

EFFICIENT MINING OF HAPLOTYPE PATTERNS FOR
DISEASE PREDICTION

A THESIS SUBMITTED BY

LIN LI

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

(FIRST CLASS HONOURS)

UNIVERSITY OF LEICESTER, UK

1999

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

i

Contents

Contents ... i
List of Figures .. iii
List of Tables ... iv
Acknowledgement ... ix
Summary ... x
Chapter 1... 1
General Introduction ... 1

1.1 Introduction... 1
1.2 Motivation and Contribution... 2
1.3 An Analogy... 3
1.4 Research Problems and Proposed Approaches ... 5
1.5 Organization of Thesis.. 7

Chapter 2... 8
Related Work .. 8

2.1 Background... 8
2.2 Descriptive Mining ... 10

2.2.1 Association Rule Mining .. 10
2.2.2 Mining of association rules based on different scoring methods.............. 13

2.3 Prediction Mining ... 17
2.3.1 Artificial neural network (ANN) .. 17
2.3.2 Support vector machine (SVM).. 19
2.3.3 Decision Tree .. 20
2.3.4 Naïve Bayesian Classifier ... 21
2.3.5 Bayesian Belief Network .. 21

Chapter 3... 24
LinkageTracker – Finding Disease Gene Locations... 24

3.1 Introduction... 24
3.1.1 Challenges... 25

3.2 Related Work .. 27
3.3 LinkageTracker ... 31

3.3.1 Technical Representation.. 31
3.3.2 Algorithm LinkageTracker ... 33

3.3.2.1 Step 1: Discovery of Linkage Disequilibrium Pattern.............................. 33
3.3.2.2 Step 2: Marker Inference .. 41

3.3.3 Setting the Optimal Number of Gaps.. 42
3.3.3.1 Noise ... 44
3.3.3.2 Robustness .. 45

Evaluation ... 46
3.4.1 Time Complexity Analysis ... 46
3.4.2 Comparison of Performance on Real Datasets ... 46

3.4.2.1 Cystic Fibrosis .. 47
3.4.2.2 Friedreich Ataxia .. 54

ii

3.4.2.3 Observations from the experiments on real datasets............................. 55
3.4.3 Comparison of Performance on Generated Datasets 56

Discussion... 61
Chapter 4... 62
ECTracker – Haplotype Analysis and Classification.. 62

Introduction... 62
ECTracker ... 63

4.2.1 Step 1 – Finding of Interesting Patterns.. 63
4.2.2 Step 2 – Predictive Inference or Classification... 64

The Hemophilia Dataset ... 67
4.3.1 Allelic Frequencies ... 68

4.4 Descriptive Analysis – Interesting Pattern Extraction .. 71
4.4.1 Expressive patterns derived by C4.5... 71
4.4.2 Expressive patterns derived by ECTracker... 72

4.5 Predictive Analysis – Classification of the Hemophilia A Dataset 73
4.5.1 Classification Based on Full Hemophilia Dataset 73
4.5.2 Classification Based on the Pruned Hemophilia Dataset.......................... 76
4.5.3 Classification Based on Cystic Fibrosis and Friedreich Ataxia Dataset.......... 80

4.6 Discussion ... 81
Chapter 5... 84
Conclusion .. 84

5.1 Discussion ... 84
5.2 Future Research Directions... 86

Bibliography ... 88
Appendix A... 97

Detail Experimental Results ... 97
A.1 Cystic Fibrosis from Section 3.4.2.1... 97
A.2 Friedreich Ataxia from Section 3.4.2.2... 111

iii

List of Figures

Figure 2.1: Knowledge discovery process……………………………………………...9

Figure 2.2: Artificial neural network...18

Figure 3.1: Illustration of marker positions..39

Figure 3.2: Example of 5 linkage disequilibrium patterns…………………………..42

Figure 3.3: The darken circle indicates the disease gene…………………………….44

Figure 3.4: Joining of markers when gap setting is 1………………………………...45

Figure 3.5: Comparison of prediction accuracy among HapMiner, HPM and
LinkageTracker…………………………………………………………………………57

Figure 4.1: Pseudo code for computing score of each class…………………………..66

Figure 4.2: Factor VIII gene…………………………………………………………...67

iv

List of Tables

Table 3.1: 2x2 contingency table……………………………………………………….34

Table 3.2: Score values for 0 to 20 gaps……………………………………………….43

Table 3.3: Comparison of predictive accuracies based on experimental setting 1…48

Table 3.4: Comparison of run time based on experimental setting 1……….………50

Table 3.5: Data generation for experiment setting 2……...………………………….52

Table 3.6: Comparison of predictive accuracies based on experimental setting 2…52

Table 3.7: Comparison of running time based on experimental setting 2….………53

Table 3.8: Comparison of predictive accuracy and running time of the algorithms
based on experimental setting 3…………………………..……………………...……54

Table 3.9: Comparison of predictive accuracy and running time of the algorithms
when applied to the friedreich ataxia dataset……………..…………………....…….55

Table 3.10: Comparison of predictive accuracies over 100 datasets….…………….58

Table 4.1: Allelic frequencies of RFLPs……………………………………………….68

Table 4.2: Allelic frequencies of Intron 13 (CA)n repeats……………………………68

Table 4.3: Allelic frequencies of Intron 22 (GT)n/(AG)n repeats…………………….69

Table 4.4: Haplotype frequencies of probands with disease phenotype………….....70

Table 4.5: Haplotype frequencies of probands with normal phenotype.....................70

Table 4.6: Analysis of classifiers based on full hemophilia dataset………………….76

Table 4.7: Analysis of classifiers based on pruned hemophilia dataset……………..77

v

Table 4.8: Classification models built using pruned dataset and tested on the 70%
inseparable data………………………………………………………………………...78

Table 4.9: Predictive accuracy of modified ECTracker………………………….......79

Table 4.10: Classification accuracies when applied to cystic fibrosis dataset…........80

Table 4.11: Classification models built using friedreich ataxia dataset………..........81

Table A.1.1: Blade in exp setting 1 with 10% founder mutation…………..…….….97

Table A.1.2: Blade in exp setting 1 with 20% founder mutation………………...….97

Table A.1.3: Blade in exp setting 1 with 30% founder mutation…………..…….….97

Table A.1.4: Blade in exp setting 1 with 40% founder mutation………………...….98

Table A.1.5: Blade in exp setting 1 with 50% founder mutation………..……….….98

Table A.1.6: HapMiner in exp setting 1 with 10% founder mutation……..…….….98

Table A.1.7: HapMiner in exp setting 1 with 20% founder mutation………...…….98

Table A.1.8: HapMiner in exp setting 1 with 30% founder mutation…………...….99

Table A.1.9: HapMiner in exp setting 1 with 40% founder mutation………….…...99

Table A.1.10: HapMiner in exp setting 1 with 50% founder mutation………….….99

Table A.1.11: HapMiner(x+x*0.001) in exp setting 1 with 10% founder mutation..99

Table A.1.12: HapMiner(x+x*0.001) in exp setting 1 with 20% founder
mutation……………………………………………………………………………..…100

Table A.1.13: HapMiner(x+x*0.001) in exp setting 1 with 30% founder
mutation………………………………………………………………………………..100

Table A.1.14: HapMiner(x+x*0.001) in exp setting 1 with 40% founder
mutation………………………………………………………………………..………100

vi

Table A.1.15: HapMiner(x+x*0.001) in exp setting 1 with 50% founder
mutation………………………………………………………………………………..100

Table A.1.16: LinkageTracker in exp setting 1 with 10% founder mutation…......101

Table A.1.17: LinkageTracker in exp setting 1 with 20% founder mutation……..101

Table A.1.18: LinkageTracker in exp setting 1 with 30% founder mutation….….101

Table A.1.19: LinkageTracker in exp setting 1 with 40% founder mutation……..101

Table A.1.20: LinkageTracker in exp setting 1 with 50% founder mutation……..102

Table A.1.21: GeneRecon in exp setting 1 with 10% founder mutation……..….....102

Table A.1.22: GeneRecon in exp setting 1 with 20% founder mutation……….......102

Table A.1.23: GeneRecon in exp setting 1 with 30% founder mutation……..…….102

Table A.1.24: GeneRecon in exp setting 1 with 40% founder mutation……….......103

Table A.1.25: GeneRecon in exp setting 1 with 50% founder mutation……….......103

Table A.1.26: Blade in exp setting 2 with 10% founder mutation & noise….…….103

Table A.1.27: Blade in exp setting 2 with 20% founder mutation & noise….…….103

Table A.1.28: Blade in exp setting 2 with 30% founder mutation & noise…….….104

Table A.1.29: Blade in exp setting 2 with 40% founder mutation & noise….…….104

Table A.1.30: Blade in exp setting 2 with 50% founder mutation & noise….…….104

Table A.1.31: HapMiner in exp setting 2 with 10% founder mutation & noise…..104

Table A.1.32: HapMiner in exp setting 2 with 20% founder mutation & noise…..105

vii

Table A.1.33: HapMiner in exp setting 2 with 30% founder mutation & noise…..105

Table A.1.34: HapMiner in exp setting 2 with 40% founder mutation & noise…..105

Table A.1.35: HapMiner in exp setting 2 with 50% founder mutation & noise…..105

Table A.1.36: HapMiner (x+x*0.001) in exp setting 2 with 10% founder mutation &
noise……………………………………………………..……..……………………….106

Table A.1.37: HapMiner (x+x*0.001) in exp setting 2 with 20% founder mutation &
noise………………………………………………………………………………….....106

Table A.1.38: HapMiner (x+x*0.001) in exp setting 2 with 30% founder mutation &
noise………………………………………………………………………………….....106

Table A.1.39: HapMiner (x+x*0.001) in exp setting 2 with 40% founder mutation &
noise………………………………………………………………………………….....106

Table A.1.40: HapMiner (x+x*0.001) in exp setting 2 with 50% founder mutation &
noise…………………………………………………………………………………….107

Table A.1.41: LinkageTracker in exp setting 2 with 10% founder mutation &
noise…………………………………………………………………………………….107

Table A.1.42: LinkageTracker in exp setting 2 with 20% founder mutation &
noise…...………………………………………………………………………………..107

Table A.1.43: LinkageTracker in exp setting 2 with 30% founder mutation &
noise…………………………………………………………………………………….107

Table A.1.44: LinkageTracker in exp setting 2 with 40% founder mutation &
noise…………………………………………………………………………………….108

Table A.1.45: LinkageTracker in exp setting 2 with 50% founder mutation &
noise…………………………………………………………………………………….108

Table A.1.46: GeneRecon in exp setting 2 with 10% founder mutation &
noise………………………………………………………………………………….....108

viii

Table A.1.47: GeneRecon in exp setting 2 with 20% founder mutation & noise.....108

Table A.1.48: GeneRecon in exp setting 2 with 30% founder mutation & noise….109

Table A.1.49: GeneRecon in exp setting 2 with 40% founder mutation & noise….109

Table A.1.50: GeneRecon in exp setting 2 with 50% founder mutation & noise….109

Table A.1.51: Blade in exp setting 3……………………………………….……...….109

Table A.1.52: HapMiner in exp setting 3………………...………….………….…....110

Table A.1.53: HapMiner (x+x*0.001) in exp setting 3……….….……………….….110

Table A.1.54: LinkageTracker in exp setting 3……………..…………….…………110

Table A.1.55: GeneRecon in exp setting 3…………………..…………………….…110

Table A.2.1: Blade applied to friedreich ataxia dataset…………………..….……..111

Table A.2.2: HapMiner applied to friedreich ataxia dataset………….….…….…..111

Table A.2.3: HapMiner (x+x*0.001) applied to friedreich ataxia dataset……..….111

Table A.2.4: LinkageTracker applied to friedreich ataxia dataset………….......…111

ix

Acknowledgement

I would like to express my gratitude to my supervisor and thesis advisors, A/Prof.

Leong Tze Yun, Prof. Wong Limsoon, and Dr. Lai Poh San for their guidance, support,

and generosity in sharing their knowledge and wisdom with me. Without their generous

help this thesis would not have been possible.

I would also like to thank my external project collaborators A/Prof. Lim Tow

Keang and A/Prof. Poh Kim Leng for their generosity in sharing their knowledge and

experience with me in medical decision modelling.

My heartfelt thanks to my husband Wong Swee Seong, who is always by my side

sharing all my joy and sadness, and been through all the tough times with me. Most of all,

thanks for his love and care, and patience with me during my difficult days.

Last but not least, I am eternally grateful to my parents for their love, support, and

inspirations that motivate me to reach my goal in achieving academic excellence.

x

Summary

It was quoted by J. Han [1] that we are at the stage of being data rich but

information poor; the profusion in data collection does not correspond with an

exponential development in efficient techniques to extract valuable and useful knowledge

from data. The filling of such knowledge gap is a challenge faced by all data miners.

This thesis focuses on knowledge extraction from domain specific data known as

haplotypes.A major issue in pattern extraction from haplotypes is the ability to identify

valuable and useful information for disease pattern prediction which can be applied in

prognosis and carrier detection.

This thesis presents a new method known as LinkageTracker for disease gene

location inference (or linkage disequilibrium mapping) from haplotypes. This method

was compared with some leading methods in linkage disequilibrium mapping such as

Haplotype Pattern Mining (HPM) [2, 3], HapMiner [4], Blade [5, 6], and GeneRecon [7].

LinkageTracker provides good predictive accuracies while taking up reasonably short

processing times. Furthermore, LinkageTracker does not require any population ancestry

information about the disease and the genealogy of the haplotypes. It is a useful tool for

linkage disequilibrium mapping when the users do not have much information about their

datasets. It represents a promising method for effective linkage disequilibrium mapping.

