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Summary 

 
It was quoted by J. Han [1] that we are at the stage of being data rich but 

information poor; the profusion in data collection does not correspond with an 

exponential development in efficient techniques to extract valuable and useful knowledge 

from data. The filling of such knowledge gap is a challenge faced by all data miners.  

This thesis focuses on knowledge extraction from domain specific data known as 

haplotypes.A major issue in pattern extraction from haplotypes is the ability to identify 

valuable and useful information for disease pattern prediction which can be applied in 

prognosis and carrier detection.  

This thesis presents a new method known as LinkageTracker for disease gene 

location inference (or linkage disequilibrium mapping) from haplotypes. This method 

was compared with some leading methods in linkage disequilibrium mapping such as 

Haplotype Pattern Mining (HPM) [2, 3], HapMiner [4], Blade [5, 6], and GeneRecon [7]. 

LinkageTracker provides good predictive accuracies while taking up reasonably short 

processing times. Furthermore, LinkageTracker does not require any population ancestry 

information about the disease and the genealogy of the haplotypes. It is a useful tool for 

linkage disequilibrium mapping when the users do not have much information about their 

datasets. It represents a promising method for effective linkage disequilibrium mapping.  

This thesis also introduces an novel algorithm called ECTracker for extracting 

useful haplotype patterns for genetic analysis and carrier detection. Experimental studies 

show that ECTracker is capable of deriving useful patterns when the dataset is very 



xi 

small. In classification, ECTracker is capable of producing good predictive accuracies 

that are comparable to some leading machine learning methods. Using biological datasets 

from wet experiments, ECTracker could efficiently extract patterns that allow for 

predictive disease classification. Furthermore, it is able to classify samples as unknown if 

they are almost indistinguishable from the defined classes. This work, in most cases, 

outperforms the existing methods in classification accuracies for datasets like haplotype 

patterns for disease class prediction. 
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Chapter 1 
 

General Introduction 
 

1.1 Introduction 
 

Making medical decisions such as diagnosing the diseases that cause a patient’s 

illness is often a complex task. Much of these complexities arise from the inability to 

efficiently recognize reliable indicative (predictive) factors associated with the diseases. 

Fortunately, the profusion in data collection by hospitals and scientific laboratories in 

recent years has helped in the discovery of many disease associated factors. Embedded 

within the large collection of data is valuable information that suggests potential factors 

that are associated with the diseases.  Data mining techniques are often used to extract the 

disease associated factors from the large datasets. 

Data mining is the task of discovering previously unknown, valid patterns and 

relationships in large datasets. Generally, each data mining task differs in the kind of 

knowledge it extracts and the kind of data representation it uses to convey the discovered 

knowledge.  In this thesis, we examine some of the existing knowledge extraction 

techniques when applied to haplotypes for disease gene location inference, genetic 

variations analysis and carrier detection. The main difficulties in pattern extraction for 

such cases include rarity in the sample haplotypes of interest and noise in the data 

collected. The main chapters will further elaborate on the addressed problems.  



2 

1.2 Motivation and Contribution 
 

This thesis discusses the opportunities and mechanisms to leverage knowledge (or 

information) extraction performance from biomedical datasets for supporting medical 

decision making. The extraction of useful information from data, such as factors that 

promote or increase risk of a disease, helps in medical diagnosis, planning of patient 

management strategies, and counseling of patients and their family members.  

We report the findings observed from literature surveys, propose some efficient 

algorithms and mechanisms to improve the performance of knowledge extraction, and 

present the results that we have achieved through experimental studies. Finally, we hope 

that this thesis will provide useful decision making techniques for the researchers and 

medical practitioners to improve patient care. 

We highlight two main contributions presented in this thesis. First, our research 

proposal is realized in the domain of disease gene location finding (also known as linkage 

disequilibrium mapping), where we propose an efficient method for inferring disease 

gene locations. We compared our algorithm with some leading methods for linkage 

disequilibrium mapping. Detailed experimental studies and analysis show that our 

approach is efficient while maintaining good predictive accuracies.  

Second, we extend our method to support descriptive analysis and classification 

of haplotype patterns. Widely used machine learning methods were evaluated with 

haplotype patterns extracted, for the purpose of both descriptive analysis and 

classification (or predictive analysis). Experimental studies and comparisons show that 
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our method is capable of extracting useful patterns to support genetic variation analysis 

and at the same time producing good predictive accuracies to facilitate carrier detection. 

1.3 An Analogy 
 

This section gives a simple analogy to our work before we present the details in 

the later chapters. The analogy paints a complete picture of the motivation behind the 

proposed algorithms and what we aim to achieve with them. We illustrate our designs by 

following a series of tasks performed by a jeweler who deals mainly with diamonds.  

Mr. Smith works in Diamond Company based in London. Diamond Company 

specializes in sales and marketing of diamonds. Each day, diamonds from all over the 

world arrive at the company where they would sort, value, and sell the diamonds. 

In the first example, let’s assume a character Lisa who has a blue diamond that 

she adores very much. One day, Lisa wishes to buy a diamond that has the same 

characteristics as her favorite blue diamond for her mother as a birthday gift. Lisa 

approaches Mr. Smith for help. Like other minerals and rocks, diamond crystals contain 

within themselves a record of their geologic history in terms of their morphology, 

detailed chemical composition, and etching features. Therefore, diamonds from a 

particular geographic source will have their very own unique characteristics and with 

very similar chemical compositions. To help Lisa find another diamond that has the same 

characteristics as her blue diamond, Mr. Smith needs to first determine the geographic 

source where Lisa’s blue diamond is extracted or mined.  There are many diamond mines 

worldwide. To perform detailed chemical composition analysis on diamonds from all the 

different diamond mines in the world will take a very long time. Fortunately based on 
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Mr. Smith’s years of working experience, he knows that blue diamonds are mainly found 

in South Africa mines. With this valuable knowledge, Mr. Smith only needs to analyze 

chemical compositions of diamonds from the few South Africa mines to quickly identify 

the geographic source where Lisa’s blue diamond was extracted. In our work, we have 

designed an algorithm that makes use of expert knowledge to efficiently find the disease 

gene locations to solve the linkage disequilibrium problem. It is similar to what Mr. 

Smith did to quickly identify the geographic source of Lisa’s blue diamond. 

Next, a businessman George wants to sell some diamonds to Diamond Company. 

George presents the diamonds to Mr. Smith. Before buying the diamonds, Mr. Smith 

needs to ensure that the diamonds are natural diamonds. There are some features that 

distinguish natural diamonds from synthetic diamonds; these features were discovered by 

scientists after hundreds of experiments. Firstly, under very intense short-wave ultraviolet 

lamp, synthetic diamonds will glow very brightly whereas natural diamonds are almost 

inert under the ultraviolet light. Also, phosphorescence is observed on synthetic 

diamonds after the ultraviolet lamp is turned off, but not for natural diamonds. Secondly, 

under a hand lens or optical microscope, planar defects and large metallic inclusions are 

often found in synthetic diamonds, while natural diamonds have no such properties.  

Armed with the knowledge of the unique features of natural diamonds, Mr. Smith can 

easily determine whether the diamonds presented by George are natural or synthetic. In 

our work, we have designed an algorithm to discover the “unique features” or more 

specifically the genetic variations of patients affected by a bleeding disorder called 

hemophilia, and perform predictive inference using the “unique features” discovered. A 
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similar task to what Mr. Smith did in determining whether George’s diamonds are natural 

based on the knowledge of the unique features of diamonds.  

The next section will touch on a set of problems and issues in data mining when 

applied to biomedical domains. We outline our approaches in addressing these issues. 

This is followed by a description of biomedical knowledge extraction problems that can 

be addressed or alleviated using our proposed algorithms. 

 

1.4 Research Problems and Proposed Approaches 
 

We begin by exploring ideas in pattern extraction from biological datasets. 

Association rules have been studied extensively in the Knowledge Discovery in 

Databases (KDD) field for pattern extraction, and there exists many efficient algorithms 

to perform such task. The support and confidence thresholds are usually used to guide the 

search for interesting patterns. From our literature survey, we observed that most of the 

pattern mining methods are exhaustive; some practical difficulties arise when the number 

of items in each record is very large. We explored the use of domain specific expert 

knowledge to alleviate such technical difficulty (without compromising the quality of 

patterns mined) in the problem of finding disease gene locations. The process of inferring 

disease gene locations from observed associations of marker alleles in affected patients 

and normal controls is known as linkage disequilibrium mapping. The main idea of 

linkage disequilibrium mapping is to identify chromosomal regions with common 

molecular marker alleles at a frequency significantly greater than chance. It is based on 

the assumption that there exists a common founding ancestor carrying the disease alleles, 



6 

and is inherited by his descendents together with some other marker alleles that are very 

close to the disease alleles. The same set of marker alleles is detected many generations 

later in many unrelated individuals who are clinically affected by the same disease. 

Our approach utilizes expert knowledge in genetics to reduce the search space and 

at the same time maintaining good predictive accuracies. The proposed method mainly 

focuses on the difficult problems where the occurrence of useful patterns (or pattern of 

interest) is very low, and consists of errors or noise. We conducted extensive 

performance studies to evaluate the efficiency of LinkageTracker when compared to 

some leading methods in linkage disequilibrium mapping including HPM [2, 3], 

HapMiner [4], Blade [5, 6], and GeneRecon [7].  

Next, we explore data mining methods that are capable of performing genetic 

analysis and carrier detection. Intuitively expressive patterns (or genetic variations) are 

extracted to provide medical practitioners with insights about the genetic manifestations 

of patients affected by a disease. The extracted patterns are subsequently used for 

predictive inference (or classification) to help in carrier detection, which is useful for 

medical prognosis and decision making processes. We propose ECTracker for 

performing both pattern extraction and classification, and compare the expressiveness and 

predictive accuracy of our method with some leading methods in machine learning. The 

ECTracker algorithm consists of 2 steps: First, it generates combination of haplotype 

patterns to facilitate the analysis of genetic variations of diseased patients, and second, it 

performs classification using the haplotype patterns generated in the first step for carrier 

detection. We compared the performance of ECTracker with some leading machine 

learning methods including C4.5 [8], Naïve Bayesian Method [9], Artificial Neural 
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Network [10], Support Vector Machine [11], K-Nearest Neighbor [12], and Bagging [13] 

(with Naïve Bayesian as base). 

 

1.5 Organization of Thesis 
 

The rest of the thesis is organized as follows. In Chapter 2, we review some of the 

related work in the literature and also draws out the background knowledge necessary for 

building the proposed methods. In Chapter 3, we discuss the issues in the domain of 

disease gene location inference and propose a novel algorithm known as LinkageTracker 

to efficiently address the issues. In Chapter 4, we present ECTracker for the extraction of 

genetic variations in patients affected by hemophilia A. The extracted patterns are also 

used for predictive inference. The efficiency of ECTracker is also assessed using two 

well studied real datasets namely Cystic Fibrosis [5] and Friedrich Ataxia [14]. Finally, 

we conclude in Chapter 5 with directions for future research. Some of the proposed 

designs were published in [15-18].   
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Chapter 2 
 

Related Work 
 

2.1 Background 

 
Data mining has been defined as "the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data" [19] and "the science of 

extracting useful information from large data sets or databases" [20]. It is the core 

principle of the knowledge discovery process, which also includes data selection, 

preprocessing and cleaning, transformation and reduction, evaluation, and visualization. 

The knowledge discovery process is illustrated in Figure 2.1. 

Data mining is not a single technique; it includes any techniques that help in 

extracting useful information out of data for pattern analysis and prediction of future 

trends and behaviors, allowing users to make proactive, knowledge-driven decisions. In 

the context of healthcare and biomedicine, data mining is often viewed as a potential 

mean to identify various biological, drug discoveries, and patient care knowledge 

embedded in the extensive data collected. Furthermore, data mining provides results that 

possibly highlight vaguely understood doctrine and provide useful insights to help in 

decision making processes. In general, data mining tasks is classified into two broad 

categories: descriptive mining and predictive mining. The rest of this chapter covers in 

greater details the two form of data mining tasks, and presents several leading techniques 

which are relevant to our work. 
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Figure 2.1: Knowledge discovery process 

Databases 

Preprocessing 
& Cleaning 

Data Selection 
Transformation 

& Reduction 

Data Mining 

Evaluation 

 Visualization 

1. Data selection: Retrieval of relevant data from databases. 
 
2. Preprocessing & cleaning: Removal of noise and inconsistent data, 

detecting and dealing with missing values. 
 
3. Transformation & reduction: data sets are reduced to the minimum size 

possible through sampling or summary statistics. For example, tables of 
data may be replaced by descriptive statistics such as mean and standard 
deviation. 

 
4. Data mining: Intelligent methods are selected for pattern extraction 

 
5. Evaluation: the patterns identified by the data mining methods are 

interpreted, for instance, determining the clinical relevance of the 
findings. 

 
6. Visualization: knowledge representation techniques such as pie charts 

and graphs are used to present the mined knowledge to the user 
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2.2 Descriptive Mining 

 
Descriptive mining automatically extracts new or useful information from large 

databases and presents the discovered information in intuitively understandable terms for 

human analysis. Association rule mining is the most well-studied descriptive mining 

method in the Knowledge Discovery in Databases (KDD) field [21-24]. Their primary 

strength lies in their significant expressive power and their being relatively simple to 

comprehend, thus making them suitable for incorporation into decision-making 

processes.  

 

2.2.1 Association Rule Mining 

 
The task of association rule mining was first introduced in 1993 by Agrawal et. al 

[25]. The idea of association rule mining originates from the analysis of market data 

whereby the main task is to determine patterns that characterize the shopping behavior of 

customers from a large database of previous customer transaction records. An association 

rule has the following format: X => Y (support, confidence) to mean item Y exists if item 

X is found in the same record. Support is the percentage of the database with itemset, XY, 

appearing in the same record and confidence is the ratio of item Y appearing in records 

containing item X. Frequent itemsets are sets of items with support greater than a 

minimum user-defined support. Before association rules can be constructed, the 

frequencies of the underlying frequent itemsets have to be generated.  



11 

Association rule is formally defined as follows. Let I = {i1, i2, i3, …, im} be a set 

of attributes called items. Let D be a set of transaction records. Each transaction record t 

in D consists of a set of items such that t ⊆ I. A transaction record t is said to contain an 

itemset X if and only if all items within X are also contained in t. Each record also 

contains a unique identifier called TID. Support of an itemset is the normalized number 

of occurrences of the itemset within the dataset. An itemset is considered as frequent or 

large, if the itemset has a support that is greater or equal to the user specified minimum 

support. The most common form of association rules is implication rule which is in the 

form of X => Y, where X ⊂ I, Y ⊂ I and X ∩ Y = ∅. The support of the rule X => Y is 

equal to the percentage of transactions in D containing X ∪ Y. The confidence of the rule 

X => Y equals to the percentage of transactions in D containing X also containing Y, i.e. 

|X∪Y| / |X|. Depending on the application, the definition of confidence can be changed to 

suit a particular need [26-35]. For example, instead of using confidence as the measure of 

interestingness, chi-squared measure, X2, is also commonly used to measure the 

correlation in the frequent itemsets. Details of these methods are described in Section 

2.2.2. 

Once the required minimum support and confidence are specified, association rule 

mining task becomes the finding of all association rules that satisfy the minimum 

requirements. The problem can be further broken down into 2 steps: mining of frequent 

itemsets and generating association rules [21, 36]. The number of possible combinations 

of itemsets increases exponentially with |I| and the average transaction record length. 

The very first published and efficient frequent itemset mining algorithm is Apriori 

[36]. Apriori uses breadth first search (BFS) as the search strategy. At each level, Apriori 
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reduces the search space by using downward closure property of itemset that if an itemset 

of length k is not frequent, none of its superset patterns can be frequent. Candidate 

frequent itemsets, i.e. itemsets that have the potential to be frequent, Ck where k is the 

length of the itemset, are generated before each data scan. The supports of candidate 

frequent itemsets are counted to verify whether they are frequent or not. Candidate k 

itemsets, Ck, are generated with frequent k - 1 itemsets. Apriori achieves good 

performance by iterative reduction of candidate itemsets. However, Apriori requires k 

data scans to find all frequent k-itemsets. In large databases, it is very expensive to scan 

the data multiple times for very large k. Therefore a method that could restrict k to a 

reasonably small value yet without compromising the quality of interesting patterns 

mined would be very desirable. This motivates our approach to leverage on domain 

specific expert knowledge to restrict k to a small value without compromising the quality 

of interesting patterns mined. The quality of a pattern is good if the pattern mined could 

ultimately contribute in the prediction of disease gene location accurately. 

Other efforts devoted to improving the efficiency of association rule mining 

include the mining of frequent closed patterns [37-43], maximal frequent patterns [44-

47], and generators[48]. These methods are firstly exhaustive in nature, and secondly, 

they used support and confidence to determine the interestingness of a pattern. In the later 

chapter we will illustrate how LinkageTracker could achieve good predictive accuracies 

based on expert knowledge without the need for exhaustive search. Also the search for 

interesting patterns based on support and confidence are not suited to the problem of 

disease gene location inference. This is because support and confidence are not able to 

determine the magnitude of association between a pattern antecedents and consequent. 
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2.2.2 Mining of association rules based on different scoring methods 

 
Besides finding efficient methods for mining association rules, much effort have 

also devoted to the finding of interesting rules or patterns. Depending on the application 

of the patterns mined, the definition of confidence can be changed to suit a particular 

need.  Interestingness of a pattern can be measured in terms of underlying structure of the 

pattern and the data used in the discovery process.  

Brin et al. [26, 27] proposed measuring significance of associations via the chi-

square test for correlation from classical statistics. This approach requires the 

consideration of both presence and absence of items as a basis for generating rules. Brin 

et al. [26, 27] claims that the chi-squared measure is upward closed, i.e. the mining 

problem is reduced to the search for border correlated and uncorrelated itemsets in the 

lattice. An itemset is significant if it is supported and minimally correlated, which means 

that an itemset at level i+1 can be significant only if all its subsets at level i have support 

and none of its subsets at level i are correlated. The finding of correlated rules is 

equivalent to finding a border in the itemset lattice. In the worst case, when the border is 

in the middle of the lattice, it is exponential in number of items. In the best case the 

border is at least quadratic. However, it was later found that chi-squared measure does 

not posses the upward closure property for exploiting efficient mining of significant rules 

by DuMouchel et. al [49]. In the later chapter, we will introduce an algorithm known as 

Haplotype Pattern Mining (HPM) by Toivonen et al.  [1, 2], which uses the chi-squared 

measure to determine interesting patterns for the problem of disease gene location 
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finding. Detailed comparisons will be made between HPM and LinkageTracker in that 

later chapter.   

Li et al. [32, 33, 35] proposed the mining of association rules solely based on 

confidence without the support threshold. As discuss previously the confidence measure 

is neither downward nor upward closed. The authors overcome this problem by dividing 

the dataset into two subsets and discover patterns from the two relevant sub-datasets such 

that the pattern occurs with 100% confidence in one sub-dataset but 0% confidence in the 

other sub-dataset (known as jumping EPs). From the jumping EPs discovered, they 

construct association rules. However, this algorithm is very restrictive as it is not able to 

find patterns that occur with say 85% confidence in one sub-dataset and 10% confidence 

in another sub-dataset (as such pattern may be significant when scored with some other 

statistical method, say Pearson’s correlation coefficient). Furthermore, Brin et al. [26] has 

shown that confidence measure may produce counter-intuitive results especially when 

strong negative correlations are present. For example, the support and confidence 

threshold are set to 5% and 50% respectively for a retail transaction dataset, and the 

association rule margarine → butter with support 20% and confidence 67% will pass the 

threshold conditions. However, the prior probability of customers purchasing butter is 

80%, once customer purchases margarine, the conditional probability of that customer 

will buy butter reduces by 16.25% (i.e. (0.8-0.67)/0.8 * 100)). Hence the high confidence 

rule margarine → butter is misleading. 

Tan and Kumar [29] proposed a metric known as IS to finding interesting 

association rules. This work assumes that only positively correlated patterns are of 
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interest to the data analyst. The interestingness measure of IS can be computed as 

follows:  

IS = )()( ABConfBAConf →×→   

The IS measure is equivalent to the geometric mean of the confidence rule, 

however, since the measure of association between rule antecedents and consequence 

using confidence measure can be misleading as described earlier, therefore this method is 

not suited to the problem of disease gene finding.  

Xiong et al. [30, 31] identified an upper bound for Pearson’s correlation 

coefficient for binary variables and proposed an efficient algorithm known as TAPER to 

find all item pairs with correlations above the user specified minimum correlation 

threshold. The Pearson’s correlation coefficient φ  is expressed as shown in the equation 

below: 

φ  =
))sup(1))(sup(1)(sup()sup(

)sup()sup(),sup(
BABA

BABA
−−

−  

There are two steps in the TAPER algorithm; the first step is the filtering step 

where most of the false positive item pairs are pruned off to reduce further processing 

cost. The second step is the refinement step where the exact correlation is being 

computed for each surviving items pair from the filtering step. Item pair with correlation 

higher than the user specified threshold will be returned as output for the user. Although 

the TAPER algorithm provides good contribution in identifying the upper bound of 

Pearson correlation coefficient, it only scores the correlation between item pairs rather 

than itemsets.  In the mining of association patterns, most users are interested in the 
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correlation between sets of items, hence more work need to be done in extending the 

TAPER algorithm to score the correlation between itemsets.  

