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 Protein function prediction has been a key problem in Computational Biology, and 

traditionally accomplished through “guilt by association” with BLAST. However, when 

sequence similarity is not available, similarity of other information is utilized to solve the 

prediction problem. Previous work by Chua et al (2007) has developed a software to allow 

integration of similarity information of various kinds through structuring the protein information 

into protein pair graph and using protein’s neighbour for majority voting of protein function. In 

this work, analysis into Pubmed information and simple text mining was performed to better aid 

protein function prediction under the developed software framework. Organizing of the Pubmed 

information based on two rules derived from text mining brings about higher precision of 

function prediction. The Pubmed information graph was organized into disjoint subsets of the 

Pubmed graph, based on two rules 1) protein pairs occurring in same sentence and 2) abstract 

contain species-of-interest species name or common name. The organization of Pubmed 

information graph increased prediction average precision for Gene Ontology (GO) domain 

Biological Process by 4.2%, GO domain Cellular Component 8.0% average rise in precision 

and 1.7% average rise in precision for GO domain Molecular Function. 
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1. INTRODUCTION 

Protein function prediction has all along been a key problem in computational 

biology. It has traditionally been accomplished primarily using "guilt by association" of 

sequence similarity. Basic local alignment search tool (BLAST) is the most popular tool 

used in this sequence similarity (homology) search (Altschul et al, 1990), which works on 

the assumption of sequence similarity to infer function similarity. However, if good 

sequence similarity to a previously functionally annotated protein is unavailable, one must 

appeal to guilt by association of other types of similarity and even to combination of 

multiple types of similarity information.  

 

Several methods uses similar information of other kinds such as protein-protein 

interaction (Letovsky and Kasif, 2003), structural features of protein (Arakaki et al, 2004), 

phylogenetic analysis with integration of experimental and homology information 

(Sjölander. 2004) and even text mining of literature for protein function prediction with the 

BioCreative inititive (A critical assessment of text mining methods in molecular biology) 

(Hirschman et al, 2005). With the advancement of technology, wealth of information is 

available in online databases providing various similarity information, waiting to be tapped 

into. A recent work has developed a framework for the fusion of multiple types of 

similarity information to enable effective use of this wealth of information for protein 

function prediction. Results show that, 1) similarity information fusion method works well, 

2) simple co-occurrence count gives reasonable sensitivity & precision, and 3) combining 

multiple information sources outperforms any single information source (Chua et al, 2007). 

This program is the interest of analysis in this project. 
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With so many literatures available in online literature database, particularly Pubmed 

having around 16 million articles in 2007, and still growing.  It is a known fact that many 

knowledge are still locked inside literature text, hence, the BioCreative initiative was began 

to assess the state of the art for text mining applied to biological problems (Hirschman et al, 

2005). BioCreative focused on two tasks. The first deals with extraction of gene name and 

protein name from text, while the second task addressed issues of functional annotations, 

requiring system to identify text passage that supported the functional annotation for 

specific protein. The second task is more relevant to the objective of this project. Projects in 

BioCreative used various classification methods, including SVM (Mitsumori et al, 2005) 

and Bayesian networks (Ray and Craven, 2005), along with linguistics domain knowledge 

(Tamames, 2005) to analyse text for single protein annotation. However, we are using the 

program by Chua et al (2007) for this text analysis task, which is based on majority voting 

of neighbouring protein function for function annotation. 

 

We hypothesize that further analysis and processing of the Pubmed information 

source for input into the program-of-interest would bring about better performance by the 

prediction algorithm. We also hope to be able to generate interesting observation which 

might assist the text mining effort of BioCreative through our simple text analysis here. The 

analysis of words by chi-square and odds ratio has identified that organism-of-interest 

species name and common name are useful and that sentence based analysis has a very high 

probability to infer function sharing for protein pairs occurring in those sentence. 
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 The processing of Pubmed abstract information using organism species name and 

common name to reorganize the information and further tapping on the high proportion of 

protein pairs with similar function name in a sentence to further organize the data, has 

given rise to more precise information than the original Pubmed unprocessed. This 

organization of data brings about a 10% increase in precision for the Gene Ontology (GO) 

domain of Biological Process, on certain region of recall (0.4 to 0.8) and the average rise in 

precision was about 4.2% while maintaining the same maximum recall achievable. For GO 

domain Cellular Component, the result also saw a 10% rise in precision at certain region of 

recall and average rise in precision across whole range of recall was 8.0%. For GO domain 

Cellular Function the results were not that significantly better with around 1.7% average 

rise in precision across the range of recall. 

 

2. MATERIALS AND METHODS 

2.1 Materials 

In this project, prediction of yeast protein function from Saccharomyces Genome 

Database (SGD) constitutes the interest of prediction of protein function. The set of 6058 

proteins from the database is the object of interest for the prediction of function.  

 

Protein functions to be annotated to the protein are limited to the list of function 

found in Gene Ontology (GO). GO provides a standardized vocabulary to describe gene 

and gene product. Gene Ontology provides a hierarchical layout of the function annotation 

dictionary, with more general annotation at the lower level and more specific annotation at 

the higher level forming an acyclic graph (Ashburner et al, 2000). The use of a 
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standardized vocabulary is necessary and critical with the large number of scientific group 

working on the problem, as standardization would allow more efficient information sharing 

and comparison. 

 

The analysis data objects are the list of Pubmed abstract containing the names and 

synonyms of the protein from SGD. The abstracts were searched through a querying 

program, using the assigned identification number from SGD database, along with 

synonyms of the protein from SGD database, against the Pubmed database. Abstracts 

inclusion for analysis were only limited to the first 1000 abstracts and an added constraint 

to limit the search to title and abstracts with the Pubmed filter option. In this project, 

analysis deals only with abstract and title text; hence this constraint is added to gather data 

relevant for subsequent analysis. 

 

2.2 Scoring function and Interaction map 

 In this project, the input to the classification system in use are files of the format 

having pairs of protein related as inferred from relevant data sources (Pubmed, Pfam, 

BLAST etc), and a score for each pair of proteins. What the input files describe is an 

interaction map between proteins connected by edges with a score for each edge which is 

used for function prediction in the program. The scoring function used was previously 

defined by Chua et al (2007). However, a pseudo-count of 1 was added here to the 

denominator to the previous function. This pseudo-count of 1 is a strategy adapted in many 

previous work (Tibshirani et al, 2002 & Tusher et al, 2001), and works to prevent giving 



large scores to protein pairs with very small set of abstracts. New score function, S(u,v), is 

formally defined as follow. 
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vu

AA
AA
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∩
=

1
||

),(      -(1) 

Ax is the set of Pubmed abstracts that contain protein x. 

  

 This is the major interest of this project; how will different ways and rules pushed 

into the construction of interaction map affect protein function prediction. 

 

2.3 Prediction of function  

Protein function prediction analysis was done with the aid of a protein function 

prediction tool by Chua et al (2007). The program, predict.pl, is a Perl program and below 

is a brief introduction to some of the key function and concept of this program. 

  

 Based on the scoring function used for the data source (for Pubmed scoring function 

elaborated in Section 2.2), the edges are distributed into twenty baskets of equal score 

intervals for individual analysis of function transferring. Hence, the scoring function works 

to distribute the edges into the different basket on assumption that edges with similar score 

should be similar and contribute towards function prediction positively within the same 

basket. 

 

Within each basket function is predicted by building an interaction map (or graph) 

based on the information source (such as Pubmed, BLAST data, Pfam data etc). The graph 
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has nodes, representing proteins, and nodes connected via edges, nodes connected this way 

by an edge means an implied function sharing between the nodes by the information source 

and the program predicts function for a protein based on its neighbours’ function via 

weighted voting.  

 

To assign a probability of transferring of function for an edge for one data source, 

the reliability of the information source is first assessed by a confidence score, which 

essentially measures the reliability or weight of the information source to suggest function 

similarity. Function similarity suggested by an information source is affected by a myriad 

of factors from nature of experiment, noise in experiment down to threshold setting in 

embedded score of the information source. These factors are summarized by the confidence 

function, which measures the probability of a data source k to transfer function f, estimated 

by: 

1||
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where Ekf is the subset of edges of data source k where each edge has either one or both of 

its vertices annotated with function f. 

S(u,v) = 1 if u and v shares function f, 0 otherwise. 

 

 As more information sources are provided, the aggregated confidence for the edges 

over this entire set of information sources is calculated by: 

∏
∈

−−=
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Du,v is the set of data sources which contain edge (u,v). 

 

 Lastly, assigning score of an annotation to a protein in the completed map built 

from the various information sources is defined by: 
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Sf(u) is the score of function f for protein u, 

Ef(v) = 1 if protein v has function f, 0 otherwise, 

Nu is the set of neighbours of protein u, 

ru,v,f is the link confidence between proteins u and protein v. 

 

 This program is found to work well, with reasonable precision-recall level and 

efficient for projection and inclusion of multiple data sets as stated in the paper by Chua et 

al (2007). 

