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MiRNAs are short non-coding RNAs that regulate gene expassWhile the first miRNAs were
discovered using experimental methods, experimental rAiREntification remains technically chal-
lenging and incomplete. This calls for the development ohpotational approaches to complement
experimental approaches to miRNA gene identification. Vp@se in this paper de novo miRNA
precursor prediction method. This method follows the ‘fieatgeneration, feature selection, and fea-
ture integration” paradigm of constructing recognitiondals for genomics sequences. We generate
and identified features based on information in both prinsaguence and secondary structure, and use
these features to construct SVM-based models for the ré@amgyonf miRNA precursors. Experimental
results show that our method is effective, and can achiewd gensitivity and specificity.

1. Introduction

Traditionally, the “Central Dogma” has decreed that gengtformation flows linearly
from DNA to RNA to protein, and never in reverse. The role of /R the cell has been
limited to its function as mMRNA, tRNA, and rRNA. The discoyeasf a diverse array of
transcripts that are not translated to proteins but ratieection as RNAs has changed this
view profoundly. Now, it is increasingly hard to have a coetensive understanding of
cellular processes without considering functional RNA¢ficient identification of func-
tional RNAs—non-coding RNAs (ncRNAs) as well as cis-actelgments—in genomic
sequences is, therefore, one of the major goals of curreimfbrmatics.

1.1. Background

MicroRNAs (miRNASs) are the smallest functional non-codRIgAs of animals and plants.
They have been called “the biological equivalent of darktaratll around us but almost
escaping without detection.” The mature miRNAs are syntieelSfrom a longer precursor
(pre-miRNA) forming a long hairpin structure that contathe mature miRNA in either
of its arms. All reported mature miRNAs are between 17 andi®9dantides (nt) in length
and the majority of them are about 21-25 nt long and have baemdfin a wide range of
eukaryotes, from Arabidopsis thaliana and Caenorhabeléigans to mouse and human.
MicroRNAs play an important regulatory functions in eukatig gene expression through
MRNA degradation or translation inhibition. The regulgtéunctions of miRNAs range
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from cell proliferation, fat metabolism, neuronal patiemin nematodes, neurological dis-
eases, modulation of hematopoietic lineage differewtieith mammals, development, cell
death, cancer, and control of leaf and flower developmentaintp. An miRNA downreg-
ulates the translation of target mMRNAs through base-patorthese target mMRNAS:! In
animals, miRNAs tend to bind to the 3’ untranslated regidridBR) of their target tran-
scripts to repress translation. The pairing between miR&i#ktheir target MRNAs usually
includes short bulges and/or mismatches. In contrast| knalwn cases, plant miRNAs
bind to the protein-coding region of their target mMRNAs wititinee or fewer mismatches
and induce target mMRNA degradati@ror repress mRNA translation.

1.2. Related Works

The experimental identification of miRNA is technically dieaging and incomplete for
two reasons. First, miRNAs tend to have highly constrainggiie- and time-specific ex-
pression patterns. Second, degradation products from nsRINA other endogenous non-
coding RNAs coexist with miRNAs and are sometimes dominawsniall RNA molecule
samples extracted from cells.

MicroRNAs and their associated proteins appear to be orfeahore abundant ribonu-
cleoprotein complexes in the cell. A single organism mayehaundreds of distinct miR-
NAs, some of which are expressed in stage-, tissue- or gatgpecific patterns. Nonethe-
less, mMiIRNAs whose expression is restricted to nonaburaddirntypes or specific environ-
mental conditions could still be missed in cloning efforfdius, computational methods
have been developed to complement experimental approaxitentify miRNA genes.

Many miRNAs have been predicted through various computatiscreens, such as
comparative genomics, that can detect entirely new RNAlfasi*'? To date, over 1600
miRNAs have been identified in different organisfésvariety of computational meth-
ods have been applied to several animal genomes, includiogophila melanogaster, C.
elegans and humans?-!3 They use the following strategies:

(1) Homology searches for orthologs and paralogs of knowRN® genes. This strat-
egy exploits the observation that some miRNAs are conseaeass great evo-
lutionary distances which indicates that their sequenc®isarbitrary. Such se-
guence conservation in the mature miRNA and long hairpincstires in miRNA
precursors facilitates genome-wide computational sesrfiir miRNAs.

(2) Searching for a genomic clusterin the vicinity of known miRNA genes. This
strategy is important because some of the most rapidly sxpmiRNA genes are
present as tandem arrays within operon-like clusters, laadlivergent sequences
of these genes make them relatively difficult to spot if gahapproaches are used.

