulation) [61]. TN is the number of
true negatives. FP is the number of false positives. CC is correlation coefficient, andCC = (TP�TN�FP�FN)p(TP+FP )�(TP+FN)�(TN+FP )�(TN+FN) . Calculations of Precision and CC use TP and

FN from Table 7.5.

Data set Program TN FP Specificity Precision CC
CDS Erpin 880 102 89.6% 84.3% 0.483

Polyadq 862 120 87.8% 82.0% 0.459
Ours 887 95 90.3% 85.4% 0.497

Introns Erpin 741 241 75.5% 69.5% 0.320
Polyadq 718 264 73.1% 67.5% 0.293
Ours 775 207 78.9% 72.8% 0.363

Simple shuffling Erpin 888 94 90.4% 85.4% 0.494
Polyadq 826 156 84.1% 77.8% 0.415
Ours 942 40 95.9% 93.3% 0.570

Markov1st order Erpin 772 210 78.6% 72.3% 0.354
Polyadq 733 249 74.6% 68.7% 0.309
Ours 765 217 77.9% 71.9% 0.351
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Figure 7.6: ROC curve of our model on some validation sets described in [61] (data source (1)).

UP-TGT, UP-T, DOWN-TGT, DOWN-T, UP-TG and UP-TT are among top features.

Model for prediction PAS in mRNA sequences

When we apply our model to 312 true PASes that were extracted from mRNA sequences by

ourselves (data source (2)), the results obtained are not good — only around 20% of them can

be predicted correctly. Besides, the programErpin performs even worse on these PASes — with

prediction accuracy at only 13%. These poor results may indicate that the good features used

in the model for PAS prediction in DNA sequences are not efficient for mRNA. Therefore, we
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Table 7.7: The top 10 features selected by entropy-based feature selection method for PAS clas-
sification and prediction in human DNA sequences.

Rank 1 2 3 4 5 6 7 8 9 10
Feature UP DOWN UP UP DOWN DOWN UP UP DOWN UP

-TGT -A -T -AG -TGT -T -TG -TT -AA -A

decide to build another model for mRNA sequences without poly(A) tails. This model is also

expected to provide a new way for predicting the mRNA cleavage site/poly(A) addition site.

Since the new model is aimed to predict PASes from mRNA sequences, we only consider

the up-stream elements around a candidate PAS. Therefore, there are only 84 features (instead

of 168 features). To train the model, we use 312 experimentally verified true PASes and same

number of false PASes that randomly selected from our prepared negative data set. The validation

set comprises 767 annotated PASes and same number of false PASes also from our negative data

set but different from those used as training (data source (2)). This time, we achieve reasonably

good results. Sensitivity and specificity for 10-fold cross-validation on training data are 79.5%

and 81.8%, respectively. Validation result is 79.0% sensitivity at 83.6% specificity. Besides, we

observe that the top ranked features are different from those listed in Table 7.7 (detailed features

not shown).

Since every 3 nucleotides code for an amino acid when DNA sequences translate to mRNA

sequences, it is legitimate to investigate if an alternative approach that generating features based

on amino acids can produce more effective PASes prediction for mRNA sequence data. In fact,

this idea is also encouraged by the good results we achieved in the TIS prediction described in

the previous section.

Similarly as what we did in TIS prediction, we transform the up-stream nucleotides of a

sequence window set for each cadidate PAS into an amino acid sequence segment by coding

every triplet nucleotides as an amino acid or a stop codon. The feature space is constructed by

using 1-gram and 2-gram amino acid patterns. Since only up-stream elements around a candidate

PAS are considered, there are 462 (= 21+212) possible amino acid patterns. In addition to these

patterns, we also present existing knowledge via an additional feature — denoting number of T

residue in up-stream as “UP-T-Number”. Thus, there are 463 candidate features in total.

In the new feature space, we conduct feature selection and train SVM on 312 true PASes

and same number of false PASes. The 10-fold cross-validation results on training data are 81.7%
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Figure 7.7: ROC curve of our model on PAS prediction in mRNA sequences.

sensitivity with 94.1% specificity. When apply the trained model to our validation set contain-

ing 767 true PASes and 767 false PASes, we achieve 94.4% sensitivity with 92.0% specificity

(correlation coefficient is as high as 0.865). Figure 7.7 is the ROC curve of this validation. In

this experiment, there are only 13 selected features and UP-T-Number is the best feature. This

indicates that the up-stream sequence of PAS in mRNA sequence may also contain T-rich seg-

ments. However, when we apply this model built for mRNA sequences using amino acid patterns

to predict PASes in DNA sequences, we can not get as good results as that achieved in the pre-

vious experiment. This indicates that the down-stream elements are indeed important for PAS

prediction in DNA sequences.

7.4 Chapter Summary

In this chapter, we proposed a machine learning methodologyto identify functional site in biolog-

ical sequences. Our method comprises three sequential steps: (1) generating candidate features

usingk-gram nucleotide acid patterns or amino acid patterns and then transforming original se-

quences respect to the new generated feature space; (2) selecting relevant features using certain

feature selection algorithm; and (3) building classification model to recognize the functional

site by applying classification techniques to the selected features. Our idea is different from

traditional methodologies because it generates new features and also transforms the original nu-

cleotide sequence data tok-gram frequency vectors. The feature selection step does not only

greatly shorten the running time of classification program,but also help to obtain explicit impor-

tant features around the functional site and lead to a more accurate prediction.

We applied our idea to predict translation initiation site (TIS) and polyadenylation signal
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(PAS) in DNA and mRNA sequences. For each application, both public data sets and our own

extracted sequences were used to test the effectiveness androbustness of the method. The ex-

perimental results achieved are better than those reportedpreviously using the same data sets (if

available). The important features captured are highly consistent with those reported in the lit-

erature. Most importantly, we not only conducted the cross validation within the individual data

sets separately, but also established the validation across the different data sets. The success of

such a validation indicates that there are predictable patterns around TIS or PAS.