In a recent work by Li et al. [34], statistical relative risk and odds ratio were 

proposed to find interesting patterns. The search space was stratified into plateaus of 

subspaces based on support levels of the patterns, such that the space of odds ratio and 

relative risk can become convex for efficient mining of significant patterns. They 

proposed two methods for the mining of significant patterns. The first method uses 

FPclose [50] to find all the closed patterns, and then uses an algorithm known as Gr-

growth that they developed to find all the generators [48]. The second method mine 

closed patterns and generators at the same time using an algorithm known as GC-growth 

that they proposed. Both algorithms that they proposed used the set-enumeration tree [51, 

52] to organize the pattern space. Since the search space needs to be stratified based on 

support levels, the search space will become extremely large when the support threshold 

is set to a very small value. Furthermore, the finding of all interesting patterns is not 

essential in the problem of disease gene location finding as expert knowledge can be used 

to restrict the search space. Also the finding of all interesting patterns exhaustively will 

introduce noise that will affect the predictive accuracies (refer to chapter 3 for detailed 

explanation).  

Prior to the work by Li et al. [43], we have independently proposed the use of 

odds ratio in the finding of interesting patterns in [15-17]. The statistical odds ratio has 

been widely used in the biomedical arena for discriminative studies. We find that odds 

ratio is very suited to the discovery of patterns with strong magnitude of association to 

the class labels even when the occurrences of the strongly associated patterns are rare. 
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Therefore the statistical odds ratio was used in our proposed algorithms to guide the 

discovery of interesting patterns.  

 

2.3 Prediction Mining 
 

The main objective of prediction mining is to assign new data items into one of 

the few predefined categorical classes [53]. As classification is the most studied data 

mining and knowledge discovery task [54], there are many classification algorithms. In 

this section we discuss some of the leading classification algorithms, namely Artificial 

Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (C4.5), and 

Naïve Bayesian Classifier. These classification algorithms are applied to our haplotype 

dataset in Chapter 4 and comparisons of predictive accuracies will be performed.  

 

2.3.1 Artificial neural network (ANN) 
 
 

The main elements of an Artificial Neural Network (ANN) are processing 

elements or neurons, and weighted interconnections among the neurons. Each neuron 

performs a very simple computation, such as calculating a weighted sum of its input 

connections, and computes an output signal that is sent to other neurons. The training 

(mining) phase of an ANN consists of adjusting the weights of the interconnections, in 

order to produce the desired output [10, 55]. The adjustment of interconnection weights is 

usually performed by using some variant of the Hebbian learning rule. The basic idea of 
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this mechanism is that if two neurons are active simultaneously the weight of their 

interconnection must be increased. 

The basic structure of an ANN is shown in Figure 2.2. In this figure there are layers of 

nodes, and each node of a given layer is connected to all the nodes of the next layer. This 

full-connectivity topology is not necessarily the best one, and the definition of the 

topology of a ANN – number of layers, number of nodes in each layer, connectivity 

among nodes in different layers, etc – is a difficult task, and it is a major part of the 

process of using ANN to solve the target problem. Often several different ANN 

topologies are tried, in order to empirically determine the best topology for the target 

problem. Each node interconnection is normally assigned a real valued interconnection 

weight.   

 

The nodes in the input layer correspond to values of attributes in the database. To 

classify a new tuple(or input) the values of the tuple’s predicting attributes are given to 

the input layer. Then the network uses these values and the interconnection weights 

learned during the training phase to compute the activation value of the node(s) in the 

Figure 2.2: Artificial Neural Network 

Output Layer 

Hidden Layer

Input Layer 
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output layer. In the case of a two-class problem, the output layer usually has a single 

node. If the activation value of that node is smaller than a given threshold then the 

network predicts the first class, otherwise the other class is predicted by the network. In 

the case of multiple-class problems there can be several nodes in the output layer, one 

node for each class, so that the node in the output layer with largest activation value 

represents the class predicted by the network. 

 

2.3.2 Support vector machine (SVM) 
 

Support vector machines are based on the structural risk minimization principle 

[11, 56] from computational learning theory. The idea of structural risk minimization is 

to find a hypothesis h for which we can guarantee the lowest true error. The true error of 

h is the probability that h will make an error on an unseen and randomly selected test 

example.  

SVMs operate by finding a hyper-surface in the space of possible inputs. This 

hyper-surface will attempt to split the positive examples from the negative examples. The 

split will be chosen to have the largest distance from the hyper-surface to the nearest of 

the positive and negative examples [57]. Intuitively, this makes the classification correct 

for testing data that is near, but not identical to the training data. 

SVMs are very universal learners. In their basic form, SVMs learn linear 

threshold function. Nevertheless, by adding in an appropriate kernel function [58], they 

can be used to learn polynomial classifiers, radial basic function (RBF) networks, and 

three-layer sigmoid neural nets. 
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2.3.3 Decision Tree 
 

A decision tree is a tree-like knowledge-representation structure where every 

internal (non-leaf) node is labeled with the name of one of the predicting attributes, the 

branches coming out from an internal node are labeled with values of the attribute in that 

node, and every leaf node are labeled with a class (i.e. a value of the goal attribute) [59, 

60]. A learned tree can also be re-represented as a set of if-then rules to improve human 

readability. A decision tree classifies a new, unknown-class tuple in a top-down manner. 

Initially the new tuple is passed to the root node of the tree, which tests which value the 

tuple has on the attribute labeling that node. Then the tuple is pushed down the tree, 

following the branch corresponding to the tuple’s value for the tested attribute. This 

process is recursively repeated, until the tuple reaches a leaf node. At this moment the 

tuple is assigned the class labeling that leaf. 

A decision tree is usually built by a top-down, “divide-and-conquer” method. 

Initially all the tuples being mined are assigned to the root node of the tree. Then the 

algorithm selects a partitioning attribute and partitions the set of tuples in the root node 

according to the values of the selected attribute. The goal of this process is to separate the 

classes, so that tuples of distinct classes tend to be assigned to different partitions. This 

process is recursively applied to the tuple subsets created by the partitions, producing 

smaller and smaller data subsets, until a stopping criterion (e.g. a given degree of class 

separation) is satisfied.  The most common decision tree learning algorithms include the 

ID3 [61, 62] and its successor C4.5 [8]. Decision tree can also be used for descriptive 

mining as it is very easy to generate a set of rules from a decision tree. 
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2.3.4 Naïve Bayesian Classifier 
 

A naïve Bayesian classifier [9, 63] is a statistical classifier which computes the 

probability of a sample belonging to a particular class based on Bayes theorem. Bayes 

theorem is a mathematical formula used to calculate conditional probabilities – the 

probability that a hypothesis H holds given the observed sample data D or posterior 

probability P(H|D). The posterior probability can be computed from the prior probability 

P(H)  together with P(D) and P(D|H) as follows: 

                                           P(H|D) = 
)(

)()|(
DP

HPHDP  

A naive Bayes assumes conditional independence among all attributes A1,A2,…,An 

given the class variable C . It learns from training data the conditional probability P(Ai|C) 

of each attribute given its class label. Domingos gives a good explanation in [64] why a 

naive Bayes works surprisingly well despite its strong independence assumption. 

 

2.3.5 Bayesian Belief Network 

 
A Bayesian network (or a belief network) is a probabilistic graphical model that 

represents a set of variables and their probabilistic dependencies. The term "Bayesian 

networks" was coined by Pearl in 1985 [65] to emphasize three aspects: (1) the often 

subjective nature of the input information; (2) the reliance on Bayes's conditioning as the 

basis for updating information; and (3) the distinction between causal and evidential 

modes of reasoning, which underscores Thomas Bayes's paper of 1763. A Bayesian 
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belief network (BBN) is a directed graph, together with an associated set of probability 

tables. The graph consists of nodes and arcs, the nodes represent variables, which can be 

discrete or continuous, and the arcs represent causal/influential relationships between 

variables. If there is an arc from node A to another node B, A is called a parent of B, and 

B is a child of A. The set of parent nodes of a node Xi is denoted by parents(Xi). A 

directed acyclic graph is a Bayesian Belief Network relative to a set of variables if the 

joint distribution of the node values can be written as the product of the local 

distributions of each node and its parents: 

                        ∏
=

=
n
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In the simplest case, a Bayesian Belief  Network is specified by an expert and is 

then used to perform inference. In other applications the task of defining the network is 

too complex for humans. In this case the network structure and the parameters of the 

local distributions must be learned from data. Learning the structure of a Bayesian 

network requires a scoring function and a search strategy. A common scoring function is 

posterior probability of the structure given the training data. The time requirement of an 

exhaustive search returning back a structure that maximizes the score is super exponential 

in the number of variables. A local search strategy makes incremental changes aimed at 

improving the score of the structure. A global search algorithm like Markov chain Monte 

Carlo can avoid getting trapped in local minima.  

Markov chain Monte Carlo (MCMC) method is an algorithm for sampling from 

probability distributions based on constructing a Markov chain that has the desired 

distribution as its stationary distribution. The state of the chain after a large number of 
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steps is then used as a sample from the desired distribution. The quality of the sample 

improves as a function of the number of steps. Many Markov chain Monte Carlo methods 

move around the equilibrium distribution in relatively small steps, with no tendency for 

the steps to proceed in the same direction. These methods are easy to implement and 

analyze, but unfortunately it can take a long time for the walker to explore all of the 

space. The walker will often double back and cover ground already covered. One of the 

most commonly used random walk MCMC methods is known as the Metropolis-Hastings 

algorithm.  Metropolis-Hastings method generates a random walk using a proposal 

density and a method for rejecting proposed moves.  
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Chapter 3 

 

LinkageTracker – Finding Disease Gene Locations 

 

3.1 Introduction 

 
Medical practitioners are interested in finding the disease linked or exact disease 

causing gene locations in the human genetic codes, in order to perform genomic analysis 

select and targeted treatment strategy on their patients. Genomic analysis helps in 

estimating the probability of occurrence of a particular disease outcome or manifestation 

in a patient and the extent to which the individual risk can be modified using preemptive 

strategies. For instance, an individual who was found to have inherited a particular gene 

mutation from her parents may make her susceptible to a disease like cancer. This 

individual requires intensive monitoring through regular health screening and skillful 

counseling on dietary and lifestyle changes to prevent the disease from progressing into 

the malignant phase. Therefore genomic analysis helps the medical practitioners in the 

decision making process for managing such patients and their family members, which 

ultimately increase survival rates and improve the overall quality of health care.  

However, before such genomic analysis can be carried out, there is an important 

task of identifying the exact disease gene locations from the vast amount of genomic data 

collected. The process of inferring disease gene locations from observed associations of 

marker alleles in affected patients and normal controls is known as linkage disequilibrium 

mapping [66-68]. Linkage disequilibrium mapping has been used in the finding of 
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disease gene locations in many studies [69, 70]. The main idea of linkage disequilibrium 

mapping is to identify chromosomal regions with common molecular marker alleles1 at a 

frequency significantly greater than chance. It is based on the assumption that there exists 

a common founding ancestor carrying the disease alleles, and is inherited by his 

descendents together with some other marker alleles that are very close to the disease 

alleles. The same set of marker alleles is detected many generations later in many 

unrelated individuals who are clinically affected by the same disease.  

 

3.1.1 Challenges  

 
 

Finding the exact disease gene location is a non-trivial task. This is because, in 

reality, the occurrence of such allele patterns is usually very low, and most often consists 

of errors or noise. Let us illustrate the difficulties in the problem of gene location finding 

with an example. In the counseling and health management of relatives of breast cancer 

patients, one of the strategies is to analyze their chromosomes 17 or 13 to determine 

whether they have inherited the mutated BRCA-1 or BRCA-2 gene. An individual who 

has inherited the BRCA-1 or BRCA-2 gene will have higher disposition to breast cancer 

as compared to another individual who has not inherited BRCA-1 or BRCA-2 gene, and 

therefore requires more regular health screening as compared to normal individuals. 

However, this genomic analysis is only possible if the exact locations of BRCA-1 and 

BRCA-2 genes were known. 
                                                 
1 A molecular marker is an identifiable physical location on the genomic region that either tags a gene or tags a piece of 

DNA closely associated with the gene. An allele is any one of a series of two or more alternate forms of the marker. 
From the data mining aspect, we could represent markers as attributes, and alleles as attribute values that each 
attribute could take on. 
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Now let us assume that we are at the early stage of research for BRCA-1 and 

BRCA-2 genes, and no one knows the exact locations of the two genes although 

researchers know that BRCA-1 resides in chromosome 17 and BRCA-2 resides in 

chromosome 13. To find the exact locations of the two genes, it is required to perform 

analyses on gene sequences of chromosome 13 and 17 collected from patients affected by 

breast cancer. However, the hereditary mutations of BRCA-1 and BRCA-2 genes only 

account for about five to ten percent of all breast cancer patients [71]. This means that, 

given a set of chromosome 17 or 13 gene sequences collected from breast cancer patients, 

only at most ten percent of the gene sequences contain the BRCA-1 or BRCA-2 gene 

mutations. This means that the patterns or gene expressions that we are interested in are 

very rare within the set of collected data. To further complicate the task of finding disease 

gene locations, the gene sequences collected also consist of errors or noise due to sample 

mishandling and contamination. 

Due to the complexities in the problem of disease gene location finding, existing 

data mining methods cannot be directly applied to solve this problem. In the next section 

we introduce some leading ideas that aim at solving this problem and lay out some 

observations to distinguish our proposed method. In Section 3.3 we present the 

LinkageTracker method. In Section 3.4 we report our experimental studies and results. 

Finally, in Section 3.5 we summarize the mechanisms behind LinkageTracker and its 

performances and benefits. 
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3.2 Related Work 
 

There are generally two methods used for detecting disease genes, namely, the 

direct and the indirect methods. Techniques used in the direct method include allele-

specific oligonucleotide hybridization analysis, heteroduplex analysis, Southern blot 

analysis, multiplex polymerase chain reaction analysis, and direct sequencing. A detailed 

description of these techniques is beyond the scope of this work but is available in 

Beaudet et. al [72] and Malcolm et. al [73]. Direct method requires that the gene 

responsible for the disease be identified and specific mutations within the gene 

characterized. As a result, direct method is frequently not feasible, and, the indirect 

method is used.  

The indirect methods such as DMLE+ [74, 75], BLADE [5, 6], GeneRecon [7], 

HPM [2], and HapMiner [4] involve the detection of marker alleles that are very close to 

or are within the disease gene, such that they are inherited together with the disease gene 

generation after generation. Such marker alleles are known as haplotypes. Alleles at these 

markers often display statistical dependency, a phenomenon known as linkage 

disequilibrium or allelic association [76]. The identification of linkage disequilibrium 

patterns allows us to infer the disease gene location. Most commonly, linkage 

disequilibrium mapping involves the comparison of marker allele frequencies between 

disease chromosomes and control chromosomes. 

DMLE+ proposed by Rannala & Reeve [74, 75] uses Markov Chain Monte Carlo 

method and coalescent model to allow Bayesian estimation of the posterior probability 

density of the position of a disease mutation relative to a set of markers. A standard-
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coalescent model is a retrospective model of population genetics based on the genealogy 

of gene copies. It uses mathematics for describing the characteristics of the joining of 

lineages back in time to a common ancestor. This lineage joining is referred to as 

coalescence. The coalescent model provides the basis for estimation the expected time to 

coalescence and for establishing the relationships of coalescence times to the population 

size, age of the most recent common ancestor, and other population genetic parameters 

[77]. Rannala & Reeve [74, 75] proposed the use of intra-allelic coalescent process in 

prior-probability modeling.  However, the model requires the specification of the age of 

the mutation, which is unlikely to be known. Furthermore, it is assumed that every 

sample sequence carries the disease mutation, the concern as to the suitability of this 

model for mutations with low relative population frequency was raised in [78]. And more 

importantly, the intra-allelic model assumes that all disease chromosomes descend from 

the same founding mutation event represented by single genealogy. However, even for 

Mendelian disorders, sporadic cases of disease are commonly observed and singleton 

founding-mutations are rare events [79].  

Liu et al. proposed an algorithm BLADE which employed the Markov Chain 

Monte Carlo method (MCMC) for parameter estimations within a Bayesian framework. 

The disease haplotypes are grouped into k+1 clusters, corresponding to k founder 

chromosomes in the disease population and a null cluster for all other disease 

chromosomes. BLADE assumes that the disease haplotypes within each cluster are 

mutually independent given the ancestral haplotype. This alleviates the need for a 

complex model of the underlying genealogy. However, BLADE assumes that all 
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mutations occur in the same location of the disease gene, which means that locus 

heterogeneity is not incorporated. 

To solve some of the shortcomings in the algorithm proposed by Rannala & 

Reeve [74, 75], Liu et al. [5] and Mailund et al. [7] proposed an algorithm known as 

GeneRecon. GeneRecon combines the shattered coalescent method by Morris et al. [80] 

and the idea by Liu et al. [5] in separating the affected individuals into mutation clusters. 

Affected individuals in the same cluster are assumed to be descendants of a common 

founder. A null cluster is included for individuals affected due to environmental factors 

and not genetic factors. An MCMC algorithm of the Metropolis type [81] was used to 

integrate over unknown population genetic parameters of the shattered coalescence model 

and sample the marginal posterior probability density for the parameters of interest. 

Although GeneRecon is highly efficient in locating the disease locus on case/control data, 

the main drawback is that GeneRecon is very computationally intensive and requires 

several hours or even days for a successful computation on a dataset with a few hundred 

cases and controls, and with few tens of markers. 

Tiovonen et al. [2] introduced a linkage disequilibrium mapping algorithm known 

as haplotype pattern mining (HPM). Firstly, HPM uses the association rule mining 

algorithm [36] to discover a set of highly associated patterns by setting the Support 

threshold to a certain value. Next, HPM uses chi-square test to discriminate disease 

association from control association. Finally, HPM computes the marker frequency for 

each of the markers. The frequency for each marker is computed by counting the number 

of associated patterns consisting of that specific marker. The marker with the largest 

frequency is predicted as closest to the disease gene. The main drawback of this 
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algorithm is that it suffers from combinatorial explosion in the number of patterns due to 

its use of exhaustive search method. As it uses association rule mining algorithm to 

discover highly associated patterns, and such patterns are rare in our problem of linkage 

disequilibrium mapping. The support threshold will need to be set at a very low value in 

order to discover those highly associated patterns. Combinatorial explosion occurs where 

many useless patterns will also be discovered together with the highly associated 

patterns.   

Li and Jiang [4] proposed an algorithm known as HapMiner for the inference of 

disease gene location. HapMiner is an adaptation of an algorithm known as DBSCAN 

[82] which is a density based clustering method that is robust to noise. For each marker, 

HapMiner takes the haplotype segment around the marker and calculate the pair wise 

haplotype distances according to a distance measure proposed by Li and Jiang [4]. The 

DBSCAN algorithm is then applied to the distance matrix to identify clusters. A score for 

each marker will be calculated and the marker with the highest score is taken as the 

predicted location. The advantages of HapMiner are firstly, it is a model-free algorithm 

which does not rely on any prior information about the genealogy of haplotypes and the 

inheritance patterns of the diseases. Secondly, the time complexity of HapMiner is very 

low, which means that it can perform disease gene location inference at a very high 

speed. The experimental results in Li and Jiang [4] had shown that HapMiner 

outperformed algorithms such as HMP by Toivonen et al. [2, 3] and BLADE by Liu et al. 

[5, 6]. However, the main disadvantage of HapMiner is that it is very sensitive to its 

parameter values. This problem generally applies to the density based clustering method, 
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where the user needs to guess the optimal parameter values through trial-and-error, which 

may take a very long time to achieve the best guess.      

To address some of the problems of the existing algorithms, we propose an 

algorithm known as LinkageTracker. LinkageTracker is model free; it does not require 

any population ancestry information about the disease and the genealogy of the 

haplotypes. Furthermore, LinkageTracker does no require the setting of complex 

parameters prior to the disease gene location inference process. LinkageTracker identifies 

the set of linkage disequilibrium patterns using a heuristic level-wise neighbourhood 

search and score each pattern by computing their p-values to ensure high discriminative 

powers of each pattern. After which, it infers the marker allele that is closest to the 

disease gene based on the p-value scores and allele frequencies of the set of linkage 

disequilibrium patterns. LinkageTracker is robust as it caters for missing or erroneous 

data by allowing gaps in between marker patterns. The initial work on LinkageTracker 

was published in [17].  

 

3.3 LinkageTracker 
 

3.3.1 Technical Representation 

 
The general framework of the LinkageTracker is represented as a quintuple <D, 

Ω, L, Ψ, T> where 
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• D is a dataset consisting of M vectors <x1,…, xM>, where each xi is a vector <di1,…, 

din> that describes the allele values of n genes/markers in a particular biological 

sample. 

• For each position d*j, ωj = {v1,…, vt} denotes the set of all possible expression 

values that d*j could take on, and Ω is a collection of {ω1,…, ωn}. 

• A labelling for D is a vector L = <l1,…, lM>, where the label li associated with xi is 

either abnormal (a biological sequence derived from an individual exhibiting 

abnormality) or normal (a biological sequence belonging to a normal control).   