 

2.4 Assessment of prediction performance 

In this project, the aim is to extract some rules from Pubmed abstracts to aid 

prediction of protein function. The software which is used for function prediction is the 

software, predict.pl, described briefly in Section 2.2. The program outputs information 

with respect to its performance in cross-validation mode. Output includes the  
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1) Number of annotated terms predicted at various Receiver Operating 

Characteristics (ROC) score and  

2) Recall and Precision of the prediction made at various ROC score thresholds.  

 ROC graph is a plot of true positive rate versus false positive rate, with a list of 

classifiers at different thresholds of Sf(u) in Equation 3, for assigning protein function. The 

plot of the different classifiers at different thresholds on the ROC gives rise to a graph and 

the area under the curve (ROC score) is a popular measure of the discriminative ability of 

the classifier. The machine learning community most often uses the ROC AUC statistic. 

This measure can be interpreted as the probability that when we randomly pick one positive 

and one negative example, the classifier will assign a higher score to the positive example 

than to the negative. However, with so many terms to consider, the output is summarized 

by plotting the number of informative GO terms that can be predicted with ROC scores 

better than or equal to various ROC thresholds. False positive (fp) rate and true positive (tp) 

rate are calculated as: 

 

N
FPfp =   -(4)   

P
TPtp =  -(5) 

FP is false positive, 

TP is true positive, 

N is negative class, 

P is positive class in the contingency matrix of a classifier.  
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 According to Chua et al, 2007 and Fawcett, 2004, ROC score captures the 

discriminative power of the classifier to assign a function to a protein but ROC score does 

not capture how accurate the classifier is, to capture that performance requires the precision 

and recall of the classifier. 

∑
∑= K

i i
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i i
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k
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∑
∑= K
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i i
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k
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ki is the number of functions correctly predicted for protein i; 

mi is the number of functions predicted for protein i; and 

ni is the number of functions annotated for protein i.  

  

 With the precision and recall, a summarizing figure for the graph of precision 

versus recall was introduced, named the Area Under the Precision Recall Curve (AUPRC). 

The AUPRC is an estimation of the area under the precision versus recall curve, and the 

difference of AUPRC between two systems give an indication of the average rise or drop in 

precision across the range of recall when comparison is needed. This is calculated using a 

sixth power polynomial equation generated by Microsoft Excel to estimate the precision 

versus recall graph, area under the curve is determined via integrating this function. The 

graphs generated via Microsoft Excel and equations are presented in APPENDIX B for 

reference. 

 

 With the 2 main performance indicators and a derived one, we are able to tell how 

good is the classifier at separating the function of a protein from functions it does not have, 

and further with precision and recall we can tell how often this score is correct. The 
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program’s main advantage is its ability to take multiple sources of data into consideration, 

which in previous work (Chua et al, 2007) has been confirmed that taking more data 

sources outperform any single data source alone. Hence, in line with the observation above, 

we would also want our analysis of Pubmed to be able to translate to better precision even 

in combination with other data sources such as BLAST or PFAM, versus unprocessed 

Pubmed abstract interaction map with other data source. 

 

2.5 Chi-square test and Odds ratio analysis 

Pubmed text being the data object in this project requires the use of text handling 

methods to enable its analysis. Firstly, Stop words, or stopwords, are removed from the text 

string from further processing. Stop words is the name given to words which are filtered 

out prior to, or after, processing of natural language data (text), which include “to”, “that” 

and “and”. Next, the remaining words are “stemmed” to the root form using Porter’s Stem, 

example of stemming would be from “consideration” to “consider”.  

 

In the course of the project, analysis on the dependence or independence of words to 

appear in abstracts which suggest a function similarity between a pair of protein which 

appears in the same abstract was done. To do this we used the chi-square statistical test to 

test the null hypothesis that words have no preference for either of 2 text types, positive 

abstract and negative abstract. In this case abstract with at least a pair of protein sharing 

one GO function name are labeled positive abstract; and abstract with all protein pairs not 

sharing any function name are labeled negative abstract. To remove words which do not 

appear frequent enough in the set of abstract we set a minimum threshold appearance of 



above 10% appearance in total number of abstract. This is to remove words which are 

infrequent in abstract and to prevent redundant analysis on words which are not frequent 

enough to be projected into general cases. Next chi-square significant words at chi-square 

score of greater than 3.84 )05.0( ≤p were further analyzed via log odds ratio to detect 

words which are significantly expressed in positive abstracts. 

 

Chi-square test was done using the formula below, with the setup of a 2-by-2 

contingency table. 

∑
−

=
ji ij

ijij

E
EO

,

2
2 )(

χ       -(8) 

 

},{
},{

negativepositivej
otherswordi

∈
∈

 Oi,j = Observed frequency of i and j 
Ei,j = Expected frequency of i and j 

 

 Table 1. shows an example of the 2-by-2 contingency table (from data) and 

following that the chi-square calculation for the example and expected value is calculated 

from the observed contingency table as follow. 

Expected value = (row total * column total)/ grand total 

Calculation for Expected value for positive abstract containing “yeast” keyword: 

Expected value  =  [ (g) / (i) ] * (e) 

= 15600/192263 * 27221 

= 2208.68 
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 Observed counts Expected values 

 Positive Negative Total Positive Negative Total 

Yeast 5908 (a)  21313 (b) 27221 (e) 2208.68 25012.32 27221 

No yeast 9692 (c) 155350 (d) 165042 (f) 13391.32 151650.78 165042 

Total 15600 (g) 176663 (h) 192263 (i) 15600 176663 192263 

Table 1. Example of contingency table for chi-square analysis on the word “yeast” 

; 

Chi-square calculation for “yeast”: 

7855.29
24.9093.102113.54799.6195

78.151650
)78.151650155350(

32.13391
)32.133919692(

32.25012
)32.2501221313(

68.2208
)68.22085908( 2222

2

=
+++=

−
+

−
+

−
+

−
=χ

 

 In addition to significantly biased words to appear in either text type, the 

identification of which direction the word is more biased towards, in this case finding 

words biased to appear in positive abstract, is needed. To accomplish that, the commonly 

used log odds ratio is used, as defined: 

log Odds Ratio score = log10( (a*d)/(b*c) )    -(9) 

 Taking “yeast” keyword as an example again,  

Log Odds Ratio score = 
969221313

1553505908log
×

×  = 0.648 (3 s.f.). 

 

2.6 Sentence based Interaction map 

A hypothesis that protein occurs in the same sentence are more likely to share 

function than proteins which occur in the same abstract but in different sentence is put up. 

This hypothesis stems from the general understanding of how individuals construct 
 12
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sentence, especially in the case of biological studies report (Pubmed abstract). Scientist 

would want to make some inference of the function or link proteins together in their 

studies; to achieve that usually would involve inclusion of these proteins in a single 

sentence. Hence, this hypothesis went under scrutiny in the course of this project, whereby 

only proteins of prediction interest co-occurring in the same sentence in Pubmed abstract 

was included in the interaction map construction. 

 

2.7 Segmenting versus Filtering 

 Filtering of edges would give rise to better precision with irrelevant edges being 

discarded, however, this advantage comes at a price of reduced discriminative power of the 

classifier, since filtering removes edges from consideration, the graph built up has less and 

less edges hence contributing to the reduced discriminative power of the classifier. There 

are two approaches to solve this problem, 1) the inclusion of the full population of edges 

along with the precise interaction map built from filtering as described in Section 2.6, or 2) 

segmenting the total population of edges instead of filtering them. The latter approach is 

preferred in this case as discussed in Section 3.3. 

 

The total population of edges from Pubmed abstract was segmented into different 

sub-data source, instead of filtering the edges. With this approach, segmentation of the total 

edges from Pubmed abstract into three sub-data sources was done and fed into the program 

for prediction, the 3 sub-data source are segmented accordingly as listed 

1)  Protein pairs co-occurring in abstracts with genus name and co-occurring in the 

same sentence in those abstracts 
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2) Protein pairs in abstracts with genus name but protein are not mentioned in same 

sentence, 

3) Protein pairs occurring in abstracts which did not mention genus name at all. 

 

2.8 Word analysis of sentence containing protein name 

 Pubmed abstract were analyzed on the sentence level to screen for words which 

might suggest transfer of function between a pair of proteins in the sentence when 

occurring together. Pubmed abstracts were first broken down into sentences, next protein 

name were search for in the sentences, lastly only those sentences with protein names were 

parsed to text handling and chi-square analysis as described in Section 2.5.  