In addition, a web-based toolbox to recognize TIS and PAS from DNA sequences has been

implemented based on the techniques presented in this chapter. This toolbox is named asDNAF-

SMinerand more information about it can be found in Appendix B.
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Chapter 8

Conclusions

8.1 Summary

This thesis is about how to effectively apply data mining technologies to biological and clinical

data. Some problems arising from gene expression profilingsand DNA sequence data are stud-

ied in depth using data mining techniques of feature generation, feature selection, and feature

integration with learning algorithms.

In order to identify genes associated with disease phenotype classification or patient sur-

vival prediction from gene expression data, a new feature selection strategy,ERCOF(Entropy-

based Rank sum test and COrrelation Filtering), is worked out by combining entropy measure,

Wilcoxon rank sum test and Pearson correlation coefficient test. ERCOF conducts three-phase

feature filtering aiming to find a subset of sharply discriminating genes with little redundancy. In

the first phase, it selects genes using an entropy-based method that generally keeps only 10% of

the features. In the second phase, a non-parametric statistics called the Wilcoxon rank sum test

is applied to the features kept by the first phase to further filter out some genes and divide the

remaining ones into two groups — one group consists of genes that are highly expressed in one

type of samples (such ascancer) while another group consists of genes that are highly expressed

in another type of samples (such asnon-cancer). In the third phase, correlated genes in each

group are determined by Pearson correlation coefficient test and only some representatives of

them are chosen to form the final set of selected genes.

In Chapter 5, ERCOF is applied to six published gene expression profiling data sets and
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one proteomic data set to identify genes for phenotype classification. For comparison purpose,

several other entropy-based feature selection methods arealso run. The classification algorithms

used include four ensemble of decision trees approaches, support vector machines (SVM) andk-nearest neighbour (k-NN). The four decision tree methods are the newly implemented CS4

(cascading-and-sharing for decision trees) and state-of-the-art Bagging [19], Boosting, and Ran-

dom forests. More than one thousand tests are conducted and avariety of comparisons among

different feature selection methods and different classification algorithms are addressed. For each

data set, some identified discriminating features are also reported and related to the literature and

the disease. To demonstrate the advantage of the decision trees over the other classification algo-

rithms, some simple, explicit and comprehensible trees/rules induced from the data sets are also

presented and analysed.

In the study of patient survival prediction described in Chapter 6, we present a new idea of

selecting informative training samples by defining long-term and short-term survivors. ERCOF

is then applied to these samples to identify genes associated with survival status. A regression

function built on the selected samples and genes by linear kernel SVM is implemented to assign

a risk score to each patient. Kaplan-Meier plots for different risk groups formed on the risk

scores are then drawn to show the effectiveness of the model.Two case studies, one on survival

prediction for patients after chemotherapy for diffuse large-B-cell lymphoma and one on lung

adenocarcinomas, are conducted.

In Chapter 7, data mining methodologies are applied to identify functional sites in DNA

sequences. Feature generation is emphasized in this application since sequence data generally

contain no explicit features. We first construct feature space usingk-gram nucleotide acid or

amino acid patterns and then transform original sequences under the new constructed feature

space. Feature selection is then conducted to find signal patterns that can distinguish true func-

tional sites from those false ones. In the third step, classification and prediction models are

built on the training data sets with the selected features. Our methodology is used to recognize

translation initiation sites and polyadenylation signalsin DNA and mRNA sequences. For each

application, experimental results across different data sets (including both public ones and own

extracted ones) are collected to demonstrate the effectiveness and robustness of our method.
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8.2 Conclusions

In this thesis, we successfully make use of data mining technologies to solve some problems

arising from biological and clinical data. We have articulated explicitly the 3-step frame work of

feature generation, feature selection and feature integration with learning algorithms and demon-

strated its effectiveness when dealing with phenotype classification and patient survival predic-

tion from gene expression data, and functional sites recognition in DNA sequences.

From large amount of experiments conducted on some high-dimensional gene expression

data sets, we clearly observe the improvements on performances of all the classification algo-

rithms under the proposed feature selection scenarios. Among these gene identification methods,

we claim ERCOF is an effective approach.

In the aspect of classification algorithms, no single algorithm is absolutely superior to all

others, though SVM achieves fairly good results in most of tests. Compared with SVM, decision

tree methods can provide simple, comprehensive rules and are not very sensitive to feature selec-

tions. Among the decision tree methods, the newly implemented CS4 achieves good prediction

performance and provides many interesting rules.

Feature generation is important for some kinds of biological data. We illustrate this point

by properly constructing new feature space for functional sites recognition in DNA sequences.

Some of the signal patterns identified from the generated feature space are highly consistent with

related literature or biological knowledge. The rest mightbe useful for biologists to conduct

further analysis.

8.3 Future Work

There are many ongoing and future explorations regarding tothe works presented in this thesis.

Currently, our proposed gene selection method ERCOF is not anon-parametric measure

since the expression values are used in the third phase filtering when evaluating the correlations

between genes. To avoid this, other metrics and clustering algorithms to measure the relationships

of genes are under development.

With more and more high quality gene expression profiles being published, we expect to

further test the effectiveness of our proposed frame work and the robustness of various gene
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selection and classification algorithms on many other data sets. For some particular diseases, we

will further extract biological meanings of the genes identified to be most associated with the

phenotypes or patient survival status.

Future works in identifying translation initiation sites and poly(A) signals from DNA se-

quences are planned as follows. (1) We are considering to include patterns containing “dont care”

symbols into feature space. Here, a “dont care” symbol (?) stands for any symbol of amino acid

or nucleotide acid. Thus, more general signal patterns might be found around functional sites. (2)

Some parameters used in constructing feature space and extracting sequences around a candidate

functional site will be adjusted so that their impacts on theclassification performance will be

known. These parameters include thek value ofk-gram patterns used as features, the up-stream

window size and the down-stream window size of the sequence segment extracted for each can-

didate, and so on. (3) The classification models built will betested on more EST (Expressed

Sequence Tags) and genomic sequences. (4) Meanwhile, we areexpecting the 3-step frame work

of feature manipulations will achieve good results on the recognition of other functional sites,

such as splice site and etc.