This thesis also introduces an novel algorithm called ECTracker for extracting

useful haplotype patterns for genetic analysis and carrier detection. Experimental studies

show that ECTracker is capable of deriving useful patterns when the dataset is very

xi

small. In classification, ECTracker is capable of producing good predictive accuracies

that are comparable to some leading machine learning methods. Using biological datasets

from wet experiments, ECTracker could efficiently extract patterns that allow for

predictive disease classification. Furthermore, it is able to classify samples as unknown if

they are almost indistinguishable from the defined classes. This work, in most cases,

outperforms the existing methods in classification accuracies for datasets like haplotype

patterns for disease class prediction.

1

Chapter 1

General Introduction

1.1 Introduction

Making medical decisions such as diagnosing the diseases that cause a patient’s

illness is often a complex task. Much of these complexities arise from the inability to

efficiently recognize reliable indicative (predictive) factors associated with the diseases.

Fortunately, the profusion in data collection by hospitals and scientific laboratories in

recent years has helped in the discovery of many disease associated factors. Embedded

within the large collection of data is valuable information that suggests potential factors

that are associated with the diseases. Data mining techniques are often used to extract the

disease associated factors from the large datasets.

Data mining is the task of discovering previously unknown, valid patterns and

relationships in large datasets. Generally, each data mining task differs in the kind of

knowledge it extracts and the kind of data representation it uses to convey the discovered

knowledge. In this thesis, we examine some of the existing knowledge extraction

techniques when applied to haplotypes for disease gene location inference, genetic

variations analysis and carrier detection. The main difficulties in pattern extraction for

such cases include rarity in the sample haplotypes of interest and noise in the data

collected. The main chapters will further elaborate on the addressed problems.

2

1.2 Motivation and Contribution

This thesis discusses the opportunities and mechanisms to leverage knowledge (or

information) extraction performance from biomedical datasets for supporting medical

decision making. The extraction of useful information from data, such as factors that

promote or increase risk of a disease, helps in medical diagnosis, planning of patient

management strategies, and counseling of patients and their family members.

We report the findings observed from literature surveys, propose some efficient

algorithms and mechanisms to improve the performance of knowledge extraction, and

present the results that we have achieved through experimental studies. Finally, we hope

that this thesis will provide useful decision making techniques for the researchers and

medical practitioners to improve patient care.

We highlight two main contributions presented in this thesis. First, our research

proposal is realized in the domain of disease gene location finding (also known as linkage

disequilibrium mapping), where we propose an efficient method for inferring disease

gene locations. We compared our algorithm with some leading methods for linkage

disequilibrium mapping. Detailed experimental studies and analysis show that our

approach is efficient while maintaining good predictive accuracies.

Second, we extend our method to support descriptive analysis and classification

of haplotype patterns. Widely used machine learning methods were evaluated with

haplotype patterns extracted, for the purpose of both descriptive analysis and

classification (or predictive analysis). Experimental studies and comparisons show that

3

our method is capable of extracting useful patterns to support genetic variation analysis

and at the same time producing good predictive accuracies to facilitate carrier detection.

1.3 An Analogy

This section gives a simple analogy to our work before we present the details in

the later chapters. The analogy paints a complete picture of the motivation behind the

proposed algorithms and what we aim to achieve with them. We illustrate our designs by

following a series of tasks performed by a jeweler who deals mainly with diamonds.

Mr. Smith works in Diamond Company based in London. Diamond Company

specializes in sales and marketing of diamonds. Each day, diamonds from all over the

world arrive at the company where they would sort, value, and sell the diamonds.

In the first example, let’s assume a character Lisa who has a blue diamond that

she adores very much. One day, Lisa wishes to buy a diamond that has the same

characteristics as her favorite blue diamond for her mother as a birthday gift. Lisa

approaches Mr. Smith for help. Like other minerals and rocks, diamond crystals contain

within themselves a record of their geologic history in terms of their morphology,

detailed chemical composition, and etching features. Therefore, diamonds from a

particular geographic source will have their very own unique characteristics and with

very similar chemical compositions. To help Lisa find another diamond that has the same

characteristics as her blue diamond, Mr. Smith needs to first determine the geographic

source where Lisa’s blue diamond is extracted or mined. There are many diamond mines

worldwide. To perform detailed chemical composition analysis on diamonds from all the

different diamond mines in the world will take a very long time. Fortunately based on

4

Mr. Smith’s years of working experience, he knows that blue diamonds are mainly found

in South Africa mines. With this valuable knowledge, Mr. Smith only needs to analyze

chemical compositions of diamonds from the few South Africa mines to quickly identify

the geographic source where Lisa’s blue diamond was extracted. In our work, we have

designed an algorithm that makes use of expert knowledge to efficiently find the disease

gene locations to solve the linkage disequilibrium problem. It is similar to what Mr.

Smith did to quickly identify the geographic source of Lisa’s blue diamond.

Next, a businessman George wants to sell some diamonds to Diamond Company.

George presents the diamonds to Mr. Smith. Before buying the diamonds, Mr. Smith

needs to ensure that the diamonds are natural diamonds. There are some features that

distinguish natural diamonds from synthetic diamonds; these features were discovered by

scientists after hundreds of experiments. Firstly, under very intense short-wave ultraviolet

lamp, synthetic diamonds will glow very brightly whereas natural diamonds are almost

inert under the ultraviolet light. Also, phosphorescence is observed on synthetic

diamonds after the ultraviolet lamp is turned off, but not for natural diamonds. Secondly,

under a hand lens or optical microscope, planar defects and large metallic inclusions are

often found in synthetic diamonds, while natural diamonds have no such properties.

Armed with the knowledge of the unique features of natural diamonds, Mr. Smith can

easily determine whether the diamonds presented by George are natural or synthetic. In

our work, we have designed an algorithm to discover the “unique features” or more

specifically the genetic variations of patients affected by a bleeding disorder called

hemophilia, and perform predictive inference using the “unique features” discovered. A

5

similar task to what Mr. Smith did in determining whether George’s diamonds are natural

based on the knowledge of the unique features of diamonds.

The next section will touch on a set of problems and issues in data mining when

applied to biomedical domains. We outline our approaches in addressing these issues.

This is followed by a description of biomedical knowledge extraction problems that can

be addressed or alleviated using our proposed algorithms.

1.4 Research Problems and Proposed Approaches

We begin by exploring ideas in pattern extraction from biological datasets.

Association rules have been studied extensively in the Knowledge Discovery in

Databases (KDD) field for pattern extraction, and there exists many efficient algorithms

to perform such task. The support and confidence thresholds are usually used to guide the

search for interesting patterns. From our literature survey, we observed that most of the

pattern mining methods are exhaustive; some practical difficulties arise when the number

of items in each record is very large. We explored the use of domain specific expert

knowledge to alleviate such technical difficulty (without compromising the quality of

patterns mined) in the problem of finding disease gene locations. The process of inferring

disease gene locations from observed associations of marker alleles in affected patients

and normal controls is known as linkage disequilibrium mapping. The main idea of

linkage disequilibrium mapping is to identify chromosomal regions with common

molecular marker alleles at a frequency significantly greater than chance. It is based on

the assumption that there exists a common founding ancestor carrying the disease alleles,

6

and is inherited by his descendents together with some other marker alleles that are very

close to the disease alleles. The same set of marker alleles is detected many generations

later in many unrelated individuals who are clinically affected by the same disease.

Our approach utilizes expert knowledge in genetics to reduce the search space and

at the same time maintaining good predictive accuracies. The proposed method mainly

focuses on the difficult problems where the occurrence of useful patterns (or pattern of

interest) is very low, and consists of errors or noise. We conducted extensive

performance studies to evaluate the efficiency of LinkageTracker when compared to

some leading methods in linkage disequilibrium mapping including HPM [2, 3],

HapMiner [4], Blade [5, 6], and GeneRecon [7].

Next, we explore data mining methods that are capable of performing genetic

analysis and carrier detection. Intuitively expressive patterns (or genetic variations) are

extracted to provide medical practitioners with insights about the genetic manifestations

of patients affected by a disease. The extracted patterns are subsequently used for

predictive inference (or classification) to help in carrier detection, which is useful for

medical prognosis and decision making processes. We propose ECTracker for

performing both pattern extraction and classification, and compare the expressiveness and

predictive accuracy of our method with some leading methods in machine learning. The

ECTracker algorithm consists of 2 steps: First, it generates combination of haplotype

patterns to facilitate the analysis of genetic variations of diseased patients, and second, it

performs classification using the haplotype patterns generated in the first step for carrier

detection. We compared the performance of ECTracker with some leading machine

learning methods including C4.5 [8], Naïve Bayesian Method [9], Artificial Neural

7

Network [10], Support Vector Machine [11], K-Nearest Neighbor [12], and Bagging [13]

(with Naïve Bayesian as base).

1.5 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we review some of the

related work in the literature and also draws out the background knowledge necessary for

building the proposed methods. In Chapter 3, we discuss the issues in the domain of

disease gene location inference and propose a novel algorithm known as LinkageTracker

to efficiently address the issues. In Chapter 4, we present ECTracker for the extraction of

genetic variations in patients affected by hemophilia A. The extracted patterns are also

used for predictive inference. The efficiency of ECTracker is also assessed using two

well studied real datasets namely Cystic Fibrosis [5] and Friedrich Ataxia [14]. Finally,

we conclude in Chapter 5 with directions for future research. Some of the proposed

designs were published in [15-18].

8

Chapter 2

Related Work

2.1 Background

Data mining has been defined as "the nontrivial extraction of implicit, previously

unknown, and potentially useful information from data" [19] and "the science of

extracting useful information from large data sets or databases" [20]. It is the core

principle of the knowledge discovery process, which also includes data selection,

preprocessing and cleaning, transformation and reduction, evaluation, and visualization.

The knowledge discovery process is illustrated in Figure 2.1.

Data mining is not a single technique; it includes any techniques that help in

extracting useful information out of data for pattern analysis and prediction of future

trends and behaviors, allowing users to make proactive, knowledge-driven decisions. In

the context of healthcare and biomedicine, data mining is often viewed as a potential

mean to identify various biological, drug discoveries, and patient care knowledge

embedded in the extensive data collected. Furthermore, data mining provides results that

possibly highlight vaguely understood doctrine and provide useful insights to help in

decision making processes. In general, data mining tasks is classified into two broad

categories: descriptive mining and predictive mining. The rest of this chapter covers in

greater details the two form of data mining tasks, and presents several leading techniques

which are relevant to our work.

9

Figure 2.1: Knowledge discovery process

Databases

Preprocessing
& Cleaning

Data Selection
Transformation

& Reduction

Data Mining

Evaluation

 Visualization

1. Data selection: Retrieval of relevant data from databases.

2. Preprocessing & cleaning: Removal of noise and inconsistent data,

detecting and dealing with missing values.

3. Transformation & reduction: data sets are reduced to the minimum size

possible through sampling or summary statistics. For example, tables of
data may be replaced by descriptive statistics such as mean and standard
deviation.

4. Data mining: Intelligent methods are selected for pattern extraction

5. Evaluation: the patterns identified by the data mining methods are

interpreted, for instance, determining the clinical relevance of the
findings.

6. Visualization: knowledge representation techniques such as pie charts

and graphs are used to present the mined knowledge to the user

10

2.2 Descriptive Mining

Descriptive mining automatically extracts new or useful information from large

databases and presents the discovered information in intuitively understandable terms for

human analysis. Association rule mining is the most well-studied descriptive mining

method in the Knowledge Discovery in Databases (KDD) field [21-24]. Their primary

strength lies in their significant expressive power and their being relatively simple to

comprehend, thus making them suitable for incorporation into decision-making

processes.

2.2.1 Association Rule Mining

The task of association rule mining was first introduced in 1993 by Agrawal et. al

[25]. The idea of association rule mining originates from the analysis of market data

whereby the main task is to determine patterns that characterize the shopping behavior of

customers from a large database of previous customer transaction records. An association

rule has the following format: X => Y (support, confidence) to mean item Y exists if item

X is found in the same record. Support is the percentage of the database with itemset, XY,

appearing in the same record and confidence is the ratio of item Y appearing in records

containing item X. Frequent itemsets are sets of items with support greater than a

minimum user-defined support. Before association rules can be constructed, the

frequencies of the underlying frequent itemsets have to be generated.

11

Association rule is formally defined as follows. Let I = {i1, i2, i3, …, im} be a set

of attributes called items. Let D be a set of transaction records. Each transaction record t

in D consists of a set of items such that t ⊆ I. A transaction record t is said to contain an

itemset X if and only if all items within X are also contained in t. Each record also

contains a unique identifier called TID. Support of an itemset is the normalized number

of occurrences of the itemset within the dataset. An itemset is considered as frequent or

large, if the itemset has a support that is greater or equal to the user specified minimum

support. The most common form of association rules is implication rule which is in the

form of X => Y, where X ⊂ I, Y ⊂ I and X ∩ Y = ∅. The support of the rule X => Y is

equal to the percentage of transactions in D containing X ∪ Y. The confidence of the rule

X => Y equals to the percentage of transactions in D containing X also containing Y, i.e.

|X∪Y| / |X|. Depending on the application, the definition of confidence can be changed to

suit a particular need [26-35]. For example, instead of using confidence as the measure of

interestingness, chi-squared measure, X2, is also commonly used to measure the

correlation in the frequent itemsets. Details of these methods are described in Section

2.2.2.

Once the required minimum support and confidence are specified, association rule

mining task becomes the finding of all association rules that satisfy the minimum

requirements. The problem can be further broken down into 2 steps: mining of frequent

itemsets and generating association rules [21, 36]. The number of possible combinations

of itemsets increases exponentially with |I| and the average transaction record length.

