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Summary

With more and more biological information generated, thesihpoessing task of bioinformatics
has become to analyse and interpret various types of datading nucleotide and amino acid
sequences, protein structures, gene expression profgindsso on. In this thesis, we apply
the data mining techniques of feature generation, featlextion, and feature integration with
learning algorithms to tackle the problems of disease plypealassification and patient survival
prediction from gene expression profiles, and the problefrfaractional site prediction from

DNA sequences.

When dealing with problems arising from gene expressiofilpsy we propose a new fea-
ture selection process for identifying genes associatéld disease phenotype classification or
patient survival prediction. This metho&RCOF (Entropy-based Rank sum test and COrre-
lation Filtering), aims to select a set of sharply discriating genes with little redundancy by
combining entropy measure, Wilcoxon rank sum test and Beagsrrelation coefficient test.
As for classification algorithms, we focus on methods builttioe idea of ensemble of decision
trees, including widely used bagging, boosting and randarests, as well as newly published
CS4. To compare the decision tree methods with other sfeteseart classifiers, support vector
machines (SVM) and-nearest neighbour are also used. Various comparisonscadifi@rent
feature selection methods and different classificatioordtyns are addressed based on more

than one thousand tests conducted on six gene expressiidegpamd one proteomic data.

In the study of patient survival prediction, we present a ea of selecting informative
training samples by defining long-term and short-term sorgi. ERCOF is then applied to
identify genes from these samples. A regression functidhdouthe selected samples and genes

by a linear kernel SVM is worked out to assign a risk score tthgmtient. Kaplan-Meier plots

Xii



for different risk groups formed on the risk scores are themva to show the effectiveness of the
model. Two case studies, one on survival prediction forgpsi after chemotherapy for diffuse

large-B-cell lymphoma and one on lung adenocarcinomas;@reucted.

In order to apply data mining methodology to identify fuocil sites in biological se-
guences, we first generate candidate features usimigm nucleotide acid or amino acid pat-
terns and then transform original sequences respect tetheonstructed feature space. Feature
selection is then conducted to find signal patterns that caimguish true functional sites from
those false ones. These selected features are furtheratagdgyith learning algorithms to build
classification and prediction models. Our idea is used togeize translation initiation sites
and polyadenylation signals in DNA and mRNA sequences. &oh @pplication, experimental
results across different data sets (including both pubfiesoand our own extracted ones) are

collected to demonstrate the effectiveness and robustfiess method.
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Chapter 1

Introduction

The past few decades witness an explosive growth in bickbgnformation generated by the
scientific community. This is caused by major advances iffighe of molecular biology, coupled
with advances in genomic technologies. In turn, the hugeusstnaf genomic data generated not
only leads to a demand on the computer science communitypicstare, organize and index the
data, but also leads to a demand for specialized tools to aiehanalyze the data.

“Biology in the 21st century is being transformed from a pyrab-based science to an
information science as well[3].

As a result of this transformation, a new field of science wa® bin which biology, com-
puter science, and information technology merge to forrnglsidiscipline [3]. This isioin-
formatics

“The ultimate goal of bioinformatics is to enable the diseoy of new biological insights
as well as to create a global perspective from which unifypnigciples in biology can be dis-

cerned” [3].

1.1 Motivation

At the beginning, the main role of bioinformatics was to teeand maintain databases to store
biological information, such as nucleotide and amino aegugnces. With more and more data
generated, nowadays, the most pressing task of bioinfarsias moved to analyse and interpret

various types of data, including nucleotide and amino aeguences, protein domains, protein



structures and so on. To meet the new requirements arigingtfre new tasks, researchers in the
field of bioinformatics are working on the development of regorithms (mathematical formu-
las, statistical methods and etc) and software tools whiellesigned for assessing relationships
among large data sets stored, such as methods to locate wifjginea sequence, predict protein
structure and/or function, understand diseases at gemessipn level and etc.

Motivated by the fast development of bioinformatics, thiedis is designed to apply data
mining technologies to some biological data so that thevaslebiological problems can be
solved by computer programs. The aim of data mining is toraatially or semi-automatically
discover hidden knowledge, unexpected patterns and n@s frdm data. There are a variety
of technologies involved in the process of data mining, saststatistical analysis, modeling
techniques and database technology. During the last tas,y#&a mining is undergoing very
fast development both on techniques and applications.ygiisdl applications include market
segmentation, customer profiling, fraud detection, (eldtt) loading forecasting, credit risk
analysis and so on. In the current post-genome age, unaddirsafloods of data in molecular bi-
ology brings great opportunities and big challenges to naténg researchers. Successful stories
from this new application will greatly benefit both compuseience and biology communities.

We would like to call thidiscovering biological knowledge “in silico” by data mirgn

1.2 Work and Contribution

To make use of original biological and clinical data in théadanining process, we follow the
regular process flow in data mining but with emphasis on tkteps of feature manipulation,
viz. feature space generation, feature selection andréeattegration with learning algorithms.

These steps are important in dealing with biological andadil data.

(1) Some biological data, such as DNA sequences, have niwiefphtures that can be easily
used by learning algorithms. Thus, constructing a featpeees to describe original data

becomes necessary.

(2) Quite a number of biological and clinical data sets pssseany features. Selecting sig-
nal features and removing noisy ones will not only largeljuee the processing time and

greatly improve the learning performance in the later stagealso help locate good pat-



terns that are related to the essence of the study. For e®ainpyjene expression data
analysis, feature selection methods have been widely wesfdt genes that are most as-

sociated with a disease or a subtype of certain cancer.

(3) Many issues arising from biological and clinical datethie final analysis, can be treated as

or converted into classification problems and then can wedddy data mining algorithms.

In this thesis, we will mainly tackle gene expression preféed DNA sequence data.

For gene expression profiles, we apply our method to solvekimas of problems: pheno-
type classification and patient survival prediction. Instévo problems, genes serve as features.
Since profile data often contains thousands of genes, weopwafd a new feature selection
method ERCOF to identify genes most related to the probleRC@&F conducts three-phase
of gene filtering. First, it selects genes using an entragseld discretization algorithm, which
generally keeps only 10% of discriminating genes. Seconikgse remaining genes are further
filtered by Wilcoxon rank sum test, a non-parametric siatialternative to the-test. Genes
passing this round of filtering are automatically dividetbitwo groups: one group consists of
genes that are highly expressed in one type of samples (suchnae) while another group
consists of genes that are highly expressed in another fyg&naples (such ason-cancey. In
the third phase, correlated genes in each group are detmtrhinPearson correlation coefficient

test and only some representatives of them are kept to fagrfirthl set of selected genes.

When applying learning algorithms to classify phenotypes focus on classifiers built on
the idea of an ensemble of decision trees, including theynpublished CS4 [63, 62], as well as
state-of-the-art Bagging [19], Boosting [38], and Randames$ts [20]. More than one thousand
tests are conducted on six published gene expression pgofiita sets and one proteomic data
set. To compare the performance of these ensembles ofatetise methods with those widely
used learning algorithms in gene expression studies, ieetal results on support vector ma-
chines (SVM) and:-nearest neighbouk{NN) are also collected. SVM is chosen because it is
a representative of kernel functioh-NN is chosen because it is the most typical instance-based
classifier. To demonstrate the main advantage of the dadiee methods, we present some of
decision trees induced from data sets. These trees areesieyglicit and easy to understand.
For each classifier, besides ERCOF, we also try featurestsdlby several other entropy-based

filtering methods. Therefore, various comparisons of liegralgorithms and feature selection

3



methods can be addressed.

In the study of using gene expression profiles to predicepasurvival status, we present
a new idea of selecting informative training samples by dhagifilong-term” and “short-term”
survivors. After identifying genes associated with suaivia ERCOF, a scoring model built on
SVM is worked out to assign risk score to each patient. Kaplaier plots for different risk

groups formed on the risk scores are then drawn to show thetiefiness of the model.

Another biological domain to which the proposed 3-stepuieammanipulation method is
applied is the recognition of functional sites in DNA seques) such as translation initiation
sites (TIS) and polyadenylation (poly(A)) signal. In thtady, we put our emphasis on feature
generation —k-gram nucleotide acid or amino acid patterns are used tarmhghe feature
space and the frequency of each pattern appearing in therseg|is used as value. Under the
description of the new features, original sequence dattharetransformed to frequency vector
data to which feature selection and classification can béeappln TIS recognition, we test
our methods on three independent data sets. Besides trewvaladation within each dat set,
we also conduct the tests across different data sets. Irdémdification of poly(A) signal, we
make use of both public and our own collected data and buffdrdint models for DNA and
MRNA sequences. In both studies, we achieve comparablettar Ipgediction accuracy than
those reported in the literature on the same data sets. iticdve also verify some known

motifs and find some new patterns related to the identifinatfarelevant functional sites.

The main contributions of this thesis are

(1) articulating a 3-step feature manipulation method teessome biological problems;

(2) putting forward a new feature selection strategy totifiegood genes from a large amount

of candidates in gene expression data analysis;

(3) presenting a new method for the study on patient surgvedliction, including selecting
informative training samples, choosing related genes aiidibg an SVM-based scoring

model;

(4) applying the proposed techniques to published geneesgjun profiles and proteomic
data, and addressing various comparisons on classificatiorieature selection methods

from a large amount of experimental results;
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(5) pointing out significant genes from each analysed dajaemparing them with literature

and relating some of them to the relevant diseases;

(6) recognizing two types of functional sites in DNA sequemiata by using:-gram amino
acid or nucleotide acid patterns to construct feature spadevalidating learning models

across different independent data sets.

1.3 Structure

Chapter 2 first defines terms and introduces some conceptp@fidsed machine learning. Then
it reviews some learning algorithms and techniques, inotpudupport vector machines (SVM),
k-nearest neighbouk{NN) and decision tree induction. Presenting methods ofraide deci-
sion trees is the emphasis of this chapter and state-adsthadgorithms, such as Bagging, Boost-
ing, Random forests, are described in detail. Newly impleted and published CS4 (cascading-
and-sharing for decision trees) is illustrated at the ertdclvmakes use of different top-ranked

features as the root node of a decision tree in an ensemble.

Chapter 3 surveys feature selection techniques for datmgitt begins with introducing
two broad categories of selection algorithms — filter andppea, and indicating that filter is
more suitable to solve biological problems. Then it pres@ntariety of common filter methods,
such ag-statistic measure, Wilcoxon rank sum test, entropy-basedsures, principal compo-
nents analysis and so on. Following these methods, therex&RCOF, our proposed 3-phase
feature filtering strategy for gene expression data armlyBhe chapter ends with a discussion

on applying feature selection to bioinformatics.

Chapter 4 is a literature review of microarray gene expoesgata studies. The idea of mi-
croarray experiments and the problems arising from geneesgjon data are introduced before
the extensive survey on various technologies that haveibeelved in this research area. These
technologies are described in terms of data preprocesgeng selection, supervised learning,
clustering, and patient survival analysis.

Chapter 5 describes in detail my experimental work on phgreotlassification from gene
expression data. The chapter starts with illustrating ttoppgsed feature selection and super-

vised learning scenarios, experimental design and evafuaiethods. Then, it presents more



than 1,000 experimental results obtained from six geneessggn profiles and one proteomic
data. For each data set, not only the classification andgtiediaccuracy is given, but also the
selected discriminatory genes are reported and relatelaetditerature and the disease. Some
comparisons among feature selection methods and learlgongthms are also made based on
the large amount of experimental results. ERCOF and CS4hmwrsto be the best feature

selection method and ensemble tree algorithm, respectivel

Chapter 6 presents my work on patient survival predictiangigene expression data. A
new method is illustrated in detail according to the ordesalécting informative training sam-
ples, identifying related genes and building an SVM-baszatisg model. Case studies, on
survival prediction for patients after chemotherapy fdfudie large-B-cell lymphoma and Stage

| and Il lung adenocarcinomas, are presented followingdseription of the method.

Chapter 7 is my work on applying data mining technologiesetmgnize functional sites
in DNA sequences. The chapter begins with describing ouhodketf feature manipulation for
dealing with sequence data, with the stress on feature gimeusingk-gram nucleotide acid or
amino acid patterns. Then the method is applied to idemnt#gdation initiation site (TIS) and
polyadenylation (poly(A)) signal. The presentation orétareach application is: background
knowledge, data sets description, experimental resultsdescussion. For both TIS and poly(A)
signal recognitions, results achieved by our method arepeoable or superior to previously
reported ones, and several independent data sets are ussttte effectiveness and robustness

of our prediction models.
Chapter 8 makes conclusions and suggests future work.

Figure 1.1 shows the structure of this thesis in a graph.
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Chapter 2

Classification — Supervised Learning

Data mining is to extract implicit, previously unknown anotgntially useful information from
data [134]. Itis a learning process, achieved by buildingypoter programs to seek regularities
or patterns from data automatically. Machine learning fles the technical basis of data mining.
One major type of learning we will address in this thesis ltedaclassification learning, which
is a generalization of concept learning [122]. The task afcept learning is to acquire the
definition of a general category given a set of positive ctagbnegative class training instances
of the category [78]. Thus, it infers a boolean-valued fiorcfrom training instances. As a more
general format of concept learning, classification leagréan deal with more than two class
instances. In practice, the learning process of classditas to find models that can separate
instances in the different classes using the informatiaviged by training instances. Thus,
the models found can be applied to classify a new unknowrarist to one of those classes.
Putting it more prosaically, given some instances of thedtipesclass and some instances of
the negative class, can we use them as a basis to decide if ani@ewn instance is positive
or negative [78]. This kind of learning is a process from gahto specific and is supervised

because the class membership of training instances aré/dteawn.

In contrast to supervised learning is unsupervised legrnirhere there is no pre-defined
classes for training instances. The main goal of unsupedvisarning is to decide which in-
stances should be grouped together, in other words, to foentlasses. Sometimes, these two
kinds of learnings are used sequentially — supervised ilegmaking use of class information

derived from unsupervised learning. This two-step strategs achieved some success in gene



Table 2.1: An example of gene expression data. There are &wiples, each of which is
described by 5 genes. The class label in the last columnatetiche phenotype of the sample.

Genel Gene2 Gene3 Gene4 Geneblass
298 654 1284 800 163| ALL
2947 1811 198 679 225| AML

expression data analysis field [41, 6], where unsupervidgstering methods were first used
to discover classes (for example, subtypes of leukemiah&ostupervised learning algorithms
could be employed to establish classification models arigrassphenotype to a newly coming

instance.

2.1 Data Representation

In atypical classification task, data is represented ade tdibamplegalso known agnstanceks
Each sample is described by a fixed numbeeatureqalso known asttributeg and a label that
indicated itsclass[44]. For example, in studies of phenotype classificati@megexpression data
onm genes for MRNA samples is often summarized byrar (m+1) table(X,Y) = (zi;, i),
wherez;; denotes the expression level of gehén mMRNA sample:, andy; is the class (e.g.
acute lymphoblastic leukemia) to which sampleelongs{=1,2,...,nandj =1,2,...,m).

Table 2.1 shows two samples from a leukemia data set.

2.2 Results Evaluation

Evaluation is the key to making real progress in data minit4]. To evaluate performance
of classification algorithms, one way is to split samples imo sets, training samples and test
samples. Training samples are used to build a learning mekdig test samples are used to
evaluate the accuracy of the model. During validation, $estples are supplied to the model,
having their class labels “hidden”, and then their prediatass labels assigned by the model
are compared with their corresponding original class lRb®icalculate prediction accuracy. If
two labels (actual and predicated) of a test sample are gharethe prediction to this sample is
counted as auccessotherwise, it is arerror [134]. An often used performance evaluation term

is error rate, which is defined as the proportion of errors made over a wéetlef test samples. In
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predicted class

A B
true positive false negative
actual class
B false positive true negative

Figure 2.1: Confusion matrix for two-class classificationkdem.

some cases, we just simply use number of errors to indicatedtformance. Note that, although
the error rate on test samples is often more meaningful to&ea model, the error rate on the

training samples is nevertheless useful to know as welksihe model is derived from them.

Let's see the confusion matrix illustrated in Figure 2.1 dfva-class problem. Th&ue
positive(TP) andtrue negativg(TN) are correct classifications in samples of each class, cespe
tively. A false positive(FP) is when a clas®3 sample is incorrectly predicted as a clads
sample; dalse negativedFN) is when a classd sample is predicted as a cla8sample. Then
each element of a confusion matrix shows the number of tegplsa for which the actual class
is the row and the predicted class is the column. Thus, ther eate is just the number of
false positives and false negatives divided by the totallvemof test samples (i.e. error rate =
(FP+ FN)/(TP+TN + FP + FN)).

Error rate is a measurement of overall performance of aifitzestson algorithm (also known
as a classifier); however, a lower error rate does not netdlgssaply better performance on a
target task. For example, there are 10 samples in classd 90 samplesinclags If TP =5
andT' N = 85, thenF'P =5, FN = 5 and error rate is only 10%. However, in cladsthere are
only 50% samples are correctly classified. To more impart@adaluate the classification results,

some other evaluation metrics are constructed:

1. True positive rate (TP rate)EP/(T P + FN), also known asensitivityor recall, which

measures the proportion of samples in cldshat are correctly classified as clads

2. True negative rate (TN rateYyEN/(F P+T N), also known aspecificity which measures

the proportion of samples in clagsthat are correctly classified as cld8s
3. False positive rate (FP rate) FP/(FP + TN) =1 — speci ficity.
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Figure 2.2: A sample ROC curve. The dotted line on the 45 @edjsgonal is the expected curve
for a classifier making random predictions.

4. False negative rate (FN rate)FN/(TP + FN) =1 — sensitivity.

5. Positive predictive value (PP\H T P/(TP + F P), also known agrecision which mea-

sures the proportion of the claimed clagsamples are indeed clagssamples.

In classification, it is a normal situation that along withigihter TP rate, there comes a higher FP
rate, and same to the TN rate and FN rate. Thus, the receieeatoygg characteristic (ROC) curve
was invented to characterize the tradeoff between TP raté-Brrate. The ROC curve plots TP
rate on the vertical axis against FP rate on the horizonial &ith an ROC curve of a classifier,
the evaluation metric will be the area under the ROC curve [@lger the area under the curve
(the more closely the curve follows the left-hand border thiedop border of the ROC space), the
more accurate the test. Thus, the ROC curve for a perfedifitadas an area of 1. The expected
curve for a classifier making random predictions will be & lon the 45 degree diagonal and its
expected area is 0.5. Please refer to Figure 2.2 for a samigiedarve. ROC curve is widely used
in bioinformatics domain, for example, it has been adopteidiplement the evaluation scoring
system of KDD Cup 2001http://www.cs.wisc.edu/"dpage/kddcup2001/ ) and
KDD Cup 2002 http://www.biostat.wisc.edu/ craven/kddcup/ ), both of them
were about classifying biological data.

If the number of samples for training and testing is limitadstandard way of predicting
the error rate of a learning technique is to use stratifiddld cross validation. Irk-fold cross
validation, first, a full data set is divided randomly irkalisjoint subsets of approximately equal

size, in each of which the class is represented in approgigniie sample proportions as in the
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full data set [134]. Then the above process of training astintg will be repeated: times on
the k data subsets. In each iteration, (1) one of the subsetsdhglin turn, (2) the classifier is
trained on the remaining — 1 subsets to build classification model, (3) the classificagoor
of this iteration is calculated by testing the classificatinodel on the holdout set. Finally, tihe
number of errors are added up to yield an overall error estim@bviously, at the end of cross

validation, every sample has been used exactly once fangest

A widely used selection fok is 10. Why 10? “Extensive tests on numerous different data
sets, with different learning technigues, have shown #ratg about the right number of folds to
get the best estimate of error, and there is also some tied@tidence that backs this up” [134].
Although 10-fold cross validation has become the standagthod in practical terms, a single
10-fold cross validation might not be enough to get reliadi®r estimate [134]. The reason is
that, if the seed of the random function that is used to diddt into subsets is changed, the
cross validation with the sample classifier and data setofitdin produce different results. Thus,
for a more accurate error estimate, it is suggested to repedtO-fold cross validation process
ten times and average the error rates. This is called tewol@iCzfoss validation and naturally, it

is a computation-intensive undertaking.

Instead of running cross validation ten times, anotheragugr for a reliable results is called
leave-one-outross validation (LOOCV). LOOCYV is simphg-fold cross validation, where is
the number of samples in the full data set. In LOOCYV, each $&inpturn is left out and the
classifier is trained on all the remainimg— 1 samples. Classification error for each iteration is
judged on the class prediction for the holdout sample, |scoefailure. Different fromk-fold
(k < n) cross validation, LOOCV makes use of the greatest possitnleunt of samples for

training in each iteration and involves no random shufflihgamples.

2.3 Algorithms

There are various ways to find models that separate two or dateeclasses, i.e. do classifica-
tion. Models derived from the same sample data can be velgretift from one classification

algorithm to another. As a result, different models repnesiee knowledge learned in different
formats as well. For example, decision trees representtbwliedge in a tree structure; instance-

based algorithms, such as nearest neighbour, use thedastremselves to represent what is
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learned; naive Bayes method represents knowledge in the dbiprobabilistic summaries. In
this section, we will describe a number of classificatioroatgms that have been used in the
biomedical domain, including-nearest neighbour, support vector machines and decisen t

induction methods.

2.3.1 K-nearest neighbour

K-nearest neighboutk{NN) is a typical instance-based classification and prasticalgorithm.

Learning in this kind of methods consists of simply storihg training data [78]. When a new
instance comes, a set of similar related instances isvettifom memory and used to classify
the new instance. B¥-NN, the class label of a new testing sample is decided by thienity

class of itsk closest training samples. The distance between two saligptesasured by a certain
metric. Generally, the standard Euclidean distance is.u$éldere arem features to describe a
sampler andf;(z) denotes the value ath feature { = 1,2, - - -, m), then the Euclidean distance

between two samples, andz, is defined to bel(z1, z2), where

d(z1,12) = \IZ(fz‘(l"l) — fi(z2))? (2.1)

=1

Note that using above distance metric assumes that therdeatine numeric, normalized and
are of equal importance. If different features are measoredifferent scales and Euclidean
distance is still used directly, the effect of some featungght be completely dwarfed by others
that have larger scales of measurement. Therefore, in siseh mormalization must be conducted
in advance. For nominal features whose values are symladhier than numeric, the distance
between two values is often taken to be 1 if the values areamoésto be 0 if the values are same.
No scaling is necessary in this case since only the valuesl @ @me used. As for the selection
of k, it can be done by running cross validation on training sasplrhek for which the cross
validation error rate is smallest is retained for use orhferrtesting and prediction. In practice,
1, 3 and 5 are the generally adopted values:for

Although the class prediction for a new sample relies o itdosest neighbours, the con-
tribution of thesek neighbours could not be treated equally since some of thaghtrbe a bit far

from the target sample while some are closer to it. Thus, efieament tak-NN algorithm is
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to weight the contribution of each of thienearest neighbours according to their distance to the
testing sample, assigning bigger weight to closer neighbobor example, usk/distance as
the weight.

The nearest neighbour idea originated many decades agé;ldhbstarted to be analyzed
by statisticians in early 1950s [134]. Fix and Hodges phielistheir pioneering analysis of the
nearest neighbour in 1951 [37], and Johns first reportedsigga in classification problem in
1961 [52]. Recentlyk-NN has been widely used in classifying biomedical data —ef@mple,
gene expression data [135, 67, 140, 35, 10], and translatitation site prediction in DNA

sequences [142, 72]. However, there are some disadvardhgesance-based approaches.

(1) Generally, the cost of classifying new instances cani@k. hThis is due to the fact that
almost all computation happens at the classification tintleerathan when the training

samples are loaded.

(2) Since there is no separate learning phase, all trairingpkes have to be stored in the
memory when class prediction for a new sample is done. Thisgoasume a long-term

unrealistic amounts of storage.

(3) Typically, instance-based algorithms, especi@ddN, consider all features when finding

similar training samples from memory. This makes them vensgive to feature selection.

(4) Most of the algorithms do not output explicit knowleddmatt is learned. When dealing
with biomedical data, this drawback is conspicuous sinceprehensible knowledge is

expected by biologists and medical doctors.

2.3.2 Support vector machines

Support vector machines (SVM) is a kind of a blend of lineardelimg and instance-based
learning [134], which uses linear models to implement medr class boundaries. It originates
from research in statistical learning theory [130]. An SV#lexts a small number of critical
boundary samples from each class of training data and bailidear discriminant function (also
called maximum margin hyperplapehat separates them as widely as possible. The selected
samples that are closest to the maximum margin hyperplaneatiedsupport vectorsThen the

discriminant functionf (T') for a test sampl& is a linear combination of the support vectors and
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Figure 2.3: A linear support vector machine.

its constructed as:

f(T) = Z oiyi(Xi - T) +b (2.2)

where the vector&; are the support vectorg; are the class labels (which are assumed to have
been mapped to 1 or -1) of;, vectorT represents a test sampleX;(- T') is thedot product
of the test sampl& with one of the support vectotX;. a; andb are numeric parameters (like
weights) to be determined by the learning algorithm. PlsaseFigure 2.3 for representation of
alinear SVM.

In the case that no linear separation is possible, the mngidata will be mapped into a
higher-dimensional spa@é and an optimal hyperplane will be constructed there. Thepinggs
performed by a kernel functioA (-, -) which defines an inner product #. Different mappings

construct different SVMs. When there is a mapping, the digoant function is given like:
F(T) =" aigiK (X, T) +b (2.3)
i

An SVM is largely characterized by the choice of its kerneidiion. There are two types of
widely used kernel functions [24polynomialkernel and Gaussiamdial basis functiorkernel

(RBF).

e A polynomial kernel isK (X1, X3) = (X; - Xy + 1)¢, the value of powed is called
degree and generally is set as 1, 2 or 3. Particularly, theckéecomes a linear function
if d = 1. Itis suggested to choose the value of degree starting withdlincrement it

until the estimated error ceases to improve. However, itleas observed that the degree
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of a polynomial kernel plays a minor role in the final result®¢] and sometime, linear
function performs better than quadratic and cubic kernaks td overfitting of the latter

kernels.

« AnRBF kernel has the fori (X, X») = exp(—X1=X21%) whereo is the width of the
Gaussian. The selection of parametean be conducted via cross validation or some other
manners. In [23], when using SVM with RBF kernel on gene esgion data analysis,
Brownet al seto equal to the median of the Euclidean distances from eackiysample
(sample with class label as 1) to the nearest negative saisgmeple with class label as

1),

Besides polynomial kernel and Gaussian RBF kernel, otharekdunctions include sigmoid
kernel [108], B,,-spline kernel [108], locality-improved kernel [145], asd on. A tutorial of
SVM can be found in [24].

In order to determine parametesisandb in (2.3), the construction of the discriminant
function finally turns out to be a constrained quadratic fmwbon maximizing the Lagrangian

dual objective function [131]:

n 1 n
mgx W(a) = Z Q; — E Z aiajyiyjK(Xia X]) (24)
i=1 i,j=1
under constraints
n
Zaiyizo,ai20,(i=1,2,---,n) (25)

i=1
wheren is the number of samples in training data. However, the gu&dprogramming (QP)

problem in equation (2.4) can not be solved easily via st@htichniques since it involves a
matrix that has a number of elements equals to the square oftimber of training samples. To
efficiently find the solution of the above QP program, Plattedi@oed the sequential minimal op-
timization (SMO) algorithm [93] — one of the fastest SVM treig methods. Like other SVM

training algorithms, SMO breaks the large QP problem interaes of smaller possible QP prob-
lems. Unlike other algorithms, SMO tackles these small @Blems analytically, which avoids
using a time-consuming numerical QP optimization as anritoap. The amount of memory
required by SMO is linear with number of training samples][98BMO has been implemented

into Weka a data mining software package [134].
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SVMs have been shown to perform well in multiple areas ofdgalal analysis, such as
detecting remote protein homologies, recognizing trdimsidnitiation sites [145, 142, 72], and
prediction of molecular bioactivity in drug design [132].eéently, more and more bioinfor-
maticians employ SVMs in their research on evaluating aralyaing microarray expression
data [23, 39, 140]. SVMs have many mathematical featurdsntialte them attractive for gene
expression analysis, including their flexibility in changia similarity function, sparseness of so-
lution when dealing with large data sets, the ability to Hahakge feature spaces, and the ability
to identify outliers [23]. Among many published works inghdrea, Browret al [23] studied
an expression data set from 2467 genes from the budding $aasharomyces cerevisiae mea-
sured in 79 different DNA microarray hybridization expeents. Their results show that SVMs
outperformed Parzen window, Fisher’s linear discrimiremd two decision tree classifiers (C4.5
and MOC1). Fureyet al[39] analysed three data sets: ovarian cancer [109], ccdooar [84]
and subtype leukaemia [41]. They reported low test errorthese data sets despite the small

number of tissue samples available for investigation.

On the other hand, in [76], Meyeat al did a bench mark study on comparison of SVMs
with 16 classification methods based on their performanc&latata sets from widely used UCI
machine learning database [15]. These classifiers indlu@l, classification trees (bagging,
random forests and multiple additive regression treesgali/quadratic discriminant analysis,
neural networks and so on. For SVMs, they used the C++ liltEdBBVM at http://www.
csie.ntu.edu.tw/"cjlin/libsvm . They evaluated the performance of an algorithm by
classification error and mean squared error. They drew dogiclusions that: “support vector
machines yielded good performance, but were not top rankeadl alata sets. Simple statistical
procedures and ensemble methods proved very competitiv&)ynproducing good results ‘out
of the box’ without the inconvenience of delicate and corapahally expensive hyperparameter
tuning. ...... In short, our results confirm the potentiaBafMs to yield good results, but their
overall superiority can not be attested”.

In many practical data mining applications, success is oredsnore subjectively in terms
of how acceptable the learned description — rules, decis#es, or whatever — are to a hu-
man user [134]. This measurement is especially importabidmedical applications such as

cancer studies where comprehensive and correct ruleswialcio help biologists and doctors
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understand the disease.

2.3.3 Decision trees

Decision tree induction is among the most popular classificanethods. As mentioned above,
decision tree has an important advantage over other matdanang algorithms such @asNN

and SVM, in a qualitative dimension: rules produced by desidree induction are easy to
interpret and understand, and hence, can help greatly neeipting the underlying mechanisms

that separate samples in different classes.

In general, decision trees try to find an optimal partitignof the space of possible obser-
vations, mainly by the means of subsequent recursive splitsst of the algorithms implement
this induction process in@p-downmanner: (1) determining the root feature that most discrim-
inatory with regard to the entire training data; (2) using tbot feature to split the data into
non-overlapping subsets; (3) selecting a significant featfieach of these subsets to recursively
partition them until reaching one of stopping criteria. Fidea was first developed by Ross Quin-
lan and his classic paper was published in 1986 [96]. Figutés2a decision tree example from
a study of gene expression in two subtypes of acute leukeragge lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). To classify a new gal a decision tree sorts the
sample down the tree from the root to some leaf node, whichiges the classification of the
sample. Established decision trees can also be re-prdsastsets oif-then rules to improve
human readability. For example, from the left-most branfcthe decision tree illustrated in Fig-
ure 2.4, a decision rule can be derived asAifribute2233<80.34 and Attribute484K506.77

thenthe sample is an ALL sample

Among many decision tree based classifiers, C4.5[97] is bagéhblished and widely used
algorithm. C4.5 uses the informatigain ratio criterion to determine the most discriminatory
feature at each step of its decision tree induction prodessach round of selection, the gain ratio
criterion chooses, from those features with an averadeetier information gain, the feature that
maximizes the ratio of its gain divided by its entropy. C4dps recursively building sub-trees
when (1) an obtained data subset contains samples of oniglas®( then the leaf node is labeled
by this class); or (2) there is no available feature (thenlebé node is labeled by the majority

class); or (3) when the number of samples in the obtainedesidhkess than a specified threshold
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Attribute2233

<= 80.34 > 80.34

Attribute4847

<=506.77 >506.77

Figure 2.4: A decision tree for two types (ALL v.s. AML) acukeukemias classification.
Branches correspond to the values of attributes (genesjeddandicate classifications.

(then leaf node is labeled by the majority class). The peegéfinition and calculation formulae
of information gain and gain ratio are given in Section 3.2Zbapter 3. After obtaining a
learned decision tree, C4.5 conducts fpest-pruningto make a decision tree simple and reduce
the probability of over-fitting the training data.

This pruning is known aseduced error pruning For each of the nodes in the tree, the
traditional process of this pruning consists of removing shibtree rooted at a node, making it
a leaf node and assigning it the most common class of tharigagamples affiliated with that
node. A node is removed only if the resulting pruned treegoeré no worse than the original
over the cross validation set [78]. Since the performanameésasured on validation set, this
pruning strategy suffers from the disadvantage that theahtee is based on less data. However,
in practice, C4.5 makes some estimate of error based oringaitata itself — using the upper
bound of a confidence interval (by default is 25%) on the refubion error. The estimated
error of the leaf is within one standard deviation of thereated error of the node. Besides
reduced error pruning, C4.5 also provides another prunptipio known assubtree raising In
subtree raising, an internal nhode might be replaced by ormeodés below and samples will
be redistributed. For a detailed illustration on how C4.Bdwgts its post-pruning, please refer
to [97, 134].

Other algorithms for decision tree induction include ID8gecessor of C4.5) [96], C5.0
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(successor of C4.5), CART (classification and regresses)r[22] http://www.salford
-systems.com/ ), LMDT (Linear Machine Decision Trees) [128], OCL1 (obliqukassifier
1) [81] and so on. This group of algorithms are most succé$sfuanalysis of clinical data
and diagnosis from clinical data. Some examples includatilog protein coding regions in
Human DNA [104], prediction of post-traumatic acute lunguig [99], identification of acute
cardiac ischemia [110], prediction of neurobehavioralcoate in head-injury survivors [120].
More recently, they have been used to learn from gene expredata to reconstruct molecular

networks [117] or classify tumors [35].

2.3.4 Ensemble of decision trees

Ensemble methodse learning algorithms that construct a set of classifiedstlaen classify new
samples by taking a vote of their predictions [33]. Gengrsleaking, an ensemble method can
increase predictive performance over a single classifier]38], Dietterich gave three funda-
mental reasons for why ensemble methods are able to outpeaioy single classifier within the
ensemble — in terms of statistical, computational and sepr&ational issues. Besides, plenty
of experimental comparisons have been performed to showisant effectiveness of ensemble

methods in improving the accuracy of single base classié&s13, 34, 20, 107].

The original ensemble method is Bayesian averaging [33]bagging (bootstrap aggre-
gation) [19] and boosting [38] are two of most popular tegaes for constructing ensembles.
Next, we will introduce how these two ideas and some othegrabe methods are implemented

to generate decision tree committees.

Bagging of decision trees

The technique of bagging was coined by Breiman [19], whostigated the properties of bag-
ging theoretically and empirically for both classificatiand numeric prediction. Bagging of
trees combines several tree predictors trained on boptsénaples of the training data and gives
prediction by taking majority vote. In bagging, given amiag setS with n samples, a new train-
ing setS’ is obtained by drawing. samples uniformly with replacement fro; When there

is a limited amount of training samples, bagging attemptseigtralize the instability of single

decision tree classifier by randomly deleting some sampldseplicating others. The instability
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Generation of trees

Letn be the number of samples in the training déta

For each of iterations:
Obtain a new training se’ by drawingn samples with replacement fros
Apply the decision tree algorithm t§.
Store the resulting tree.

Classification
Given a new sample.
For each of thé: trees:
Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.5: Algorithm for bagging.

inherent in learning algorithms means that small chang#isettraining set cause large changes

in the learned classifier. Figure 2.5 is the algorithm fordiag.

Boosting of decision trees

Unlike bagging where individual trees are built indeperityerach new tree generated in boost-
ing is influenced by the performance of those built previpuBbosting encourages new trees to
become “experts” for samples handled incorrectly by eadrees [134]. When making classifi-

cation, boosting weights a tree’s contribution by its perfance, rather than giving equal weight

to all trees which is adopted by bagging.

There are many variants on the idea of boosting. The versimaduced below is called
AdaBoostM1which was developed by Freund and Schapire [38] and desigpecifically for
classification. The AdaBoostM1 algorithm maintains a saweights over the training data set
S and adjusts these weights after each iteration learningeobase classifier. The adjustments
increase the weight of samples that are misclassified andaksthe weight of samples that are
properly classified. By weighting samples, the decisioedrare forced to concentrate on those
samples with high weight. There are two ways that AdaBoosthéhipulates these weights to
construct a new training s&t’ to feed to the decision tree classifier [134]. One way is dalle
boosting by samplingin which samples are drawn with replacement frémwvith probability
proportional to their weights. Another way li®osting by weightingin which the presence of

sample weights changes the error calculation of tree fissi using the sum of the weights
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Generation of trees
Letn be the number of samples in the training déta
Assign equal weight /n to each sample i§.
For each of: iterations:
Apply decision tree algorithm to weighted samples.
Compute erroe of the obtained tree on weighted samples.
If eis equal to zero:
Store the obtained tree.
Terminate generation of trees.
If eis greater or equal to 0.5:
If the obtained tree is the first tree generated:
Store the obtained tree.
Terminate generation of trees.
For each of samples ifi:
If sample is classified correctly by the obtained tree:
Multiply weight of the sample by/(1 — e).
Normalize weight of all samples.

Classification
Given a new sample.
Assign weight of zero to all classes.
For each of the tree stored:
Add —log(e/(1 — e)) to the weight of the class predicted by the tr
Return class with highest weight.

19%
®

Figure 2.6: Algorithm for AdaBoostM1.

of the misclassified samples divided by the total weight b$amples, instead of the fraction of
samples that are misclassified. Please refer to Figure e6detailed algorithm of AdaBoostM1
using boosting by weighting.

Please note that the approach of boosting by weighting caisde only when the learning
algorithm can cope with weighted samples. If this is not th&e¢ an unweighted data set is gen-
erated from the weighted data by resampling. Fortunatelyb @ecision tree induction algorithm
has been implemented to deal with weighted samples. For datadls about this, please refer
to [98].

Besides bagging and boosting, Dietterich put forward agrrditive but very simple idea,
randomization trees, to build ensemble trees. With thig,idke split at eaclnternal node
is selected at random from thie(20 by default) best splits. In case of continuous attribute
each possible threshold is considered to be a distinct splithek best splits may all involve

splitting on the same attribute. Experimentally, Dietteii34] also compared randomization with
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bagging and boosting of constructing ensembles of C4.Sidectrees using 33 data sets. His
experimental results showed that (1) when there is littleaclassification noise, randomization
is competitive with (sometime is slightly superior to) baggbut not as accurate as boosting;
(2) where there is substantial classification noise, baggnmuch better than boosting, and

sometimes better than randomization.

Random forests

Random forestgs based on bagged trees, but in addition uses random feslaetion at each

node for the set of splitting variables [20].

A more precise definition of random forests given in [20] ia:random forest is a classifier
consisting of a collection of tree-structured classifiefX’, Vi) (¢ = 1,---), where theV}, are
independent identically distributed random vectors archdeee casts a unit vote for the most
popular class at inpuk™”. Using random forests, in thith iteration, a random vectdr;, is
generated, independent of the past random vectors but léteame distribution. For instance,
Vi, is generated by drawing samples with replacement frommaidiraining data. Based on
the bootstrapped data, in [20], the forests using randoedgcted attribute or combinations of
attributes at each node were studied. In the former casachtreodem,,, number of candidate
features are selected from all features and the best split on theseg,, is used to split the
node.m,, is defined by the user, and has the same value for each tre@ grdhe ensemble.
It can take any value in the range of 1sa In [20], two values ofm,,, were tried — 1 and
int(logam+1). The experimental results illustrated that the algoritemat very sensitive to the
value ofm,,. In the latter case, more features are defined by taking radidear combinations
of a number of the original input attributes. This approaslused when there are only a few
attributes available so that higher correlations betwadividual classifiers are expected. After
a splitting feature is determined, random forests growtbe tising CART [22] methodology to
maximum size and do not prune. Different from C4.5, CART&slgplitting feature using GINI

impurity criterion. Please refer to Figure 2.7 for the gahatgorithm of random forests.