In the aspect of using classification methods to solve biological problems, we will try to

provide insight and limitations of different algorithms. In addition to the good performance, how

easy it is for users to understand the learning process, to interpret the output classification models,

and to incorporate domain knowledge are also important factors in measuring the classification

power of an algorithm.
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Appendix A

Lists of Genes Identified in Chapter 5
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Table A.1: 54 common genes selected by each fold of ERCOF in 10-fold cross validation test for
prostate cancer data set.

Probe Accession Gene name
name number
40435at J03592 Human ADP/ATP translocase mRNA, 3’end, clone pHAT8
40419at X85116 H.sapiens epb72 gene exon 1
31444s at M62895 Human lipocortin (LIP) 2 pseudogene mRNA, complete cds-like region
37720at M22382 Human mitochondrial matrix protein P1 (nuclear encoded) mRNA, complete cds
32634s at U38260 Human islet cell autoantigen ICAp69 mRNA, complete cds
34608at M24194 Human MHC protein homologous to chicken B complex protein mRNA, complete cds
33137at Y13622 Homo sapiens mRNA for latent transforming growth factor-beta binding protein-4
40436g at J03592 Human ADP/ATP translocase mRNA, 3’end, clone pHAT8
34784at Z83844 Human DNA sequence from clone 37E16 on chromosome 22 Contains a novel gene,

a gene similar to SH3-binding protein, LGALS1 (14 kDa beta-galactoside-binding lectin)
gene, part of a gene similar to mouse p116Rip, ESTs, STSs, GSSs and two CpG islands

1676 s at M55409 Homo sapiens pancreatic tumor-related protein mRNA, partial cds
36587at Z11692 H.sapiens mRNA for elongation factor 2
33614at X80822 H.sapiens mRNA for ORF
38814at AF038954 Homo sapiens vacuolar H(+)-ATPase subunit mRNA, complete cds
33668at AF037643 Homo sapiens 60S ribosomal protein L12 (RPL12) pseudogene, partial sequence
40024at D86640 Homo sapiens mRNA for stac, complete cds
39756g at Z93930 Human DNA sequence from clone 292E10 on chromosome22q11-12. Contains the XBP1

gene for X-box binding protein 1 (TREB5), ESTs, STSs, GSSs and a putative CpG island
34853at AB007865 Homo sapiens KIAA0405 mRNA, complete cds
33820g at X13794 H.sapiens lactate dehydrogenase B gene exon 1 and 2
40856at U29953 Human pigment epithelium-derived factor gene, complete cds
31538at M17885 Human acidic ribosomal phosphoprotein P0 mRNA, complete cds
36601at M33308 Human vinculin mRNA, complete cds
33134at AB011083 Homo sapiens mRNA for KIAA0511 protein, partialcds
32076at D83407 ZAKI-4 mRNA in human skin fibroblast, complete cds
31545at AL031228 dJ1033B10.4 (40S ribosomal protein S18 (RPS18,KE-3))
33328at W28612 49b3 Homo sapiens cDNA
39416at U90913 Human clone 23665 mRNA sequence
40607at U97105 Homo sapiens N2A3 mRNA, complete cds
769 s at D00017 Homo sapiens mRNA for lipocortin II, complete cds
32412at M13934 Human ribosomal protein S14 gene, complete cds
37819at AF007130 Homo sapiens clone 23750 unknown mRNA, partial cds
1521 at X17620 Human mRNA for Nm23 protein, involved in developmental regulation

(homolog. to Drosophila Awd protein)
1513 at Antigen, Prostate Specific, Alt. Splice Form 3
39939at D21337 Human mRNA for collagen
35776at AF064243 Homo sapiens intersectin short form mRNA, complete cds
31527at X17206 Human mRNA for LLRep3
33408at AB023151 Homo sapiens mRNA for KIAA0934 protein, partialcds
34840at AI700633 we38g03.x1 Homo sapiens cDNA, 3’end
39315at D13628 Human mRNA for KIAA0003 gene, complete cds
35119at X56932 H.sapiens mRNA for 23 kD highly basic protein
575 s at M93036 Human (clone 21726) carcinoma-associated antigen GA733-2 (GA733-2) mRNA,

exon 9 and complete cds
262 at M21154 Human S-adenosylmethionine decarboxylase mRNA,complete cds
37639at X07732 Human hepatoma mRNA for serine protease hepsin
32243g at AL038340 DKFZp566K192s1 Homo sapiens cDNA, 3’end
36864at AJ001625 Homo sapiens mRNA for Pex3 protein
38044at AF035283 Homo sapiens clone 23916 mRNA sequence
38098at D80010 Human mRNA for KIAA0188 gene, partial cds
39366at N36638 yx88f05.r1 Homo sapiens cDNA, 5’end

168



Table A.2: 54 common genes selected by each fold of ERCOF in 10-fold cross validation test for
prostate cancer data set (continued 1).

Probe Accession Gene name
name number
32206at AB007920 Homo sapiens mRNA for KIAA0451 protein, complete
39550at AB011156 Homo sapiens mRNA for KIAA0584 protein, partial
34304s at AL050290 Homo sapiens mRNA; cDNA DKFZp586G1923 (from clone DKFZp586G1923)
37730at U22055 Human 100 kDa coactivator mRNA, complete cds
41288at AL036744 DKFZp564I1663r1 Homo sapiens cDNA, 5’end
31583at X67247 H.sapiens rpS8 gene for ribosomal protein S8
172 at U57650 Human SH2-containing inositol 5-phosphatase (hSHIP) mRNA, complete cds
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Table A.3: 39 common m/z identities among top 50 entropy measure selected features in 10-fold
cross validation on ovarian cancer proteomic profiling. Their corresponding Wilcoxon testp-values are derived from paper [118].