The very first published and efficient frequent itemset mining algorithm is Apriori

[36]. Apriori uses breadth first search (BFS) as the search strategy. At each level, Apriori

12

reduces the search space by using downward closure property of itemset that if an itemset

of length k is not frequent, none of its superset patterns can be frequent. Candidate

frequent itemsets, i.e. itemsets that have the potential to be frequent, Ck where k is the

length of the itemset, are generated before each data scan. The supports of candidate

frequent itemsets are counted to verify whether they are frequent or not. Candidate k

itemsets, Ck, are generated with frequent k - 1 itemsets. Apriori achieves good

performance by iterative reduction of candidate itemsets. However, Apriori requires k

data scans to find all frequent k-itemsets. In large databases, it is very expensive to scan

the data multiple times for very large k. Therefore a method that could restrict k to a

reasonably small value yet without compromising the quality of interesting patterns

mined would be very desirable. This motivates our approach to leverage on domain

specific expert knowledge to restrict k to a small value without compromising the quality

of interesting patterns mined. The quality of a pattern is good if the pattern mined could

ultimately contribute in the prediction of disease gene location accurately.

Other efforts devoted to improving the efficiency of association rule mining

include the mining of frequent closed patterns [37-43], maximal frequent patterns [44-

47], and generators[48]. These methods are firstly exhaustive in nature, and secondly,

they used support and confidence to determine the interestingness of a pattern. In the later

chapter we will illustrate how LinkageTracker could achieve good predictive accuracies

based on expert knowledge without the need for exhaustive search. Also the search for

interesting patterns based on support and confidence are not suited to the problem of

disease gene location inference. This is because support and confidence are not able to

determine the magnitude of association between a pattern antecedents and consequent.

13

2.2.2 Mining of association rules based on different scoring methods

Besides finding efficient methods for mining association rules, much effort have

also devoted to the finding of interesting rules or patterns. Depending on the application

of the patterns mined, the definition of confidence can be changed to suit a particular

need. Interestingness of a pattern can be measured in terms of underlying structure of the

pattern and the data used in the discovery process.

Brin et al. [26, 27] proposed measuring significance of associations via the chi-

square test for correlation from classical statistics. This approach requires the

consideration of both presence and absence of items as a basis for generating rules. Brin

et al. [26, 27] claims that the chi-squared measure is upward closed, i.e. the mining

problem is reduced to the search for border correlated and uncorrelated itemsets in the

lattice. An itemset is significant if it is supported and minimally correlated, which means

that an itemset at level i+1 can be significant only if all its subsets at level i have support

and none of its subsets at level i are correlated. The finding of correlated rules is

equivalent to finding a border in the itemset lattice. In the worst case, when the border is

in the middle of the lattice, it is exponential in number of items. In the best case the

border is at least quadratic. However, it was later found that chi-squared measure does

not posses the upward closure property for exploiting efficient mining of significant rules

by DuMouchel et. al [49]. In the later chapter, we will introduce an algorithm known as

Haplotype Pattern Mining (HPM) by Toivonen et al. [1, 2], which uses the chi-squared

measure to determine interesting patterns for the problem of disease gene location

14

finding. Detailed comparisons will be made between HPM and LinkageTracker in that

later chapter.

Li et al. [32, 33, 35] proposed the mining of association rules solely based on

confidence without the support threshold. As discuss previously the confidence measure

is neither downward nor upward closed. The authors overcome this problem by dividing

the dataset into two subsets and discover patterns from the two relevant sub-datasets such

that the pattern occurs with 100% confidence in one sub-dataset but 0% confidence in the

other sub-dataset (known as jumping EPs). From the jumping EPs discovered, they

construct association rules. However, this algorithm is very restrictive as it is not able to

find patterns that occur with say 85% confidence in one sub-dataset and 10% confidence

in another sub-dataset (as such pattern may be significant when scored with some other

statistical method, say Pearson’s correlation coefficient). Furthermore, Brin et al. [26] has

shown that confidence measure may produce counter-intuitive results especially when

strong negative correlations are present. For example, the support and confidence

threshold are set to 5% and 50% respectively for a retail transaction dataset, and the

association rule margarine → butter with support 20% and confidence 67% will pass the

threshold conditions. However, the prior probability of customers purchasing butter is

80%, once customer purchases margarine, the conditional probability of that customer

will buy butter reduces by 16.25% (i.e. (0.8-0.67)/0.8 * 100)). Hence the high confidence

rule margarine → butter is misleading.

Tan and Kumar [29] proposed a metric known as IS to finding interesting

association rules. This work assumes that only positively correlated patterns are of

15

interest to the data analyst. The interestingness measure of IS can be computed as

follows:

IS =)()(ABConfBAConf →×→

The IS measure is equivalent to the geometric mean of the confidence rule,

however, since the measure of association between rule antecedents and consequence

using confidence measure can be misleading as described earlier, therefore this method is

not suited to the problem of disease gene finding.

Xiong et al. [30, 31] identified an upper bound for Pearson’s correlation

coefficient for binary variables and proposed an efficient algorithm known as TAPER to

find all item pairs with correlations above the user specified minimum correlation

threshold. The Pearson’s correlation coefficient φ is expressed as shown in the equation

below:

φ =
))sup(1))(sup(1)(sup()sup(

)sup()sup(),sup(
BABA

BABA
−−

−

There are two steps in the TAPER algorithm; the first step is the filtering step

where most of the false positive item pairs are pruned off to reduce further processing

cost. The second step is the refinement step where the exact correlation is being

computed for each surviving items pair from the filtering step. Item pair with correlation

higher than the user specified threshold will be returned as output for the user. Although

the TAPER algorithm provides good contribution in identifying the upper bound of

Pearson correlation coefficient, it only scores the correlation between item pairs rather

than itemsets. In the mining of association patterns, most users are interested in the

16

correlation between sets of items, hence more work need to be done in extending the

TAPER algorithm to score the correlation between itemsets.

In a recent work by Li et al. [34], statistical relative risk and odds ratio were

proposed to find interesting patterns. The search space was stratified into plateaus of

subspaces based on support levels of the patterns, such that the space of odds ratio and

relative risk can become convex for efficient mining of significant patterns. They

proposed two methods for the mining of significant patterns. The first method uses

FPclose [50] to find all the closed patterns, and then uses an algorithm known as Gr-

growth that they developed to find all the generators [48]. The second method mine

closed patterns and generators at the same time using an algorithm known as GC-growth

that they proposed. Both algorithms that they proposed used the set-enumeration tree [51,

52] to organize the pattern space. Since the search space needs to be stratified based on

support levels, the search space will become extremely large when the support threshold

is set to a very small value. Furthermore, the finding of all interesting patterns is not

essential in the problem of disease gene location finding as expert knowledge can be used

to restrict the search space. Also the finding of all interesting patterns exhaustively will

introduce noise that will affect the predictive accuracies (refer to chapter 3 for detailed

explanation).

Prior to the work by Li et al. [43], we have independently proposed the use of

odds ratio in the finding of interesting patterns in [15-17]. The statistical odds ratio has

been widely used in the biomedical arena for discriminative studies. We find that odds

ratio is very suited to the discovery of patterns with strong magnitude of association to

the class labels even when the occurrences of the strongly associated patterns are rare.

17

Therefore the statistical odds ratio was used in our proposed algorithms to guide the

discovery of interesting patterns.

2.3 Prediction Mining

The main objective of prediction mining is to assign new data items into one of

the few predefined categorical classes [53]. As classification is the most studied data

mining and knowledge discovery task [54], there are many classification algorithms. In

this section we discuss some of the leading classification algorithms, namely Artificial

Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (C4.5), and

Naïve Bayesian Classifier. These classification algorithms are applied to our haplotype

dataset in Chapter 4 and comparisons of predictive accuracies will be performed.

2.3.1 Artificial neural network (ANN)

The main elements of an Artificial Neural Network (ANN) are processing

elements or neurons, and weighted interconnections among the neurons. Each neuron

performs a very simple computation, such as calculating a weighted sum of its input

connections, and computes an output signal that is sent to other neurons. The training

(mining) phase of an ANN consists of adjusting the weights of the interconnections, in

order to produce the desired output [10, 55]. The adjustment of interconnection weights is

usually performed by using some variant of the Hebbian learning rule. The basic idea of

18

this mechanism is that if two neurons are active simultaneously the weight of their

interconnection must be increased.

The basic structure of an ANN is shown in Figure 2.2. In this figure there are layers of

nodes, and each node of a given layer is connected to all the nodes of the next layer. This

full-connectivity topology is not necessarily the best one, and the definition of the

topology of a ANN – number of layers, number of nodes in each layer, connectivity

among nodes in different layers, etc – is a difficult task, and it is a major part of the

process of using ANN to solve the target problem. Often several different ANN

topologies are tried, in order to empirically determine the best topology for the target

problem. Each node interconnection is normally assigned a real valued interconnection

weight.

The nodes in the input layer correspond to values of attributes in the database. To

classify a new tuple(or input) the values of the tuple’s predicting attributes are given to

the input layer. Then the network uses these values and the interconnection weights

learned during the training phase to compute the activation value of the node(s) in the

Figure 2.2: Artificial Neural Network

Output Layer

Hidden Layer

Input Layer

19

output layer. In the case of a two-class problem, the output layer usually has a single

node. If the activation value of that node is smaller than a given threshold then the

network predicts the first class, otherwise the other class is predicted by the network. In

the case of multiple-class problems there can be several nodes in the output layer, one

node for each class, so that the node in the output layer with largest activation value

represents the class predicted by the network.

2.3.2 Support vector machine (SVM)

Support vector machines are based on the structural risk minimization principle

[11, 56] from computational learning theory. The idea of structural risk minimization is

to find a hypothesis h for which we can guarantee the lowest true error. The true error of

h is the probability that h will make an error on an unseen and randomly selected test

example.

SVMs operate by finding a hyper-surface in the space of possible inputs. This

hyper-surface will attempt to split the positive examples from the negative examples. The

split will be chosen to have the largest distance from the hyper-surface to the nearest of

the positive and negative examples [57]. Intuitively, this makes the classification correct

for testing data that is near, but not identical to the training data.

SVMs are very universal learners. In their basic form, SVMs learn linear

threshold function. Nevertheless, by adding in an appropriate kernel function [58], they

can be used to learn polynomial classifiers, radial basic function (RBF) networks, and

three-layer sigmoid neural nets.

20

2.3.3 Decision Tree

A decision tree is a tree-like knowledge-representation structure where every

internal (non-leaf) node is labeled with the name of one of the predicting attributes, the

branches coming out from an internal node are labeled with values of the attribute in that

node, and every leaf node are labeled with a class (i.e. a value of the goal attribute) [59,

60]. A learned tree can also be re-represented as a set of if-then rules to improve human

readability. A decision tree classifies a new, unknown-class tuple in a top-down manner.

Initially the new tuple is passed to the root node of the tree, which tests which value the

tuple has on the attribute labeling that node. Then the tuple is pushed down the tree,

following the branch corresponding to the tuple’s value for the tested attribute. This

process is recursively repeated, until the tuple reaches a leaf node. At this moment the

tuple is assigned the class labeling that leaf.

A decision tree is usually built by a top-down, “divide-and-conquer” method.

Initially all the tuples being mined are assigned to the root node of the tree. Then the

algorithm selects a partitioning attribute and partitions the set of tuples in the root node

according to the values of the selected attribute. The goal of this process is to separate the

classes, so that tuples of distinct classes tend to be assigned to different partitions. This

process is recursively applied to the tuple subsets created by the partitions, producing

smaller and smaller data subsets, until a stopping criterion (e.g. a given degree of class

separation) is satisfied. The most common decision tree learning algorithms include the

ID3 [61, 62] and its successor C4.5 [8]. Decision tree can also be used for descriptive

mining as it is very easy to generate a set of rules from a decision tree.

21

2.3.4 Naïve Bayesian Classifier

A naïve Bayesian classifier [9, 63] is a statistical classifier which computes the

probability of a sample belonging to a particular class based on Bayes theorem. Bayes

theorem is a mathematical formula used to calculate conditional probabilities – the

probability that a hypothesis H holds given the observed sample data D or posterior

probability P(H|D). The posterior probability can be computed from the prior probability

P(H) together with P(D) and P(D|H) as follows:

 P(H|D) =
)(

)()|(
DP

HPHDP

A naive Bayes assumes conditional independence among all attributes A1,A2,…,An

given the class variable C . It learns from training data the conditional probability P(Ai|C)

of each attribute given its class label. Domingos gives a good explanation in [64] why a

naive Bayes works surprisingly well despite its strong independence assumption.

2.3.5 Bayesian Belief Network

A Bayesian network (or a belief network) is a probabilistic graphical model that

represents a set of variables and their probabilistic dependencies. The term "Bayesian

networks" was coined by Pearl in 1985 [65] to emphasize three aspects: (1) the often

subjective nature of the input information; (2) the reliance on Bayes's conditioning as the

basis for updating information; and (3) the distinction between causal and evidential

modes of reasoning, which underscores Thomas Bayes's paper of 1763. A Bayesian

22

belief network (BBN) is a directed graph, together with an associated set of probability

tables. The graph consists of nodes and arcs, the nodes represent variables, which can be

discrete or continuous, and the arcs represent causal/influential relationships between

variables. If there is an arc from node A to another node B, A is called a parent of B, and

B is a child of A. The set of parent nodes of a node Xi is denoted by parents(Xi). A

directed acyclic graph is a Bayesian Belief Network relative to a set of variables if the

joint distribution of the node values can be written as the product of the local

distributions of each node and its parents:

 ∏
=

=
n

i
iin XparentsXPXXP

1
1))(|(),...,(

In the simplest case, a Bayesian Belief Network is specified by an expert and is

then used to perform inference. In other applications the task of defining the network is

too complex for humans. In this case the network structure and the parameters of the

local distributions must be learned from data. Learning the structure of a Bayesian

network requires a scoring function and a search strategy. A common scoring function is

posterior probability of the structure given the training data. The time requirement of an

exhaustive search returning back a structure that maximizes the score is super exponential

in the number of variables. A local search strategy makes incremental changes aimed at

improving the score of the structure. A global search algorithm like Markov chain Monte

Carlo can avoid getting trapped in local minima.