• Ψ is the neighbourhood definition. The neighbourhood determines the maximum 

allowable gap size within each pattern. The gap setting enables LinkageTracker to 

be tolerant to noise. In the later section, the setting of gap size is described in detail 

and an optimal gap size is recommended based on expert knowledge on the 

characteristics of linkage disequilibrium.  

• T ∈ ℜ+ is the threshold value for accepting a particular pattern. In statistical terms, 

T is the level of significance of the test. When the pattern score is less than T, the 

pattern is considered as significant, and is kept for further processing.  

The output P is a set of linkage disequilibrium patterns with high discriminative 

powers. A pattern p=<d*i, d*j,…,d*k> where p ∈ P, such that i < j < k. Based on the set of 

patterns in P, we then infer the marker allele, that is closest to the disease gene. That is, 

for each marker allele, we combine the p-values of all patterns in P that consist of that 

marker allele. The method to combine p-values was first introduced by Fisher [83]. 
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3.3.2 Algorithm LinkageTracker 
 

There are two main steps in the LinkageTracker algorithm. Step 1 identifies a set 

of linkage disequilibrium patterns which is strong in discriminating the abnormal from 

the normal. Step 2 infers the marker allele that is closest to the disease gene based on the 

linkage disequilibrium patterns derived in Step 1. 

3.3.2.1 Step 1: Discovery of Linkage Disequilibrium Pattern 

 
LinkageTracker uses a statistical method known as odds ratio to score each 

potential/candidate pattern. After which the significance of the patterns is determined 

through comparing the pattern p-values to a value α that is dynamically computed at 

different search levels.   Hence, we give the odds ratio scoring method, followed by a 

description of the computation of the dynamic α value. Finally, we present the level-wise 

neighbourhood searches for potential/candidate patterns.  

 

Odds Ratio 

Odds ratio is a statistical methodology that has been widely used in the 

biomedical arena to measure the magnitude of association between two categorical 

variables based on some data collected [84-86]. Odds ratio [87-89] provides a good 

measure of the magnitude of association between a pattern and the binary label L, which 

is crucial in determining the discriminative power of a pattern.  
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 Abnormal Normal 
not(1,3) P - σ N - π 

(1,3) σ π 
Table 3.1. : 2x2 contingency table 

 

Given a pattern x, odds ratio computes the ratio of non-association between x and 

the label L, to the association between x and L based on a set of data. For example, given 

a pattern, say (1,3), we are interested in finding out whether the marker pattern (1,3) is 

strongly associated with the label abnormal. Table 3.1 shows the contingency table for 

our example. Odds ratio is defined as follows: 

Odds Ratio, θ =
σπ
πσ

)(
)(

−
−

N
P  (1) 

 

The significance of a potential/candidate pattern is determined by computing its 

p-value. P-value calculates the probability due to chance alone of getting a difference 

larger than or equal to that actually observed in the data [90, 91]. A small p-value means 

it is difficult to attribute the observed difference to chance alone, and this can be taken as 

evidence against the null hypothesis of non-significance. We compare the p-value to α 

which is known as the level of significance of the test. α is the probability of type 1 error. 

A type 1 error occurs when the null hypothesis is wrongly rejected (when it should have 

been accepted). When the p-value is less than α, the difference is statistically significant, 

hence we can reject the null hypothesis at level α. In this work, the α value is 

dynamically determined at different search levels, which means that the value α is 

different for different level. If the p-value of a pattern is less than or equals to α, the 
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pattern is significant and is used for marker inference in the later stage. If the p-value is 

greater than α, the pattern is not significant, and it is discarded.  

 

Computing P-Values from Z-Statistics    
 

To find the p-value associated with a pattern, we need to first compute the z-

statistics as follows: 

z = ln θ  ÷  
)(

1
)(

111
πσπσ −

+
−

++
NP

 (2) 

 

The one-sided p-value is = 1 – Φ(z), where Φ(z) is the distribution function for 

N(0,1). The value of odds ratio is 0 or ∞ if any of the values in Table 3.1 is 0. In order to 

overcome this problem [92] and [93] suggested modifying the computation of the odds 

ratio to: 

θ%  = 
)5.0()5.0(
)5.0)(5.0(

+−+
+−+

πσ
σπ

N
P  (3) 

 

The addition of 0.5 to each of the values in equation 3 is merely a device to avoid 

division by zero. 
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The LinkageTracker Algorithm 

LinkageTracker mines patterns of the form <d*i, d*j,…,d*k>. For example, 

(3,5,6,*,*,4) is a marker pattern of length 4.  The symbol “*” represents missing or 

erroneous marker allele, and will not be considered when testing for significance of the 

pattern. Also the symbol “*” is ignored when computing the length of a marker pattern. 

Therefore, marker patterns (1,*,*,3), (1,*,3), and (1,3) are all considered as having length 

of 2. 

A gap is a “*” symbol in between two known marker alleles. For instance, the 

marker patterns (1,*,*,*,3) has three gaps, (1,*,3) has one gap, and (1,3) has no gaps. The 

maximum number of gaps for this marker pattern (1,*,*,3,*,*,*,*,5) is four, as there are 

at most four gaps in between any two known marker alleles. The user is able to set the 

maximum number of gaps for the marker patterns. However, we recommend that a 

maximum allowable gap to be 6, giving the highest accuracy if the markers are spaced at 

1 cM2 or less. The detail of such a recommendation is given in the later section. 

To find linkage disequilibrium patterns, one of the ways is to use the brute force 

method. That is, we could enumerate all possible marker patterns of length one, two, and 

three etc, and then compute the odds ratio of each of the pattern and select those patterns 

that are significant. However, there are some practical difficulties to this approach: for n 

markers each with m alleles, there are km
k

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  marker patterns of length k, which we need 

                                                 
2 cM stands for centimorgan. It is the unit of measurement for genomic distance. In human genome, 1 centimorgan is 

approximately equivalent, to 1 million base pairs.  
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to test for significance. Combinatorial explosion occurs as the length of marker patterns 

increases. 

The enumeration of all possible marker patterns is in fact unnecessary. This is 

because, base on studies by Long & Langley [94], allelic associations are detectable 

within a genomic region of 20cM. Allelic associations beyond 20cM are weak and are 

not easily detectable. Therefore, enumerating marker patterns whose marker alleles are 

more than 20cM apart are unlikely to yield significant results. Based on this observation, 

LinkageTracker uses a heuristic search method by controlling the maximum allowable 

gap size between two marker alleles. The gap size setting Ψ helps to define the search 

space of LinkageTracker as well as to ensure robustness against noise. For simplicity of 

illustration, all examples in this work assume that the markers are spaced at 1cM apart.  

LinkageTracker is a heuristic level-wise search method which allows only 

significant marker patterns (or linkage disequilibrium patterns) of length i-1 at level i to 

join with their neighbors (of length 1) whose join satisfies the maximum gap constraint Ψ 

to form candidate/potential marker patterns of length i, where 1 ≤ i ≤ n and n is the 

number of markers. We call the procedure of joining linkage disequilibrium patterns at 

each level to form longer patterns the neighborhood join. Note that in neighborhood join, 

only the marker patterns of length i-1 need to be significant, the neighbors that they join 

with need not be significant and may be several markers apart.  

A marker allele exhibits significant allelic association with the disease gene under 

two conditions. Firstly, it is significant on its own when tested (i.e. at level 1). Secondly, 

when combine with other marker alleles that exhibit allelic associations with the disease 

gene, the joined pattern becomes significant when tested.  
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The former condition is trivial to detect, the latter condition is concerned with a 

marker allele who shows significant allelic association with the disease gene when 

combine with other significant marker alleles but is insignificant when assessed alone. 

Let us denote this maker allele as Mx. This problem can be further divided into 2 cases. 

The first case is that Mx is close to a neighbor Mi that is significant when tested alone. 

The term “close” here means that Mx will be selected to join with Mi directly to form 

marker patterns for the immediate next level. For example, two markers say Mx and My 

are both not significant at level 1, hence they will be discarded when forming marker 

patterns for level 2. Now, we have Mi which is an immediate neighbor of My showing 

significant allelic association in level 1 (assuming that the markers are ordered as 

follows: Mi, My and Mx).  Hence, in level 2, Mi will be made to combine with its 

neighbors to form marker patterns of length 2. Since My is the immediate neighbor of Mi, 

My will be selected to form pattern with Mi. Although Mx is one marker away from Mi, 

Mx will also be selected, because LinkageTracker allows joining with markers that are 

some gaps away as described above. Hence, in level 2, both My and Mx are included in 

the marker patterns.  

The second case is that Mx is very far from a marker allele Mz that is significant 

when tested alone.  The term “far” here means that Mx is less than 20 markers away from 

Mz, but is far enough such that Mx will not be selected by Mz to form marker pattern for 

the immediate next level. For example, from Figure 3.1, Mx and Mz is 8 markers apart. 

Assuming that the maximum allowable gap size is set to 2, Mz is made to combine with 

Ma, Mb, and Mc to form patterns of length 2. Assuming that (Mz,Mc) is tested 

significant, then (Mz,Mc) will combine with Md, Me,and Mf to form patterns of length 3.   
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Assuming that (Mz,Mc,Mf) is tested significant, then  (Mz,Mc,Mf) will combine with Mg, 

Mh, and Mx to form patterns of length 4. Hence, Mx will ultimately be detected to form 

marker patterns under the condition that there are sufficient significant “intermediate” 

allele markers such as Mc and Mf, to facilitate the detection of allelic associative marker 

alleles that are much further away (i.e. Mx). Nevertheless, as in accordance with the 

studies by Long & Langley [94], most marker alleles exhibiting allelic associations with 

the disease gene will occur within a distance of 20cM from the disease gene, which 

means that marker alleles exhibiting allelic associations with the disease gene are quite 

densely packed within the 20 makers region. Hence, the chances of LinkageTracker 

detecting significant marker alleles within the range of 20 markers are relatively high 

even though LinkageTracker is a heuristic method. 

  

Dynamic Computation of α 

In general, if we have k independent significance tests at the α level, the 

probability p that we get no significant differences in all these tests is simply the product 

of the individual probabilities: (1 - α)k. For example, with α = 0.05 and k = 10 we get p = 

0.9510 = 0.60. This means that we now have a 40% chance that one of these 10 tests will 

Figure 3.1: Illustration of marker positions 
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turn out significant, despite each individual test only being at the 5% level. In order to 

guarantee that the overall significance test is still at the α level, Bonferroni Correction 

[60] is usually applied; that is through dividing α by k to obtain the significance level for 

the individual tests. 

Bonferroni Correction [60] requires the knowledge of the exact value of k which 

can be difficult to determine. LinkageTracker is an iterative process. In each iteration, 

haplotypes may be tested for a different number of times which makes tracking k even 

more difficult. Furthermore, fast convergence of the candidate pattern set to a small 

number of patterns as the process iterates, is desirable for computational efficiency and to 

filter out noisy patterns at early stage. As such we devise a new mechanism to the p-value 

to be used at each iteration or pattern length.  

The idea is to set the p-value at iteration i, to be the significance level of the t 

most significant patterns at iteration i-1, achieving the same effect of raising the 

significance level as the patterns get longer.  We have t defined below:  

            ( )12 += iiteration

iiterationatsizesetpatternt                                                    (4) 

For example, at the first iteration i = 0, we have pattern set of length 1 at the α level 

significance. We set the p-value for the next iteration to be median significance in the 

pattern set. 
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3.3.2.2 Step 2: Marker Inference 
 

As mentioned in the earlier section, we infer the marker closest to the disease 

gene by combining the p-values of the highly associated patterns. Now, let us describe 

how we combine p-values from n patterns to form a single p-value. R.A. Fisher’s method 

[83] specifies that one should transform each p-value into c = -2 * LN(P), where LN(P) 

represents the natural logarithm of the p-value. The resulting n c-values are added 

together, and their sum, ∑(c), represents a chi-square variable with 2n degree of freedom. 

For example, to find the marker closest to the disease gene, we compute the combine p-

value and the frequency for each marker allele. In Figure 3.2(a), Marker 2 has allele 4 

occurring four times, its combined p-value is 1.4 * 10-6, which is the chi-square 

distribution of ∑(c) = 9.4211 + 10.0719 + 11.6183 + 10.8074 = 41.9186 with 8 degree of 

freedom. Figure 3.2(b) depicts the combined p-value for each of the marker alleles from 

Figure 3.2(a). As we can see Marker 2 allele 4 has the lowest combined p-value, and 

hence we infer that Marker 2 is closest to the disease gene. If more than one marker 

alleles have the same lowest p-value, then the marker with the highest frequency is 

selected as the marker closest to the disease gene. 
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Marker 1  2  3  4  5  6 P-Value c = -2 * ln(P) 
Pattern01 *  4  3  *  *  * 0.0090 9.4211 
Pattern02 2  4  *  *  6  1 0.0065 10.0719 
Pattern03 2  4  3  5  *  * 0.0030 11.6183 
Pattern04 *  *  3  5  *  1 0.0100 9.2103 
Pattern05 2  4  *  5  6  * 0.0045 10.8074 

(a) 

    
 Freq ∑(c) Combine P-Value 
Marker 1 allele 2 3 32.4975 1.3098E-05 
Marker 2 allele 4 4 41.9186 1.4027E-06 
Marker 3 allele 3 3 30.2497 3.5236E-05 
Marker 4 allele 5 3 31.6390 1.9160E-05 
Marker 5 allele 6 2 10.0719 0.0392 
Marker 6 allele 1 2 19.2822 0.007 

(b) 
 

Figure 3.2: a) Example of 5 linkage disequilibrium patterns. 
b) Combine p-value of each marker allele from (a). 

 

3.3.3 Setting the Optimal Number of Gaps 

 
To accurately find the marker closest to the disease gene, it is important to 

determine the optimal number of gaps to use. The marker alleles that show significant 

allelic associations with the disease gene (within 20 markers region according to studies 

by Long & Langley [94]) should minimize the number of joins with neighbors beyond 

the 20 markers region. This is because the joining of a significant marker allele with 

some neighbors that are beyond the 20 markers region will inevitably introduce some 

false positive marker patterns or noise. Such false positive marker patterns will result in 

the reduction in accuracy during marker inference. On the other hand, we want to be as 

robust as possible, that is, to maximize the total possible gaps so as to cater for erroneous 

marker alleles. Based on these two conditions, we compute the Score for each gap setting 

g as follows for patterns of length 2: 
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Score(g) = 

∑

∑

=

=
g

i
i

g

i
i

Noise

Robustness

0

0  (4) 

 

Table 3.2 shows the Score values for gap settings range from 0 to 20. Different 

gap settings will result in different values for Noise and Robustness. We shall now 

illustrate how the values of Noise and Robustness were computed with examples.  

 

 

 

 

 
 

 

 

 

 

 

 

 

Num. of Gaps 
(g) Noise Num. Of patterns p 

form with g gaps 
Robustness  

= p x g Score(g) 

0 1 19 0 0 

1 2 18 18 6 
2 3 17 34 8.67 
3 4 16 48 10 
4 5 15 60 10.67 
5 6 14 70 10.95 
6 7 13 78 11 
7 8 12 84 10.89 
8 9 11 88 10.67 
9 10 10 90 10.36 

10 11 9 90 10 
11 12 8 88 9.59 
12 13 7 84 9.14 
13 14 6 78 8.67 
14 15 5 70 8.17 
15 16 4 60 7.65 
16 17 3 48 7.11 
17 18 2 34 6.56 
18 19 1 18 6 
19 20 0 0 0 
20 21 0 0 0 

Table 3.2. Score values for 0 to 20 gaps 
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3.3.3.1 Noise  
 

Noise is defined as the maximum possible number of patterns consisting of 

markers beyond the 20 markers region. Figure 3.3 shows a disease gene that is very close 

to marker M1, markers M21 and M22 are in dotted boxes as they are beyond the 20 

makers region from the disease gene. Assuming that marker M2 shows significant 

association with the disease gene, and we set the maximum allowable gaps to 1, then  M2 

can join with its neighbors M3 and M4 to form patterns of length 2, i.e. (M2,M3) and 

(M2,M4). Recall that the joining of a significant marker with some neighbors that are 

beyond the 20 markers region will introduce Noise. In this case, if markers M19 and M20 

are significant, they will join with M21 and M22 to form patterns of length 2. We can see 

from Figure 3.4 that M19 and M20 will join with M21 and M22 in three ways, as 

illustrated by the dotted arrows. Hence, the maximum possible number of patterns 

consisting of markers beyond the 20 markers region (i.e. ∑
=

g

i
iNoise

0

) is 3 when the gap 

setting g = 1 for this example. The Noise values for gap settings from 2 to 20 were 

computed similarly. 

 

Figure 3.3. The darken circle indicates the disease gene  
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3.3.3.2 Robustness 

 

Before computing the Robustness values, we need to compute the maximum 

possible number of patterns p formed within the 20 markers region when the gap setting 

is g. When the gap setting g is set to 1, we can have at most 18 patterns (i.e. p = 18) as 

illustrated by the arrows in Figure 3.4. With the values of p for different values of g, we 

define Robustness as the maximum number of patterns formed within the 20 markers 

region weighted by the gap setting g itself:  

Robustness = p× g. (5) 

 

Recall that it is desirable to have wider gaps so as to cater for erroneous marker 

alleles, hence the value of Robustness increases as the value of g increases. As we can see 

from Table 3.2 that the gap setting of 6 has the highest Score value, hence we recommend 

that for a dataset with more than 20 markers to each chromosome (i.e. more than 20 

attributes to each record) and each marker is spaced at 1cM apart, the optimal allowable 

gap setting should be 6.  

To verify our above recommendation, we evaluated the performance of 

LinkageTracker by varying the gap settings from 2 to 10 on 100 realistically simulated 

datasets generated by Toivonen et al. [2] (details in the next section). The sum-square 

errors are computed for different gap settings g when applied to the 100 datasets. We find 

Figure 3.4. Joining of markers when gap setting g is 1 
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that the gap setting of 6 has the lowest sum-square error, which means that it has the 

highest accuracy. This is in agreement with our recommendation above.  

 

Evaluation 

 

3.4.1 Time Complexity Analysis 
 

The search space for the enumeration all frequent itemsets is exponential in the 

record length or the number of attributes to each record. For example, given a dataset 

with each record having n attributes and each attribute taking on 2 different values, the 

time complexity will be nCk2k  ≈ O(nk2k)  where k is pattern length, the worst case occurs 

when k=0.5(n). LinkageTracker uses expert knowledge by Long & Langley [94] and 

restricted the pattern length k to a value of 20.  

 

3.4.2 Comparison of Performance on Real Datasets   
 
 

We compared our algorithm LinkageTracker with some leading methods in 

linkage disequilibrium mapping such as BLADE [5, 6], GeneRecon [7], and HapMiner 

[4] on two real datasets, and 100 generated datasets.  In this section we give the 

performance of the methods when applied to real datasets. The details on the 

performances on generated datasets are discussed in the next section.  

 



47 

3.4.2.1 Cystic Fibrosis 
 

Cystic fibrosis is a well known real dataset reported in Kerem et. al [14]. The 

dataset contains haplotypes on 23 bi-allelic markers around the cystic fibrosis trans-

membrane conductance regulator gene on chromosome 7q31.2. The control group has 92 

haplotypes and the diseased group has 94. The founder mutation is located between 

marker 17 and 18, approximately 0.88 cM away from the leftmost marker. Only 67% of 

the disease haplotypes carry the founder mutation of interest. Furthermore, the disease 

haplotypes have about 39% of missing observations at certain markers.   

In this dataset, we know exactly which are the disease haplotypes carrying the 

founder mutation of interest, and which are the disease haplotypes without the founder 

mutation. Therefore it provides us the opportunity to perform rigorous experiments using 

this dataset. For ease of reference, we divided the cystic fibrosis dataset into three 

subsets. Let Set-A consists of disease haplotypes carrying the founder mutation of 

interest, Set-B consists of disease haplotypes without the founder mutation of interest, 

and Set-C consists of haplotypes from the normal control group. There are in total 63, 31 

and 92 samples in Set-A, Set-B and Set-C respectively. 

 

Experimental Setting 1: Detection Accuracies 

In this experiment we assess the algorithms’ capability in detecting the disease 

gene location when only a small portion of the disease haplotypes actually carrying the 

founder mutation of interest, and others are genetically no different from control 

population at the locus of interest. Therefore datasets with different percentages of 
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founder mutation carrying disease haplotypes are generated (at 10%, 20%, 30%, 40% and 

50%). For each percentage value we generate 5 different datasets each with 50 disease 

haplotypes and 50 controls.  

For instance, to generate the disease haplotypes with 20% founder mutations, we 

randomly select 10 founder mutation carrying disease haplotypes from Set-A, and mix 

with 40 haplotypes randomly selected from control set Set-C. (thus only 20% of the 

haplotypes actually carry the founder mutation). From the remaining 52 samples from 

Set-C, we randomly select 50 samples to form the control haplotypes. This process is 

repeated 5 times to generate 5 datasets with 20% founder mutation. The datasets for other 

percentages of founder mutations are generated similarly. 