M/Z identity Wicoxonp-value Entropy measure
244.95245 1.16115E-30 0.13998
245.8296 7.59262E-30 0.16299
245.24466 1.59454E-30 0.17846
244.66041 1.30324E-30 0.18037
245.53704 2.25194E-30 0.18209
435.46452 5.16697E-30 0.23104
246.41524 3.70287E-29 0.23574
246.12233 1.70497E-29 0.23743
247.00158 1.00124E-28 0.23968
417.73207 1.03527E-27 0.25183
434.68588 1.7291E-29 0.25791
435.07512 3.1774E-30 0.25839
435.85411 1.65702E-29 0.26475
246.70832 6.49125E-29 0.27451
261.88643 6.58307E-29 0.28096
418.11364 6.48304E-27 0.28419
247.295 1.45824E-28 0.30174
247.88239 1.30577E-27 0.31365
434.29682 9.27807E-28 0.31648
262.18857 2.34772E-27 0.32680
261.58446 1.5817E-27 0.33865
247.58861 2.33737E-28 0.34268
244.36855 2.11132E-26 0.34343
436.24386 5.43042E-28 0.34656
464.76404 5.64673E-26 0.35072
464.36174 2.34956E-26 0.36228
222.69673 7.50798E-26 0.37045
417.35068 1.30456E-26 0.37647
463.95962 1.13655E-25 0.38043
465.16651 5.44957E-25 0.38914
222.41828 4.20921E-27 0.39731
222.14001 3.27501E-25 0.40447
418.49538 9.26396E-25 0.40599
262.49088 2.6516E-23 0.41769
436.63379 2.16083E-25 0.42559
25.589892 1.80877E-24 0.43315
463.55767 4.42152E-23 0.44623
4003.6449 5.09873E-22 0.45153
220.75125 3.25692E-24 0.46876
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Table A.4: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41].

Probe Gene name
X95735 at Zyxin
M55150 at FAH Fumarylacetoacetate
M31166 at PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta
M27891 at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
U46499at GLUTATHIONE S-TRANSFERASE, MICROSOMAL
L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2
X70297 at CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
M77142 at NUCLEOLYSIN TIA-1
J03930at ALKALINE PHOSPHATASE, INTESTINAL PRECURSOR
M92287 at CCND3 Cyclin D3
U22376cds2s at C-myb gene extracted from Human (c-myb) gene, complete primary cds,

and five complete alternatively spliced cds
M27783 s at ELA2 Elastatse 2, neutrophil
D14874at ADM Adrenomedullin
M16038 at LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
U50136rna1 at Leukotriene C4 synthase (LTC4S) gene
M98399 s at CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor)
M21551 rna1 at Neuromedin B mRNA
Y12670 at LEPR Leptin receptor
M83652 s at PFC Properdin P factor, complement
M23197 at CD33 CD33 antigen (differentiation antigen)
U46751at Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA
D88422at CYSTATIN A
M54995 at PPBP Connective tissue activation peptide III
U02020at Pre-B cell enhancing factor (PBEF) mRNA
M31523 at TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
X04085 rna1 at Catalase (EC 1.11.1.6) 5’flank and exon 1 mapping to chromosome 11,

band p13 (and joined CDS)
M81933 at CDC25A Cell division cycle 25A
U12471cds1at Thrombospondin-p50 gene extracted from Human thrombospondin-1 gene, partial cds
M91432 at ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain
X59417 at PROTEASOME IOTA CHAIN
M12959 s at TCRA T cell receptor alpha-chain
X74262 at RETINOBLASTOMA BINDING PROTEIN P48
L27584 s at CAB3b mRNA for calcium channel beta3 subunit
HG4316-HT4586at Transketolase-Like Protein
J05243at SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)
M31303 rna1 at Oncoprotein 18 (Op18) gene
X62654 rna1at ME491 gene extracted from H.sapiens gene for Me491/CD63 antigen
X90858 at Uridine phosphorylase
M84526 at DF D component of complement (adipsin)
J04615at SNRPN Small nuclear ribonucleoprotein polypeptide N
D26308at NADPH-flavin reductase
L08177 at CMKBR7 Chemokine (C-C) receptor 7
X14008 rna1 f at Lysozyme gene (EC 3.2.1.17)
X87613 at Skeletal muscle abundant protein
M80254 at PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR
M96326 rna1 at Azurocidin gene
J04990at CATHEPSIN G PRECURSOR
U62136at Putative enterocyte differentiation promoting factor mRNA, partial cds
D10495at PRKCD Protein kinase C, delta
X52142 at CTPS CTP synthetase
U73737at GTBP DNA GT mismatch-binding protein
X74801 at T-COMPLEX PROTEIN 1, GAMMA SUBUNIT
U32944at Cytoplasmic dynein light chain 1 (hdlc1) mRNA
X15949 at IRF2 Interferon regulatory factor 2

171



Table A.5: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (continued 1).

Probe Gene name
M31158 at PRKAR2B Protein kinase, cAMP-dependent, regulatory, type II, beta
M15780 at GB DEF = DNA/endogenous human papillomavirus type 16 (HPV) DNA,