Markov chain Monte Carlo (MCMC) method is an algorithm for sampling from

probability distributions based on constructing a Markov chain that has the desired

distribution as its stationary distribution. The state of the chain after a large number of

23

steps is then used as a sample from the desired distribution. The quality of the sample

improves as a function of the number of steps. Many Markov chain Monte Carlo methods

move around the equilibrium distribution in relatively small steps, with no tendency for

the steps to proceed in the same direction. These methods are easy to implement and

analyze, but unfortunately it can take a long time for the walker to explore all of the

space. The walker will often double back and cover ground already covered. One of the

most commonly used random walk MCMC methods is known as the Metropolis-Hastings

algorithm. Metropolis-Hastings method generates a random walk using a proposal

density and a method for rejecting proposed moves.

24

Chapter 3

LinkageTracker – Finding Disease Gene Locations

3.1 Introduction

Medical practitioners are interested in finding the disease linked or exact disease

causing gene locations in the human genetic codes, in order to perform genomic analysis

select and targeted treatment strategy on their patients. Genomic analysis helps in

estimating the probability of occurrence of a particular disease outcome or manifestation

in a patient and the extent to which the individual risk can be modified using preemptive

strategies. For instance, an individual who was found to have inherited a particular gene

mutation from her parents may make her susceptible to a disease like cancer. This

individual requires intensive monitoring through regular health screening and skillful

counseling on dietary and lifestyle changes to prevent the disease from progressing into

the malignant phase. Therefore genomic analysis helps the medical practitioners in the

decision making process for managing such patients and their family members, which

ultimately increase survival rates and improve the overall quality of health care.

However, before such genomic analysis can be carried out, there is an important

task of identifying the exact disease gene locations from the vast amount of genomic data

collected. The process of inferring disease gene locations from observed associations of

marker alleles in affected patients and normal controls is known as linkage disequilibrium

mapping [66-68]. Linkage disequilibrium mapping has been used in the finding of

25

disease gene locations in many studies [69, 70]. The main idea of linkage disequilibrium

mapping is to identify chromosomal regions with common molecular marker alleles1 at a

frequency significantly greater than chance. It is based on the assumption that there exists

a common founding ancestor carrying the disease alleles, and is inherited by his

descendents together with some other marker alleles that are very close to the disease

alleles. The same set of marker alleles is detected many generations later in many

unrelated individuals who are clinically affected by the same disease.

3.1.1 Challenges

Finding the exact disease gene location is a non-trivial task. This is because, in

reality, the occurrence of such allele patterns is usually very low, and most often consists

of errors or noise. Let us illustrate the difficulties in the problem of gene location finding

with an example. In the counseling and health management of relatives of breast cancer

patients, one of the strategies is to analyze their chromosomes 17 or 13 to determine

whether they have inherited the mutated BRCA-1 or BRCA-2 gene. An individual who

has inherited the BRCA-1 or BRCA-2 gene will have higher disposition to breast cancer

as compared to another individual who has not inherited BRCA-1 or BRCA-2 gene, and

therefore requires more regular health screening as compared to normal individuals.

However, this genomic analysis is only possible if the exact locations of BRCA-1 and

BRCA-2 genes were known.

1 A molecular marker is an identifiable physical location on the genomic region that either tags a gene or tags a piece of

DNA closely associated with the gene. An allele is any one of a series of two or more alternate forms of the marker.
From the data mining aspect, we could represent markers as attributes, and alleles as attribute values that each
attribute could take on.

26

Now let us assume that we are at the early stage of research for BRCA-1 and

BRCA-2 genes, and no one knows the exact locations of the two genes although

researchers know that BRCA-1 resides in chromosome 17 and BRCA-2 resides in

chromosome 13. To find the exact locations of the two genes, it is required to perform

analyses on gene sequences of chromosome 13 and 17 collected from patients affected by

breast cancer. However, the hereditary mutations of BRCA-1 and BRCA-2 genes only

account for about five to ten percent of all breast cancer patients [71]. This means that,

given a set of chromosome 17 or 13 gene sequences collected from breast cancer patients,

only at most ten percent of the gene sequences contain the BRCA-1 or BRCA-2 gene

mutations. This means that the patterns or gene expressions that we are interested in are

very rare within the set of collected data. To further complicate the task of finding disease

gene locations, the gene sequences collected also consist of errors or noise due to sample

mishandling and contamination.

Due to the complexities in the problem of disease gene location finding, existing

data mining methods cannot be directly applied to solve this problem. In the next section

we introduce some leading ideas that aim at solving this problem and lay out some

observations to distinguish our proposed method. In Section 3.3 we present the

LinkageTracker method. In Section 3.4 we report our experimental studies and results.

Finally, in Section 3.5 we summarize the mechanisms behind LinkageTracker and its

performances and benefits.

27

3.2 Related Work

There are generally two methods used for detecting disease genes, namely, the

direct and the indirect methods. Techniques used in the direct method include allele-

specific oligonucleotide hybridization analysis, heteroduplex analysis, Southern blot

analysis, multiplex polymerase chain reaction analysis, and direct sequencing. A detailed

description of these techniques is beyond the scope of this work but is available in

Beaudet et. al [72] and Malcolm et. al [73]. Direct method requires that the gene

responsible for the disease be identified and specific mutations within the gene

characterized. As a result, direct method is frequently not feasible, and, the indirect

method is used.

The indirect methods such as DMLE+ [74, 75], BLADE [5, 6], GeneRecon [7],

HPM [2], and HapMiner [4] involve the detection of marker alleles that are very close to

or are within the disease gene, such that they are inherited together with the disease gene

generation after generation. Such marker alleles are known as haplotypes. Alleles at these

markers often display statistical dependency, a phenomenon known as linkage

disequilibrium or allelic association [76]. The identification of linkage disequilibrium

patterns allows us to infer the disease gene location. Most commonly, linkage

disequilibrium mapping involves the comparison of marker allele frequencies between

disease chromosomes and control chromosomes.

DMLE+ proposed by Rannala & Reeve [74, 75] uses Markov Chain Monte Carlo

method and coalescent model to allow Bayesian estimation of the posterior probability

density of the position of a disease mutation relative to a set of markers. A standard-

28

coalescent model is a retrospective model of population genetics based on the genealogy

of gene copies. It uses mathematics for describing the characteristics of the joining of

lineages back in time to a common ancestor. This lineage joining is referred to as

coalescence. The coalescent model provides the basis for estimation the expected time to

coalescence and for establishing the relationships of coalescence times to the population

size, age of the most recent common ancestor, and other population genetic parameters

[77]. Rannala & Reeve [74, 75] proposed the use of intra-allelic coalescent process in

prior-probability modeling. However, the model requires the specification of the age of

the mutation, which is unlikely to be known. Furthermore, it is assumed that every

sample sequence carries the disease mutation, the concern as to the suitability of this

model for mutations with low relative population frequency was raised in [78]. And more

importantly, the intra-allelic model assumes that all disease chromosomes descend from

the same founding mutation event represented by single genealogy. However, even for

Mendelian disorders, sporadic cases of disease are commonly observed and singleton

founding-mutations are rare events [79].

Liu et al. proposed an algorithm BLADE which employed the Markov Chain

Monte Carlo method (MCMC) for parameter estimations within a Bayesian framework.

The disease haplotypes are grouped into k+1 clusters, corresponding to k founder

chromosomes in the disease population and a null cluster for all other disease

chromosomes. BLADE assumes that the disease haplotypes within each cluster are

mutually independent given the ancestral haplotype. This alleviates the need for a

complex model of the underlying genealogy. However, BLADE assumes that all

29

mutations occur in the same location of the disease gene, which means that locus

heterogeneity is not incorporated.

To solve some of the shortcomings in the algorithm proposed by Rannala &

Reeve [74, 75], Liu et al. [5] and Mailund et al. [7] proposed an algorithm known as

GeneRecon. GeneRecon combines the shattered coalescent method by Morris et al. [80]

and the idea by Liu et al. [5] in separating the affected individuals into mutation clusters.

Affected individuals in the same cluster are assumed to be descendants of a common

founder. A null cluster is included for individuals affected due to environmental factors

and not genetic factors. An MCMC algorithm of the Metropolis type [81] was used to

integrate over unknown population genetic parameters of the shattered coalescence model

and sample the marginal posterior probability density for the parameters of interest.

Although GeneRecon is highly efficient in locating the disease locus on case/control data,

the main drawback is that GeneRecon is very computationally intensive and requires

several hours or even days for a successful computation on a dataset with a few hundred

cases and controls, and with few tens of markers.

Tiovonen et al. [2] introduced a linkage disequilibrium mapping algorithm known

as haplotype pattern mining (HPM). Firstly, HPM uses the association rule mining

algorithm [36] to discover a set of highly associated patterns by setting the Support

threshold to a certain value. Next, HPM uses chi-square test to discriminate disease

association from control association. Finally, HPM computes the marker frequency for

each of the markers. The frequency for each marker is computed by counting the number

of associated patterns consisting of that specific marker. The marker with the largest

frequency is predicted as closest to the disease gene. The main drawback of this

30

algorithm is that it suffers from combinatorial explosion in the number of patterns due to

its use of exhaustive search method. As it uses association rule mining algorithm to

discover highly associated patterns, and such patterns are rare in our problem of linkage

disequilibrium mapping. The support threshold will need to be set at a very low value in

order to discover those highly associated patterns. Combinatorial explosion occurs where

many useless patterns will also be discovered together with the highly associated

patterns.

Li and Jiang [4] proposed an algorithm known as HapMiner for the inference of

disease gene location. HapMiner is an adaptation of an algorithm known as DBSCAN

[82] which is a density based clustering method that is robust to noise. For each marker,

HapMiner takes the haplotype segment around the marker and calculate the pair wise

haplotype distances according to a distance measure proposed by Li and Jiang [4]. The

DBSCAN algorithm is then applied to the distance matrix to identify clusters. A score for

each marker will be calculated and the marker with the highest score is taken as the

predicted location. The advantages of HapMiner are firstly, it is a model-free algorithm

which does not rely on any prior information about the genealogy of haplotypes and the

inheritance patterns of the diseases. Secondly, the time complexity of HapMiner is very

low, which means that it can perform disease gene location inference at a very high

speed. The experimental results in Li and Jiang [4] had shown that HapMiner

outperformed algorithms such as HMP by Toivonen et al. [2, 3] and BLADE by Liu et al.

[5, 6]. However, the main disadvantage of HapMiner is that it is very sensitive to its

parameter values. This problem generally applies to the density based clustering method,

31

where the user needs to guess the optimal parameter values through trial-and-error, which

may take a very long time to achieve the best guess.

To address some of the problems of the existing algorithms, we propose an

algorithm known as LinkageTracker. LinkageTracker is model free; it does not require

any population ancestry information about the disease and the genealogy of the

haplotypes. Furthermore, LinkageTracker does no require the setting of complex

parameters prior to the disease gene location inference process. LinkageTracker identifies

the set of linkage disequilibrium patterns using a heuristic level-wise neighbourhood

search and score each pattern by computing their p-values to ensure high discriminative

powers of each pattern. After which, it infers the marker allele that is closest to the

disease gene based on the p-value scores and allele frequencies of the set of linkage

disequilibrium patterns. LinkageTracker is robust as it caters for missing or erroneous

data by allowing gaps in between marker patterns. The initial work on LinkageTracker

was published in [17].

3.3 LinkageTracker

3.3.1 Technical Representation

The general framework of the LinkageTracker is represented as a quintuple <D,

Ω, L, Ψ, T> where

32

• D is a dataset consisting of M vectors <x1,…, xM>, where each xi is a vector <di1,…,

din> that describes the allele values of n genes/markers in a particular biological

sample.

• For each position d*j, ωj = {v1,…, vt} denotes the set of all possible expression

values that d*j could take on, and Ω is a collection of {ω1,…, ωn}.

• A labelling for D is a vector L = <l1,…, lM>, where the label li associated with xi is

either abnormal (a biological sequence derived from an individual exhibiting

abnormality) or normal (a biological sequence belonging to a normal control).

• Ψ is the neighbourhood definition. The neighbourhood determines the maximum

allowable gap size within each pattern. The gap setting enables LinkageTracker to

be tolerant to noise. In the later section, the setting of gap size is described in detail

and an optimal gap size is recommended based on expert knowledge on the

characteristics of linkage disequilibrium.

• T ∈ ℜ+ is the threshold value for accepting a particular pattern. In statistical terms,

T is the level of significance of the test. When the pattern score is less than T, the

pattern is considered as significant, and is kept for further processing.

The output P is a set of linkage disequilibrium patterns with high discriminative

powers. A pattern p=<d*i, d*j,…,d*k> where p ∈ P, such that i < j < k. Based on the set of

patterns in P, we then infer the marker allele, that is closest to the disease gene. That is,

for each marker allele, we combine the p-values of all patterns in P that consist of that

marker allele. The method to combine p-values was first introduced by Fisher [83].

33

3.3.2 Algorithm LinkageTracker

There are two main steps in the LinkageTracker algorithm. Step 1 identifies a set

of linkage disequilibrium patterns which is strong in discriminating the abnormal from

the normal. Step 2 infers the marker allele that is closest to the disease gene based on the

linkage disequilibrium patterns derived in Step 1.

3.3.2.1 Step 1: Discovery of Linkage Disequilibrium Pattern

LinkageTracker uses a statistical method known as odds ratio to score each

potential/candidate pattern. After which the significance of the patterns is determined

through comparing the pattern p-values to a value α that is dynamically computed at

different search levels. Hence, we give the odds ratio scoring method, followed by a

description of the computation of the dynamic α value. Finally, we present the level-wise

neighbourhood searches for potential/candidate patterns.

Odds Ratio

Odds ratio is a statistical methodology that has been widely used in the

biomedical arena to measure the magnitude of association between two categorical

variables based on some data collected [84-86]. Odds ratio [87-89] provides a good

measure of the magnitude of association between a pattern and the binary label L, which

is crucial in determining the discriminative power of a pattern.