Avg SSE 10% 20% 30% 40% 50% Avg SSE over 
5 different %

Blade 0.41200 0.42290 0.02427 0.02025 0.00691 0.17727 

HapMiner 0.11264 0.02765 0.13234 0.00380 0.01647 0.05858 

HapMiner 
(x + x * 0.001) 0.32505 0.09121 0.09087 0.04231 0.15701 0.14129 

LinkageTracker 0.01860 0.02751 0.04065 0.01047 0.00035 0.01952 

GeneRecon 0.03386 0.016987 0.01810 0.02246 0.01255 0.02079 

 
Table 3.3: Comparison of predictive accuracies based on experimental setting 1 

Table 3.3 shows the average sum-squared error of each of the algorithm at various 

percentages of disease haplotypes carrying the founder mutation. Detailed experimental 

results for each of the algorithm are given in the last section of this chapter. For the 

algorithm HapMiner, we assess its predictive accuracies based on the original parameter 

list provided by the authors [4] (they have used the same dataset in their work), and also 

based on the slightly modified parameter list. For the slightly modified parameter list, for 
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each numerical parameter value x in the original parameter list, we replace x with a new 

value y, such that y = x + (x * 0.001).   The performance of HapMiner given the original 

parameter list is labeled with “HapMiner”, and the HapMiner given the modified 

parameter list is labeled as “HapMiner (x + x * 0.001)”.  

Generally, we expect that the predictive accuracies of an algorithm to improve as 

the percentage of disease haplotypes carrying the founder mutation increases. The 

algorithm BLADE shows, in general, such characteristics as shown in Table 1 that the 

sum-squared error (SSE) decreases as the percentage of disease haplotypes carrying the 

founder mutation increases. However, the rest of the algorithms do not show such 

characteristics. HapMiner fluctuates inconsistently at various percentage values, whereas 

LinkageTracker and GeneRecon show consistent predictive accuracies at different 

percentage values.   

 At both ends of the range, 10% and 50% of disease haplotypes carrying the 

founder mutation, LinkageTracker has the lowest SSE followed by GeneRecon (at 10%) 

or Blade (at 50%). At 20% and 40%, LinkageTracker coming in second, and is in third 

placing at 30%. Our objective when designing LinkageTracker is to have an algorithm for 

finding disease gene location even when the occurrence of disease haplotypes carrying 

the founder mutation is very small. The experimental results in Table 1 show that our 

objective for LinkageTracker is met. Furthermore, LinkageTracker continues to show 

good predictive accuracies as the percentage of disease haplotypes carrying the founder 

mutation increases, with SSE below 0.05 for the entire range. LinkageTracker also has 

the lowest average SSE over the five different percentage values.   
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Next we look at the average execution time of the algorithms (refer to Table 3.4). 

HapMiner is the fastest algorithm, given the original parameter list HapMiner takes about 

3 seconds to execute, whereas given the slightly modified parameter list HapMiner takes 

about 5 seconds to execute. BLADE and LinkageTracker take over a minute to execute 

on the average, and GeneRecon takes over 2 hours.  

Avg Time 
(seconds) 10% (s) 20% (s) 30% (s) 40% (s) 50% (s)

Avg time 
over 5 

different % 

Avg time 
with 

Linkage 
Tracker as 
base unit

Blade 75.50 72.67 63.37 71.98 73.82 1m 11.47s 0.74 

HapMiner 2.51 2.60 2.58 2.62 2.57 2.57s 0.03 
HapMiner 

(x + x * 0.001) 4.56 4.31 4.88 4.33 4.32 4.48172s 0.05 

LinkageTracker 27.51 116.30 96.89 120.71 126.92 1m 36.66s 1 

GeneRecon 10806.19 10318.56 10333.55 10593.06 10309.79 2hrs 54m 
32.23s 108.33 

Table 3.4: Comparison of run time based on experimental setting 1 

 

In terms of predictive accuracies, GeneRecon is comparable with LinkageTracker. 

However, the execution time of GeneRecon is orders of magnitude longer than 

LinkageTracker. LinkageTracker is not the fastest algorithm. Some possible reasons may 

be that LinkageTracker uses the simple level wise search strategy for interesting patterns. 

Also our current implementation of LinkageTracker is not optimized. It is programmed in 

Java using complex data structures for fast prototyping, whereas the rest of the algorithms 

are coded in C/C++.     
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Experimental Setting 2: Noisy data 

Next we assess the algorithms’ performance when there are noises in the data. We 

are interested to know the algorithms’ capability in detecting the disease gene location 

when only a small portion of the disease haplotypes actually carry the founder mutation 

of interest, while others are disease haplotypes without the founder mutation of interest. 

The disease haplotypes without the founder mutation are confounding that could 

influence the predictive accuracy of an algorithm. As similar to experimental setting 1, 

datasets with different percentages of founder mutation carrying disease haplotypes were 

generated (at 10%, 20%, 30%, 40% and 50%). However, the data generation procedure is 

more elaborate.  As mentioned earlier, there are three subsets for the cystic fibrosis 

dataset: 

Set-A - 63 disease samples with the known founder mutation at the specific site. 

Set-B - 31 disease samples without the founder mutation. 

Set-C - 92 non disease control samples. 

A dataset is generated as given in Table 3.5. For example, there are two main 

steps for generating datasets for the 10% mutation test. First we generate the disease set 

by randomly selecting 5 out of 63 samples from Set A, all 31 samples from Set B, and 

randomly selecting 14 out of 92 samples from Set C. Next we generate the control set, by 

randomly selecting 50 samples out of the remaining 78 samples from Set C (as 14 

samples have already been taken out for the disease set). There are 50 samples in both the 

disease and control sets. The data generation is repeatedly performed for 5 test datasets at 

the same mutation level.   
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Mutation 
level Data type Set A Set B Set C Total 

Disease set 5/63 All 31 14/92 50 
10% 

Control set - - 50/ (92-14) 50 

Disease set 10/63 All 31 9/92 50 
20% 

Control set - - 50/(92-9) 50 

Disease set 15/63 All 31 4/92 50 
30% 

Control set - - 50/(92-4) 50 

Disease set 20/63 30/31 - 50 
40% 

Control set - - 50/92 50 

Disease set 25/63 25/31 - 50 
50% 

Control set - - 50/92 50 

Table 3.5: Data generation for experimental setting 2 

Table 3.6 shows the average sum-squared error in predictions of each of the 

algorithm at various percentages of disease haplotypes carrying the founder mutation. 

LinkageTracker has the lowest average SSE, followed by GeneRecon. HapMiner would 

have performed well on this dataset if not for extremely poor performance at the 10% 

mutation set. 

Avg SSE 10% 20% 30% 40% 50% Avg SSE over 
5 different % 

Blade 0.12414 0.13140 0.18466 0.10704 0.13875 0.13720 

HapMiner 0.42124 0.00010 0.00010 0.00010 0.00010 0.08433 

HapMiner 
(x + x * 0.001) 0.63847 0.62987 0.55138 0.66370 0.55138 0.60696 

LinkageTracker 0.00742 0.01580 0.01004 0.00232 0.00619 0.00835 

GeneRecon 0.02467 0.01305 0.01078 0.02759 0.02283 0.01979 

Table 3.6: Comparison of predictive accuracy based on experimental setting 2 
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Next we look at the average execution time of the algorithms (refer to Table 3.7). 

HapMiner is the fastest algorithm. Given the original parameter list, HapMiner takes 

about 1.5 seconds to execute, whereas given the slightly modified parameter list 

HapMiner takes about 6 seconds to execute. Although in terms of predictive accuracies, 

GeneRecon is comparable with LinkageTracker, the execution time of GeneRecon is 

orders of magnitude longer than LinkageTracker. 

Avg Time 
(seconds) 10% (s) 20% (s) 30% (s) 40% (s) 50% (s) Avg time over 5 

different % (s) 
Blade 47.31 44.03 49.37 50.15 48.41 47.85 

HapMiner 1.40 1.57 1.57 1.57 1.56 1.53 
HapMiner 

(x + x * 0.001) 6.37 5.84 5.83 5.92 6.17 6.03 

LinkageTracker 204.55 136.38 172.78 141.16 111.61 153.29 

GeneRecon 4867.00 4943.17 4923.15 4813.95 4845.85 4878.63 

Table 3.7: Comparison of running time based on experimental setting 2 

 

Experimental Setting 3 

In this experiment, we assess the algorithms’ performance when applied to the 

cystic fibrosis dataset without any modification to the ratios of the original disease 

haplotypes. Five datasets are generated for this experimental setting. The steps for 

generating the five datasets are: Firstly, samples from Set-A and Set–B are combined to 

form a new set, Set-X, which consists of 94 disease samples. Next, randomly pick 50 

samples from Set-X to form the disease set. Lastly, pick 50 samples randomly from the 

92 control samples (i.e. Set-C) to form the control set. The last 2 steps are repeated five 

times to form 5 datasets.  
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Table 3.8 shows the average sum-squared error of each of the algorithm for each 

of the 5 datasets. Detailed experimental results for each of the algorithm are given at the 

end of the chapter. LinkageTracker comes in second, marginally behind HapMiner which 

has the lowest SSE for experimental setting 3.  

 

3.4.2.2 Friedreich Ataxia 
 

Friedreich ataxia is an autosomal recessive degenerative disease that involves the 

central and peripheral nervous system and the heart. The data came from the Acadian 

population of Louisiana (Sirugo et al 1992). Campuzano et al (1996) identified the gene 

responsible for friedreich ataxia and discovered that the disease is caused by trinucleotide 

repeat expansion. The friedreich ataxia dataset was first reported by Liu et. al. [5] for 

linkage disequilibrium mapping. The friedreich ataxia dataset contains 54 disease 

haplotypes and 69 control haplotypes with 12 microsatellite markers. The gene is located 

between the fifth and sixth markers, approximately 9.8125 cM away from the leftmost 

marker. 

 

 Blade HapMiner HapMiner  
(x + x * 0.01) GeneRecon LinkageTracker

Avg SSE 0.01564 0.00588 0.58522 0.01466 0.00811 

Avg Time (Seconds) 58.02020 1.98600 6.50040 4775.65660 125.53400 

Table 3.8:  Comparison of predictive accuracy and running time of the algorithms based 
on experimental setting 3 
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 Blade HapMiner HapMiner  
(x + x * 0.01) GeneRecon LinkageTracker 

Avg SSE 10.367 0.060 0.416 - 0.135 
Avg Time 
(Seconds) 742.515 3.194 3.801 - 108.192 

 
Table 3.9:  Comparison of predictive accuracy and running time of the algorithms 

when applied to the friedreich ataxia dataset 

The experiments performed here using the friedreich ataxia dataset is similar to 

the experimental setting 3 in the previous section. The procedure of the data generation is 

as such: Firstly, pick 50 samples randomly from the 54 disease samples of the friedreich 

ataxia dataset. Next, pick 50 samples randomly from the 69 control samples of the 

friedreich ataxia dataset.   The procedure is performed five times to form 5 datasets.  

 Table 3.9 shows the average sum-squared error of each of the algorithm for the 5 

friedreich ataxia datasets. LinkageTracker is second to HapMiner in predictive accuracy. 

No results were produced by GeneRecon for the friedreich ataxia dataset because 

GeneRecon accepts only binary valued attributes, whereas markers in the friedreich 

ataxia dataset are microsatellite markers each with more than 10 possible alleles.  

Detailed experimental results for each of the algorithm can be found in the last section of 

this report.  

 

3.4.2.3 Observations from the experiments on real datasets 
 

From the experiments on the two real datasets, we see that in general, 

LinkageTracker and HapMiner have the best predictive accuracy, with HapMiner being 

the fastest algorithm. In instances where HapMiner is the better of the two, 

LinkageTracker follows closely behind HapMiner to give comparable predictions. It is 
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noted that the predictive accuracies of HapMiner with slightly modified parameter list are 

generally not as good when compared to all the other algorithms.  This shows that 

HapMiner’s performance is extremely sensitive to its parameter setting and robustness of 

the algorithm is a concern. 

Based on the experimental results, HapMiner will be the best algorithm to use if 

the user knows exactly what values to set for each of its parameters. However, some 

parameters such as density threshold and radius may require many rounds of trial-and-

error to achieve the optimal value. On the other hand, LinkageTracker produces good 

predictive accuracies and does not require the setting of complex parameters. Therefore, 

LinkageTracker will be a useful tool for linkage disequilibrium mapping when users do 

not have much information about their datasets. 

 

3.4.3 Comparison of Performance on Generated Datasets  
 
 

In this section we compare our algorithm LinkageTracker with HapMiner (given 

the original parameter list) on 100 generated datasets. The reason being HapMiner with 

original parameter list has shown to be efficient based on the results from real datasets in 

the previous section. Furthermore, HapMiner also made used of the same 100 generated 

datasets in their original papers [2]. The datasets used in this experiment were generated 

by Toivonen et al. [2]. Unfortunately the program HPM by Toivonen et al. [2] is not 

available to us. Nevertheless, we report the results of HPM in their original paper [2] and 

compare the predictive accuracies with LinkageTracker and HapMiner.   
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The datasets are downloadable from the following URL: 

http://www.genome.helsinki.fi/eng/research/projects/DM/index-ajhg.html.  

The simulated datasets correspond with the realistic isolated founder populations 

which grow from 300 to about 100,000 individuals over a period of 500 years. The 

simulation of isolated population is suited to linkage disequilibrium studies as 

recommended by Wright et al. [95].   

There are in total 100 datasets, each consisting of 400 biological sequences where 

200 sequences are labeled “abnormal” and the rest of the 200 sequences labeled 

“normal”. Each biological sequence consists of 101 markers. The datasets are generated 

such that each dataset has a different disease gene location. The main task is to predict 

the marker that is nearest to the disease gene for each dataset.  

Figure 3.5: Comparison of prediction accuracy among HapMiner, HPM 
and LinkageTracker 
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Figure 3.5 shows the performance of HapMiner, HPM and LinkageTracker when 

applied to the 100 generated datasets. The points on the graph depict the predicted 

disease gene location by each of the algorithms. The straight line depicts that the 

predicted location is the same as the actual location, therefore the closer the points to the 

straight line, the more accurate is the prediction. Table 3.10 shows the predictive 

accuracy of HapMiner, LinkageTracker, and HPM over the 100 generated datasets. 

Among the three algorithms, LinkageTracker has the lowest SSE for the 100 datasets. It 

is observed that all the three algorithms did not perform well on the second dataset (refer 

to Table 3.10, row number 2), hence we exclude the second dataset in the performance 

assessment. LinkageTracker continues to be the algorithm with the lowest SSE, even 

after the exclusion of the second dataset for performance assessment.  

 

Dataset 
Exact 
Location HapMiner 

SSE 
(HapMiner) HPM

SSE 
(HPM) 

Linkage 
Tracker 

SSE 
(Linkage 
Tracker) 

1 86.9832 89 4.06748224 88 1.0338822 91 16.13468
2 100.497 21 6319.773009 16 7139.743 51 2449.953
3 85.1152 83 4.47407104 88 8.322071 85 0.013271
4 88.1118 90 3.56529924 94 34.670899 94 34.6709
5 27.1749 25 4.73019001 28 0.68079 27 0.03059
6 71.3791 67 19.17651681 70 1.9019168 71 0.143717
7 91.4263 90 2.03433169 91 0.1817317 92 0.329132
8 97.4294 95 5.90198436 97 0.1843844 97 0.184384
9 46.0612 45 1.12614544 47 0.8813454 48 3.758945

10 85.6649 86 0.11229201 87 1.782492 83 7.101692
11 56.1308 55 1.27870864 54 4.5403086 53 9.801909
12 95.2145 96 0.61701025 95 0.0460103 95 0.04601
13 96.0643 95 1.13273449 92 16.518534 95 1.132734
14 6.5231 5 2.31983361 7 0.2274336 6 0.273634
15 37.0228 37 0.00051984 35 4.0917198 36 1.04612
16 74.7825 75 0.04730625 76 1.4823063 76 1.482306
17 31.6615 29 7.08358225 28 13.406582 28 13.40658
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18 88.4862 88 0.23639044 90 2.2915904 91 6.31919
19 86.8215 84 7.96086225 86 0.6748623 87 0.031862
20 65.406 63 5.788836 65 0.164836 65 0.164836
21 81.2496 78 10.55990016 79 5.0607002 82 0.5631
22 81.3287 82 0.45064369 86 21.821044 84 7.135844
23 63.4151 63 0.17230801 63 0.172308 59 19.49311
24 68.8194 67 3.31021636 66 7.9490164 66 7.949016
25 49.43 50 0.3249 53 12.7449 56 43.1649
26 92.4113 93 0.34656769 95 6.7013677 96 12.87877
27 7.6075 11 11.50905625 10 5.7240563 8 0.154056
28 82.7023 82 0.49322529 80 7.3024253 80 7.302425
29 67.6077 68 0.15389929 68 0.1538993 67 0.369299
30 31.8872 33 1.23832384 39 50.591924 32 0.012724
31 26.7347 25 3.00918409 25 3.0091841 31 18.19278
32 5.0485 4 1.09935225 5 0.0023522 5 0.002352
33 43.1726 42 1.37499076 42 1.3749908 44 0.684591
34 84.0212 83 1.04284944 85 0.9580494 85 0.958049
35 30.6477 31 0.12411529 32 1.8287153 31 0.124115
36 61.2179 61 0.04748041 61 0.0474804 60 1.48328
37 25.0116 24 1.02333456 24 1.0233346 27 3.953735
38 82.1955 81 1.42922025 81 1.4292202 83 0.64722
39 49.7319 47 7.46327761 48 2.9994776 52 5.144278
40 65.3964 62 11.53553296 65 0.157133 65 0.157133
41 86.7881 87 0.04490161 87 0.0449016 87 0.044902
42 48.5025 49 0.24750625 47 2.2575062 42 42.28251
43 62.4334 63 0.32103556 62 0.1878356 63 0.321036
44 16.6554 47 920.7947492 48 982.48395 18 1.807949
45 48.1984 50 3.24576256 51 7.8489626 51 7.848963
46 5.4983 5 0.24830289 5 0.2483029 5 0.248303
47 1.3383 5 13.40804689 7 32.054847 6 21.73145
48 80.4148 78 5.83125904 83 6.683259 80 0.172059
49 37.9742 36 3.89746564 36 3.8974656 39 1.052266
50 48.5517 48 0.30437289 45 12.614573 52 11.89077
51 98.8413 96 8.07298569 96 8.0729857 95 14.75559
52 87.4368 90 6.56999424 87 0.1907942 89 2.443594
53 33.1849 33 0.03418801 33 0.034188 34 0.664388
54 43.7423 45 1.58180929 45 1.5818093 46 5.097209
55 66.9502 67 0.00248004 68 1.10208 69 4.20168
56 41.5095 42 0.24059025 43 2.2215902 47 30.14559
57 19.8586 21 1.30279396 24 17.151194 21 1.302794
58 9.1709 8 1.37100681 9 0.0292068 9 0.029207
59 12.1537 12 0.02362369 9 9.9458237 11 1.331024
60 38.0134 38 0.00017956 37 1.0269796 37 1.02698
61 27.8384 29 1.34931456 29 1.3493146 25 8.056515
62 92.5326 94 2.15326276 94 2.1532628 92 0.283663
63 47.8187 46 3.30766969 47 0.6702697 47 0.67027
64 31.7271 29 7.43707441 32 0.0744744 32 0.074474
65 57.2332 60 7.65518224 60 7.6551822 74 281.1256
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66 82.0091 82 8.281E-05 82 8.281E-05 82 8.28E-05
67 90.4501 92 2.40219001 93 6.50199 93 6.50199
68 67.7722 68 0.05189284 68 0.0518928 68 0.051893
69 55.1578 51 17.28730084 51 17.287301 53 4.656101
70 48.9422 49 0.00334084 51 4.2345408 52 9.350141
71 72.2161 69 10.34329921 69 10.343299 71 1.478899
72 9.3478 6 11.20776484 6 11.207765 9 0.120965
73 58.4323 57 2.05148329 59 0.3222833 55 11.78068
74 43.0613 41 4.24895769 44 0.8811577 44 0.881158
75 83.4535 85 2.39166225 84 0.2986622 84 0.298662
76 36.603 36 0.363609 37 0.157609 37 0.157609
77 62.1854 62 0.03437316 63 0.6635732 61 1.405173
78 35.95 37 1.1025 38 4.2025 39 9.3025
79 19.0096 18 1.01929216 21 3.9616922 21 3.961692
80 43.6985 46 5.29690225 43 0.4879023 43 0.487902
81 91.0723 89 4.29442729 90 1.1498273 91 0.005227
82 59.0882 56 9.53697924 59 0.0077792 55 16.71338
83 20.4244 18 5.87771536 20 0.1801154 19 2.028915
84 21.1371 20 1.29299641 20 1.2929964 22 0.744596
85 22.4228 24 2.48755984 23 0.3331598 23 0.33316
86 76.4812 69 55.96835344 72 20.081153 72 20.08115
87 75.7599 73 7.61704801 80 17.978448 76 0.057648
88 51.1806 52 0.67141636 52 0.6714164 52 0.671416
89 31.3206 32 0.46158436 33 2.8203844 36 21.89678
90 44.9818 42 8.89113124 44 0.9639312 45 0.000331
91 14.1838 13 1.40138244 13 1.4013824 14 0.033782
92 76.3524 68 69.76258576 69 54.057786 73 11.23859
93 70.1111 70 0.01234321 70 0.0123432 68 4.456743
94 93.5851 93 0.34234201 93 0.342342 94 0.172142
95 100.021 99 1.042441 96 16.168441 96 16.16844
96 66.6209 68 1.90191681 68 1.9019168 55 135.0453
97 66.4395 64 5.95116025 68 2.4351603 71 20.79816
98 30.4381 28 5.94433161 28 5.9443316 27 11.82053
99 63.9333 61 8.60424889 68 16.538049 65 1.137849
100 81.824 80 3.326976 81 0.678976 83 1.382976
Avg 
SSE   76.90774632  86.710212  34.30228
Avg 
SSE 

exclude 
dataset 

2   13.84850125  15.467457  9.901764
 

Table 3.10: Comparison of predictive accuracies over 100 datasets 
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Discussion 

 
We have introduced a new method for linkage disequilibrium mapping known as 

LinkageTracker. We compared LinkageTracker with some leading methods in linkage 

disequilibrium mapping. Experimental results show that LinkageTracker is highly 

accurate in both simulation-generated and real genetic datasets when compared to other 

methods.  However, LinkageTracker is not superlative since HapMiner is faster in 

processing when compared to LinkageTracker. The predictive accuracies of HapMiner is 

very sensitive to its parameter values, and hence may not be the most efficient method to 

use when the user do not have sufficient knowledge to set the parameters. GeneRecon 

shows good predictive accuracies that are comparable to LinkageTracker. However, 

GeneRecon is very slow in processing that it requires hours to run a dataset with 23 

markers and 100 samples. Furthermore, GeneRecon is not able to work on microsatellite 

makers with more than two alleles. The overall performance of LinkageTracker is 

promising as it provides good predictive accuracies while taking a reasonably short 

processing time, and also it is easy to use since it does not require the setting of complex 

parameters. The main weakness of LinkageTracker is that it is not able to use additional 

information such as genealogy of the haplotypes to improve performance when the 

additional information is available.  
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Chapter 4 

 

ECTracker – Haplotype Analysis and Classification 

 

 

Introduction 

 

 
This chapter explores data mining methods that are capable of performing genetic 

analysis and carrier detection. Intuitively expressive patterns (or genetic variations) are 

extracted to provide insights about the genetic manifestations of patients affected by a 

disease. The extracted patterns are subsequently used for predictive inference (or 

classification) to help in carrier detection. In this chapter, we propose a new method 

known as ECTracker for pattern extraction and classification, and applied our algorithm 

on three real biological datasets. The first biological dataset consists of haplotypes of 

patients affected by hemophilia A from Singapore, and a set of matching unaffected 

control individuals [16]. The second and third datasets are Cystic Fibrosis and Friedreich 

Ataxia that are also used in the previous chapter for the finding of disease gene location. 