(3) Gene-finding approaches that do not depend on homologsoaimity to known
genes have also been developed and applied to entire geAdies'® They typ-
ically start by identifying conserved genomic segments bwth fall outside of
predicted protein-coding regions and potentially couldrfestem loops and then
scoring these candidate miRNA stem loops for the patterrongervation and
pairing that characterize known miRNAs genes.
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MiRscart?:'> and SRNALoop have been systematically applied to nematode and ver-
tebrate candidates, and miRseeRdras been systematically applied to insect candidates.
Wang et al® applied their method to plants. Dozens of new genes haveitiestified that
were subsequently (or concurrently) experimentally vexlifi Other methods like profile-
based detection of miRNA precursbfshave also been proposed. In addition, several
groups have developed computational methods to predicNifrgets in Arabidopsis,
Drosophila and humans.

1.3. Paper Organization

Notwithstanding its progresde novo prediction is still a largely unsolved issue. Here, we
follow the “feature generation, feature selection, featumtegration” paradigit of con-
structing recognition models for genomic sequences toldp\ade novo method based on
SVM for recognition of miRNA precursors. The paper is orgaai as follows: Section 2
details our methodology which includes the input data amdufe generation. The data
generation and experimental results are presented inBe&:to demonstrate the effective-
ness of our method and we conclude in Section 4.

2. Proposed Methodology

To predict new miRNAs by computational methods, we need fimeésequence and struc-
ture properties that differentiate known miRNA sequenoamfrandom genomic sequence,
and use these properties as constraints to screen interggions/whole genome (introns
excluding those protein encoding exons) in the target genseguences for candidate
miRNAs. Unlike protein coding genes, ncRNAs lack in theiinpry sequence common
statistical signals that could be exploited for reliabléedéon algorithms. For miRNAs,
different methods need to be contrived.

2.1. Signals Used

Computational gene-finding for protein-coding genes irhijmbkaryotic and eukaryotic
genomes has been quite successful. These methods exploingefeatures such as long
open-reading-frames and codon signatures. Many signabsehave been designed to de-
tect signals like splice sites, start and stop codons, rpamts, promoters and terminators
of transcription, polyadenylation sites, ribosomal bimglsites, topoisomerase 1l binding
sites, topoisomerase | cleavage sites, and various tiptisarfactor binding sites and CpG
islands.

However, it is not so easy for noncoding RNA (ncRNA) genes IkiRNA. Usually
only weakly-conserved promoter and terminator signald (assibly other poorly known
transcription binding sites) are present in ncRNA gehEST searches indicate that some
human and mouse miRNAs are co-transcribed along with thpsitream and downstream
neighboring gene¥’ A recent study shows that microRNA genes are transcribed\by R
polymerase If. This leads us to exploit some possible signals that miglstt @xithe up-
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stream and downstream of miRNA precursors. We distinghisipbssible transcription of
mMiRNA into two categories:

(1) Co-transcribed miRNAs: miRNAs located in the intronsaohotated host genes.
For this case, miRNAs share the sam£000 up/downstream of the host genes.

(2) Independently transcribed miRNAs: These miRNAs argfaioaway from the an-
notated genes. We further divide them into two categoriscl(stered miRNAs:
we use the -1000 upstream of the first miRNA precursor in thister and the
+1000 downstream of the last miRNA precursor in the clugtgr;non-clustered
miRNAs: we use the-1000 up/downstream of the miRNAs precursor.

For the secondary category, it is observed that a promitemacteristic of animal miRNAs
is that their genes are often organized in tandem, and aselglolustered on the genome.

Again the situation with miRNAs is more challenging. Far é&wniRNAs are available
in the databases. MicroRNA sequences can be compared ahly aticleotide level—not
as translated amino acids and miRNA sequences are quite stsonoted previously, the
mature miRNA has only about 17-25nts and its precursor hastatd0nts for animals.
Consequently, distinguishing weakly conserved genes feordom “hits” is more difficult
when searching for miRNAs than for protein-coding genesrédger, even in cases where
there are large RNA families, sequence conservation i altehe secondary-structure
level, i.e., what is conserved are base pairing rather tharindividual base sequence.
Consequently, sequence alignment alone may fail to idemtiRNAs that diverged too far
apart in their primary sequence while retaining their bpaieed structure.