In [21], Breiman claimed that “in random forests, there isneed for cross-validation or a
separate test set to get an unbiased estimate of the test@eét Ehe reason was as follows. In

each ofk iterations, about one-third of the samples are left out efrtew bootstrap training set
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Generation of trees

Letn be the number of samples in the training déta

k be the number of trees to grow,

myry De an integer anghy,,, << m, (m is the number of features).

For each of iterations:
Obtain a new training sef’ by drawingn samples with replacement fro
Grow a tree, where at each node, the best split is chosen amgpgandomly selected features.

Classification
Given a new sample.
For each of thé trees:
Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.7: Algorithm for random forests.

and not used in the construction of the tree [20]. These sk called “out-of-bag” (OOB)

samples to which the tree built in this iteration will be dpglto get classification. In this way, a
test set classification is obtained for each sample in abwatloird of the constructed trees. The
final classification for a sample is the class having the mosts/from the trees in the forest.
Then the final classifications are compared with the reakdaisels of the OOB samples to

achieve an OOB error estimation.

Although in random forests, the feature selection at eacle i@ random, an upper bound
for its generalization error still can be derived in termssbengthof the individual decision
tree classifiers and thetorrelations[20]. This not only measures how accurate the individual
classifiers are and the dependence between them, but ak® igsight into the ability of the
random forest to predict. The estimation for strength andetation is conducted by the above
out-of-bag idea. Please see Appendix Il of [20] for more linfation about this issue. Random
forests was claimed to achieve comparable or better agctinano AdaboostM1 did. Besides, it
is [20] (a) relatively robust to outliers and noise, (b) éaghan bagging and boosting, (¢) simple
and easily parallelized. In addition, (d) useful internsiimates of error, strength, correlation

and variable importance are possible to obtain.
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CS4 — a new method of ensemble of decision trees

CS4 stands focascading-and-sharing fatecision trees. It is a newly developed classification
algorithm based on an ensemble of decision trees. The maéndtithis method is to use dif-
ferent top-ranked features as the root node of a decisienitran ensemble (also named as a
committee) [62, 63]. Different from bagging or boosting aihiuses bootstrapped data, CS4 al-
ways builds decision trees using exactly the same set offigasamples. The difference between
this algorithm and Dietterich’s randomization trees ioalery clear — the root node features
of CS4 induced trees are different from each other whileyemeember of a committee of ran-
domized trees always shares the same root node featureaftiern selection of the splitting
feature is only applied to internal nodes). On the other haathpared with the random forests
method which selects splitting features randomly, CS4gigk root node features according to
their rank order of certain measurement (such as entropy,rgto). Thus, CS4 is claimed as a
novel ensemble tree method.

In detail, to construck number of decision trees (< m, m is the number of features

describe the data), we have following steps:

(1) Ranking all then features according to a certain criterion, with the besuieaat the first

position.
(2 i=1.
(3) Using theith feature as root node to constrittt decision tree using base classifier.
(4) Ifi < k, increasing by 1 and goto (3); otherwise, stop.

In this thesis, we use C4.5 as the base classifier of CS4 aodriafiongain ratio (Sec-
tion 3.22 of Chapter 3) as the measure to rank features.

In the classification phase, CS4 definesdbeerageof a rule in a tree as the percentage of
the samples in its class satisfying the rule. Suppose we #liaeeveredk decision trees from
our training set containing clas$é and class3 samples. Then, all the rules derived from the
trees can be categorized into two groups: one group onhagong rules ford samples, another

containing rules fo3 samples. In each group, we rank the rules in descending aoderding
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to their coverage, such as

ruleft, rule{l, e

and

ruleb rule, . ..

Given a test sampl&, each of thek trees will have a rule to fit this sample and therefore, give
a prediction for this sample. Suppose tifasatisfies the following:; rules of class4 samples

andks of classB samples:
rule(T)f‘, rule(T)f‘, e ,rule(T)ﬁl,

and

rule(T)¥, rule(T)5, - - ,rule(T)fQ.

Where0 < k1, ko < k andky + ko = k. The order of these rules is also based on their coverage.

When we make a prediction f@r, two scores will be calculated as follows:

k
Score(T)A = Zl coverage(rule(T):) (2.6)
= coverage(ruleft) '
Score(T)B = kZQ coverage(rule(T)F) Ik (2.7)
B = coverage(rule?) '

If Score(T)* > Score(T)B, thenT will be predicted as a clasd4 sample; Otherwisel" pre-
dicted as a clas8 sample. In practice, the tie-score case occurs rarely [62].

The algorithm of CS4 can be easily applied to solve multsglaroblems. If the given data
set containg classes samplep ¢ 2), similarly, we can sorp groups of topk rules according
to their coverage. When classifying a sanplethose rules in thé trees which are satisfied by

T are found and sorted. Then the classification score for d@fgpelassC is calculated by

Score(T)C = ke coverage(rule(T)$)

/k (2.8)

P coverage(rule§)

The effectiveness of CS4 has been tested on some UCI dafaSlts well as some public
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gene expression profiles that are described by more tha@@ &@atures [62]. One of the main
works of this thesis is to do further comparison of CS4 withdiag, boosting, random forests
as well as SVM and:-NN using a huge number of experimental results obtaineah frarious

biological data sets.

2.4 Chapter Summary

In this chapter, we introduced the concept of classificaitiotiata mining as well as the ways to
evaluate the classification performance. We selected septén detail some of classification al-
gorithms — putting the emphasis on several methods usiregnanie of decision trees, including
bagging, boosting, randomization tree, random foreststadewly invented CS4. Besides, two
widely used classifiers, SVM aridNN were also described so that comparisons among decision
tree methods, kernel function approaches and instanaatashniques can be addressed in the

later chapters using experimental results.
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Chapter 3

Feature Selection for Data Mining

A known problem in classification (in general machine leaghiis to find ways to reduce the
dimensionality of the feature space to overcome the riskref-fitting. Data over-fitting happens
when the number of features is large (“curse of dimensitrigland the number of training

samples is comparatively small (“curse of data set spdysityn such a situation, a decision
function can perform very well on classifying training dabut does poorly on test samples.

Feature selection is concerned with the issue of distitgugssignal from noise in data analysis.

3.1 Categorization of Feature Selection Techniques

Feature selection techniques can be categorized accdaligumber of criteria [46]. One pop-
ular categorization is based on whether the target clagsditalgorithm will be used during the
process of feature evaluation. A feature selection mettad makes an independent assessment
only based on general characteristics of the data, is nafitied™{134]; while, on the other hand,

if a method evaluates features based on accuracy estinmratédqal by certain learning algorithm
which will ultimately be employed for classification, it wibe named as “wrapper” [55, 134].
With wrapper methods, the performance of a feature subsetésured in terms of the learning
algorithm'’s classification performance using just thosguees. The classification performance
is estimated using the normal procedure of cross validatiorthe bootstrap estimator [134].
Thus, the entire feature selection process is rather catipotintensive. For example, if each

evaluation involves a 10-fold cross validation, the clésziion procedure will be executed 10
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times. For this reason, wrappers do not scale well to datacettaining many features [45].
Besides, wrappers have to be re-run when switching from lassiication algorithm to another.
In contrast to wrapper methods, filters operate indepehdehtany learning algorithm and the
features selected can be applied to any learning algoritithealassification stage. Filters have
been proven to be much faster than wrappers and hence, caplexao data sets with many
features [45]. Since the biological data sets discusseleddater chapters of this thesis often
contain a huge number of features (e.g. gene expressiottegjpfive concentrate on filter meth-

ods.

Another taxonomy of feature selection techniques is torsg¢panlgorithms evaluating the
worth or merit of a subset features from those of individealtfires. Most of the feature selection
methods introduced in this chapter evaluate how well arviddal feature contributes to the
separation of samples in different classes and produce @esieature ranking. However, there
is also one method in this chapter, correlation-based rfeateiection, that assesses and selects a
subset of features. We will also present a new feature smheatgorithm, ERCOF, which first
evaluates features individually and then forms the finaleggntative feature set by considering
the correlations between the features.

There are some other dimensions to categorize featuretiselenethods. For example,
some algorithms can handle regression problem, that is;léss label is numeric rather than
a discrete valued variable; and some algorithms evaluateark features independently from
class, i.e. unsupervised feature selection. We will retstir study to the data sets with discrete
class label since this is the case of the biological problenasysed in later chapters of this thesis,

though some algorithms presented can be applied to numass kabel as well.

3.2 Feature Selection Algorithms

There are various ways to conduct feature selection. Letamswsith introducing some often

used methods conducted by analysing the statistical giep&f the data.
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3.2.1 T-test, signal-to-noise and Fisher criterion statistical reasures

Highly consistent with the well-known ANOVA principle, a sia concept for identifying a rele-
vant feature from an irrelevant one is the following: if tredues of a feature in samples of class
A are significantly different from the values of the same feaio samples of clas8, then the
feature is likely to be more relevant than a feature that ivaflas values inA and 3. More
specifically, in order for a featurgto be relevant, its mean vahp@4 in A should be significantly
different from its mean valu;aif3 in B. However, if the values of a featugevaries greatly within
the same class of samples, evepff differs greatly fromu?, the featuref is not a reliable one.
This situation leads us to a second basic concept: the ss'tiaddzatiationa]fl and variaancr;c“)2

of f in A and the standard deviatioxf and variancefajl?)2 of f in B should be small.

The classicat-statistic is constructed to test the difference betweeans®f two groups
of independent samples. So if samples in different classemdependent, thestatistic can be
used to find features that has big difference in mean leveldsat the two classes. These features

can be then considered to have ability to separate sampiesdre different classes.

Given a data seX consisting ofn sample vectors:
Xi = (Tit,* s Tim, Yi) (3.1)

wherel < i < n, m is the number of features ang is the class label oX;. Each sample
belongs to one of two classet (i.e. y; = A) andB (i.e. y; = B) (such agumorv.s. normal).
Similarly, a feature in the data set can be denoted;andz;; stands for its value in sampie
(1 < j < m). In addition,n? (resp. n?) is the number of samples in clags(resp. B). For
each featurd;, the meam;-“ (resp.uf) and the standard deviatidgf‘ (resp.éf) using only the
samples labeled! (resp.B) are calculated by

> Tj

=A
pt == (3.2)

= (3.3)
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A t scoret( f;) for featuref; then can be obtained by

gt — ¥
t(fj) = ——L— (3.4)
(542 (6B)2
-+ =
Thet-test statistical measure is known [105] to follow a Stud#stribution with
(01 | (05>
277 77
(5 + )
(3.5)

@2\ ? @B)2\?
+

nA—1 nB—1

degrees of freedom. A featuy can be considered better than a featfjrél # j) if t(f;) >
t(f1). Thus, when making feature selection, we can simply sortlidate features by their
scores and pick those with largest scores. In [82f;ore is used to select important genes for
classification after applying the algorithm of partial lesguares to the original high dimension

gene expression data.

In [41, 116, 39], a slightly different statistical measuren ¢-test was proposed to find
discriminatory genes that can distinguish tumor cells frmonmal ones using gene expression

profilings. This tesk is namedsignal-to-noisestatistical measure and is constructed as

gt — B
) — LAY 3.6

As with ¢-test, when using signal-to-noise statistical measuraatufe f; can be considered
better than a featurg, (I # j) if s(f;) > s(f1), so we always pick those features with largest

scores. Compared withtest, the statistical property of signal-to-noise is nityfunderstood.

Another statistical measure that is closely related ta.ttest is theFisher criterion score

defined as
(7' — u%)?

fisher(f;) = (3.7)

A feature f; can be considered better than a featfir@ # j) if fisher(f;) > fisher(f;). In
[68], Fisher criterion score is used to select genes tongjsish two subtypes of leukemia from
expression profilings.

T-test, signal-to-noise and Fisher criterion statisticabsures are easy to compute and thus
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straightforward to use. However, there are three condidesathat may make them ineffective
for feature selection [72]. The first consideration is that wf these tests are justified only
if it can be assumed that the data have a normal distribuaod, this is almost not the case
of biological data. The second consideration is that thepsamizesn” andn® should be

sufficiently large; otherwise, underestimates of the stashdleviations and variances will occur.

The third consideration is more subtle and we illustratesibhg an example.

Let f1 and f5 be two features. Suppoge has values ranging from 0 to 99 in cladswith
pit = 75 and has values ranging from 100 to 199 in cl&swith ¥ = 125. Supposef, has
values ranging from 25 to 125 in clagswith 5! = 50 and has values ranging from 100 to 175
in classB with 15 = 150. We see that5 — p3' = 100 > 50 = 1 — u1'. Suppose the variances
of f; andf, in A andB are comparable. Then according to the and fisher measuresfs is
better thanf,. However, we note that the values ff are distributed so that all those i are
below 100 and all those iff are at least 100. In contrast, the valuegpin A and5 overlap in
the range 100 to 125. Then cleanty should be preferred. The effect is caused by the fact that
t, s and fisher are sensitive to all changes in the valueg pincluding those changes that may
not be important. When dealing with gene expression dawpbthe pre-processing works is to
transform the data into the space of log-ratios by takinddgarithm of each gene (i.e. feature)
divided by the median of that gene across a set of experinj88}s It has been shown that
the rankings of same set of candidate features, that based am fisher statistical measures,

might be different before and after this logarithm transfation.

3.2.2 Wilcoxon rank sum test

In order to avoid the assumption that feature values havelltmrf normal distribution, one can
use non-parametric tests. One of the best known non-paniartestts isWilcoxon rank sum test
or the equivalent Mann-Whitney test. Wilcoxon rank sum [£388] is an alternative te-test for
testing the quality of two populations’ mean or medianss ki kind of non-parametric test since
it is based on rank of samples rather than distribution patara such as mean and standard
deviation. It does not require the two populations to comf@éo a normal distribution, but to
the same shape [105]. However, it may not be as powerfaltast, signal-to-noise or Fisher

criterion statistical measures, if the normality assuompts correct [105].
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The Wilcoxon rank sum test statistical measure of a feafyre ( f;), can be obtained using

following procedure:

(1) Sortthe values;, z2j, -, z,; of f; across all thex samples in ascending order.

(2) Assign rank (from 1)(z;;) to each value:;; above and use average of the ranks for ties.

Then,1 < r(z;;) < n.

(3) Use the sum of the ranks for the class, which has smalletbeu of samples, as test

statistic,w( f;). For example, clasgl has fewer samples than claSsthen

w(fy) = Y rlziy) (3.8)

yi=A

wherey; is the class label of samplE;. If the number of samples is same in each class,

the choice of which class to use for the test statistic istrayi

To use the Wilcoxon rank sum test to decide if a featfiie relevant, we set up the null
hypothesis that: the values fthave the same continuous distributiondrandB. Thenw(f) is
used to accept or reject the hypothesis. To decide whetlagcept or reject the null hypothesis,
we compareu( f) with the upper and lower critical values derived from a digant levela. For
small numbers of samples in clagsand B, e.g. < 10, the critical values have been tabulated
and can be found in most of textbooks of statistics, such @s][1If eithern or n? is larger
than what is supplied in the table, the following normal apmation can be used [105]. The
expected value ab is (assuming clasg has fewer samples than cla8sloes):

A A B
nt(n*+n°+1
= ( 5 ) (3.9)

The standard deviation af is:

ApB(nA B_1
5:\/71 nB(nA +nb +1) (3.10)
12
The formula for calculating the upper and lower criticalues is:
Ht2a0 (3.11)
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wherez, is thez score for significant levek. If a featuref’s testw(f) falls in the range given
by the upper and lower critical values, then we accept thehyplothesis; otherwise, we reject
the hypothesis, and this indicates that the values of fegtimave different distribution between
samples in clasgl and B. Thus, those features whose Wilcoxon rank sum test statijects
the hypothesis will be considered as signals.

The non-parametric Wilcoxon rank sum test has several salgas ovet-test, signal-to-
noise and Fisher criterion statistical measures [87]. Thedhe is its robustness. Because it uses
ranks rather than actual values of a feature, it is more tdbumutliers. This feature is important
to biological data, which may need many steps of experimiantise laboratory and may have
many potential sources of error. The second advantageai®delo data transformation, such as
normalization and logarithm transformations that arerofised in preprocessing of microarray
gene expression data. The rank sum test is not affected bgfahgse transformations since the

ordering of the expression levels remains unchanged.

3.2.3 X statistical measure

X? measure evaluates features individually by measuringthestatistic with respect to the
class. Different from the preceding methods, measure can only handle features with discrete

values.X? measure of a featurg with w discrete values is defined as

w

k T )2
=33 (A — By)” E”E”) (3.12)
o 1

=1 J

wherek is the number of classes,;; is the number of samples witkh value off in jth class,

E;; is the expected frequency df;; and
Eij = Ri * C]/’n (313)

R; is the number of samples havinth value off, C; is the number of samples in thiéh class,
andn is the total number of samples.

We consider a featurg; to be more relevant than a featufie(! # j) if X2(f;) > X2(f1).
Obviously, the worstt? value is 0 if the feature has only one value. The degree otitnee

of the X2-statistic measure i&w — 1) * (k — 1) [71]. With the degree of freedom known, the
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critical value for certain significant level can be foundrfronost statistics books, such as [105].
However, note that, the value might be varied from feature to feature.

To apply X? measure to numeric features, a discretization preprowpssis to be taken.
The most popular technique in this area is the state-oftgréryised discretization algorithm
developed by Fayyad and Irani [36] based on the idea of entitsame time, feature selection

can be also conducted as a by-product of discretization.

3.2.4 Entropy based feature selection algorithms

Entropy is a measure commonly used in information theorychvbharacterizes the (im)purity
of a collection of samples [112, 78]. Given a collecti®ncontaining samples ik classes, the
entropy ofS relative to thisk classes classification is defined as
k
Ent(S) = Z —p; * logap; (3.14)
i=1
wherep; is the proportion ofS belonging to class. There are several points worth noting.
1. The logarithm is base 2 because entropy is a measure okgieeted encoding length

measured in bits [112].
2. In all calculations involving entropy, we defifiec log,0 = 0
3. Ent(S) reaches its minimum value O, if all the samplesSdfelong to the same class. For

example, all samples are in cladsthen

i = A);
~={1 =4 (3.15)

0 (#A).
Thus,Ent(S) = —1 % loga1 = 0.
4. Ent(S) reaches its maximum valdegsk, if S contains equal number of samples in each

class. In this casey, = 1/k, for anyi € [1, k]. Thus,

1 1
Ent(S) = —k (EZOQQE) = logak (3.16)
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Figure 3.1: Entropy function of a two-class classificatipnis the proportion of samples in one
class, with range [0,1].

Figure 3.1 shows the form of the entropy function wiier- 2 (i.e. two classes), as, varies

between 0 and 1.

Fayyad’s discretization algorithm

The essential idea of this discretization algorithm is tal fsome cut point(s) for a numeric
feature’s value range to make the resulting value interaalpure as possible. Formally, let cut
pointT of featuref partition the sample sétinto subsetss; andSs. Then, theclass information

entropyof the partition, denote@nt(f, T, S), is given by [36]:

Ent(f,T,S) = %Ent(Sl) + %Ent(&) (3.17)

where Ent(S;), (7 = 1,2) is theclass entropyof a subsetS. Assuming there aré classes
Ci,--+,Cy, let P(C;, S;) be the proportion of samples 1 that have clasg’;. According to

the definition in (3.14),

k
Ent(S;) = =Y _ P(C;, S;) xlogaP(C;, S;) (3.18)
=1
A binary discretization foyf is determined by selecting the cut pdifjtfor which Ent(f, Ty, S)
is minimal amongst all the candidate cut points [36]. Thest®n ofT; can be achieved by re-

cursively partitioning the range$; and.S, until some stopping criteria is reached. A stopping

criteria is needed because otherwise, we can always agbéfect entropy by partitioning the
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range into many small intervals, each containing exactly ssmple. A commonly used stop-
ping criteria is the so-calleghinimal description lengtfiMDL) principle described in [101, 36].
According to this principle, recursive partitioning witha rangeS stops iff S is partitioned into

rangesS; andS; such that:

Gain(f, T, 8) < le2n=1) 3T 5) (3.19)
n n
wheren is the number of samples in the sgtand,
Gain(f,T,S) = Ent(S) — Ent(f,T,S) (3.20)
and
5(f,T,8) = logy(3¥ — 2) — [k * Ent(S) — ki * Ent(S1) — kg * Ent(Ss)] (3.21)

wherek; is the number of class labels represented in the rafigdn the right side of (3.19),
the first component is the amount of information needed tai§péhe partitioning point; the
second one is a correction due to the need to transmit whadse$ correspond to upper and
lower subintervals [36, 134]. With MDL principle, a featufecan not be discretized, if there is
no such kind of cut poinT” whoseGain(f,T, S) (defined in (3.20)) is greater than or equal to
the right side of (3.19).

In [71], Setiono and Liu noted that discretization has thieptial to perform feature selec-
tion among numeric features. If the distribution of a numéature’s value is relatively random,
then the feature would be treated as irrelevant to the damsd can be safely removed from
the data set. In this case, there is no suitable cut pointlitofsgture’s value range, or, in other
words, the feature can be only discretized to a single v&uethe other hand, if a resulting value
interval induced by the cut points of a feature contains diméysame class of samples, then this
partitioning of this feature has an entropy value of 0. Thiai ideal case since the feature can
clearly distinguish samples in the different classes. $éleafer to Figure 3.2 for an illustration
on entropy measure, cut point and intervals. Generallygutifte entropy measure, featufge
is more useful than featurg (I # j) if Ent(f;,Ty;,S) < Ent(f;,Ty,,S). Thus, when using

entropy measure to select features, we sort the class gritrgm ascending order and consider
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&: class 1 sample, [O: class 2 sample

(a) A feature with high entropy.

«0 &« 060 & & 0O &« &0 0O

(b) A feature with low entropy.

& &[0 & & &4 oo oo O

o0 < > +oo
F interval 1 4*7 interval 2 44

Cut point
(c) A feature with zero entropy.
& & »b & & &L oo0oo o O
-0 < » +o0
F interval 1 4*7 interval 2 44
Cut point

Figure 3.2: We place the values of a feature on the horizaxial There are 13 samples in two
classes, class 1 and class 2. (a) shows a feature that is aigoaland there is no cut point can
be found to distinguish samples in the different classesstiows a feature that is a potentially
good signal and indicates a possible cut point. (c) showsataife that is a strongest signal and
indicates a cut point — different resulting intervals camsasamples of different class.

those features with lowest values. In most of the cases, g/isr interested in features having
cut point(s) found for their value range.

For discrete features, we still can use entropy measureleégtsieatures since the “cut
points” for each feature have been given naturally. Thusthss entropy of a featurg with w

different values, can be simply derived by

Ent(f, S Zw: (3.22)

where S; through S, are thew subsets of samples resulting from partitioningSby f and
Ent(S;) can be calculated from (3.18).

Actually, X? measure is one of the refinements of entropy measure. Otheithle class
entropy value of a feature, it uses th&-statistic of the partitionsS; and S, of the feature

induced by the class entropy. Some other refinements inéghfdemation gain measure and
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information gain ratio measure that are used respectivel3 [96] and C4.5 [97] to induce the

splitting node of a decision tree.

Information gain and information gain ratio

Information gainis simply the expected reduction in entropy by partitionihg samples accord-
ing to this feature, that is the amount of information gaibgdboking at the value of this feature.
More precisely, the information gaain(f, S) of a featuref, relatively to a set of samplées,

is defined as

Gain(f,S) = Ent(S) — Ent(f, Ty, S) (3.23)

where Ent(S) can be calculated from equation (3.14) alidt(f, Ty, S) is the class entropy
of the feature (for a numeric featuig 7' is the best partition t¢’s value range under certain
criteria, such as MDL principle). SincBnt(S) is a constant onc§ is given, the information
gain and entropy measures are equivalent when evaluatgnglivance of a feature. In contrast
to the rule “the smaller the class entropy value, the moreoiapt the feature is” that is used
in entropy measure, we consider a featyiyeo be more relevant than a featufe(l # j) if
Gain(f;,S) > Gain(f;, S). In fact, the ID3 [96] decision tree induction algorithm ssefor-
mation gain as the measure to pick discriminatory featwesrée nodes. Besides, information
gain is also involved in some recent studies of feature seteon biological data. For exam-
ples, Xinget al [136] used it as one filter to select genes from gene expreskta and the
winner of KDD Cup 2001 [25] also employed it as a measurenenéduce the dimensionality
of a feature space containing 139,351 binary features inoantin data set provided by Dupont
Pharmaceuticals Research Laboratories.

However, there is a natural bias in the information gain mesas— it favors features with
many values over those with few values. An extreme exam@éddature having different values
in different samples. Although the feature perfectly sefes the current samples, it is a poor
predictor on subsequent samples. One refinement meastireath&®een used successfully is
calledinformation gain ratio The gain ratio measure penalizes features that with magya

by incorporating amount aplit information which is sensitive to how broadly and uniformly
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the feature splits the data [78]:

SplitInformation(f,S Z |SS|

(3.24)

whereS; throughS,, are thew subsets of samples resulting from partitioningSaby w-valued
discrete orw-value-intervaled numeric featur Then, thegain ratio measure is defined in

terms of the earlier information gain measure and this sglirmation, as follows:

Gain(f, S)

GainRatio(f,S) = SplitInformation(f,S)

(3.25)

Note that split information is actually the entropy®ivith respect to the values of featufeand

it discourages the selection of features with many valugk [for example, if there are total num-
ber ofn samples inS, the splitinformation of a featurg, which has different values in different
samples, i$ogan. In contrast, a boolean featufe that splits the same samples exactly in half
will have split information of 1. If these two features preduthe equivalent information gain,
then clearly feature, will have a higher gain ratio measure. Generally, a feafyis considered
to be more significant than a featufe(! # ;) if GainRatio(f;, S) > GainRatio(f;, S). When
using gain ratio measure (or information gain measure) lecséeatures, we sort the values of
gain ratio (information gain) in an descending order andsimer those features with highest

values.

3.2.5 Principal components analysis

Principal components analysid®®CA) [53] is widely used in signal processing, statisticsl a
neural computing. It selects features by transforming abmmof original (high-dimensional)
features into a smaller number of uncorrelated featurdedcc@rincipal components. The first
principal component accounts for as much of the variabititghe data as possible, and each
succeeding component accounts for as much of the remaiaimapility as possible. The math-
ematical technique used in PCA is called eigen analysis T2l eigenvector associated with
the largest eigenvalue has the same direction as the firatipal component; the eigenvector
associated with the second largest eigenvalue deterntieedittection of the second principal

component, and so on.
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Feature selection through PCA can be performed in follovgiexgral steps.

(1) Calculating the covariance matiixof a data collectionX defined in Equation (3.1), where
X is a matrix withn rows (i.e. samples) ang columns (i.e. features). Each column data
of X may have to be normalized. Each element(i,j = 1,2,---,m) of matrixC'is the
linear correlation coefficient between the elements ofrooisi (i.e. features)and; of X
and is calculated as:

cy = L3 (T (T (3.26)

k=1 g; ]

wherezy; (z;) is the element in columni () of X, andy; (i;) ando; (o;) are the
mean and standard derivation of columy) of X, respectively. It is easy to prove that

the covariance matrig' is real and symmetric.

(2) Extracting eigenvalues; (i = 1,2, -- -, m) by equation,

C—NI=0 (3.27)
wherel is an identity matrix.
(3) Computing eigenvectors (i = 1,2,---,m), which are the so-called “principal compo-
nents”, from
(C—=Xil)e; =0 (3.28)

(4) Ranking eigenvectors according to the amount of vamain the original data that they
account for, which is given by

Variance; = mAi (3.29)

> Ak
h=1

(5) Selecting features that account for most of the vamaiticthe data. In this step, eigenvec-
tors (i.e. principal components) that account for someguaege (for example: 95%) of

the variance in the original data will be chosen while the festures will be discarded.

Indeed, it can be proven that the representation given byiB@Aoptimal linear dimension

reduction technique in the mean-square sense [53]. It ithwumting that, different from other
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methods introduced in this chapter, PCA iswarsupervisedin contrast tosupervisejl feature

selection method since it makes no use of the class attribute

3.2.6 Correlation-based feature selection

All of the preceding measures evaluate features in termsedf individual relevance to separat-
ing samples in different classes. However, rather thanimgnkdividual features, we can also
scores the worth of subsets of featur€srrelation-based feature selectigG@FS) [44] is such a

method which is built on the belief that “good feature subseintain features highly correlated
with the class, yet uncorrelated with each other”. At therthefthe CFS algorithm is a sub-
set evaluation heuristic that takes into account not orgyusefulness of individual features for

predicting the class, but also the level of inter-correlatamong them [46].

CFS first calculates a matrix of feature-class and featemtufe correlations. Then a score

of a subset of features is assigned using the following bciri

kg

Meritg =
VE+ (k= V)77

(3.30)

whereM eritg is the heuristic merit of a feature subsetontainingk featuresy,; is the average
feature-class correlation, amd; is the average feature-feature inter-correlation. Theerator
can be thought of as giving an indication of how predictive sibset of features are while the
denominator indicates how much redundancy there is amanyg [#6].

In order to apply Equation (3.30), it is necessary to cateuthe correlation between fea-
tures. In this step, CFS ussgmmetrical uncertaintieto estimate the degree of association
between discrete features or between features and clagHed he formula (3.31) below mea-
sures the inter-correlation between two features or theeladion between a feature and a class

which is in the rangé0, 1] (f; and f, are both presented features or one is feature, one is class).

H(f1)+ H(f2) — H(f1, f2)
H(f1)+ H(f2)

Tfifa = 2.0 x (331)

where the numerator is the information gain between featane classed/ (f) is the entropy of
the featuref defined in (3.14). CFS starts from the empty set of featurdsuars the best-first-

search heuristic with a stopping criterion of 5 consecuiiMg expanded non-improving subsets.
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The subset with the highest merit found during the searchbeiselected.

3.2.7 Feature type transformation

At the end of introduction on feature selection methodsigtlage several points that need to be

addressed:

e Converting feature type from discrete to numeric. This kihdonversion will be useful for
those algorithms that can only handle numeric feature$, asictest, signal-to-noise, PCA
and so on. When dealing with/avalued discrete feature, one can convert ik tbinary
features. Each of these new features has a “1” for every permee of the corresponding
kth value of the original discrete feature, and a “0” for ah@t values [46]. Then the new

binary features are treated as numeric features.

e Converting feature type from numeric to discrete. Someufeaselection methods, such
as X?-statistic measure, need numeric features to be discdetizayyad’s algorithm de-

scribed in Section 3.2.4 or other discretization method® ha be applied.

e Dealing with multiple classes problem. If a data set costanore than two class samples,

a pairwised feature selection has to be conducted.

3.3 ERCOF: Entropy-based Rank sum test and COrrelation Filer-
ing

In this section, we will put forward a new strategy to condigetture selection, mainly aiming
to find significant genes in supervised learning from geneesgion data. In our strategy, we
combine the above presented methods of entropy measure itwakdv rank sum test, as well
as Pearson correlation coefficient test together to fornreetphase feature selection process.
We name this combined feature selection procedsRISOF— stands for Entropy-based Rank

sum test and COrrelation Filtering.

In phase |, we apply Fayyad’s entropy-based discretizatigorithm described in Sec-
tion 3.2.4 to all the numeric features. We will discard a fieat if the algorithm can not find a

suitable cut point to split the feature’s value range. Oriatpweeds to be emphasized here is that
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we will use numeric features all the way, though a discrébpaalgorithm is involved to filter

out some features in this phase.

In phase I, we conduct Wilcoxon rank sum test only on featuwetput from phase I.
For a featuref, the test statistical measute(f) can be calculated by the way described in
(3.2.2). Ifw(f) falls outside the intervak;ower, Cupper], Wherec gyer andce,,per are the lower
and upper critical test values that given in Formula (3.&E) will reject the null hypothesis and
this indicates that the values of featytare significantly different between samples in different
classes. In the calculation of the two critical valugs,., andc,,,.,, the standard 5% or 1%
significant level is generally used. Therefore, by this ghage are left with two groups of
features: one group contains featurgssuch thatw(f1) < cwer, the other group contains
featuresf, such thatw(fa) > cupper. Features in same group are supposed to have similar
behavior — having relatively larger values in one class afigias and relatively smaller values
in another class of samples. In a gene expression data mnatyis of a great interest to find
which genes are highly expressed in a special type of sarfgueh as tumor samples, or patients
with certain disease).

In phase IllI, for each group of features, we examine coiigelatof features within the
group. For those features that are in the same group and ghily ltiorrelated, we select only
some representatives of them to form the final feature segieire expression study, high cor-
relation between two genes can be a hint that the two genead&b the same pathway, are
co-expressed or are coming from the same chromosome. “Braglemwe expect high correlation
to have a meaningful biological explanation. If, e.g. geAesnd B are in the same pathway,
it could be that they have similar regulation and therefamglar expression profiles” [51]. We
propose to use more uncorrelated genes for classificatioe fiwe have lots of genes from one
pathway, the classification result might be skewed.

Since with entropy measure, one is more likely to selecthaldenes in a primary path-
way and neglect those of secondary pathways, we have to ggrtmut the genes that passed
Phase | and Phase Il filterings into pathways. Currently, daptithe commonly used Pear-
son correlation coefficient to measure the correlation betwfeatures. It has been applied
to analyse gene expression data by some researchers [16Pd8aison correlation coefficient

(also known as the centred Pearson correlation coeffideat)inear correlation metric. In gen-
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eral, the Pearson correlation coefficient between any tatufesf; = (x1;, z2;, -+, 2pn;) and

fj = (1,225, -, xpj) (defined in (3.1))r(fi, f;), is given as:

r(fonfy) = - 30Ty (T~ 1 (332

k=1 o agj

wherey; (u;) ando; (o) are the mean and standard derivationfp{f;), respectively. The
value ofr is between -1 and 1. In our case, we just consider two featoreg correlated if
their correlation coefficient is 1 or near 1 and ignore negatiorrelations since the features in
same group are expected to have similar behavior. A thréshaif r is set in advance, so that if

r(fi, f;) > re, then featuref; and f; are considered correlated.

Given a group of features, we subgroup features in this gbaged on correlation coeffi-
cient. First, we sort the features according to their claggopy measure in an ascending order
(i.e., with best feature at first position). Then we pick up test featuref;, and calculate its
Pearson correlation coefficient with all other featuresermve form a subgroup consisting f
and all features that are correlatedf{o The features that have been assigned to this subgroup are
not considered again in the later rounds of correlation testhe second round of subgrouping,
we pick up the best one from remaining features, and formhamatubgroup of features. This
correlation test proceeds until all the features in the grbave been assigned to a subgroup.
Note that it is possible for a subgroup to have only one feat@®o, the groups of features are
sub-grouped; in each subgroup, features are all correfatadest feature such ds. Figure 3.3

gives the pseudo codes of this method.

Next, we select representative features from each subgmigrm the final feature set.
In each subgroup, since the features are sorted by the# efdsopy measure, we calculate the
average of the entropy values of all these features (nameath entropy valuef this subgroup)
and choose those top ones whose entropy measure is smahethie mean entropy value. In
case of only one feature in a subgroup, this feature is autcatig selected. These representative
features from all the subgroups are our final set of featiBes.Figure 3.4 for a whole picture of

feature identification and selection by ERCOF.

Using ERCOF in gene expression data analysis where thefteis more than thousands
of features, we expect to identify of a subsesbérply discriminatingeatures witHittle redun-

dancy The entropy measure is effective for identifying discniating features. After narrowing
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1.k=1.
2. Rank all features in group on class entropy in an ascending ordgrt,fo, - - -, fi.
3. LetS; = {f1} and removef; from F.
4. For eachyf;(i > 1)

calculate Pearson correlation coefficieff, f;);

if ’I“(fl, fz) > Te

add f; into S; and remove it fron¥’;

5.k = k + 1 and goto step 2 unti#’ = 0.

Figure 3.3: Feature subgrouping by correlation testings the Pearson correlation coefficient
threshold, which should be near 1.0.

down by the Wilcoxon rank some test, the remaining featuszpime sharply discriminating.
Then, with the correlation examination, some highly catexd features are removed to reduce
redundancy. We do not use CFS introduced in Section 3.2.6asd?1ll of ERCOF, because
CFS sometimes returns too few features to comprehensivelgratand the data set. For exam-
ple, CFS selects only one feature if the class entropy offé@ture is zero. However, Pearson
correlation coefficient also has a shortcoming — the catimreof correlation is dependent on
the real values of features — it is sensitive to some datafoamation operations. Therefore,

other algorithms are being implemented to group correltgatiires.

3.4 Use of Feature Selection in Bioinformatics

The feature selection techniques reviewed in the precesliagions have been used as a key
step in the handling of high-dimensional biomedical datar €xample, their use is prevalent
in the analysis of microarray gene expression data (an gixtenreview on this can be found in
Chapter 4). Besides, they have been also used in the poediitimolecular bioactivity in drug
design [132], and more recently, in the analysis of the cdrikrecognition of functional site in
DNA sequences [142, 72, 69].

One issue should be addressed here is the so-called “reutiiphparisons problem” [85]
which happens when we select features by choosing a statisbnfidence level (like standard
5% or 1%) fort-test, X2-test, and other statistical measures. The descriptioheoptoblem is:
when performingn multiple independent significance tests, each authevel, the probability

of making at least one Type | error (rejecting the null hygsik inappropriately) is— (1 —«a)™.
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All features

ke
Fayyad’s discretization algorithm
based on class entropy
Phase
Features without Features with
cut point found cut point found
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Phase I1 Features with w statistic F;: features with w< c,,,.,;
in range [Ciopers Cupperl F,: features with w> ¢,
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Discard Subgroups construction on
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respectively
Phase I11
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features from each subgroups
-

v

Output repre-
sentative features

Figure 3.4: A diagram of ERCOF: Entropy-based Rank sum test@Orrelation Filtering, a
three-phase feature selection process combining conoégtstropy, Wilcoxon rank sum test
and Pearson correlation coefficient.

For example, suppose we consider= 200 features and perform independent statistic tests to
each of them at the standatd= 5% level, then the probability of getting at least one significa
result isl —0.95%%° = 0.99996 [85]. So, when we get a significant feature among the tesis, ho
can we believe that it is “indeed” significant. In fact, untlgs setting, we would still expect to
observe approximately 16=(200 % 0.05) “significant” features, even when there were actually
no features that can distinguish the two classes. Obviptisyproblem becomes serious when
the total number of considered features is large, whichdsctise in some biological data such

as gene expression profilings.
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A standard conservative solution to this problem is the Boohi correction [100], which
divides the test significant level by the number of testsai@n. In the above example, it will be
0.05/200 = 0.00025. Thus, for 200 features, the cutoff for significance woul @025 instead
of previous 0.05! In spite of its simplicity, the Bonferramiethod has some shortcomings [91].
The biggest problem is that it is too conservative: eachviddal test is held to an unreasonably
high standard and this will increase the probability of a@Yperror where legitimate signal
features will fail to be discovered. On the other hand, théhagtis applicable only to tests with
known statistical distributions. For measures with unknatatistical distribution, permutation-

based approaches are practically used .

In a permutation-based method, the adjusted significaml i@&lso known ag-values)
based on the number of tests undertaken is also computed) away less conservative than
the Bonferroni method. When conducting permutation, werassthat there is no relationship
between features and classes so that new samples can belraeassigning permuted class
labels to original data. Thevalue then can be calculated based on the feature staistimany
these kind of pseudo data sets. However, the conclusionmihaeally want to draw from the
permutation test might bef we have selected features using a particular statistic, what pro-
portion of these features are likely to be false posiiv€o make such a conclusion, one can
follow the steps illustrated in Figure 3.5 for a testingrdevel. Alternatively, in stead of single
cutoff value, we can set up a series of thresholds and contipeitevalue for each of them based
on the permutation test, so that a tablef threshold versug-value can be created. If we want
no more tham% of the features selected in the original (non-permutedeerpent to be false
positive, then we should look up taldleusingq for the thresholdy, and usex, as the statistic

threshold to pick up features from original experiment.