The performance of ECTracker in terms of expressiveness of patterns and predictive 

accuracies are compared to some leading methods in machine learning including C4.5, 

Naïve Bayesian Method, Artificial Neural Network, Support Vector Machine, K-Nearest 

Neighbor, Bagging (with Naïve Bayesian as base). 
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ECTracker 
 

There are mainly two steps in the ECTracker. The first step finds all interesting 

patterns and the second step performs classification using those interesting patterns found 

in the first step. The basic idea of the ECTracker algorithm is to first derive all high 

precedence patterns for analysis, then, subsequently use the same high precedence 

patterns as a classifier.   

 

4.2.1 Step 1 – Finding of Interesting Patterns 
 

In the first step of ECTracker, we derive two sets of high precedence patterns; the 

first set pertaining to the disease samples and the second set pertaining to the 

normal/control samples. The algorithm for the finding of interesting patterns for this step 

is the same as the algorithm in Section 3.3.2.1 for the finding of linkage disequilibrium 

patterns. In other words, a level-wise neighborhood search method is used to find all 

significant patterns and the search is guided by the statistical odds ratio scores.   
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4.2.2 Step 2 – Predictive Inference or Classification 
 

This section presents the algorithm for predictive inference using the patterns 

derived from the previous step. Before presenting the algorithm, let us define the order of 

precedence of the derived patterns. This is used in selecting patterns for our classifier. 

Definition: Given two patterns, ri and rj, ri >> rj (also called ri precedes rj or ri 

has a higher precedence than rj) if 

1. The p-value of ri is less than that of rj, the smaller the p-value of a pattern the 

greater the statistical significance of that pattern. 

2. Both patterns having the same p-values and ri ⊂ rj, the pattern length of ri is 

shorter than that of rj. The pattern with shorter pattern length that can correctly classify 

an unseen case is preferred. 

3. Both patterns having the same p-values and ri ⊄ rj, but ri is generated earlier 

than rj. 

 

Let Rd be the set of patterns pertaining to the disease samples and Rc be the set of 

patterns pertaining to the normal/control samples derived in step 1. The basic idea of the 

algorithm is to choose a set of high precedence patterns in Rd and a set of high 

precedence patterns in Rc as our classifier.  

Let R = Rd ∪ Rc and D be the training data used to derive R, our classifier is of the 

following format: <r1, r2, …, rn>, <v1, v2, …, vm>, <default_class>, where ri ∈ Rd, ra >> 

rb if b > a, vi ∈ Rc, va >> vb if b > a. The default_class is the chosen class for an unseen 
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case when no patterns in the classifier could classify the unseen case. The default_class 

can be specified by the user. However, if the user decides to let our classifier to select the 

default_class, then the majority class in the data D will be chosen as the default_class.  

We shall now describe the algorithm for building our classifier. It consists of five 

steps: 

Step 1: Generate patterns Rd and Rc with a given p-value pv. 

Step 2: Sort the generated patterns in Rd and Rc according to the relation “>>”. 

This is to ensure that we choose the highest precedence patterns for our classifier. 

Step 3: For each pattern r in sorted Rd and for each pattern v in the sorted Rc, if 

there exists another pattern r’ (or v’) such that the p-values of both r and r’ (or v and v’) 

are the same, and r’ ⊂ r (or v’ ⊂ v), then remove r (or v) from sorted Rd (or Rc).  This 

ensures that we choose the pattern with the shortest pattern length for each p-value. The 

top pattern set ℜ for classification is formed with the remaining sorted sequence. 

Step 4: Perform classification on the training data D using pattern classifier ℜ and 

compute the true positive rate of the prediction. 

Step 5: If the true positive rate is less than the user defined minimum true positive 

rate, then repeat Step 1 thru Step 4 using a different p-value pv  to generate Rd and Rc.   

        

We now describe the classification phase of Step 4 in greater details. In 

classifying an unseen case, the first top pattern/rule that matches the case perfectly will 

classify it. Given an unseen case a and a rule r ∈ Rd, r is said to be the perfect match of 
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case a if and only if a = r, this means that if r is a proper subset of a and the length of r is 

less than the length of a, then it is not a perfect match. In the case, when an unseen case a 

matches a top rule from Rd perfectly and also matches a top rule from Rc perfectly, then a 

will be classified as belonging to class Rd.  If there is no pattern that perfectly matches the 

case, a scoring method will be used for each of the classes, the class with the highest 

score classifies the case. However, if the scoring method produces the same score for 

each of the available classes, then the unseen case will take on the default class. Figure 4-

1 shows the pseudo code for scoring the classes given an unknown case pattern that does 

not match perfectly to any of the top patterns/rules. 

 
1. Given an unknown case pattern A = (a1, …., ak) 
2. Given a set of top rules Rx ∈ ℜ that classify class Cx, Rx = {r1,….,rn} 
3. Given a set of top rules Ry ∈ ℜ that classify class Cy, Ry = {r’1,….,r’m} 
4. For each item ai ∈ A do 
5.        For each rule  rj ∈ Rx  do 

6.              
⎩
⎨
⎧

=
∈=
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              where max|r| is the maximum length of rules in Rx 
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where max|r’| is the maximum length of rules in Ry 
10.        End 
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12. End 

Figure 4.1: Pseudo code for computing score of each class 
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The Hemophilia Dataset 

 
Hemophilia A is an X-linked recessive bleeding disorder that results from 

deficiency and/or abnormality of coagulation factor VIII (FVIII) [ref]. The FVIII gene 

spans 186 kb of DNA and resides on 0.1% of the X chromosome (band Xq28). A set of 

five common PCR-based polymorphisms located on chromosome Xq28 which tags the 

hemophilia A disease gene were collected and analyzed from 47 patients and 47 matched 

normal controls. The five polymorphisms collected are two microsatellite repeats in 

introns 13 and 22, and three RFLPs namely BclI-intron 18, HindIII-intron 19, and XbaI-

intron 22, the exact location of the markers are shown in Figure 4.2.  

 

In the next section, we describe the allelic frequencies of Factor VIII gene 

observed in our local population and the allelic frequencies reported by the authoritative 

resource website [96] for hemophilia A disease. The reporting of the allelic frequencies 

of our local population is useful for other medical practitioners not located in Singapore 

to decide whether they could make use of our discovery of the genetic variations for 

prognosis and counseling of their patients.  

Intron 13 
(CA)n 

Intron 18 
BclI 

Intron 19 
HindIII 

Intron 22 
XbaI 

Intron 22 
(GT)n(AG)n 

Figure 4.2: Factor VIII Gene 
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4.3.1 Allelic Frequencies 

 

 
The allelic frequencies observed in this study and those reported by Hemophilia A 

Mutation, Structure, Test and Resources Site [96] are tabulated in Tables 4.1, 4.2, and 

4.3. Our results for BclI, HindIII, and Intron-13(CA)n are significantly similar to those 

reported in [96] with χ2 < 3.841 (at 1 degree of freedom, and p-value>0.05) for BclI and 

HindIII, and χ2 < 12.59 (at 6 degree of freedom, p-value>0.05) for Intron-13(CA)n, they 

are all within 95% confidence interval. However, the frequencies for XbaI and 

Intron22(GT)n(AG)n are significantly different from those reported by [96] with χ2 > 

3.841 (at 1 degree of freedom, and p-value < 0.05) for XbaI and χ2 > 12.59 (at 6 degree 

of freedom, p-value<0.05) for Intron22(GT)n(AG)n.  

Allele Frequencies 

24 23 22 21 20 19 15 Intron 13 (CA)n Repeats

1 2 3 4 5 6 10 

This Study 0.01 0.10 0.06 0.26 0.52 0.04 0.01 

Reported by [35] 0.013 0.05 0.11 0.29 0.45 0.07 0 

Table 4.2: Allelic Frequencies of Intron 13 (CA)n Repeats 
 

Allele Frequencies 
(This Study) 

Allele Frequencies 
(Reported by [35]) 

(-) (+) (-) (+) RFLPs 

1 2 1 2 
BclI 0.22 0.78 0.29 0.71 
HindIII 0.78 0.22 0.75 0.25 
XbaI 0.56 0.44 0.41 0.59 

Table 4.1: Allelic Frequencies of RFLPs 
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It is observed that samples with BclI-intron 18 allele 1 are always associated with 

HindIII-intron 19 allele 2 with χ2 p-value < 0.001. The observation is expected as there is 

reported linkage disequilibrium between BclI and HindIII alleles from literature such as 

Ahrens et al. [97] and EL-Maarri et al. [98]. The HindIII marker is thus excluded since 

BclI and HindIII are in linkage disequilibrium, we could easily predict the value of the 

other attribute base on the value of one attribute, and hence 4 markers are sufficient in the 

analysis.  

Furthermore, it is found that 70% of the samples have exactly the same allele 

values in all the markers in both patient and normal controls. This means that the 5 

markers/attributes in the dataset are insufficient for separating 70% of the samples. After 

removing those samples whose disease and normal haplotypes cannot be distinguished, 

there are 28 samples remaining – 18 samples belonging to the disease phenotype and 10 

samples belonging to the normal/control phenotype. Tables 4.4 and 4.5 show the 

frequencies of the disease and normal/control haplotypes respectively. 

Allele Frequencies 

31 30 29 28 27 26 25 
Intron 22 

(GT)n/(AG)n 
Repeats 

1 2 3 4 5 6 7 

This Study 0.01 0.01 0.04 0.03 0.09 0.63 0.19 

Reported by [35] 0 0 0 0.013 0 0.667 0.307 

Table 4.3: Allelic Frequencies of Intron 22 (GT)n/(AG)n Repeats 
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For descriptive analysis, we report on the expressive and interesting patterns 

extracted from the remaining 30% of the dataset, detailed description is given in Section 

4.4.  

For classification or predictive analysis, we divide out experiment into two parts. 

In the first part we assess the accuracies of the five classifiers based on the full 

hemophilia dataset. This part of the experiment further elaborated in Section 4.5.1. In the 

second part of the experiment, we concentrate our study on the 30% of the dataset where 

those samples whose disease and normal haplotypes cannot be distinguished are 

removed. The details are presented in Section 4.5.2. 

Marker Disease Haplotypes Total 
Intron-13 (CA)n 3 4 4 4 4 4 5 5 5 5 10 

BclI 1 2 2 2 2 1 2 2 2 1 2 
XbaI 1 1 1 2 2 1 2 1 2 1 1 

Intron-22 (GT)n/(AG)n 3 1 3 3 5 7 2 4 5 6 6 

 

No. of Probands 1 1 2 1 1 6 1 2 1 1 1 18 

Table 4.4: Haplotype Frequencies of Probands with Disease Phenotype 
 
 

Markers Normal/Control Haplotypes Total 
Intron-13 (CA)n 1 2 2 3 3 4 4 5 6 

BclI 1 1 2 1 1 2 2 2 2 
XbaI 1 1 2 1 1 1 1 1 2 

Intron-22 (GT)n/(AG)n 7 5 6 5 7 4 5 7 6 

 

No. of Probands 1 1 1 1 2 1 1 1 1 10 

Table 4.5: Haplotype Frequencies of Probands with Normal/Control Phenotype 
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4.4 Descriptive Analysis – Interesting Pattern Extraction 
 

In order to facilitate haplotype or genetic variations analysis, it is required that the 

data mining method be capable of generating a set of patterns or haplotypes (or genetic 

variations) such that the patterns are highly associated with the disease phenotype. 

Haplotype analysis is very useful in providing rapid information for genetic counseling.  

Among the popular machine learning methods mentioned earlier in the introduction 

section, only C4.5 is capable of producing descriptive patterns for haplotype analysis, so 

we compare ECTracker with it for descriptive analysis. 

 

4.4.1 Expressive patterns derived by C4.5 
 

C4.5 deduced that haplotype patterns (or genetic variations) of 4−*−*−*, 5−*−*−

*, or 10−*−*−* (Intron13(CA)n−BclI−XbaI−Intron22(GT)n(AG)n) are highly associated 

with the disease phenotype. This derivation is not very useful as we can see from Table 

4.5 that there are 3 probands with normal/control phenotype having intron-13 (CA)n 

allele values 4 and 5. Furthermore allele value 10 in intron-13 (CA)n only occurs once in 

the proband with disease phenotype (from Table 4.4). Hence it is not able to give a 

generalize conclusion based only on allele value 10 of intron-13 (CA)n. 

The possible reason for such deduction of C4.5 may be due to the problem that 

the dataset is very small, and as a result the selection for partitioning attribute becomes 

bias for those attributes with more attribute values. Hence attributes with more attribute 
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values will be assigned higher information gain as compared to attributes with less 

attribute values.    

4.4.2 Expressive patterns derived by ECTracker 
 

As described in the earlier section of this chapter, the smaller the p-value of a 

pattern the higher the statistical significance of that pattern. Among the set of patterns 

derived by ECTracker, we select those patterns with the smallest p-value (i.e. most 

significant). There can be several patterns with the same lowest p-value, and we call these 

patterns the most significant patterns.   

The longest most significant pattern associated with the disease phenotype 

derived by ECTracker is 4−1−1−7 (Intron13(CA)n−BclI−XbaI−Intron22(GT)n(AG)n). 

This is an interesting observation as the haplotype occurs in 33.3% of the disease 

phenotype and 0% of the normal/control phenotype with χ2 > 3.841, which means that 

such observation occurs significantly greater than by chance. From Table 4.4, the 

haplotype occurs in 6 probands with disease phenotype as compare to other haplotypes 

which occur in no more than 2 probands. The shortest most significant patterns derived 

by ECTracker are 4−*−*−7 or 4−1−*−*.  This means that two markers alone are 

sufficient to define the disease haplotype. However, the longest most significant pattern 

provides a useful insight for the medical practitioners or scientists who seek to better 

understand the genetic variations of the disease.   

This experiment shows that ECTracker is capable of deriving useful patterns even 

when the dataset is very small. As we could see that C4.5 is not able to handle such small 

dataset very well. 
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4.5 Predictive Analysis – Classification of the Hemophilia A 
Dataset 

 

There are a total of 94 records in the hemophilia dataset, 47 records belonging to 

the class patient and 47 records belonging to the class normal. The classification methods 

that we use include C4.5, Naïve Bayesian Classifier, Neural Network, Support Vector 

Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian) and ECTracker. Except 

for ECTracker, all the other six classification algorithms are applied from WEKA. 

WEKA is an open source data mining and machine learning software [99]. 

 

4.5.1 Classification Based on Full Hemophilia Dataset 
 

All the classifiers are evaluated using 5-fold cross-validation method. Table 4.6 

below shows the performance of various classifiers including their respective precision 

and recall. Precision is defined as the proportion of instances that are correctly classified 

among all the instances that are predicted to be belonging to a particular class. Recall 

(which is the same as True Positive Rate) is the proportion of instances that are correctly 

classified among the all instances that are actually belonging to a class.   

One of the possible settings of C4.5 in WEKA is the minimum number of 

instance per leave. The default value of this setting is 2. When we perform classification 

using the default settings for C4.5, 61.7% of the instances are classified correctly. 
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However, when we change the setting of the minimum number of instance per leave to 1, 

the accuracy improved by about 2%, i.e. from 61.7% improve to 63.8%. 

Naïve Bayesian Classifier is the simplest classifier in WEKA as it does not 

require setting of any parameters. The predictive accuracy of Naïve Bayesian classifier is 

not as good as C4.5. 

For Artificial Neural Network, some of the parameter settings in WEKA include 

the number of hidden layers, the number of epochs to train through, and the amount the 

weights are updated. We vary the number of hidden layers from 0 to 22 (i.e. number of 

attribute values + classes), and found that 2 hidden layers (i.e. number of classes) 

produces a classifier with the highest accuracy. When we vary the number of epochs to 

train from 500 to 1000, there is no change in the accuracy of the classifier. Next we vary 

the amount of the weights to update from 0.1 to 0.9, and we find that values from 0.4 to 

0.6 produce the best accuracy of 54.26%. 

Some of the parameter settings for Support Vector Machine include filterType 

which determines how the data will be transformed, exponent which determines the 

degree of the polynomial kernel, RBF kernel, and gamma which is a parameter setting for 

RBF kernel. There are three choices to the parameter filterType. The first choice is not to 

transform the data, second choice is to normalize the data, and third choice is to 

standardize the data. All three choices produce the same accuracy of 61.7%. Next we 

vary the degree of polynomial kernel from 1 to 4. The best result they produce is 61.7%. 

After that, we used RBF kernel varying the gamma from 0.01 to 0.1. The best result is 

63.8%. 
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For K-Nearest Neighbor method, we vary the number of neighbors from 1 to 50, 

used different distance weighting function, and used normalized and non-normalized 

settings. The best result that we could obtain for the K-Nearest Neighbor method is 

64.9%. 

 For Bagging with Naïve Bayesian method as the base classifier, we vary the size 

of each bag from 10% to 100%, and vary the number of iterations from 10 to 1000. The 

best result obtained is about 62.3%. We also tried using KNN as the base classifier since 

it produces good results as a single classifier. However, the results are similar to that of 

using Naïve Bayesian method as the base classifier. 

 For ECTracker, we vary the odds ratio p-values from 0.05 to 0.35 in training our 

classifier. It was found that a p-value of less than or equal to 0.2, which is within the 80% 

confidence interval produces the best classification results.  As discussed previously in 

Section 4.3.1, 70% of the samples have exactly the same allele values in all the markers 

in both patient and normal controls. Hence when we set the p-value to a higher 

confidence interval such as within 95% confidence interval, no significant odds ratio 

patterns is found. The classification accuracy for ECTracker is 65.96%. As we can see 

from Table 4.6, ECTracker has the highest accuracy compared to all the other classifiers. 
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4.5.2 Classification Based on the Pruned Hemophilia Dataset 
 

As described in the earlier section of this chapter, the dataset is insufficient to 

separate 70% of the samples.  Hence in this section we concentrate our study on the 

remaining 30% of the samples. There are 28 samples remaining after removing those 

indistinguishable samples – 18 samples belonging to the disease phenotype and 10 

samples belonging to the normal/control phenotype.   