34

 Abnormal Normal
not(1,3) P - σ N - π

(1,3) σ π
Table 3.1. : 2x2 contingency table

Given a pattern x, odds ratio computes the ratio of non-association between x and

the label L, to the association between x and L based on a set of data. For example, given

a pattern, say (1,3), we are interested in finding out whether the marker pattern (1,3) is

strongly associated with the label abnormal. Table 3.1 shows the contingency table for

our example. Odds ratio is defined as follows:

Odds Ratio, θ =
σπ
πσ

)(
)(

−
−

N
P (1)

The significance of a potential/candidate pattern is determined by computing its

p-value. P-value calculates the probability due to chance alone of getting a difference

larger than or equal to that actually observed in the data [90, 91]. A small p-value means

it is difficult to attribute the observed difference to chance alone, and this can be taken as

evidence against the null hypothesis of non-significance. We compare the p-value to α

which is known as the level of significance of the test. α is the probability of type 1 error.

A type 1 error occurs when the null hypothesis is wrongly rejected (when it should have

been accepted). When the p-value is less than α, the difference is statistically significant,

hence we can reject the null hypothesis at level α. In this work, the α value is

dynamically determined at different search levels, which means that the value α is

different for different level. If the p-value of a pattern is less than or equals to α, the

35

pattern is significant and is used for marker inference in the later stage. If the p-value is

greater than α, the pattern is not significant, and it is discarded.

Computing P-Values from Z-Statistics

To find the p-value associated with a pattern, we need to first compute the z-

statistics as follows:

z = ln θ ÷
)(

1
)(

111
πσπσ −

+
−

++
NP

 (2)

The one-sided p-value is = 1 – Φ(z), where Φ(z) is the distribution function for

N(0,1). The value of odds ratio is 0 or ∞ if any of the values in Table 3.1 is 0. In order to

overcome this problem [92] and [93] suggested modifying the computation of the odds

ratio to:

θ% =
)5.0()5.0(
)5.0)(5.0(

+−+
+−+

πσ
σπ

N
P (3)

The addition of 0.5 to each of the values in equation 3 is merely a device to avoid

division by zero.

36

The LinkageTracker Algorithm

LinkageTracker mines patterns of the form <d*i, d*j,…,d*k>. For example,

(3,5,6,*,*,4) is a marker pattern of length 4. The symbol “*” represents missing or

erroneous marker allele, and will not be considered when testing for significance of the

pattern. Also the symbol “*” is ignored when computing the length of a marker pattern.

Therefore, marker patterns (1,*,*,3), (1,*,3), and (1,3) are all considered as having length

of 2.

A gap is a “*” symbol in between two known marker alleles. For instance, the

marker patterns (1,*,*,*,3) has three gaps, (1,*,3) has one gap, and (1,3) has no gaps. The

maximum number of gaps for this marker pattern (1,*,*,3,*,*,*,*,5) is four, as there are

at most four gaps in between any two known marker alleles. The user is able to set the

maximum number of gaps for the marker patterns. However, we recommend that a

maximum allowable gap to be 6, giving the highest accuracy if the markers are spaced at

1 cM2 or less. The detail of such a recommendation is given in the later section.

To find linkage disequilibrium patterns, one of the ways is to use the brute force

method. That is, we could enumerate all possible marker patterns of length one, two, and

three etc, and then compute the odds ratio of each of the pattern and select those patterns

that are significant. However, there are some practical difficulties to this approach: for n

markers each with m alleles, there are km
k

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ marker patterns of length k, which we need

2 cM stands for centimorgan. It is the unit of measurement for genomic distance. In human genome, 1 centimorgan is

approximately equivalent, to 1 million base pairs.

37

to test for significance. Combinatorial explosion occurs as the length of marker patterns

increases.

The enumeration of all possible marker patterns is in fact unnecessary. This is

because, base on studies by Long & Langley [94], allelic associations are detectable

within a genomic region of 20cM. Allelic associations beyond 20cM are weak and are

not easily detectable. Therefore, enumerating marker patterns whose marker alleles are

more than 20cM apart are unlikely to yield significant results. Based on this observation,

LinkageTracker uses a heuristic search method by controlling the maximum allowable

gap size between two marker alleles. The gap size setting Ψ helps to define the search

space of LinkageTracker as well as to ensure robustness against noise. For simplicity of

illustration, all examples in this work assume that the markers are spaced at 1cM apart.

LinkageTracker is a heuristic level-wise search method which allows only

significant marker patterns (or linkage disequilibrium patterns) of length i-1 at level i to

join with their neighbors (of length 1) whose join satisfies the maximum gap constraint Ψ

to form candidate/potential marker patterns of length i, where 1 ≤ i ≤ n and n is the

number of markers. We call the procedure of joining linkage disequilibrium patterns at

each level to form longer patterns the neighborhood join. Note that in neighborhood join,

only the marker patterns of length i-1 need to be significant, the neighbors that they join

with need not be significant and may be several markers apart.

A marker allele exhibits significant allelic association with the disease gene under

two conditions. Firstly, it is significant on its own when tested (i.e. at level 1). Secondly,

when combine with other marker alleles that exhibit allelic associations with the disease

gene, the joined pattern becomes significant when tested.

38

The former condition is trivial to detect, the latter condition is concerned with a

marker allele who shows significant allelic association with the disease gene when

combine with other significant marker alleles but is insignificant when assessed alone.

Let us denote this maker allele as Mx. This problem can be further divided into 2 cases.

The first case is that Mx is close to a neighbor Mi that is significant when tested alone.

The term “close” here means that Mx will be selected to join with Mi directly to form

marker patterns for the immediate next level. For example, two markers say Mx and My

are both not significant at level 1, hence they will be discarded when forming marker

patterns for level 2. Now, we have Mi which is an immediate neighbor of My showing

significant allelic association in level 1 (assuming that the markers are ordered as

follows: Mi, My and Mx). Hence, in level 2, Mi will be made to combine with its

neighbors to form marker patterns of length 2. Since My is the immediate neighbor of Mi,

My will be selected to form pattern with Mi. Although Mx is one marker away from Mi,

Mx will also be selected, because LinkageTracker allows joining with markers that are

some gaps away as described above. Hence, in level 2, both My and Mx are included in

the marker patterns.

The second case is that Mx is very far from a marker allele Mz that is significant

when tested alone. The term “far” here means that Mx is less than 20 markers away from

Mz, but is far enough such that Mx will not be selected by Mz to form marker pattern for

the immediate next level. For example, from Figure 3.1, Mx and Mz is 8 markers apart.

Assuming that the maximum allowable gap size is set to 2, Mz is made to combine with

Ma, Mb, and Mc to form patterns of length 2. Assuming that (Mz,Mc) is tested

significant, then (Mz,Mc) will combine with Md, Me,and Mf to form patterns of length 3.

39

Assuming that (Mz,Mc,Mf) is tested significant, then (Mz,Mc,Mf) will combine with Mg,

Mh, and Mx to form patterns of length 4. Hence, Mx will ultimately be detected to form

marker patterns under the condition that there are sufficient significant “intermediate”

allele markers such as Mc and Mf, to facilitate the detection of allelic associative marker

alleles that are much further away (i.e. Mx). Nevertheless, as in accordance with the

studies by Long & Langley [94], most marker alleles exhibiting allelic associations with

the disease gene will occur within a distance of 20cM from the disease gene, which

means that marker alleles exhibiting allelic associations with the disease gene are quite

densely packed within the 20 makers region. Hence, the chances of LinkageTracker

detecting significant marker alleles within the range of 20 markers are relatively high

even though LinkageTracker is a heuristic method.

Dynamic Computation of α

In general, if we have k independent significance tests at the α level, the

probability p that we get no significant differences in all these tests is simply the product

of the individual probabilities: (1 - α)k. For example, with α = 0.05 and k = 10 we get p =

0.9510 = 0.60. This means that we now have a 40% chance that one of these 10 tests will

Figure 3.1: Illustration of marker positions

40

turn out significant, despite each individual test only being at the 5% level. In order to

guarantee that the overall significance test is still at the α level, Bonferroni Correction

[60] is usually applied; that is through dividing α by k to obtain the significance level for

the individual tests.

Bonferroni Correction [60] requires the knowledge of the exact value of k which

can be difficult to determine. LinkageTracker is an iterative process. In each iteration,

haplotypes may be tested for a different number of times which makes tracking k even

more difficult. Furthermore, fast convergence of the candidate pattern set to a small

number of patterns as the process iterates, is desirable for computational efficiency and to

filter out noisy patterns at early stage. As such we devise a new mechanism to the p-value

to be used at each iteration or pattern length.

The idea is to set the p-value at iteration i, to be the significance level of the t

most significant patterns at iteration i-1, achieving the same effect of raising the

significance level as the patterns get longer. We have t defined below:

 ()12 += iiteration

iiterationatsizesetpatternt (4)

For example, at the first iteration i = 0, we have pattern set of length 1 at the α level

significance. We set the p-value for the next iteration to be median significance in the

pattern set.

41

3.3.2.2 Step 2: Marker Inference

As mentioned in the earlier section, we infer the marker closest to the disease

gene by combining the p-values of the highly associated patterns. Now, let us describe

how we combine p-values from n patterns to form a single p-value. R.A. Fisher’s method

[83] specifies that one should transform each p-value into c = -2 * LN(P), where LN(P)

represents the natural logarithm of the p-value. The resulting n c-values are added

together, and their sum, ∑(c), represents a chi-square variable with 2n degree of freedom.

For example, to find the marker closest to the disease gene, we compute the combine p-

value and the frequency for each marker allele. In Figure 3.2(a), Marker 2 has allele 4

occurring four times, its combined p-value is 1.4 * 10-6, which is the chi-square

distribution of ∑(c) = 9.4211 + 10.0719 + 11.6183 + 10.8074 = 41.9186 with 8 degree of

freedom. Figure 3.2(b) depicts the combined p-value for each of the marker alleles from

Figure 3.2(a). As we can see Marker 2 allele 4 has the lowest combined p-value, and

hence we infer that Marker 2 is closest to the disease gene. If more than one marker

alleles have the same lowest p-value, then the marker with the highest frequency is

selected as the marker closest to the disease gene.

42

Marker 1 2 3 4 5 6 P-Value c = -2 * ln(P)
Pattern01 * 4 3 * * * 0.0090 9.4211
Pattern02 2 4 * * 6 1 0.0065 10.0719
Pattern03 2 4 3 5 * * 0.0030 11.6183
Pattern04 * * 3 5 * 1 0.0100 9.2103
Pattern05 2 4 * 5 6 * 0.0045 10.8074

(a)

 Freq ∑(c) Combine P-Value
Marker 1 allele 2 3 32.4975 1.3098E-05
Marker 2 allele 4 4 41.9186 1.4027E-06
Marker 3 allele 3 3 30.2497 3.5236E-05
Marker 4 allele 5 3 31.6390 1.9160E-05
Marker 5 allele 6 2 10.0719 0.0392
Marker 6 allele 1 2 19.2822 0.007

(b)

Figure 3.2: a) Example of 5 linkage disequilibrium patterns.
b) Combine p-value of each marker allele from (a).

3.3.3 Setting the Optimal Number of Gaps

To accurately find the marker closest to the disease gene, it is important to

determine the optimal number of gaps to use. The marker alleles that show significant

allelic associations with the disease gene (within 20 markers region according to studies

by Long & Langley [94]) should minimize the number of joins with neighbors beyond

the 20 markers region. This is because the joining of a significant marker allele with

some neighbors that are beyond the 20 markers region will inevitably introduce some

false positive marker patterns or noise. Such false positive marker patterns will result in

the reduction in accuracy during marker inference. On the other hand, we want to be as

robust as possible, that is, to maximize the total possible gaps so as to cater for erroneous

marker alleles. Based on these two conditions, we compute the Score for each gap setting

g as follows for patterns of length 2:

43

Score(g) =

∑

∑

=

=
g

i
i

g

i
i

Noise

Robustness

0

0 (4)

Table 3.2 shows the Score values for gap settings range from 0 to 20. Different

gap settings will result in different values for Noise and Robustness. We shall now

illustrate how the values of Noise and Robustness were computed with examples.

Num. of Gaps
(g) Noise Num. Of patterns p

form with g gaps
Robustness

= p x g Score(g)

0 1 19 0 0

1 2 18 18 6
2 3 17 34 8.67
3 4 16 48 10
4 5 15 60 10.67
5 6 14 70 10.95
6 7 13 78 11
7 8 12 84 10.89
8 9 11 88 10.67
9 10 10 90 10.36

10 11 9 90 10
11 12 8 88 9.59
12 13 7 84 9.14
13 14 6 78 8.67
14 15 5 70 8.17
15 16 4 60 7.65
16 17 3 48 7.11
17 18 2 34 6.56
18 19 1 18 6
19 20 0 0 0
20 21 0 0 0

Table 3.2. Score values for 0 to 20 gaps

44

3.3.3.1 Noise

Noise is defined as the maximum possible number of patterns consisting of

markers beyond the 20 markers region. Figure 3.3 shows a disease gene that is very close

to marker M1, markers M21 and M22 are in dotted boxes as they are beyond the 20

makers region from the disease gene. Assuming that marker M2 shows significant

association with the disease gene, and we set the maximum allowable gaps to 1, then M2

can join with its neighbors M3 and M4 to form patterns of length 2, i.e. (M2,M3) and

(M2,M4). Recall that the joining of a significant marker with some neighbors that are

beyond the 20 markers region will introduce Noise. In this case, if markers M19 and M20

are significant, they will join with M21 and M22 to form patterns of length 2. We can see

from Figure 3.4 that M19 and M20 will join with M21 and M22 in three ways, as

illustrated by the dotted arrows. Hence, the maximum possible number of patterns

consisting of markers beyond the 20 markers region (i.e. ∑
=

g

i
iNoise

0

) is 3 when the gap

setting g = 1 for this example. The Noise values for gap settings from 2 to 20 were

computed similarly.