Although the permutation is designed to take the place oBtaferroni correction, it is
often found that the critical values determined in this rodthre nearly as conservative as those
based on the Bonferroni adjustment [85]. However, it hasssum@ption on the distribution of
the selected test statistic. As indicated earlier, anathigcal consideration of the permutation
test is that the procedure does not address whether featgresrrelated. In the case of a large
number of strongly correlated features versus a relativalsramber of samples, the test statistic

on each permutation will not significantly change. Then taemutation becomes meaningless.
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1. Select a statistic which will be used to measure diffegsriietween classes.
2. Determine the threshold of the statistic according taificant levela.
3. Calculate the test statistic for each of totafeatures
4. Get the number of features selected by the thresholdidesw.
5. Forith permutation test iteration &€ 1,2, - - -, £):
generate a pseudo data set by randomly permuting the claeds taf all the sampleg,
calculate the same test statistic for every feature,
record how many features are selected by the thresholdtaldrask;.

t
Zi:l ki

6. Compute the percentage of features selected during theupaion testp = ==L

calculatep x w to be the expected number of false positive.

Figure 3.5: A diagram of a permutation-based method forufeaselection. In practice, the
significant levelx is often set as 5% or 1%, the permutation timeshould be very large, say
10,000 times, or for all possible permutations of the clabgls.

Unfortunately, in many biological domain, features havergj correlations from sample to sam-

ple.

3.5 Chapter Summary

In this chapter, we reviewed feature selection techniqoesldta mining. There are two broad
categories of selection algorithms, filter and wrapper, aedindicated that filter approaches
are more suitable to be applied to solve biological problem& presented a variety of filter
methods, such asstatistic measure, Wilcoxon rank sum test, entropy-baseasures, principal
components analysis and so on. We also put forward a newéesdlection strategy, ERCOF,
which is a 3-phase feature filtering process aiming to if¢atisubset of sharply discriminating
features with little redundancy from gene expression @efilThe chapter was ended with a

discussion on using feature selection in bioinformatics.
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Chapter 4

Literature Review on Microarray Gene

Expression Data Analysis

One of the important recent breakthroughs in experimentééonlar biology is microarray tech-

nology. This novel technology allows the monitoring of eegsion levels in cells for thousands of
genes simultaneously and has been increasingly used iercaasearch [7, 41, 6] to understand
more of the molecular variations among tumors so that a nadigbte classification becomes
possible.

There are two main types of microarray systems [35]: the cDN&roarrays developed
in the Brown and Botstein Laboratory at Stanford [32] and high-density oligonucleotide
chips from the Affymetrix company [73]. The cDNA microargagire also known as spotted ar-
rays [77], where the probes are mechanically depositedrontiified glass microscope slides us-
ing a robotic arrayer. Oligonucleotide chips are synthesbin silico (e.g., via photolithographic
synthesis as in Affymetrix GeneChip arrays). For a moreildetéantroduction and comparison

of the biology and technology of the two systems, please tefgl7].

Gene expression data from DNA microarrays are charactebgenany measured variables
(genes) on only a few observations (experiments), althdnadih the number of experiments and
genes per experiment are growing rapidly [82]. The numbgeaks on a single array is usually
in the thousands while the number of experiments is only atéaw or hundreds. There are
two different ways to view data: (1) data points as genes,(a8hdata points as samples (e.qg.

patients). In the way (1), the data is presented by expressiels across different samples, thus
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there will be a large number of features and a small numbearoptes. In the way (2), the data
is represented by expression levels of different genes, tithel case will be a large number of
samples with a few attributes. In this thesis, all the distrss and studies on gene expression

profiles are based on the first manner of data presentation.

Microarray experiments raise many statistical questiomaany diversified research fields,
such as image analysis, experimental design, cluster amirdinant analysis, and multiple
hypothesis testing [35]. The main objectives of most mimaastudies can be broadly classified

into one of the following categories: class comparisorssldiscovery, or class prediction [77].

e Class comparisors to establish whether expression profiles differ betwéasses. If they
do, what genes are differentially expressed between tBeedai.egene identificationFor

example, which genes are useful to distinguish tumor sasripden non-tumor ones.

e Class discoverys to establish subclusters or structure among specimeamsiong genes,

for example, to define previously unrecognized tumor sudgyjgd1, 140].

e Class predictioris to predict a phenotype using information from a gene esgiom pro-
file [77]. This includes assignment of malignancies intonaclasses (tumor or non-
tumor) or tumor samples into already discovered subtypesligtion of patients outcome
such as which patients are likely to experience severe axigity versus who will have
none, or which breast cancer patients will relapse withia yiwars of treatment versus who

will remain disease free. Figure 4.1 shows a work flow of cfassliction.

In this thesis, we will focus on the class comparison andsctaediction. For these two
tasks, supervised analysis methods that use known classniafion are most effective [77]. In
practice, feature selection techniques are used to igegtistriminatory genes while classifica-
tion algorithms are employed to build models on training glas and predict the phenotype of

blind test cases.

4.1 Preprocessing of Expression Data

As with most of the data fed to machine learning algorithmenegexpression data also need

necessary preprocessing before being further analysest:dR®an the characteristics of the exper-
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Figure 4.1: A work flow of class prediction from gene expressiata. A collection of expression
profiles with known class label (+ or -) is the input of a sufead learning algorithm. After
being trained on these profiles, the prediction model byilthe learning algorithm will be able
to predict the class label of a new case of expression prdfile.picture is captured from [77].

imental data, the normal preprocessing steps include swaieformation, data normalization,

missing value management, replicate handling and so on [49]

4.1.1 Scale transformation and normalization

In cDNA microarray experiments utilizing “spotted arraystie two mRNA samples, known as
targets, are reverse transcribed into cDNA (labeled usimydifferent fluorophores — usually
a red fluorescent dye cyanine 5 and a green fluorescent dyéeya)) and mixed in equal
proportions and hybridized simultaneously to the glasdes|B5]. Intensity values generated
from hybridization to individual DNA spots are indicativé gene expression levels. Then the
ratio of the red and green fluorescence for each spot is usete&sure the change between
samples. In order to accurately and precisely measure genession changes, it is important to
understand sources of variance in expression data. In eviergarray experiment, experimental
randomness and systematic variations [139] are the two smairces of variance. For example,
a well-known systematic variation originates the biaseseiated with the different fluorescent
dyes. If two identical MRNA samples are labeled with différdyes and hybridized to the same
slide, it is rare to have the dye intensities equal acrosspalis between these two samples [139].
Since we are looking at expression ratios, we expect therpatin an asymmetrical scale:
over-expressions will have values between 1 and infinitdeadmder-expression will between 0
and 1. In order to give the same weight to both over-exprassaimd under-expressions, we need
to transform the scale. A simple and common way is to do lagsformation. Normally this is

done by takindog, of the ratio, such ak g, (Cy5/Cy3). Besides, considering data in log-space
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can also help reduce the effects of outliers [85].

In order to minimize systematic variations in gene expmsévels of two co-hybridized
MRNA samples, normalization should be conducted for sgatieNA microarrays. This will
help easily distinguish biological differences between samples and make the comparison of
expression levels across slides reasonable. There amaleags to conduct normalization. For
example, in one of the general methods, the intensity vedwmesiormalized according to the
formula: NV = (V — Min)/(Max — Min), where NV is the normalized valuéy the raw
value,Min (M az) the minimum (maximum) intensity among all samples for targy After the
normalization, each intensity value is to fall within thega of 0 to 1. Another common practice
is to center the data by the median or mean ratio, and podsildlgale the data by the standard
deviation [85]. Recently, Yangt al proposed a composite normalization procedure in [139],
based on robust local regression, to account for intensityspatial dependence in dye biases
for different types of cDNA microarray experiments. Thewstucted a novel control sample
named MSP including all genes present on the microarraytitnatkd it over the intensity range
of a microarray experiment. Under the composite idea, Idensity values will be normalized
based on all genes in the corresponding intensity rangeevkigher values will be normalized

based on the MSP titration series.

When we illustrate our work on some gene expression profiloige by one in the next
chapter, we will indicate whether a preprocessing (logdfarmation, normalization and so on)
has been conducted on a particular data set. However, asisastated in [85], the normaliza-
tion is not technically required, though it will help reduite effects of varying dynamic range

from sample to sample for cDNA microarray data.

4.1.2 Missing value management

One of the characteristics of the gene expression profileeigxistence of missing values in the
data set. There are diverse reasons that cause missing,velcieding insufficient resolution,

image corruption, or simply due to dust or scratches on ide §125]. In practice, missing data
also occur systematically as a result of the robotic methusésl to create them. Unfortunately,
many data analysis algorithms require a complete matrienégrray values as input [125]. For

example, standard hierarchical clustering methodskanmkans clustering are not robust to the
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excess of missing values since the calculations in the igthgos are based on a distance matrix.
Even with a few missing values, they may lose effectivendsrte strictly, some methods like
principal components analysis can not deal with missingegkt all. Therefore, methods for
imputing missing data are needed, not only to minimize tfecebf incomplete data on further

analyses, but also to increase the range of data sets to lghicting algorithms will be applied.

There are some general solutions to impute missing valhesigh there is not a large
literature that were specific to gene expression data. Merést four commonly used strategies:
(1) filling blanks with zeros; (2) replacing with the geneigeeage expression levels over all
experiments; (3) replacing with the median of the gene’sesgion levels over all experiments;
(4) using weighted:-NN imputation method. Thé&-NN-based method is to use thkenearest
neighbours to estimate the missing values, wlieigea user-defined parameter. The selection of
“neighbours” can be done via calculating certain simijanitetric between genes, such as widely
used Euclidean distance, Pearson correlation, variantienization and etc [125]. For example,
if gene A has one missing value in experiment 1, (RBIN-based method will find other genes,
which have a value present in experiment 1 and have mosesiexpression values téin other
experiments. The values of thels@mearest genes in experiment 1 are then averaged by a weight
metric and used as the estimated value of gérie experiment 1. In the weighted average, the

contribution of each gene is weighted by similarity of itpession levels to gend.

Troyanskayaet al [125] compared three missing value imputation methods &tynig them
on three microarray data sets. Three imputation methode sigrple gene average, weighted
k-NN and their proposed singular value decomposition (SV&yeld method. The mechanism
of SVD-based algorithm is to (1) use singular value decoritipasto obtain a set of mutually
orthogonal expression patterns that can be linearly cosektio approximate the expression of all
genes in the data set, (2) refer these patterns as eigentjkagsincipal components) and select
k most significant eigengenes by sorting their correspondiggnvalue, (3) estimate a missing
value in geneA by regressing gend against thet eigen genes and then use the coefficients
of the regression to reconstruct a replacement value froimearl combination of thé eigen
genes. Their results showed that weightebIN appeared to be the most accurate and robust
method, and both weightéddNN and SVD-based techniques surpass the commonly usetesimp

average method. This conclusion is very natural since timming methods take advantage of
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the correlation structure of the data to estimate missipgession values.

Although we can efficiently handle missing values in micragmata by using weighteic
NN imputation method, the method itself requires that weshewough complete genes (clones)
(i.e. genes with no missing values) in the data set so thahfimgal neighbours can be ensured.
When there are too many missing values in an original datasetcan consider to filter some
genes based on amount of missing elements. For example,tutdya an diffuse large-B-cell
lymphoma addressed in [60], genes (clones) having more2®#nmissing values were removed
before any analysis being conducted. Please note that, 1#{8, the missing values in the gene

expression data sets were excluded in the analyses.

4.1.3 A web-based preprocessing tool

An interactive web-based software for preprocessing raitay gene expression data was intro-
duced in [49], which was implemented in a Perl CGlI script. iBes the functions mentioned
above, such as log-transformation, normalization andingsglues management, it also pro-
vides a way to handle replicate. The replicate here meansaime cDNA clone that spotted
several times or different cDNAs representing the same genthe cDNA array. The usage
of replicates is mainly for quality checking. Generally,dn experiment, several expression
values of a replicated gene will be output, though only oneeieded in the further analysis.
How to derive a proper expression level from several out@ies? The provided solution
is quite simple: using the average or the median value ohallréplicates upon checking the
consistency among them. During the consistency checkiregirtedian of all the values is cal-
culated and then the replicates whose expression valugyanbehe threshold from the me-
dian are removed. The threshold is a user-defined value. HBheimterface of this tool is at

http://gepas.bioinfo.cnio.es/cgi-bin/preprocess

4.2 Gene ldentification and Supervised Learning

Supervised learning algorithms are used to establish rmddetlassify samples in different
classes of gene expression profiles while gene identifitatamswer which genes are differ-

entially expressed between the classes, i.e. featuretiselecenerally, gene identification is
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carried out before learning algorithms are used.

4.2.1 Gene identification

In a pioneer study in 1999, Golw al[41] analysed gene expression profiles of 27 Acute Lym-
phoblastic Leukemia (ALL) samples and 11 Acute Myeloid Lemka (AML) samples. They
identified genes with differential expression between Alnd &ML samples using the signal-
to-noise measure that we introduced in Section 3.2.1 of teh&p According to signal-to-noise

statistic, the coefficient correlation between gerand classes;(g), is defined as:

(9)

_ —nP
s(g) = 5A(g) + 05(g) (4.1)

whereu(g) andd(g) are the mean and standard deviation of the gene expressi@s\ar gene
g for all the patients of clasgl (ALL) or classB (AML). Large positive value o&(g) indicates
strong correlation with clasd whereas large negative value«fy) indicates strong correlation
with classB [41]. Then an equal number of genes with positive and withatieg correlation
values were selected to integrate into the learning algoritThe number of informative genes
they chose was 50, but they stated in the paper that “theipie® results were insensitive to
the particular choice: predictors based on between 10 abdj@0es were all found to be 100%

accurate, reflecting the strong correlation of genes wighARIL-ALL distinction”.

Similar to Golubet al, there were some other researchers who used statistid¢slttodis-
cover differentially expressed genes between sampleedasach as-statistic and its variation
(like signal-to-noise, Fisher criterion score), Wilcoxamk sum test and so on. For examples,
in [12], genes selected hystatistic were fed to a Bayesian probabilistic framewarnkdample
classification. Olshept al [85] suggested to combinestatistic, Wilcoxon rank sum test or the
X2-statistic with a permutation-based model to conduct gefexson. In their model, the sig-
nificance of genes is determined by the associated stadisti@ critical value calculated on the
same statistic using the permuted labels. The permutatisarople class labels were conducted
for a few thousands times. Wilcoxon rank sum test is anothesisure favored by researchers
mainly due to its non-parametric characteristic.

Park et al built a scoring system in [87] to assign each gene a scoredbasdraining

samples. For a gene, they first sorted training samplesdingoio the expression levels of this
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gene — from the smallest expression level to the largest 8aeond, they swap the class labels
of the samples to make the gene into a perfectly discrimigatharker — all high expression
values belong to one class of samples and all low expressitues belong to the other class.
Then the score of the gene was the minimum number of the reegessaps. Finally, a small set
of differently expressed genes, which had smaller scoreg diecovered. They claimed that this
scoring approach was robust to outliers and different nbzatéon schemes because it used ranks
rather than actual expression levels. Essentially, tlisesis identical to Wilcoxon rank sum test
statistic [51]. Some researchers also conducted comparisetween Wilcoxon rank sum test
and some other statistical measures on gene selectionx&woipée, Troyanskayat al compared
t-statistic, Wilcoxon rank sum test and a heuristic methagedaon Pearson correlation in [126].
Their results showed that overall speaking, the rank sutrafgseared most conservative, which
may be advantageous if the further biological or clinicages of the identified genes are taken

into account.

Jaegetret al [51] designed three pre-filtering methods to retrieve gsoofsimilar genes.
Two of them are based on clustering and one is on correlafi@tatistical test then was applied
to these groups to finally select genes. The statisticad testd in their study included Fisher
criterion score, signal-to-noise, Wilcoxon rank sum testfatistic and TnoM (Thresholded-
number-of-Misclassifications), which calculates a mirlieaor decision boundary and counts
the number of misclassifications done with this boundaryseflaon the test results on three
public gene expression data sets using the selected gesheg@uort vector machines classifica-
tion algorithm, they concluded that feature selection caaily help improve the classification
accuracy, but there is no absolute winner among their pempgse-filtering methods and the
five statistical tests. Another comparison of using différstatistics in gene identification was
conducted by Thomaet alin [121], they presented a statistical regression modelpyroach to
discover genes that are differentially expressed betwaertkasses of samples. Their modeling
approach used known sample group membership to focus oessipn profiles of individual
genes. They tested their methodology on the AML-ALL leukemata set of Golub [41] and
compared their results with those obtained usirggatistic or Wilcoxon rank sum test. Their
model made no distributional assumptions about the dataeowunted for high false-positive

error rate. However, in practice, th&-scores they proposed are expected to be similar to
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statistics, when the distribution of expression levelslwaapproximated by the normal distribu-
tion. In a recent review of several statistical methods imtef their effectiveness to discover
differentially expressed genes, Pan [86] comparethtistic, the regression modeling approach
against a mixture model approach proposed by him. Diffefienmh ¢-statistic and the above
regression modeling approach that sets strong assumpiiotise null distribution of the test
statistics, the mixture model estimated the null distidoutirectly. He pointed out that although
the three methods were all based on using the two-satrgilistic or its minor variations, they
differed in how to associate a statistical significance lleweéhe corresponding statistic so that
large differences in the resulting significance levels drartumbers of genes discovered were
possible [86]. The Bonferroni method described in Sectidro8 Chapter 3 was used in his study

to adjust the significant level.

SAM (Significance Analysis of Microarrays), a software deped at Stanford Univer-
sity (http://www-stat.stanford.edu/ tibs/SAM/ ), is designed to find significant
genes in a set of microarray experiments based on stronstisttstudy on genes [127]. SAM
first computes a statistic to each gene on the basis of changenie expression relative to the
standard deviation of repeated measurements for the gémm for those genes whose statistic
is greater than an adjustable threshold, SAM uses perrongatif the data to estimate the per-
centage of genes identified by chance (known as false digscoze (FDR)). The threshold for
significance is determined bytaning parametep, chosen by the user based on FDR, dold
changeparameter to ensure that the selected genes change at frass@ecified amount [26].
Besides gene expression profiles for phenotype classificg®AM can be applied to other types
of experimental data [127]. For example, to identify genbsse expression correlates with sur-
vival time, the assigned score is defined in terms of Cox'p@ribonal hazards function, which
is a popular method for assessing a covariate’s effect aerpatremain alive or censored dur-
ing the follow-up at the time of the study. To identify genelsose expression correlates with a
guantitative parameter (e.g. a numeric type class lah#t)) as tumor stage, the assigned score

can be defined in terms of the Pearson correlation coefficient

Besides statistical measures, other dimension reductigthads were also adopted to se-
lect genes from expression data. Nguyaral [82] proposed an analysis procedure for gene

expression data classification, involving dimension réidacusing partial least squares (PLS)
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and classification using logistic discrimination (LD) anghgratic discriminant analysis (QDA).
They compared PLS to the well known dimension reduction pubthf principal components
analysis (PCA). PCA reduced the high dimensional data tp arfitw gene components which
explained as much of the observed total gene expressioatiearias possible and PLS chose
components to maximize the sample covariance betweendke ahd a linear combination of
the genes. The essential difference between these two dsathihat PLS is a supervised method
while PCA is an unsupervised method since it selects femituithout regard to the class infor-
mation of the samples. For more about PCA, please refer ttioBe®.2.5 in Chapter 3. After
applying PLS to original high dimension data, a simpkatistics was used to conduct a further

gene selection. Finally, 50 genes were provided to theifiztion step.

4.2.2 Supervised learning to classify samples

Various machine learning algorithms have been applied malect classification from gene ex-
pression data. Let’s still start with the AML-ALL leukemiausly conducted by Golulet al

in [41]. The classification method they proposed was a weiigene voting scheme, which
was a combination of multiple “univariate” classifiers [43h detail, they defined, = s(g)
(reflects the correlation between the expression levelseaeg and distinction), and, =
[11(g) + 1B(9)]/2 (the average of the mean expression values in the two cjassas s(g)
was the signal-to-noise measure of gerthat they used to select genes. When doing prediction
for a new sampld’, lett, denote the expression value of geni@ the sample. The vote of gene
gwasV, = a, * (t, — by), with a positive value indicating a vote for clagsand a negative value
indicating a vote for clas8. The total vote for classl was obtained by adding up the absolute
values of the positive votes over the selected informatemeg, while the total vote for clags
was obtained by adding up the absolute values of the negattes. In order to avoid arbitrary
prediction when the margin of victory is slight, they defirfpdediction strength” (PS) to mea-
sure the margin of a winner class. A threshold of PS was esitegtol to minimize the chance of

making an incorrect prediction.

Dudoit et al [35] conducted a comparison of using some discriminant austtior classifi-
cation of gene expression data. These well-known clasifitanethods included Fisher linear

discriminant analysis (FLDA), maximum likelihood disciimant rules (such as linear discrimi-
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nant analysis (LDA), diagonal quadratic discriminant el (DQDA) and diagonal linear dis-
criminant analysis (DLDA, also known as naive Bayegjhearest neighbourg{NN) classifier,
classification and regression trees (CART) and aggreg&mBT trees by boosting procedure.
Before classification, a gene filtering was performed basethe ratio of genes between-group

to within-group sums of squares. For a ggnéhis ratio, BW (j), was given by

_ ik Iy = k)T — ;)2
i 2k L(yi = ) (i — Tj)?

BW(35) (4.2)

wherey; was the class label of sampl@nd(e) was an indicator function — equaling 1 if the
condition in the following parentheses was true and O otlsenw; andz,; were the average ex-
pression level of gengacross all the samples and across samples belonging tocabadys [35].
Then a certain number of genes with the largest BW ratios s&lected for classification. They
did experiments on three data sets. Their results showed4Kal classifiers and DLDA had the
lowest error rates, whereas FLDA had the highest. CARTbaksessifiers performed intermedi-
ately, with aggregated classifiers being more accuratedtsimgle tree. They explained that the
poor performance of FLDA was most likely caused by the faat thata sets contained a large
number of genes but a limited number of samples. Under suitbatisn, the ratios of between-
group and within-group sums of squares and cross-prodecinie quite unstable and provided
poor estimates of the corresponding population quantitielsey also showed that the perfor-
mance of FLDA improved when the number of selected genes sa®ased to 10. Although
CART-based classifiers did not achieve the best performaneg could exploit and reveal inter-
actions between genes as well as relationship between gadgshenotypes. Most importantly,
decision trees/rules output by these methods are easyetpiiet and understand. In addition,
their results also demonstrated that the unstablenessiogle slassification tree on prediction

could be greatly improved when it was used in combinatioma@gregation techniques.

As mentioned previously in Chapter 2, support vector mahifsVM) have been exten-
sively used in biological data analysis. It is also playingeay active role in classifying gene
expression data. SVM has many mathematical features theg ihattractive for gene expres-
sion analysis, such as its flexibility in choosing a simtiafunction, sparseness of solution when
dealing with large data sets, the ability to handle largéufeaspaces, and the ability to identify

outliers [23]. For example, in an early work done by someaegeers in MIT [80], a linear
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SVM classifier with a rejection level based on confidenceeslas applied to classify Golub’s
AML-ALL subtypes leukemia disease. They achieved a betegfopmance on this task than
Golubet al did [41]. Fureyet al[39] further tested the efficiency of SVM on several otherayen
expression data sets and also obtained good results. Bterofselected discriminatory genes

via signal-to-noise measure.

Besides the above techniques, Bayes model, a classicalffmative method, has been
also applied to gene expression study. For example, two resxe®an classification algorithms
were investigated in Lét al [68] which automatically incorporated a feature selectiwocess.
The fundamental technique of the algorithms was a Baysiproaph named automatic relevance
determination (ARD), which was employed to construct agifaes that was sparse in the number
of samples, i.e. the relevance vector machine (RVM). Letval [68] adopted the idea of ARD
to gene expression study. They developed two algorithmse Was the standard RVM with
sparsity obtained in the feature set. Another performetiifeaselection by isolating the feature
dependence in the log-marginal likelihood function. Thedatosion they obtained was that these

algorithms had comparable performance to SVM when dealitiy gene expression data.

4.2.3 Combing two procedures — wrapper approach

In some studies, procedures of gene selection and supgiteigming were not separated dis-
tinctly. Similar to the wrapper approach illustrated in @tea 3, identification of significant
genes were incorporated with learning process. For exariydstonet al [131] integrated fea-
ture selection into the learning procedure of SVM. The feagelection techniques they used
included Pearson correlation coefficients, Fisher cdtescore, Kolmogorov-Smirnov test and
generalization selection bounds from statistical leayrireory. Going a step further, Guyeh

al [43] presented an algorithm called recursive feature elaton (RFE), by which features were
successively eliminated during the training of a sequef@V/d/ classifiers.

There are some other examples of using the wrapper idea eaygamession data analysis.
Gene selection was performed in [50] by a sequential seargime, evaluating the goodness of
each gene subset by a wrapper method. The method executsdpivised algorithm to ob-
tain its accuracy estimation by a leave-one-out process.stipervised classification algorithms

reported in this paper included IB1 (i.e. 1-NN), Naive-Bay€4.5 and CN2. The paper demon-
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strated that the accuracy of all these learning algorith@as significantly improved by using the

gene selection procedure. Another example of using theperamethod was [67], where let

al combined a genetic algorithm (GA) and theNN method to identify a subset of genes that
could jointly discriminate between different classes ahples. First, GA was used to obtain

many such “near optimal” subsets of differentially expeesgenes independently. Then, the
relative importance of genes for sample classification whresen by examining the frequency

of membership of the genes in these sets.

Culhaneet al [31] applied Between-Group Analysis (BGA) to microarrayalaBGA was
based on conducting an ordination of groups of samplesgusstandard method such as corre-
spondence analysis (COA) or principal components anafi’&#\). For N groups, BGA could
find N — 1 eigenvectors (or axes) to maximize the between-groupnegiaEach of eigenvectors
could be used as a discriminator to separate one of the gfoupsthe rest. After a BGA, the
samples are separated along axes. The genes that were gpostgible for separating the groups
were those with the highest or lowest coordinates alongeth@es. One advantage of BGA is
that it can be safely used with any combinations of numbergeokes and samples so that no

advanced gene selection is necessary.

PAM (Prediction Analysis for Microarrays), developed ata@ord University fittp:
[Iwww-stat.stanford.edu/"tibs/PAM/ ), is a class prediction software for genomic
expression data mining. It performs sample classificaiomfgene expression data based on
the nearest shrunken centroithethod proposed by Tibshiraset al [123]. This method com-
putes a standardized centroid for each class — the averageegpression for each gene in each
class divided by the within-class standard deviation fat tfene. This standardization has the
effect of giving higher weight to genes whose expressioriable within samples of the same
class [123]. The main feature of nearest shrunken centtagsification from standard nearest
centroid classification is that it "shrinks” each of the slagntroids toward the overall centroid
for all classes by an amount namiggleshold The selection of the threshold can be determined
by the results of cross-validation for a range of candidalees. When classifying a new sam-
ple, it follows the usual nearest centroid rule, but usirgghrunken class centroids. The idea of
shrinkage has two advantages: (1) it achieves better pesfore by reducing the effect of noisy

genes, and (2) it does automatic gene selection. In patidfila gene is shrunk to zero for all
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classes, then it will be removed from further considerati®\M has been applied to several
DNA microarray data sets to do classification [123, 124]hsas small round blue cell tumor
data of childhood [54], diffuse large B-cell ymphoma [6]MA-ALL leukemia [41]. Recently,

PAM is also used to classify patients into appropriate ciihsubgroups (e.g. high risk and low

risk groups) identified by clustering algorithms on generegpion profiles [11].

4.3 Applying Clustering Techniques to Analyse Data

Another early work on analyzing gene expression data wae grAlon et al [7]. Their data
contained the expression of the 2000 genes with highestmalnintensity across 62 tissues,
including 22 normal and 40 colon cancer. Their study wasdasetop down hierarchical clus-
tering, a method of unsupervised learning. They demoiestriato kinds of groupings that (1)
genes of related functions could be grouped together byecing according to similar temporal
evolution under various conditions, and (2) differentuiss formed different clusters, i.e. most
normal samples clustered together while most cancer sarojistered together. Although they
showed that some genes are correlated with the normal veasicer separation, they do not

suggest a specific method of gene selection in the paper.

Since [7], quite a few researchers have applied clustegobniques to gene expression
data, including self organizing maps, simulated anneaaygraph theoretic approaches. In [111],
the input data was represented as a weighted graph, whdreesecorresponded to samples
and edge weights reflected pairwise similarity between treesponding samples. Then the
weight of an edge was believed to reflect the likelihood ttaendpoints originated from the
same clustering under some simplified probabilistic assieomg [111]. An algorithm named
CLICK (CLuster Identification Connectivity Kernels) was/@nted to partition the graph using
a minimum-cut algorithm, which minimizes the sum of the wdgof the edges joining the two
parts. However, one disadvantage of this approach is that ik little guarantee that the algo-
rithm will not go astray and generate partitions that ardnlyiginbalanced. To avoid this, Xing
et al [136] proposed CLIFF (CLustering via Interactive FeatuilteRng) to combine clustering
and feature selection in a bootstrap-like process. Thgordhm interacted between feature fil-
tering process and clustering process in a such way thatpachss used the output of the other

process as an approximate input. They applied Approximatenidlized Cut, a graph partition
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algorithm, to generate a dichotomy of samples during eachtion. In the feature selection pro-
cess, they used the unsupervised independent featureingtighnique to rank all features in
terms of their power to discriminate. Then an initial p#otitbased on thé most discriminative
features was generated (valuwas pre-defined). Based on this partition, they applied rstiged
algorithms, information gain ranking and Markov blanketefiing, to determine feature subset
from which new partition would be generated. In turn, the lyegenerated partition could be
used to further improve the feature selection. CLIFF wasieghfpy another paper [135] to se-
lect genes from the leukemia data set [41] and good cladsificeesults were obtained via three
learning algorithms: a Gaussian classifier, a logisticasgjon classifier and a nearest neighbour

classifier.

In a recent work conducted by Xat al[137], gene expression data was presented as a Min-
imum Spanning Tree (MST), a concept from graph theory. By pihésentation, each cluster of
the expression data corresponded to one subtree of the M#dh vigorously converted a highly
computationally intensive multi-dimensional clusteripgpblem to a simplified tree partitioning
problem. Based on the MST representation, they developenirder of efficient clustering al-
gorithms and integrated them into a software named EXCAVRTBXpression data Clustering

Analysis and VisualizATion Resource).

4.4 Patient Survival Analysis

Gene expression profiles with clinical outcome data enaleitoring of disease progression
and prediction of patient survival at the molecular levelfedv published studies have shown
promising results for outcome prediction using gene exgioesprofiles for certain diseases [102,
14,129, 140, 88, 60].

Cox proportional hazard regression [30, 74] is a common atkth study patient out-
comes. It has been used by Rosenwetldl to analyse survival after chemotherapy for diffuse
large-B-cell lymphoma (DLBCL) patients [102], and by Begral to predict patient out of lung
adenocarcinoma [14]. With this method, genes most relatexitvival are first identified by a
univariate Cox analysis, and a risk score is then defined iagarlweighted combination of the

expression values of the identified genes.
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Ando et al [9] fed gene expression profiles to a fuzzy neural networkNFBystem to
predict survival of patients. Their method contained savsteps. (1) Predicting the outcome
of each patient using one gene at one time. (2) Ranking genéselr accuracy — the gene
with the highest prediction accuracy had the highest raBkSélecting partner genes for highest
ranked gene. They fixed the gene with the highest rank (nas&sagene”) and used a similar
prediction method to select a partner gene (named as “2rel’ geho gave the highest accuracy
in combination with the “1st gene”. Similarly, they fixed tigene” and the “2nd gene” to find
a 3rd gene. This procedure stopped after six rounds or whega thas no gain on accuracy. (4)
Applying the procedure described in (3) to the ten highested genes. (5) Using each of the ten
highest ranked genes and its selected partner genes todictjpme (6) Optimizing the resulting

ten FNN models built on the combinatorial genes by the baokgyation method.

Parket al [88] linked gene expression data to patient survival timgagithe partial least
squares regression technique, which is a compromise betwéaeipal component analysis and
ordinary least squares regression. Sheppl[114] employed the weighted voting algorithm to
identify cured versus fatal for outcome of diffuse large &@tymphoma. The algorithm calcu-

lated the weighted combination of selected informativekmagenes to make a class distinction.

In a recent publication [60], LeBlaret al developed a gene index technique to identify the
associations between gene expression levels and patieainoe. Genes were ordered based on
linking their expression levels both to patient outcome tara specific gene of interest. To select
such a reference gene, one was recommended to considemntnthge had been identified to be
most strongly related to the outcome or suggested frommadtelata such as a protein analysis
or other experimental work. The core of their proposal wasoimbine the correlation between
genes with the correlation between genes and patient oatasrwell as class membership. They
demonstrated their method using the DLBCL data set colidoyeR osenwalabt al consisting of

160 patients [102].

4.5 Chapter Summary

Using gene expression data to analyse human malignand@estthacted many researchers these
years. In this chapter, we did an extensive review on thent@olyies applied to gene expression

studies, focusing on data preprocessing, gene selectibaample supervised learning. The op-
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erations of data preprocessing mainly include scale toamsftions, data normalization, missing
value management, replicate handling, and flat pattermifi¢ge In the studies of gene selection,
statistical methods were widely adopted while feature weapdea and clustering algorithms
also demonstrated their efficiency. To solve the classificgiroblem arising from gene expres-
sion data, many traditional and newly invented supervisathing approaches have been applied
to distinguish tumor from non-tumor samples, one subtypefother subtypes of certain dis-
ease and so on. From the extensive literature review in izipter, we can see that approaches to
gene expression data analysis were not uniform; indeedsalevery paper presented a different

method or described a novel manner/procedure to analysis.
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Chapter 5

Experiments on Microarray Data —

Phenotype Classification

In this chapter, our proposed gene selection process ER@€IRiIEd technology description
can be found in Section 3.3 of Chapter 3) and the ensemblecidide trees method CS4 (Sec-
tion 2.3.4 of Chapter 2) will be applied to some bench-markrod@rray gene expression and
proteomic data sets to classify phenotypes. Phenotypsifitasion is typically performed on
binary type, such as tumor against non-tumor (i.e. nornfd).each data set, experimental re-
sults using some other related feature filtering methodschassification algorithms will also be

presented, so that reasonable comparisons can be addressed

5.1 Experimental Design

We test our methodology on several high-dimensional data sdich were published recently
in Science, Natureand other prestigious journals. All these data sets have desumulated at
http://sdmc.i2r.a-star.edu.sg/rp/ and transformed into .data, .names format that
is widely used by the software programs for data mining, rimeckearning and bioinformatics.

See Appendix B for more detail about this data repository.
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5.1.1 Classifiers and their parameter settings

In order to compare CS4 with other ensemble of decision trexthods, Bagging, AdaBoostM1
and Random forests are also run on the same data sets. Wahadystate-of-the-art machine
learning algorithms in gene expression analysis, suppstor machines (SVM) ané near-
est neighboursi-NN are tested as well. The software implementation of theassification
algorithms (except CS4) used in the experiment¥eka(Bagging, AdaBoostM1, SVM and
k-NN in version 3.2 and Random forests in version 3.3.6), a {texder GNU) machine learn-
ing software package written in Java and developed at Usityeof Waikato in New Zealand

(http://Iwww.cs.waikato.ac.nz/ " ml/weka/ ).

For most of the algorithm parameters, we adopt the defattihgeof Wekas implementa-
tion. Particularly,Wekaimplemented SVM using sequential minimal optimization SMalgo-
rithm [93] to train the model (see section 2.3.2 for more iinfation about SMO). Other default
settings of SVM include: conducting data normalizatioringgolynomial kernel functions, and
transforming the output into probabilities by a standagirsiid function. Most of the time, the
linear kernel function is used unless stated otherwise.0AB-NN, we also use normalized data
and set the value dfto 3 (default value is 1)— i.e. 3 nearest neighbours (i.e .NB-Will be used
in prediction.

Breiman noted in [19] that most of the improvement from baggis evident withinten
replications. Therefore, we set 20 (default value is 10hasnumber of bagging iterations for
Bagging classifier, the number of maximum boost iteratiamsAidaBoostM1, and the number
of trees in the forest for Random forests algorithm. Below,list the default settings iWeka

for these three classifiers.

e Bagging. The random seed for resampling is 1.
e AdaBoostM1. Usdooosting by weighting

¢ Random forests. The number of feature candidate to conisidet(logom + 1), wherem

is the total number of features. The random seed to pick uptareis 1.

In addition, the implementation of the base classifier CA.B/ekaversion 3.2 was based

on its revision 8, which was the last public version beforevdts commercialized. We follow
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the default settings that tree pruning and subtree raisieg@nducted. The CS4 algorithm was
implemented usingVekaAPls (Version 3.2) and has been integrated Miekapackage as one
of its classifiers. By default, we also build 20 trees fromhe@ime of learning. In case the
number of available features is less than 20, the numbeee$ will be decreased accordingly

and automatically.

5.1.2 Entropy-based feature selection

In the feature selections conducted by ERCOF, we select §&ffisant level (for Wilcoxon rank
sum test) and 0.99 Pearson correlation coefficient thrdsliar each data set, besides ERCOF,

we also try the following entropy-based filtering scenatmsonduct feature selection.

e All-entropy: choose all the features whose value range can be partitione intervals
by Fayyad’s discretization algorithm [36] (also see Sec8d.4 of Chapter 3), i.e. all the
output features from the Phase | of ERCOF.

e Mean-entropy: choose features whose entropy measure is smaller thanethe emtropy

value of all the genes selected by above “all-entropy” stga{64].

e Top-number-entropy: choose a certain number of top-ranked features accordireg-t

tropy measure, such as top 20, 50, 100 and 200 genes.

In addition, performance on original intact data (i.e. vehii@ature space, no gene selection)
are also obtained and presented under coldthin the result table of each data set. Please note

that the type of features is always numeric.

5.1.3 Performance evaluation

Since the number of samples (i.e. experiments) is small e @xpression profiles, we simply
usenumber of misclassified samplieseach class as the main evaluator. The format of perfor-
mance presentation B(X : Y), whereX (or Y') is number of misclassified samples in the first
(or second) class and = X + Y. Other evaluation measures, such as sensitivity, spegifici
and precision are also calculated when necessary. In mastsek, we present results obtained

from a 10-fold cross validation on all samples of each dataBee samples are shuffled (with
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Input data

‘ Randomly divide data into k equal size by disjoint folds
i=1

‘ i th fold for test, others for trainingf

I Training data

| Gene selection ‘

i= i+

Prediction model » Test data
construction

‘ Add up prediction error ‘

i<k

i=k
l Output error

Figure 5.1: A process diagram féffold cross validation.

random seed 1) and stratified Wyekaprogram version 3.2. In a 10-fold cross validation, since
the feature selection is conducted for each fold indepetyehe identified genes on same data
set will be vary from fold to fold. Figure 5.1 is a diagram ofrqurocess to condudt-fold cross
validation on gene expression data. Especialypld cross validation becomdsave-one-out

cross validation (LOOCYV, also known as “jack-knife”) wherquals the number of samples.