 

   

Instances 
Correctly 
predicted 

Instances 
Incorrectly 
Predicted Accuracy

Precision 
for Class 
Patient 

Recall 
for 
Class 
Patient

Precision 
for Class 
Normal 

Recall 
for 
Class 
Normal

C4.5 60 34 63.83% 0.641 0.702 0.654 0.582 

Naïve 
Bayesian 
Network 

54 40 57.45% 0.585 0.524 0.576 0.627 

Artificial 
Neural 
Network 

51 43 54.26% 0.564 0.573 0.470 0.509 

Support 
Vector 
Machine 

60 34 63.83% 0.642 0.682 0.649 0.662 

KNN 61 33 64.89% 0.659 0.640 0.650 0.665 

Bagging 59 35 62.28% 0.659 0.636 0.625 0.627 

ECTracker 62 32 65.96% 0.669 0.724 0.680 0.604 

Table 4.6: Analysis of classifiers based on full hemophilia dataset 
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Similar to our previous analysis on the full hemophilia dataset, the classifiers used 

include C4.5, Naïve Bayesian Classifier, Artificial Neural Network, Support Vector 

Machine, K-Nearest Neighbor, Bagging, and ECTracker. However, we used the leave-

one-out evaluation method rather than the 5-fold cross-validation method in this analysis. 

This is because we now have a smaller dataset and the leave-one-out evaluation method 

allows more data to be used for training the classifiers.  

Table 4.7 shows the performance of various classifiers. We vary the parameter 

settings for the classifiers in a similar way as we did when we classified the full 

hemophilia dataset. Only the best results of the classifiers are shown in Table 4.7. 

 

 

 

Instances 
Correctly 
Predicted 

Instances 
Incorrectly 
Predicted Accuracy 

Precision 
of Class 
Patient 

Recall 
for 
Class 
Patient 

Precision 
for Class 
Normal 

Recall 
for 
Class 
Normal 

C4.5 20 8 71.43% 0.708 0.944 0.75 0.3 

Naïve 
Bayesian 
Network 

18 10 64.29% 0.70 0.778 0.5 0.4 

Artificial 
Neural 
Network 

22 6 78.57% 0.833 0.833 0.7 0.7 

Support 
Vector 
Machine 

20 8 71.43% 0.75 0.833 0.625 0.5 

KNN 23 5 82.14% 0.81 0.944 0.857 0.6 

Bagging 18 10 64.29% 0.682 0.833 0.5 0.3 

ECTracker 24 4 85.71% 0.818 1.0 1.0 0.6 

 
Table 4.7: Analysis of classifiers based on pruned hemophilia dataset 
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From Table 4.7, we find that all classifiers show improvement in performance 

after we remove the indistinguishable samples. The classifier that gives the highest 

accuracy is ECTracker with 85.71% predictive accuracy, and is followed by K-Nearest 

Neighbor with 82.14% predictive accuracy. 

Next, we build the same set of classifiers listed in Table 4.7 with the pruned 

hemophilia dataset. The 70% of the inseparable samples that were being pruned earlier is 

used as the test dataset for the classifiers. Table 4.8 shows the performance of the various 

classifiers. ECTracker has the highest predictive accuracy. 

 

 

Instances 
Correctly 
Predicted 

Instances 
Incorrectly 
Predicted Accuracy 

Precision 
of Class 
Patient 

Recall 
for 
Class 
Patient 

Precision 
for Class 
Normal 

Recall 
for 
Class 
Normal 

C4.5 29 37 43.94% 0.426 0.793 0.5 0.162 

Naïve 
Bayesian 
Network 

29 37 43.94% 0.426 0.793 0.5 0.162 

Artificial 
Neural 
Network 

29 37 43.94% 0.423 0.759 0.5 0.189 

Support 
Vector 
Machine 

29 37 43.94% 0.426 0.793 0.5 0.162 

KNN 29 37 43.94% 0.435 0.931 0.5 0.054 

Bagging 29 37 43.94% 0.426 0.793 0.5 0.162 

ECTracker 36 30 54.55% 0.606 0.55 0.485 0.54 

 
Table 4.8: Classification models built using pruned hemophilia dataset and 

tested on the 70% inseparable data  
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Since there are substantial amount of inseparable instances (66 instances in total) 

in the hemophilia dataset, we further modify the ECTracker algorithm to classify new 

unseen cases to a third class call Unknown if the cases are almost indistinguishable from 

those in the Patient and Normal classes. We modify Step 4 of the ECTracker algorithm 

(refer to Section 4.2.2). Given a new unseen case u, let Spatient be the score of u for class 

Patient and Snormal be the score of u for class Normal. The original ECTracker will assign 

u as belonging to class Patient if Spatient > Snormal and u to class Normal otherwise. The 

new modified ECTracker will assign the new unseen case u as belonging to class Patient 

if Spatient > x*Snormal and assign u to class Normal if x*Spatient < Snormal, otherwise u will be 

assigned to class Unknown.  

Table 4.9 shows the predictions of the modified ECTracker on the pruned 

hemophilia dataset and on the inseparable hemophilia dataset. As we can see that when 

x=1.5 it maximizes the number of correct prediction on the pruned dataset and also 

maximizes the prediction of the inseparable instances to the Unknown class.   

 Instances from the pruned hemophilia 
dataset (28 instances in total) 

Inseparable instances from 
the hemophilia dataset (66 

instances in total) 

x 
Instances 
correctly 
predicted 

Instances 
incorrectly 
predicted 

Instances 
predicted as 

unknown 

Instances predicted as 
Unknown 

1.2 18 7 3 22 
1.25 18 5 5 22 
1.3 18 5 5 22 
1.35 18 4 6 25 
1.4 18 4 6 25 
1.45 17 3 8 51 
1.5 17 2 9 53 
1.55 16 2 10 53 
1.6 16 2 10 53 
1.65 16 2 10 53 

Table 4.9: Predictive accuracy of modified ECTracker  
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4.5.3 Classification Based on Cystic Fibrosis and Friedreich Ataxia 
Dataset 

 

Finally we compared the predictive accuracies of the various machine learning 

methods (i.e. C4.5, Naïve Bayesian Method, Artificial Neural Network, Support Vector 

Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian as base) and ECTracker)  

when applied to the Cystic Fibrosis and Friedreich Ataxia datasets. Tables 4.10 and 4.11 

show the predictive accuracies. ECTracker has the highest predictive accuracy for Cystic 

Fibrosis dataset, whereas Support Vector Machine has the highest predictive accuracy for 

Friedreich Ataxia dataset.  

 

Instances 
Correctly 
Predicted 

Instances 
Incorrectly 
Predicted Accuracy 

Precision 
of Class 
Patient 

Recall 
for 
Class 
Patient 

Precision 
for Class 
Normal 

Recall 
for 
Class 
Normal 

C4.5 124 56 68.89% 0.65 0.711 0.725 0.667 

Naïve 
Bayesian 
Network 

132 48 73.33% 0.720 0.778 0.825 0.689 

Artificial 
Neural 
Network 

127 53 70.56% 0.631 0.778 0.824 0.633 

Support 
Vector 
Machine 

123 57 68.33% 0.615 0.722 0.782 0.644 

KNN 123 57 68.33% 0.716 0.744 0.759 0.622 

Bagging 131 49 72.78% 0.700 0.789 0.821 0.667 

ECTracker 145 35 80.56% 0.799 0.856 0.833 0.756 

 
Table 4.10: Classification accuracies when applied to Cystic Fibrosis dataset 
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Instances 
Correctly 
Predicted 

Instances 
Incorrectly 
Predicted Accuracy 

Precision 
of Class 
Patient 

Recall 
for 
Class 
Patient 

Precision 
for Class 
Normal 

Recall 
for 
Class 
Normal 

C4.5 87 33 72.50% 0.737 0.691 0.763 0.754 

Naïve 
Bayesian 
Network 

86 34 71.67% 0.658 0.818 0.809 0.631 

Artificial 
Neural 
Network 

74 46 61.67% 0.589 0.581 0.645 0.646 

Support 
Vector 
Machine 

88 32 73.33% 0.714 0.727 0.763 0.738 

KNN 74 46 61.67% 0.577 0.618 0.659 0.615 

Bagging 82 38 68.33% 0.629 0.800 0.795 0.585 

ECTracker 75 45 62.5% 0.629 0.800 0.808 0.509 

 
Table 4.11: Classification models built using Friedreich Ataxia dataset  

 
 

4.6 Discussion 
 

In this work, we re-examined the issues of descriptive and predictive analyses 

using our proposed method called ECTracker. In descriptive analysis, ECTracker is 

capable of extracting comprehensible and useful patterns from the hemophilia A dataset 

to facilitate haplotype analysis by medical practitioners. On the other hand, the patterns 

derived by C4.5 used only intron-13 (CA)n for prediction and this derivation is not very 

useful as described in Section 4.4.1. The main reason for the poor performance of C4.5 is 
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that the pruned hemophilia A dataset is very small. From this experimental result we 

show that ECTracker is capable of extracting useful patterns even when the dataset is 

very small. 

In classification of hemophilia A dataset, ECTracker performed slightly better 

than the rest of the other classifiers (i.e. C4.5, Naïve Bayesian Method, Artificial Neural 

Network, Support Vector Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian 

as base) ) on both un-pruned and pruned hemophilia A datasets, as shown in Tables 4.6 

and 4.7. 70% of the inseparable data (or records) from the original hemophilia A dataset 

was removed to form the pruned dataset. Experiment was performed where the classifiers 

were built using the pruned dataset and tested using the 70% of the inseparable data. 

Table 4.8 shows the predictive accuracies when the classifiers are applied to the 70% 

inseparable data. ECTracker outperformed the rest of the classifiers by about 10% higher 

in predictive accuracy. 

In classification of Cystic Fibrosis dataset, ECTracker outperformed the rest of 

the classifiers with about 10% higher in predictive accuracy as shown in Table 4.10. 

Furthermore the precision and recall values of ECTracker for both patient and normal 

class are also the highest among the classifiers.  

In classification of Friedreich Ataxia dataset, Support Vector Machine has the 

highest predictive accuracy with about 10% higher in predictive accuracy compared to 

the rest of the algorithms (refer to table 4.11). However, the recall value of patient class 

for ECTracker and the precision value of normal class for ECTracker are both higher than 

Support Vector Machine. This means that ECTracker has lower false negative rate and 

higher false positive rate than Support Vector Machine on the Friedreich Ataxia dataset. 
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Some possible reasons for this are that there are 14 attribute values for each attribute in 

the Friedreich Ataxia dataset. During the training phase only 56 normal class data and 47 

patient class data were used. There were insufficient data to learn for each attribute value. 

Furthermore, the Friedreich Ataxia dataset is originally used for linkage disequilibrium 

mapping. As such, only the patient class data exhibits statistical dependencies among 

attributes that are close to the disease gene, whereas dependencies among attributes in the 

normal class data are very much random. However, the F-measure for Support Vector 

Machine is 0.3602 and the F-measure for ECTracker is 0.3521, suggesting that the 

overall performance difference on this dataset between the two methods is very small.   

In this work, we explored methods that are capable of extracting understandable 

and useful patterns, and also capable of performing inference on the patterns to make 

prediction. Through our experimental studies, we show that our proposed method 

ECTracker is capable of extracting useful patterns, and at the same time producing good 

predictive accuracies in classification that are comparable to the leading machine learning 

methods. 
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Chapter 5 

 

Conclusion 

 

5.1 Discussion 
 

This thesis focuses on the knowledge extraction from haplotypes. First, the 

problem of pattern extraction for linkage disequilibrium mapping was examined. The 

major challenge is on how to maximize the haplotype information extraction in the 

association mapping of complex diseases in case–control studies under extreme 

conditions;  in such conditions  the occurrence of samples with the mutation of interest is 

very low, and consists of errors or noise. We proposed a new method called 

LinkageTracker to address the problem. Extensive performance studies show that the 

predictive accuracies of LinkageTracker are consistently good under different conditions; 

from the extremely difficult condition where the samples with the mutation of interest is 

as low as 10% and with high noise level, to the easier condition where the samples with 

the mutation of interest is as high as 50%. Experimental results in Section 3.4.2 

elucidated the variation in predictive accuracies under different conditions for the various 

algorithms; LinkageTracker has low variations and with good predictive accuracies under 

all the different conditions. LinkageTracker and HapMiner have the best predictive 

accuracies in general. However, the variances in the sum-squared error of the predictions 

for HapMiner are higher than LinkageTracker for all the experiments. This means that 

LinkageTracker is more consistent in its predictions as compared to HapMiner when 
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applied to datasets with different conditions. Furthermore, the predictive accuracies of 

HapMiner with slightly modified parameter list are generally not as good when compared 

to all the other algorithms, which means that HapMiner’s performance is extremely 

sensitive to its parameter setting. However, HapMiner is the fastest algorithm among all 

the algorithms. GeneRecon is comparable with LinkageTracker in terms of predictive 

accuracies; however, the execution time of GeneRecon is orders of magnitude longer 

than LinkageTracker. Furthermore, GeneRecon only works on bi-allelic markers. The 

overall performance of LinkageTracker is promising as it provides consistently good 

predictive accuracies while taking reasonably short processing times, and also it is easy to 

use since it does not require the setting of complex parameters. 

Next, we examined methodologies capable of extracting useful and easily 

comprehensible patterns, and subsequently making use of the patterns extracted for 

classification. We proposed an algorithm called ECTracker to perform the tasks on 

haplotypes, to extract previously unknown, potentially useful and easily comprehensible 

haplotype patterns or genetic variations to provide insights about the genetic 

manifestations of diseases. The extracted patterns are subsequently used for classification 

to help in carrier detection. Extensive experiments were performed in comparing 

ECTracker with machine learning methods such as C4.5, Naïve Bayesian Method, 

Artificial Neural Network, Support Vector Machine, K-Nearest Neighbor, and Bagging 

(with Naïve Bayesian as base). Three real biological datasets were used in our 

experiments –namely the Hemophilia dataset, Cystic Fibrosis dataset and Friedreich 

Ataxia dataset. When comparing the expressiveness of patterns extracted with C4.5, we 

showed that ECTracker is capable of deriving more useful patterns when the dataset is 
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very small. In classification, ECTracker showed good performance in the Cystic Fibrosis 

dataset with the highest predictive accuracy, precision and recall compared to all the 

other methods.  In instances where ECTracker is not the algorithm with the highest 

predictive accuracy, ECTracker exhibits comparability to the algorithm with the highest 

predictive accuracy with very small difference in the F-measures between the two 

algorithms. Furthermore, ECTracker has an extra feature whereby it allows samples to be 

classified as unknown if the samples are almost indistinguishable from the defined 

classes.   

 
 

5.2 Future Research Directions 
 

For LinkageTracker, we have restricted the interestingness of patterns to be 

guided by statistical odds ratio, generalizing to other types of scoring methods is certainly 

a possible extension. LinkageTracker is easy to use as it does not require any population 

ancestry information about the disease and the genealogy of the haplotypes as input. On 

the other hand, the main weakness of LinkageTracker is that it is not able to make use of 

the extra information (such as population ancestry information about the disease and the 

genealogy of the haplotypes) to improve performance even when the extra information is 

available. Hence, the next possible task will be to study how LinkageTracker can be 

improved to accept extra information for the prediction process.  

For ECTracker, the predictive accuracy in the classification of Friedreich Ataxia 

dataset is not as good as some of the machine learning methods such as Support Vector 

Machine. However, it is observed that the recall for the class patient and the precision for 
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the class normal for ECTracker are both higher than Support Vector machine. This means 

that ECTracker is able to predict the patient class very well but not the normal class. And 

as in the discussion section of chapter 4, we mentioned that the possible reasons for such 

observations are that there are 14 attribute values to each attribute in the Friedreich 

Ataxia dataset, and there are insufficient data to learn for each attribute value. Also, 

Friedreich Ataxia dataset is originally used for linkage disequilibrium mapping, which 

means that only the patient class data exhibits statistical dependencies among attributes 

that are close to the disease gene, whereas dependencies among attributes in the normal 

class data are random.  To improve the classification accuracies for datasets where only 

alleles within the disease chromosomes exhibit allelic associations that are higher than 

random chance and the allelic association within the normal chromosomes are equivalent 

to random chance, the finding of high precedence patterns pertaining only to the disease 

set may be worth exploring.  

 
 

 

 

 

 

 

 

 



88 

Bibliography 
 

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.: Morgan 
Kaufmann, 2006. 

 
[2] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, M. 

Herr, and J. Kere, "Data Mining Applied to Linkage Disequilibrium Mapping," 
American Journal of Human Genetics, pp. 133-145, 2000. 

 
[3] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, and J. 

Kere, "Gene Mapping by Haplotype Pattern Mining," in Proceedings of IEEE 
International Symposium on Bio-Informatics and Biomedical Engineering (BIBE), 
2001, pp. 99-108. 

 
[4] J. Li and T. Jiang, "Haplotype-based linkage disequilibrium mapping via direct 

data mining," Bioinformatics, vol. 21, pp. 4384-4393, 2005. 
 
[5] J. Liu, C. Sabatti, J. Teng, B. Keats, and N. Risch, "Bayesian Analysis of 

Haplotypes for Linkage Disequilibrium Mapping " Genome Research, vol. 11, pp. 
1716-1724, 2001. 

 
[6] X. Lu, T. Niu, and J. Liu, "Haplotype information and linkage disequilibrium 

mapping for single nucleotide polymorphisms," Genome Research, vol. 13, pp. 
2112-2117, 2003. 

 
[7] T. Mailund, M. H. Schierup, C. N. S. Pedersen, J. N. Madsen, J. Hein, and L. 

Schauser, "GeneRecon - A coalescent based tool for fine-scale association 
mapping," Bioinformatics, vol. 22, pp. 2317–2318, 2006. 

 
[8] J. Quinlan, C4.5: Programs for Machine Learning. San Mateo: Morgan 

Kaufmann, 1993. 
 
[9] P. Langley, W. Iba, and K. Thompson, "An Analysis of Bayesian Classifiers," in 

International Conference on Artificial Intelligence, 1992, pp. 223-228. 
 
[10] L. Fu, Neural Networks in Computer Intelligence: McGraw-Hill, 1994. 
 
[11] V. N. Vapnik, The Nature of Statistical Learning. New York: Springer, 1995. 
 
[12] D. Aha and D. Kibler, "Instance-based learning algorithms," Machine Learning, 

vol. 6, pp. 37-66, 1991. 



89 

 
[13] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996. 
 
[14] B. S. Kerem, J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, and A. 

Chakravarti, "Identification of the cystic fibrosis gene: genetic analysis," Science, 
vol. 245, pp. 1073-1080, 1989. 

 
[15] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "Mining of Correlated Rules in 

Genome Sequences," in Proceedings of the AMIA Conference, San Antonio, 
Texas, 2002. 

 
[16] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "Mining of Disease Associated 

Haplotype Patterns for Hemophilia A," in Asia-Pacific Conference on Human 
Genetics (HUGO) Biopolis , Singapore, 2004. 

 
[17] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "LinkageTracker: A Discriminative 

Pattern Tracking Approach to Linkage Disequilibrium Mapping," in Proceedings 
of the International Conference on Database Systems for Advanced Applications 
(DASFAA), Beijing - China, 2005, pp. 30-42. 

 
[18] L. Lin, L. Wong, T. Y. Leong, and L. P.S., "ECTracker – An Efficient Algorithm 

for Haplotype Analysis and Classification," in Proceedings of the 12th World 
Congress on Health (Medical) Informatics – Building Sustainable Health 
Systems, 2007, pp. 1270-1274  

 
[19] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus, "Knowledge Discovery in 

Databases: An Overview," AI Magazine, pp. 213-228, 1992. 
 
[20] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining: MIT Press, 2001. 
 
[21] R. Agrawal, H. Mannila, R. Srikant, H. Tiovonen, and A. I. Verkamo, "Fast 

Discovery of Association Rules," Advances in Knowledge Discovery and Data 
Mining, pp. 307-328, 1996. 

 
[22] D. W. Cheung, V. T. Ng, and Y. Fu, "Efficient Mining of Association Rules in 

Distributed Databases," in IEEE Transaction on Knowledge and Data 
Engineering, 1996, pp.911-922. 

 
[23] H. Mannila, H. Tiovonen, and I. Verkamo, "Efficient Algorithms for Discovering 

Association Rules," in AAAI Workshop on Knowledge Discovery in Databases, 
1994, pp. 181-192. 

 



90 

[24] A. Sarasere, E. Omiecinsky, and S. Navathe, "An Efficient Algorithm for Mining 
Association Rules in Large Databases," in International Conference on Very 
Large Databases (VLDB), 1995, pp. 432-444. 

 
[25] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules Between 

Sets of Items in Large Databases," in ACM SIGMOD International Conference on 
Managament of Data, Washington, 1993, pp. 207-216. 

 
[26] S. Brin, R. Motwani, and C. Silverstein, "Beyond Market Baskets: Generalizing 

Association Rules to Correlations," in ACM SIGMOD International Conference 
on Managament of Data, 1997, pp. 265-276. 

 
[27] C. Silverstein, S. Brin, and R. Motwani, "Beyond Market Baskets: Generalizing 

Association Rules to Dependence Rules," Data Mining & Knowledge Discovery, 
pp. 39-68, 1998. 

 
[28] C. C. Aggarwal and P. S. Yu, "A New Framework for Itemset Generation," in 

Proceedings of the PODS Conference, 1998. 
 
[29] P. Tan and V. Kumar, "Interestingness Measures for Association Patterns: A 

Perspective," Research Report  00-036 Computer Science and Engineering, 
University of Minnesota, Twin Cities Research Report  00-036, 2000. 

 
[30] H. Xiong, S. Shekhar, P. Tan, and V. Kumar, "Exploiting a Support-Based Upper 

Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly 
Correlated Pairs," in Proceedings of the Conference on Knowledge Discovery & 
Data Mining (KDD), 2004, pp. 334-343. 