right flank and viral host junction
X62320 at GRN Granulin
D49950at Liver mRNA for interferon-gamma inducing factor(IGIF)
U37055rna1 s at Hepatocyte growth factor-like protein gene
D88378at Proteasome inhibitor hPI31 subunit
X61587 at ARHG Ras homolog gene family, member G (rho G)
X07743 at PLECKSTRIN
AFFX-HUMTFRR/M115073 at AFFX-HUMTFRR/M115073 at (endogenous control)
L42572 at Motor protein
Z69881 at Adenosine triphosphatase, calcium
M63138 at CTSD Cathepsin D (lysosomal aspartyl protease)
M28170 at CD19 CD19 antigen
L41870 at RB1 Retinoblastoma 1 (including osteosarcoma)
D26156s at Transcriptional activator hSNF2b
M11722 at Terminal transferase mRNA
U09087s at Thymopoietin beta mRNA
M29540 at CARCINOEMBRYONIC ANTIGEN PRECURSOR
L47738 at Inducible protein mRNA
D38073at MCM3 Minichromosome maintenance deficient (S. cerevisiae)3
HG4321-HT4591at Ahnak-Related Sequence
U41813at HOXA9 Homeo box A9
X85116 rna1 s at Epb72 gene exon 1
X58431 rna2 s at HOX 2.2 gene extracted from Human Hox2.2 gene for a homeobox protein
M28130 rna1 s at Interleukin 8 (IL8) gene
Y00787 s at INTERLEUKIN-8 PRECURSOR
U82759at GB DEF = Homeodomain protein HoxA9 mRNA
U16954at (AF1q) mRNA
Z48501s at GB DEF = Polyadenylate binding protein II
M62762 at ATP6C Vacuolar H+ ATPase proton channel subunit
M22960 at PPGB Protective protein for beta-galactosidase (galactosialidosis)
M28209 at RAS-RELATED PROTEIN RAB-1A
U85767at Myeloid progenitor inhibitory factor-1 MPIF-1 mRNA
M13792 at ADA Adenosine deaminase
L05148 at Protein tyrosine kinase related mRNA sequence
L08246 at INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1
M19045 f at LYZ Lysozyme
M20203 s at GB DEF = Neutrophil elastase gene, exon 5
U67963at Lysophospholipase homolog (HU-K5) mRNA
J03801f at LYZ Lysozyme
X51521 at VIL2 Villin 2 (ezrin)
M13452 s at LMNA Lamin A
D87076at KIAA0239 gene, partial cds
L07648 at MXI1 mRNA
HG2810-HT2921at Homeotic Protein Pl2
L38608 at ALCAM Activated leucocyte cell adhesion molecule
L28821 at MANA2 Alpha mannosidase II isozyme
U73960at ADP-ribosylation factor-like protein 4 mRNA
M94633 at GB DEF = Recombination acitivating protein (RAG2) gene, last exon
S50223at HKR-T1
Z15115 at TOP2B Topoisomerase (DNA) II beta (180kD)
U84487at CX3C chemokine precursor, mRNA, alternatively spliced
U65928at JUN V-jun avian sarcoma virus 17 oncogene homolog
U53468at NADH:ubiquinone oxidoreductase subunit B13 (B13) mRNA
U72936s at X-LINKED HELICASE II
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Table A.6: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (continued 2).

Probe Gene name
X66401 cds1at LMP2 gene extracted from H.sapiens genes TAP1, TAP2, LMP2, LMP7 and DOB
X66533 at GUANYLATE CYCLASE SOLUBLE, BETA-1 CHAIN
AF009426at Clone 22 mRNA, alternative splice variant alpha-1
U90546at Butyrophilin (BTF4) mRNA
U28833at Down syndrome critical region protein (DSCR1) mRNA
M63488 at RPA1 Replication protein A1 (70kD)
U02493at 54 kDa protein mRNA
D86479at Non-lens beta gamma-crystallin like protein (AIM1) mRNA, partial cds
M31211 s at MYL1 Myosin light chain (alkali)
U26266s at DHPS Deoxyhypusine synthase
U05259rna1 at MB-1 gene
M58297 at ZNF42 Zinc finger protein 42 (myeloid-specific retinoic acid-responsive)
D63880at KIAA0159 gene
U38846at Stimulator of TAR RNA binding (SRB) mRNA
M81695 s at ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polypeptide)
D14664at KIAA0022 gene
X16546 at RNS2 Ribonuclease 2 (eosinophil-derived neurotoxin; EDN)
HG627-HT5097s at Rhesus (Rh) Blood Group System Ce-Antigen, Alt. Splice 2,Rhvi
M22324 at ANPEP Alanyl (membrane) aminopeptidase (aminopeptidase N, aminopeptidase M,

microsomal aminopeptidase, CD13)
HG2981-HT3127s at Epican, Alt. Splice 11
Z49194at OBF-1 mRNA for octamer binding factor 1
HG1612-HT1612at Macmarcks
X77533 at Activin type II receptor
U20998at SRP9 Signal recognition particle 9 kD protein
X17042 at PRG1 Proteoglycan 1, secretory granule
HG2788-HT2896at Calcyclin
HG2855-HT2995at Heat Shock Protein, 70 Kda (Gb:Y00371)
U29175at Transcriptional activator hSNF2b
J03589at UBIQUITIN-LIKE PROTEIN GDX
U41767s at Metargidin precursor mRNA
X06182 s at KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
M57731 s at GRO2 GRO2 oncogene
M24400 at CTRB1 Chymotrypsinogen B1
M69043 at MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING PROTEIN MAD3
D43950at T-COMPLEX PROTEIN 1, EPSILON SUBUNIT
M19507 at MPO Myeloperoxidase
M59820 at CSF3R Colony stimulating factor 3 receptor (granulocyte)
D83785at KIAA0200 gene
U50733at Dynamitin mRNA
D80001at KIAA0179 gene, partial cds
M29696 at IL7R Interleukin 7 receptor
U72621at LOT1 mRNA
M63438 s at GLUL Glutamate-ammonia ligase (glutamine synthase)
X62535 at DAGK1 Diacylglycerol kinase, alpha (80kD)
M84371 rna1s at CD19 gene
L13278 at CRYZ Crystallin zeta (quinone reductase)
X14850 at HISTONE H2A.X
J03473at ADPRT ADP-ribosyltransferase (NAD+; poly (ADP-ribose)polymerase)
U79274at Clone 23733 mRNA
D86983at KIAA0230 gene, partial cds
X63469 at GTF2E2 General transcription factor TFIIE beta subunit, 34kD
D88270at GB DEF = (lambda) DNA for immunoglobin light chain
X59350 at CD22 CD22 antigen
U35451at Heterochromatin protein p25 mRNA
X61970 at PROTEASOME ZETA CHAIN
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Table A.7: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (continued 3).