To capture the information of secondary structure, we fokt the miRNA precursor
using the Vienna RNA package RNAFdld\ext, to facilitate data processing, we encode
the base-pairing by: A:U-“1", C:G-"2", G:C-"3", G:U-"4", tA-"5", U.G-"6", Other-
“0”. An example cel-mir-1 miRNA precursor of C. elegans iowaim in Figure 1. We
ignore the loop part and mismatch starting part becauseedf ldrge variations and low
conservations.

>cel-mir-1

aaagugaccguaccgagcugcauacuuccuuacaugcccauacuaa@utau
gauaUGGAAUGUAAAGAAGUAUGUAgaacggggugguagu

cut-off-3 f<-cut-off ! AUl
: i C.G--"2
aaagug ua ag c gc - au .
faccg ccg cugcauacuuc uua caucama cuau E o g
i : i G:U--"4
I T I I s A - W B P e
i uggu ggc gAUGUAUGAAG AAUGUA GGUau ggua u U:G——"G"
--uga gg aa A -A a iaa i Othe"0"
cut-off-> i<-cut-off T

Encoding:12240022300 25421512552 055 5202 2 1 5 102615

Figure 1. Encoding the secondary structure.

Figure 2 shows the conceptual view of one input sequencé Bpat consists of four
components: upstream sequence, the primary sequence bffngRecursor, the encoding
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sequence of the secondary structure of miRNA precursorftemdownstream sequence.
Thus, the input contains the information of both primarysstce and secondary structure.

miRNA precursor

secondary
miRNA precursor Sstructure encoding
| upstream(—lOOO)J primary sequence sequence 1 downstream(+1009)
! ‘ 7 7 A

Figure 2. A conceptual view of input sequence.

2.2. Feature Generation and Feature Selection

To enable machine learning algorithms to learn from knowRMNA sequences, we need
to map the input sequence into a feature vector in the feapaee. In this work, we follow
the “feature generation, feature selection, feature natémn”.'* In the “feature generation”
process, we exploit the widely used so-calkegram'* frequency in our feature mapping.

Let ¥ denote an alphabet, whose length|i§ = L. Let X be a sequence of
letters fromX. Givenl < k < L, a k-gram is a k-length contiguous subse-
guence. We define our feature map as an indexed vector by sdilppe subsequences
a of length-k from £*. Formally, the feature ma@,: X — RL" is defined as:

D1 (X)=(¢a(X))aesr
whereg,, (X) is the frequency count af that occurs inX.

For our input data, the upstream, the primary sequence gfrgmursor and the down-
stream have the same alphapet{A, C, G, U}. Given k=6, each sequence is coded into
a vector wichi=1 4% = 1364 elements. The encoding sequence of the secondary struc-
ture of the precursor has an alphabgt 2, 3, 4, 5, 6. We ignore the mismatch code “0".
Let £ = 5, the latter sequence is coded into a vector v@izl 6% = 1554 elements.
Hence, an input sequence will be mapped into a feature vedtwh will have a total of
3 x 1364 + 1554 = 5646 elements. We use a suffix tree to accelerate the generation of
features. Each depth-k node of the suffix tree stores a cduhémumber of leaf nodes it
leads to.

The feature dimensionality is very large even for a small lasMearning algorithms
suffer from the “curse of dimensionality”— these methods¢glly require an exponential
increase in the number of training samples with respect in@pase in the dimensionality
of the samples in order to uncover and learn the relationshihe various dimensions
to the nature of the samples. Hence, the selection of relé@venmmative features among
the large collection of candidate features is necessarynichine learning tasks faced
with high dimensional data. In the “feature selection” e, we use a correlation-based
feature selection method based on the concept of entfopy.
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2.3. Support Vector Machines

Support Vector Machines (SVMs) are a class of supervisaditegalgorithms first intro-
duced by Vapnik? Given a set of labelled training vectors (positive and niggahput
examples), an SVM learns a linear decision boundary to ididcate between the two
classes. The resultis a linear classification rule that eamsled to classify new test exam-
ples. SVMs have exhibited excellent generalization penorce (accuracy on test sets) in
practice and have strong theoretical motivation in siatistearning theory.

In our application, we integrate the features selectedipusly into a model for classi-
fying a candidate sequence as a miRNA precursor or as “otfei$ “feature integration”
process is a typical application for SVMs.