 
[31] H. Xiong, S. Shekhar, P. Tan, and V. Kumar, "Taper: An Efficient Two-Step 

Approach for All-Pairs Correlation Query in Transaction Databases," Research 
Report 03-020, Computer Science and Engineering, University of Minnesota, 
Twin Cities 2003. 

 
[32] G. Dong and J. Li, "Efficient Mining of Emerging Patterns: Discovering Trends 

and Differences," in Proceedings of the Conference on Knowledge Discovery & 
Data Mining (KDD), 1999, pp. 43-52. 

 
[33] G. Dong, J. Li, and X. Zhang, "Discovering Jumping Emerging Patterns and 

Experiments on Real Datasets," in Proceedings of the International Database 
Conference on Heterogeneous and Internet Databases (IDC99), Hong Kong, 
1999, pp. 15-17. 

 



91 

[34] H. Li, J. Li, L. Wong, M. Feng, and Y. P. Tan, "Relative Risk and Odds Ratio: A 
Data Mining Perspective," in Proceedings of the PODS Conference, Baltimore, 
Maryland, 2005, pp. 368-377. 

 
[35] J. Li, X. Zhang, G. Dong, K. Ramamohanarao, and Q. Sun, "Efficient Mining of 

High Confidence Association Rules without Support Thresholds," in Proceedings 
of the PKDD Conference, 1999, pp. 406-411. 

 
[36] R. Agrawal and R. Srikant, "Fast Algorithm for Mining Association Rules," in 

Proccedings of the 20th International Conference on Very Large Databases, 
Santiago, Chile, 1994, pp. 487-499. 

 
[37] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering Frequent Closed 

Itemsets for Association Rules," in Proceedings of the 7th ICDT Conference, 
1999, pp. 398-416. 

 
[38] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Efficient Mining of 

Association Rules Using Closed Itemset Lattices," Information Systems, pp. 25-
46, 1999. 

 
[39] M. J. Zaki, "Mining Non-Redundant Association Rules," Data Mining and 

Knowledge Discovery, pp. 223-248, 2004. 
 
[40] M. J. Zaki and C. J. Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset 

Mining," in Proceedings of the SIAM International Conference on Data Mining, 
2002, pp. 457-473. 

 
[41] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate 

Generation," in ACM SIGMOD International Conference on Management of 
Data, 2000, pp. 1-12. 

 
[42] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns without Candidate 

Generation: A Frequent-Pattern Tree Approach," Data Mining & Knowledge 
Discovery, pp. 53-87, 2004. 

 
[43] B. Ganter and K. Reuter, "Finding All Closed Sets: A General Approach," in 

ORDER, 1991, pp. 283-290. 
 
[44] R. J. Bayardo, "Efficiently Mining Long Patterns from Databases," in ACM 

SIGMOD International Conference on Management of Data, 1998, pp. 85-93. 
 



92 

[45] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, "Depth First Generation of 
Long Patterns," in Proceedings of the ACM SIGKDD Conference, 2000, pp. 108-
118. 

 
[46] D. Burdick, M. Calimlim, and J. Gehrke, "MAFIA: A Maximal Frequent Itemset 

Algorithm for Transactional Databases," in Proceedings of ICDE, 2001, pp. 443-
452. 

 
[47] G. Yang, "The Complexity of Mining Maximal Frequent Itemsets and Maximal 

Frequent Patterns," in Proceedings of the Conference on Knowledge Discovery & 
Data Mining (KDD), 2004, pp. 344-353. 

 
[48] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal, "Mining Frequent 

Patterns with Counting Inference," ACM SIGKDD Explorations Newsletter, pp. 
66 - 75, 2000. 

 
[49] W. DuMouchel and D. Pregibon, "Empirical Bayes Screening for Multi-Item 

Associations," in Proceedings of the ACM SIGKDD Conference, 2001, pp. 67-76. 
 
[50] G. Grahne and J. Zhu, "Efficiently Using Prefix-Trees in Mining Frequent 

Itemsets," in FIMI'03 Workshop on Frequent Itemset Mining Implementations, 
2003. 

 
[51] R. Rymon, "Search Through Systematic Set Enumeration," in Proceedings of the 

International Conference on Principles of Knowledge Representation and 
Reasoning, 1992, pp. 81-93. 

 
[52] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, "CARPENTER: Finding 

Closed Patterns in Long Biological Datasets," in Proceedings of ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 
Washington, DC, USA, 2003, pp. 673-642. 

 
[53] S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn: Classification 

and Prediction Methods from Statistical, Neural Nets, Machine Learning, and 
Expert Systems, San Francisco: Morgan Kaufman, 1991. 

 
[54] D. Michie, D. Spiegelhalter, and C. Taylor., Machine Learning, Neural and 

Statistical Classification. New York: Ellis Horwood, 1994. 
 
[55] R. Rojas, Neural Networks: A Systematic Introduction: Springer-Verlag, 1996. 
 
[56] V. N. Vapnik, Statistical Learning Theory. New York: Wiley-Interscience, 1998. 
 



93 

[57] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: 
Cambridge University Press, 2000. 

 
[58] S. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel Methods: 

Support Vector Learning. Cambridge, MA: MIT Press, 1999. 
 
[59] P. H. Winston, Artificial Intelligence, 3 ed.: Addison-Wesley, 1992. 
 
[60] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression 

Trees. Belmont, CA: Wadsworth International Group, 1984. 
 
[61] J. Quinlan, "Induction of Decision Trees," Machine Learning, pp. 81-106, 1986. 
 
[62] J. R. Quinlan, "Simplifying Decision Trees," International Journal of Man-

Machine Studies, pp. 221-234, 1987. 
 
[63] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis: John Wiley 

& Sons, 1973. 
 
[64] P. Domingos and M. Pazzani, "On the Optimality of the Simple Bayesian 

Classifier Under Zero-One Loss," Machine Learning, 1997. 
 
[65] J. Pearl, "Bayesian networks: A model of self-activated memory for evidential 

reasoning," in Proceedings of the 7th Conference of the Cognitive Science 
Society, University of California, Irvine, 1985, pp. 329-334. 

 
[66] N. E. Morton, "Linkage Disequilibrium Maps and Association Mapping," Journal 

of Clinical Investigation, pp. 1425-1430, 2005. 
 
[67] N. Maniatis, A. Collins, C. F. Xu, L. C. McCarthy, D. R. Hewett, W. Tapper, S. 

Ennis, X. Ke, and N. E. Morton, "The First Linkage Disequilibrium (LD) Maps: 
Delineation of Hot and Cold Blocks by Diplotype Analysis," Proceedings of the 
National Academy of Sciences of the United States of America, pp. 2228-2233, 
2002. 

 
[68] A. Collins and N. E. Morton, "Mapping a Disease Locus by Allelic Association," 

Proceedings of the National Academy of Sciences of the United States of America, 
pp. 1741-1745, 1998. 

 
[69] J. Hastbacka, A. de-la-Chapelle, I. Kaitila, P. Sistonen, A. Weaver, and E. Lander, 

"Linkage Disequilibrium Mapping in Isolated Founder Populations: Diastrophic 
Dysplasia in Finland," Nature Genetics, pp. 204-211, 1992. 

 



94 

[70] L. Ozelius, P. Kramer, D. de-Leon, N. Risch, S. Bressman, and D. Schuback, 
"Strong Allelic Association Between the Torsion Dystonia Gene (DYT1) and 
Loci on Chromosome 9q34 in Ashkenazi Jews," American Journal of Human 
Genetics, pp. 619-628, 1992. 

 
[71] NCI, "National Cancer Institute. Cancer Facts 

http://cis.nci.nih.gov/fact/3_62.htm," 2002. 
 
[72] A. Beaudet, C. Scriver, W. Sly, and D. Valle, "Genetics, Biochemistry, and 

Molecular Basis of Variant Human Phenotypes," in The Metabolic and Molecular 
Basis of Inherited Disease, 7th ed, C. R. Scriver, A. L. Beaudet, and W. S. Sly, 
Eds. New York: McGraw-Hill Inc, 1995, pp. 2351-2369. 

 
[73] S. Malcolm, "Molecular Methodology," in Emery and Rimoin's Principles and 

Practice of Medical Genetics, 3rd ed, D. L. Rimoin, J. M. Connor, and R. E. 
Pyeritz, Eds. New York: Churchill Livingstone, 1997, pp. 67-86. 

 
[74] B. Rannala and J. Reeve, "High-Resolution Multipoint Linkage-Disequilibrium 

Mapping in the Context of a Human Genome Sequence," American Journal of 
Human Genetics, pp. 159-178, 2001. 

 
[75] J. Reeve and B. Rannala, "DMLE+: Bayesian Linkage Disequilibrium Gene 

Mapping," Bioinformatics, pp. 894-895, 2002. 
 
[76] D. Goldstein and M. Weale, "Population Genomics: Linkage Disequilibrium 

Holds the Key," Current Biology, pp. R576-R579, 2001. 
 
[77] M. Nordborg, "Coalescent theory," Handbook of Statistical Genetics, pp. 179–212 

2001. 
 
[78] C. Wiuf and P. Donnelly, "Conditional genealogies and the age of a neutral 

mutant," Theoretical Population Biology, vol. 56, pp. 183-201, 1999. 
 
[79] E. Pennisi, "A closer look at SNPs suggests difficulties," Science, vol. 281, p. 

17871789, 1998. 
 
[80] A. P. Morris, J. C. Whittaker, and D. J. Balding, "Fine-scale mapping of disease 

loci via shattered coalescent modeling of genealogies," The American Journal of 
Human Genetics, vol. 70, pp. 686–707, 2002. 

 
[81] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation 

of state calculations by fast computing machines," The Journal of Chemical 
Physics, vol. 21, pp. 1087-1092 1953. 



95 

 
[82] M. Ester, H. P. Kriegel, H. Sander, and X. Xu, "A density-based algorithm for 

discovering clusters in large spatial datasets with noise," in Proceedings of 
Knowledge Discovery in Data (KDD), 1996, pp. 226–231. 

 
[83] R. Fisher, Statistical Methods for Research Workers, 14th ed. New York: 

Hafner/MacMillan, 1970. 
 
[84] E. M. John, G. G. Schwartz, J. Koo, D. Van Den Berg, and S. A. Ingles, "Sun 

Exposure, Vitamin D Receptor Gene Polymorphisms, and Risk of Advanced 
Prostate Cancer," Cancer Research, pp. 5470-5479, 2005. 

 
[85] N. Le Moual, V. Siroux, I. Pin, F. Kaufmann, and S. M. Kennedy, "Asthma 

Severity and Exposure to Occupational Asthmagens," American Journal of 
Respiratory Critical Care Medicine, 2005. 

 
[86] D. Deheinzelin, M. T. Lourenco, C. L. Costa, and R. N. Younes, "The Level of 

Nicotine Dependence is an Independent Risk Factor for Cancer: A Case Control 
Study," Clinics, vol. 60, pp. 221-226, 2005. 

 
[87] S. K. Kachigan, Statistical Analysis: Radius Press, 1986. 
 
[88] J. A. Rice, Mathematical Statistics and Data Analysis: Wadsworth, 1993. 
 
[89] A. Tamhane and D. Dunlop, Statistics and Data Analysis: From Elementary to 

Intermediate: Prentice Hall, 2000. 
 
[90] L. Ott, An Introduction to Statistical Methods and Data Analysis. Massachussetts: 

PWS-Kent Publishing Company, 1988. 
 
[91] S. J. Theodorou, D. J. Theodorou, and Y. Kakitsubata, "Statistical Analysis in 

Clinical Studies: An Introduction to Fundamentals for Physicians," Internet 
Medical Journal, 2004. 

 
[92] J. Haldane, "The estimation and significance of the logarithm of a ratio of 

frequencies," Annals of Human Genetics, vol. 20, pp. 309-311, 1956. 
 
[93] A. Agresti, Categorical Data Analysis: Wiley, 2002. 
 
[94] A. Long and C. Langley, "The Power of Association Studies to Detect the 

Contribution of Candidate Genetic Loci to Variation in Complex Traits," Genome 
Research, vol. 9, pp. 720-731, 1999. 

 



96 

[95] A. Wright, A. Carothers, and M. Pirastu, "Population Choice in Mapping Genes 
for Complex Diseases," Nature Genetics, vol. 23, pp. 397-404, 1999. 

 
[96] HAMSTeRS, Haemophilia A Mutation, Structure, Test and Resource Site. 
 
[97] P. Ahrens, T. A. Kruse, M. Schwartz, P. B. Rasmussen, and N. Din, "A New 

HindIII Restriction Fragment Length Polymorphism in the Hemophilia A Locus," 
Human Genetics, vol. 76, pp. 127-128, 1987. 

 
[98] O. EL-Maarri, K. Kavakli, and H. Caglayan, "Intron 22 Inversions in the Turkish 

Haemophilia A Patients: Prevalence and Haplotype Analysis," Haemophilia, vol. 
5, pp. 169-173, 1999. 

 
[99] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and 

Techniques with Java Implementations: Morgan Kaufmann, 2000. 
 
 



97 

Appendix A 

 

Detail Experimental Results 

 

A.1 Cystic Fibrosis from Section 3.4.2.1  
 
Experimental Setting 1 

 
BLADE 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 1.5426 85.072 -0.6626 0.43904 
Set 2 0.88 1.2259 73.19 -0.3459 0.11965 
Set 3 0.88 1.3835 75.75 -0.5035 0.25351 
Set 4 0.88 0.1258 70.835 0.7542 0.56882 
Set 5 0.88 1.704 72.64 -0.824 0.67898 
   75.4974  0.412 

Table A.1.1: BLADE in Exp Setting 1 with 10% Founder Mutation  
 
 
At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.1053 77.965 0.7747 0.60016 
Set 2 0.88 0.1616 78.48 0.7184 0.5161 
Set 3 0.88 0.1886 73.74 0.6914 0.47803 
Set 4 0.88 0.7102 56.28 0.1698 0.02883 
Set 5 0.88 0.179 76.89 0.701 0.4914 
   72.671  0.42291 

Table A.1.2: BLADE in Exp Setting 1 with 20% Founder Mutation 
 
 
At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.6919 60.729 0.1881 0.03538 
Set 2 0.88 0.6828 61.845 0.1972 0.03889 
Set 3 0.88 0.7726 69.103 0.1074 0.01153 
Set 4 0.88 0.7503 63.724 0.1297 0.01682 
Set 5 0.88 0.7431 61.44 0.1369 0.01874 
   63.3682  0.02427 

Table A.1.3: BLADE in Exp Setting 1 with 30% Founder Mutation 
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At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7209 67.314 0.1591 0.02531 
Set 2 0.88 1.1344 84.11 -0.2544 0.06472 
Set 3 0.88 0.8151 70.97 0.0649 0.00421 
Set 4 0.88 0.8329 66.217 0.0471 0.00222 
Set 5 0.88 0.8107 71.27 0.0693 0.0048 
   71.9762  0.02025 

Table A.1.4: BLADE in Exp Setting 1 with 40% Founder Mutation 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8251 75.904 0.0549 0.00301 
Set 2 0.88 0.7959 76.33 0.0841 0.00707 
Set 3 0.88 0.9292 73.824 -0.0492 0.00242 
Set 4 0.88 0.9487 72.46 -0.0687 0.00472 
Set 5 0.88 0.7484 70.587 0.1316 0.01732 
   73.821  0.00691 

Table A.1.5: BLADE in Exp Setting 1 with 50% Founder Mutation 
 
 
 
HapMiner 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8598 2.501 0.0202 0.000408
Set 2 0.88 1.6298 2.483 -0.7498 0.5622
Set 3 0.88 0.8598 2.526 0.0202 0.000408
Set 4 0.88 0.8698 2.504 0.0102 0.000104
Set 5 0.88 0.8698 2.516 0.0102 0.000104
   2.506  0.1126448

Table A.1.6: HapMiner in Exp Setting 1 with 10% Founder Mutation 
 
 
At 20% Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8598 2.62 0.0202 0.000408
Set 2 0.88 0.5948 2.584 0.2852 0.081339
Set 3 0.88 0.6848 2.602 0.1952 0.038103
Set 4 0.88 0.7448 2.601 0.1352 0.018279
Set 5 0.88 0.8898 2.582 -0.0098 9.604E-05
   2.5978  0.027645

Table A.1.7: HapMiner in Exp Setting 1 with 20% Founder Mutation 
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At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 2.593 0.0102 0.000104
Set 2 0.88 0.6148 2.57 0.2652 0.070331
Set 3 0.88 0.7098 2.562 0.1702 0.028968
Set 4 0.88 1.6298 2.576 -0.7498 0.5622
Set 5 0.88 0.8698 2.575 0.0102 0.000104
   2.5752  0.1323414

Table A.1.8: HapMiner in Exp Setting 1 with 30% Founder Mutation 
 
 
At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 2.574 0.0102 0.000104
Set 2 0.88 0.8698 2.556 0.0102 0.000104
Set 3 0.88 0.8698 2.577 0.0102 0.000104
Set 4 0.88 0.8598 2.55 0.0202 0.000408
Set 5 0.88 0.7448 2.853 0.1352 0.018279
   2.622  0.0037998

Table A.1.9: HapMiner in Exp Setting 1 with 40% Founder Mutation 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 2.59 0.0102 0.000104
Set 2 0.88 0.8598 2.559 0.0202 0.000408
Set 3 0.88 0.8598 2.565 0.0202 0.000408
Set 4 0.88 0.8698 2.569 0.0102 0.000104
Set 5 0.88 0.5948 2.578 0.2852 0.081339
   2.5722  0.0164726

Table A.1.10: HapMiner in Exp Setting 1 with 50% Founder Mutation 
 
 
 
HapMiner (x + x * 0.001) 
 
At 10%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 0 4.071 0.88 0.7744
Set 2 0.88 1.6298 5.589 -0.7498 0.56220004
Set 3 0.88 0.5698 4.993 0.3102 0.09622404
Set 4 0.88 0.5698 4.062 0.3102 0.09622404
Set 5 0.88 0.5698 4.098 0.3102 0.09622404
   4.5626  0.32505443

Table A.1.11: HapMiner(x + x * 0.001) in Exp Setting 1 with 10% Founder Mutation  
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At 30%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 0.6198 4.487 0.2602 0.06770404 
Set 2 0.88 0.5698 4.676 0.3102 0.09622404 
Set 3 0.88 0.6848 5.569 0.1952 0.03810304 
Set 4 0.88 0.5248 5.375 0.3552 0.12616704 
Set 5 0.88 0.5248 4.31 0.3552 0.12616704 
   4.8834  0.09087304 
Table A.1.13: HapMiner(x + x * 0.001) in Exp Setting 1 with 30% Founder Mutation 

 

 

 
 
 
 
 
 
 

At 20% Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 0.5698 4.322 0.3102 0.09622404
Set 2 0.88 0.5348 4.29 0.3452 0.11916304
Set 3 0.88 0.7448 4.313 0.1352 0.01827904
Set 4 0.88 0.5698 4.314 0.3102 0.09622404
Set 5 0.88 0.5248 4.328 0.3552 0.12616704
   4.3134  0.09121144

Table A.1.12: HapMiner(x + x * 0.001) in Exp Setting 1 with 20% Founder Mutation 

At 40%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 0.8598 4.406 0.0202 0.00040804
Set 2 0.88 0.5698 4.296 0.3102 0.09622404
Set 3 0.88 0.5698 4.291 0.3102 0.09622404
Set 4 0.88 0.7448 4.302 0.1352 0.01827904
Set 5 0.88 0.8598 4.351 0.0202 0.00040804
   4.3292  0.04230864

Table A.1.14: HapMiner(x + x * 0.001) in Exp Setting 1 with 40% Founder Mutation 

At 50%  
Actual 
Location Predicted Location Time (s) Error SSE 

Set 1 0.88 0.8598 4.392 0.0202 0.00040804 
Set 2 0.88 0.7798 4.293 0.1002 0.01004004 
Set 3 0.88 0.8898 4.324 -0.0098 9.604E-05 
Set 4 0.88 0.8898 4.305 -0.0098 9.604E-05 
Set 5 0.88 0 4.286 0.88 0.7744 
   4.32  0.15700803 
Table A.1.15: HapMiner(x + x * 0.001) in Exp Setting 1 with 50% Founder Mutation 
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LinkageTracker 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.9048 4.644 -0.0248 0.000615 
Set 2 0.88 0.7798 28.583 0.1002 0.01004 
Set 3 0.88 0.9048 12.588 -0.0248 0.000615 
Set 4 0.88 0.5948 62.78 0.2852 0.081339 
Set 5 0.88 0.8598 28.94 0.0202 0.000408 
   27.507  0.018603 

Table A.1.16: LinkageTracker in Exp Setting 1 with 10% Founder Mutation 
 
 
 

At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.6148 74.406 0.2652 0.070331 
Set 2 0.88 0.8898 146.993 -0.0098 9.6E-05 
Set 3 0.88 0.6548 132.737 0.2252 0.050715 
Set 4 0.88 0.9598 130.817 -0.0798 0.006368 
Set 5 0.88 0.7798 96.526 0.1002 0.01004 
   116.2958  0.02751 