 

 Next, the edges in Section 2.7 were further segmented into the following  

1)  Protein pairs co-occurring in abstracts with genus name and co-occurring in the 

same sentence in those abstracts with the keywords found  

2)  Protein pairs co-occurring in abstracts with genus name and co-occurring in the 

same sentence in those abstracts without the keywords in the sentence 

3) Protein pairs in abstracts with genus name but protein are not mentioned in same 

sentence, 

4) Protein pairs occurring in abstracts which did not mention genus name at all. 
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3. RESULTS 

3.1 Chi-square analysis of words in abstract 

 The list of chi-square significant words (chi-square score > 3.84) is attached in 

Appendix A, presented in Table 2 is the top ten words of Appendix A. The words are 

arranged according to their log odds ratio score, we found that the organism species name 

and common name is ranked the top three words (log odds ratio over 0.6 implying over 

four times more likely to appear in positive abstract) which are associated to positive 

abstracts, words such as “yeast”, “saccharomyces” and “cerevisiae”. In the rest of the report 

we shall refer to the 3 word referring to the yeast, including “yeast”, “saccharomyces” and 

“cerevisiae”, simply as “genus”. This propelled us to do a preliminary filtering of the 

abstract based on the genus keyword and to do a co-occurrence map based on this set of 

filtered abstracts containing the genus name. Figure 1 and 2 presents the results based on 

the preliminary results we get, namely the accuracy or reliability of the classification 

(Figure 1) and the discriminative power of the classifier at various ROC score threshold 

(Figure 2). “Genus filtered” is the graph for the result of prediction done with the 

interaction map of protein pairs in abstract containing the genus name (filtering). 

 

In Figure 1 and 2, the interaction map built from unprocessed Pubmed was 

included as “basal reference”. In Figure 1, the “Genus filtered” graph had an improvement 

of 5% precision at recall level of 0.4 to 0.8 compared to the basal reference; while at high 

level of recall (>0.8) precision converges rapidly. The AUPRC is presented in Table 3, 

with “Genus filtered” having a minor increase in AUPRC of 0.022 (average 2.2% increase 

in precision). 
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 From Figure 2, the discriminative power of the classifier is maintain with a mild 

drop of 1% (1 less predicted term out of 105 annotated terms) at ROC score of 0.9, which 

we find acceptable, this drop is expected since when we filter out abstracts with the genus 

keywords, we are ultimately removing edges from consideration in the final graph, this 

would contribute to a slight drop in discriminative power since less edge information is in 

the graph now. 

 

  Observed value 

word Total 
Positive

(A) 
Negative

(B) 

Not_word
positive 

(C ) 

Not_word
negative 

(D) chi OR 
cerevisia 18637 4836 13801 10764 162862 8804.403 0.724422 

saccharomyc 18055 4684 13371 10916 163292 8495.786 0.719354 
yeast 27221 5908 21313 9692 155350 7855.286 0.647694 
defect 13697 2621 11076 12979 165587 2402.925 0.479869 
mutant 31411 5159 26252 10441 150411 3477.806 0.451941 
requir 30590 4662 25928 10938 150735 2477.981 0.394079 

homolog 12089 2003 10086 13597 166577 1236.892 0.386134 
subunit 13899 2244 11655 13356 165008 1296.134 0.376339 
complex 30757 4564 26193 11036 150470 2221.051 0.375799 
deletion 11830 1914 9916 13686 166747 1099.838 0.371387 

 Table 2. List of top10 log odds ratio significant words which are chi-significant 

 

3.2 Prediction of sentence based interaction map 

 Based on the hypothesis in Section 2.6, a pre-analysis of an abstract’s ratio of 

correct edges to total edges inferable from a data source was done and presented the 

analysis as a bar chart of the total number of abstract with that ratio of correct edges versus 

ratio of correct edges. Furthermore, the ratio of correct edges was further subdivided to 

show the number of proteins in the abstract which reflects the number of edges inferable. 



Figure 3 presents the abstract level information while Figure 4 presents the sentence level 

information for the GO domain Biological Process, the result for the other 2 domain are 

included in APPENDIX C for reference. From the data drawn to construct Figure 3, 52% 

(2390 out of 4580) of the abstract contains less than 50% edges which have both proteins 

sharing a function. Data used for construction of the two figures (inclusive of the Cellular 

Component and Molecular Function) are included in APPENDIX D. Bearing in mind that 

with each added protein mentioned in an abstract our number of edges inferable raises 

quadratically according to the formula defined: 

 

2
)1_()_( −×

=
noprotnoprotedges     -(11) 

where prot_no is number of protein in abstract. 

 

This means that when using abstract data as a whole, we are including all the 

possible edges inferable from the protein pairs existing in the abstract, inevitably we are 

including other edges in the abstract which are not having the protein pair sharing function. 

Hence, we would like to avoid that by drawing an edge only when the protein is mentioned 

in the same sentence. 

  

Based on this hypothesis, an interaction map was constructed based on protein pairs 

that occurred in the same sentence only, and with this map the results are presented in 

Figure 1 and 2, labeled as “Genus sentence level”. Based on the graph for Biological 

Process GO domain, there is significant improvement of precision of as much as 10% 

 17
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compared to basal reference at the respective recall level from 0.4 to 0.8, this improvement 

was also evident in Cellular Component GO domain; but was not significant in Molecular 

Function. AUPRC scores are also listed in Table 3. However, upon closer inspection of the 

discriminative power of the classifier (Annotated terms predicted), there is a 10% (10 less 

predicted terms out of 105) reduction in the number of predicted annotated terms at ROC 

score of 0.8 to 0.9. This reduction of discriminative power is quite significant and we 

would like to ensure that discriminative power of the classifier does not suffer in the 

processing of the data. 
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Figure 1a. Precision vs. Recall graph: Biological Process 
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Figure 1b. Precision vs. Recall graph: Cellular Component 
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Figure 1c. Precision vs. Recall graph: Molecular Function 

 
Figure 1 presents the precision versus recall graph of the function prediction for “Basal reference”, 
“Genus filtered” and “Genus sentence level”. a) GO domain: Biological Process b) GO domain: 
Cellular Component c) GO domain: Molecular Function. 
 
 

Domain AUPRC score Interaction map 
Biological Process Cellular Component Molecular Function

Basal reference 0.595 0.576 0.643 
Genus Filtered 0.617 0.588 0.619 
Genus sentence 

level 
0.640 0.646 0.654 

Table 3.  AUPRC score of 3 domain for “basal reference”, “Genus filtered” and  
“Genus sentence level” 
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Figure 2a. Annotated Terms vs ROC score: Biological Process 
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Figure 2b. Annotated Terms vs ROC score: Cellular Component 
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Annotated terms vs ROC score  (Molecular function)
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Figure 2c. Annotated Terms vs ROC score: Molecular Function 
 

Figure 2. presents the annotated term versus ROC score of “Basal reference”, “Genus filtered” and 
“Genus sentence level”. a) GO domain: Biological Process b) GO domain: Cellular Component c) 
GO domain: Molecular Function. 
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Figure 3. Abstract number versus ratio of correct edges in Domain: Biological Process 
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Figure 4. Sentence number versus ratio of correct edges in Domain: Biological Process 
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Comparing Figure 3 and 4, there is a very stout difference between the two charts, 

with the sentence level information having more protein pairs with high ratio of correct 

edges compared to abstract. Around 52% of abstract have less than 50% of correct edges 

with respect to the total number of edges possible, while over 90% of sentences have all 

protein pairs sharing a function name. Furthermore, the positive pairs occur mostly in 

sentences with 2 or 3 proteins mentioned in them. Hence, sentence based analysis gives 

better precision than abstract based. 

  

3.3 Segmenting of interaction map 

 From Section 3.2, there was an improvement in the precision of the classifier with 

filtering of edges, however, as Figure 2 shows, for the three domains the discriminative 

power of the classifier dropped at certain ROC score threshold (0.8 to 0.9), hence, a new 

approach was taken to address this problem. In this approach filtering of the edges was not 

done; instead the total number of edges was segmented into sub-sources. Presented in 

Figure 5 is the classification result of the segmenting of the total population of edges 

inferred from Pubmed abstract into the three sub-sources (as laid out in Section 2.7) labeled 

“Segmented” compared against the classification result of the combination of two sources 

(labeled “2 sources”), 1) the interaction map from Section 3.2 (inclusion of protein pairs 

co-occurring in sentence and in abstract containing genus name) and 2) the interaction map 

built from the total abstract (no processing). Unprocessed Pubmed interaction map 

prediction result is included as “Basal reference”. Table 4. presents the AUPRC of the 

different graphs.  
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With the results from Figure 5 and Table 4, for GO domain Biological Process, we 

can see that segmenting of total edges gives better precision of up to 5% at the recall level 

of 0.4 to 0.8 and yet discriminative power is not reduced, furthermore, AUPRC score is 

2.5% higher than “2 sources”, meaning that the averaged raise of precision in the precision 

versus recall graph is about 2.5% given that both graph has the same maximum recall. The 

results are similar for the other 2 domain. Figure 6 show that the processing did not affect 

discriminative power at all. 
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Figure 5a.  Precision vs Recall: Biological Process 
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Figure 5b.  Precision vs Recall: Cellular Component 
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Figure 5c.  Precision vs Recall: Molecular Function 
 

Figure 5. present the Precision versus Recall of “Basal reference”, “2 sources”, “Segmented” and 
“word_find”. a) GO domain: Biological Process b) GO domain: Cellular Component c) GO 
domain: Molecular Function. 
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 Figure 6a.  Predicted Annotated term vs ROC: Biological Process 
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 Figure 6b.  Predicted Annotated term vs ROC: Cellular Component 
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 Figure 6c.  Predicted Annotated term vs ROC: Molecular Function 

 
Figure 6. present the annotated term versus ROC score of “Basal reference”, “2 sources”, 
“Segmented” and “word_find”. a) GO domain: Biological Process b) GO domain: Cellular 
Component c) GO domain: Molecular Function. 
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 Biological Process Cellular Component Molecular Function 

Basal Reference 0.595 0.576 0.643 

Word_find 0.585 0.590 0.591 

2 Sources 0.612 0.590 0.653 

Segmented 0.637 0.613 0.660 

Table 4. AUPRC score of “Basal reference”, “Word_find”, “2 Sources” and “Segmented” 
  for 3 GO domain. 
 