3. Experiments: Classification of miRNA Precursors

In this section, we first describe how to generate the requiieta set for training and
testing. Then we show the prediction result of the trainetISV

3.1. Data Generation

All miRNA genes and precursors (Version 6; April2005) arevdtbaded from the mi-
croRNA Registry which has 1650 precursors. Genome sequences for Caenerhabd
tis elegans and Caenorhabditis briggsae are available WommBase aft p: //ft p.

wor nbase. or g. Drosophila melanogaster and Drosophila pseudoobscunangg re-
lease 4.1 are obtained from FlyBasefatp: / / f | ybase. net/ genones. Genomes
and the corresponding annotation files of Homo sapiens, Mugcuaius, Rattus norvegi-
cus, and Gallus gallus are acquired from Ensembitatp: / / www. ensenbl . or g/
Downl oad/ .

3.1.1. Generating Positive Examples

Animal miRNAs are often closely clustered together. We tafl miRNAs on the same
strand as “adjacent” if the number of nucleotides betweeretid of one miRNA and the
start of the other is less than 1000 nts. If MIRNAS8;, mr, ...,mry satisfy(mr;;,.start—
mr;.end < 1000nts fori = 1, ...,k —1, we say they form a miRNA cluster. The procedure
of generating positive examples is as follows:

(1) For each species considered, we merge the adjacent nslR\tAe same strand to
form clusters;
(2) According to the GFF annotations,

e For miRNAs located in the introns of CDS, we obtain the —10p6tream
and +1000 downstream of the CDS, along with the miRNA presrursform
one input sequence;

e For each independently transcribed miRNA, we extract ##H00 up-
stream/downstream of the miRNA or miRNA cluster, along wiith miRNA
precursor to form one input sequence;
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3.1.2. Generating Negative Examples

Itis an inherently difficult problem in bioinformatics to geegative examples. However,
knowing that only a very very small fraction of non-annothtequences correspond to
“coding” sequences for miRNAs, we can generate negativenples of miRNA genes
from inter-genic regions for learning. We make this assuomptealizing that our negative
examples might be somewhat contaminated with currentipawk miRNA genes. Hence,
to alleviate the problem, we filter the negative examplesiitezative manner after making
the initial predictions, i.e., we remove strongly predittgenes and re-train in order to
purify our training examples.

Since all the miRNA precursors form a stem-loop secondancsire and each arm
of the stem may contain the miRNA, we also require these hegakamples to be as
similar as possible to the true miRNA precursors. Otherwisaill be trivial for the
learning algorithm to detect these fake outliers. Spedificahen generating the negative
examples, two conditions must be satisfied. First, they fmatem-loop. We use RNAfaold
for folding the selected sequence using the C-librariee®Mienna RNA package version
1.4. Second, the matching part of the stem is at least 15 gt (ourrently the smallest
MiRNA is 17nt).

The procedure of generating negatives is as follows:

(1) With the help of GFF annotation file, we sort each CDS ofddume strand accord-
ing to its (start, end) position, and form the inter-geniioas;

(2) For each inter-genic region, we slide along the sequandeuse a normal distri-
bution N(u, o) to simulate the length of the precursor, where the are esti-
mated from the known miRNA precursors of the species in duresFor instance,
uw=98,0 =6.3forC. elegans.

During the generation of a sequence for stem-loops of aindgagth, we may find
two or more stem-loops on the same strand that has a largerpiage of overlap. To avoid
excessive overlap, when sliding along the intergenic regiee make a hop of about 50 nt
by using a normal distributiofV (50, 20) with a large variation.

3.2. Experimental Results

We obtain a binary classification SVM on training sets by gsire support vector machine
library LIBSVM.* The input data for the SVM are scaled[tel, 1]. We choose a radial
basis function (RBF) kernel. All the experiments were perfed in a PC with 1G RAM.

We present the results of three sets of experiments: tigathin SVM with one of three
species D. melanogaster (dme), C. briggsae (cbr), and Masutus (mmu) separately and
then use the resulting SVMs to predict other species. Duedimany restriction, we are
not able to include a large number of negatives in the trgiset for feature selection. In
the experiments, we only include 4000 negatives for feagalection.

Note that the choice of the negatives is an art since diffar@mbinations of negatives
can lead to different selected feature sets. Hence, weitéstetht combinations and keep
those with good testing performance. For example, one @ataay consists of 220 mmu



October 9, 2005 15:2 Proceedings Trim Size: 9.75in x 6.5in VMsbhased Identification of microRNA precursors”