Table A.1.17: LinkageTracker in Exp Setting 1 with 20% Founder Mutation 
 
 
At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.6548 161.485 0.2252 0.050715 
Set 2 0.88 0.6548 96.494 0.2252 0.050715 
Set 3 0.88 0.8598 73.874 0.0202 0.000408 
Set 4 0.88 0.6548 70.475 0.2252 0.050715 
Set 5 0.88 0.6548 82.098 0.2252 0.050715 
   96.8852  0.040654 

Table A.1.18: LinkageTracker in Exp Setting 1 with 30% Founder Mutation 
 
 
 
At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.6548 152.645 0.2252 0.050715 
Set 2 0.88 0.8598 72.889 0.0202 0.000408 
Set 3 0.88 0.8598 142.121 0.0202 0.000408 
Set 4 0.88 0.8598 140.809 0.0202 0.000408 
Set 5 0.88 0.8598 95.098 0.0202 0.000408 
   120.7124  0.010469 

Table A.1.19: LinkageTracker in Exp Setting 1 with 40% Founder Mutation 
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At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 133.009 0.0102 0.000104
Set 2 0.88 0.8598 136.689 0.0202 0.000408
Set 3 0.88 0.8598 117.406 0.0202 0.000408
Set 4 0.88 0.8598 142.181 0.0202 0.000408
Set 5 0.88 0.8598 105.29 0.0202 0.000408
   126.915  0.000347

Table A.1.20: LinkageTracker in Exp Setting 1 with 50% Founder Mutation 
 
 
 
GeneRecon 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.69161 10680.225 0.18839 0.035490792
Set 2 0.88 0.699861 10265.17 0.180139 0.032450059
Set 3 0.88 0.680032 10498.042 0.199968 0.039987201
Set 4 0.88 0.673054 11995.49 0.206946 0.042826647
Set 5 0.88 0.743741 10592.007 0.136259 0.018566515
   10806.1868  0.033864243

Table A.1.21: GeneRecon in Exp Setting 1 with 10% Founder Mutation 
 
 
At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.763706 10605.693 0.116294 0.013524294
Set 2 0.88 0.73932 10079.124 0.14068 0.019790862
Set 3 0.88 0.695696 10061.951 0.184304 0.033967964
Set 4 0.88 0.768839 10556.584 0.111161 0.012356768
Set 5 0.88 0.807234 10289.456 0.072766 0.005294891
   10318.5616  0.016986956

Table A.1.22: GeneRecon in Exp Setting 1 with 20% Founder Mutation 
 
 
At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.733864 10333.018 0.146136 0.02135573
Set 2 0.88 0.750975 10386.504 0.129025 0.016647451
Set 3 0.88 0.723467 10185.117 0.156533 0.02450258
Set 4 0.88 0.776673 10582.594 0.103327 0.010676469
Set 5 0.88 0.748439 10180.494 0.131561 0.017308297
   10333.5454  0.018098105

Table A.1.23: GeneRecon in Exp Setting 1 with 30% Founder Mutation 
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At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.689306 10411.834 0.190694 0.036364202
Set 2 0.88 0.739475 11330.605 0.140525 0.019747276
Set 3 0.88 0.79596 10527.768 0.08404 0.007062722
Set 4 0.88 0.747506 10326.67 0.132494 0.01755466
Set 5 0.88 0.702263 10368.42 0.177737 0.031590441
   10593.0594  0.02246386

Table A.1.24: GeneRecon in Exp Setting 1 with 40% Founder Mutation 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE  
Set 1 0.88 0.730001 10596.035 0.149999 0.0224997
Set 2 0.88 0.766118 10277.057 0.113882 0.01296911
Set 3 0.88 0.858114 10044.474 0.021886 0.000478997
Set 4 0.88 0.788015 10356.582 0.091985 0.00846124
Set 5 0.88 0.744648 10274.784 0.135352 0.018320164
   10309.7864  0.012545842

Table A.1.25: GeneRecon in Exp Setting 1 with 50% Founder Mutation 
 
 

Experimental Setting 2 

BLADE 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7414 48.511 0.1386 0.01920996
Set 2 0.88 0.7522 43.284 0.1278 0.01633284
Set 3 0.88 0.6498 42.893 0.2302 0.05299204
Set 4 0.88 0.2272 54.299 0.6528 0.42614784
Set 5 0.88 1.2056 47.557 -0.3256 0.10601536
   47.3088  0.124139608

Table A.1.26: BLADE in Exp Setting 2 with 10% Founder Mutation & Noise 
 
 
At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7253 41.604 0.1547 0.02393209
Set 2 0.88 0.8172 42.648 0.0628 0.00394384
Set 3 0.88 0.1044 53.643 0.7756 0.60155536
Set 4 0.88 0.7778 37.663 0.1022 0.01044484
Set 5 0.88 0.7491 44.571 0.1309 0.01713481
   44.0258  0.131402188

Table A.1.27: BLADE in Exp Setting 2 with 20% Founder Mutation & Noise 
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At 30%  Actual Location Predicted Location 
Time 
(s) Error SSE 

Set 1 0.88 1.4354 51.981 -0.5554 0.30846916
Set 2 0.88 0.7377 46.973 0.1423 0.02024929
Set 3 0.88 0.131 53.028 0.749 0.561001
Set 4 0.88 0.7695 48.281 0.1105 0.01221025
Set 5 0.88 0.7339 46.563 0.1461 0.02134521
   49.3652  0.184654982

Table A.1.28: BLADE in Exp Setting 2 with 30% Founder Mutation & Noise 
 
 
At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7691 50.63 0.1109 0.01229881
Set 2 0.88 0.7421 50.054 0.1379 0.01901641
Set 3 0.88 0.7499 48.927 0.1301 0.01692601
Set 4 0.88 0.7473 50.428 0.1327 0.01760929
Set 5 0.88 0.1949 50.698 0.6851 0.46936201
   50.1474  0.107042506

Table A.1.29: BLADE in Exp Setting 2 with 40% Founder Mutation & Noise 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7665 55.283 0.1135 0.01288225
Set 2 0.88 0.7417 53.274 0.1383 0.01912689
Set 3 0.88 0.106 49.736 0.774 0.599076
Set 4 0.88 0.7009 43.057 0.1791 0.03207681
Set 5 0.88 0.7051 40.678 0.1749 0.03059001
   48.4056  0.138750392

Table A.1.30: BLADE in Exp Setting 2 with 50% Founder Mutation & Noise 
 
 
 
HapMiner 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0 1.158 0.88 0.7744
Set 2 0.88 0.8698 1.158 0.0102 0.00010404
Set 3 0.88 1.6298 1.559 -0.7498 0.56220004
Set 4 0.88 0.6848 1.553 0.1952 0.03810304
Set 5 0.88 0.0248 1.571 0.8552 0.73136704
   1.3998  0.421234832

Table A.1.31: HapMiner in Exp Setting 2 with 10% Founder Mutation & Noise 
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At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 1.552 0.0102 0.00010404
Set 2 0.88 0.8698 1.589 0.0102 0.00010404
Set 3 0.88 0.8698 1.568 0.0102 0.00010404
Set 4 0.88 0.8698 1.593 0.0102 0.00010404
Set 5 0.88 0.8698 1.545 0.0102 0.00010404
   1.5694  0.00010404

Table A.1.32: HapMiner in Exp Setting 2 with 20% Founder Mutation & Noise 
 
 
At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 1.556 0.0102 0.00010404
Set 2 0.88 0.8698 1.56 0.0102 0.00010404
Set 3 0.88 0.8698 1.593 0.0102 0.00010404
Set 4 0.88 0.8698 1.551 0.0102 0.00010404
Set 5 0.88 0.8698 1.591 0.0102 0.00010404
   1.5702  0.00010404

Table A.1.33: HapMiner in Exp Setting 2 with 30% Founder Mutation & Noise 
 
 
At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 1.544 0.0102 0.00010404
Set 2 0.88 0.8698 1.544 0.0102 0.00010404
Set 3 0.88 0.8698 1.569 0.0102 0.00010404
Set 4 0.88 0.8698 1.597 0.0102 0.00010404
Set 5 0.88 0.8698 1.588 0.0102 0.00010404
   1.5684  0.00010404

Table A.1.34: HapMiner in Exp Setting 2 with 40% Founder Mutation & Noise 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8698 1.56 0.0102 0.00010404
Set 2 0.88 0.8698 1.561 0.0102 0.00010404
Set 3 0.88 0.8698 1.559 0.0102 0.00010404
Set 4 0.88 0.8698 1.563 0.0102 0.00010404
Set 5 0.88 0.8698 1.577 0.0102 0.00010404
   1.564  0.00010404

Table A.1.35: HapMiner in Exp Setting 2 with 50% Founder Mutation & Noise 
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HapMiner (x + x * 0.001) 
 
At 10%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 0 5.818 0.88 0.7744
Set 2 0.88 0.0248 6.719 0.8552 0.73136704
Set 3 0.88 1.6298 5.852 -0.7498 0.56220004
Set 4 0.88 1.6298 6.902 -0.7498 0.56220004
Set 5 0.88 1.6298 6.573 -0.7498 0.56220004
   6.3728  0.63847343
Table A.1.36: HapMiner(x + x * 0.001) in Exp Setting 2 with 10% Founder Mutation & Noise 

 
 
At 20%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 1.6298 5.737 -0.7498 0.56220004
Set 2 0.88 0.0248 5.856 0.8552 0.73136704
Set 3 0.88 1.6298 5.935 -0.7498 0.56220004
Set 4 0.88 0.0248 5.876 0.8552 0.73136704
Set 5 0.88 1.6298 5.82 -0.7498 0.56220004
   5.8448  0.62986684
Table A.1.37: HapMiner(x + x * 0.001) in Exp Setting 2 with 20% Founder Mutation & Noise 

 
 
At 30%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 1.6298 5.828 -0.7498 0.56220004
Set 2 0.88 0.9048 5.838 -0.0248 0.00061504
Set 3 0.88 0.0248 5.814 0.8552 0.73136704
Set 4 0.88 0.0248 5.822 0.8552 0.73136704
Set 5 0.88 0.0248 5.859 0.8552 0.73136704
   5.8322  0.55138324
Table A.1.38: HapMiner(x + x * 0.001) in Exp Setting 2 with 30% Founder Mutation & Noise 

 
 
At 40%  Actual Location Predicted Location  Time (s) Error SSE 
Set 1 0.88 1.6298 5.715 -0.7498 0.56220004
Set 2 0.88 0.0248 5.842 0.8552 0.73136704
Set 3 0.88 1.6298 5.762 -0.7498 0.56220004
Set 4 0.88 0.0248 6.41 0.8552 0.73136704
Set 5 0.88 0.0248 5.871 0.8552 0.73136704
   5.92  0.66370024
Table A.1.39: HapMiner(x + x * 0.001) in Exp Setting 2 with 40% Founder Mutation & Noise 
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At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.9048 6.25 -0.0248 0.00061504
Set 2 0.88 0.0248 6.381 0.8552 0.73136704
Set 3 0.88 0.0248 5.864 0.8552 0.73136704
Set 4 0.88 0.0248 5.817 0.8552 0.73136704
Set 5 0.88 1.6298 6.559 -0.7498 0.56220004
   6.1742  0.55138324
Table A.1.40: HapMiner(x + x * 0.001) in Exp Setting 2 with 50% Founder Mutation & Noise 

 
 
 
LinkageTracker 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.9598 470.825 -0.0798 0.006368
Set 2 0.88 0.7798 147.081 0.1002 0.01004
Set 3 0.88 0.9048 151.777 -0.0248 0.000615
Set 4 0.88 0.7798 115.838 0.1002 0.01004
Set 5 0.88 0.7798 137.222 0.1002 0.01004
   204.5486  0.007421

Table A.1.41: LinkageTracker in Exp Setting 2 with 10% Founder Mutation & Noise 
 
 
At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7798 90.644 0.1002 0.01004
Set 2 0.88 0.6198 194.256 0.2602 0.067704
Set 3 0.88 0.8598 142.993 0.0202 0.000408
Set 4 0.88 0.8598 169.285 0.0202 0.000408
Set 5 0.88 0.8598 84.706 0.0202 0.000408
   136.3768  0.015794

Table A.1.42: LinkageTracker in Exp Setting 2 with 20% Founder Mutation & Noise 
 
 
At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7798 157.833 0.1002 0.01004
Set 2 0.88 0.7798 229.491 0.1002 0.01004
Set 3 0.88 0.7798 125.324 0.1002 0.01004
Set 4 0.88 0.7798 177.79 0.1002 0.01004
Set 5 0.88 0.7798 173.46 0.1002 0.01004
   172.7796  0.01004

Table A.1.43: LinkageTracker in Exp Setting 2 with 30% Founder Mutation & Noise 
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At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.7798 151.721 0.1002 0.01004
Set 2 0.88 0.8698 149.133 0.0102 0.000104
Set 3 0.88 0.9048 133.529 -0.0248 0.000615
Set 4 0.88 0.8598 148.473 0.0202 0.000408
Set 5 0.88 0.8598 122.949 0.0202 0.000408
   141.161  0.002315

Table A.1.44: LinkageTracker in Exp Setting 2 with 40% Founder Mutation & Noise 
 
 
At 50%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.8598 129.973 0.0202 0.000408
Set 2 0.88 0.7798 111.198 0.1002 0.01004
Set 3 0.88 0.8598 113.558 0.0202 0.000408
Set 4 0.88 0.7798 95.551 0.1002 0.01004
Set 5 0.88 0.7798 107.757 0.1002 0.01004
   111.6074  0.006187

Table A.1.45: LinkageTracker in Exp Setting 2 with 50% Founder Mutation & Noise 
 
 
 
GeneRecon 
 
At 10%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.705008 4956.224 0.174992 0.0306222
Set 2 0.88 0.73948 4823.515 0.14052 0.01974587
Set 3 0.88 0.69765 4919.0305 0.18235 0.033251523
Set 4 0.88 0.751951 4560.585 0.128049 0.016396546
Set 5 0.88 0.727308 5075.69 0.152692 0.023314847
   4867.0089  0.024666197

Table A.1.46: GeneRecon in Exp Setting 2 with 10% Founder Mutation & Noise 
 
 
At 20%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.736583 4864.913 0.143417 0.020568436
Set 2 0.88 0.775892 4872.767 0.104108 0.010838476
Set 3 0.88 0.774682 4819.892 0.105318 0.011091881
Set 4 0.88 0.73542 4928.143 0.14458 0.020903376
Set 5 0.88 0.836756 5230.18 0.043244 0.001870044
   4943.179  0.013054443

Table A.1.47: GeneRecon in Exp Setting 2 with 20% Founder Mutation & Noise 
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At 30%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.787769 4888.033 0.092231 0.008506557
Set 2 0.88 0.736737 4936.847 0.143263 0.020524287
Set 3 0.88 0.907675 5112.825 -0.02768 0.000765906
Set 4 0.88 0.811358 4763.55 0.068642 0.004711724
Set 5 0.88 0.740718 4914.5 0.139282 0.019399476
   4923.151  0.01078159

Table A.1.48: GeneRecon in Exp Setting 2 with 30% Founder Mutation & Noise 
 
 
At 40%  Actual Location Predicted Location Time (s) Error SSE 
Set 1 0.88 0.716819 4755.65 0.163181 0.026628039
Set 2 0.88 0.73512 4750.287 0.14488 0.020990214
Set 3 0.88 0.755525 4783.789 0.124475 0.015494026
Set 4 0.88 0.659016 4823.139 0.220984 0.048833928
Set 5 0.88 0.718682 4956.897 0.161318 0.026023497
   4813.9524  0.027593941

Table A.1.49: GeneRecon in Exp Setting 2 with 40% Founder Mutation & Noise 
 
 

At 50%  Actual Location 
Predicted 
Location Time (s) Error SSE 

Set 1 0.88 0.698576 4941.474 0.181424 0.032914668
Set 2 0.88 0.756794 4863.058 0.123206 0.015179718
Set 3 0.88 0.758039 4944.97 0.121961 0.014874486
Set 4 0.88 0.722735 4821.097 0.157265 0.02473228
Set 5 0.88 0.717372 4658.66 0.162628 0.026447866
   4845.8518  0.022829804

Table A.1.50: GeneRecon in Exp Setting 2 with 50% Founder Mutation & Noise 
 
 
 
Experimental Setting 3 

Blade 
 Actual Location Predicted Location Error SSE Time (seconds) 

Set 1 0.88 0.7468 0.1332 0.017742 59.509 
Set 2 0.88 0.7544 0.1256 0.015775 56.732 
Set 3 0.88 0.7443 0.1357 0.018414 59.866 
Set 4 0.88 0.7832 0.0968 0.00937 56.323 
Set 5 0.88 0.75 0.13 0.0169 57.671 
Avg    0.01564 58.0202 

Table A.1.51: Blade in Experimental Setting 3  
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HapMiner 
 Actual Location Predicted Location Error SSE Time (seconds) 

Set 1 0.88 0.8698 0.0102 0.000104 3.396 
Set 2 0.88 0.7098 0.1702 0.028968 1.545 
Set 3 0.88 0.8698 0.0102 0.000104 1.555 
Set 4 0.88 0.8698 0.0102 0.000104 1.862 
Set 5 0.88 0.8698 0.0102 0.000104 1.572 
Avg    0.005877 1.986 

Table A.1.52: HapMiner in Experimental Setting 3 
 
 

HapMiner (x + x * 0.001) 
 Actual Location Predicted Location  Error SSE Time (s) 

Set 1 0.88 0.9048 -0.0248 0.00061504 5.737
Set 2 0.88 0.0248 0.8552 0.73136704 6.349
Set 3 0.88 0.0248 0.8552 0.73136704 6.204
Set 4 0.88 0.0248 0.8552 0.73136704 6.203
Set 5 0.88 0.0248 0.8552 0.73136704 8.009
Avg   0.58521664 6.5004

Table A.1.53: HapMiner (x + x*0.001)  in Experimental Setting 3 
 
 

LinkageTracker 
 Actual Location Predicted Location Error SSE Time (seconds) 
Set 1 0.88 0.7798 0.1002 0.01004 83.501
Set 2 0.88 0.7798 0.1002 0.01004 86.718
Set 3 0.88 0.7798 0.1002 0.01004 94.778
Set 4 0.88 0.7798 0.1002 0.01004 135.789
Set 5 0.88 0.8598 0.0202 0.000408 226.884
Avg    0.008114 125.534

Table A.1.54: LinkageTracker in Experimental Setting 3 
 
 

GeneRecon 
 Actual Location Predicted Location Error SSE Time (seconds) 
Set 1 0.88 0.821562 0.058438 0.003415 4788.231
Set 2 0.88 0.765088 0.114912 0.013205 4821.059
Set 3 0.88 0.80258 0.07742 0.005994 4780.1575
Set 4 0.88 0.778928 0.101072 0.010216 4766.607
Set 5 0.88 0.678859 0.201141 0.040458 4722.229
    0.014657 4775.6567

Table A.1.55: GeneRecon in Experimental Setting 3 
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A.2 Friedreich Ataxia from Section 3.4.2.2 
 

Blade 
 Actual Location Predicted Location Time (s) Error SSE 
Set 1 9.8125 13.6597 742.909 -3.8472 14.80094784
Set 2 9.8125 7.8637 743.01 1.9488 3.79782144
Set 3 9.8125 4.2873 742.261 5.5252 30.52783504
Set 4 9.8125 9.0035 742.985 0.809 0.654481
Set 5 9.8125 8.3787 741.41 1.4338 2.05578244
Avg   742.515  10.36737355

Table A.2.1:  Blade applied to Friedreich Ataxia Dataset 
 
 

HapMiner 
 Actual Location Predicted Location Time (s) Error SSE 
Set 1 9.8125 9.75 3.258 0.0625 0.00390625
Set 2 9.8125 9.5 3.164 0.3125 0.09765625
Set 3 9.8125 9.5 3.226 0.3125 0.09765625
Set 4 9.8125 9.75 3.154 0.0625 0.00390625
Set 5 9.8125 9.5 3.168 0.3125 0.09765625
Avg   3.194  0.06015625

Table A.2.2:  HapMiner applied to Friedreich Ataxia Dataset 
 
 

HapMiner (x + x * 0.001) 
 Actual Location Predicted Location  Time (s) Error SSE 
Set 1 9.8125 10.5 3.693 0.6875 0.47265625
Set 2 9.8125 10.25 3.676 0.4375 0.19140625
Set 3 9.8125 10.5 3.759 0.6875 0.47265625
Set 4 9.8125 10.5 3.7 0.6875 0.47265625
Set 5 9.8125 10.5 4.177 0.6875 0.47265625
Avg   3.801  0.41640625

Table A.2.3:  HapMiner (x + x*0.001) applied to Friedreich Ataxia Dataset 
 
 

LinkageTracker 
 Actual Location Predicted Location Time (s) Error SSE 
Set 1 9.8125 10.25 118.024 0.4375 0.191406
Set 2 9.8125 10.125 114.006 0.3125 0.097656
Set 3 9.8125 10.25 97.97 0.4375 0.191406
Set 4 9.8125 9.5 99.11 -0.3125 0.097656
Set 5 9.8125 9.5 111.851 -0.3125 0.097656
   108.1922  0.135156

Table A.2.4:  LinkageTracker applied to Friedreich Ataxia Dataset 
 