Probe Gene name
U66838at Cyclin A1 mRNA
U94836at ERPROT 213-21 mRNA
X54326 at MULTIFUNCTIONAL AMINOACYL-TRNA SYNTHETASE
D55654at MDH1 Malate dehydrogenase 1, NAD (soluble)
U31556at E2F5 E2F transcription factor 5, p130-binding
X83490 s at GB DEF = Fas/Apo-1 (clone pCRTM11-Fasdelta(3,4))
M83667 rna1s at NF-IL6-beta protein mRNA
D38522at KIAA0080 gene, partial cds
Z68747at GB DEF = Imogen 38
X64072 s at SELL Leukocyte adhesion protein beta subunit
M65214 s at TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
M29194 at LIPC Lipase, hepatic
M86406 at ACTN2 Actinin alpha 2
U16307at Glioma pathogenesis-related protein (GliPR) mRNA
U26173s at BZIP protein NF-IL3A (IL3BP1) mRNA
L11669 at Tetracycline transporter-like protein mRNA
X15573 at PFKL Phosphofructokinase (liver type)
X56411 rna1 at ADH4 gene for class II alcohol dehydrogenase (pi subunit), exon 1
X96752 at L-3-hydroxyacyl-CoA dehydrogenase
U90552at Butyrophilin (BTF5) mRNA
HG4582-HT4987at Glucocorticoid Receptor, Beta
AF005043at Poly(ADP-ribose) glycohydrolase (hPARG) mRNA
U47077at DNA-dependent protein kinase catalytic subunit (DNA-PKcs) mRNA
M83233 at TCF12 Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)
X16832 at CTSH Cathepsin H
D00763at GAPD Glyceraldehyde-3-phosphate dehydrogenase
U27460at Uridine diphosphoglucose pyrophosphorylase mRNA
X63753 at SON SON DNA binding protein
Z21507at EEF1D Eukaryotic translation elongation factor 1 delta

(guanine nucleotide exchange protein)
U57721at L-kynurenine hydrolase mRNA
S68134s at GB DEF = CREM=cyclic AMP-responsive element modulator beta isoform

[human, mRNA, 1030 nt]
U81556at Hypothetical protein A4 mRNA
X97335 at Kinase A anchor protein
D86967at KIAA0212 gene
X66899 at EWSR1 Ewing sarcoma breakpoint region 1
M37435 at CSF1 Colony-stimulating factor 1 (M-CSF)
J03798at SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1
U30521at FRAP FK506 binding protein 12-rapamycin associated protein
U50939at Amyloid precursor protein-binding protein 1 mRNA
U83410at CUL-2 (cul-2) mRNA
X59543 at RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE M1 CHAIN
S71043rna1s at Ig alpha 2=immunoglobulin A heavy chain allotype 2 constant region, germ line

[human, peripheral blood neutrophils, Genomic, 1799 nt]
L49229 f at GB DEF = Retinoblastoma susceptibility protein (RB1) gene, with a 3 bp deletion in

exon 22 (L11910 bases 161855-162161)
M95678 at PLCB2 Phospholipase C, beta 2
U49020cds2s at MEF2A gene (myocyte-specific enhancer factor 2A, C9 form)extracted from

Human myocyte-specific enhancer factor 2A (MEF2A) gene, first coding
U00802s at Drebrin E
M93056 at LEUKOCYTE ELASTASE INHIBITOR
M95178 at ALPHA-ACTININ 1, CYTOSKELETAL ISOFORM
L25931 s at LBR Lamin B receptor
M32304 s at TIMP2 Tissue inhibitor of metalloproteinase 2
D38128at PTGIR Prostaglandin I2 (prostacyclin) receptor (IP)
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Table A.8: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (continued 4).

Probe Gene name
D87742at KIAA0268 gene, partial cds
M63379 at CLU Clusterin (complement lysis inhibitor; testosterone-repressed prostate

message 2; apolipoprotein J)
X80907 at GB DEF = P85 beta subunit of phosphatidyl-inositol-3-kinase
AF012024s at Integrin cytoplasmic domain associated protein (Icap-1a) mRNA
J04621at SDC2 Syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)
M80899 at AHNAK AHNAK nucleoprotein (desmoyokin)
U97105at Dihydropyrimidinase related protein-2
M30703 s at Amphiregulin (AR) gene
U43292at MDS1B (MDS1) mRNA
U05572s at MANB Mannosidase alpha-B (lysosomal)
D31887at KIAA0062 gene, partial cds
X97748 s at GB DEF = PTX3 gene promotor region
Y00339 s at CA2 Carbonic anhydrase II
X52056 at SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1
M92357 at B94 PROTEIN
AFFX-HUMTFRR/M11507M at AFFX-HUMTFRR/M11507M at (endogenous control)
X66610 at ALPHA ENOLASE, LUNG SPECIFIC
U07139at CAB3b mRNA for calcium channel beta3 subunit
HG4535-HT4940s at Dematin
X64364 at BSG Basigin
HG3162-HT3339at Transcription Factor Iia
X51420 at TYRP1 Tyrosinase-related protein 1
D50918at KIAA0128 gene, partial cds
AJ000480at GB DEF = C8FW phosphoprotein
J04027at Adenosine triphosphatase mRNA
S76638at NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)
U28042at DEAD box RNA helicase-like protein mRNA
M11147 at FTL Ferritin, light polypeptide
HG4755-HT5203s at Spinal Muscular Atrophy 4
X65644 at IMMUNODEFICIENCY VIRUS TYPE I ENHANCER-BINDING PROTEIN2
D26579at Transmembrane protein
U88964at HEM45 mRNA
U07132at Orphan receptor mRNA, partial cds
L20941 at FTH1 Ferritin heavy chain
M83221 at TRANSCRIPTION FACTOR RELB
L09235 at ATP6A1 ATPase, H+ transporting, lysosomal (vacuolar proton pump),

alpha polypeptide, 70kD, isoform 1
Z32765at GB DEF = CD36 gene exon 15
M57710 at LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin3)
L22075 at Guanine nucleotide regulatory protein (G13) mRNA
K03195 at (HepG2) glucose transporter gene mRNA
M21119 s at LYZ Lysozyme
U61836at Putative cyclin G1 interacting protein mRNA, partial sequence
U77396at No cluster in current Unigene and no Genbank entry for U77396 (qualifier U77396at)
L41067 at Transcription factor NFATx mRNA
L33930 s at CD24 signal transducer mRNA and 3’ region
M22898 at TP53 Tumor protein p53 (Li-Fraumeni syndrome)
M92439 at 130 KD LEUCINE-RICH PROTEIN
M61853 at CYP2C18 Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase),

polypeptide 18
X66171 at CMRF35 mRNA
AF015913at GB DEF = SKB1Hs mRNA
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Table A.9: 280 genes identified by ERCOF from training samples on ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (continued 5).