3.4 Keyword analysis 

 Further analysis of the words in the sentences as described in Section 2.8, produced 

the following chi-significant words for the three GO domains, “gene”, “active”, “express”, 

“protein” and “cell”. Further, we included some words which might be useful to suggest 

transfer of function into the search list including words like “mutant”, “bind” and 

“complex”. The prediction results of the sentence containing the keywords we have 

identified is presented in Figure 5 and 6, labeled as “word_find”. The word searching 

analysis seems to perform equally or worse than the basal reference for all 3 GO domains. 

 

3.5 Combination with other data sources 

 The function prediction system employed in this project is capable and directed 

towards integration of numerous data source for protein function prediction. Hence, with 

the result from Pubmed analysis (“Segmented” interaction map), we would like to compare 

the difference in performance between the unprocessed Pubmed abstract interaction map 

with another data source versus segmented Pubmed interaction map with the same data 

source. We would base our analysis on the commonly used BLAST data and Pfam data as a 

representation. Figure 7 shows the result for “Basal reference”, BLAST data 

(“GOBLAST”), “Segmented”, Pubmed unprocessed with BLAST (“Basal reference + 



GOBLAST”) and segmented with BLAST (“Segmented + GOBLAST”), and Figure 8 

respectively for Pfam with Pubmed. 

 

 The prediction performance for “Segmented” was better than the combination of 

unprocessed Pubmed with Pfam, and combination of “Segmented” with either BLAST or 

Pfam was better compared to either information source combined with unprocessed 

Pubmed. 
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Figure 7.  Precision vs Recall of “Basal reference”, “GOBLAST”, “Segmented”, 

“Basal reference + GOBLAST” and “Segmented + GOBLAST”.  
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Figure 8.  Precision vs Recall of “Basal reference”, “Pfam”, “Segmented”, “Basal 
reference + Pfam” and “Segmented + Pfam”.  

 

4. DISCUSSION 

Species name and common name of organism contributes a layer of precise 

information to the abstract handling. Abstracts are included for interaction map 

construction based on presence of the protein name in the abstract. Information from 

homolog protein of other species might be included which might differ from the species we 

are interested in. In this framework of function prediction, genus keyword suggests a high 

likelihood of pairs of protein sharing function name from the odds ratio score within the 

same abstract and was shown to help in function prediction.  

 

Pubmed abstract analysis was based on a simple assignment of whether the abstract 

transfers a function to the protein based on whether a pair of protein sharing a function 
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exist in that same abstract. However, the abstract might not be containing just 2 proteins. 

There might be several other protein pairs present in the same abstract and contributing 

negative information and considered positive just on the basis of co-occurring with one 

protein pair sharing function. Therefore, abstract-level analysis for the construction of the 

interaction map is noisy given that more than 2 proteins are usually mentioned in the same 

abstract and there might be a lot of irrelevant protein pairs which are included into the map 

as shown by Figure 3. Based on these observations, labeling of articles as positive 

(transferring of function) on abstract level is not useful in our framework of classification, 

and this concept is also employed on the general text mining classification problems; 

whereby usually text in close proximity of the protein of interest is analysed in BioCreative 

related work, usually within the same sentence (Couto et al, 2005 and Verspoor et al, 2005). 

Simple analysis of sentence level information also show that protein pairs are more likely 

to share some function within the same sentence in Figure 4. Interaction map built from 

protein pairs occurring in same sentence occurring in abstract containing genus keyword 

was proven to aid in improved prediction as shown in Figure 1 and 7, which coincides with 

the methodology of BioCreative text analysis. 

 

Looking at Figure 3 and 4, we might be asking why when the correct edges are so 

predominant in sentence co-occurrences and yet did not translate to a very sharp rise in 

precision for the protein function prediction problem. This is due to the simple labeling of 

an edge as correct (or positive) when the connected protein pairs have a similar GO 

annotated function name, this does not translate to mean that the protein pair has their list 

of function name equal to each other, but only at least one of their function name are the 
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same. This also explains why despite having so many positive protein pairs on sentence 

level, precision did not rise sharply. Positive pair only contribute positively to the function 

which the protein pair share function, but for other function which they do not share the 

protein pair contributes to the denominator of the confidence function (Equation 1). 

Hence, this strategy of labeling correct edges is quite simple and achieves the identification 

of protein pairs with overlapping function name. Our objective is also satisfied which is to 

identify the context whereby these positive edges might appear with high chance and at the 

same time removing those edges with protein pairs that do not share function from 

consideration with the positive edges. 

 

From the chi-square significant words on abstract level and sentence level, some of 

the words which are very chi significant are not very high scoring in terms of odds ratio, 

words including “bind”, “interact” and “express”, which in natural language context 

suggest relationship between proteins. Pubmed abstracts are summary of scientific finding 

or experimentally verified relationship between proteins of interest in those papers, where 

the usual interest is in reporting positive relationship and seldom reporting a negative 

relationship, unless the negative relationship is interesting (rare). Hence in terms of word 

usage there should not be too much of a difference using statistical analysis. 

 

 Word analysis on the sentence containing protein names was not necessary in the 

framework of the prediction tool used. In this software, function annotation was determined 

by majority voting from the protein’s neighbours as elaborated in Equation 1. Hence, as 

Figure 4 shows sentence provides an already very concentrated positive pairs of protein. 
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The advantage of this method is the redundancy of intensive text and natural language 

analysis as done in BioCreative, whereby function annotation is derived from the protein’s 

neighbouring text with a dictionary of the function with some machine learning or voting 

function to predict annotation. Word analysis in our case only serve to pick up words which 

might suggest with high chance a sharing of function between the pair of protein in the 

sentence; essentially words are used to infer high quality pair of protein and what is 

important is still the protein’s neighbouring protein. Disadvantage of this approach is also 

highlighted here that protein in isolation in the text will not be able to participate in the 

prediction since it cannot form paired entity in the interaction map, hence a wide variety of 

information source is needed in the hope that the wide use of information sources would 

cover each other isolated protein cases. 

 

Next question is, why segment and not filter? As elaborated in Section 3.3, the 

result we presented convinced us but what is the framework or underlying idea that 

supports this is our next interest. “Segmented” interaction map is made up of Pubmed 

interaction map segmented into sub-sources which are disjoint while “2 sources” is a 

combination of “Genus sentence level”, the filtered interaction map, and the whole 

Pubmed interaction map unprocessed. Thus the interaction map “Genus sentence level” is 

a subset of the information from Pubmed. This combination gives that part of the 

interaction map an addition vote in the final map, which is giving the final decision making 

equation a high dependence on that part of the map. This dependence makes the decision 

making equation, Equation 3, more unlikely to overturn some of the function assignment 

decision which contributed to lower precision. Disjoint interaction map performed better 
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than interaction map with overlapping edges. Hence, independent disjoint interaction map 

is favourable for prediction in this framework; dependencies in the interaction map used 

would lower precision, and this justifies the segmentation of interaction map into disjoint 

sets. 

 

We notice from Figure 7 and 8 that both Pfam and BLAST data source on their 

own performed poorly in terms of maximum recall achievable but combined with Pubmed 

was able to achieve better recall as well as precision and the performance was even better 

when combined with processed Pubmed (“Segmented”). Furthermore, in Figure 8 there 

was a surprise that “Segmented” outperform the combination of Pubmed (unprocessed) 

with Pfam. This analysis highlighted the richness of information in Pubmed being able to 

provide high recall level compared to the other 2 information source. Furthermore, the 

proper processing of Pubmed could even make some information source redundant. 