5.2 Experimental Results

Here, we will present our experimental results of severalipgene expression profiles and one
proteomic data set.
5.2.1 Colon tumor

This data set was first analysed by Aleialin [7]. Its task is to distinguish cancer from normal
tissue using microarray data (Affymetrix oligonucleot@eay). 2000 out of around 6500 genes

were selected based on the confidence in the measured éxpresgls. These 2000 genes have
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Table 5.1: Colon tumor data set results (22 normal versusid®r) on LOOCV and 10-fold
cross validation. Numbers presented in bold type is thereestt achieved by the corresponding
classifier among 8 gene selection scenarios.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
Loocv
SVM 10(5:5) 12(5:7) 9(4:5) 9(4:5) 8(4:4) 9(4:5)  13(8:5) 7(3:4)
3-NN 18(11:7) 10(5:5) 12(6:6) 10(6:4) 12(6:6) 10(5:5) 10(5:5) 10(4:6)
Bagging 10(7:3) 11(7:4) 11(7:4) 11(5:6) 11(5:6)10(5:5) 10(5:5) 10(5:5)
AdaBoostM1 13(8:5) 11(6:5) 13(8:5) 13(8:5) 13(7:6) 13(8:5) 14(9:5) 11(6:5)
RandomForests  16(11:5) 15(10:5) 15(10:5) 14(8:6) 14(8:8p(8:7) 14(8:6) 13(8:5)
Cs4 11(7:4) 11(7:4) 11(7:4) 12(7:5) 11(7:4) 11(7:4)9(6:3) 12(4:8)
10-fold cross validation
SVM 11(5:6) 9(5:4) 9(5:4) 8(4:4) 8(4:4) 9(5:4) 10(5:55) 8(4:4)
3-NN 19(12:7) 9(5:4) 11(5:6) 12(8:4) 10(5:5) 10(5:5) 11(6:5) 9(5:4)
Bagging 12(7:5) 12(7:5) 10(5:5) 11(5:6) 12(7:5) 10(5:5)9(4:5) 10(5:5)
AdaBoostM1 12(8:4) 10(5:5) 12(8:4) 14(8:6) 13(7:6) 13§8:514(9:5) 9(5:4)
RandomForests  12(5:7) 13(6:7) 13(9:4) 15(9:611(7:4) 13(8:5) 12(6:6) 12(7:5)
Cs4 14(9:5) 11(7:4) 12(7:5) 13(8:5) 12(7:5)9(5:4) 13(8:5) 10(5:5)

highest minimal intensity across the 62 tissues colleatedh fcolon-cancer patients, including
40 tumor biopsies from adenocarcinoma and 22 normal bisfiiien healthy parts of the colons
of the same patients [7]. The raw data can be fourtdtat//microarray.princeton.

edu/oncology/affydata/index.html.

Table 5.1 shows the performance of different classifiersragriotal 8 gene selection sce-
narios. For this data set, since it contains a relativelyiismaumber of samples, we list out both

LOOCYV and 10-fold cross validation results.

There are 7 common genes selected by each fold ERCOF featantien in 10-fold cross
validation test. Table 5.2 lists their feature series numBenBank accession number, sequence
and name. Several of these identified features, such asdeddid7, 625 and 1772, were also
highlighted in [68], where Bayesian algorithms incorpimgtfeature selection were applied to
the same data set. Particularly, the finding of feature 37at, ¢orresponds to the mRNA for
uroguanylin precursor, is consistent with the statemen84i that “guanylin and uroguanylin
are markedly reduced in early colon tumors with very low eggion in adenocarcinoma of the

colon and also in its benign precursor, the adenoma”.

The best performance on LOOCYV is achieved by SVM under ERGEkufe selection
scenario (7 biopsies are misclassified, including 3 normdl4tumor samples). So far, this is

also among the best prediction accuracy on this data set edmapared with published results.
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Table
colon

5.2: 7 common genes selected by each fold of ERCOF fol@i@Gross validation test for
tumor data set. UTR stands for untranslated region.

Feature Accession Sequence Name
number number

377
780
513
625

158
177
177

750753 gene H.sapiens mRNA for GCAP-Il/uroguanylircprsor
H40095 3'UTR MACROPHAGE MIGRATION INHIBITORY FACTOR (HMAN)
M22382 gene MITOCHONDRIAL MATRIX PROTEIN P1 PRECURSOR(MAN)
X12671 gene Human gene for heterogeneous nuclear dlemmuotein (hnRNP)
core protein Al
2 X63629 gene H.sapiens mRNA for p cadherin
1 J05032 gene Human aspartyl-tRNA synthetase alphbtgumRNA, complete cds
2 H08393 3'UTR COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

Although CS4 performs worse than SVM does in terms of acgutiprovides some learning

rules.

For example, Figure 5.2 gives a decision tree outpl@®4 on this data set. From this

tree, 5 rules can be derived directly:

(1)

)

®3)

(4)

(®)

5.2.2

“If attribute625226.6 thenthe sample is normal There are 11 of normal samples

(labeled as “positive”) that satisfy this rule.

“If attribute625>226.6 A attributel772.82.0 A attribute37'&K224.], thenthe sample is

tumor’. This rule is true for 10 of the tumor samples (labeled agyaiwe”).

“If attribute625>226.6A attributel772.82.0A attribute377224.1/ attribute625331.],

thenthe sample is tum®r This rule is true for 2 of the tumor samples.

“If attribute625>226.6A attributel1772.82.0A attribute377224.1/ attribute625-331.1],

thenthe sample is normal There are 10 of the normal samples that satisfy this rule.

“If attribute625>-226.6 A attributel772-82.0 thenthe sample is tumd&r This is a domi-
nant rule for tumor samples since it is true for 28 (70%) ohthbowever, there is also 1

normal sample meets this rule.

Prostate cancer

Prostate tumors are among the most heterogeneous of cabo#nshistologically and clini-

cally [115]. Here, we will study gene expression patterosnf52 tumor and 50 normal prostate

specimens. The data was obtained from oligonucleotideaaitays containing probs for ap-

proximately 12,600 genes and ESTs. According to the supptéthdocuments of [115], where
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attribute625 <= 226.56625: positive {11.0)
attribute625 > 226.56625

| attribute1772 <= 82.0475

| | attribute3?7 <= 224.1131: negative ({10.0)
| | attribute377 > 224.1131

| | | attribute625 <= 331.095: negative (2.0)
| | | attribute625 > 331.095: positive {10.0)
| attribute1772 > 82.0475: negative {29.0/1.0)

.

== 226.56625 = 226.56625
== 82.0475 !> 82.0475
i g s )
o <= 2241131 =224 1131
a0, o
<= 331.095 > 331.085

m—

ﬁ _

Figure 5.2: A decision tree output from colon tumor data &t upper part is the tree presented
in text format while the lower is the same tree in tree fornTdite pictures are captured from the
result panel ofVeka In this chapter, we will mostly use the text format to ilkage a decision
tree.

the data was first analysed, all expression files in a giverraxent were scaled to a refer-
ence file based upon the mean average difference for all ggreent on the microarray. All
genes with average differences (calculated by Affymetren&Chip software) below the mini-
mum threshold of 10 were set at the minimum threshold whaetlaximum threshold was set at
16,000. The raw data can be downloaded fiuttyp://microarray.princeton.edu/
oncology/affydata/index.html.

Table 5.3 shows our 10-fold cross validation performancéhiprostate cancer data set.
SVM achieves 95% accuracy (5 errors out of total 102 samplitls,2 misclassified tumor sam-
ples and 3 misclassified normal samples) under both ERCORgmd00 genes selected by
entropy measure. CS4 also obtains good accuracy as higas@B 7 classification errors. In
[115], greater than 90% LOOCV accuracy was claimed by ussmall number of genes (from 4
to 256) selected by signal-to-noise measure/anéarest neighbours classification algorithm. In
fact, our LOOCYV accuracy under ERCOF is also 95% for SVM arfh 38 CS4 using average

500 genes (detailed data not shown).

There are 54 common genes selected by each fold ERCOF featantion in 10-fold cross
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Table 5.3: Prostate cancer data set results (52 tumor vB€soermal) on 10-fold cross valida-
tion.

Classifier All All-entropy  Mean-entropy Top-number-engyo ERCOF
20 50 100 200
SVM 7(5:2) 8(5:3) 6(4:2) 6(4:2) 7(4:3) 5(3:2) 7(3:4)  5(3:2)
3-NN 18(8:10) 10(6:4) 8(5:3) 9(3:6) 8(4:4) 7(4:3) 9(5:4) 8(5:3)
Bagging 10(8:2) 9(7:2) 10(5:5) 8(4:4) 8(4:4) 11(5:6) 9(5:4) 9(5:4)
AdaBoostM1 14(7:7) 10(6:4) 8(5:3) 9(5:4) 12(6:6) 14(3:11) 10(4:6) 10(6:4)
RandomForests  21(10:11) 11(7:4) 11(6:5) 9(5:4) 10(7:3) 5:4( 7(4:3) 10(5:5)
Cs4 9(7:2) 9(7:2) 8(6:2) 8(4:4) 7(5:2) 9(6:3) 9(6:3) 8(6:2)

Table 5.4: Classification errors on the validation set ofjlaancer data, consisting of 149 sam-
ples (15 MPM versus 134 ADCA).

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
SVM 1(0:1) 1(0:1) 0 1(0:1) 2(1:1) 1(0:1) 0 0
3-NN 3(2:1) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0 1(1:0) 1(1:0)
Bagging 4(0:4) 5(0:5) 5(0:5) 20(3:17) 12(2:10) 8(1:7) 6(0:6) 6(0:6)
AdaBoostM1 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23)7(4&23) 27(4:23) 27(4:23)
RandomForests 5(0:5) 7(0:7) 3(2:1) 8(1:7) 3(1:2) 3(1:2) 2(0:2) 2(0:2)
Cs4 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2)

validation test. Table A.1 in the Appendix lists their prahenber, GenBank accession number,
and name. Some of them were also announced by [115] as signifienes to distinguish tumor
from normal prostate samples. For examples, AF037643, BR,78L031228, and X07732 and

SO on.

5.2.3 Lung cancer

This data set is about the distinction between malignantrplenesothelioma (MPM) and adeno-
carcinoma (ADCA) of the lung by using the gene expressiofiilpson 181 tissue samples (31
MPM and 150 ADCA) obtained from oligonucleotide chips. Eaample is described by 12,533
genes. In [42], where this data was first studied, sampleglivaed into a training set consist-
ing 16 MPM and 16 ADCA, and a validation set containing the &9 samples. The raw data
can be found fronhttp://www.chestsurg.org/microarray.htm. Table 5.4 shows

the errors on test set using our proposed scenarios.

This data set has several features: (1) The size of traimhgs small, but the number of
samples in each class is balanced. Test set contains moréhtiea times samples than those in

the training set, and the number of MPM samples is only onghmifithat of ADCA samples. (2)
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There are as many as 16 genes having zero entropy value nimgraamples. This means that
using any one of them can separate MPM and ADCA completelysTin the construction of a
C4.5 decision tree, a tree will contain only one feature anarules, one rule for MPM samples
and another one for ADCA samples. In this case, since the dlassifier C4.5 has no training
error, the algorithm of AdaBoostM1 will not proceed to gexternew trees and therefore, it is
equivalent to C4.5. Unfortunately, none of these genes €@dolclassify the samples in the
validation set alone — the best one misclassifies 4 sampddde 5.5 gives the cut point for each
of these 16 genes that can separate MPM and ADCA samples trathing set completely, as
well as the testing error of C4.5 decision tree built only lsaittgene. The cut point is the middle
point of the gene’s boundary expression value in each cl&ss.example: if the maximum
expression value of a gene having zero entropy in MPM clasples is 100 while the minimum
expression value of the same gene in ADCA samples is 500 ttieetut point value of this gene
will be 300 and we say the gene has lower expression level iMMBmples and higher level
in ADCA samples. (3) Although there is no single gene thatgiaa 100% correct prediction
on the testing samples, the combination of all of them wdldi¢o a near perfect accuracy —
99.3% prediction accuracy with only one MPM sample misdf@ssby SVM and 3-NN. (4)
Furthermore, when more genes are considered, 100% acoomaegting is achieved by SVM
using mean-entropy, top 200 entropy or ERCOF selectedriEgtor by 3-NN using top 100

entropy measure genes.

In the study on the data set in [42], marker genes with a higiggificant differencey <
2 x 107%;> 8—fold) in average expression levels between 16 MPM and 16 AD@ing
samples were explored. From them, 8 genes with the mosstitatly significant differences
and a mean expression level600 in at least one of the two training sample sets were chosen
to form 15 expression ratio patterns. The best test accusgmyrted was also 99.3% (with 1
error). Among the 8 significant genes, we find 3 of them witltozartropy. They are highlighted
with bold font in Table 5.6 where the probe name, GenBankssior number and gene name
of those 16 zero entropy genes are listed. The remaining &sgaiso have relatively smaller
entropy values, they are X56667 (GenBank accession nupd@rppy rank 31; X16662, rank
32; AJ011497, rank 33; AB023194, rank 37; and U43203, rank 56

By the way, we also obtain the 10-fold cross validation rssoih this data set and list them
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Table 5.5: 16 genes with zero entropy measure in the trais@igof lung cancer data. Cut
point is the expression value of the gene that can be useg#oate MPM and ADCA samples
completely. The column “lower” ( or “higher”) indicates tlutass that all of its samples have
their expression values of this genet greater thar(or greater tharn the cut point.

Probe Name CutPoint Lower Higher TestError

2047s.at 571.1 MPM  ADCA 27(4:23)
266.s.at 76.95 MPM  ADCA 20(2:18)
32046at 103.2 MPM  ADCA 16(3:13)
32551at 73.45 MPM  ADCA 15(1:14)
33245at 48.3 MPM  ADCA 12(1:11)
33833at 453.7 ADCA MPM  10(2:8)
35330at 25.3 ADCA MPM  31(1:30)
36533at 19325  ADCA MPM  8(2:6)
37205at 78.8 ADCA MPM  14(3:11)
37716at 197.75  ADCA MPM  4(4:0)
39795at 1167 ADCA MPM  14(1:13)
40936at 430.6 ADCA MPM  9(3:6)
41286at 415 MPM  ADCA 28(2:26)
41402at 54.6 MPM  ADCA 26(2:24)
575s.at 149.75 MPM  ADCA 8(1:7)
988at 31 MPM  ADCA 17(2:15)

in Table 5.7. Many scenarios have less than 4 misclassifieglea, achieving overall accuracy

above 98%. Remarkably, random forests makes no error uskag+@antropy selected genes.

5.2.4 Ovarian cancer

Different from other data sets studied in this chapter, tiid®ase analysis is about usipg-
teomicspectra generated from mass spectrometer for ovarianrcdeisetion. The initial publi-
cation [92] on this new diagnostic approach wasamcetin February 2002, in which analysis
of serum from 50 unaffected women and 50 patients with omaréncer were conducted and a
proteomic pattern that completely discriminated canaemfnon-cancer was identified. As de-
scribed in [29], when we use proteomic patterns to diagnassade, the sample drawn from the
patient is first applied to a protein chip which is made up gbectfic chromatographic surface,
and then analysed via mass spectrometry. The result is\simiass spectrum of the species
that bound to and subsequently desorbed from the arraycsurfdne pattern of peaks within the
spectrum is studied to diagnose the source of the biologaalple. A process diagram of how
to diagnose disease using proteomic patterns is captured[#9] and given in Figure 5.3. One
obvious advantage of this process is that raw biofluids, sagalrine, serum and plasma, can be

directly applied to the array surface. On the other handpagex out in [29], there are criticisms
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Table 5.6: GenBank accession number and name of 16 genegemilentropy measure in the
training set of lung cancer data. Three genes in bold fonewtso selected by [42].

Probe Accession  Gene name

name number

2047sat M23410 Human plakoglobin (PLAK) mRNA, complete cds

266sat  L33930 Homo sapiens CD24 signal transducer mRNA, complit and 3 region

32046at  D10495 Homo sapiens mRNA for protein kinase C delta-tgpeplete cds

32551at  U03877 Human extracellular protein (S1-5) mMRNA, comgplats

33245at  AF004709 Homo sapiens stress-activated protein kinas@MA, complete cds

33833at  J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRédplete cds

3533Qat AJ012737  Homo sapiens mRNA for filamin, muscle isoform

36533at  D83402 Homo sapiens gene for prostacyclin synthase

37205at  AB020647 Homo sapiens mRNA for KIAA0840 protein, partds

37716at  X05323 Human MRC OX-2 gene signal sequence

39795at D63475 Human mRNA for KIAA0109 gene, complete cds

40936at  Al651806 Homo sapiens cDNA, 3’end

41286at  X77753 H.sapiens TROP-2 gene

41402at  AL080121 Homo sapiens mRNA; cDNA DKFZp56400823 (frormeddKFZp56400823)

575sat  M93036 Human (clone 21726) carcinoma-associated antigef8&-2 (GA733-2) mRNA,
exon 9 and complete cds

988 at X16354 Human mRNA for transmembrane carcinoembryortigam BGPa (formerly TM1-CEA)

Table 5.7: 10-fold cross validation results on whole lungaea data set, consisting of 31 MPM
and 150 ADCA samples.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
SVM 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0)
3-NN 11(11:0) 3(3:0) 2(2:0) 1(1:0) 2(2:0) 2(2:0) 2(2:0) 1(1:0)
Bagging 6(5:1) 6(5:1) 6(5:1) 7(5:2) 5(4:1) 5(4:1) 6(5:1) 6(5:1)
AdaBoostM1 6(3:3) 7(3:4) 5(2:3) 3(2:1) 2(2:1) 2(1:1) 3(2:1)  6(3:3)
RandomForests 2(2:0) 2(2:0) 0 1(1:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0)
Cs4 2(2:0) 2(2:0) 1(1:0) 3(3:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0)

of using proteomic patterns for diagnostic purpose — mdielgause the identity of the proteins
or peptides giving rise to the key m/z features is not knowaweler, this debate is beyond the
scope of this thesis.

After the first publication about using proteomic spectralétect cancer, a series of new
data and discussions on proteomic patterns were put on tAeNKT} Clinical Proteomics Pro-
gram Databank web site lttp://clinicalproteomics.steem.com/. Recently (up-
dated in August 2003), an important development about wshigher resolution mass spectrom-
eter to generate proteomic patterns was announced puliliolppared with the configuration of
the old Ciphergen instrument (about 100 to 200 spots), tlsemdremendous increase in resolu-
tion of the new Q-Star instrumentQ000 at m/z 1500). Besides, mass accuracy is also improved

— Q-Star 10ppm versus Ciphergen 1000ppm.
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Figure 5.3: Disease diagnostics using proteomic pattdeicture is from [29]. m/z stands for
mass to charge ratio and SELDI-TOF MS for surface-enharesst desorption/ionization time-
of-flight mass spectrometry.

Here, we apply our proposed feature selection and machaneitey approach to an ovarian
proteomic data set named “6-19-02". This sample set indu@ie controls and 162 ovarian
cancers. The raw SELDI (surface-enhanced laser desdfipticration) data constructed using
the Ciphergen WCX2 ProteinChip had 15154 molecular m/z $ni@scharge ratio) identities
ranging from 0.0000786 to 19995.513. The relative ampditoiithe intensity at each m/z identity
was normalized against the most intense and the least et@hses in the data stream according

to the formula
(V - me)

NV = ——F—
(Vmam - me)

(5.1)

where NV is the normalized value, V the raw valig,;,, the minimum and/,,,,, the maximum
raw data of the identity across all the samples, respegtividter this linear normalization, all
the m/z intensities fell within the range [0,1]. Table 54&dithe 10-fold cross validation results
on 253 samples with normalized intensities using our prepaxenarios. Notably, both SVM
and CS4 achieve 100% accuracy under certain feature selentthods. This may indicate that
machine learning technologies can also be used to find pnitgquatterns.

In the above mentioned web site, associated with this “®@2Bevarian cancer data, there

was also a list of seven key m/z values which was announced esaanple of the best models
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Table 5.8: 10-fold cross validation results on “6-19-02ao&an proteomic data set, consisting of
162 ovarian cancer versus 91 control samples.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200

SVM 0 0 0 4(1:3) 0 0 0 0
3-NN 15(6:9) 11(3:8) 10(3:7) 4(1:3) 2(0:2) 3(0:3) 4(0:4) 3(1:2)
Bagging 7(3:4) 6(3:3) 5(3:2) 7(4:3) 5(3:2) 6(3:3) 5(3:2) 6(3:3)
AdaBoostM1 10(4:6) 9(4:5) 8(4:4) 6(4:2) 4(4:0) 5(4:1) 6(4:2) 5(4:1)
RandomForests  19(6:13) 8(1:7) 5(0:5) 7(3:48(0:3) 4(0:4) 6(1:5) 5(1:4)
Cs4 0 0 1(0:1) 5(2:3) 1(0:1) O 0 0

found to 100% correctly separate ovarian cancer and nocecaamples. These m/z identities
are: MZ2760.6685, MZ19643.409, MZ465.56916, MZ6631.70214051.976, MZ435.4652
and MZ3497.5508. However, among these seven M/Z values, nde3fiof them will be fil-
tered out by the Phase | of ERCOF, i.e. the entropy algoritamrmt find cut point for their
value ranges. They are: MZ2760.6685, MZ19643.409 and MZ6®&3. With the remaining
4 identities, SVM can still achieve 100% accuracy on 10-foiokss validation and some simple
rules are found to separate cancer and non-cancer samphggetely by decision tree method.
For example, the simple rule, “MZ435.464520.335733A\ MZ465.56916:0.666745 thenthe

sample is ovarian canckris true for 148 of 162 cancer samples.

A recent paper presented the work on this data set is [118Ehwised non-parametric
Wilcoxon rank sum test statistics and stepwise discrintirmralysis to develop patterns and
rules from proteomic profiling. Using Wilcoxon test, the papeported that 685 out of total
15154 m/z values differing between the cancer and non-cgqugrilations with a-value of less
than10~5. On the other hand, refer to our 10-fold cross validatiomltssn Table 5.8, the top
50 entropy measure selected features can lead to a 100%aeg@d we further find there are
as many as 39 common m/z values among each time featureiceléut 10 folds. These 39
m/z identities are all in the ERCOF selected common featiareR)-fold cross validation. In the
Appendix, we list in Table A.3 these m/z values, their cquoeling Wilcoxon tesp-values and
entropy measure on the entire data set. jHvalues are derived from the supplementary figures
of paper [118]. Notably, their Wilcoxop-values are all very smalk{ 10~2"). With these 39
m/z identities, CS4 outputs several decision trees, and eathem can separate cancer from

non-cancer completely. Figure 5.4 shows only four of them.
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MZ244.95245 <= 0435461
| MZ435.85411 <= 0.288362

| | MZ262.49088 <= 0 4B8E76: Cancer (8.0)
| | MZ262.49088 > 0.488676: Normal (3.0)

| MZ435.85411 > 0.288362: Cancer (154.0)
MZ244.95245 > 0.435461

| MZ435.07512 <= 0.36063: Normal (85.0)

MZ246.12233 <= 0342584
| MZ435.85411 <= 0.280921

| | MZ244.36855 <= 0.161389: Cancer (4.0)
| | MZ244.36855 > 0.161389: Normal (8.0)
| MZ435.85411 »0.280921: Cancer (156.0)
MZ246.12233 > 0.342984

| MZ436.63379 <= 0.418426: Normal (80.0)

| MZ435.07512 > 0.35063 | MZ436.63379 > 0.418426
| | MZ261.88643 <= 0.49959: Cancer (2.0) | | MZ261.88643 <= 041534: Cancer (2.0)
| | MZ261.88643 > 0.49959: Normal (3.0) | | MZ261.88643 > 0.41534: Normal (3.0)

m )

MZ246.41524 <= 0275414
| MZ435.85411 <= 0.26813

| | MZ464.76404 <= 0.090543: Cancer (3.0)
| | MZ464.76404 > 0.090543: Normal (7.0)
| MZ435.85411 » 0.26813: Cancer (152.0)
MZ246.41524 > 0.275414

| MZ244.35855 <= 0.188974: Cancer (7.0}

| MZ244.35855 » 0.188974: Normal {84.0)

MZ435.07512 <= 0.363963
| MZ244.36855 <= 0.158114

| | MZ262.49088 <= 0.499782: Cancer (11.0)
| | MZ262.49088 > 0.499782: Normal (2.0)

| MZ244.36855 > 0.198114: Normal (87.0)
MZ435.07512 > 0.363963

| MZ247.58861 <= 0.18347: Cancer (145.0)

| MZ247.58861 » 0.19347

| | MZ261.88643 <= 0574833: Cancer (6.0)
| | MZ261.88643 > 0.574833: Normal (2.0)

) 4)

Figure 5.4: Four decision trees output by CS4 using 39 contfieatares selected by top 50 en-
tropy measure on 10-fold cross validation on ovarian capogieomic profiling. All these trees
are constructed on the entire 253 samples and can sepanagy ead non-cancer completely.

5.2.5 Diffuse large B-cell ymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common sgde of nhon-Hodgkin's lym-
phoma. Although around 40% of DLBCL patients are cured witirent therapy and have pro-
longed survival, the remainder succumb to the disease fjeRtly, DLBCL was widely studied
at molecular level using gene expression profilings [6, 1102]. Alizadehet al [6] identified
two distinct forms of DLBCL which had gene expression pasendicative of different stages
of B-cell differentiation. Germinal center B-likdDLBCL expresses genes normally seen in ger-
minal center B cells, whilactivated B-likeDLBCL expresses genes that are induced duiing
vitro activation of peripheral blood B cells. They showed thatgrdas with germinal center B-
like DLBCL had a significantly better overall survival therose with activated B-like DLBCL.
Thus, accurately classifying germinal center B-like DLB&hd activated B-like DLBCL will

help with survival prediction.

The DLBCL gene expression data studied in [6] contains 40#teg across 47 samples,
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Table 5.9: 10-fold cross validation results on DLBCL datf sensisting of 24 germinal center
B-like DLBCL versus 23 activated B-like DLBCL.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
SVM 6(3:3) 3(1:2) 2(1:1) 6(4:2) 3(1:2) 4(2:2) 3(1:2) 2(1:1)
3-NN 13(1:12) 5(2:3) 5(2:3) 5(3:2) 5(3:2) 3(1:2) 5(2:3) 4(2:2)
Bagging 6(3:3) 6(3:3) 7(3:4) 8(3:5) 8(3:5) 8(3:5) 6(3:3) 8(3:5)
AdaBoostM1 11(4:7) 11(5:6) 10(4:6) 8(4:4) 9(4:5) 11(5:6) 10(4:6) 10(5:5)
RandomForests 5(4:1) 1(0:1) 4(3:1) 3(2:1) 4(3:1)  6(2:4) 3(2:1) 3(2:1)
Cs4 5(2:3) 5(2:3) 5(2:3) 6(2:4) 4(2:2) 5(2:3) 5(2:3) 5(2:3)

including 24 germinal center B-like DLBCL and 23 activatedilg2 DLBCL. The data and
associated information can be foundhatp://Ilmpp.nih.gov/lymphoma/ . The raw
data were originally filtered by several criteria and logasformed (base 2). For details of data
preprocessing, please refer to [6]. Table 5.9 shows theoltOeross validation results on this
DLBCL data set under our proposed scenarios. The resultemgnate that, overall speaking,
germinal center B-like DLBCL and activated B-like DLBCL che classified. Random forests
achieves best cross validation results — having only ongolamisclassified using all entropy
measure selected genes. SVM still performs well — giving/amo misclassified samples in
two cases. In addition, using ERCOF as feature selectiohadethe number of misclassified
samples in LOOCYV test for SVM, CS4 and random forests arel(4(2:2) and 3(2:1), respec-
tively.

Table 5.10 lists the 9 common genes selected by each fold ERE€4ure selection in the
10-fold cross validation test. All of them are in the “listlzdst class-predicting genes supporting
the GC-B Like v.s. Activated B-Like class distinction” of per [6] (see supplemental Figure 3
on the data web site given above). Besides, our identifiedgyare also highly consistent with
those reported in [126], whetetest, Wilcoxon rank sum test and a heuristic method weréexpp
to select genes on the same data set. Notably, we find thatENEG207X (or FLIP), whose
products inhibit programmed cell death, highly expresseattivated B-like DLBCL. According
to [6], “FLIP is a dominant-negative mimic of caspase 8 (FE)GQvhich can block apoptosis
mediated by Fas and other death receptors.....FLIP isyhapgressed in many tumor types and
its constitutive expression in activated B-like DLBCLs tinhibit apoptosis of tumor cells
induced by host T cells expressing Fas ligand”. On the otaedhsimply using these 9 genes, 3-

NN and Random forests can separate 24 germinal center BMIBELL from 23 activated B-like
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Table 5.10: 9 common genes selected by each fold of ERCOFfald@ross validation test on
DLBCL data set. The third column indicates the DLBCL subssl¢hat the gene was relatively
highly expressed.

GID Gene name HighlyExpressed in
GENE3328X  Unknown UG Hs.136345 ESTs; Clone=746300 GC-B Lik
GENE3314X *Unknown; Clone=1353041 GC-B Like
GENE1252X *Cyclin D2/KIAK0002=3" end of KIAKO002 cDNA; Clpe=1357360 activated B-like
GENE3325X  Unknown UG Hs.120245 Homo sapiens mRNA for GCHReLi
KIAA1039 protein, partial cds; Clone=1268870
GENE3946X *PTP-1B=phosphotyrosyl-protein phosphat&$ene=472182 activated B-like
GENE2106X  Similar to intersectin=adaptor protein with two GC-B Like
EH and five SH3 domains; Clone=1339781
GENE2291X  Unknown; Clone=1340742 activated B-like
GENE3258X *JAW1=lymphoid-restricted membrane proteifgri@=815539 GC-B Like
GENE1207X *FLICE-like inhibitory protein long form=I-FIGE=FLAME-1 activated B-like

=Casper=MRIT=CASH=cFLIP=CLARP; Clone=711633

DLBCL completely while both SVM and CS4 only misclassify oaetivated B-like DLBCL.

Figure 5.5 displays some decision trees output from run@Gi§g on these 9 genes.

5.2.6 ALL-AML leukemia

This leukemia data first reported by Goletal[41] is among the most extensively analysed gene
expression profilings. Many researchers have tested thusitecing, gene selection and/or clas-
sification algorithms on this bench mark data set [39, 136183, 86, 85, 31, 68, 82, 51]. The
original training data consists of 38 bone marrow samplagh @7 ALL (acute lymphoblastic
leukemia) and 11 AML (acute myeloid leukemia) from adultigails. The test data set con-
sisted of 24 bone marrow samples and 10 peripheral bloodnspes from adults and children,
including 20 ALL and 14 AML. The gene expression profile wetgained from Affymetrix
high-density oligonucleotide microarrays containing 92obes for 6817 human genes. The
raw data can be downloaded framitp://www.broad.mit.edu/cgi-bin/cancer/

datasets.cgi

In Table 5.11, we list results on 34 test samples as well a®lti0eross validation and
LOOCV on entire 72 samples using our proposed gene seleatidrclassification scenarios.
Our best result of both testing and cross validation is takassify only one sample. In fact, this
misclassified AML sample was reported by most of other ingagirs.

ERCOF selects 280 genes from training set samples. TablanAtde Appendix lists

the probe and name of these genes. In [41], 50 genes foundybsl40-noise measurement
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GEME3328X <= 0.508511

| GENE3314X <= 0.6904: activated B-like (21.0)

| GENE3314X » 0.6904: germinal center B-like (4.0/1.0)
GENE3328X » 0.508511: germinal center B-like (22.0/1.0)

M

GENE3258X <= 0.527872: activated B-like {19.0/1.0)

@) GEME3258% » 0.527872
| GENE2291X <= 0.068571: germinal center B-like (24.0/1.0)
| GENE2291X » 0.068571: activated B-like (4.0)

GENE1252X <= 0.211702

(3) | GENE3258X <= 0.99: activated B-like (4.0)
| GEME3258X » 40.99: germinal center B-like (24.0/1.0)
GEME1252¥ > 0.211702: activated B-like {19.0/1.0)

GENE3325X <= 0.22234: activated B-like {18.0/1.0)
{4) GENE3325X > 0.22234
| GENE3258X <= 0.905172: activated B-like (6.0)
| GENE3258X » 0.905172: germinal center B-like (23.0)

Figure 5.5: Four decision trees output by CS4 using 9 comreatufes selected by ERCOF on
10-fold cross validation on DLBCL data. All these trees arestructed on the entire 47 samples,
including 24 germinal center B-like DLBCL and 23 activatedilgs DLBCL.

that most highly correlated with ALL and AML distinction fimo the training samples were re-
ported. Remarkably, 49 of them are also in our 280 genesribtirrdicated with bold font in
Table A.4. In addition, Olshen and Jain [85] reported 40 ificant genes identified by-test
with a permutation-based adjustment. These genes arekltlad in our list, but some of them
(13 out of 40) are not in Golub’s 50-gene list. On the otherchdhere are 80 common genes
selected by ERCOF in each fold of 10-fold cross validatiortr@nentire 72 samples. Fifty of
them are in the list of Table A.4 in the Appendix. Based omirgj set samples, there is one gene
(Zyxin) with zero entropy (1017.58 is the cut point and ithiligexpressed in AML samples).
However, with only this one gene, classification algoritheaa not achieve good testing results
on validation set. At this point, Goluet al commented “in any case, we recommend using at
least 10 genes ...... Class predictors using a small nunflgemes may depend too heavily on
any one gene and can produce spuriously high predictiongitrs”.

Using SAM described in Section 4.2.1, a statistical soferdesigned for identifying signif-
icant genes in a set of microarray experiments, total of 2R5¥s are output with the threshold
0 at 0.4789. Table 5.12 lists the classification results one3firtg samples using different top
genes ranked by SAM score. We can see that SN and random forests can not achieve

good testing results using SAM selected genes on this dgthugeAdaBoostM1 achieves bet-
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Table 5.11: ALL-AML leukemia data set results (ALL versus AMbn testing samples, as well
as 10-fold cross validation and LOOCYV on the entire set.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
Test
SVM 5(0:5) 1(0:1) 1(0:1) 4(0:4) 5(1:4) 1(0:1) 1(0:1) 1(0:1)
3-NN 10(1:9) 6(0:6) 2(0:2) 3(0:3)  4(1:3) 2(0:2) 1(0:1) 1(0:1)
Bagging 3(0:3) 4(0:4) 4(0:4) 2(1:1) 4(0:4) 4(0:4) 4(0:4) 4(0:4)
AdaBoostM1 3(2:1) 3(2:1) 3(2:1) 3(2:1)  3(2:1) 3(2:1) 3(R:1 3(2:1)
RandomForests  9(0:9) 4(0:4) 6(0:6) 4(1:3) 5(0:5)2(0:2) 2(0:2)  3(0:3)
Cs4 4(0:4) 4(0:4) 3(0:3) 2(1:1) 4(0:4) 3(0:3)  3(0:3) 3(0:3)
10-fold cross validation
SVM 1(0:1) 2(1:1) 2(1:1) 2(1:1) 5(2:3)  3(2:1) 2(1:1) 2(1:1)
3-NN 10(1:9) 2(0:2) 1(0:1) 4(3:1) 4(2:2)  4(2:2) 2(1:1) 2(0:2)
Bagging 5(0:5) 6(0:6) 5(0:5) 4(0:4) 6(1:55) 6(1:5) 6(1:5) 6(2:4)
AdaBoostM1 13(6:7) 11(5:6) 12(5:7)  6(3:3) 7(4:3) 10(6:4) 10(5:55) 9(4:5)
RandomForests  6(0:6) 5(0:5) 4(1:3) 4(0:4) 4(1:3)3(0:3)  5(0:5) 5(2:3)
Cs4 1(0:1) 2(0:2) 2(0:2) 3(1:2)  2(1:1) 1(0:1)  2(0:2) 2(1:1)
LoOOoCV
SVM 1(0:1) 1(0:1) 2(1:1) 4(2:2) 5(2:3) 4(2:2) 2(1:1) 1(0:1)
3-NN 10(1:9) 1(0:1) 1(0:1) 4(3:1) 5(3:2) 2(1:1) 3(2:1) 1(0:1)
Bagging 7(3:4) 6(1:5) 5(0:5) 5(0:5) 5(0:5) 6(1:5) 6(1:5) 5(1:4)
AdaBoostM1 11(6:5) 10(5:5) 11(5:6) 6(3:3) 6(3:3) 7(4:3) 10(5:5) 7(4:3)
RandomForests  8(0:8) 6(2:4) 4(1:3) 4(0:4) 5(2:3) 5(2:3) 6(3:3) 4(1:3)
CS4 2(1:1) 2(1:1) 2(1:1) 1(0:1)  1(0:1) 2(1:1) 2(1:1) 1(0:1)

ter results (with top 350, 280 or 200 genes) than using oupgeed gene selection schemes.
Remarkably, bagging makes no testing error on top 350 SAkCctsl genes. As for CS4, the
performance is relatively stable by using 100 to 350 SAMa&ebkkgenes. When we compare the
genes identified by SAM with those 280 selected by ERCOF, vieford 125 and 17 common
genes from all 2857 and top 280 SAM selected genes, resplyctiv

Using PAM described in Section 4.2.3, a class predictiotwsok for genomic expression

data mining based on nearest shrunken centroid methodifdhset al reported 2 misclassified

Table 5.12: ALL-AML leukemia data set results (ALL versus AMon testing samples by using
top genes ranked by SAM score. *: the number is approximatbeaacnumber of all-entropy
selected genes; **: the number is approximate to the numberean-entropy selected genes;
***. the number is approximate to the number of ERCOF seldgfenes.

Classifier 2857 800 350" 280" 200 100 50 20
SVM 3(0:3) 4(0:4) 4(1:3) 5(1:4) 6(2:4) 10(4:6) 11(3:8) 11(0:11)
3-NN 11(1:10) 11(1:10) 10(0:10) 10(0:10) 10(0:10) 11(0:11) 13(1:12) 12(0:12)
Bagging 2(0:2) 2(0:2) 0 2(1:1) 2(1:1) 2(1:1) 9(0:9) 8(1:7)

AdaBoostM1 3(0:3) 3(1:2) 1(0:1) 1(0:1) 1(0:1) 2(0:2) 12(4:8) 8(1:7)
RandomForests  13(0:13) 9(0:9) 8(0:8) 6(0:6) 6(0:6) 6(0:6) 11(0:11) 11(0:11)
CS4 6(1:5) 4(1:3)  2(0:2) 3(0:3) 4(0:4) 2(1:1) 8(0:8) 9(2:7)
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test samples by using only 21 genes with an amount of shrinkag4.06 [123]. Thig value is
not the optimal one where the minimum cross-validationrerozcurs since there will be more
than 1000 genes associated with the optitnahlue. Anyway, our classification results are very

competitive on this data set — misclassifying only 1 testsiam

5.2.7 Subtypes of pediatric acute lymphoblastic leukemia

Pediatric acute lymphoblastic leukemia (ALL) is the mostnoaon form of childhood cancer.
However, with modern cancer therapy, its overall long-tewent-free survival rates is as high
as 80% [140]. Treatment of pediatric ALL is based on the cphoé tailoring the intensity of
therapy to a patient’s risk of relapse. Thus, it becomes ireportant to accurately assign indi-
vidual patients into specific risk groups; otherwise, it Wdocause under-treatment (which causes
relapse and eventual death) or over-treatment (which saeere long-term side-effects). Al-
though current risk assignment is mainly dependent on atyeof clinical and laboratory param-
eters requiring an extensive range of procedures inclugimigphology, immunophenotyping, cy-
togenetics, and molecular diagnostics, it has been noti@dhe genetic alterations that under-
lie the pathogenesis of individual leukemia subtypes ae playing important roles [95, 140].
Though it looks identical under the microscope, pediatiid s a highly heterogeneous disease,
with as many as 6 different subtypes that have widely diffgtreatment outcome. The purpose
of the analysis on this data set is to accurately classifyypals of pediatric ALL using gene
expression profiling so that the correct intensity of thgrean be delivered to ensure that the

child would have the highest chance for cure.

The data is a collection of 327 gene expression profiles ofapérl ALL diagnostic bone
marrows with Affymetrix oligonucleotide microarrays cairting 12,600 probe sets [140]. The
raw data can be found frommtp://www.stjuderesearch.org/data/ALL1/ . These
samples contain all known biologic ALL subtypes, includifdineage leukemiasTfALL), B
lineage leukemias that contain t(9;2BGR-ABL), t(1;19) E2A-PBX), t(12;21) TEL-AMLY),
rearrangement in the MLL gene on chromosome 11, band 2R, and a hyperdiploid kary-
otype (i.e.> 50 chromosomesHyperdip>50) [140]. In [140], where the data was first analysed,
327 samples were divided into two groups — a training grougsisting of 215 samples and a

testing group consisting of 112 samples. Table 5.13 ligstimber of samples of each subtype

87



Table 5.13: Number of samples in each of subtypes in pediatiite lymphoblastic leukemia
data set.