Probe Gene name
U50928at PKD2 Autosomal dominant polycystic kidney disease type II
D63874at HMG1 High-mobility group (nonhistone chromosomal) protein 1
X82240 rna1at TCL1 gene (T cell leukemia) extracted from H.sapiens mRNAfor

Tcell leukemia/lymphoma 1
U79285at GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE
U21858at HISTONE H3.3
L76702 at Protein phosphatase 2A 74 kDa regulatory subunit (delta or B”” subunit)
M19888 at SPRR1B Small proline-rich protein 1B (cornifin)
U31814at Transcriptional regulator homolog RPD3 mRNA
X77307 at 5-HYDROXYTRYPTAMINE 2B RECEPTOR
U49844at Protein kinase ATR mRNA
U65410at Mitotic feedback control protein Madp2 homolog mRNA
D14658at KIAA0102 gene
Y07604 at Nucleoside-diphosphate kinase
M60527 at DCK Deoxycytidine kinase
X58072 at GATA3 GATA-binding protein 3
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Table A.10: Thirty-seven genes selected by ERCOF on training samples and reported in [140] to
separate TEL-AML1 from other subtypes of ALL cases in pediatric ALL study. All these genes
are relatively highly expressed (above the mean value arossall the samples) in TEL-AML1
samples.

Probe Accession No. Description
34481at AF030227 vav proto-oncogene, exon 27
36239at Z49194 H.sapiens mRNA for oct-binding factor
37470at AF013249 Homo sapiens leukocyte-associated Ig-like receptor-1 (LAIR-1) mRNA
38203at U69883 Human calcium-activated potassium channel hSK1 (SK) mRNA
38570at X03066 Human mRNA for HLA-D class II antigen DO beta chain
38578at M63928 Homo sapiens T cell activation antigen (CD27) mRNA
38906at M61877 Human erythroid alpha-spectrin (SPTA1) mRNA
40745at L13939 Homo sapiens beta adaptin (BAM22) mRNA
41381at AB002306 Human mRNA for KIAA0308 gene
41442at AB010419 Homo sapiens mRNA for MTG8-related protein MTG16a
31898at D86967 Human mRNA for KIAA0212 gene
32660at AB002340 Human mRNA for KIAA0342 gene
34194at AL049313 Homo sapiens mRNA; cDNA DKFZp564B076 (from clone DKFZp564B076)
35614at AB012124 Homo sapiens TCFL5 mRNA for transcription factor-like 5
35665at Z46973 H.sapiens mRNA for phosphatidylinositol 3-kinase
36524at AB029035 Homo sapiens mRNA for KIAA1112 protein
36537at AB011093 Homo sapiens mRNA for KIAA0521 protein
37280at U59912 Human chromosome 4 Mad homolog Smad1 mRNA
41200at Z22555 H.sapiens encoding CLA-1 mRNA
32224at AB018312 Homo sapiens mRNA for KIAA0769 protein
36985at X17025 Human homolog of yeast IPP isomerase
38124at X55110 Human mRNA for neurite outgrowth-promoting protein
40570at AF032885 Homo sapiens forkhead protein (FKHR) mRNA
41498at AB020718 Homo sapiens mRNA for KIAA0911 protein
41814at M29877 Human alpha-L-fucosidase
32579at U29175 Human transcriptional activator (BRG1) mRNA
33162at X02160 Human mRNA for insulin receptor precursor
1779 s at M16750 Human pim-1 oncogene mRNA
1488 at L77886 Human protein tyrosine phosphatase mRNA
1336 s at X06318 Human mRNA for protein kinase C (PKC) type beta I
1299 at X93512 H.sapiens mRNA for telomeric DNA binding protein (orf2)
1217 g at X07109 Human mRNA for protein kinase C (PKC) type beta II
932 i at L11672 Human Kruppel related zinc finger protein (HTF10) mRNA
880 at M34539 Human FK506-binding protein (FKBP) mRNA
755 at D26070 Human mRNA for type 1 inositol 1,4,5-trisphosphate receptor
577 at M94250 Human retinoic acid inducible factor (MK) gene exons 1-5
160029at X07109 protein kinase C beta 1
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Table A.11: Top 20 genes selected by entropy measure on training samples to separate MLL
from other subtypes of ALL cases in pediatric ALL study. The last column indicates the sample
class in which the gene is highly expressed (above the mean value aross all the samples).

Probe Accession No. Description HighlyExp
34306at AB007888 Homo sapiens KIAA0428 mRNA MLL
36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and MLL

joined mRNA and CDS
33412at AI535946 vicpro2.D07.r Homo sapiens cDNA, 5’ end MLL
657 at L11373 Human protocadherin 43 mRNA, MLL

complete cds for abbreviated PC43
32207at M64925 Human palmitoylated erythrocyte membrane OTHERS

protein (MPP1) mRNA
33847s at AI304854 Homo sapiens cDNA, 3’ end MLL
34337s at AJ010014 Homo sapiens mRNA for M96A protein OTHERS
1389 at J03779 Human common acute lymphoblastic OTHERS

leukemia antigen (CALLA) mRNA
34861at D63997 Homo sapiens mRNA for GCP170 OTHERS
40518at Y00062 Human mRNA for T200 leukocyte common antigen MLL