 

Lastly, from Figure 1 and 7, we can notice that processing of Pubmed data did not 

help to increase recall significantly but only raised precision. The organization of Pubmed 

interaction map ultimately gives us more precise information which allows the prediction to 

reduce the number of false positive prediction which contributed to higher precision, 

however, rising recall requires more than just precise information. To raise recall would 

require the prediction of more function (less false negative); this would depend on the 

amount of information in the interaction map to make the assignment of function. Hence, 

when we include alternate sources of information like BLAST interaction map, more 

information in addition to those inferred from Pubmed allows the prediction of more 
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function name which contributed to a rise in recall. This limitation of information from one 

source limits our improvement to the rise in precision in this project, and further highlight 

the contradiction between precision (less prediction) and recall (more prediction). 

 

5. CONCLUSION 

Organism species name and common name are useful in function prediction in 

Pubmed abstract analysis; this observation is useful in our case but is not used extensively 

in other work. Hence, maybe further work could be done to investigate this observation on 

other general text classification problem which was not done here. Furthermore, sentence 

contains more precise information which is useful in function prediction and is observed to 

be in use in other previous work. Lastly, the classification system uses the scoring function 

of protein pairs in Equation 1 mainly for distributing the edges into different basket for 

prediction in those baskets, but without consideration to domain knowledge of information 

sources, such as high score in Pubmed co-occurrence have higher chance of function 

sharing while high BLAST e-value score would mean the opposite. Hence, further work 

could be done to incorporate domain knowledge into the prediction system to allow 

penalizing the function assignment score (Equation 3) for basket with low score in 