Figure 3.3. The darken circle indicates the disease gene

45

3.3.3.2 Robustness

Before computing the Robustness values, we need to compute the maximum

possible number of patterns p formed within the 20 markers region when the gap setting

is g. When the gap setting g is set to 1, we can have at most 18 patterns (i.e. p = 18) as

illustrated by the arrows in Figure 3.4. With the values of p for different values of g, we

define Robustness as the maximum number of patterns formed within the 20 markers

region weighted by the gap setting g itself:

Robustness = p× g. (5)

Recall that it is desirable to have wider gaps so as to cater for erroneous marker

alleles, hence the value of Robustness increases as the value of g increases. As we can see

from Table 3.2 that the gap setting of 6 has the highest Score value, hence we recommend

that for a dataset with more than 20 markers to each chromosome (i.e. more than 20

attributes to each record) and each marker is spaced at 1cM apart, the optimal allowable

gap setting should be 6.

To verify our above recommendation, we evaluated the performance of

LinkageTracker by varying the gap settings from 2 to 10 on 100 realistically simulated

datasets generated by Toivonen et al. [2] (details in the next section). The sum-square

errors are computed for different gap settings g when applied to the 100 datasets. We find

Figure 3.4. Joining of markers when gap setting g is 1

46

that the gap setting of 6 has the lowest sum-square error, which means that it has the

highest accuracy. This is in agreement with our recommendation above.

Evaluation

3.4.1 Time Complexity Analysis

The search space for the enumeration all frequent itemsets is exponential in the

record length or the number of attributes to each record. For example, given a dataset

with each record having n attributes and each attribute taking on 2 different values, the

time complexity will be nCk2k ≈ O(nk2k) where k is pattern length, the worst case occurs

when k=0.5(n). LinkageTracker uses expert knowledge by Long & Langley [94] and

restricted the pattern length k to a value of 20.

3.4.2 Comparison of Performance on Real Datasets

We compared our algorithm LinkageTracker with some leading methods in

linkage disequilibrium mapping such as BLADE [5, 6], GeneRecon [7], and HapMiner

[4] on two real datasets, and 100 generated datasets. In this section we give the

performance of the methods when applied to real datasets. The details on the

performances on generated datasets are discussed in the next section.

47

3.4.2.1 Cystic Fibrosis

Cystic fibrosis is a well known real dataset reported in Kerem et. al [14]. The

dataset contains haplotypes on 23 bi-allelic markers around the cystic fibrosis trans-

membrane conductance regulator gene on chromosome 7q31.2. The control group has 92

haplotypes and the diseased group has 94. The founder mutation is located between

marker 17 and 18, approximately 0.88 cM away from the leftmost marker. Only 67% of

the disease haplotypes carry the founder mutation of interest. Furthermore, the disease

haplotypes have about 39% of missing observations at certain markers.

In this dataset, we know exactly which are the disease haplotypes carrying the

founder mutation of interest, and which are the disease haplotypes without the founder

mutation. Therefore it provides us the opportunity to perform rigorous experiments using

this dataset. For ease of reference, we divided the cystic fibrosis dataset into three

subsets. Let Set-A consists of disease haplotypes carrying the founder mutation of

interest, Set-B consists of disease haplotypes without the founder mutation of interest,

and Set-C consists of haplotypes from the normal control group. There are in total 63, 31

and 92 samples in Set-A, Set-B and Set-C respectively.

Experimental Setting 1: Detection Accuracies

In this experiment we assess the algorithms’ capability in detecting the disease

gene location when only a small portion of the disease haplotypes actually carrying the

founder mutation of interest, and others are genetically no different from control

population at the locus of interest. Therefore datasets with different percentages of

48

founder mutation carrying disease haplotypes are generated (at 10%, 20%, 30%, 40% and

50%). For each percentage value we generate 5 different datasets each with 50 disease

haplotypes and 50 controls.

For instance, to generate the disease haplotypes with 20% founder mutations, we

randomly select 10 founder mutation carrying disease haplotypes from Set-A, and mix

with 40 haplotypes randomly selected from control set Set-C. (thus only 20% of the

haplotypes actually carry the founder mutation). From the remaining 52 samples from

Set-C, we randomly select 50 samples to form the control haplotypes. This process is

repeated 5 times to generate 5 datasets with 20% founder mutation. The datasets for other

percentages of founder mutations are generated similarly.

Avg SSE 10% 20% 30% 40% 50% Avg SSE over
5 different %

Blade 0.41200 0.42290 0.02427 0.02025 0.00691 0.17727

HapMiner 0.11264 0.02765 0.13234 0.00380 0.01647 0.05858

HapMiner
(x + x * 0.001) 0.32505 0.09121 0.09087 0.04231 0.15701 0.14129

LinkageTracker 0.01860 0.02751 0.04065 0.01047 0.00035 0.01952

GeneRecon 0.03386 0.016987 0.01810 0.02246 0.01255 0.02079

Table 3.3: Comparison of predictive accuracies based on experimental setting 1

Table 3.3 shows the average sum-squared error of each of the algorithm at various

percentages of disease haplotypes carrying the founder mutation. Detailed experimental

results for each of the algorithm are given in the last section of this chapter. For the

algorithm HapMiner, we assess its predictive accuracies based on the original parameter

list provided by the authors [4] (they have used the same dataset in their work), and also

based on the slightly modified parameter list. For the slightly modified parameter list, for

49

each numerical parameter value x in the original parameter list, we replace x with a new

value y, such that y = x + (x * 0.001). The performance of HapMiner given the original

parameter list is labeled with “HapMiner”, and the HapMiner given the modified

parameter list is labeled as “HapMiner (x + x * 0.001)”.

Generally, we expect that the predictive accuracies of an algorithm to improve as

the percentage of disease haplotypes carrying the founder mutation increases. The

algorithm BLADE shows, in general, such characteristics as shown in Table 1 that the

sum-squared error (SSE) decreases as the percentage of disease haplotypes carrying the

founder mutation increases. However, the rest of the algorithms do not show such

characteristics. HapMiner fluctuates inconsistently at various percentage values, whereas

LinkageTracker and GeneRecon show consistent predictive accuracies at different

percentage values.

 At both ends of the range, 10% and 50% of disease haplotypes carrying the

founder mutation, LinkageTracker has the lowest SSE followed by GeneRecon (at 10%)

or Blade (at 50%). At 20% and 40%, LinkageTracker coming in second, and is in third

placing at 30%. Our objective when designing LinkageTracker is to have an algorithm for

finding disease gene location even when the occurrence of disease haplotypes carrying

the founder mutation is very small. The experimental results in Table 1 show that our

objective for LinkageTracker is met. Furthermore, LinkageTracker continues to show

good predictive accuracies as the percentage of disease haplotypes carrying the founder

mutation increases, with SSE below 0.05 for the entire range. LinkageTracker also has

the lowest average SSE over the five different percentage values.

50

Next we look at the average execution time of the algorithms (refer to Table 3.4).

HapMiner is the fastest algorithm, given the original parameter list HapMiner takes about

3 seconds to execute, whereas given the slightly modified parameter list HapMiner takes

about 5 seconds to execute. BLADE and LinkageTracker take over a minute to execute

on the average, and GeneRecon takes over 2 hours.

Avg Time
(seconds) 10% (s) 20% (s) 30% (s) 40% (s) 50% (s)

Avg time
over 5

different %

Avg time
with

Linkage
Tracker as
base unit

Blade 75.50 72.67 63.37 71.98 73.82 1m 11.47s 0.74

HapMiner 2.51 2.60 2.58 2.62 2.57 2.57s 0.03
HapMiner

(x + x * 0.001) 4.56 4.31 4.88 4.33 4.32 4.48172s 0.05

LinkageTracker 27.51 116.30 96.89 120.71 126.92 1m 36.66s 1

GeneRecon 10806.19 10318.56 10333.55 10593.06 10309.79 2hrs 54m
32.23s 108.33

Table 3.4: Comparison of run time based on experimental setting 1

In terms of predictive accuracies, GeneRecon is comparable with LinkageTracker.

However, the execution time of GeneRecon is orders of magnitude longer than

LinkageTracker. LinkageTracker is not the fastest algorithm. Some possible reasons may

be that LinkageTracker uses the simple level wise search strategy for interesting patterns.

Also our current implementation of LinkageTracker is not optimized. It is programmed in

Java using complex data structures for fast prototyping, whereas the rest of the algorithms

are coded in C/C++.

51

Experimental Setting 2: Noisy data

Next we assess the algorithms’ performance when there are noises in the data. We

are interested to know the algorithms’ capability in detecting the disease gene location

when only a small portion of the disease haplotypes actually carry the founder mutation

of interest, while others are disease haplotypes without the founder mutation of interest.

The disease haplotypes without the founder mutation are confounding that could

influence the predictive accuracy of an algorithm. As similar to experimental setting 1,

datasets with different percentages of founder mutation carrying disease haplotypes were

generated (at 10%, 20%, 30%, 40% and 50%). However, the data generation procedure is

more elaborate. As mentioned earlier, there are three subsets for the cystic fibrosis

dataset:

Set-A - 63 disease samples with the known founder mutation at the specific site.

Set-B - 31 disease samples without the founder mutation.

Set-C - 92 non disease control samples.

A dataset is generated as given in Table 3.5. For example, there are two main

steps for generating datasets for the 10% mutation test. First we generate the disease set

by randomly selecting 5 out of 63 samples from Set A, all 31 samples from Set B, and

randomly selecting 14 out of 92 samples from Set C. Next we generate the control set, by

randomly selecting 50 samples out of the remaining 78 samples from Set C (as 14

samples have already been taken out for the disease set). There are 50 samples in both the

disease and control sets. The data generation is repeatedly performed for 5 test datasets at

the same mutation level.

52

Mutation
level Data type Set A Set B Set C Total

Disease set 5/63 All 31 14/92 50
10%

Control set - - 50/ (92-14) 50

Disease set 10/63 All 31 9/92 50
20%

Control set - - 50/(92-9) 50

Disease set 15/63 All 31 4/92 50
30%

Control set - - 50/(92-4) 50

Disease set 20/63 30/31 - 50
40%

Control set - - 50/92 50

Disease set 25/63 25/31 - 50
50%

Control set - - 50/92 50

Table 3.5: Data generation for experimental setting 2

Table 3.6 shows the average sum-squared error in predictions of each of the

algorithm at various percentages of disease haplotypes carrying the founder mutation.

LinkageTracker has the lowest average SSE, followed by GeneRecon. HapMiner would

have performed well on this dataset if not for extremely poor performance at the 10%

mutation set.

Avg SSE 10% 20% 30% 40% 50% Avg SSE over
5 different %

Blade 0.12414 0.13140 0.18466 0.10704 0.13875 0.13720

HapMiner 0.42124 0.00010 0.00010 0.00010 0.00010 0.08433

HapMiner
(x + x * 0.001) 0.63847 0.62987 0.55138 0.66370 0.55138 0.60696

LinkageTracker 0.00742 0.01580 0.01004 0.00232 0.00619 0.00835

GeneRecon 0.02467 0.01305 0.01078 0.02759 0.02283 0.01979

Table 3.6: Comparison of predictive accuracy based on experimental setting 2

53

Next we look at the average execution time of the algorithms (refer to Table 3.7).

HapMiner is the fastest algorithm. Given the original parameter list, HapMiner takes

about 1.5 seconds to execute, whereas given the slightly modified parameter list

HapMiner takes about 6 seconds to execute. Although in terms of predictive accuracies,

GeneRecon is comparable with LinkageTracker, the execution time of GeneRecon is

orders of magnitude longer than LinkageTracker.

Avg Time
(seconds) 10% (s) 20% (s) 30% (s) 40% (s) 50% (s) Avg time over 5

different % (s)
Blade 47.31 44.03 49.37 50.15 48.41 47.85

HapMiner 1.40 1.57 1.57 1.57 1.56 1.53
HapMiner

(x + x * 0.001) 6.37 5.84 5.83 5.92 6.17 6.03

LinkageTracker 204.55 136.38 172.78 141.16 111.61 153.29

GeneRecon 4867.00 4943.17 4923.15 4813.95 4845.85 4878.63

Table 3.7: Comparison of running time based on experimental setting 2

Experimental Setting 3

In this experiment, we assess the algorithms’ performance when applied to the

cystic fibrosis dataset without any modification to the ratios of the original disease

haplotypes. Five datasets are generated for this experimental setting. The steps for

generating the five datasets are: Firstly, samples from Set-A and Set–B are combined to

form a new set, Set-X, which consists of 94 disease samples. Next, randomly pick 50

samples from Set-X to form the disease set. Lastly, pick 50 samples randomly from the

92 control samples (i.e. Set-C) to form the control set. The last 2 steps are repeated five

times to form 5 datasets.

54

Table 3.8 shows the average sum-squared error of each of the algorithm for each

of the 5 datasets. Detailed experimental results for each of the algorithm are given at the

end of the chapter. LinkageTracker comes in second, marginally behind HapMiner which

has the lowest SSE for experimental setting 3.

3.4.2.2 Friedreich Ataxia

Friedreich ataxia is an autosomal recessive degenerative disease that involves the

central and peripheral nervous system and the heart. The data came from the Acadian

population of Louisiana (Sirugo et al 1992). Campuzano et al (1996) identified the gene

responsible for friedreich ataxia and discovered that the disease is caused by trinucleotide

repeat expansion. The friedreich ataxia dataset was first reported by Liu et. al. [5] for

linkage disequilibrium mapping. The friedreich ataxia dataset contains 54 disease

haplotypes and 69 control haplotypes with 12 microsatellite markers. The gene is located

between the fifth and sixth markers, approximately 9.8125 cM away from the leftmost

marker.