Subtype Number of training samples  Number of testing sasnpltotal
T-ALL 28 15 43
E2A-PBX1 18 9 27
TEL-AML1 52 27 79
BCR-ABL 9 6 15
MLL 14 6 20
Hyperdip>50 42 22 64
Rest 52 27 79
Total 215 112 327

in training and testing groups, and the diagnostic sampbkasiid not fit into any one of the above

subtypes are put under “Rest”.

In [140], classification was designed following a decisiogetformat, in which the first
decision was T-ALL (T lineage) versus non-T-ALL (B lineaga)d then within the B lineage
subset. If a case is decided to be a non-T-ALL, it will be setaéy classified into the known
risk groups characterized by the presence of E2A-PBX1, ARl-1, BCR-ABL, MLL, and
lastly hyperdip-50. A very high prediction accuracy on the blinded test sasplas achieved
for each ALL subtypes using SVM and genes selected-$tatistic, X'2-statistic or other met-
rics: 100% on T-ALL, E2A-PBX1 and MLL samples, 99% on TEL-AMIsamples, 97% on
BCR-ABL samples, and 96% on Hyperdip0 samples. However, in this thesis, we will not fol-
low this tree structure to sequentially classify samplestdad, we will treat all subtypes equally
and distinguish one subtype samples from all the other sssnprherefore, for each of the 6
classification problems, number of training and testing@amare always 215 and 112, respec-
tively. For example, for subtype BCR-ABL, the 215 trainingrgples consist of 9 BCR-ABL
cases versus 206 “OTHERS” while 112 testing samples canistsBCR-ABL cases versus 106
“OTHERS”. The samples labeled as "OTHERS" here includehaidases other than BCR-ABL.
Next, we will report classification results on the validateamples and 10-fold cross validation

on the entire data set under our proposed gene selectiorassification scenarios.

T-ALL versus OTHERS

The training set contains ZBALLand 1870THER S$amples while the test set containsTtBLL

and 970THERS Table 5.14 shows the results of this test. Under most of cemaios, the T-
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Table 5.14: Pediatric ALL data set results (T-ALL versus ERE) on 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 3(3:0) 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 4(4:0) 0 0 1(1:0) 0 0 1(1:0) 0
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation
SVM 1(1:0) 0 0 1(1:0) 0 0 0 0
3-NN 8(8:0) 3(3:0) 0 1(1:0) 1(2:0) 1(1:0) 0 1(1:0)
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(12:0)
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(12:0)
RandomForests  11(11:0) 0 0 0 0 0 1(1:0) 0
Cs4 1(0:1) 1(1:0) 1(1:0) 0 2(1:1)  3(2:1)  2(2:0) 0

ALL samples can be distinguished completely from non-T-Adadses. Remarkably, we find one
gene, AA919102 (GenBank accession number), has zero gniedpe from training samples
with cut point 20062.86 (highly expressed in T-ALL cases)l &mis gene can also completely
separates T-ALL from all other ALL cases in the testing séiisHene was also reported in [140]
where other feature selection metrics were used. Besitegenes selected by ERCOF in each
fold testing of 10-fold cross validation are highly coneigtf having as many as 253 common
genes. However, it seems that using small amount of goodrésatdentified by entropy measure
is enough to separate T-ALL cases in this application, weli$ in Table 5.15 the top 20 genes

found from training samples.

E2A-PBX1 versus OTHERS

The training set contains 1B2A-PBX1and 1970THERSsamples while the test set contains 9
E2A-PBXl1land 1030THERS Table 5.16 shows the results of this test. With featurectels,
the testing E2A-PBX1 samples can be distinguished comiplétem other subtypes of ALL
cases. Similarly, in 10-fold cross validation test, there guite a few scenarios that achieve
100% accuracy. There are 5 genes whose entropy value isre&mairiing samples. With these
genes, all the classification algorithms can achieve 10@4digtion accuracy on testing samples.
In table 5.17, we list all of them. In addition, all these 5 gerare in the “good genes list”

reported in [140] to distinguish E2A-PBX1 cases. In the $apgntal documents of [140],
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Table 5.15: Top 20 genes selected by entropy measure frotraihang data set of T-ALL versus
OTHERS in subtypes of pediatric ALL study. The last columdidates the sample class in
which the gene is relatively highly expressed.

Probe Accession No.  Description HighlyExp in

38319at AA919102 Homo sapiens cDNA, 3’ end T-ALL

1096 g.at M28170 Human cell surface protein CD19 (CD19) gene OTHERS

38242at AF068180 Homo sapiens B cell linker protein BLNK mRNA, OHERS
alternatively spliced

41723sat M32578 Human MHC class Il HLA-DR beta-1 mRNA (DR2.3), 5den OTHERS

32794g.at  X00437 Human mRNA for T-cell specific protein T-ALL

37988at M89957 Human immunoglobulin superfamily member B ceteggor OTHERS
complex cell surface glycoprotein (IGB) mRNA

37344 at X62744 Human RING6 mRNA for HLA class Il alpha chain-likeeguct OTHERS

38095i_at M83664 Human MHC class Il lymphocyte antigen (HLA-DP) CHRIS
beta chain mRNA

38017at u05259 Human MB-1 gene OTHERS

35016at M13560 Human la-associated invariant gamma-chain gene THEBS

36277at M23323 Human membrane protein (CD3-epsilon) gene T-ALL

39318at X82240 H.sapiens mRNA for Tcell leukemia/lymphoma 1 ORE

38147at AL023657 Homo sapiens SH2D1A cDNA, formerly known as DSHP T-ALL

32649at X59871 Human TCF-1 mRNA for T cell factor 1 (splice form C) -ALL

38833at X00457 Human mRNA for SB classlI histocompatibility ayetn OTHERS
alpha-chain

33238at U23852 Human T-lymphocyte specific protein tyrosine &&a T-ALL
p56Iick (Ick) abberant mMRNA

37039at J00194 human hla-dr antigen alpha-chain mrna & ivs fragsne OTHERS

38051at X76220 H.sapiens MAL gene exon 1 (and joined CDS) T-ALL

38096f.at M83664 Human MHC class Il lymphocyte antigen (HLA-DP) CHRIS
beta chain mRNA

2059s at M36881 Human lymphocyte-specific protein tyrosine kinas T-ALL
(Ick) mRNA

good genes identified by the self-organizing map (SOM) asdrithinant analysis with variance

(DAV) programs to separate each of the six known subtypes wete reported.

TEL-AML1 versus OTHERS

The training set contains 5EEL-AML1and 1630THERSsamples while the test set contains 27
TEL-AML1and 850THERS Table 5.18 shows the results of this test. Although thededitbn
result on classification of TEL-AML is not as good as that oftype T-ALL or E2A-PBX1,
there are still some proposed scenarios can accuratelyglisgth TEL-AML and non-TEL-AML
cases. Notably, using ERCOF selected features, SVM, 3-NiXdBmM forests and CS4 achieve
100% prediction accuracy on the testing samples. The nupfdfeatures selected by ERCOF
from training cases is around 400 and they include 37 of 4@&gdhat reported in [140] to

separate TEL-AML1 from other subtypes of ALL cases undeir thmposed tree structure of
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Table 5.16: Pediatric ALL data set results (E2A-PBX1 veiQU$IERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 0 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 3(0:3) 0 0 0 0 0 0 0
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation
SVM 1(1:0) 1(1:0) 1(1:0) 0 0 0 0 0
3-NN 1(1:0) 1(1:0) 1(1:0) 0 0 1(1:0) 1(1:0) 0
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(2:0)
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(12:0)
RandomForests  16(16:0) 3(3:0) 1(1:0) 0 0 0 0 0
Cs4 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(1:.0) O

Table 5.17: Five genes with zero entropy measure on thdrigadata set of E2A-PBX1 versus
OTHERS in subtypes of pediatric ALL study. The last columdidates the sample class in
which the gene is highly expressed (above the mean valussaaliche samples).

Probe Accession No.  Description HighlyExpressed in

32063at M86546 H.sapiens PBX1a and PBX1b mRNA E2A-PBX1

41146at J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1

43Qat X00737 Human mRNA for purine nucleotide E2A-PBX1
phosphorylase (PNP; EC 2.4.2.1)

1287at  J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1

33355at  AL049381 Homo sapiens mMRNA; cDNA DKFZp586J2118 E2A-PBX1

(from clone DKFZp586J2118)

classification. In Table A.10 of the Appendix, we list theSehBghlighted genes. In Figure 5.6,
we present some decision trees output by CS4 using ERCO&textlfeatures. It can be seen

that CS4 makes use of different features as root node anditemthem to achieve a perfect

prediction accuracy on the testing samples.

BCR-ABL versus OTHERS

The training set contains BCR-ABLand 2060 THERSsamples while the test set contains 6
BCR-ABLand 1060THERS Table 5.19 shows the results of this test. Since the nunftaamad-
able BCR-ABL cases is very small, most error predicationslerere on BCR-ABL samples in
almost all the scenarios. This leads to a very low sengitigigpecially in 10-fold cross validation

test. However, under ERCOF and some other gene selectidrod®tSVM and CS4 still can
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Table 5.18: Pediatric ALL data set results (TEL-AML1 verQUBHERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy  Mean-entropy Top-number-engyo ERCOF
20 50 100 200
Test
SVM 10(0:10) 0 0 2(1:1) 1(0:1) 1(0:1) 1(0:1) 0
3-NN 5(4:1) 0 0 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0
Bagging 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0)
AdaBoostM1 4(2:2) 4(3:1) 3(2:1) 2(2:0)  4(2:2) 4(3:1) 5(2:3) 4(3:1)
RandomForests  11(11:0) 0 1(1:0) 1(1:0) 2(2:0) 0 1(1:0) 0
CS4 2(1:1) 2(1:1) 2(1:1) 3(3:0) 1(1:0) 1(1:0) 1(1:0) O
10-fold cross validation

SVM 4(1:3) 3(1:2) 4(1:3) 7(2:5) 8(2:6) 5(2:3) 5(2:3) 2(0:2)
3-NN 14(5:9) 4(0:4) 4(0:4) 8(3:5) 6(2:4) 7(3:4) 4(1:3) 3(0:3)
Bagging 12(5:7) 11(5:6) 10(4:6) 11(5:6) 10(4:6) 11(5:6) 11(5:6) 10(4:6)
AdaBoostM1 9(4:5) 13(7:6) 14(9:5) 8(3:5)  8(5:3) 13(10:3) 13(8:5) 10(4:6)
RandomForests  20(17:3) 7(3:4) 7(3:4) 5(0:5) 5(1:4) 4(0:4) 6(2:4)  4(1:3)
CS4 6(2:4) 6(2:4) 6(2:4) 10(5:5) 5(1:4) 6(2:4) 6(2:4) 5(1:4)

correctly predict most of the testing samples with only ol&RBABL case misclassified. This
misclassified BCR-ABL sample was also reported by [140]. fitnmber of features selected by
ERCOF from training cases is around 70 and they include 11 gfehes that reported in [140]
to separate BCR-ABL from other subtypes of ALL cases undeir ffroposed tree structure of

classification. In Table 5.20, we list these 11 highlightedes.

MLL versus OTHERS

The training set contains IMLL and 2010THERSsamples while the test set contain$16L
and 1060THERSTable 5.21 shows the results of this test. Most of our siesachieve 100%
accuracy on testing samples to separate MLL from other pabtpf ALL cases. Using only 20
genes selected by entropy measure, SVM, 3-NN, Bagging addc@$make perfect prediction.
These genes can be found in Table A.11 of the Appendix. Wheapply Pearson correlation
coefficient to the 20 genes (all of them can pass Wilcoxon samk test) , we filter out only one
gene . With the remaining 19 genes, 100% prediction can @sachieved. On the other hand,
there are 34 genes reported in [140] to be significant to agpdLL from other ALL subtypes
under their proposed tree structure classification. Ambagt 24 genes are also selected by our
ERCOF and we list them in Table A.12 of the Appendix, wheregiees with bold font are also

appear in Table A.11.
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Table 5.19: Pediatric ALL data set results (BCR-ABL versi$HBRS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy  Mean-entropy Top-number-engyo ERCOF
20 50 100 200
Test
SVM 4(4:0) 1(1:0) 2(1:1) 2(1:1) 2(1:1) 1(1:0) 1(1:0) 1(1:0)
3-NN 6(6:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 4(4:0) 4(4:0) 2(2:0)
Bagging 5(5:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 3(3:0) 3(3:0) 3(3:0)
AdaBoostM1 8(4:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4)
RandomForests 6(6:0) 6(6:0) 2(2:0) 1(1:0) 2(2:0) 6(6:0) 4(4:0) 2(2:0)
Cs4 6(6:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
10-fold cross validation

SVM 12(12:0) 8(6:2) 8(7:1) 6(5:1) 9(7:2) 4(4:0) 8(6:2) 6(5:1)
3-NN 15(14:1) 9(9:0) 10(9:1) 9(7:2) 10(9:1) 8(8:0) 10(210:0 7(7:0)
Bagging 13(13:0)  12(11:1) 12(11:1) 10(10:0) 12(11:1) 11(11:0) 12(11:1) 10(10:0)
AdaBoostM1 22(13:9) 18(11:7) 15(10:5)  8(7:1)  15(10:5) 16(9:7) 16(10:6) 16(12:4)
RandomForests  15(15:0) 10(10:0) 7(7:0) 6(6:0) 7(7:0) 11(11:0) 12(12:0) 9(9:0)
Cs4 8(8:0) 7(7:0) 6(6:0) 8(7:1) 5(5:0) 6(6:0) 7(7:0) 7(6:1)

Table 5.20: Eleven genes selected by ERCOF on training ssnhgsid reported in [140] to
separate BCR-ABL from other subtypes of ALL cases in peidi&tL study. All these genes
are relatively highly expressed (above the mean value sathghe samples) in BCR-ABL
samples.

Probe Accession No.  Description
37600Qat U68186 Human extracellular matrix protein 1 mRNA
38312at  AL050002 Homo sapiens mRNA; cDNA DKFZp5640222
3973Qat  X16416 Human c-abl mRNA encoding p150 protein
40051at D31762 Human mRNA for KIAAOO57 gene
40504at  AF001601 Homo sapiens paraoxonase (PON2) mRNA
34362at  M55531 Human glucose transport-like 5 (GLUT5) mRNA
36591at  X06956 Human HALPHA44 gene for alpha-tubulin, exons 1-3
40196at  D88153 Homo sapiens mRNA for HYA22
1635at u07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon la and exons 2-10
1636g.at U07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon la and exons 2-10
33Qs.at HG2259- Tubulin, Alpha 1, Isoform 44

HT2348
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Figure 5.6: Six decision trees output by CS4 using ERCOFRctmlefeatures on TEL-AML
subtype classification of pediatric ALL data.

Hyperdip >50 versus OTHERS

The training set contains 42yperdip> 50 and 1730THERSsamples while the test set contains
22 Hyperdip> 50 and 900THERS Table 5.22 shows the results of this test. Although thescros
validation results is not very encouraging, some of our adeas still achieve 100% prediction
accuracy on the testing samples, such as SVM using allfntneean-entropy, top 200 entropy
and ERCOF selected features. Based on training cases, ER&&Hs around 300 genes, which
include 19 of the 26 genes that reported in [140] to separgieetdip>50 from other subtype
ALL cases. These 19 highlighted genes are listed in Tabl8 Afthe Appendix.

A brief summary

As mentioned, different from [140] where the pediatric ALhtd set was first analysed and
the classification was based on a given tree structure taeséglly classify a new case into a
subtype of ALL, our study focused on distinguishing a subtgpsamples from all other cases.

Therefore, the number of samples in the different classesnare unbalanced in both training
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Table 5.21: Pediatric ALL data set results (MLL versus OTHEIRN 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classifier All All-entropy  Mean-entropy Top-number-engyo ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 2(2:0) 0 0 0 1(1:0) 0 0 0
Bagging 2(2:0) 1(1:0) 0 0 0 0 0 0
AdaBoostM1 4(2:2) 1(0:1) 1(0:1) 2(1:1) 2(1:1) 1(0:1) 1(0:1) 1(0:1)
RandomForests 5(5:0) 2(2:0) 1(1:0) 0 1(1:0) 0 1(1:0) 1(1:0)
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation

SVM 7(7:0) 2(2:0) 2(1:1) 7(6:1) 2(1:1) 0 2(1:1) 2(2:0)
3-NN 9(9:0) 5(5:0) 4(3:1) 8(7:1) 7(6:1) 8(8:0) 5(4:1) 4(2:2)
Bagging 10(9:1) 9(8:1) 8(7:1) 8(7:1) 9(8:1) 9(8:1) 8(7:1) 5(5:0)
AdaBoostM1 13(7:6) 14(9:5) 18(13:5) 14(12:2)12(10:2) 14(12:2) 18(13:5) 13(6:7)
RandomForests  18(18:0) 10(10:0) 7(7:0) 9(8:1) 7(6:1) 8(7:1) 9(9:0) 9(9:0)
CS4 7(6:1) 5(4:1) 6(5:1) 7(6:1) 10(7:3) 5(4:1) 5(4:2) 4(4:0)

Table 5.22: Pediatric ALL data set results (Hyperdi® versus OTHERS) on 112 testing sam-
ples, as well as 10-fold cross validation on the entire 32ésa

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
Test
SVM 18(18:0) 0 0 4(1:3) 4(1:3) 1(0:1) 0 0
3-NN 4(3:1) 2(0:2) 0 5(1:4) 1(1:0) 2(2:0) 2(1:1) 3(1:2)
Bagging 6(4:2) 6(4:2) 5(4:1) 6(4:2) 7(4:3) 9(4:5) 8(4:4) 6(3:3)
AdaBoostM1 10(4:6) 12(3:9) 10(4:6) 5(3:2) 2(1:1) 3(1:2) 2(2:0) 10(4:6)
RandomForests 9(8:1) 3(2:1) 3(2:1) 5(2:3) 3(2:1) 3(2:1) 1) 1(1:0)
CS4 4(3:1) 4(3:1) 3(2:1) 8(3:5) 5(1:4) 2(1:1) 2(1:1) 3(2:1)
10-fold cross validation
SVM 11(8:3) 9(6:3) 11(9:2) 15(8:7) 15(10:5) 15(10:5) 18@M1 8(6:2)
3-NN 21(16:5) 13(9:4) 16(13:3) 15(9:6) 14(9:5)  17(11:6)12(9:3)  12(8:4)
Bagging 19(16:3) 19(15:4) 20(16:4) 17(11:6) 17(12:5) 18(12:6) 18(14:4) 19(15:4)
AdaBoostM1 23(14:9)  24(16:8) 14(10:4) 17(9:8)  17(10:7) 14(9:5) 17(11:6)) 14(9:5)
RandomForests 31(28:3)  19(15:4) 15(12:3) 17(11:6)  14§10:18(13:5) 15(10:5) 13(9:4)
Cs4 14(10:4) 14(10:4) 15(11:4) 20(10:10)  17(9:8)  17(10:712(9:3)  14(10:4)
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Table 5.23: Total number of misclassified testing samples six subtypes of pediatric ALL
study. Number with bold font in each row indicates the bestiteachieved by the corresponding
classifier.

Classifier All  All-entropy Mean-entropy  Top-number-emgyo ERCOF
20 50 100 200

SVM 32 1 2 8 8 3 2 1
3-NN 20 5 2 8 7 7 6 5
Bagging 14 12 9 8 12 13 12 11
AdaBoostM1 26 22 19 13 13 13 13 20
RandomForests 38 11 7 8 8 9 9 4
CSs4 12 7 6 12 7 4 4 4

and testing sets, which is easier to cause bias in predictitmwever, some of our proposed
classification algorithms and feature selection methatlsshieved excellent testing results on
all the six known subtypes classification. In addition, fOrftld cross validation on the entire
data set we also obtained very good results on classificafisabtypes T-ALL, E2A-PBX1 and

MLL.

In Table 5.23, for each of our scenarios, we add up the numberistlassified testing
samples over all six known subtypes. Remarkably, SVM, Ramfdoests and CS4 achieved their
best prediction accuracy under ERCOF — misclassified 1, 4andting samples, respectively.
In addition, we also demonstrated the advantage of CS4 lsgptiag some of the decision trees

output by the algorithm.

5.3 Comparisons and Discussions

We have conducted more than one thousand experiments oersdexpression profiles and one
proteomic data set using proposed feature selection asdifitation methods. From the large
amount of results presented above, we can address varioyzsadsons and discussions. In the
following comparisons, we will use the results of these 2@ste(1) 10-fold cross validation on
colon tumor, prostate cancer, lung cancer, ovarian dis€ddeCL, ALL-AML leukemia and six
subtypes of pediatric ALL (total 12 tests); (2) validation the testing samples of lung cancer,

ALL-AML leukemia and six subtypes of pediatric ALL (total 84ts).
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5.3.1 Classification algorithms

We employed six classification algorithms in the experimefdur ensemble of decision trees

methods, SVM and@-NN.

Comparison among ensemble of decision trees methods

First, let's do a comparison among the four ensemble of aectsees classification methods —
Bagging, AdaBoostM1, Random forests and CS4. Table 5.24sthe best classifier(s) (of these
four methods) for each experiment under different featalection scenarios. From the summary
in the last row of the table, We can see that under every pempfEsature selection scenario, the
performance of CS4 was much superior than that of BaggingfalaBBoostM1. Besides, CS4

performed much better than Random forests did under fowureaelection scenarios and did
equally good under the other cases. On the other hand, lEeC&4only makes use of unchanged
original training samples (in contrast to bootstrapped)dahe decision trees/rules output are
more reliable. This concern is crucial in bio-medical aggions, such as understanding and

diagnosis of a disease.

Note that, AdaBoostM1 performed poorly in these experimeiiihe main reason is that,
when its base classifier C4.5 makes no training error, AdaBbb only constructs a single tree
and thus loses the power of combining different decisioastréA typical example can be found
in the prediction on lung cancer validation samples wheraBabstM1 made 27 misclassified
predictions under every feature selection scenario, wihifict, is the same as C4.5. Recall that,
with the training samples of this data set, there are 16 gaeséng zero entropy value. This leads
to a very simple decision tree consisting only one featuik leaving 100% training accuracy.
Unfortunately, this feature is not good enough to give gawdligtion on testing samples. By the

way, let’s explore more on the prediction power of combinilegision trees in CS4.

Power of combining decision trees in CS4

In each experiment, CS4 built 20 decision trees using @iffefeatures as the root node. First,
let's look at the prediction power of each single decisi@etrTable 5.25 illustrates the number
of misclassified training and testing samples of each sitigkein the experiments on the pedi-

atric ALL data to classify TEL-AML1 and Hyperdip50 subtypes using ERCOF selected genes.
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Table 5.24: Comparison among four ensemble of decisios trexthods under different feature
selection scenarios using the results of the 640 (=4x8x20¢réments on the six gene expres-
sion profiles and one proteomic data set. Symbol “C” standB#mging classifier, “D” for
AdaBoostM1, “E” for Random forests, and “F” for CS4. Each aadlicates the symbol(s) of the
classifier(s) that achieved best performance in the retexsgreriment under the corresponding
feature selection scenario. For each feature selectiamagoe the last row indicates the total
number of experiments that individual decision tree basaskifier achieved best prediction ac-
curacy (including tie cases). If we add up the numbers aaigtt feature selection scenarios,
the final result is — Bagging 42, AdaBoostM1 36, random far@& and CS4 108.

Experiment All All-entropy  Mean-entropy Top-number-agy ERCOF
20 50 100 200
ColonTumor CDE D C C E F C D
Prostate F CF D,F CF F EF E F
Lung test F F EF F E,F EF E E
Lung E,F E,F E E E E E E,F
Ovarian F F F F F F F F
DLBCL EF E E E EF F E E
ALLAML test C,D D D,F C,F D E E D,E,F
ALLAML F F F F F F F F
Pediatric ALL data — test
T-ALL C,D,F C,DE/F C,D,EF C,D,F CDEF CDEF C,D/F CHF
E2A-PBX1 C,D,F C,D,EF C,D,E,F CDEF CDEF CDEF E&DB» CDEF
TEL-AML1 C E E C,E C,F E C,E,F E,F
BCR-ABL C F F C,EF F F F F
MLL F F C,F C,EF C,F C,EF C,F C,F
Hyperdip>50 F F E,F D,F D F D,E,F E
Pediatric ALL data — 10-fold cross validation
T-ALL CDF E E E,F E E E E
E2A-PBX1 C,D,F C,D,F C,D,E,F E E E E E,F
TEL-AML1 F F F E E,F F E E
BCR-ABL F F F E F F F F
MLL F F F F E F F F
Hyperdip>50 F F D C,D,E C,D,F D F E
Sum C:8 C:4 C:5 C:9 C:5 C:3 C:5 C:3
D: 6 D:5 D:6 D: 4 D:5 D:3 D:3 D: 4
E:3 E:6 E:9 E: 11 E: 10 E: 10 E: 11 E: 12
F:16 F: 15 F:14 F:12 F:13 F:14 F:11 F:13

From the figures displayed in the table, we can observe thathése single decision trees con-
structed using different good features as root node possesiar merit with little difference.
Although some single trees gave much better prediction teeg no. 5) while other trees did
very bad (e.g. tree no. 2) on the same test (TEL-AML1 versuslERS), there are no rules that
can be drawn across experiments. Especially, the firstdneatialways the best one. (2) A single
tree can achieve good training accuracy, but poor testisigitee such as tree no. 1 and tree no.
2 of the test on Hyperdip50. (3) A single tree contains fewer number of features sbitha
easy to be understood and interpreted. However, as showiguineFs.4, 5.5 and 5.6, different

trees produce different rules so that giegle coverage constraimroblem in a single tree can
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Table 5.25: The training and testing errors of 20 single slenitrees generated by CS4 using
ERCOF selected features on testings of TEL-AML1 versus ORBENd Hyperdip 50 versus
OTHERS in pediatric ALL data set. The row “No. features” gitbe number of features used
in the tree.

Tree No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
TEL-AML1 versus OTHERS — testing

Train 0 3 0 1 1 2 2 3 0 3 0 1 1 0 1 1 3 0 2

Test 8 12 3 5 1 5 8 8 4 6 5 11 8 4 9 4 11 2 7

No. features 4 3 4 4 4 3 4 4 5 3 5 5 5 6 5 5 3 6 4
Hyperdip>50 versus OTHERS — testing

Train 0 0 2 1 2 1 3 3 3 1 1 1 0 0 1 2 3 1 0

Test 10 10 11 112 7 15 13 11 6 15 7 13 7 7 12 9 9

No. features 7 7 8 8 8 8

TEL-AML1 -~
Hyperdip>50 <—

number of errors

1 3 5 7 9 11 13 15 17 19
number of trees

Figure 5.7: Power of ensemble trees in CS4 — number of cordhirees versus number of
misclassified testing samples.

be rectified. Single coverage constraint means every migisample is covered by exactly one
rule [66].

Secondly, we examine the performance of combining theggesinees. For the test on
TEL-AML1 versus OTHERS, if we combine the first four trees 408l make 6 mistakes; if we
combine the first five trees, the number of mistake predistanops to 1 and to 0 when using the
first seven trees. In Figure 5.7, we plot the curves of numbeombined trees versus number of
misclassified testing samples for TEL-AML1 and Hyperdf®) subtypes prediction. The curves
show an obvious decreasing trend on the number of testimgsewhen first several trees are
combined to give prediction and after that, the accuracgigea be stable. Therefore, intuitively,
we see the power of using our ensemble of decision trees th€Bd. Besides, the two curves

also demonstrate that 20 trees are enough to give good poadic
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Table 5.26: Comparison between CS4 and SVM under differeatufe selection scenarios
using the results of the 320 (=2x8x20) experiments on thgehe expression profiles and one
proteomic data set. Symbol “A’ stands for SVM classifier akt for CS4. Each cell indicates
the symbol(s) of the classifier(s) that achieved best pmidioce in the relevant experiment
under corresponding feature selection scenario. For esthre selection scenario, the last row
indicates the total number of experiments in which SVM perfed better, CS4 did better and
the tie case. If we add up the numbers across feature selexté@narios, the final result is —
SVM won 86, CS4 won 22, and tie 52.

Experiment All All-entropy  Mean-entropy Top-number-apgy ERCOF
20 50 100 200
ColonTumor A A A A A A A A
Prostate A A A A AF A A A
Lung test A A A A A A A A
Lung A A AF A F AF A AF
Ovarian AF AF A A A AF AF AF
DLBCL F A A AF A A A A
ALLAML test F A A F F A A A
ALLAML AF AF AF A F F AF AF
Pediatric ALL data — test
T-ALL AF AF AF AF AF AF AF AF
E2A-PBX1 AF AF AF AF AF AF AF AF
TEL-AML1 F A A A AF AF AF AF
BCR-ABL A A F F F AF AF AF
MLL AF AF F AF AF F AF AF
Hyperdip>50 F A A A A A A A
Pediatric ALL data — 10-fold cross validation
T-ALL AF A F F A A A AF
E2A-PBX1 AF AF A A A A A AF
TEL-AML1 A A A A F A A A
BCR-ABL F F A A F A F A
MLL AF A AF AF A A A A
Hyperdip>50 A A A A A A F A
Sum A7 A:13 A:12 A:l2 A9 Al2 A1l A0
F:5 F:1 F:3 F:3 F:6 F:2 F:2 F:0
Tie:8 Tie:6 Tie:5 Tie:5 Tie:5 Tie:6 Tie:7 Tie:10

Comparison of CS4 with SVM andk-NN

First, we compare CS4 with SVM. Table 5.26 lists the clagg#fle(of SVM and CS4) that
achieved best validation accuracy for each experiment.rallv&eaking, the performance of
SVM is superior to that of CS4.

Secondly, similarly, we compare CS4 withNN. Table 5.27 lists the classifier(s) (fNN
and CS4) that achieved best validation accuracy for eactriempnt. Among 160 casek;NN
won 48, CS4 won 55, and tie 57. The performance of CS4 is $litpetter than that ok-NN.

SVM s the representative of the classifiers built on kernetfions whilek-NN is the most

typical instance-based learning algorithm. Differentirdecision tree methods which use only
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Table 5.27: Comparison between CS4 dntliN under different feature selection scenarios
using the results of the 320 (=2x8x20) experiments on thgehe expression profiles and one
proteomic data set. Symbol “B” stands foNN classifier and “F” for CS4. Each cell indicates

the symbol(s) of the classifier(s) that achieved best pedioce in the relevant experiment

under corresponding feature selection scenario. For esthre selection scenario, the last row
indicates the total number of experiments in whi¢hiNN performed better, CS4 did better and
the tie case. If we add up the numbers across feature selextenarios, the final result is —

k-NN won 48, CS4 won 55, and tie 57.

Experiment All All-entropy  Mean-entropy Top-number-agy ERCOF
20 50 100 200
ColonTumor F B B B B B B B
Prostate F F B,F F F B B,F B,F
Lung test B,F B B B B B B B
Lung F F F B F B,F B,F B,F
Ovarian F F F B F F F F
DLBCL F B,F B,F B F B B,F B
ALLAML test F F B F B,F B B B
ALLAML F B,F B F F F B,F B,F
Pediatric ALL data — test
T-ALL F B,F B,F B,F B,F B,F B,F B,F
E2A-PBX1 B,F B,F B,F B,F B,F B,F B,F B,F
TEL-AML1 F B B B B,F B,F B,F B,F
BCR-ABL B,F F F B,F F F F F
MLL F B,F B,F B,F F B,F B,F B,F
Hyperdip>50 B,F B B B B B,F B,F B,F
Pediatric ALL data — 10-fold cross validation
T-ALL F F B F F B B F
E2A-PBX1 B,F B,F B,F B B B,F B,F B,F
TEL-AML1 F B B B F F B B
BCR-ABL F F F F F F F B,F
MLL F B,F B F B F B,F B,F
Hyperdip>50 F B F B B B,F B,F B
Sum B:0 B:6 B:9 B:10 B:6 B:6 B:5 B:6
F:15 F.7 F5 F:6 F:10 F:6 F:3 F:3
Tie:5 Tie:7 Tie:6 Tie:4 Tie:d Tie:8 Tie:l2 Tie:ll

a small subset of features, SVM aheNN involve all the features in their classification models.
Although the overall performance of SVM is better than thHaC84, prediction models built by
SVM are difficult to understand, interpret and apply to padtdisease diagnosis. In this aspect,

CS4 has its big advantage over SVM.

SVM — linear versus quadratic kernel

“Will quadratic polynomial kernel functions perform batt& To answer this question, we apply
SVM with the quadratic polynomial kernel function to the al@ets. The results show that in

most of cases, SVM with quadratic kernel function perforims $game as that with the simple
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linear kernel; and in some cases, it even does worse. Forxiheriments described in this
chapter, quadratic kernel seldom performs better thammlikernel. For example, among the
twenty experiments using ERCOF selected features, linearek achieved better accuracy in 7
of them while they tied in the rest 13 cases (detailed datatishown). Note that, quadratic

kernels need much more time on training process, espeémlhigh-dimensional data.

5.3.2 Feature selection methods

The experimental results show that for all the classifiersnost of cases, they performed better
(or not worse) with the selected features than they did withdriginal feature space. In the
following discussions, we will focus on comparing our ERC®@ith other proposed entropy-

based feature selection methods.

Comparison of ERCOF with all-entropy and mean-entropy

Since ERCOF is built on all-entropy (the Phase | featureriiiteof ERCOF), first, let's compare

the performance of ERCOF and all-entropy. Table 5.28 llstsfeéature selection method(s) (of
ERCOF and all-entropy) that achieved best validation aagufor each experiment. Among 120
cases, all-entropy won 4, ERCOF won 60, and tie 56. Obviotlstyperformance of ERCOF is
better than that of all-entropy.

In our previous work presented in [64], mean-entropy metivad claimed to be superior
to all-entropy on high-dimensional biomedical data. Newx¢ will compare the performance
of ERCOF with mean-entropy. Table 5.29 lists the featureci®in method(s) (of ERCOF and
mean-entropy) that achieved best validation accuracydoh experiment. Among 120 cases,
mean-entropy won 18, ERCOF won 42, and tie 60. Overall spgaktie performance of ERCOF
is better than that of mean-entropy, though among 50% oidagsy had equal performance.

Note that, compared with all-entropy, mean-entropy and BRQse fewer features. To
have an intuitive sense of amount of features selected e ttheee methods, in Table 5.30 we
list number of features in the original data sets as well gdhéndimensional-reduced data sets.

From the table, we can see that:

(1) Feature reduction is mostly done by the entropy meagigeur “base” selection method,

entropy measure (i.e. All-entropy) on the average filtetsasumany as 88.5% (=1-11.5%)
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Table 5.28: Comparison between ERCOF and all-entropy wsidelifferent classifiers using the

results of the 240 (=2x6x20) experiments on the six geneessgiwn profiles and one proteomic
data set. Symbol “A” stands for feature selection usingatlopy method and “C” for ERCOF.

Each cell indicates the symbol(s) of the feature selecti@thod(s) that achieved minimum
number of misclassified samples in the relevant experimsingurelevant classifier. For each
classifier, the last row indicates the total number of experits in which all-entropy performed
better, ERCOF did better and the tie case. If we add up the arsrdrross classifiers, the final

result is — all-entropy won 4, ERCOF won 60, and tie 56.

)

@)

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C A,C C C C C
Prostate C C AC AC C C
Lung test C AC A AC C A,C
Lung AC C A,C C C C
Ovarian A,C C A,C C C AC
DLBCL C C A C A A,C
ALLAMLtest A,C C A,C A,C C C
ALLAML A,C AC AC C A,C AC
Pediatric ALL data — test
T-ALL A,C A,C A,C A,C A,C AC
E2A-PBX1 A,C A,C A,C A,C A,C A,C
TEL-AML1 A,C A,C A,C A,C A,C C
BCR-ABL A,C C A,C A,C C A,C
MLL A,C A,C C A,C C C
Hyperdip>50 A,C A AC C C C
Pediatric ALL data — 10-fold cross validation
T-ALL AC C A,C A,C A,C C
E2A-PBX1 C C A,C A,C C C
TEL-AML1 C C C C C C
BCR-ABL C C C C C AC
MLL A,C C C C C C
Hyperdip>50 C C A,C C C A,C
Sum A:0 A:l A2 A0 Al A0
C:8 C:12 Ci5 Cc:10 C:14 Cc:11
Tie:12 Tie:7 Tie:13 Tie:10 Tie:5 Tie:9

of the features in original data. From the above performamagysis, this round of heavy

dimensionality reduction not only brings us much fasterespef classification, but also

leads to more accurate predictions.

During the second phase of filtering in ERCOF, 33% of atk@py selected features are

further removed by Wilcoxon rank sum test. After this rouficharrow down, the remain-

ing features become sharply discriminating.

After the correlation checking in Phase lll, the final BREkeeps only 4.5% representa-

tive features of original data. This means that 40% of théllgigorrelated features left in

Phase Il are deducted in this round of filtering.
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Table 5.29: Comparison between ERCOF and mean-entropyr wiklgifferent classifiers
using the results of the 240 (=2x6x20) experiments on thgehe expression profiles and one
proteomic data set. Symbol “B” stands for feature seleatiging mean-entropy method and “C”
for ERCOF. Each cell indicates the symbol(s) of the featetecsion method(s) that achieved
minimum number of misclassified samples in the relevant Ex@at using relevant classifier.
For each classifier, the last row indicates the total numbexgeriments in which mean-entropy
performed better, ERCOF did better and the tie case. If waipdtle numbers across classifiers,
the final result is — mean-entropy won 18, ERCOF won 42, an@(ie

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C C B,C C C C
Prostate C B,C C B C B,C
Lung test B,C B,C B B,C C B,C
Lung B,C C B,C B B B,C
Ovarian B,C C B C B,C C
DLBCL B,C C B B,C C B,C
ALLAML test B,C C B,C B,C C B,C
ALLAML B,C B B C B B,C
Pediatric ALL data — test
T-ALL B,C B,C B,C B,C B,C B,C
E2A-PBX1 B,C B,C B,C B,C B,C B,C
TEL-AML1 B,C B,C B,C B C C
BCR-ABL C B,C B B,C B,C B,C
MLL B,C B,C B,C B,C B,C B,C
Hyperdip>50 B,C B B B,C C B,C
Pediatric ALL data — 10-fold cross validation
T-ALL B,C B B,C B,C B,C B,C
E2A-PBX1 C C B,C B,C C C
TEL-AML1 C C B,C C C C
BCR-ABL C C C B B B
MLL B,C B,C C C B C
Hyperdip>50 C C C B,C C C
Sum B:0 B:3 B:6 B:4 B:4 B:1
C:7 Cc:9 C:4 C5 C:10 C:7
Tie:dl3 Tie:8 Tie:10 Tie:11 Tie:6 Tie:12

(4) Number of features selected by mean-entropy is vengedimghat by ERCOF — only 40%
of all-entropy selected features are kept. Note that, dvepaaking, both mean-entropy

and ERCOF performed better than all-entropy did.

Comparison of ERCOF with top-number-entropy

For each data set, we also did experiments on some numbear fefatures selected by entropy
measure. Here, for each test, we will pick up the best oneahtto compare with ERCOF.
Table 5.31 shows that among 120 comparisons, ERCOF won & hetst top-number-entropy
won 45, and they did equally good in more than 50% of them. Hewehe best top-number-

entropy is different from data to data and from classifierl&ssifier. There is no regular pattern
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Table 5.30: Number of features selected by each method. Emvss validation, the average
number of the selected features in each fold's test is usemlun@ All gives the number of

features in the original intact data. Under ERCOF, the nundferemaining features after
Wilcoxon rank sum test (i.e. Phase Il) is given in Coluafter RSTwhile the final number of

selected features (i.e. Phase lll) is in ColuFinal. The percentage of the selected features on
original feature space is indicated in the brackets. ThetasAverages the average percentage
across the total 20 tests.