Pubmed for example or penalize basket with high BLAST e-value. 
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chromosom 75 15279 1853 13426 13747 163237 1239.7206 14039.28 14360.28 162623.7 358.678 0.214539
dna 234 34403 3963 30440 11637 146223 2791.4201 31611.58 12808.58 145051.4 651.767 0.213754
overexpress 287 11547 1388 10159 14212 166504 936.91038 10610.09 14663.09 166052.9 251.4646 0.204308
absenc 842 10157 1224 8933 14376 167730 824.12737 9332.873 14775.87 167330.1 222.9311 0.203757
act 515 12105 1449 10656 14151 166007 982.18586 11122.81 14617.81 165540.2 257.6835 0.202813
sensit 235 19820 2320 17500 13280 159163 1608.1721 18211.83 13991.83 158451.2 382.3118 0.201094
mammalian 2110 10079 1204 8875 14396 167788 817.79854 9261.201 14782.2 167401.8 209.4677 0.198977
genom 15 14284 1678 12606 13922 164057 1158.9874 13125.01 14441.01 163538 273.2462 0.195508
growth 87 25341 2885 22456 12715 154207 2056.1398 23284.86 13543.86 153378.1 418.8343 0.192601
domain 37 23651 2637 21014 12963 155649 1919.0151 21731.98 13680.98 154931 333.357 0.178042
phosphoryl 545 13714 1553 12161 14047 164502 1112.7383 12601.26 14487.26 164061.7 204.1349 0.17479
transcript 33 31932 3475 28457 12125 148206 2590.926 29341.07 13009.07 147321.9 393.6866 0.17395
regul 230 44522 4721 39801 10879 136862 3612.4642 40909.54 11987.54 135753.5 481.7711 0.173834
rna 145 14878 1669 13209 13931 163454 1207.1839 13670.82 14392.82 162992.2 208.398 0.171
distinct 712 12346 1386 10960 14214 165703 1001.7403 11344.26 14598.26 165318.7 171.4226 0.168567
promot 559 22183 2437 19746 13163 156917 1799.9033 20383.1 13800.1 156279.9 277.4305 0.167692
doe 81 10475 1178 9297 14422 167366 849.92952 9625.07 14750.07 167037.9 145.7579 0.167444
independ 605 14622 1605 13017 13995 163646 1186.4124 13435.59 14413.59 163227.4 173.9561 0.158897
depend 45 40890 4246 36644 11354 140019 3317.7678 37572.23 12282.23 139090.8 358.9754 0.155015
identifi 60 37559 3914 33645 11686 143018 3047.4943 34511.51 12552.51 142151.5 333.2301 0.153425
role 410 43495 4448 39047 11152 137616 3529.1346 39965.87 12070.87 136697.1 336.4898 0.147893
involv 201 36459 3768 32691 11832 143972 2958.2416 33500.76 12641.76 143162.2 297.6765 0.146903
synthesi 571 11602 1235 10367 14365 166296 941.37302 10660.63 14658.63 166002.4 106.0746 0.13959
contain 18 36438 3720 32718 11880 143945 2956.5377 33481.46 12643.46 143181.5 264.7284 0.139136
previous 322 20185 2116 18069 13484 158594 1637.7878 18547.21 13962.21 158115.8 169.7869 0.13905
togeth 428 11482 1221 10261 14379 166402 931.63635 10550.36 14668.36 166112.6 104.0242 0.138956
termin 120 21536 2252 19284 13348 157379 1747.4064 19788.59 13852.59 156874.4 178.5801 0.138902
amino 156 22001 2268 19733 13332 156930 1785.136 20215.86 13814.86 156447.1 160.5116 0.131261
substrat 1919 11993 1251 10742 14349 165921 973.09831 11019.9 14626.9 165643.1 92.11875 0.129252
phase 815 11462 1196 10266 14404 166397 930.01358 10531.99 14669.99 166131 88.03891 0.128992
ident 315 10693 1115 9578 14485 167085 867.61779 9825.382 14732.38 166837.6 81.28496 0.128019
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bind 1099 42643 4224 38419 11376 138244 3460.0043 39183 12140 137480 235.9182 0.125835
format 172 17277 1760 15517 13840 161146 1401.836 15875.16 14198.16 160787.8 109.4231 0.120788
structur 453 28173 2820 25353 12780 151310 2285.925 25887.07 13314.07 150775.9 159.1132 0.119557
nucleotid 1122 11346 1160 10186 14440 166477 920.60147 10425.4 14679.4 166237.6 72.00087 0.118241
vivo 491 18578 1876 16702 13724 159961 1507.3977 17070.6 14092.6 159592.4 108.5855 0.116998
suggest 207 66022 6235 59787 9365 116876 5356.9496 60665.05 10243.05 115997.9 238.543 0.114447
accumul 627 12282 1245 11037 14355 165626 996.54744 11285.45 14603.45 165377.5 72.01254 0.114444
form 400 28068 2783 25285 12817 151378 2277.4054 25790.59 13322.59 150872.4 143.0376 0.113927
activ 107 80992 7462 73530 8138 103133 6571.5983 74420.4 9028.402 102242.6 226.8636 0.109271
process 831 22298 2208 20090 13392 156573 1809.2342 20488.77 13790.77 156174.2 108.2 0.108891
effici 124 10746 1071 9675 14529 166988 871.91815 9874.082 14728.08 166788.9 52.39817 0.104588
transport 1223 11688 1159 10529 14441 166134 948.35096 10739.65 14651.65 165923.4 54.21733 0.102558
initi 817 15175 1498 13677 14102 162986 1231.2821 13943.72 14368.72 162719.3 68.26581 0.102391
loss 454 11245 1113 10132 14487 166531 912.40644 10332.59 14687.59 166330.4 50.97646 0.101317
implic 1111 10165 1007 9158 14593 167505 824.77648 9340.224 14775.22 167322.8 46.26081 0.101112
plai 584 19867 1942 17925 13658 158738 1611.9857 18255.01 13988.01 158408 82.00174 0.100084
show 12 65409 6067 59342 9533 117321 5307.2115 60101.79 10292.79 116561.2 179.4158 0.099758
known 144 20420 1987 18433 13613 158230 1656.8555 18763.14 13943.14 157899.9 80.10094 0.097937
lead 647 14642 1423 13219 14177 163444 1188.0351 13453.96 14411.96 163209 54.74293 0.093791
enzym 6 21672 2084 19588 13516 157075 1758.4413 19913.56 13841.56 156749.4 73.92996 0.092167
residu 855 15969 1542 14427 14058 162236 1295.7064 14673.29 14304.29 161989.7 55.56585 0.091132
addition 339 32897 3119 29778 12481 146885 2669.225 30227.78 12930.78 146435.2 99.50747 0.090848
nuclear 982 14595 1408 13187 14192 163476 1184.2216 13410.78 14415.78 163252.2 49.80121 0.089867
consist 267 18285 1751 16534 13849 160129 1483.624 16801.38 14116.38 159861.6 57.95254 0.08796
condition 248 15542 1483 14059 14117 162604 1261.0601 14280.94 14338.94 162382.1 46.24796 0.084576
singl 173 18583 1764 16819 13836 159844 1507.8034 17075.2 14092.2 159587.8 52.44428 0.083384
mediat 501 30396 2849 27547 12751 149116 2466.2967 27929.7 13133.7 148733.3 76.7656 0.082598
sequenc 24 37169 3461 33708 12139 142955 3015.8502 34153.15 12584.15 142509.9 88.64485 0.082485
exhibit 42 14517 1380 13137 14220 163526 1177.8928 13339.11 14422.11 163323.9 40.8229 0.08207
evid 629 16320 1548 14772 14052 161891 1324.1861 14995.81 14275.81 161667.2 44.98821 0.081816
factor 439 37423 3469 33954 12131 142709 3036.4594 34386.54 12563.54 142276.5 83.26239 0.079868
target 253 20973 1972 19001 13628 157662 1701.7252 19271.27 13898.27 157391.7 52.4367 0.079425
thu 352 21200 1990 19210 13610 157453 1720.1438 19479.86 13879.86 157183.1 51.78332 0.078619
membran 183 19605 1839 17766 13761 158897 1590.7273 18014.27 14009.27 158648.7 46.95927 0.077458
affect 112 19385 1818 17567 13782 159096 1572.8767 17812.12 14027.12 158850.9 46.23602 0.077243
local 198 18566 1741 16825 13859 159838 1506.424 17059.58 14093.58 159603.4 44.0021 0.076792
similar 332 28499 2644 25855 12956 150808 2312.3763 26186.62 13287.62 150476.4 60.76592 0.07567
hybrid 276 11068 1041 10027 14559 166636 898.04487 10169.96 14701.96 166493 26.27853 0.074917
member 713 11768 1104 10664 14496 165999 954.84207 10813.16 14645.16 165849.8 27.01107 0.073906
import 445 27499 2525 24974 13075 151689 2231.2374 25267.76 13368.76 151395.2 49.11687 0.069286
furthermor 425 14104 1308 12796 14292 163867 1144.3824 12959.62 14455.62 163703.4 27.47431 0.068932
caus 210 22912 2105 20807 13495 155856 1859.0535 21052.95 13740.95 155610.1 40.20199 0.067593
thei 617 14909 1374 13535 14226 163128 1209.6992 13699.3 14390.3 162963.7 26.32732 0.065974
isol 351 23042 2106 20936 13494 155727 1869.6015 21172.4 13730.4 155490.6 36.95999 0.064788
support 911 12043 1108 10935 14492 165728 977.15525 11065.84 14622.84 165597.2 20.34192 0.063989
abil 570 12107 1111 10996 14489 165667 982.34814 11124.65 14617.65 165538.3 19.56878 0.062677
map 502 10896 995 9901 14605 166762 884.08898 10011.91 14715.91 166651.1 16.05244 0.05974
site 522 28909 2605 26304 12995 150359 2345.6432 26563.36 13254.36 150099.6 36.7324 0.059139
cell 166 93919 8107 85812 7493 90851 7620.4803 86298.52 7979.52 90364.48 66.08707 0.058986
cellular 1884 15638 1419 14219 14181 162444 1268.8494 14369.15 14331.15 162293.8 21.04929 0.05811
indic 295 43791 3900 39891 11700 136772 3553.1517 40237.85 12046.85 136425.2 47.7163 0.058001
elem 377 10039 914 9125 14686 167538 814.55298 9224.447 14785.45 167438.6 13.94134 0.057923
multipl 834 11194 1016 10178 14584 166485 908.26836 10285.73 14691.73 166377.3 14.76638 0.05673
product 897 23246 2093 21153 13507 155510 1886.1539 21359.85 13713.85 155303.2 28.08233 0.056597
sever 347 26720 2399 24321 13201 152342 2168.0303 24551.97 13431.97 152111 31.1014 0.056262
novel 622 16921 1527 15394 14073 161269 1372.9506 15548.05 14227.05 161115 20.62648 0.055652
link 494 13120 1186 11934 14414 164729 1064.5418 12055.46 14535.46 164607.5 16.1859 0.055284
part 821 10029 906 9123 14694 167540 813.74159 9215.258 14786.26 167447.7 12.00997 0.053969
type 152 40049 3547 36502 12053 140161 3249.5301 36799.47 12350.47 139863.5 37.43319 0.053077
specif 38 48508 4268 44240 11332 132423 3935.8837 44572.12 11664.12 132090.9 40.79069 0.052066
dure 406 29018 2576 26442 13024 150221 2354.4873 26663.51 13245.51 149999.5 26.71202 0.050638
shown 544 21558 1914 19644 13686 157019 1749.1915 19808.81 13850.81 156854.2 19.03363 0.048388
mani 525 11088 987 10101 14613 166562 899.66764 10188.33 14700.33 166474.7 9.790747 0.046789
signal 521 26238 2316 23922 13284 152741 2128.9213 24109.08 13471.08 152553.9 20.71864 0.046568
highli 561 14542 1289 13253 14311 163410 1179.9213 13362.08 14420.08 163300.9 11.87229 0.045547
clone 8 15714 1391 14323 14209 162340 1275.016 14438.98 14324.98 162224 12.50435 0.045155
wherea 118 20977 1851 19126 13749 157537 1702.0498 19274.95 13897.95 157388 15.92333 0.044894
gener 833 22430 1974 20456 13626 156207 1819.9446 20610.06 13780.06 156052.9 16.06644 0.043859
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appear 455 17043 1500 15543 14100 161120 1382.8495 15660.15 14217.15 161002.8 11.85155 0.042487
find 588 19997 1750 18247 13850 158416 1622.5337 18374.47 13977.47 158288.5 12.16307 0.040196
contrast 601 17561 1531 16030 14069 160633 1424.8795 16136.12 14175.12 160526.9 9.466048 0.037613
found 34 41933 3616 38317 11984 138346 3402.3957 38530.6 12197.6 138132.4 18.66532 0.037202
vitro 39 22379 1937 20442 13663 156221 1815.8065 20563.19 13784.19 156099.8 9.962828 0.0348
fold 562 13631 1180 12451 14420 164212 1106.0038 12525 14494 164138 5.798949 0.033117
direct 683 15556 1344 14212 14256 162451 1262.1961 14293.8 14337.8 162369.2 6.277891 0.032469
famili 1444 21069 1815 19254 13785 157409 1709.5146 19359.49 13890.49 157303.5 7.955536 0.031978
reveal 396 27894 2394 25500 13206 151163 2263.2873 25630.71 13336.71 151032.3 9.60997 0.031258
mrna 388 17907 1540 16367 14060 160296 1452.9535 16454.05 14147.05 160209 6.258349 0.030489
same 32 14729 1268 13461 14332 163202 1195.0942 13533.91 14404.91 163129.1 5.241868 0.030461
acid 159 33882 2893 30989 12707 145674 2749.1467 31132.85 12850.85 145530.1 9.944529 0.02948
character 338 22504 1921 20583 13679 156080 1825.9488 20678.05 13774.05 155984.9 6.098729 0.027312