(CD45, LC-A)
40913at W28589 Homo sapiens cDNA OTHERS
31898at D86967 Human mRNA for KIAA0212 gene OTHERS
38413at D15057 Human mRNA for DAD-1 MLL
2062 at L19182 Human MAC25 mRNA MLL
794 at X62055 H.sapiens PTP1C mRNA for protein-tyrosine phosphatase 1C MLL
40519at Y00638 Human mRNA for leukocyte common antigen (T200) MLL
41747s at U49020 Human myocyte-specific enhancer factor 2A (MEF2A)gene MLL
38160at AF011333 Homo sapiens DEC-205 mRNA MLL
37692at AI557240 Homo sapiens cDNA, 3’ end MLL
40797at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA MLL
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Table A.12: Twenty-four genes selected by ERCOF on trainingsamples and reported in [140]
to separate MLL from other subtypes of ALL cases in pediatricALL study. All these genes
are relatively highly expressed (above the mean value arossall the samples) in MLL samples
except U70321 (accession number). Genes with bold font are among top 20 features selected by
entropy measure and can be found in Table A.11 as well.

Probe Accession No. Description
36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and joined mRNA and CDS
39424at U70321 Human herpesvirus entry mediator mRNA
40076at AF004430 Homo sapiens hD54+ins2 isoform (hD54) mRNA
40493at L05424 Human hyaluronate receptor (CD44) gene
40506s at U75686 Homo sapiens polyadenylate binding protein mRNA
40763at U85707 Human leukemogenic homolog protein (MEIS1) mRNA
40797at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA
40798s at Z48579 H.sapiens mRNA for disintegrin-metalloprotease(partial)
41747s at U49020 Human myocyte-specific enhancer factor 2A (MEF2A) gene, first coding
32193at AF030339 Homo sapiens receptor for viral semaphorin protein (VESPR) mRNA
32215i at AB020685 Homo sapiens mRNA for KIAA0878 protein
33412at AI535946 Homo sapiens cDNA, 5’ end
34306at AB007888 Homo sapiens KIAA0428 mRNA
34785at AB028948 Homo sapiens mRNA for KIAA1025 protein
35298at U54558 Homo sapiens translation initiation factor eIF3 p66 subunit mRNA
37675at X60036 H.sapiens mRNA for mitochondrial phosphate carrier protein
38391at M94345 Homo sapiens macrophage capping protein mRNA
38413at D15057 Human mRNA for DAD-1
2062 at L19182 Human MAC25 mRNA
2036 s at M59040 Human cell adhesion molecule (CD44) mRNA
1914 at U66838 Human cyclin A1 mRNA
1126 s at L05424 Human cell surface glycoprotein CD44 (CD44) gene,

3’ end of long tailed isoform
1102 s at M10901 Human glucocorticoid receptor alpha mRNA
657 at L11373 Human protocadherin 43 mRNA, complete cds for abbreviated PC43
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Table A.13: Nineteen genes selected by ERCOF on training samples and reported in [140] to
separate Hyperdip>50 from other subtypes of ALL cases in pediatric ALL study. All these genes
are relatively highly expressed (above the mean value arossall the samples) in Hyperdip>50
samples.

Probe Accession No. Description
38518at Y18004 Homo sapiens mRNA for SCML2 protein
39628at AI671547 Homo sapiens cDNA, 3’ end
31863at D80001 Human mRNA for KIAA0179 gene
37543at D25304 Human mRNA for KIAA0006 gene
38968at AB005047 Homo sapiens mRNA for SH3 binding protein
39039s at AI557497 Homo sapiens cDNA, 3’ end
39329at X15804 Human mRNA for alpha-actinin
39389at M38690 Human CD9 antigen mRNA
32207at M64925 Human palmitoylated erythrocyte membrane protein (MPP1) mRNA
32236at AF032456 Homo sapiens ubiquitin conjugating enzyme G2 (UBE2G2) mRNA
32251at AA149307 Homo sapiens cDNA, 3’ end
36620at X02317 Human mRNA for Cu/Zn superoxide dismutase (SOD)
36937s at U90878 Homo sapiens carboxyl terminal LIM domain protein(CLIM1) mRNA
37350at AL031177 26S Proteasome subunit p28 (Ankyrin repeat protein)) (isoform 1)
38738at X99584 H.sapiens mRNA for SMT3A protein
39168at AB018328 Homo sapiens mRNA for KIAA0785 protein
40903at AL049929 Homo sapiens mRNA; cDNA DKFZp547O0510

(from clone DKFZp547O0510)
32572at X98296 H.sapiens mRNA for ubiquitin hydrolase
306 s at J02621 Human non-histone chromosomal protein HMG-14 mRNA
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Appendix B

Some Resources

B.1 Kent Ridge Biomedical Data Set Repository

All the gene expression profiles and proteomic data described in Chapter 5, and some DNA

sequences used in Chapter 7 can be found in theKent Ridge Biomedical Data Set Repositoryat

http://sdmc.i2r.a-star.edu.sg/rp/ . In this data repository, we have collected gene

expression data, protein profiling data and genomic sequence data that are related to classification

and are published recently inScience, Natureand other prestigious journals. As the file formats

of these original raw data are different from common ones used in most of machine learning

softwares, we have transformed these data sets into the standard .data and .namesformat and

stored them in this repository. Besides, we also provide data in .arff format which is used by

Weka, a machine learning software package developed at University of Waikato in New Zealand.

Detailed information of Weka can be found athttp://www.cs.waikato.ac.nz/˜ml/

weka/ .

B.2 DNAFSMiner

TheDNAFSMiner(DNA Functional Site Miner) is a web-based toolbox for recognition of func-

tional sites in DNA sequences. It was built on the technologies presented in Chapter 7 and written

in Java and Perl languages. It can be accessed viahttp://sdmc.i2r.a-star.edu.sg/

DNAFSMiner/ . Currently, it can be used to identify translation initiation site (TISMiner) in ver-
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tebrate mRNA, cDNA, and DNA sequences and polyadenylation signal (Poly(A) Signal Miner)

in human sequences.
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