Experiment All All-entropy Mean-entropy ERCOF
after RST Final

ColonTumor 2000 131(6.6%) 58(2.9%) 77(3.9%) 58(2.9%)
Prostate 12600 1429(11.3%) 528(4.2%) 963(7.6%) 516(4.1%)
Lung test 12533 2173(17.3%) 777(6.2%) 1116(8.9%) 673(5.4%
Lung 12533 4530(36.1%) 1747(13.9%)  3169(25.3%) 1728¢13.8
Ovarian 15154 5930(39.1%) 2752(18.2%)  4016(26.5%) 2@B13¢1)
DLBCL 4026  392(9.7%) 141(3.5%) 199(4.9%) 112(2.8%)
ALLAML test 7129  866(12.1%) 350(4.9%) 519(7.3%) 280(3.9%)
ALLAML 7129 890(12.5%) 397(5.6%) 618(8.7%) 322(4.5%)

Pediatric ALL data — test
T-ALL 12558 1309(10.4%) 415(3.3%) 869(6.9%) 458(3.7%)

E2A-PBX1 12558 718(5.7%) 235(1.9%) 404(3.2%) 235(1.9%)

TEL-AML1 12558 1309(10.4%) 427(3.4%) 721(5.7%) 461(3.7%)

BCR-ABL 12558 84(0.6%) 31(0.2%) 84(0.6%) 76(0.6%)

MLL 12558 327(2.6%) 124(0.9%) 147(1.2%) 86(0.6%)

Hyperdip>50 12558  914(7.3%) 328(2.6%) 691(5.5%) 315(2.5%)
Pediatric ALL data — 10-fold cross validation

T-ALL 12558 1667(13.3%) 731(5.8%) 1329(10.6%) 695(5.5%)
E2A-PBX1 12558 1021(8.1%)  401(3.2%) 604(4.8%) 326(2.6%)
TEL-AML1 12558 1563(12.4%) 698(5.6%) 1351(10.8%) 748%)6
BCR-ABL 12558  147(1.2%) 56(0.5%) 96(0.7%) 50(0.4%)
MLL 12558 519(4.1%) 147(1.2%) 350(2.8%) 196(1.6%)
Hyperdip>50 12558 1222(9.7%)  536(4.3%) 1013(8.1%)  787(6.3%)
Average 11.5% 4.6% 7.7% 4.5%

to follow. To further illustrate this point, for each of sixassifiers, in Figure 5.8, we draw the
plots of top number of entropy selected features versus puoftprediction errors on the testing
samples of the ALL-AML leukemia data set and Hyperd§® subtype of the pediatric ALL data
set. From the plots, there is no optimal number of featurasesfound.

After above comparisons, we can claim that ERCOF is an dfficiey to select features
from high-dimensional gene expression data. In Phase | @R entropy-based method elim-
inates those genes who do not separate the samples wellpiitaye observed that using all-
entropy selected genes does not give the best results. fiplies that some features with small
entropy are not useful. To avoid restricting ourselves t@udoitrary cut off (like top-number-
entropy), in Phase Il of ERCOF, we resort to a non-paramstagstical test to help decide

which of the genes left in Phase | are more relevant than eitAdre Phase Il of ERCOF corre-
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Table 5.31: Comparison between ERCOF and top-numberg@nilice. top 20, 50, 100 and

200) under six classifiers using the results of the 600 (=B8pxexperiments on the six gene
expression profiles and one proteomic data set. Symbol ‘@idst for ERCOF and “D” for the

best feature selection of top-number-entropy. Each cditates the symbol(s) of the feature
selection method(s) that achieved best performance inelegant experiment using relevant
classifier. For each classifier, the last row indicates tited ttumber of experiments in which
ERCOF performed better, top-number-entropy did better thedtie case. If we add up the
numbers across classifiers, the final result is — ERCOF worthErbest top-number-entropy

won 45, and tie 58.

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C,D C C C D D
Prostate C,D D D D D D
Lung test C,D D C,D C,D C,D C,D
Lung C,D C,D D D C,D C,D
Ovarian C,D D D D D C,D
DLBCL C D D D C D
ALLAML test C,D C,D D C,D D D
ALLAML C,D C,D D D D D
Pediatric ALL data — test
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C,D
TEL-AML1 C C D D C,D C
BCR-ABL C,D D D C,D D C,D
MLL C,D C,D C,D C,D D C,D
Hyperdip>50 C,D D C,D D (o} D
Pediatric ALL data — 10-fold cross validation
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C
TEL-AML1 C C C,D D C,D C,D
BCR-ABL D C C,D D D D
MLL D C C D D C
Hyperdip>50 C CD D CD C D
Sum C4 C5 C:2 C:1 C:2 C:3
D:2 D:7 D:9 D:10 D:9 D:8
Tie:14 Tie:8 Tie:9 Tie:9 Tie:9 Tie:9

sponds to some biological considerations — sorting outélagufes into pathways and for each

pathway, picking out sufficient number of genes to repret@itpathway.

5.3.3 Classifiers versus feature selection

Here, we will discuss two issues: (1) which feature selectiethod is in favour of which clas-

sification algorithm, and (2) sensitivity of the classifi¢osthe feature selection methods. To
have an overall and intuitive feeling of the relationshigween the performance of classifiers
and feature selection methods, for each of the classifiergount for each of the feature selec-

tion methods (including\ll where all features were used) the total number of winningsieind
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Figure 5.8: Plots of top number of features versus numberrofs made on testing samples
of (A) ALL-AML leukemia data and (B) Hyperdip50 subtype of pediatric ALL data. In (A),
mean-entropy and all-entropy selected 350 and 866 featumestraining data, respectively. In
(B), mean-entropy and all-entropy selected 328 and 914ifesitrespectively. The two plots on
the left side are drawn for four ensemble of decision treassiliers while the two on the right
side are for SVM and 3-NN.

misclassified samples across the 20 validation tests onxlygeee expression profiles and one

proteomic data set. The results are summarized in Table 5.32

Now, we start to address the first issue. In terms of both tetahing times and number
of misclassified samples, among eight feature selectiomadet ERCOF is the best for SVM,
3-NN, Random forests and CS4. Besides, under ERCOF, Bagginigved its smallest total
number of misclassified samples. AdaBoostM1 performedivels better using top 20 features
selected by entropy measure, but compared with the otheclfigsifiers, its performance is not
good. As mentioned earlier, the main reason might be thagth@ploses its power of using multi-
ple decision trees when the single C4.5 tree has no erroainirtg samples. When this happens,
boosting is equivalent to the single tree C4.5 method. Waf@ately, in high-dimensional data,
we often see that single C4.5 trees have perfect trainingracg. A special case is that there

are features having zero entropy value on training samsgleth as lung cancer data and T-ALL,
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Table 5.32: A summary of the total winning times (includimng ¢ases) of each classifier (under
different feature selection methods) across the 20 vadidaests on the six gene expression
profiles and one proteomic data set. The number with boldifo@ach row indicates the feature
selection method that owns most winning times for the releckassifier. In the brackets, there
is the total number of misclassified samples across the s@mal@ation tests. Similarly, the
figure with bold font in the brackets in each row is the minimoomber of total misclassified
samples among feature selection methods for the classifier.

Classifier All All-entropy  Mean-entropy Top-number-ergyo ERCOF
20 50 100 200
SVM 4(100) 9(52) 11(48) 6(76) 6(74) 11(52) 11(59) 16(38)
3-NN 1(187) 5(87) 8(77) 6(88) 4(81) 6(77) 5(73) 12(61)
Bagging 7(123) 5(117) 8(115) 11(123) 11(122) 7(122) 9(114) 812
AdaBoostM1 5(191) 8(181) 8(166) 11(138) 10(144) 10(157) 9(162) 10(154)
RandomForests  0(228) 5(111) 5(93) 6(96) 7(83) 8(96) 5(90)9(80)
Cs4 5(87) 6(77) 6(76) 7(101) 10(81) 9(74) 8(74) 12(66)

E2A-PBX1 subtypes of pediatric ALL data.

Let's move to the second issue. From Table 5.32, we obseantestime classifiers are
sensitive to the feature selection. The good examples aké &\d k-NN — their classification
performances were improved significantly by using selefdatlires; however, on the other hand,
they could not achieve good performance either if the feaspace is too small. Thus, feature
selection is important to SVM anktNN when dealing with high-dimensional biomedical data.
This conclusion is in consistent with the principles of tlidtbalgorithms that all the features are
used in the classification models. Again, ERCOF is a suitialture selection method for these
two classifiers. Different from SVM anB-NN, decision tree methods do not use all the input
features in their classification models (i.e. decisiondye® that they are relatively not sensitive
to the feature selection. For example, Bagging and CS4 mpeeit quite reasonably well on the
original intact data. As illustrated in Table 5.25, a demisiree often contains very few number
of features, say around 5 in each tree. We called these é&sasigbuilt-in features[65]. The
selection of these built-in features is dependent on thiwitheal decision tree algorithms. For
example, information gain ratio measure is employed by (36 base decision tree classifier.
This round of feature selection conducted by the classietfimight be one of the main reasons
that classifiers based on decision tree are relativelytegdito other “pre-feature-selections”.
Nevertheless, properly selecting features can also hefpowve the performance of ensemble
of decision trees methods — Random forests and CS4 achi@rgdysod classification results

using ERCOF selected features.
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5.4 Chapter Summary

In this chapter, we applied some entropy-based featuretg@ienethods and classification tech-
nigues to six gene expression profiles and one proteomic Gh&se data sets are described by at
least 2000 features and some of them are by more than 12 8@ds. For each data set, we car-
ried out various experiments and compared our results htlptiblished ones (where available).
The large amount of experimental results showed that in wlosases, our proposed methods
achieved comparable or better classification performahar those previously reported. Be-
sides, we also listed the good features (i.e. genes for @l#ita sets except ovarian disease)
identified by our method, compared them with literature, satdted some of them with the dis-
ease studied. To emphasize the advantages of decisionretiesds in bio-medical domain, we

presented many simple, explicit and comprehensible tezgadd from the data.

We also addressed various comparisons among classifiefsance selection methods. In
the aspect of classifiers, SVM demonstrated its power osifilzation accuracy and our ensem-
ble of decision trees method CS4 also achieved good regutteng the decision tree methods,
the performance of CS4 is superior to Bagging, AdaBoostMd Random forests. The main
advantage of CS4 over SVM is that its output is easy to bepreéed and applied to practical
disease diagnosis. We also clearly observed the perfoeniamgrovements of all the classi-
fiers under the proposed feature selection scenarios. Ariengarious entropy-based feature
selection methods, ERCOF has demonstrated its efficiendyr@ustness when dealing with

high-dimensional gene expression data.
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Chapter 6

Experiments on Microarray Data —

Patient Survival Prediction

In this chapter, a new computational process for patieni&lmprediction using microarray gene
expression data will be presented. Different from all ppegiworks, in the first step, we carefully
form the training set samples by selecting oshort-term survivorsvho died within a short
period andong-term survivoravho were still alive after a relatively long follow-up timéhis
idea is motivated by our belief that short-term and longnatsurvivors are more informative and
reliable (than those cases in between) for building and nstaleding the relationship between
genes and patient survival. In the second step, ERCOF istasdentify genes most associated
with survival. In the third step, a linear kernel supportteeenachine (SVM) is trained on the
selected samples and genes to build a scoring model. Thel emsigns each validation sample

a risk score to predict patient survival.

6.1 Methods

We will describe in detail the new method for patient surljmeediction, focusing on selecting

an informative subset of training samples and building Sk&ded scoring function.
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6.1.1 Selection of informative training samples

One of the main features of our new method is to select infowm#&raining samples. Since our
focus is on the relationship between gene expression and/akiithe survival time associated
with each sample plays an important role here — two typestoéme cases, patients who died in
a short period (termed asHort-term survivor§ and who were alive after a long period (termed
as ‘fong-term survivory, should be more valuable than those in the “middle” staillsus, we
use only a part of samples in training and this is clearlyedéht from other approaches that use

all training samples.

Formally, for a sampl&’, if its follow-up time isF'(T') and its status at the end of follow-up

time is E(T), then

short-term survivor, ifF(T) < e AE(T) =1
Tis § long-term survivor, ifF(T) > ¢, (6.1)
others, otherwise
E(T) = 1 stands for “dead” or an unfavorable outconi&7’) = 0 stands for “alive” or a
favorable outcomeg; andcy; are two thresholds of survival time for selecting shortrteand

long-term survivors. Note that long-term survivors alsduide those patients who died after the

specified long period.

The two thresholds;; andcg, can vary from disease to disease, from data set to data set.
For example, in the survival study of early-stage lung adarmnomas that will be presented
later, we choose short-term survivors as those who diedwithe follow-up year (i.e.c; is
1 year) and long-term survivors as those who were alive &fterfollow-up years (i.e.c2 is 5
years). There are total 31 extreme training samples (1G-ron survivors and 21 long-term
survivors) among a total of 86 available primary lung adancicomas. These 21 long-term
survivors include 2 patients whose status at the end ofvfellp time was “dead”, but follow-up
times were 79.5 months and 84.1 months, respectively. Quic baide lines for the selection of
c1 andesy are that the informative subset should (1) contain enowghitig samples for learning
algorithms to learn (typically>-15 samples in each class and total is between one third and one
half of all available samples), but (2) not have too many damw avoid including non-extreme

cases.
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After choosing informative training samples, we apply ERECO them to identify genes
most associated with survival status. With the selectedblssrand genes, in the next step, we

will build a scoring function to estimate the survival risi fevery patient.

6.1.2 Construction of an SVM scoring function

The regression scoring function proposed for survival @éstimation is based on support vector
machines (SVM) described in Section 2.3.2 of Chapter 2. IRéuat the final discriminant
function f(T') for a test sampl&’ given in Formula (2.3) of Chapter 2. If the linear kernel
function is usedf (T') will become a linear combination of the expression valuas@fdentified
genes. In this study, we map class label of “short-term sarsf to 1 and “long-term survivors”
to -1. Note thatf(7) > 0 if the sampleT is more likely to be a “short-term survivor”, and

f(T) < 0if the sampleT is more likely to be a “long-term survivor”.

To normalizef (T'), we use a transformation functial’) defined as:

1

s(T) = 1o @ (6.2)

Thus, f(T') is normalized bys(T') into the rang€g0, 1). Note that the smaller thgT') value is,
the better survival the patient corresponding to sarfiplell have. We terms(7T') the risk score
of T.

If one only categorizes patients into high risk or low riskogps, the value 0.5 is a natural
cutoff for s(T'), where ifs(T") > 0.5 then the patient corresponding to sanipleill have higher
risk; otherwise, the patient will have lower risk. If moreathtwo risk groups are considered —
such as high, intermediate, and low — then other cutoffs easdb based on the risk scores of
training samples. E.g., in training set, if most of shortvtesurvivors have a risk score greater
thanr; and most of long-term survivors have a risk score smaller thathen,

high risk, ifs(T) > r
Tis< low risk, if s(T) < o (6.3)
intermediate risk, ifs < s(T) <7y
Generally,r; > 0.5, ro < 0.5, and they can be derived from the risk scores assigned to the

training samples.

To evaluate the results, after assigning patients inteifft risk groups, we draw Kaplan-

113



Meier plots [8] to compare the survival characteristicsassn groups.

6.1.3 Kaplan-Meier analysis

Kaplan-Meier analysis estimates a population survivaledrom a set of samples. A survival
curve illustrates the fraction (or percentage) survivadah time. Since in realistic clinical trial
it often takes several years to accumulate the patientshéotrial, patients being followed for
survival will have different starting times. Then the patgewill have various length of follow-up
time when the results are analysed at one time. Therefaauttvival curve can not be estimated
simply by calculating the fraction surviving at each timer Example, in the following study of

lung adenocarcinomas, the patients follow-up time is vayyiom 1.5 months to 110.6 months.

A Kaplan-Meier analysis allows estimation of survival otiene, even when patients drop
out or are studied for different lengths of time [1]. For exden an alive patient with 3 years
follow-up time should contribute to the survival data foetfirst three years of the curve, but
not to the part of the curve after that. Thus, this patienukhbe mathematically removed from
the curve at the end of 3 years follow-up time and this is dalinsoring” the patient. On a
Kaplan-Meier survival curve, when a patient is censored ctirve does not take a step down as
it does when a patient dies; instead, a tick mark is geneusiyd to indicate where a patient is
censored and each death case after that point will caugkedlitlarger step down on the curve.
An alternative way to indicate a censored patient is to sh@wnumber of remaining cases “at
risk” at several time points. Patients who have been cedsoralied before the time point
are not counted as “at risk”. In Figure 6.1, picture (A) is anptete sample of Kaplan-Meier
survival curve with a tick mark representing a censoredepaficaptured fronfttp://www.
cancerguide.org/scurve_km.html ), while picture (B) illustrates how to calculate the
fraction of survival at a time (captured from [1]).

To compare the survival characteristics between differisktgroups for our survival pre-
diction study, we draw Kaplan-Meier survival curves of tigkrgroups in one picture and use
logrank testto compare the curves. The logrank test generatesadue testing the null hypoth-
esis that the survival curves are no difference between tewopg. The meaning qf-value is
that “if the null hypothesis is true, what is the probabilitirandomly selecting samples whose

survival curves are different from those actually obtai?iedn this chapter, all the Kaplan-Meier
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Figure 6.1: Samples of Kaplan-Meier survival curves. (Apisexample of a Kaplan-Meier

survival curve. This group of patients has a minimum follopvof a little over a year. (B) is an
illustration on how to calculate the fraction of survivalaatime.
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Figure 6.2: A process diagram of patient survival studyiuiding three training steps as well as
testing and results evaluation.

survival curves are generated BraphPad Prism(http://www.graphpad.com ) and we
always indicate the two-tailegtvalue. Figure 6.2 shows a diagram of patient survival [tézh

using our proposed method.

6.2 Experiments and Results

We apply the procedure of survival study above to two geneessgion data sets.

6.2.1 Lymphoma

Survival after chemotherapy for diffuse large-B-cell yingona (DLBCL) patients was previ-
ously studied by Rosenwalet al [102] using gene expression profiling and Cox proportional-
hazards model. In that study, expression profiles of biopsypées from 240 patients were
used [102]. The data include a preliminary group consistind60 patients and a validation

group of 80 patients, each of them is described by 7399 micpdeatures.
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Survival curves showing clear distinction

As an initial step, we pre-process the data to remove thosesginat are absent in more than
10% of the experiments in the preliminary group. There rendP37 features after having 2462

genes removed.

Then, we select short-term survivors and long-term surgito construct an informative
subset of training samples. For this study, weget 1 year ande, = 8 years in Formula
(6.1). Among the preliminary 160-patient group, 47 shertyt survivors (who died within one
follow-up year) and 26 long-term survivors (who were alifieaeight follow-up years) are thus
chosen. So, a total of 73 samples are in this informativeedutfgraining samples (46% of the
preliminary group) .

In the second step, we apply ERCOF to these 73 samples artifyidé® genes that are
related to patient survival status at 5% significant leverl {Vilcoxon rank sum test) and 0.99
Pearson correlation coefficient threshold. Some of ourcsslegenes are also listed in Table 2
of [102], where these genes were found to be significantlpaasd with survival§ < 0.01).
E.g., AA8B05575 (GenBank accession number) ig@énminal-center B-cell signaturex00452
and M20430 inMHC class Il signature and D87071 is inymph-node signature The gene
signatures were formed by a hierarchical clustering aligarin [102]. Besides, some top-ranked
genes (with smaller entropy value) identified by ERCOF age & one of these gene signatures.
E.g.,BC012161, AF061729 and U34683 aretioliferation signature BF129543 is irgerminal-
center B-cell signatureand K01144 and M16276 are MHC class Il signature

In the third step, an SVM model is trained on the 73 extremiaitrg samples with the 78
identified features. We find that the well-learned lineamk¢iISVM can separate the 47 short-
term survivors and 26 long-term survivors completely — th@dst risk score assigned to the
short-term survivors is above 0.7 and most of the long-tarmaigors has risk score lower than
0.3. Then, we calculate risk scores for all the other sampbe®mely the remaining (non-extreme)
87 samples in the original preliminary group and the 80 samjul the validation group. These

167 samples are treated as our test set.
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Figure 6.3: Kaplan-Meier plots illustrate the estimatidroeerall survival among different risk
DLBCL patients in the testing set containing 167 samplesé¢P@\)) and all 240 samples (Panel
(B)). The risk groups are formed on our SVM-based scoringtion. A tick mark on the plot
indicates that one sample is censored at the corresporidieg The 5-year overall survival for
high risk versus low risk groups of patients for testing skass 32% versus 91%, for all samples
is 20% versus 95%.

We categorized patients into four risk groups as follows:

high risk, if S(T) > 0.7
) intermediate-highrisk, 0.5 < S(T) < 0.7
Tis (6.4)
intermediate-low risk, 0.3 < S(T) <0.5

low risk, if S(T) < 0.3

where the threshold 0.5 is the mean value of 0.7 and 0.3. TipéeaKaJeier curves of overall
survival are drawn in Figure 6.3, where we can see cleandiifies at the five-year survival rates
for the high risk and low risk groups, in both testing samplie(Ranel (A)) and all samples (Panel
(B)). Although we cannot see distinct overall survival besén the two intermediate groups, the
5-year survival rates of these two groups are obvioushedsfiit from that in the high risk group
or the low risk group. This also suggests that three or twlo gi®ups would be sufficient for
these DLBCL samples. So in the rest of this study, we simplggengigh and intermediate-high
risk patients into a single high risk category, and low artérimediate-low risk patients into a
single low risk category.

Having the risk score, when a new case comes, we will be atdsdign it to the corre-
sponding risk group easily. This kind of prediction was ndtli@ssed in [102] where the DL-
BCL patients were ranked by their gene-expression-bastmbme-predictor score but divided
into several groups with equal number of samples. For an pkarB0 samples in the validation
group were stratified according to the quartiles of the scwiigh each of quartiles consisting of

20 patients. With that kind of categorization, one cannal &n explicit measure to evaluate a

118



new case.

Comparison with International Prognostic Index

Various clinical features — such as stage, performancesstédctate dehydroginase levels —
which are known to be strongly related to patient survivalyehbeen combined to form the
International Prognostic Index (IP1) [113]. The IPI has medfectively adopted to separate
aggressive lymphomas into several groups with signifigadifferent responses to therapy and
survival. Since IPI is only built on the consideration ohatial factors, it provides little insight
into disease biology [60].

The risk score obtained from our method is based on gene ssiprein biopsy specimens
of the lymphoma, so it is an independent predictor from IRfalct, we find that patients in the
high IPI group — and similarly for the intermediate and the I&| groups — when partitioned
by our risk score into high risk and low risk categories, haigmificantly different outcomes.
In Figure 6.4, Kaplan-Meier plots show significant diffecenon overall survival for our high
risk and low risk groups among the patients with IPI low (amdilarly for intermediate and
high) risk index. In particular, among 21 IPI high risk pat&in our testing set, 15 of them are
assigned by our method to the high risk category and 6 of tloetimet low risk category. When
we check the survival status of these patients, we find 14eof fhpatients belonging to our high
risk category are indeed dead while only 2 of the 6 patientsniging to our low risk category are
dead. Similarly, for all 32 patients in the whole data setwvhitgh IPI, 23 of them (22 dead) are
assigned by our method to the high risk category and 9 (5 d#dtdem are assigned to low risk
category. This suggests that our method may be a more géqmtedictor of DLBCL survival

outcome than the IPI.

6.2.2 Lung adenocarcinoma

Adenocarcinoma is the major histological subtype of nomdsoell lung cancer (NSCLC). There

is a need to better predict tumor progression and clinicedayae in lung adenocarcinoma. The
lung adenocarcinoma data set contains 86 primary lung adecinomas. These experiments
include 67 stage | and 19 stage Ill tumors, each of them isribestby 7129 genes. The data

set was first analysed in [14] where a risk index was derivestthan the top 50 good genes
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Figure 6.4: Kaplan-Meier Estimates of survival among higk and low risk DLBCL patients
(according to our method) in each IPI defined group. Plots (B) and (C) are based on 167
testing samples while (D), (E) and (F) are for all 240 cases.
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Figure 6.5: Kaplan-Meier plots illustrate the estimatidroeerall survival among high risk and
low risk lung adenocarcinoma patients in the testing setaioimg 55 samples (Panel (A)) and
all 86 samples (Panel (B)).

that were identified to be most related to survival by unat@iCox analysis. In that study, tests
were conducted by randomly splitting 86 samples into eqgaabstraining and testing sets and
by “leave-one-out” cross validation.

First, we form our training set by setting = 1 year ande; = 5 years in Formula (6.1).
10 short-term survivors and 21 long-term survivors are thasen. Applying ERCOF to these
31 training samples, we find 402 genes that are related tomac Our top-ranked feature by
entropy measure, the ATRX gene, is a putative transcriptigulator. It is also reported by
Borczuket alin their recent paper [17] on NSCLC. Our second-ranked geNg&P2, is part of
stress pathways involved in oncogenesis. Yengl [138] also detected it in NSCLC.

Then we train a linear kernel SVM to obtain the weight for eamtgntified gene based on
the training data. The trained SVM can separate these 31lleawgry well, assigning very high
risk scores to short-term survivors (lowest score is as ag.73) while very low risk scores to
long-term survivors (highest score is as low as 0.25).

After training, we calculate risk score for each of the ramraj 55 samples which are used
for test purpose. These samples are then classified as biggrdup consisting sampl&swith
s(T) > 0.5, or as low risk group consisting sampl&swith s(7') < 0.5. The Kaplan-Meier
curves in Figure 6.5 show clear difference of survival faiigras in our high and low risk groups
for both testing cases and all cases. Since we pick out att-tf1on and long-term survivors
to form the training set, there is no “death” event happemeithé first 12 months time and no
sample censored after 60 months time in the plot drawn ontherest cases (Panel (A)).

In order to understand the relationship between our priedietnd tumor stage (I or 1l1). We
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Figure 6.6: Kaplan-Meier plots illustrate the estimatidroeerall survival among high risk and
low risk lung adenocarcinoma patients conditional on tustage.

also draw Kaplan-Meier curves to delineate survival difere between our high and low risk
patients conditioned on tumor stage. From Figure 6.6, wesearthat outcomes of patients with
stage | lung adenocarcinoma in our high and low risk groufierdrom each other, for both test
cases (Panel(A)) and all cases (Panel(B)). Again remayksl 13 stage Il cases in the testing
set, we assigned 11 (5 dead, 6 alive) of them to high risk graog the 2 of them assigned to
low risk group were all alive at the end of the follow-up tim&mong all 19 stage Ill cases, 17

(11 dead, 6 alive) of them were assigned to high risk groupralatg to our risk score.

6.3 Discussions

In the step of training set construction, we select only twinegne cases — long-term and short-
term survivors. See Table 6.1 for size change trends fronotiggnal training samples to the
informative training samples on DLBCL and lung adenocancias data sets. The figures illus-

trate that we used a small part of samples as training.

On the other hand, if we do not select those extreme casesnstead use all available
training samples, then what will be the results? To illustthis, we select genes and train SVM

model on the 160 samples in the preliminary group of DLBCLldgtuAlthough the training
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Table 6.1: Number of samples in original data and selectéatrimative training set. (*):
there are 48 DLBCL samples, whose relevant patient was dietiek @&nd of follow-up time,
are selected as informative, 47 of them are short-term wnviwhile 1 of them is long-term
survivor. (**): there are 12 lung adenocarcinomas, whoseesponding patients were dead,
are selected as informative, 10 of them are short-term wnwiwhile 2 of them are long-term
survivors.

Application Data set Status Total
Dead Alive
DLBCL Original 88 72 160
Informative | 47+1(*) 25 73
Lung Original 24 62 86
adenocarcinoma Informative | 10+2(**) 19 31
1004 * high risk 1004 ' high risk
] - low risk ] - low risk
E 75 % 75
8 8
& 254 & 25
W 25 s 75 1o W 25 s 75 1o
Follow-up (years) Follow-up (years)
(A) All genes (p = 0.21) (B) ERCOF selected genes £ 0.38)

Figure 6.7: Kaplan-Meier plots illustrate no clear diffece on the overall survival among high
risk and low risk DLBCL patients formed by the 80 validatiangples based on their risk scores
that assigned by our regression model built on all 160 tngisamples. (A) Using all genes. (B)
Using genes selected by ERCOF.

accuracy is good, Kaplan-Meier plots do not show significanvival difference between the
high and low risk groups formed by the 80 validation samplasel on their risk scores that
assigned by the trained SVM model. In detail, using all 498e3, the value of the survival
curves is 0.21 ((A) in Figure 6.7); using 40 genes selecteEREOF, they value is 0.38 ((B) in
Figure 6.7). Therefore, we claim that our proposed idealettiag informative training samples
is an effective method.

As pointed out in Section 6.1.1, we have some basic guide tmdetermine the thresholds
c1 andcy that defined in Formula (6.1). Bearing these minimum comggrdan mind, we try
severale; andes values in our study. In Table 6.2;value (of the logrank test) associated with
the Kaplan-Meier survival curves of validation samplesemdifferent selections of the and
co from DLBCL study are listed. All results are based on ERCOEded genes. We can see

that (1) for a range of; andcs (i.e. c¢; less than 3 years ang greater than 8 years), we can
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Table 6.2: Results for different thresholds(years) ana:; (years) on DLBCL study. All results
are based on ERCOF selected genes and on validation samptes o

c1 cg p-value No. short-term survivors No. long-term survivors .Igenes
1 5 0.2962 a7 57 121

1 7 0.0110 a7 36 79

1 8 0.0067 47 26 78

1 9 0.0570 a7 22 40

2 8 0.0049 61 26 55

3 8 0.0761 76 26 51

achieve better predictions by selecting extreme sampBsA petterp-value (0.0049) obtained
atc; =2 years and, =8 years than that we reported in Section 6.2.1cfoe= 1 year and:y =

8 years. However, when we trace back to the risk scores ofiigaisamples, one of the long-
term survivors selected undeyr =2 years and,; =8 years has a risk score as high as 0.73. In
addition, the number of selected short-term survivors 4stnes of the number of long-term
survivors under this choice. In any case, the selection aind ¢, can be further refined by

running cross-validation on training samples.

In the step of gene identification, built on statistical kiesdge, our three-phase filtering
process discards many unrelated genes and only keeps ansimddér of informative representa-
tives. According to our experience on gene expression aetlysis, generally, entropy measure
can filter out about 90-95% of the total number of genes [6#l]s Point has been verified again
in this study on survival prediction: entropy measure retainly 132 genes in DLBCL study
(there are around 5000 genes after removing missing vaturasB84 genes in lung adenocar-
cinoma study (original data contain 7129 genes). Aftetrfiltering by Wilcoxon rank sum
test and Pearson correlation coefficient test, the finatsmlegenes are with smaller size and
less correlated with each other. Table 6.3 shows the nustimrge trend of features from the
entropy selection, to Wilcoxon test, and to correlationfiicient selection. It can be seen that
the feature reduction is mostly by the entropy selection.

For comparison, in DLBCL study, we also do experiments ualhthe 4937 genes, the 132
genes output from the Phase | of ERCOF, and the 84 genes dudputhe Phase Il of ERCOF.
The results show that in each of these cases, the overalvaudifference between the high
and low risk groups formed by our risk scores on the testimgpdas can be seen as well. In

Figure 6.8, we draw the corresponding Kaplan-Meier suhduaves. Although the model built
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Table 6.3: Number of genes left after feature filtering faztephase of ERCOF. The percentage
in the brackets indicates the proportion of the remainingegeon original feature space. (*): the
number is after removing genes who were absent in more thgnaf@he experiments.

Gene selection  DLBCL  Lung adenocarcinoma

Original 4937(*) 7129
Phase | 132 (2.7%) 884 (12.4%)
Phase I 84 (1.7%) 591 (8.3%)
Phase IlI 78 (1.6%) 402 (5.6%)

on 3-phase ERCOF makes use the smallest number of gendsigitexbesp value. Again, the
good results also demonstrate the effectiveness of sabette informative samples. In addition,
in the study of lung adenocarcinoma, using all genes (i.thaui gene selection) cannot predict

outcome at allg > 0.1).

In the step of prediction, a simple linear kernel SVM is tealron the selected samples and
genes to build a regression model. The model then assighsvaiidation sample a risk score
to predict patient outcome. Based on the training resukéscan derive explicit thresholds (e.g.,
0.5, 0.3, 0.7) of our risk score to categorize patients iiffergnt risk groups. Thus, when a new
case comes, we are able to assign it to the correspondingnasip easily according to its risk

score. This prediction ability is important in patient sual study.

For both studies on DLBCL and lung adenocarcinoma, we assoour results with some
clinical features. For example, in the DLBCL study, our hagid low risk groups also demon-
strate significantly different outcomes in the analysis afignts with low or intermediate risk
according to their International Prognostic Index (IPIdr&s constructed on some clinical fea-
tures. E.g., for patients having high IPI, we assign mosheit into our high risk category and
some into our low risk category, and our assignment is betimelated to survival outcome of
these patients. Some of the genes identified to have straogiason with survival by ERCOF
also fall within four biologic groups defined on the basis ehg expression signatures. In the
lung adenocarcinoma study, most of the samples are frone $tagnors. Among these sam-
ples, although our high and low risk groups differ signifidarirom each other, we put quite
a few of them into high risk group. This findingrnticates the important relationship between
gene expression profiles and patient survival, independidisease stagewhich is one of the

conclusions drawn in [14].
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Figure 6.8: Kaplan-Meier plots illustrate the estimatidroweerall survival among high risk and
low risk patients in the validation group of DLBCL study. (A)sing all 4937 genes. (B) Using
132 genes output from the Phase | of ERCOF. (C) Using 84 gemgsitofrom the Phase Il of
ERCOF. (D) Using 78 genes output from the Phase Il of ERCOF.

6.4 Chapter Summary

In this chapter, we have applied statistical and machinaileg technologies to predict patient
survival using gene expression profiles. Different fromeotivorks, we first picked out extreme

cases to form the training set, consisting of only shomtsurvivors and long-term survivors.

Naturally, if there are genes indeed associated with outconen the different expression values
of these genes should be monitored by analysing these twes tyfisamples. Secondly, ERCOF
was applied to the selected informative samples to idegfyes most associated with survivals.
Thirdly, linear kernel SVM was trained on the selected sa®pind genes to form a regression
model, which can calculate a risk score to each sample. @moped methodology was tested
on two gene expression profiles: diffuse large-B-cell lympla and lung adenocarcinoma. For
both studies, the Kaplan-Meier plots showed clear surdifidrence on high and low risk group

patients that formed by the assigned risk scores.
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Chapter 7

Recognition of Functional Sites In

Biological Sequences

Not all biomedical data contain explicit signals or featuas those in the classification problems
arised by gene expression profilings. For example, DNA sempgeand protein sequences rep-
resent the spectrum of biomedical data that possess naigxXphtures. Generally, a genomic
sequence is just a string consisting of the letters “A’, “G3”, and “T” in a “random order”.
Yet a genomic sequence possesses biologically meaningifatibnal sites, which play impor-
tant roles in the process of protein synthesis from DNA segee. Figure 7.1 shows a picture
of this process (captured from the “bioinformatics clastegbof Dr. Nina Rosario L. Rojas
at http://aegis.ateneo.net/nrojas/ ). This process can be divided into two stages:

transcription and translation.

1. Transcription . In this stage, the information in DNA is passed on to RNA slthkes place
when one strand of the DNA double helix is used as a templathdRNA polymerase
to create a messenger RNA (mMRNA). Then this mMRNA moves froennilicleus to the
cytoplasm. In fact, in the cell nucleus, the DNA with all theas and introns of the gene
is first transcribed into a complementary RNA copy named fearcRNA” (nRNA). This
is indicated as “primary transcription” in the picture ofybre 7.1. Secondly, non-coding
sequences of base pairs (introns) are eliminated from thangsequences (exons) by
RNA splicing The resulting mRNA is the edited sequence of nRNA aftecsmi The

coding mMRNA sequence can be described in terms of a unit eéthucleotides called a
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Figure 7.1: Process of protein synthesis.
codon.

2. Translation. In this stage, the information that has been passed to RA DNA is used
to make proteins. At thmitiation phase of translation, ribosome binds to the mRNA when
it reaches an AUG (adenine, uracil, guanine) sequence oRM#e strand in a suitable
context. The ribosome is made of protein and ribosomal RNENE). The start codon
AUG is called translation initiation site (TIS) and is oncognized by the initiator tRNA
(transfer RNA). After binding to the mRNA, the ribosome peeds to thelongationphase
of protein synthesis by sequentially binding to the apgetprcodon in mRNA to form
base pairs with the anticodon of another tRNA molecule. ldewith the ribosome moving
from codon to codon along the mRNA, amino acids are added pmaé, translated into
polypeptide sequences. At the end, the newly formed strérain@o acids (complete
polypeptide) is released from the ribosome when a releaserfainds to the stop codon.

This is theterminationphase of translation.

The functional sites in DNA sequences include transcripstart site (TSS), translation
initiation site (TIS), coding region, splice site, polyagtation (cleavage) site and so on that are
associated with the primary structure of genes. Recognifahese biological functional sites

in a genomic sequence is an important bioinformatics agiidin [72].
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In order to apply traditional machine learning techniqueakiove functional sites recogni-
tion problem, we propose a 3-step work flow as follows. In th& Btep, candidate features are
generated using-gram nucleotide acid or amino acid patterns and then segudsita are trans-
formed with respect to the newly generated feature spadbelsecond step, a small number of
good features are selected by a certain algorithm. In tie gtép, a classification model is built

to recognize the functional site.

7.1 Method Description

The first and the most important step of our method is to gémaraew feature space under which
the original sequences can be transformed to the format ihvgieneral machine learning tools

can be easily applied.

7.1.1 Feature generation

We generate the new feature space ugirggam ¢ = 1, 2, 3, ...) nucleotideor amino acid pat-
terns A k-gram is simply a pattern df consecutive letters, which can be amino acid symbols
or nucleic symbols [143, 72]. We use eakctgram nucleotide or amino acid pattern as a new
feature. For example, nucleotide acid pattern “TCG” is a@gpattern while amino acid pat-
tern “AR” is a 2-gram pattern constituted by an alanine folld by an arginine. Our aim is to
recognize functional site in a sequence by analygirgzam patterns around it. Generally, up-
stream and down-streaingram patterns of a candidate functional site (for examplery ATG

is a candidate of translation initiation site) are treatedlifferent features. Therefore, if we use
nucleotide patterns, for eaéhthere are x 4% possible combinations df-gram patterns; if we
use amino acid patterns, since there are 20 standard aniifsopdics 1 stop codon symbol, there
are2 x 21* possiblek-gram patterns for each. If the position of eactk-gram pattern in the
sequence fragment is also considered, then the numbertofdeavill increase dramatically. We
call these features as position-specifigram patterns. Besides;gram can also be restricted

thosein-frameones.

Thefrequencyof a k-gram pattern is used as the value of this feature. For exampl

1. UP-X(DOWN-X), which counts the number of times the leXeappears in the up-stream
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(down-stream) part of a functional site in its nucleotidelar amino acid sequence.

2. UP-XY (DOWN-XY), which counts the number of times the tvaitérs XY appear as a
substring in the up-stream (down-stream) part of a funetisite in its nucleotide acid or

amino acid sequence.

where X and Y range over the 4 nucleotide acid letters or tedstrd 20 amino acid letters and

the special stop codon symbol.

In the framework of the new feature space, the initial nudlieosequences need to be
transformed. The transformation is constructed as folld@igen a DNA nucleotide sequence, a
sequence window is set aside for each candidate functidealvih it in the center and certain
bases up-stream (named @sstream window sizeand certain bases down-stream (named as
down-stream window sike If a candidate functional site does not have enough wgastror
down-stream context, we pad the missing context with theagu@te number of dont-care (“?”)

symbols.

If features are made from amino acid patterns, we will coderetriplet nucleotides, at
both up-stream and down-stream of the centered candidattidnal site in a sequence window,
into an amino acid using the standard codon table. A triplet torresponds to a stop codon is
translated into a special “stop” symbol. Thus, every nualieosequence window is coded into
another sequence consisting of amino acid symbols and™stopbol. Then the nucleotide or
amino acid sequences are converted into frequency seqdatzeinder the description of our
new features. Later, the classification model will be agplie the frequency sequence data,

rather than the original cDNA sequence data or the interated@mino acid sequence data.