includ 88 29272 2488 26784 13112 149879 2375.0966 26896.9 13224.9 149766.1 6.889931 0.026047
associ 272 40894 3464 37430 12136 139233 3318.0924 37575.91 12281.91 139087.1 8.869032 0.026025
report 429 31497 2661 28836 12939 147827 2555.6306 28941.37 13044.37 147721.6 5.654352 0.022963
thi 14 99983 8277 91706 7323 84957 8112.5063 91870.49 7487.494 84792.51 7.562784 0.019985
region 256 30469 2558 27911 13042 148752 2472.2198 27996.78 13127.78 148666.2 3.849198 0.019244
level 262 42620 3322 39298 12278 137365 3458.1381 39161.86 12141.86 137501.1 7.493872 -0.02422
molecular 804 20960 1624 19336 13976 157327 1700.6704 19259.33 13899.33 157403.7 4.221984 -0.02436
normal 604 20606 1589 19017 14011 157646 1671.9473 18934.05 13928.05 157728.9 5.016098 -0.0268
major 1082 17996 1379 16617 14221 160046 1460.1749 16535.83 14139.83 160127.2 5.418374 -0.02967
new 141 16048 1228 14820 14372 161843 1302.1164 14745.88 14297.88 161917.1 5.009351 -0.03007
differ 56 43871 3378 40493 12222 136170 3559.6428 40311.36 12040.36 136351.6 13.06969 -0.03178
model 1611 19830 1508 18322 14092 158341 1608.9835 18221.02 13991.02 158442 7.69086 -0.03395
induct 414 10715 812 9903 14788 166760 869.40285 9845.597 14730.6 166817.4 4.368177 -0.03403
result 80 84119 6547 77572 9053 99091 6825.3195 77293.68 8774.681 99369.32 21.95875 -0.03442
earli 477 11606 879 10727 14721 165936 941.69757 10664.3 14658.3 165998.7 4.834828 -0.03449
respect 466 26032 1982 24050 13618 152613 2112.2067 23919.79 13487.79 152743.2 10.10332 -0.03453
non 556 14753 1111 13642 14489 163021 1197.0416 13555.96 14402.96 163107 7.290046 -0.03796
further 312 17854 1346 16508 14254 160155 1448.6531 16405.35 14151.35 160257.7 8.726841 -0.03805
variou 260 12509 937 11572 14663 165091 1014.966 11494.03 14585.03 165169 6.971494 -0.04017
high 237 30941 2329 28612 13271 148051 2510.5174 28430.48 13089.48 148232.5 17.02258 -0.04187
observ 170 34791 2620 32171 12980 144492 2822.902 31968.1 12777.1 144694.9 19.37846 -0.04259
chain 793 13204 984 12220 14616 164443 1071.3575 12132.64 14528.64 164530.4 8.323679 -0.04289
recent 580 16490 1223 15267 14377 161396 1337.9797 15152.02 14262.02 161511 11.76215 -0.0461
possibl 941 16090 1189 14901 14411 161762 1305.5242 14784.48 14294.48 161878.5 12.35247 -0.04785
assai 117 18565 1373 17192 14227 159471 1506.3429 17058.66 14093.66 159604.3 14.21893 -0.04809
present 58 32917 2440 30477 13160 146186 2670.8477 30246.15 12929.15 146416.8 26.20033 -0.05093
express 7 69104 5204 63900 10396 112763 5607.0196 63496.98 9992.98 113166 49.21527 -0.05386
due 609 11806 852 10954 14748 165709 957.92534 10848.07 14642.07 165814.9 13.58126 -0.05852
repres 254 10247 732 9515 14868 167148 831.42986 9415.57 14768.57 167247.4 13.66924 -0.06305
approxim 661 11631 831 10800 14769 165863 943.72604 10687.27 14656.27 165975.7 15.59745 -0.06342
analyz 286 12422 885 11537 14715 165126 1007.9069 11414.09 14592.09 165248.9 17.4377 -0.06509
confirm 344 12582 894 11688 14706 164975 1020.8891 11561.11 14579.11 165101.9 18.36596 -0.06648
mai 528 44057 3196 40861 12404 135802 3574.7346 40482.27 12025.27 136180.7 56.65082 -0.06736
rate 1264 15017 1060 13957 14540 162706 1218.4622 13798.54 14381.54 162864.5 24.32813 -0.07065
rel 285 11496 809 10687 14791 165976 932.7723 10563.23 14667.23 166099.8 19.01069 -0.07086
base 637 21627 1521 20106 14079 156557 1754.7901 19872.21 13845.21 156790.8 38.19461 -0.0751
pattern 171 12390 862 11528 14738 165135 1005.3104 11384.69 14594.69 165278.3 23.76486 -0.07685
number 1160 16469 1136 15333 14464 161330 1336.2758 15132.72 14263.72 161530.3 35.72751 -0.08282
system 1240 24382 1686 22696 13914 153967 1978.3276 22403.67 13621.67 154259.3 53.8376 -0.08512
molecul 1321 12337 843 11494 14757 165169 1001.0101 11335.99 14598.99 165327 29.00568 -0.08571
induc 212 44381 3088 41293 12512 135370 3601.0236 40779.98 11998.98 135883 103.414 -0.092
reaction 1515 13044 873 12171 14727 164492 1058.3752 11985.62 14541.62 164677.4 37.90754 -0.09628
enhanc 533 17086 1140 15946 14460 160717 1386.3385 15699.66 14213.66 160963.3 52.28343 -0.09985
low 797 17885 1191 16694 14409 159969 1451.1685 16433.83 14148.83 160229.2 55.96875 -0.10125
select 530 18339 1218 17121 14382 159542 1488.0055 16850.99 14111.99 159812 58.94229 -0.10283
design 641 10797 711 10086 14889 166577 876.05624 9920.944 14723.94 166742.1 35.8577 -0.1031
chang 541 21669 1436 20233 14164 156430 1758.1979 19910.8 13841.8 156752.2 72.4202 -0.10577
increas 203 48623 3308 45315 12292 131348 3945.2146 44677.79 11654.79 131985.2 149.924 -0.10788
speci 687 11118 721 10397 14879 166266 902.10181 10215.9 14697.9 166447.1 41.99615 -0.11074
detect 93 24954 1631 23323 13969 153340 2024.739 22929.26 13575.26 153733.7 95.75785 -0.11484
beta 672 19326 1241 18085 14359 158578 1568.0895 17757.91 14031.91 158905.1 82.55063 -0.12043
higher 304 17783 1139 16644 14461 160019 1442.8923 16340.11 14157.11 160322.9 76.75481 -0.12076
inhibit 578 32600 2122 30478 13478 146185 2645.1267 29954.87 12954.87 146708.1 135.5841 -0.12196
determin 516 31935 2075 29860 13525 146803 2591.1694 29343.83 13008.83 147319.2 134.1915 -0.12247
examin 448 23085 1474 21611 14126 155052 1873.0905 21211.91 13726.91 155451.1 105.1686 -0.12572
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human 136 40038 2607 37431 12993 139232 3248.6375 36789.36 12351.36 139873.6 174.196 -0.12706
group 36 20694 1309 19385 14291 157278 1679.0875 19014.91 13920.91 157648.1 99.48154 -0.12892
less 1038 10932 682 10250 14918 166413 887.00998 10044.99 14712.99 166618 54.67582 -0.12946
resist 223 13853 867 12986 14733 163677 1124.0166 12728.98 14475.98 163934 68.92491 -0.12976
produc 474 16519 1037 15482 14563 161181 1340.3328 15178.67 14259.67 161484.3 81.73186 -0.12999
stimul 846 18818 1184 17634 14416 159029 1526.871 17291.13 14073.13 159371.9 92.88449 -0.13037
surfac 354 10172 622 9550 14978 167113 825.34445 9346.656 14774.66 167316.3 57.56874 -0.13866
obtain 681 14159 863 13296 14737 163367 1148.8451 13010.15 14451.15 163652.8 83.55494 -0.14295
correl 271 14141 856 13285 14744 163378 1147.3846 12993.62 14452.62 163669.4 86.92653 -0.14631
decreas 240 23273 1424 21849 14176 154814 1888.3446 21384.66 13711.66 155278.3 141.3788 -0.14767
differenti 379 15561 941 14620 14659 162043 1262.6017 14298.4 14337.4 162364.6 97.00068 -0.14783
follow 640 19599 1172 18427 14428 158236 1590.2405 18008.76 14009.76 158654.2 133.301 -0.15643
revers 1318 10515 616 9899 14984 166764 853.17508 9661.825 14746.82 167001.2 75.906 -0.15954
potenti 723 19517 1157 18360 14443 158303 1583.5871 17933.41 14016.41 158729.6 139.191 -0.16071
posit 162 13801 809 12992 14791 163671 1119.7974 12681.2 14480.2 163981.8 101.1382 -0.16175
test 64 18987 1120 17867 14480 158796 1540.5835 17446.42 14059.42 159216.6 138.6521 -0.16276
case 268 12094 704 11390 14896 165273 981.29333 11112.71 14618.71 165550.3 91.00092 -0.16382
deriv 1516 15601 910 14691 14690 161972 1265.8473 14335.15 14334.15 162327.8 118.481 -0.16559
perform 772 13678 793 12885 14807 163778 1109.8173 12568.18 14490.18 164094.8 105.9661 -0.16702
effect 979 47597 2896 44701 12704 131962 3861.9662 43735.03 11738.03 132928 349.4578 -0.17201
signific 980 24352 1421 22931 14179 153732 1975.8934 22376.11 13624.11 154286.9 194.188 -0.17271
total 389 10257 578 9679 15022 166984 832.24125 9424.759 14767.76 167238.2 89.29002 -0.17796
investig 218 28660 1667 26993 13933 149670 2325.4396 26334.56 13274.56 150328.4 238.4413 -0.17823
concentr 565 18088 1021 17067 14579 159596 1467.6396 16620.36 14132.36 160042.6 163.2883 -0.18384
rang 990 10085 554 9531 15046 167132 818.28537 9266.715 14781.71 167396.3 98.0373 -0.18999
lower 1238 11931 656 11275 14944 165388 968.0677 10962.93 14631.93 165700.1 116.7253 -0.19118
cancer 366 14209 782 13427 14818 163236 1152.902 13056.1 14447.1 163606.9 140.2233 -0.19275
studi 427 71963 4393 67570 11207 109093 5838.9955 66124 9761.004 110539 622.8392 -0.19869
marker 86 10111 544 9567 15056 167096 820.39498 9290.605 14779.61 167372.4 106.9668 -0.19992
peptid 353 14355 770 13585 14830 163078 1164.7483 13190.25 14435.25 163472.7 157.3471 -0.20531
inhibitor 573 19038 1026 18012 14574 158651 1544.7216 17493.28 14055.28 159169.7 210.4038 -0.20755
time 370 20821 1114 19707 14486 156956 1689.3921 19131.61 13910.61 157531.4 239.1806 -0.21291
primari 1601 10438 546 9892 15054 166771 846.92739 9591.073 14753.07 167071.9 123.0466 -0.21362
compar 290 30172 1602 28570 13998 148093 2448.1216 27723.88 13151.88 148939.1 377.5022 -0.22678
pcr 232 10986 559 10427 15041 166236 891.39148 10094.61 14708.61 166568.4 143.0653 -0.2273
antibodi 848 12925 657 12268 14943 164395 1048.7197 11876.28 14551.28 164786.7 170.7124 -0.22976
prolifer 390 10240 510 9730 15090 166933 830.86189 9409.138 14769.14 167253.9 142.4384 -0.23669
develop 298 26978 1386 25592 14214 151071 2188.9641 24789.04 13411.04 151874 372.8773 -0.23988
measur 357 15668 751 14917 14849 161746 1271.2836 14396.72 14328.72 162266.3 252.293 -0.26091
mous 1610 12540 587 11953 15013 164710 1017.4813 11522.52 14582.52 165140.5 212.0432 -0.26859
cultur 1245 13415 623 12792 14977 163871 1088.4778 12326.52 14511.52 164336.5 232.8842 -0.27337
significantli 2147 23309 1080 22229 14520 154434 1891.2656 21417.73 13708.73 155245.3 430.9739 -0.28672
tissu 306 18405 837 17568 14763 159095 1493.3607 16911.64 14106.64 159751.4 347.1935 -0.28951
diseas 1605 16785 724 16061 14876 160602 1361.9157 15423.08 14238.08 161239.9 356.2866 -0.31277
treatment 1728 21582 913 20669 14687 155994 1751.1388 19830.86 13848.86 156832.1 491.7813 -0.32867
conclusion 534 20139 828 19311 14772 157352 1634.0554 18504.94 13965.94 158158.1 483.3564 -0.34034
method 671 23063 948 22115 14652 154548 1871.3055 21191.69 13728.69 155471.3 563.3672 -0.34471
treat 2206 11303 441 10862 15159 165801 917.1125 10385.89 14682.89 166277.1 285.7984 -0.35255
line 358 16797 665 16132 14935 160531 1362.8894 15434.11 14237.11 161228.9 426.1529 -0.35351
receptor 1135 28060 1139 26921 14461 149742 2276.7563 25783.24 13323.24 150879.8 724.5139 -0.35842
tumor 250 15232 572 14660 15028 162003 1235.9071 13996.09 14364.09 162666.9 421.5269 -0.37612
rat 2115 16742 591 16151 15009 160512 1358.4267 15383.57 14241.57 161279.4 516.8379 -0.40746
mice 1008 14271 494 13777 15106 162886 1157.9326 13113.07 14442.07 163549.9 447.5176 -0.41269
evalu 536 12427 420 12007 15180 164656 1008.3126 11418.69 14591.69 165244.3 399.3836 -0.42088
clinic 3170 11641 377 11264 15223 165399 944.53743 10696.46 14655.46 165966.5 395.0436 -0.43932
patient 1995 20486 640 19846 14960 156817 1662.2106 18823.79 13937.79 157839.2 765.7298 -0.47103
dai 1898 10337 278 10059 15322 166604 838.73236 9498.268 14761.27 167164.7 431.1604 -0.52214
dose 2399 10387 275 10112 15325 166551 842.7893 9544.211 14757.21 167118.8 440.0741 -0.52936