8
Table 1. Characteristics of training data for feature s&lac
species| # of positives # of negatives | # of features by CFS # of features by CBFS
mmu 220 4000mmu 177 72
dme 78 4000dme 95 55
cbr 82 2000cbhr+2000cel 134 55
Table 2. Experimental Results
Trained species Test Species| Sensitivity(TP/(TP+FN)%)| Specificity(TN/(TN+FP)%)
dme(120dme150dps,39, 2, 1) dps 62/(62+10)=86% 39666/(39666+2996)=93%
cbr(80cbrOcel, 44, 32—9) cel 88/(88+27)=76.52% 76661/(76661+3418)=95.73%
mmu(600mmu150hsa, 62, B, 3) o 172/(172+13)=92.97% | 77370/(77370+4842)=94.11%
mmu(0Ommu350hsa, 62, 512, 7) hsa 258/(258+63)=80.37% | 69792/(69792+6518)=91.46%
mmu(600mmu450hsa, 62,32;3) gga 110/(110+12)=90.16% | 75069/(75069+4338)=94.54%
mmu(600mmu450hsa, 62, 32, 3) ptr 57/(57+10)=85.08% 75203/(75203+3451)=95.61%

positives and 4000 mmu negatives; another data set mayst®néi220 mmu positives,
2000 mmu negatives and 2000 hsa negatives. We also use thsivedeature selection
method, i.e., we first obtain a feature set from a data setlemform a new data set by
projecting the original data against this feature set. Tidéthod can put more instances
into consideration. However, this method does not necidgézad to better performance
since the feature selection in the first step may be biasedultrexperiments, we try
two feature selection methods: CF8nd CBF$ for each combination. In general, the
selected features are different for different data sete grominent property for all these
feature sets is that they primarily consist of features ftbenencoded secondary structure.
Some simple combinations of the negatives for feature sefeare listed in Table 1.

Given one species, our purpose is to see if we can find a mogeéthct the miRNA
precursors of another species. For this reason, duringdimértg stage, we only use the
positives of one species for training and hold out all theitpes of the other species
for testing. However, we use some negatives of the targefiepeandomly chosen by
assuming that most of the intergenic regions do not contai®RNA precursors. For the
first experiment, we use all the known positives (78) of D.anelaster (dme) and 4000
negatives to perform feature selection using CBFS. Amorgsth selected features, we
choose the top 39 to train SVM models—we refer to it as dmeSXiMiong these models,
we choose the one with larger area under the ROC curve (AUQ)eheral, we can get
many models with equal AUC. Here, we report the model with d2@ negatives and 150
dps negatives which has a sensitivity of 86% and a specifati§3%. We optimize the
parameters=0.5 andC'=2. The prediction results of a species for its related gzseare
given in Table 2. In the first column, the selected model is@néed aspecies(negative
data combination, number of features used, C' value, -y value).

To see the relationship between these miRNA precurgarsthe training set and the
mMiRNA precursorsP to be predicted in the testing set, we implemented a Neediema
Wunsch-based similarity computing algorithm with matcbrec= 1, mismatch= —1,
and gap penalty= 1, and the similarity is computed by the ratio of identitieseov
the whole alignment length denoted asn(s,P), wheres € T and sim(s,P) =
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(a)xxx-negatives vs mmu-positives (b)xxx—positives vs mmu-positives
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Figure 3. Similarity Histograms against the mmu Positives.
(a)hsa, gga, ptr-positives vs mmu-positives (b)rno-positives vs mmu-positives
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Figure 4. Similarity Histograms of hsa, gga and rno Positagainst the mmu Positives.

maz{sim(s,p) | p € P}. By sampling the negatives with a rae and taking the whole
set of positives, we build the histograms of similaritiesrtmu of both negatives and pos-
itives of species other than mmu (Fig. 3). For the histogramegatives of all species vs
mmu positives (Fig. 3(a)), we know that the distribution msapproximate normal with
their center around6-58. This trend is also observed in the histogram of other pesitof
remote species against mmu-positives Fig. 3(b) which ceat@und6-59. Only the later
has a little bit longer tail. We show the similarity histograf its related species in Fig. 4.
The comparisons between other species are similar. Formnse), there are about 102
mMiRNA precursors with similarity around 532 %. Based on these observations, we can
see that SVM’s performance is not solely dependent on thmegpyi sequence similarity in
some sense. This pointis reflected in the selected features.

We also check some false positives by looking at their caagiens in their related
species. We find that some false positives reach 88% idéantitgnservation. This indi-
cates that the false positive may be a true positive.

4. Conclusion

In this work, we have described a SVM-based method to predRNA precursors. Based
on the current number of candidates generated, the methdadrips well for related
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species. Future research directions include examiningetected features for biologi-
cal explanations, investigate the performance for predjainrelated species, and locating
mature miRNA in its precursor.
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