7.1.2 Feature selection and integration

In most cases, the number of candidate features in the éegpaice is relatively big. It is reason-
able to expect that some of the generated features woulddbeviant to our prediction problem
while others are indeed good signals to identify the fumaticsite. Thus, in the second step,
feature selection is applied to the feature space to findetbmmals most likely to help in dis-
tinguishing the true functional site from a large numberardidates. Besides, feature selection

also greatly speeds up the classification and predictioogssy especially when the number of
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samples is large. Among the many feature selection techaiquesented in Chapter 3, we em-
ploy the simpleentropy measuréSection 3.2.4) in our following two applications. As used i
gene expression data analysis (with name “all-entropy8 chwose all the features whose value
range can be partitioned into intervals by Fayyad's disgaigbn algorithm [36] (Section 3.2.4
of Chapter 3).

To achieve the ultimate goal of predicting the true fundiaite, our next step is to integrate
the selected features by a classification algorithm. Atgdtap, in the following two applications,
we will focus on the results achieved by support vector maeh{SVM) (with linear or quadratic
polynomial kernel function) and our ensemble method CS4tailzel techniques of SVM and

CS4 can be found in Section 2.3.2 and Section 2.3.4 of Chaptespectively.

In the following two sections, we will make use of our proptsgork flow to predict

translation initiation site and polyadenylation signals.

7.2 Translation Initiation Site Prediction

7.2.1 Background

The translation initiation site (TIS) prediction problemabout how to correctly identify TIS in
MRNA, cDNA, or other types of genomic sequences. At the tation stage of protein synthesis
process, in eukaryotic mRNA, the context of the start codanrfally “AUG”) and the sequences
around it are crucial for recruitment of the small ribosombwit. Thus, the characterization
of the features around TIS will be helpful in a better undmding of translation regulation and
accurate gene predication of coding region in genomic antlAIBDNA sequences. This is an
important step in genomic analysis to determine proteiringpffom nucleotide sequences.
Since 1987, the recognition of TIS has been extensivelyietiugsing biological approaches,
data mining techniques, and statistical models [56, 5788859, 103, 83, 145, 90, 48, 142]. Ped-
ersen and Nielsen [89] directly fed DNA sequences into aficat neural network (ANN) for
training the system to recognize true TIS. They achievedsalref 78% sensitivity on start
ATGs (i.e. true TISs) and 87% specificity on non-start ATGs. (ifalse TISs) on a vertebrate
data set, giving an overall accuracy of 85%. Zatral [145] studied the same vertebrate data

set, but replaced ANN with support vector machines (SVMjpgslifferent kinds of kernel func-
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tions. They believe that carefully designed kernel fundiare useful for achieving higher TIS
prediction accuracy. One of their kernel functions is chflmcality-improved” kernel, which
emphasizes correlations between any two sequence pasitiahare close together, and a span
of 3 nucleotides up- and down-stream is empirically deteaniias optimal. Recently, Hatzigeor-
giou [48] built a multi-step ANN system named “DIANA-TIS” &tudy the recognition problem.
This ANN system combines a consensus ANN and a coding ANN thighiribosome scanning
model. They obtained an overall accuracy of 94% on a datacse&ining full-length human
cDNA sequences. All of these methods use nucleotide sequdata directly; they do not gen-

erate any new and explicit features for the differentiatietween true and false TISs.

There are some related works that use statistical featlites programATGpr[103] uses
a linear discriminant function that combines some statisfieatures derived from the sequence.
Each of those features is proposed to distinguish true T8 flalse TIS. In a more recent
work [83], an improved version cATGpr called ATGpr.sim was developed, which uses both
statistical information and similarities with other knownoteins to obtain higher accuracy of
fullness prediction for fragment sequences of cDNA clotesur previous study [72], the same

vertebrate data set was analyzed by generating features mscleotide acid patterns.

7.2.2 Data

We collected three data sets for this study.

The first data set (data set I) is provided by Dr. Pedersemnkists of vertebrate sequences
extracted from GenBank (release 95). The sequences dnerfiriocessed by removing possible
introns and joining the remaining exon parts to obtain threesponding mMRNA sequences [89].
From these sequences, only those with an annotated TIS, &inchtMeast 10 up-stream nu-
cleotides as well as 150 down-stream nucleotides are amesidn our studies. The sequences
are then filtered to remove homologous genes from differagdrosms, sequences added multi-
ple times to the database, and those belonging to same geitie$a Since the data are processed
DNA, the TIS site is ATG — that is, a place in the sequence wh&HeT”, and “G” occur in
consecutive positions in that order. We are aware that sd®sies may be non-ATG; however,

this is reported to be rare in eukaryotes [59] and is not ctamed in this study.

An example entry from this data set is given in Figure 7.2. réhere 4 ATGs in this
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299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGGACTGCAGCTGCCCCAAGCGRTNGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATEGTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGAAGAAGAGGGAGAITCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCGRAI QT
............................................................ 80
................................ iIEEEEEEEEEEEEEEEEEE EEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 7.2: An example annotated sequence from data setel.4Téccurrences of ATG are
underlined. The second ATG is the TIS. The other 3 ATGs areTi&n The 99 nucleotides
up-stream of the TIS are marked by an overline. The 99 nudentdown-stream of the TIS
are marked by a double overline. The “.”, “i", and “E” are atat@ns indicating whether the
corresponding nucleotide is up-stream (.), TIS (i), or destneam (E).

example. The second ATG is the TIS. The other 3 ATGs are n@fise TIS). ATGs to the
left of the TIS are termedp-stream ATGsSo the first ATG in the figure is an up-stream ATG.
ATGs to the right of the TIS are termebwn-stream ATGsSo the third and fourth ATGs in the
figure are down-stream ATGs. The entire data set containg 88quences. In these sequences,
there are a total number of 13375 ATGs, of which 3312 ATGs7@%) are true TISs, while
10063 (75.24%) are false. Of the false TISs, 2077 (15.5%)iprstream ATGSs.

The second data set (data set Il) is provided by Dr. Hatzgigeor The data collection
was first made on the protein database Swissprot. All the humnateins whose N-terminal
sites are sequenced at the amino acid level were collectechanually checked [48]. Then the
full-length mRNAs for these proteins, whose TIS had beerréatly experimentally verified,
were retrieved. The data set consists of 480 human cDNA seggén standard FASTA format.
In these sequences, there are as many as 13581 false TIS¥®6f5otal number of ATGs.

However, only 241 (1.8%) of them are up-stream ATGs.

Besides these two data sets that have been analyzed by, otfeeedso formed our own
genomic data set (data set Ill) by extracting a number of-alegdiracterized and annotated human
genes of Chromosome X and Chromosome 21 from Human Genorta8B(ir0]. Note that we
eliminated those genes that were generated by other goedicbls. The resulting set consists
of 565 sequences from Chromosome X and 180 sequences froomGsome 21. These 745
sequences containing true TIS are used as positive data expariment. Meanwhile, in order

to get negative data, we extracted a set of sequences arb¥{Tdss in these two chromosomes
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but excluded annotated ones.

7.2.3 Feature generation and sequence transformation

As every 3 nucleotides code for an amino acid, in this studyusek-gram ¢ = 1,2) amino
acid patterns as candidate features. Thus, there are=9221(+ 212) x 2) possible amino acid
patterns, i.e. new features.

In the sequence transformation, we set both up-stream wisdm® and down-stream win-
dow size to 99 bases — given a cDNA or mRNA nucleotide sequenctaining ATGs, a window
is set for each ATG with the ATG in the center and 99 bases ngaust and 99 bases down-stream
(excluding the ATG itself) aside. As such, for data set |, we312 sequence windows contain-
ing true TIS and 10063 containing false TIS; for data set80) 4equence windows containing
true TIS and 13581 containing false TIS. All the windows hasene size, i.e. containing 201
nucleotides. For ease of discussion, given a sequence wijng® refer to each position in the
sequence window relative to the target ATG of that windowe TA in the target ATG is num-
bered as +1 and consecutive down-stream positions — thatttse right — from the target ATG
are numbered from +4 onwards. The first up-stream positiorhat-is, to the left — adjacent
to the target ATG is —1 and decreases for consecutive positmwvards the 5’ end — that is, the
left end of the sequence window [72]. These sequence windontsining nucleotide letters are
further transformed to amino acid sequences by coding dviphgt nucleotides into an amino
acid or a stop codon. At last, the amino acid sequences akeited into frequency sequence
data under the description of feature space.

Apart from thek-gram amino acid patterns, we also derive three new feaftoessome
known bio-knowledge: two are based on the famous Kozak’s@asus matrix and one is on the
scanning model. From the original work for the identificatiof the TIS in cDNA sequences,
Kozak developed the first weight matrix from an extendedeatibn of data [56]. The consensus
motif from this matrix is GCCAG]CCATGG, where (1) a G residue tends to follow a true TIS,
which indicates that a “G” appears in position +4 of the ar@jisequence window; (2) a purine
(A or G) tends to be found 3 nucleotides up-stream of a true wtich indicates that an “A” or
a “G” appears in position -3 of the original sequence wind&so, according to the ribosome

scanning model [27, 57, 4], an mMRNA sequence is scanned f&én®l) to right (3'), and the
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scanning stops as soon as an ATG is recognized as TIS. Thefrds ATGs in the mRNA
sequence to the right of this ATG are then treated as nonTid$ncorporate these knowledge
to our feature space, we add three Boolean features “DOWN4UIB3-AorG” and “UP-ATG".
Here, UP-ATG means whether an in-frame up-stream ATG exibisa nucleotide sequence
window extracted for each candidate TIS, we call those Bagrim positions - -, -9, -6, and -3,
the in-frame up-stream 3-gram patterns; and those 3-gramssitions +4, +7, +10,- -, the
in-frame down-stream 3-gram patterns. Finally, there @i&fBatures in the new feature space.
After this process of feature generation and data transftom, we get 3312 true TIS
samples and 10063 false TIS samples from data set |, 480 t@isamples and 13581 false
TIS samples from data set Il. Each sample is a vector of 92¢éms and three boolean values.

Figure 7.3 presents a diagram for the data transformatitimregpect to our new feature space.

7.2.4 Experiments and results

To verify the effectiveness of our method from differentexss, we designed a series of experi-

ments on the three data sets:

a. Conducting computational cross validations in data aatlidata set Il separately.

b. Selecting features and building classification modehgisiata set |. Applying the well-

trained model to data set Il to obtain a blind testing acgurac
c. Incorporating the idea of ribosome scanning into thestfi@ation model.

d. Applying the model built in experiment-b to genomic setpes.

Validation in different data sets

To strictly compare with the results presented in [142, W&, conduct the same 3-fold cross
validation. Table 7.1 shows our results on the data set | atedgkt Il using the features selected
by the entropy-based algorithm. With the simple linear kefanction, SVM achieves accuracy
of 92.04% at 81.13% sensitivity and 95.63% specificity oradadt I. This is better than the
accuracy of 89.4% at 74.0% sensitivity and 94.4% specifieityich is the previous best result

reported on the same data set [142]. On data set Il, SVM aehiaa accuracy of 98.42% at
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Figure 7.3: A diagram for data transformation aiming for thescription of the new feature

space.

63.33% sensitivity and 99.66% specificity. Note that we cainfimd previously reported results

on this data set under similar cross validation.

Validation across two data sets

The good cross validation results achieved within the iiddial data set encourage us to extend
our study to span the two data sets. In this experiment, wehgsehole data set | as training

data to select features and build the classification maddeh wve evaluate the well-trained model

on data set Il to get a test accuracy.

To reduce theimilarity between the training and testing dat&laASTsearch between the
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Table 7.1: The results by 3-fold cross validation on the twatadsets (experiment-a).
SVM(linear/quad) means the classification model is builtibgar/quadratic polynomial kernel
function.

Data Algorithm Sensitivity  Specificity Precision Accuracy

I SVM(linear)  81.13% 95.63% 85.93%  92.04%
SVM(quad) 80.19% 96.17% 87.34%  92.22%
Cs4 76.18% 96.14% 86.67%  91.20 %

Il SVM(linear)  63.33% 99.66% 86.86%  98.42%
SVM(quad) 71.25% 99.42% 81.24%  98.46%
Cs4 83.54% 97.67% 55.93%  97.19%

Table 7.2: Classification accuracy when using data set laisiig and data set Il as testing
(experiment-b). The row of II** is the testing accuracy ortalaet Il before similar sequences
being removed.

Data Algorithm Sensitivity  Specificity Precision  Accuracy
| (train) SVM(linear)  80.68% 96.75% 89.10%  92.77%
SVM(quad) 86.05% 98.14% 93.84%  95.15%
Cs4 85.54% 97.91% 93.10%  94.85%
Il (test) SVM(linear)  96.28% 89.15% 25.31%  89.42%
SVM(quad) 94.14% 90.13% 26.70%  90.28%
Cs4 92.02% 92.71% 32.52%  92.68%
II** (test) SVM(linear)  95.21% 89.74% 24.69%  89.92%
SVM(quad) 94.38% 89.51% 24.12%  89.67%
Cs4 87.70% 93.26% 28.60%  92.11%

data set | and Il is performed. Two sequences are considergldrsif they produce a BLAST

hit with an identity> 75%. We find 292 similar sequences and removed them from data s
As a result, after being removed similar sequences, dathamitains 188 real TIS, while there
are total number of 5111 candidates [70].

We train SVM model on data set | and obtain training accuray B% at 80.68% sensi-
tivity and 96.75% specificity. Using this model, we get a t@sturacy of 89.42% at 96.28%
sensitivity and 89.15% specificity on data set Il. We note tia testing accuracy on the original
data set Il (without the removal of the similar sequencegjuite similar. See Table 7.2 for a
summary of these results.

Remarkably, this cross-validation spanning the two dataaehieves a much better sensi-
tivity on data set Il than that obtained in the 3-fold crosdidation on this data set. A reason
may be that only 3.41% of candidate ATGs in data set Il are Ti$s, which leads to an ex-

tremely unbalanced numbers of samples between the twaesladewever, this bias is rectified
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significantly by the model built on data set | where the poparasize of true TIS versus false

TIS is more balanced.

Incorporation of scanning model

Hatzigeorgiou [48] reported a high accuracy on data set kibyntegrated method which com-
bines a consensus ANN with a coding ANN together with a ripmsscanning model. The
model suggests to scan from the 5’ end of a cDNA sequence aaitts TIS at the first ATG in
a good context [27, 57, 4]. The rest of the ATGs in the cDNA sege to the right of this ATG
are then automatically classified as non-TIS. Thus, one alydome ATG is predicted as TIS per

cDNA sequence.

We also incorporate this scanning model into our experimditiis time, in a sequence,
we test ATGs in turn from left to right, until one of them is s&ified as TIS. A prediction on a
sequence is correct if and only if the TIS itself is predicteda TIS. Since the scanning model
indicates that the first ATG that in an optimal nucleotideteghwould be TIS, a higher prediction
accuracy is expected if only up-stream ATGs and true TIS seel in training. Thus, we ignore
all down-stream ATGs in data set | and obtain a new trainingeetaining only true TISs and
their up-stream ATGs. Then feature selection and classditanodel learning are based on this

new training data. Table 7.3 shows our results with scanmiadel being used.

Under this scanning model idea, Artemis reported that 94%efTIS were correctly pre-
dicted on data set Il [48]. As mentioned in her paper [48],da& set was split into training and

testing parts in some way, the results reported there ardimsatily comparable with our results.

Testing on genomic sequences

In order to further evaluate the feasibility and robustnessur method, we apply our model
built in experiment-b to our own prepared data (data set\Which contain gene sequences of
Chromosome X and Chromosome 21. Using the simple lineaekéunction, SVM gives 397
correct prediction out of a total of 565 true TISs found in @hpsome X while 132 correct
prediction out of a total of 180 true TISs in Chromosome 21e $ansitivities are 70.27% and
73.33%, respectively. To obtain the specificity of our medele randomly select the same

number of sequences containing non-start ATGs (false Tt8h four own extracted negative
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Table 7.3: Classification accuracy under scanning modehwiing data set | (3312 sequences)
as training and data set Il (188 sequences) as testing (mgudrc). The row of 1I** is the
testing accuracy on data set Il before similar sequenceg) lbemoved (480 sequences). NoCor-
rectlyPredicted is the number of sequences whose TIS iedtypredicted.

Data  Algorithm NoCorrectlyPredicted Accuracy

I SVM(linear) 3161 95.44%
(train) SVM(quad) 3156 95.29%
Cs4 3083 93.09%

I SVM(linear) 174 92.55%
(test) SVM(quad) 172 91.49%
Cs4 176 93.62%

I**  SVM(linear) 453 94.38%

(test) SVM(quad) 450 93.75%
Cs4 452 94.17%

sensitivity

0 0.2 0.4 0.6 0.8 1
1-specificity

Figure 7.4: ROC curve of SVM and CS4 on prediction TIS in geiwaata Chromosome X and
Chromosome 21 (experiment-d). The SVM model is built on ithedr kernel function. The area
under the ROC curve: SVM 0.837, CS4 0.772.

data set. SVM correctly predicts 626 of these 745 non-staG# obtaining a specificity at
84.02%. In the same test, CS4 achieves 52.48% sensitivity8ar80% specificity. One point
needs to be addressed here is that in this validation, wevethe feature built on the ribosome
scanning model since that model is not true for genomic dadallustrate the tradeoff between
the prediction sensitivity and specificity, Figure 7.4 giihe ROC curves of SVM and CS4

showing the changes of prediction accuracy on true and Ta8e.
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7.2.5 Discussion
Significant Features

“What are the key features to predict TIS?” To answer thisstios, let us have a look of an
interesting discovery on the features selected in the @dobss validation on data set | in our
experiment-a. Table 7.4 shows the ranking positions of hef-ranked features based on their
entropy value for the each fold. Observe that they are thedaatures though their ordering is
slightly different from one fold to another. This suggesitithese features, or exactly amino acid
patterns, are indeed patterns around true or false TISthdtarore, “UP-ATG” can be explained
by the ribosome scanning model [27, 4] — seeing such an epstrATG makes the candidate
ATG less likely to be the TIS. “DOWN-STOP” is the in-frame gtoodons down-stream from
the target ATG and it is consistent with the biological psxef translating in-frame codons
into amino acids stops upon encountering an in-frame stdprce— seeing such a down-stream
stop codon makes the candidate protein improbably shoR3“BorG” is correspondence to the
well-known Kozak consensus sequence [56]. Most of the ddaures were also identified in
our previous study [142], in which the feature space is lliifictly on nucleotides. Remarkably,
these amino acid patterns, except “DOWN-L", all contain ‘‘@5idue. Note also that “UP-M"
is one of the top features in each fold, but we exclude it asrédundant given that UP-ATG is
true if and only if UP-M> 0. The significance of these features is further verified wherind
that both sensitivity and specificity drop down greatly iésle features are all excluded from the
classification model. However, we do not observe obviousedse when we remove any one of
them from the model. This may suggest that in real biologiracess of translation there are
some factors other than Kozak consensus that may regu&atedbgnition of TIS.

In addition to the result when only selected features ard,wse also obtain cross-validation
results on the whole feature space (i.e. without featureciieh). We find that using the whole
feature space can not let us achieve better results on allraperiments. For example, SVM
with linear kernel function achieves accuracy 90.94% a86% sensitivity and 94.58% speci-
ficity for data set | when running 3-fold cross validation atalset I. This result is not as good

as that on the selected features.
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Table 7.4: Ranking of the top 10 features based on their gyntvalue as relevant in each of
the 3 folds of data set I. Feature “UP-ATG” indicates whetirein-frame up-stream ATG exists
(boolean type). Feature “UP3-AorG” tests whether puring & ¢ends to be found 3 nucleotides
up-stream of a true TIS (boolean type). Feature “UP(DOWNEXunts the occurrence that an
in-frame (relative to the candidate ATG) triplet coding fbe amino acid letter X appears in the
up-stream (down-stream) part of a candidate ATG. Featu@WDI-STOP” is the occurrence of
in-frame stop codons down-stream of a candidate ATG.

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

ATG STOP  AorG A \Y, A L D E G
1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10

Classification algorithms

For the classification methods, overall speaking, SVM perfoslightly better than our CS4
method, in terms of prediction accuracy. However, CS4 aelievery good sensitivity when
running 3-fold cross validation on data set Il where the nendf true TISs is much less than the
number of false TISs. On the prediction of TIS in genomic sewes, the performance of CS4
is close to that of SVM. This can be illustrated by the ROC eard@rawn in the Figure 7.4 — the
areas under the curves are SVM 0.837 and CS4 0.772, resdectesides, decision trees can
output comprehensive rules to disclose the essence ofrigaaind prediction. Some discovered

interesting and biologically sensible rules with large@a@ge are listed below.
1. If UP-ATG="Y’ andDOWN-STOR-0, then prediction ifalse TIS
2. If UP3-AorG="N' andDOWN-STOR-0, then prediction ifalse TIS
3. If UP-ATG='N’ andDOWN-STOR-0 andUP3-AorG="Y", then prediction igrue TIS

On the other hand, in our series of experiments, SVM built aadgatic polynomial ker-
nels do not show much advantage over those built on simpedikernel functions. Note that

guadratic kernels need much more time on training process.

Comparison with model built on nucleotide acid patterns

In [142], data set | was studied usikggram nucleotide acid patterns and several classification

methods including SVMs, Naive Bayes, Neural Network andsilee tree. In that study, feature
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selection was also conducted, but by CFS (Correlationeb&sature Selection) which is intro-
duced in Section 3.2.6 of Chapter 3. The best accuracy aathien the 3-fold cross validation
was 89.4% at 74.0% sensitivity and 94.4% specificity whenes8hgram nucleotide acid pat-
terns were used. This result is not as good as that presanthis isection — 92.45% accuracy
at 80.19% sensitivity and 96.48% specificity. However, thedyfeatures selected by these two
experiments are highly consistent. Besides those 3 feahwiét on bio-knowledge, CFS picked
out down-stream TAA (stop codon), TAG (stop codon), TGA jgstmdon), CTG (amino acid
L), GAC (D), GAG (E) and GCC (A). If we code these 3-gram nutild® patterns into 1-gram
amino acid patterns, we will find they are all among the bestufes listed in Table 7.4. On
the other hand, although there are no 2-gram amino acidrpatéenong the 10 best features in
Table 7.4, some of them are indeed included in the set ofteeldeatures that has been used to
achieve better results in this study. Note that, our prevgiudy [142] also illustrated that using

4-gram, 5-gram nucleotide acide patterns could not helpargthe prediction performance.

Comparison with ATGpr

As mentioned earlietATGpr[103, 83] is a TIS prediction program that makes use of a finea
discriminant function, several statistical measuresveerifrom the sequence and the ribosome
scanning model. It can be accessedhtig://www.hri.co.jp/atgpr/ . When search-
ing TIS in a given sequence, the system will output severaly(Befault) ATGs in the order of
decreasing confidence. Let us take the ATG with highest cenée as TIS. Then for the 3312
sequences in our data seATGprcan predict correctly true TIS in 2941 (88.80%) of them. This
accuracy is 6.64% lower than that we achieved. For our dath, seue TIS in 442 (92.0%) of
480 sequences are properly recognized, which is about 21@8&6 than the accuracy obtained
by us. Our results quoted here are based on SVM model usidmpéae kernel function.

When we feed the genomic data used in our experimentAd @pr, the program gives cor-
rect TIS predictions on 128 (71.11%) of 180 Chromosome 2& gequences and 417 (73.81%)
of 565 Chromosome X gene sequences, giving the overalltaéysas 73.15%. On the other
hand,ATGpr achieves 70.47% prediction accuracy on the same numbergatine sequences
that were used in our experiment-d. From the ROC curves slmowigure 7.4, we can find our

prediction specificities are around 80% (SVM) and 73% (CSHgnvsensitivity is 73.15% —
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9.5% and 2.5% higher than that ATGpron specificity. This indicates that our program may

also outperformATGprwhen dealing with genomic data sequences.

7.3 Polyadenylation Signal Prediction

7.3.1 Background

The general polyadenylation machinery of mammalian cellsbeen well studied for decades.
The polyadenylation (poly(A)) reaction of mammalian pr&NAs proceeds in two phases: the
cleavage of pre-mRNA and the addition of poly(A) tail to trety formed 3’ end. The cleav-

age reaction requires the cleavage/poly(A) specificityola¢CPSF), the cleavage stimulation
factor (CStF), the cleavage factors | and Il (CF | and CF Il @oly(A) polymerase (PAP) in

most cases. CPSF, PAP and poly(A) binding protein 2 arevmebin poly(A) [144]. The as-

sembly of the cleavage/poly(A) complex, which contains hwsall of the processing factors
and the substrate RNA, occurs cooperatively. CPSF corigtsur subunits and binds to the
highly conserved AAUAAA hexamer up-stream of the cleavaigee SCStF, which is necessary
for cleavage but not for the addition of poly(A) tail, inteta with the U/GU rich element located
down-stream of the AAUAAA hexamer. Two additional factdis cleavage factor | and Il (CF
I and CF II) act only in the cleavage step. CF | has been puriidtbmogeneity and shown to
be an RNA-binding factor. CF Il has been only partially pedfiso far, and its function is not

known.

After the formation of the cleavage/polyadenylation complkhe selection of poly(A) site
is primarily determined by the distance between a hexanpalg(A) signal (PAS) of sequence
AAUAAA (or a one-base variant) and the down-stream elengemi¢ted as DSE). The spacing
requirements for the PAS and DSE reflect the spatial reqeingsnfor a stable interaction be-
tween CPSF and CStF. The DSE is poorly conserved and two yyaés thave been described
as a U-rich, or GU-rich element, which locates 20 to 40 basesestream of the cleavage site
(for reviews, please refer to [28, 144, 141]). DSE is presert large proportion of genes and
can affect the efficiency of cleavage [75, 141]. Although ifew cases, an up-stream element
(denoted as USE) is required for the poly(A) signal to beyfatitivated [5, 18, 79], the position

and sequence of the USE are undefined. In summary, the oagjaniof mammalian poly(A)
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Figure 7.5: Schematic representation of PAS in human mRMNA®processing site. Distances
are as described in [28].

sites may have an unexpected flexibility and their activigpehds on not only the hexameric
signal but also the up/down elements. Figure 7.5 is a sclenegresentation of PAS in human

MRNA 3’end processing site [144].

There are several software programs that have been dedelomietect PASes in human
DNA and mRNA sequences by analysing the characteristicp-atieam and down-stream se-
guence elements around PASes. In one of early studies, Keabasl Zhang [119] developed
a program name#®olyadq which finds PASes using a pair of quadratic discriminantfioms.
Besides, they also created a database of known active padjtes and trained their program on
280 mRNA sequences and 136 DNA sequences. In their testsdafdiPASes, they claimed a
correlation coefficient of 0.413 on whole genes and 0.51Bérdst two exons of geneBolyadq
is available ahttp://argon.cshl.org/tabaska/polyadq_form.html . Recently,
Legendre and Gautheret [61] used bioinformatics analysESY and genomic sequences to
characterize biases in the regions encompassing 600 tidele@round the cleavage site. The
computer program they developed is callagin which uses 2-gram position-specific nucleotide
acid patterns to analyse 300 bases up-stream and dowmstegaon of a candidate PAS. Being
trained by 2327 terminal sequencé&gpin was reported to achieve a prediction specificity of
75.5% to 90.4% for a sensitivity of 56% on several sets ofdaion data. The program can be
found athttp://tagc.univ-mrs.fr/pub/erpin/

In this study, we will apply our method to characterize thatdees in the regions encom-
passing 200 nucleotides around the PAS, i.e. with PAS in¢hére and both up-stream window

size and down-stream window size as 100 bases.
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7.3.2 Data

In a series of experiments, a large number of sequencesetdéaisain and test our classification

model. They are from two sources.

(1) Training and testing sequences used by prodegom [61]. The training set contains 2327
terminal sequences including 1632 “unique” and 695 “sttqay(A) sites. The testing
set consists of 982 positive sequences containing andoB&&es from EMBL and four
sets of same sized negative sequences: 982 CDS sequerZzasy®dic sequences of the
first intron, 982 randomized UTR sequences of sdffierder Markov model as human
3" UTRs, and 982 randomized UTR sequences of same mono tidelammposition as
human 3’ UTRs. The 2327 training sequences can be downldaotadttp://tagc.
univ-mrs.fr/pub/erpin/ and have been trimmed in accordance to our window
segments i.e. every sequence contains 206 bases, havirfg ia Bfe center. We obtained

testing data sets from Dr Gautheret via personal commuaitat

(2) Human RefSeq mRNA data set: we obtained 312 human mRNéesegs from RefSeq
[94] release 1. Each of these sequences contains a “poty#iSifeature tag carrying an
“evidence=experimental” label. We use these sequencasitbrbodel for PAS prediction
in MRNA sequences. Besides, we also extracted a set of hurRdNAsequences from
RefSeq containing a “polyA-site” feature tag carrying amience=experimental” label.
In this set, we removed the sequences that have been incindeéd training set used
in building our model. We use these sequences for testingoger assuming that the
annotated PAS positions are correct. Our negative dataaetenerated by scanning for
the occurrences of AATAAA at coding region and those AATAAKkes near the end of

sequence were excluded purposely.

7.3.3 Experiments and Results

First, we use simple 1-gram, 2-gram and 3-gram nucleotidt @atterns to construct feature

space [69]. Thus, there are 168 (4 + 42 + 4%) x 2) features.
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Table 7.5: Validation results by different programs on aafe®#82 annotated UTR sequences
from the EMBL database [61]. TP is the number of true positivEN is the number of false
negatives.

Program TP FN  Sensitivity
Erpin 549 433 55.9%
Polyadg 547 435 b55.7%
Ours 553 429 56.3%

Preliminary results

In the first experiment, we use the 2327 sequences introdac¢él] (data source (1)) as our
true PAS training data. To obtain negative sequences, simae false PAS data is randomly
selected from our own extracted negative data set (dataes@)). Using entropy-based feature
selection algorithm and linear kernel SVM classifier, thas#ivity and specificity of 10-fold
cross-validation on training data are 89.3% and 80.5% eats@ly. In order to compare with
other programs, we test our model on the same validatiorwsise testing results on programs
Erpin andPolyadgwere reported in [61]. As described in data source (1) , thabdation sets
include true PASes sequences came from 982 annotated UTRewrsame sized control sets
known not to contain PASes: coding sequences (CDS), infmadsrandomized UTRs (simply
shuffled UTRs and*! order Markov model UTRS). For a direct comparison, we algosadhe
prediction sensitivity on the 982 true PASes to around 56s0%hat evaluation can be made on

the predictions for those four control sets.

Table 7.5 shows the validation results on true PASes ancTablillustrates the results on
four control sets. Figure 7.6 is the ROC curve for this sesfaests. All the numbers regarding to
the performance of prograntspin andPolyadqin Table 7.5 and Table 7.6 are copied or derived
from [61]. The results in Table 7.6 demonstrate that our rhoale give better performance than
Erpin andPolyadqgdid on false PASes prediction of CDS, intron and simple simgfffequences,
and almost same prediction accuracy on sequencesl¥itrder Markov randomization.

In this experiment, we select 113 features via entropy nreastihese features are then
integrated with SVM to form the classification and predistimodel. Table 7.7 lists the top
10 of these features ranking by their entropy values (the tlee entropy value is, the more
important the feature is). Some of these top features cantbmieted by those reported motifs,

for example, it clearly visualizes both USE and DSE as chiaraed by G/U rich segments since
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Table 7.6: Validation results by different programs on etiint sequences not contain-
ing PASes: coding sequences (CDS), introns, and two typesawflomized UTR se-
quences (simple shuffling ant®® order Markov simulation) [61]. TN is the number of
true negatives. FP is the number of false positives. CC iseladion coefficient, and

CC = (IPATN_FP+FN) . Calculations of Precision and CC use TP and
\/(TP+FP)«(TP+FN)+(TN+FP)«(TN+FN)

FN from Table 7.5.

Data set Program TN FP  Specificity Precision CC
CDSs Erpin 880 102 89.6% 84.3% 0.483
Polyadg 862 120 87.8% 82.0% 0.459
Ours 887 95 90.3% 85.4% 0.497
Introns Erpin 741 241 75.5% 69.5% 0.320
Polyadq 718 264 73.1% 67.5% 0.293
Ours 775 207 78.9% 72.8% 0.363
Simple shuffling  Erpin 888 94 90.4% 85.4% 0.494
Polyadg 826 156 84.1% 77.8% 0.415
Ours 942 40 95.9% 93.3% 0.570
Markov 1% order Erpin 772 210 78.6% 72.3% 0.354
Polyadq 733 249 74.6% 68.7% 0.309
Ours 765 217 77.9% 71.9% 0.351
1 T T T I
1]
0.8 - s
£os6 | -
z tron —
3041 istMarkov &— |
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Figure 7.6: ROC curve of our model on some validation setsrieed in [61] (data source (1)).

UP-TGT, UP-T, DOWN-TGT, DOWN-T, UP-TG and UP-TT are among features.

Model for prediction PAS in mRNA sequences

When we apply our model to 312 true PASes that were extracted MRNA sequences by
ourselves (data source (2)), the results obtained are mat go only around 20% of them can
be predicted correctly. Besides, the progfamin performs even worse on these PASes — with
prediction accuracy at only 13%. These poor results maycatdithat the good features used

in the model for PAS prediction in DNA sequences are not efficfor mRNA. Therefore, we
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Table 7.7: The top 10 features selected by entropy-baségréeselection method for PAS clas-
sification and prediction in human DNA sequences.

Rank 1 2 3 4 5 6 7 8 9 10
Feature UP  DOWN UP UP DOWN DOWN UP UP DOWN UP
TGT -A T -AG -TGT T TG -TT -AA -A

decide to build another model for mRNA sequences withouy(@9ltails. This model is also

expected to provide a new way for predicting the mRNA cleawsite/poly(A) addition site.

Since the new model is aimed to predict PASes from mRNA sempsgemwe only consider
the up-stream elements around a candidate PAS. Therelfiere, @are only 84 features (instead
of 168 features). To train the model, we use 312 experimgniatified true PASes and same
number of false PASes that randomly selected from our peejpaegative data set. The validation
set comprises 767 annotated PASes and same number of féies Biso from our negative data
set but different from those used as training (data sourge Tais time, we achieve reasonably
good results. Sensitivity and specificity for 10-fold cresdidation on training data are 79.5%
and 81.8%, respectively. Validation result is 79.0% seritsitat 83.6% specificity. Besides, we
observe that the top ranked features are different fromethisged in Table 7.7 (detailed features

not shown).

Since every 3 nucleotides code for an amino acid when DNAesszps translate to mRNA
sequences, it is legitimate to investigate if an altermadipproach that generating features based
on amino acids can produce more effective PASes predictiomRNA sequence data. In fact,
this idea is also encouraged by the good results we achievitd iTIS prediction described in
the previous section.

Similarly as what we did in TIS prediction, we transform thg-stream nucleotides of a
sequence window set for each cadidate PAS into an amino aqigeace segment by coding
every triplet nucleotides as an amino acid or a stop codom. féature space is constructed by
using 1-gram and 2-gram amino acid patterns. Since onlyrepss elements around a candidate
PAS are considered, there are 46231 + 21?) possible amino acid patterns. In addition to these
patterns, we also present existing knowledge via an additifeature — denoting number of T

residue in up-stream as “UP-T-Number”. Thus, there are 4B8lidate features in total.

In the new feature space, we conduct feature selection amd$VM on 312 true PASes

and same number of false PASes. The 10-fold cross-validagisults on training data are 81.7%
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Figure 7.7: ROC curve of our model on PAS prediction in mRN4usnces.

sensitivity with 94.1% specificity. When apply the traineddrl to our validation set contain-
ing 767 true PASes and 767 false PASes, we achieve 94.4%iggnsiith 92.0% specificity
(correlation coefficient is as high as 0.865). Figure 7. h&sROC curve of this validation. In
this experiment, there are only 13 selected features and-NBmber is the best feature. This
indicates that the up-stream sequence of PAS in mRNA sequaagy also contain T-rich seg-
ments. However, when we apply this model built for mMRNA semes using amino acid patterns
to predict PASes in DNA sequences, we can not get as goodgesuthat achieved in the pre-
vious experiment. This indicates that the down-stream efgmare indeed important for PAS

prediction in DNA sequences.

7.4 Chapter Summary

In this chapter, we proposed a machine learning methodatoglentify functional site in biolog-
ical sequences. Our method comprises three sequentiat gidpgenerating candidate features
usingk-gram nucleotide acid patterns or amino acid patterns agrd tlansforming original se-
guences respect to the new generated feature space; @)raplelevant features using certain
feature selection algorithm; and (3) building classifisatimodel to recognize the functional
site by applying classification techniques to the seleceadufes. Our idea is different from
traditional methodologies because it generates new feand also transforms the original nu-
cleotide sequence data kegram frequency vectors. The feature selection step doeeniyp
greatly shorten the running time of classification progrhuot,also help to obtain explicit impor-

tant features around the functional site and lead to a manerate prediction.

We applied our idea to predict translation initiation sitéS) and polyadenylation signal
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(PAS) in DNA and mRNA sequences. For each application, batilip data sets and our own
extracted sequences were used to test the effectivenegslaumstness of the method. The ex-
perimental results achieved are better than those repprésibusly using the same data sets (if
available). The important features captured are highl\sisbent with those reported in the lit-
erature. Most importantly, we not only conducted the cradilation within the individual data
sets separately, but also established the validation sithesdifferent data sets. The success of
such a validation indicates that there are predictablepataround TIS or PAS.

In addition, a web-based toolbox to recognize TIS and PAS fBNA sequences has been
implemented based on the techniques presented in thissch@pis toolbox is named &3NAF-

SMinerand more information about it can be found in Appendix B.
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Chapter 8

Conclusions

8.1 Summary

This thesis is about how to effectively apply data mininghtemlogies to biological and clinical
data. Some problems arising from gene expression profiingsDNA sequence data are stud-
ied in depth using data mining techniques of feature geioerateature selection, and feature

integration with learning algorithms.

In order to identify genes associated with disease pheratigssification or patient sur-
vival prediction from gene expression data, a new featuecsen strategyERCOF(Entropy-
based Rank sum test and COrrelation Filtering), is workedogicombining entropy measure,
Wilcoxon rank sum test and Pearson correlation coefficiestt tERCOF conducts three-phase
feature filtering aiming to find a subset of sharply discriating genes with little redundancy. In
the first phase, it selects genes using an entropy-baseddnttidt generally keeps only 10% of
the features. In the second phase, a non-parametric isstisiled the Wilcoxon rank sum test
is applied to the features kept by the first phase to further fdut some genes and divide the
remaining ones into two groups — one group consists of gdrasate highly expressed in one
type of samples (such aance) while another group consists of genes that are highly g
in another type of samples (such @en-cance). In the third phase, correlated genes in each
group are determined by Pearson correlation coefficiemntaies only some representatives of

them are chosen to form the final set of selected genes.

In Chapter 5, ERCOF is applied to six published gene expragsiofiling data sets and
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one proteomic data set to identify genes for phenotype ifitzetson. For comparison purpose,
several other entropy-based feature selection methoddsareun. The classification algorithms
used include four ensemble of decision trees approachpppguwector machines (SVM) and
k-nearest neighbourtNN). The four decision tree methods are the newly impleeei€S4
(cascading-and-sharing for decision trees) and statkesért Bagging [19], Boosting, and Ran-
dom forests. More than one thousand tests are conducted aarikty of comparisons among
different feature selection methods and different classtifon algorithms are addressed. For each
data set, some identified discriminating features are alsorted and related to the literature and
the disease. To demonstrate the advantage of the decisemdver the other classification algo-
rithms, some simple, explicit and comprehensible tregrinduced from the data sets are also
presented and analysed.