 Blade HapMiner HapMiner
(x + x * 0.01) GeneRecon LinkageTracker

Avg SSE 0.01564 0.00588 0.58522 0.01466 0.00811

Avg Time (Seconds) 58.02020 1.98600 6.50040 4775.65660 125.53400

Table 3.8: Comparison of predictive accuracy and running time of the algorithms based
on experimental setting 3

55

 Blade HapMiner HapMiner
(x + x * 0.01) GeneRecon LinkageTracker

Avg SSE 10.367 0.060 0.416 - 0.135
Avg Time
(Seconds) 742.515 3.194 3.801 - 108.192

Table 3.9: Comparison of predictive accuracy and running time of the algorithms

when applied to the friedreich ataxia dataset

The experiments performed here using the friedreich ataxia dataset is similar to

the experimental setting 3 in the previous section. The procedure of the data generation is

as such: Firstly, pick 50 samples randomly from the 54 disease samples of the friedreich

ataxia dataset. Next, pick 50 samples randomly from the 69 control samples of the

friedreich ataxia dataset. The procedure is performed five times to form 5 datasets.

 Table 3.9 shows the average sum-squared error of each of the algorithm for the 5

friedreich ataxia datasets. LinkageTracker is second to HapMiner in predictive accuracy.

No results were produced by GeneRecon for the friedreich ataxia dataset because

GeneRecon accepts only binary valued attributes, whereas markers in the friedreich

ataxia dataset are microsatellite markers each with more than 10 possible alleles.

Detailed experimental results for each of the algorithm can be found in the last section of

this report.

3.4.2.3 Observations from the experiments on real datasets

From the experiments on the two real datasets, we see that in general,

LinkageTracker and HapMiner have the best predictive accuracy, with HapMiner being

the fastest algorithm. In instances where HapMiner is the better of the two,

LinkageTracker follows closely behind HapMiner to give comparable predictions. It is

56

noted that the predictive accuracies of HapMiner with slightly modified parameter list are

generally not as good when compared to all the other algorithms. This shows that

HapMiner’s performance is extremely sensitive to its parameter setting and robustness of

the algorithm is a concern.

Based on the experimental results, HapMiner will be the best algorithm to use if

the user knows exactly what values to set for each of its parameters. However, some

parameters such as density threshold and radius may require many rounds of trial-and-

error to achieve the optimal value. On the other hand, LinkageTracker produces good

predictive accuracies and does not require the setting of complex parameters. Therefore,

LinkageTracker will be a useful tool for linkage disequilibrium mapping when users do

not have much information about their datasets.

3.4.3 Comparison of Performance on Generated Datasets

In this section we compare our algorithm LinkageTracker with HapMiner (given

the original parameter list) on 100 generated datasets. The reason being HapMiner with

original parameter list has shown to be efficient based on the results from real datasets in

the previous section. Furthermore, HapMiner also made used of the same 100 generated

datasets in their original papers [2]. The datasets used in this experiment were generated

by Toivonen et al. [2]. Unfortunately the program HPM by Toivonen et al. [2] is not

available to us. Nevertheless, we report the results of HPM in their original paper [2] and

compare the predictive accuracies with LinkageTracker and HapMiner.

57

The datasets are downloadable from the following URL:

http://www.genome.helsinki.fi/eng/research/projects/DM/index-ajhg.html.

The simulated datasets correspond with the realistic isolated founder populations

which grow from 300 to about 100,000 individuals over a period of 500 years. The

simulation of isolated population is suited to linkage disequilibrium studies as

recommended by Wright et al. [95].

There are in total 100 datasets, each consisting of 400 biological sequences where

200 sequences are labeled “abnormal” and the rest of the 200 sequences labeled

“normal”. Each biological sequence consists of 101 markers. The datasets are generated

such that each dataset has a different disease gene location. The main task is to predict

the marker that is nearest to the disease gene for each dataset.

Figure 3.5: Comparison of prediction accuracy among HapMiner, HPM
and LinkageTracker

0

20

40

60

80

100

120

0 20 40 60 80 100 120
True Location

Pr
ed

ic
te

d
Lo

ca
tio

n

HapMiner
HPM
LinkageTracker

58

Figure 3.5 shows the performance of HapMiner, HPM and LinkageTracker when

applied to the 100 generated datasets. The points on the graph depict the predicted

disease gene location by each of the algorithms. The straight line depicts that the

predicted location is the same as the actual location, therefore the closer the points to the

straight line, the more accurate is the prediction. Table 3.10 shows the predictive

accuracy of HapMiner, LinkageTracker, and HPM over the 100 generated datasets.

Among the three algorithms, LinkageTracker has the lowest SSE for the 100 datasets. It

is observed that all the three algorithms did not perform well on the second dataset (refer

to Table 3.10, row number 2), hence we exclude the second dataset in the performance

assessment. LinkageTracker continues to be the algorithm with the lowest SSE, even

after the exclusion of the second dataset for performance assessment.

Dataset
Exact
Location HapMiner

SSE
(HapMiner) HPM

SSE
(HPM)

Linkage
Tracker

SSE
(Linkage
Tracker)

1 86.9832 89 4.06748224 88 1.0338822 91 16.13468
2 100.497 21 6319.773009 16 7139.743 51 2449.953
3 85.1152 83 4.47407104 88 8.322071 85 0.013271
4 88.1118 90 3.56529924 94 34.670899 94 34.6709
5 27.1749 25 4.73019001 28 0.68079 27 0.03059
6 71.3791 67 19.17651681 70 1.9019168 71 0.143717
7 91.4263 90 2.03433169 91 0.1817317 92 0.329132
8 97.4294 95 5.90198436 97 0.1843844 97 0.184384
9 46.0612 45 1.12614544 47 0.8813454 48 3.758945

10 85.6649 86 0.11229201 87 1.782492 83 7.101692
11 56.1308 55 1.27870864 54 4.5403086 53 9.801909
12 95.2145 96 0.61701025 95 0.0460103 95 0.04601
13 96.0643 95 1.13273449 92 16.518534 95 1.132734
14 6.5231 5 2.31983361 7 0.2274336 6 0.273634
15 37.0228 37 0.00051984 35 4.0917198 36 1.04612
16 74.7825 75 0.04730625 76 1.4823063 76 1.482306
17 31.6615 29 7.08358225 28 13.406582 28 13.40658

59

18 88.4862 88 0.23639044 90 2.2915904 91 6.31919
19 86.8215 84 7.96086225 86 0.6748623 87 0.031862
20 65.406 63 5.788836 65 0.164836 65 0.164836
21 81.2496 78 10.55990016 79 5.0607002 82 0.5631
22 81.3287 82 0.45064369 86 21.821044 84 7.135844
23 63.4151 63 0.17230801 63 0.172308 59 19.49311
24 68.8194 67 3.31021636 66 7.9490164 66 7.949016
25 49.43 50 0.3249 53 12.7449 56 43.1649
26 92.4113 93 0.34656769 95 6.7013677 96 12.87877
27 7.6075 11 11.50905625 10 5.7240563 8 0.154056
28 82.7023 82 0.49322529 80 7.3024253 80 7.302425
29 67.6077 68 0.15389929 68 0.1538993 67 0.369299
30 31.8872 33 1.23832384 39 50.591924 32 0.012724
31 26.7347 25 3.00918409 25 3.0091841 31 18.19278
32 5.0485 4 1.09935225 5 0.0023522 5 0.002352
33 43.1726 42 1.37499076 42 1.3749908 44 0.684591
34 84.0212 83 1.04284944 85 0.9580494 85 0.958049
35 30.6477 31 0.12411529 32 1.8287153 31 0.124115
36 61.2179 61 0.04748041 61 0.0474804 60 1.48328
37 25.0116 24 1.02333456 24 1.0233346 27 3.953735
38 82.1955 81 1.42922025 81 1.4292202 83 0.64722
39 49.7319 47 7.46327761 48 2.9994776 52 5.144278
40 65.3964 62 11.53553296 65 0.157133 65 0.157133
41 86.7881 87 0.04490161 87 0.0449016 87 0.044902
42 48.5025 49 0.24750625 47 2.2575062 42 42.28251
43 62.4334 63 0.32103556 62 0.1878356 63 0.321036
44 16.6554 47 920.7947492 48 982.48395 18 1.807949
45 48.1984 50 3.24576256 51 7.8489626 51 7.848963
46 5.4983 5 0.24830289 5 0.2483029 5 0.248303
47 1.3383 5 13.40804689 7 32.054847 6 21.73145
48 80.4148 78 5.83125904 83 6.683259 80 0.172059
49 37.9742 36 3.89746564 36 3.8974656 39 1.052266
50 48.5517 48 0.30437289 45 12.614573 52 11.89077
51 98.8413 96 8.07298569 96 8.0729857 95 14.75559
52 87.4368 90 6.56999424 87 0.1907942 89 2.443594
53 33.1849 33 0.03418801 33 0.034188 34 0.664388
54 43.7423 45 1.58180929 45 1.5818093 46 5.097209
55 66.9502 67 0.00248004 68 1.10208 69 4.20168
56 41.5095 42 0.24059025 43 2.2215902 47 30.14559
57 19.8586 21 1.30279396 24 17.151194 21 1.302794
58 9.1709 8 1.37100681 9 0.0292068 9 0.029207
59 12.1537 12 0.02362369 9 9.9458237 11 1.331024
60 38.0134 38 0.00017956 37 1.0269796 37 1.02698
61 27.8384 29 1.34931456 29 1.3493146 25 8.056515
62 92.5326 94 2.15326276 94 2.1532628 92 0.283663
63 47.8187 46 3.30766969 47 0.6702697 47 0.67027
64 31.7271 29 7.43707441 32 0.0744744 32 0.074474
65 57.2332 60 7.65518224 60 7.6551822 74 281.1256

60

66 82.0091 82 8.281E-05 82 8.281E-05 82 8.28E-05
67 90.4501 92 2.40219001 93 6.50199 93 6.50199
68 67.7722 68 0.05189284 68 0.0518928 68 0.051893
69 55.1578 51 17.28730084 51 17.287301 53 4.656101
70 48.9422 49 0.00334084 51 4.2345408 52 9.350141
71 72.2161 69 10.34329921 69 10.343299 71 1.478899
72 9.3478 6 11.20776484 6 11.207765 9 0.120965
73 58.4323 57 2.05148329 59 0.3222833 55 11.78068
74 43.0613 41 4.24895769 44 0.8811577 44 0.881158
75 83.4535 85 2.39166225 84 0.2986622 84 0.298662
76 36.603 36 0.363609 37 0.157609 37 0.157609
77 62.1854 62 0.03437316 63 0.6635732 61 1.405173
78 35.95 37 1.1025 38 4.2025 39 9.3025
79 19.0096 18 1.01929216 21 3.9616922 21 3.961692
80 43.6985 46 5.29690225 43 0.4879023 43 0.487902
81 91.0723 89 4.29442729 90 1.1498273 91 0.005227
82 59.0882 56 9.53697924 59 0.0077792 55 16.71338
83 20.4244 18 5.87771536 20 0.1801154 19 2.028915
84 21.1371 20 1.29299641 20 1.2929964 22 0.744596
85 22.4228 24 2.48755984 23 0.3331598 23 0.33316
86 76.4812 69 55.96835344 72 20.081153 72 20.08115
87 75.7599 73 7.61704801 80 17.978448 76 0.057648
88 51.1806 52 0.67141636 52 0.6714164 52 0.671416
89 31.3206 32 0.46158436 33 2.8203844 36 21.89678
90 44.9818 42 8.89113124 44 0.9639312 45 0.000331
91 14.1838 13 1.40138244 13 1.4013824 14 0.033782
92 76.3524 68 69.76258576 69 54.057786 73 11.23859
93 70.1111 70 0.01234321 70 0.0123432 68 4.456743
94 93.5851 93 0.34234201 93 0.342342 94 0.172142
95 100.021 99 1.042441 96 16.168441 96 16.16844
96 66.6209 68 1.90191681 68 1.9019168 55 135.0453
97 66.4395 64 5.95116025 68 2.4351603 71 20.79816
98 30.4381 28 5.94433161 28 5.9443316 27 11.82053
99 63.9333 61 8.60424889 68 16.538049 65 1.137849
100 81.824 80 3.326976 81 0.678976 83 1.382976
Avg
SSE 76.90774632 86.710212 34.30228
Avg
SSE

exclude
dataset

2 13.84850125 15.467457 9.901764

Table 3.10: Comparison of predictive accuracies over 100 datasets

61

Discussion

We have introduced a new method for linkage disequilibrium mapping known as

LinkageTracker. We compared LinkageTracker with some leading methods in linkage

disequilibrium mapping. Experimental results show that LinkageTracker is highly

accurate in both simulation-generated and real genetic datasets when compared to other

methods. However, LinkageTracker is not superlative since HapMiner is faster in

processing when compared to LinkageTracker. The predictive accuracies of HapMiner is

very sensitive to its parameter values, and hence may not be the most efficient method to

use when the user do not have sufficient knowledge to set the parameters. GeneRecon

shows good predictive accuracies that are comparable to LinkageTracker. However,

GeneRecon is very slow in processing that it requires hours to run a dataset with 23

markers and 100 samples. Furthermore, GeneRecon is not able to work on microsatellite

makers with more than two alleles. The overall performance of LinkageTracker is

promising as it provides good predictive accuracies while taking a reasonably short

processing time, and also it is easy to use since it does not require the setting of complex

parameters. The main weakness of LinkageTracker is that it is not able to use additional

information such as genealogy of the haplotypes to improve performance when the

additional information is available.

62

Chapter 4

ECTracker – Haplotype Analysis and Classification

Introduction

This chapter explores data mining methods that are capable of performing genetic

analysis and carrier detection. Intuitively expressive patterns (or genetic variations) are

extracted to provide insights about the genetic manifestations of patients affected by a

disease. The extracted patterns are subsequently used for predictive inference (or

classification) to help in carrier detection. In this chapter, we propose a new method

known as ECTracker for pattern extraction and classification, and applied our algorithm

on three real biological datasets. The first biological dataset consists of haplotypes of

patients affected by hemophilia A from Singapore, and a set of matching unaffected

control individuals [16]. The second and third datasets are Cystic Fibrosis and Friedreich

Ataxia that are also used in the previous chapter for the finding of disease gene location.