APPENDIX B 
Note: All the graphs presented here are for reference for the calculation of the AUPRC 
 Hence, only the graph source is labelled 

“Poly. (Graph)” is the line estimated by Microsoft Excel with a 6th polynomial equation of the original 
graph for calculation of AUC 
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Precision vs Recall
(Genus filtered)
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Part 1. Basal reference: Biological Process     Part 2. Genus Filtered: Biological Process 
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(Genus sentence level)
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Part 3. Genus sentence level: Biological Process    Part 4. Basal Reference: Cellular Component 
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Precision vs Recall
(Genus filtered)
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Precision vs Recall
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Part 5. Genus filtered: Cellular Component     Part 6. Genus Sentence level: Cellular Component 
 

Precision vs Recall
(Basal reference)

y = 26.972x6 - 52.954x5 + 35.069x4

- 10.211x3 + 0.7598x2 - 0.2038x + 1.003

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

All Abstract
Poly. (All Abstract)

 

Precision vs Recall
(Genus filtered)
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Part 7. Basal reference: Molecular Function     Part 8. Genus Filtered: Molecular Function  
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Part 9. Genus Sentence level: Molecular Function   Part 10. Word_find: Biological Process 

 



Precision vs Recall
(2 sources)
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Precision vs Recall
(Segmented)
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Part 11. 2 Sources: Biological Process      Part 12. Segmented: Biological Process 
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Precision vs Recall
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Part 13. Word_find: Cellular Component     Part 14. 2 Sources: Cellular Component  
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Precision vs Recall
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Part 15. Segmented: Cellular Component     Part 16. Word_find: Molecular Function 



Precision vs Recall
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Precision vs Recall
(Segmented)

y = 24.358x6 - 51.304x5 + 38.458x4 - 14.677x3

+ 2.7597x2 - 0.4437x + 1.0103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

isi
on

Segmented
Poly. (Segmented)

 
Part 17. 2 Sources: Molecular Function     Part 18. Segmented: Molecular Function 
 



APPENDIX C 

Abstract number vs Ratio of Positive edges
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Part 1. Abstract number versus ratio of positive edges: Cellular Component 
 

Sentence number vs ratio of positive edges
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Part 2. Sentence number versus ratio of positive edges: Cellular Component 



Abstract number vs Ratio of Positive edges
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Part 3. Abstract number versus ratio of positive edges: Molecular Function 
 

Sentence number vs Ratio of Positive edges
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Part 4. Sentence number versus ratio of positive edges: Molecular Function 

 



APPENDIX D 

 
No of Abstract with (x) Protein in abstract Ratio of  

Positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 0 76 60 74 
0.2 0 95 144 52 49 
0.3 0 294 107 28 25 
0.4 231 216 61 16 12 
0.5 0 215 52 12 7 
0.6 446 62 31 18 7 
0.7 354 223 11 10 6 
0.8 0 43 31 5 4 
0.9 54 28 8 0 3 
1 1223 138 37 11 1 

Part 1.  Abstract analysis of number of abstract with respective ratio of positive edges 
  GO domain: Biological Process 
 

No of Sentence with (x) Protein in sentence Ratio of  
Positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 1 1 0 0 
0.2 70 7 2 2 0 
0.3 0 13 8 0 0 
0.4 2540 26 0 3 0 
0.5 0 82 7 4 0 
0.6 487 0 16 0 0 
0.7 84 219 1 7 1 
0.8 0 12 47 9 4 
0.9 15 16 3 6 12 
1 90299 1912 295 79 38 

Part 2.  Sentence analysis of number of sentence with respective ratio of positive edges 
  GO domain: Biological Process 
 
 
 
 
 
 
 
 



 
No of Abstract with (x) Protein in Abstract Ratio of  

Positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 0 76 66 76 

0.2 0 65 145 46 25 

0.3 0 250 79 21 12 

0.4 92 178 24 13 4 

0.5 0 96 13 3 3 

0.6 391 16 10 2 1 

0.7 287 118 9 3 0 

0.8 0 12 12 1 0 

0.9 22 8 1 3 1 

1 887 60 9 1 2 

Part 3.  Abstract analysis of number of abstract with respective ratio of positive edges 
  GO domain: Cellular Component 
 
 

No of Sentence with (x) Protein in sentence Ratio of 
positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 13 13 4 0 
0.2 935 115 33 6 4 
0.3 0 257 46 10 9 
0.4 9442 202 48 17 6 
0.5 0 419 53 16 6 
0.6 1305 25 36 7 6 
0.7 761 517 10 7 7 
0.8 0 57 59 8 5 
0.9 92 80 18 13 6 
1 51811 578 63 22 6 

Part 4.  Sentence analysis of number of sentence with respective ratio of positive edges 
  GO domain: Cellular Component 
 
 
 
 
 
 
 
 
 
 



No of Abstract with (x) Protein in Abstract Ratio of  
Positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 0 27 26 47 

0.2 0 36 81 32 15 

0.3 0 123 42 16 3 

0.4 79 141 31 5 0 

0.5 0 68 14 4 1 

0.6 245 14 7 1 1 

0.7 119 65 9 3 2 

0.8 0 13 5 0 0 

0.9 16 8 1 3 1 

1 446 33 4 0 3 

Part 5.  Abstract analysis of number of abstract with respective ratio of positive edges 
  GO domain: Molecular Function 
 

No of Sentence with (x) Protein in sentence Ratio of  
Positive 
edges 2,3,4 (x) 5,6 (x) 7,8 (x) 9,10 (x) >10 (x) 

0.1 0 5 5 0 0 

0.2 102 15 2 2 0 

0.3 0 14 7 0 0 

0.4 2910 30 2 1 0 

0.5 0 91 8 4 0 

0.6 581 1 18 0 0 

0.7 32 276 1 6 3 

0.8 0 4 52 17 1 

0.9 1 0 2 9 13 

1 86634 1838 283 71 38 

Part 6.  Sentence analysis of number of sentence with respective ratio of positive edges 
  GO domain: Molecular Function 
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