In the study of patient survival prediction described in Qtiea 6, we present a new idea of
selecting informative training samples by defining longrteind short-term survivors. ERCOF
is then applied to these samples to identify genes assdaidth survival status. A regression
function built on the selected samples and genes by lingaek&8VM is implemented to assign
a risk score to each patient. Kaplan-Meier plots for différesk groups formed on the risk
scores are then drawn to show the effectiveness of the mddelcase studies, one on survival
prediction for patients after chemotherapy for diffusegéaB-cell lymphoma and one on lung
adenocarcinomas, are conducted.

In Chapter 7, data mining methodologies are applied to ifyjefitnctional sites in DNA
sequences. Feature generation is emphasized in this appilicince sequence data generally
contain no explicit features. We first construct featurecepasingk-gram nucleotide acid or
amino acid patterns and then transform original sequencdsruhe new constructed feature
space. Feature selection is then conducted to find sign@rpatthat can distinguish true func-
tional sites from those false ones. In the third step, diaasion and prediction models are
built on the training data sets with the selected featuras. methodology is used to recognize
translation initiation sites and polyadenylation signal®NA and mRNA sequences. For each
application, experimental results across different data @ncluding both public ones and own

extracted ones) are collected to demonstrate the effeetsgeand robustness of our method.
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8.2 Conclusions

In this thesis, we successfully make use of data mining tolgies to solve some problems
arising from biological and clinical data. We have artitathexplicitly the 3-step frame work of
feature generation, feature selection and feature iniegrevith learning algorithms and demon-
strated its effectiveness when dealing with phenotypesifieation and patient survival predic-
tion from gene expression data, and functional sites ratogrin DNA sequences.

From large amount of experiments conducted on some higlkstiional gene expression
data sets, we clearly observe the improvements on perfasaof all the classification algo-
rithms under the proposed feature selection scenarios.ngniese gene identification methods,
we claim ERCOF is an effective approach.

In the aspect of classification algorithms, no single atbariis absolutely superior to all
others, though SVM achieves fairly good results in most ststeCompared with SVM, decision
tree methods can provide simple, comprehensive rules ambarvery sensitive to feature selec-
tions. Among the decision tree methods, the newly implesge@S4 achieves good prediction
performance and provides many interesting rules.

Feature generation is important for some kinds of bioldgieda. We illustrate this point
by properly constructing new feature space for functiofalssrecognition in DNA sequences.
Some of the signal patterns identified from the generatedrieapace are highly consistent with
related literature or biological knowledge. The rest mibbtuseful for biologists to conduct

further analysis.

8.3 Future Work

There are many ongoing and future explorations regardinigetovorks presented in this thesis.
Currently, our proposed gene selection method ERCOF is maingparametric measure
since the expression values are used in the third phasénfiitehen evaluating the correlations
between genes. To avoid this, other metrics and clusteljagitnms to measure the relationships
of genes are under development.
With more and more high quality gene expression profilesghpinblished, we expect to

further test the effectiveness of our proposed frame work the robustness of various gene
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selection and classification algorithms on many other detsa §or some particular diseases, we
will further extract biological meanings of the genes idféed to be most associated with the

phenotypes or patient survival status.

Future works in identifying translation initiation siteadapoly(A) signals from DNA se-
guences are planned as follows. (1) We are considering imdegatterns containing “dont care”
symbols into feature space. Here, a “dont care” symbol @dst for any symbol of amino acid
or nucleotide acid. Thus, more general signal patternsthigfound around functional sites. (2)
Some parameters used in constructing feature space aadtexgrsequences around a candidate
functional site will be adjusted so that their impacts on d¢hessification performance will be
known. These parameters include thealue ofk-gram patterns used as features, the up-stream
window size and the down-stream window size of the sequesgmant extracted for each can-
didate, and so on. (3) The classification models built willtegted on more EST (Expressed
Sequence Tags) and genomic sequences. (4) Meanwhile, wemreting the 3-step frame work
of feature manipulations will achieve good results on tleogaition of other functional sites,
such as splice site and etc.

In the aspect of using classification methods to solve bicddgroblems, we will try to
provide insight and limitations of different algorithm# dddition to the good performance, how
easy itis for users to understand the learning processteipiret the output classification models,
and to incorporate domain knowledge are also importanbfaéh measuring the classification

power of an algorithm.
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Appendix A

Lists of Genes Identified in Chapter 5
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Table A.1: 54 common genes selected by each fold of ERCOFfoltiGross validation test for
prostate cancer data set.

Probe Accession  Gene name

name number

40435at J03592 Human ADP/ATP translocase mRNA, 3’end, clone pHAT

40419at X85116 H.sapiens epb72 gene exon 1

31444sat M62895 Human lipocortin (LIP) 2 pseudogene mRNA, congptets-like region

3772Qat M22382 Human mitochondrial matrix protein P1 (nuclearceted) mRNA, complete cds

32634sat U38260 Human islet cell autoantigen ICAp69 mMRNA, con®tets

34608at M24194 Human MHC protein homologous to chicken B compl@atgin mRNA, complete cds

33137at Y13622 Homo sapiens mRNA for latent transforming growittdr-beta binding protein-4

40436g.at  J03592 Human ADP/ATP translocase mRNA, 3’end, clone gBHAT

34784 at 783844 Human DNA sequence from clone 37E16 on chromos@@oAatains a novel gene,
a gene similar to SH3-binding protein, LGALS1 (14 kDa betdagtoside-binding lectin)
gene, part of a gene similar to mouse p116Rip, ESTs, STSss @&8Btwo CpG islands

1676s at M55409 Homo sapiens pancreatic tumor-related proteihlfmRartial cds

36587at 711692 H.sapiens mRNA for elongation factor 2

33614at X80822 H.sapiens mRNA for ORF

38814at AF038954 Homo sapiens vacuolar H(+)-ATPase subunit mRidfplete cds

33668at AF037643 Homo sapiens 60S ribosomal protein L12 (RPL&@)ugogene, partial sequence

40024 at D86640 Homo sapiens mRNA for stac, complete cds

39756g.at 7293930 Human DNA sequence from clone 292E10 on chromo22aqEl-12. Contains the XBP1
gene for X-box binding protein 1 (TREBS5), ESTs, STSs, GS$kaputative CpG island

34853at ABO007865 Homo sapiens KIAA0405 mRNA, complete cds

33820g.at X13794 H.sapiens lactate dehydrogenase B gene exon 1 and 2

40856at U29953 Human pigment epithelium-derived factor genmpete cds

31538at M17885 Human acidic ribosomal phosphoprotein PO mRNApmete cds

36601at M33308 Human vinculin mRNA, complete cds

33134at AB011083 Homo sapiens mRNA for KIAA0511 protein, partds

32076at D83407 ZAKI-4 mRNA in human skin fibroblast, complete cds

31545at AL031228 dJ1033B10.4 (40S ribosomal protein S18 (RPRES3))

33328at W28612 49b3 Homo sapiens cDNA

39416at u90913 Human clone 23665 mRNA sequence

40607at U97105 Homo sapiens N2A3 mRNA, complete cds

769s at D00017 Homo sapiens mRNA for lipocortin 1I, complete cds

32412at M13934 Human ribosomal protein S14 gene, complete cds

37819at AF007130 Homo sapiens clone 23750 unknown mRNA, padigl ¢

1521 at X17620 Human mRNA for Nm23 protein, involved in developa regulation
(homolog. to Drosophila Awd protein)

1513at Antigen, Prostate Specific, Alt. Splice Form 3

39939at D21337 Human mRNA for collagen

35776at AF064243 Homo sapiens intersectin short form mRNA, ceteptds

31527at X17206 Human mRNA for LLRep3

33408at AB023151 Homo sapiens mRNA for KIAA0934 protein, partds

3484Qat AI700633  we38g03.x1 Homo sapiens cDNA, 3’end

39315at D13628 Human mRNA for KIAAOOO3 gene, complete cds

35119at X56932 H.sapiens mRNA for 23 kD highly basic protein

575s at M93036 Human (clone 21726) carcinoma-associated an@Gge733-2 (GA733-2) mRNA,
exon 9 and complete cds

262 at M21154 Human S-adenosylmethionine decarboxylase mRbi#plete cds

37639at X07732 Human hepatoma mRNA for serine protease hepsin

32243g.at AL038340 DKFZp566K1921 Homo sapiens cDNA, 3’end

36864at AJ001625 Homo sapiens mRNA for Pex3 protein

38044 at AF035283 Homo sapiens clone 23916 mRNA sequence

38098at D80010 Human mRNA for KIAA0188 gene, partial cds

39366at N36638 yx88f05.r1 Homo sapiens cDNA, 5'end
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Table A.2: 54 common genes selected by each fold of ERCOFRolticross validation test for
prostate cancer data set (continued 1).

Probe Accession  Gene name

name number

32206at AB007920 Homo sapiens mRNA for KIAA0451 protein, comelet

3955Qat AB011156 Homo sapiens mRNA for KIAA0584 protein, partial

34304s.at  AL050290 Homo sapiens mMRNA; cDNA DKFZp586G1923 (fromnedKFZp586G1923)
3773Qat U22055 Human 100 kDa coactivator mMRNA, complete cds

41288at AL036744 DKFZp564116631 Homo sapiens cDNA, 5’end

31583at X67247 H.sapiens rpS8 gene for ribosomal protein S8

172 at U57650 Human SH2-containing inositol 5-phosphatasél([RBmMRNA, complete cds
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Table A.3: 39 common m/z identities among top 50 entropy mneeselected features in 10-fold
cross validation on ovarian cancer proteomic profiling. iTlerresponding Wilcoxon test
p-values are derived from paper [118].

M/Z identity Wicoxonp-value Entropy measure

244.95245 1.16115E-30 0.13998
245.8296 7.59262E-30 0.16299
245.24466 1.59454E-30 0.17846
244.66041 1.30324E-30 0.18037
245.53704 2.25194E-30 0.18209
435.46452 5.16697E-30 0.23104
246.41524 3.70287E-29 0.23574
246.12233 1.70497E-29 0.23743
247.00158 1.00124E-28 0.23968
417.73207 1.03527E-27 0.25183
434.68588 1.7291E-29 0.25791
435.07512 3.1774E-30 0.25839
435.85411 1.65702E-29 0.26475
246.70832 6.49125E-29 0.27451
261.88643 6.58307E-29 0.28096
418.11364 6.48304E-27 0.28419
247.295 1.45824E-28 0.30174
247.88239 1.30577E-27 0.31365
434.29682 9.27807E-28 0.31648
262.18857 2.34772E-27 0.32680
261.58446 1.5817E-27 0.33865
247.58861 2.33737E-28 0.34268
244.36855 2.11132E-26 0.34343
436.24386 5.43042E-28 0.34656
464.76404 5.64673E-26 0.35072
464.36174 2.34956E-26 0.36228
222.69673 7.50798E-26 0.37045
417.35068 1.30456E-26 0.37647
463.95962 1.13655E-25 0.38043
465.16651 5.44957E-25 0.38914
222.41828 4.20921E-27 0.39731
222.14001 3.27501E-25 0.40447
418.49538 9.26396E-25 0.40599
262.49088 2.6516E-23 0.41769
436.63379 2.16083E-25 0.42559
25.589892 1.80877E-24 0.43315
463.55767 4.42152E-23 0.44623
4003.6449 5.09873E-22 0.45153
220.75125 3.25692E-24 0.46876
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Table A.4: 280 genes identified by ERCOF from training sasiple ALL-AML leukaemia data
set. Probes with bold font were also reported in [41].

Probe Gene name

X95735at Zyxin

M5515Q0 at FAH Fumarylacetoacetate

M311l66at PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta

M27891 at CST3 Cystatin C (amyloid angiopathy and cerebral hemoghag

U46499at GLUTATHIONE S-TRANSFERASE, MICROSOMAL

L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2

X70297 at CHRNAY Cholinergic receptor, nicotinic, alpha polypdpt7

M77142at NUCLEOLYSIN TIA-1

J0393Qat ALKALINE PHOSPHATASE, INTESTINAL PRECURSOR

M92287_at CCND3 Cyclin D3

U22376cds2s.at C-myb gene extracted from Human (c-myb) gene, completegyirnds,
and five complete alternatively spliced cds

M27783s._at ELAZ2 Elastatse 2, neutrophil

D14874at ADM Adrenomedullin

M16038 at LYN V-yes-1 Yamaguchi sarcoma viral related oncogene hogol

U50136rnal_at Leukotriene C4 synthase (LTC4S) gene

M98399 s at CD36 CD36 antigen (collagen type | receptor, thrombodjporeceptor)

M21551rnalat Neuromedin B mRNA

Y1267Qat LEPR Leptin receptor

M83652 s at PFC Properdin P factor, complement

M23197 at CD33 CD33 antigen (differentiation antigen)

U46751at Phosphotyrosine independent ligand p62 for the Lck SH2 dom&NA

D88422at CYSTATIN A

M54995 at PPBP Connective tissue activation peptide IlI

U0202Qat Pre-B cell enhancing factor (PBEF) mRNA

M31523 at TCF3 Transcription factor 3 (E2A immunoglobulin enhancieding factors E12/E47)

X04085rnal_at

M81933 at
U12471cdslat
M91432 at
X59417 at
M12959 s at
X74262at
L27584 s at

HG4316-HT4586at

J05243at
M31303.rnal_at
X62654 rnalat
X90858 at
MB84526 at
J04615at
D26308at
LO8177.at
X14008rnalf_at
X87613at
M80254 at
M96326.rnal_at
J04990at
U62136at
D10495at
X52142 at
U73737at
X74801at
U32944 at
X15949 at

Catalase (EC 1.11.1.6) 5'flank and exon 1 mapping to chromesidl,
band p13 (and joined CDS)

CDC25A Cell division cycle 25A

Thrombospondin-p50 gene extracted from Human throndralip-1 gene, partial cds
ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straididin
PROTEASOME IOTA CHAIN

TCRAT cell receptor alpha-chain

RETINOBLASTOMA BINDING PROTEIN P48

CAB3b mRNA for calcium channel beta3 subunit
Transketolase-Like Protein

SPTANL1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodr
Oncoprotein 18 (Op18) gene

ME491 gene extracted from H.sapiens gene for Me491/CD68em
Uridine phosphorylase

DF D component of complement (adipsin)

SNRPN Small nuclear ribonucleoprotein polypeptide N
NADPH-flavin reductase

CMKBR7 Chemokine (C-C) receptor 7

Lysozyme gene (EC 3.2.1.17)

Skeletal muscle abundant protein

PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRBIRSOR
Azurocidin gene

CATHEPSIN G PRECURSOR

Putative enterocyte differentiation promoting factd® A, partial cds
PRKCD Protein kinase C, delta

CTPS CTP synthetase

GTBP DNA GT mismatch-binding protein

T-COMPLEX PROTEIN 1, GAMMA SUBUNIT

Cytoplasmic dynein light chain 1 (hdlc1) mRNA

IRF2 Interferon regulatory factor 2
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Table A.5: 280 genes identified by ERCOF from training sample ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardohl).

Probe Gene name

M31158 at PRKAR2B Protein kinase, cCAMP-dependent, regulatopge iy, beta

M1578Qat GB DEF = DNA/endogenous human papillomavirus type 16 (HBNA,
right flank and viral host junction

X6232Qat GRN Granulin

D4995Qat Liver mRNA for interferon-gamma inducing factor(IGIF)

U37055rnals.at Hepatocyte growth factor-like protein gene

D88378at Proteasome inhibitor hPI131 subunit

X61587at ARHG Ras homolog gene family, member G (rho G)

X07743at PLECKSTRIN

AFFX-HUMTFRR/M115073.at AFFX-HUMTFRR/M115073_at (endogenous control)

L42572 at Motor protein

769881 at Adenosine triphosphatase, calcium

M63138 at CTSD Cathepsin D (lysosomal aspartyl protease)

M2817Qat CD19 CD19 antigen

L4187Qat RB1 Retinoblastoma 1 (including osteosarcoma)

D26156s at Transcriptional activator hNSNF2b

M11722 at Terminal transferase mMRNA

U09087s.at Thymopoietin beta mMRNA

M2954Q at CARCINOEMBRYONIC ANTIGEN PRECURSOR

L47738 at Inducible protein mMRNA

D38073at MCM3 Minichromosome maintenance deficient (S. cereviske)

HG4321-HT4591at Ahnak-Related Sequence

U41813at HOXA9 Homeo box A9

X85116rnal_s.at Epb72 gene exon 1

X58431rna2s.at HOX 2.2 gene extracted from Human Hox2.2 gene for a homephuiein

M2813Qrnal_s at Interleukin 8 (IL8) gene

Y00787.s.at INTERLEUKIN-8 PRECURSOR

u82759at GB DEF = Homeodomain protein HOxA9 mRNA

U16954at (AF1g) mRNA

Z48501s at GB DEF = Polyadenylate binding protein Il

M62762 at ATP6C Vacuolar H+ ATPase proton channel subunit

M2296Qat PPGB Protective protein for beta-galactosidase (gaadidosis)

M28209 at RAS-RELATED PROTEIN RAB-1A

u85767at Myeloid progenitor inhibitory factor-1 MPIF-1 mRNA

M13792 at ADA Adenosine deaminase

LO5148at Protein tyrosine kinase related mMRNA sequence

L08246 at INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1

M19045f_at LYZ Lysozyme

M20203 s at GB DEF = Neutrophil elastase gene, exon 5

U67963at Lysophospholipase homolog (HU-K5) mRNA

J03801f_at LYZ Lysozyme

X51521 at VIL2 Villin 2 (ezrin)

M13452 s at LMNA Lamin A

D87076at KIAA0239 gene, partial cds

LO7648at MXI1 mRNA

HG2810-HT2921at Homeotic Protein P12

L38608 at ALCAM Activated leucocyte cell adhesion molecule

L28821 at MANAZ2 Alpha mannosidase Il isozyme

U7396Qat ADP-ribosylation factor-like protein 4 mRNA

M94633 at GB DEF = Recombination acitivating protein (RAG2) geest exon

S50223at HKR-T1

Z15115at TOP2B Topoisomerase (DNA) Il beta (180kD)

u84487at CX3C chemokine precursor, mRNA, alternatively spliced

u65928at JUN V-jun avian sarcoma virus 17 oncogene homolog

U53468at NADH:ubiquinone oxidoreductase subunit B13 (B13) mRNA

U72936s.at X-LINKED HELICASE I
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Table A.6: 280 genes identified by ERCOF from training sample ALL-AML leukaemia data

set. Probes with bold font were also reported in [41] (cardth?2).

Probe Gene name

X66401cdslat LMP2 gene extracted from H.sapiens genes TAP1, TAP2, LMR®7 and DOB
X66533at GUANYLATE CYCLASE SOLUBLE, BETA-1 CHAIN

AF009426at Clone 22 mRNA, alternative splice variant alpha-1

U90546at Butyrophilin (BTF4) mRNA

U28833at Down syndrome critical region protein (DSCR1) mRNA

M63488 at RPAL Replication protein Al (70kD)

u02493at 54 kDa protein mRNA

D86479at Non-lens beta gamma-crystallin like protein (AIM1) mRNxartial cds

M31211 s at MYL1 Myosin light chain (alkali)

U26266s_at DHPS Deoxyhypusine synthase

U05259rnal_at MB-1 gene

M58297 at ZNF42 Zinc finger protein 42 (myeloid-specific retinoiddatesponsive)
D6388Qat KIAA0159 gene

U38846at Stimulator of TAR RNA binding (SRB) mRNA

M81695 s at ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polgtide)

D14664at KIAA0022 gene

X16546.at RNS2 Ribonuclease 2 (eosinophil-derived neurotoxinNED

HG627-HT5097s at Rhesus (Rh) Blood Group System Ce-Antigen, Alt. Splideti

M22324 at ANPEP Alanyl (membrane) aminopeptidase (aminopepitlgsaminopeptidase M,

HG2981-HT3127s.at
749194 at
HG1612-HT1612at
X77533at
U20998at
X17042at
HG2788-HT2896at
HG2855-HT2995at
U29175at
J03589at
U41767s.at
X06182s.at
M57731 s at
M24400.at
M69043 at
D4395Qat
M19507 at
M5982Q at
D83785at
U50733at
D80001at
M29696 at
U72621at

M63438 s_at
X62535at
M84371rnals.at
L13278at
X1485Qat
J03473at
U79274at
D86983at
X63469at
D8827Qat
X5935Qat
U35451at
X6197Qat

microsomal aminopeptidase, CD13)

Epican, Alt. Splice 11

OBF-1 mRNA for octamer binding factor 1
Macmarcks

Activin type Il receptor

SRP9 Signal recognition particle 9 kD protein
PRG1 Proteoglycan 1, secretory granule
Calcyclin

Heat Shock Protein, 70 Kda (Gb:Y00371)
Transcriptional activator h\SNF2b
UBIQUITIN-LIKE PROTEIN GDX

Metargidin precursor mRNA

KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogdromolog
GRO2 GRO2 oncogene

CTRB1 Chymotrypsinogen B1

MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING PROTEN MAD3

T-COMPLEX PROTEIN 1, EPSILON SUBUNIT

MPO Myeloperoxidase

CSF3R Colony stimulating factor 3 receptor (granulocyte
KIAA0200 gene

Dynamitin mRNA

KIAAQ0179 gene, partial cds

IL7R Interleukin 7 receptor

LOT1 mRNA

GLUL Glutamate-ammonia ligase (glutamine synthase)
DAGKZ1 Diacylglycerol kinase, alpha (80kD)

CD19 gene

CRYZ Crystallin zeta (quinone reductase)

HISTONE H2A.X

ADPRT ADP-ribosyltransferase (NAD+; poly (ADP-ribog@)lymerase)
Clone 23733 mRNA

KIAA0230 gene, partial cds

GTF2E2 General transcription factor TFIIE beta subunitkB4
GB DEF = (lambda) DNA for immunoglobin light chain
CD22 CD22 antigen

Heterochromatin protein p25 mRNA

PROTEASOME ZETA CHAIN
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Table A.7: 280 genes identified by ERCOF from training sample ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardoh3).

Probe Gene name

u66838at Cyclin A1 mRNA

U94836at ERPROT 213-21 mRNA

X54326at MULTIFUNCTIONAL AMINOACYL-TRNA SYNTHETASE

D55654 at MDH1 Malate dehydrogenase 1, NAD (soluble)

U31556at E2F5 E2F transcription factor 5, p130-binding

X8349Qs at GB DEF = Fas/Apo-1 (clone pCRTM11-Fasdelta(3,4))

M83667.rnals.at NF-IL6-beta protein mRNA

D38522at KIAA0080 gene, partial cds

26874 7at GB DEF =Imogen 38

X64072s at SELL Leukocyte adhesion protein beta subunit

M65214 s at TCF3 Transcription factor 3 (E2A immunoglobulin enharwieding factors E12/E47)

M29194 at LIPC Lipase, hepatic

M86406 at ACTN2 Actinin alpha 2

U16307at Glioma pathogenesis-related protein (GliPR) mRNA

U26173s.at BZIP protein NF-IL3A (IL3BP1) mRNA

L11669at Tetracycline transporter-like protein mMRNA

X15573 at PFKL Phosphofructokinase (liver type)

X56411rnalat ADH4 gene for class Il alcohol dehydrogenase (pi subuexdn 1

X96752at L-3-hydroxyacyl-CoA dehydrogenase

U90552at Butyrophilin (BTF5) mRNA

HG4582-HT4987at  Glucocorticoid Receptor, Beta

AF005043at Poly(ADP-ribose) glycohydrolase (hPARG) mRNA

U47077at DNA-dependent protein kinase catalytic subunit (DNAeBKMRNA

M83233 at TCF12 Transcription factor 12 (HTF4, helix-loop-heliatscription factors 4)

X16832at CTSH Cathepsin H

D00763at GAPD Glyceraldehyde-3-phosphate dehydrogenase

u2746Qat Uridine diphosphoglucose pyrophosphorylase mRNA

X63753at SON SON DNA binding protein

Z21507at EEF1D Eukaryotic translation elongation factor 1 delta
(guanine nucleotide exchange protein)

U57721at L-kynurenine hydrolase mRNA

S68134s at GB DEF = CREM=cyclic AMP-responsive element modulatdaligoform
[human, mRNA, 1030 nt]

U81556at Hypothetical protein A4 mRNA

X97335at Kinase A anchor protein

D86967at KIAA0212 gene

X66899 at EWSR1 Ewing sarcoma breakpoint region 1

M37435at CSF1 Colony-stimulating factor 1 (M-CSF)

J03798at SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1

U30521at FRAP FK506 binding protein 12-rapamycin associatedemmot

U50939at Amyloid precursor protein-binding protein 1 mRNA

U8341Qat CUL-2 (cul-2) mRNA

X59543 at RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE M1 CHAIN

S71043rnals.at Ig alpha 2=immunoglobulin A heavy chain allotype 2 constagion, germ line
[human, peripheral blood neutrophils, Genomic, 1799 nt]

L49229f at GB DEF = Retinoblastoma susceptibility protein (RB1)@enith a 3 bp deletion in
exon 22 (L11910 bases 161855-162161)

M95678 at PLCB2 Phospholipase C, beta 2

U4902Qcds2s.at MEF2A gene (myocyte-specific enhancer factor 2A, C9 faxrtlacted from
Human myocyte-specific enhancer factor 2A (MEF2A) gene, ¢oding

u00802s_at Drebrin E

M93056 at LEUKOCYTE ELASTASE INHIBITOR

M95178 at ALPHA-ACTININ 1, CYTOSKELETAL ISOFORM

L25931s at LBR Lamin B receptor

M32304 s.at TIMP2 Tissue inhibitor of metalloproteinase 2

D38128at PTGIR Prostaglandin 12 (prostacyclin) receptor (IP)
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Table A.8: 280 genes identified by ERCOF from training sasple ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cargth4).

Probe Gene name

D87742at KIAA0268 gene, partial cds

M633792at CLU Clusterin (complement lysis inhibitor; testostexeepressed prostate
message 2; apolipoprotein J)

X80907 at GB DEF = P85 beta subunit of phosphatidyl-inositol-3asia

AF012024s at Integrin cytoplasmic domain associated protein (IcaprARNA

JO4621at SDC2 Syndecan 2 (heparan sulfate proteoglycan 1, célcaiassociated, fibroglycan)

M80899 at AHNAK AHNAK nucleoprotein (desmoyokin)

U97105at Dihydropyrimidinase related protein-2

M30703s.at Amphiregulin (AR) gene

U43292at MDS1B (MDS1) mRNA

U05572s.at MANB Mannosidase alpha-B (lysosomal)

D31887at KIAAO062 gene, partial cds

X97748s.at GB DEF = PTX3 gene promotor region

Y00339s. at CAZ2 Carbonic anhydrase Il

X52056at SPI1 Spleen focus forming virus (SFFV) proviral integmaioncogene spil

M92357 at B94 PROTEIN

AFFX-HUMTFRR/M1150ZM_at AFFX-HUMTFRR/M11507M _at (endogenous control)

X6661Qat ALPHA ENOLASE, LUNG SPECIFIC

U07139at CAB3b mRNA for calcium channel beta3 subunit

HG4535-HT4940s at Dematin

X64364 at BSG Basigin

HG3162-HT333%t Transcription Factor lia

X5142Qat TYRPL1 Tyrosinase-related protein 1

D50918at KIAA0128 gene, partial cds

AJ00048Qat GB DEF = C8FW phosphoprotein

J04027at Adenosine triphosphatase mRNA

S76638at NFKB2 Nuclear factor of kappa light polypeptide gene ewea in B-cells 2 (p49/p100)

U28042at DEAD box RNA helicase-like protein mRNA

M11147 at FTL Ferritin, light polypeptide

HG4755-HT5203s at Spinal Muscular Atrophy 4

X65644 at IMMUNODEFICIENCY VIRUS TYPE | ENHANCER-BINDING PROTEIN?

D26579at Transmembrane protein

u88964at HEM45 mRNA

U07132at Orphan receptor mRNA, partial cds

L20941 at FTH1 Ferritin heavy chain

M83221 at TRANSCRIPTION FACTOR RELB

L09235at ATP6A1 ATPase, H+ transporting, lysosomal (vacuolatg@rgump),
alpha polypeptide, 70kD, isoform 1

Z32765at GB DEF = CD36 gene exon 15

M5771Qat LGALS3 Lectin, galactoside-binding, soluble, 3 (gale@&)n

L22075at Guanine nucleotide regulatory protein (G13) mRNA

K03195 at (HepG2) glucose transporter gene mRNA

M21119s at LYZ Lysozyme

U61836at Putative cyclin G1 interacting protein mRNA, partial gegce

U77396at No cluster in current Unigene and no Genbank entry for 98 {gualifier U77396at)

L41067at Transcription factor NFATx mMRNA

L33930Qs.at CD24 signal transducer mRNA and 3’ region

M22898 at TP53 Tumor protein p53 (Li-Fraumeni syndrome)

M92439 at 130 KD LEUCINE-RICH PROTEIN

M61853 at CYP2C18 Cytochrome P450, subfamily 1IC (mephenytoirydrbxylase),
polypeptide 18

X66171at CMRF35 mRNA

AF015913at GB DEF = SKB1Hs mRNA
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Table A.9: 280 genes identified by ERCOF from training sample ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardoh5).

Probe Gene name

U50928at PKD2 Autosomal dominant polycystic kidney disease type |

D63874at HMG1 High-mobility group (nonhistone chromosomal) pintl

X8224Qrnalat TCL1 gene (T cell leukemia) extracted from H.sapiens mROA
Tcell leukemia/lymphoma 1

U79285at GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE

U21858at HISTONE H3.3

L76702at Protein phosphatase 2A 74 kDa regulatory subunit (delBi"cssubunit)

M19888 at SPRR1B Small proline-rich protein 1B (cornifin)

U31814at Transcriptional regulator homolog RPD3 mRNA

X77307.at 5-HYDROXYTRYPTAMINE 2B RECEPTOR

U49844 at Protein kinase ATR mRNA

U6541Qat Mitotic feedback control protein Madp2 homolog mRNA

D14658at KIAA0102 gene

YO07604.at Nucleoside-diphosphate kinase

M60527 at DCK Deoxycytidine kinase

X58072at GATA3 GATA-binding protein 3
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Table A.10: Thirty-seven genes selected by ERCOF on trgiséimples and reported in [140] to
separate TEL-AMLL1 from other subtypes of ALL cases in peitiadLL study. All these genes
are relatively highly expressed (above the mean value albghe samples) in TEL-AML1

samples.
Probe Accession No.  Description
34481at AF030227 vav proto-oncogene, exon 27
36239at 749194 H.sapiens mRNA for oct-binding factor
37470at  AF013249 Homo sapiens leukocyte-associated Ig-likeptee-1 (LAIR-1) mMRNA
38203at u69883 Human calcium-activated potassium channel hSK} ihRNA
3857Qat X03066 Human mRNA for HLA-D class Il antigen DO beta chain
38578at M63928 Homo sapiens T cell activation antigen (CD27) mRNA
38906 at M61877 Human erythroid alpha-spectrin (SPTAL1) mRNA
40745at  L13939 Homo sapiens beta adaptin (BAM22) mRNA
41381at AB002306 Human mRNA for KIAA0308 gene
41442at  AB010419 Homo sapiens mRNA for MTG8-related protein MB5&1
31898at D86967 Human mRNA for KIAA0212 gene
3266Qat  AB002340 Human mRNA for KIAA0342 gene
34194at  AL049313 Homo sapiens mMRNA; cDNA DKFZp564B076 (from @dbKFZp564B076)
35614at  AB012124 Homo sapiens TCFL5 mRNA for transcription fadike 5
35665at 746973 H.sapiens mRNA for phosphatidylinositol 3-kmas
36524at  AB029035 Homo sapiens mRNA for KIAA1112 protein
36537at  AB011093 Homo sapiens mRNA for KIAA0521 protein
3728Qat  U59912 Human chromosome 4 Mad homolog Smadl mRNA
4120Qat  Z22555 H.sapiens encoding CLA-1 mRNA
32224at  AB018312 Homo sapiens mRNA for KIAAQ769 protein
36985at X17025 Human homolog of yeast IPP isomerase
38124at  X55110 Human mRNA for neurite outgrowth-promoting pnote
4057Qat  AF032885 Homo sapiens forkhead protein (FKHR) mRNA
41498at  AB020718 Homo sapiens mRNA for KIAA0911 protein
41814 at M29877 Human alpha-L-fucosidase
32579at u29175 Human transcriptional activator (BRG1) mMRNA
33162at X02160 Human mRNA for insulin receptor precursor
1779sat M16750 Human pim-1 oncogene mRNA
1488at L77886 Human protein tyrosine phosphatase mMRNA
1336s.at  X06318 Human mRNA for protein kinase C (PKC) type beta |
1299 at X93512 H.sapiens mRNA for telomeric DNA binding proteinfg)
1217gat X07109 Human mRNA for protein kinase C (PKC) type beta Il
932i_at L11672 Human Kruppel related zinc finger protein (HTF1&NA
880.at M34539 Human FK506-binding protein (FKBP) mRNA
755 at D26070 Human mRNA for type 1 inositol 1,4,5-trisphosphaiceptor
577.at M94250 Human retinoic acid inducible factor (MK) gene exd-5
160029at X07109 protein kinase C beta 1
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Table A.11: Top 20 genes selected by entropy measure onngagamples to separate MLL
from other subtypes of ALL cases in pediatric ALL study. Tastlcolumn indicates the sample
class in which the gene is highly expressed (above the mdaa &eoss all the samples).

Probe Accession No.  Description HighlyExp

34306at ABO007888 Homo sapiens KIAA0428 mRNA MLL

36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and MLL
joined mRNA and CDS

33412at AI535946 vicpro2.D07.r Homo sapiens cDNA, 5’ end MLL

657_at L11373 Human protocadherin 43 mRNA, MLL
complete cds for abbreviated PC43

32207at M64925 Human palmitoylated erythrocyte membrane OTHERS
protein (MPP1) mRNA

33847s.at AlI304854 Homo sapiens cDNA, 3’ end MLL

34337sat  AJ010014 Homo sapiens mRNA for M96A protein OTHERS

1389at J03779 Human common acute lymphoblastic OTHERS
leukemia antigen (CALLA) mMRNA

34861at D63997 Homo sapiens mRNA for GCP170 OTHERS

40518at Y00062 Human mRNA for T200 leukocyte common antigen MLL
(CD45, LC-A)

40913at W28589 Homo sapiens cDNA OTHERS

31898at D86967 Human mRNA for KIAA0212 gene OTHERS

38413at D15057 Human mRNA for DAD-1 MLL

2062at L19182 Human MAC25 mRNA MLL

794 at X62055 H.sapiens PTP1C mRNA for protein-tyrosine phatgde 1C  MLL

40519at Y00638 Human mRNA for leukocyte common antigen (T200) MLL

41747sat  U49020 Human myocyte-specific enhancer factor 2A (MEFRgH)e MLL

3816Qat AF011333 Homo sapiens DEC-205 mRNA MLL

37692 at Al557240 Homo sapiens cDNA, 3’ end MLL

40797 at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA MLL
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Table A.12: Twenty-four genes selected by ERCOF on traisi@gples and reported in [140]
to separate MLL from other subtypes of ALL cases in pediatid. study. All these genes
are relatively highly expressed (above the mean value absse samples) in MLL samples
except U70321 (accession humber). Genes with bold fontrao:g top 20 features selected by
entropy measure and can be found in Table A.11 as well.

Probe Accession No.  Description
36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and joined mREACDS
39424 at u70321 Human herpesvirus entry mediator mRNA
40076at AF004430 Homo sapiens hD54+ins2 isoform (hD54) mRNA
40493at L05424 Human hyaluronate receptor (CD44) gene
40506sat U75686 Homo sapiens polyadenylate binding protein mRNA
40763at uss5707 Human leukemogenic homolog protein (MEIS1) mRNA
40797at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA
40798sat 748579 H.sapiens mRNA for disintegrin-metalloprotegseatial)
41747sat  U49020 Human myocyte-specific enhancer factor 2A (MEF2/&egéirst coding
32193at AF030339 Homo sapiens receptor for viral semaphorirepid/ ESPR) mRNA
32215i_at  AB020685 Homo sapiens mRNA for KIAA0878 protein
33412at Al535946 Homo sapiens cDNA, 5’ end
34306at ABO007888 Homo sapiens KIAA0428 mRNA
34785at AB028948 Homo sapiens mRNA for KIAA1025 protein
35298at U54558 Homo sapiens translation initiation factor el68 pubunit mMRNA
37675at X60036 H.sapiens mRNA for mitochondrial phosphate eaptotein
38391at M94345 Homo sapiens macrophage capping protein mRNA
38413at D15057 Human mRNA for DAD-1
2062at L19182 Human MAC25 mRNA
2036s.at M59040 Human cell adhesion molecule (CD44) mRNA
1914 at u66838 Human cyclin A1 mRNA
1126s at L05424 Human cell surface glycoprotein CD44 (CD44) gene,
3’ end of long tailed isoform
1102s.at M10901 Human glucocorticoid receptor alpha mRNA
657.at L11373 Human protocadherin 43 mRNA, complete cds for aliared PC43
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Table A.13: Nineteen genes selected by ERCOF on traininglesnand reported in [140] to
separate Hyperdip50 from other subtypes of ALL cases in pediatric ALL studyl tAese genes
are relatively highly expressed (above the mean value abske samples) in Hyperdip50
samples.

Probe Accession No. Description

38518at Y18004 Homo sapiens mRNA for SCML2 protein

39628at Al671547 Homo sapiens cDNA, 3’ end

31863at D80001 Human mRNA for KIAA0179 gene

37543at D25304 Human mRNA for KIAAO0O6 gene

38968at AB005047 Homo sapiens mRNA for SH3 binding protein

39039s.at AI557497 Homo sapiens cDNA, 3’ end

39329at X15804 Human mRNA for alpha-actinin

39389at M38690 Human CD9 antigen mRNA

32207at M64925 Human palmitoylated erythrocyte membrane pnqtdPP1) mRNA
32236at AF032456 Homo sapiens ubiquitin conjugating enzyme G2HRG2) mRNA
32251at AA149307 Homo sapiens cDNA, 3’ end

3662Qat X02317 Human mRNA for Cu/Zn superoxide dismutase (SOD)
36937sat U90878 Homo sapiens carboxyl terminal LIM domain pro{€hiM1) mRNA
3735Qat AL031177 26S Proteasome subunit p28 (Ankyrin repeaepryt(isoform 1)
38738at X99584 H.sapiens mRNA for SMT3A protein

39168at AB018328 Homo sapiens mRNA for KIAAO785 protein
40903at AL049929 Homo sapiens mRNA; cDNA DKFZp54700510
(from clone DKFZp54700510)
32572at X98296 H.sapiens mRNA for ubiquitin hydrolase
306s at J02621 Human non-histone chromosomal protein HMG-14 ARN
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Appendix B

Some Resources

B.1 Kent Ridge Biomedical Data Set Repository

All the gene expression profiles and proteomic data destiibeChapter 5, and some DNA
sequences used in Chapter 7 can be found irkKéhre Ridge Biomedical Data Set Repositaty
http://sdmc.i2r.a-star.edu.sg/rp/ . In this data repository, we have collected gene
expression data, protein profiling data and genomic segudsiia that are related to classification
and are published recently 8cience, Naturand other prestigious journals. As the file formats
of these original raw data are different from common onesl uisemost of machine learning
softwares, we have transformed these data sets into theastadata and .namesformat and
stored them in this repository. Besides, we also provida datarff format which is used by
Weka a machine learning software package developed at UniyerfsiWaikato in New Zealand.
Detailed information of Weka can be found tgtp://www.cs.waikato.ac.nz/"ml/

weka/ .

B.2 DNAFSMiner

The DNAFSMiner(DNA Functional Site Miner) is a web-based toolbox for reaitign of func-
tional sites in DNA sequences. It was built on the techn@sgiresented in Chapter 7 and written
in Java and Perl languages. It can be accesseldtypd/sdmc.i2r.a-star.edu.sg/

DNAFSMiner/ . Currently, it can be used to identify translation initiatisite TISMine)) in ver-
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tebrate mMRNA, cDNA, and DNA sequences and polyadenylatigmas (Poly(A) Signal Miney

in human sequences.
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