The performance of ECTracker in terms of expressiveness of patterns and predictive

accuracies are compared to some leading methods in machine learning including C4.5,

Naïve Bayesian Method, Artificial Neural Network, Support Vector Machine, K-Nearest

Neighbor, Bagging (with Naïve Bayesian as base).

63

ECTracker

There are mainly two steps in the ECTracker. The first step finds all interesting

patterns and the second step performs classification using those interesting patterns found

in the first step. The basic idea of the ECTracker algorithm is to first derive all high

precedence patterns for analysis, then, subsequently use the same high precedence

patterns as a classifier.

4.2.1 Step 1 – Finding of Interesting Patterns

In the first step of ECTracker, we derive two sets of high precedence patterns; the

first set pertaining to the disease samples and the second set pertaining to the

normal/control samples. The algorithm for the finding of interesting patterns for this step

is the same as the algorithm in Section 3.3.2.1 for the finding of linkage disequilibrium

patterns. In other words, a level-wise neighborhood search method is used to find all

significant patterns and the search is guided by the statistical odds ratio scores.

64

4.2.2 Step 2 – Predictive Inference or Classification

This section presents the algorithm for predictive inference using the patterns

derived from the previous step. Before presenting the algorithm, let us define the order of

precedence of the derived patterns. This is used in selecting patterns for our classifier.

Definition: Given two patterns, ri and rj, ri >> rj (also called ri precedes rj or ri

has a higher precedence than rj) if

1. The p-value of ri is less than that of rj, the smaller the p-value of a pattern the

greater the statistical significance of that pattern.

2. Both patterns having the same p-values and ri ⊂ rj, the pattern length of ri is

shorter than that of rj. The pattern with shorter pattern length that can correctly classify

an unseen case is preferred.

3. Both patterns having the same p-values and ri ⊄ rj, but ri is generated earlier

than rj.

Let Rd be the set of patterns pertaining to the disease samples and Rc be the set of

patterns pertaining to the normal/control samples derived in step 1. The basic idea of the

algorithm is to choose a set of high precedence patterns in Rd and a set of high

precedence patterns in Rc as our classifier.

Let R = Rd ∪ Rc and D be the training data used to derive R, our classifier is of the

following format: <r1, r2, …, rn>, <v1, v2, …, vm>, <default_class>, where ri ∈ Rd, ra >>

rb if b > a, vi ∈ Rc, va >> vb if b > a. The default_class is the chosen class for an unseen

65

case when no patterns in the classifier could classify the unseen case. The default_class

can be specified by the user. However, if the user decides to let our classifier to select the

default_class, then the majority class in the data D will be chosen as the default_class.

We shall now describe the algorithm for building our classifier. It consists of five

steps:

Step 1: Generate patterns Rd and Rc with a given p-value pv.

Step 2: Sort the generated patterns in Rd and Rc according to the relation “>>”.

This is to ensure that we choose the highest precedence patterns for our classifier.

Step 3: For each pattern r in sorted Rd and for each pattern v in the sorted Rc, if

there exists another pattern r’ (or v’) such that the p-values of both r and r’ (or v and v’)

are the same, and r’ ⊂ r (or v’ ⊂ v), then remove r (or v) from sorted Rd (or Rc). This

ensures that we choose the pattern with the shortest pattern length for each p-value. The

top pattern set ℜ for classification is formed with the remaining sorted sequence.

Step 4: Perform classification on the training data D using pattern classifier ℜ and

compute the true positive rate of the prediction.

Step 5: If the true positive rate is less than the user defined minimum true positive

rate, then repeat Step 1 thru Step 4 using a different p-value pv to generate Rd and Rc.

We now describe the classification phase of Step 4 in greater details. In

classifying an unseen case, the first top pattern/rule that matches the case perfectly will

classify it. Given an unseen case a and a rule r ∈ Rd, r is said to be the perfect match of

66

case a if and only if a = r, this means that if r is a proper subset of a and the length of r is

less than the length of a, then it is not a perfect match. In the case, when an unseen case a

matches a top rule from Rd perfectly and also matches a top rule from Rc perfectly, then a

will be classified as belonging to class Rd. If there is no pattern that perfectly matches the

case, a scoring method will be used for each of the classes, the class with the highest

score classifies the case. However, if the scoring method produces the same score for

each of the available classes, then the unseen case will take on the default class. Figure 4-

1 shows the pseudo code for scoring the classes given an unknown case pattern that does

not match perfectly to any of the top patterns/rules.

1. Given an unknown case pattern A = (a1, …., ak)
2. Given a set of top rules Rx ∈ ℜ that classify class Cx, Rx = {r1,….,rn}
3. Given a set of top rules Ry ∈ ℜ that classify class Cy, Ry = {r’1,….,r’m}
4. For each item ai ∈ A do
5. For each rule rj ∈ Rx do

6.
⎩
⎨
⎧

=
∈=

=∑
= otherwisew

raifw
wherew

r
rs

j

jij
j

n

j j
i 0

1
||

||max
1

 where max|r| is the maximum length of rules in Rx
7. End

8. ()xCAScore = ∑
=

k

i
is

1

2

9. For each rule r’l ∈ Ry do

⎩
⎨
⎧

=
∈=

=∑
= otherwisew

raifw
wherew

r
rs

l

lil
l

m

l l
i 0

'1
|'|

|'|max'
1

where max|r’| is the maximum length of rules in Ry
10. End

11. ()yCAScore =∑
=

k

i
is

1

2'

12. End

Figure 4.1: Pseudo code for computing score of each class

67

The Hemophilia Dataset

Hemophilia A is an X-linked recessive bleeding disorder that results from

deficiency and/or abnormality of coagulation factor VIII (FVIII) [ref]. The FVIII gene

spans 186 kb of DNA and resides on 0.1% of the X chromosome (band Xq28). A set of

five common PCR-based polymorphisms located on chromosome Xq28 which tags the

hemophilia A disease gene were collected and analyzed from 47 patients and 47 matched

normal controls. The five polymorphisms collected are two microsatellite repeats in

introns 13 and 22, and three RFLPs namely BclI-intron 18, HindIII-intron 19, and XbaI-

intron 22, the exact location of the markers are shown in Figure 4.2.

In the next section, we describe the allelic frequencies of Factor VIII gene

observed in our local population and the allelic frequencies reported by the authoritative

resource website [96] for hemophilia A disease. The reporting of the allelic frequencies

of our local population is useful for other medical practitioners not located in Singapore

to decide whether they could make use of our discovery of the genetic variations for

prognosis and counseling of their patients.

Intron 13
(CA)n

Intron 18
BclI

Intron 19
HindIII

Intron 22
XbaI

Intron 22
(GT)n(AG)n

Figure 4.2: Factor VIII Gene

68

4.3.1 Allelic Frequencies

The allelic frequencies observed in this study and those reported by Hemophilia A

Mutation, Structure, Test and Resources Site [96] are tabulated in Tables 4.1, 4.2, and

4.3. Our results for BclI, HindIII, and Intron-13(CA)n are significantly similar to those

reported in [96] with χ2 < 3.841 (at 1 degree of freedom, and p-value>0.05) for BclI and

HindIII, and χ2 < 12.59 (at 6 degree of freedom, p-value>0.05) for Intron-13(CA)n, they

are all within 95% confidence interval. However, the frequencies for XbaI and

Intron22(GT)n(AG)n are significantly different from those reported by [96] with χ2 >

3.841 (at 1 degree of freedom, and p-value < 0.05) for XbaI and χ2 > 12.59 (at 6 degree

of freedom, p-value<0.05) for Intron22(GT)n(AG)n.

Allele Frequencies

24 23 22 21 20 19 15 Intron 13 (CA)n Repeats

1 2 3 4 5 6 10

This Study 0.01 0.10 0.06 0.26 0.52 0.04 0.01

Reported by [35] 0.013 0.05 0.11 0.29 0.45 0.07 0

Table 4.2: Allelic Frequencies of Intron 13 (CA)n Repeats

Allele Frequencies
(This Study)

Allele Frequencies
(Reported by [35])

(-) (+) (-) (+) RFLPs

1 2 1 2
BclI 0.22 0.78 0.29 0.71
HindIII 0.78 0.22 0.75 0.25
XbaI 0.56 0.44 0.41 0.59

Table 4.1: Allelic Frequencies of RFLPs

69

It is observed that samples with BclI-intron 18 allele 1 are always associated with

HindIII-intron 19 allele 2 with χ2 p-value < 0.001. The observation is expected as there is

reported linkage disequilibrium between BclI and HindIII alleles from literature such as

Ahrens et al. [97] and EL-Maarri et al. [98]. The HindIII marker is thus excluded since

BclI and HindIII are in linkage disequilibrium, we could easily predict the value of the

other attribute base on the value of one attribute, and hence 4 markers are sufficient in the

analysis.

Furthermore, it is found that 70% of the samples have exactly the same allele

values in all the markers in both patient and normal controls. This means that the 5

markers/attributes in the dataset are insufficient for separating 70% of the samples. After

removing those samples whose disease and normal haplotypes cannot be distinguished,

there are 28 samples remaining – 18 samples belonging to the disease phenotype and 10

samples belonging to the normal/control phenotype. Tables 4.4 and 4.5 show the

frequencies of the disease and normal/control haplotypes respectively.

Allele Frequencies

31 30 29 28 27 26 25
Intron 22

(GT)n/(AG)n
Repeats

1 2 3 4 5 6 7

This Study 0.01 0.01 0.04 0.03 0.09 0.63 0.19

Reported by [35] 0 0 0 0.013 0 0.667 0.307

Table 4.3: Allelic Frequencies of Intron 22 (GT)n/(AG)n Repeats

70

For descriptive analysis, we report on the expressive and interesting patterns

extracted from the remaining 30% of the dataset, detailed description is given in Section

4.4.

For classification or predictive analysis, we divide out experiment into two parts.

In the first part we assess the accuracies of the five classifiers based on the full

hemophilia dataset. This part of the experiment further elaborated in Section 4.5.1. In the

second part of the experiment, we concentrate our study on the 30% of the dataset where

those samples whose disease and normal haplotypes cannot be distinguished are

removed. The details are presented in Section 4.5.2.

Marker Disease Haplotypes Total
Intron-13 (CA)n 3 4 4 4 4 4 5 5 5 5 10

BclI 1 2 2 2 2 1 2 2 2 1 2
XbaI 1 1 1 2 2 1 2 1 2 1 1

Intron-22 (GT)n/(AG)n 3 1 3 3 5 7 2 4 5 6 6

No. of Probands 1 1 2 1 1 6 1 2 1 1 1 18

Table 4.4: Haplotype Frequencies of Probands with Disease Phenotype

Markers Normal/Control Haplotypes Total
Intron-13 (CA)n 1 2 2 3 3 4 4 5 6

BclI 1 1 2 1 1 2 2 2 2
XbaI 1 1 2 1 1 1 1 1 2

Intron-22 (GT)n/(AG)n 7 5 6 5 7 4 5 7 6

No. of Probands 1 1 1 1 2 1 1 1 1 10

Table 4.5: Haplotype Frequencies of Probands with Normal/Control Phenotype

71

4.4 Descriptive Analysis – Interesting Pattern Extraction

In order to facilitate haplotype or genetic variations analysis, it is required that the

data mining method be capable of generating a set of patterns or haplotypes (or genetic

variations) such that the patterns are highly associated with the disease phenotype.

Haplotype analysis is very useful in providing rapid information for genetic counseling.

Among the popular machine learning methods mentioned earlier in the introduction

section, only C4.5 is capable of producing descriptive patterns for haplotype analysis, so

we compare ECTracker with it for descriptive analysis.

4.4.1 Expressive patterns derived by C4.5

C4.5 deduced that haplotype patterns (or genetic variations) of 4−*−*−*, 5−*−*−

, or 10−−*−* (Intron13(CA)n−BclI−XbaI−Intron22(GT)n(AG)n) are highly associated

with the disease phenotype. This derivation is not very useful as we can see from Table

4.5 that there are 3 probands with normal/control phenotype having intron-13 (CA)n

allele values 4 and 5. Furthermore allele value 10 in intron-13 (CA)n only occurs once in

the proband with disease phenotype (from Table 4.4). Hence it is not able to give a

generalize conclusion based only on allele value 10 of intron-13 (CA)n.

The possible reason for such deduction of C4.5 may be due to the problem that

the dataset is very small, and as a result the selection for partitioning attribute becomes

bias for those attributes with more attribute values. Hence attributes with more attribute

72

values will be assigned higher information gain as compared to attributes with less

attribute values.

4.4.2 Expressive patterns derived by ECTracker

As described in the earlier section of this chapter, the smaller the p-value of a

pattern the higher the statistical significance of that pattern. Among the set of patterns

derived by ECTracker, we select those patterns with the smallest p-value (i.e. most

significant). There can be several patterns with the same lowest p-value, and we call these

patterns the most significant patterns.

The longest most significant pattern associated with the disease phenotype

derived by ECTracker is 4−1−1−7 (Intron13(CA)n−BclI−XbaI−Intron22(GT)n(AG)n).

This is an interesting observation as the haplotype occurs in 33.3% of the disease

phenotype and 0% of the normal/control phenotype with χ2 > 3.841, which means that

such observation occurs significantly greater than by chance. From Table 4.4, the

haplotype occurs in 6 probands with disease phenotype as compare to other haplotypes

which occur in no more than 2 probands. The shortest most significant patterns derived

by ECTracker are 4−*−*−7 or 4−1−*−*. This means that two markers alone are

sufficient to define the disease haplotype. However, the longest most significant pattern

provides a useful insight for the medical practitioners or scientists who seek to better

understand the genetic variations of the disease.

This experiment shows that ECTracker is capable of deriving useful patterns even

when the dataset is very small. As we could see that C4.5 is not able to handle such small

dataset very well.

73

4.5 Predictive Analysis – Classification of the Hemophilia A
Dataset

There are a total of 94 records in the hemophilia dataset, 47 records belonging to

the class patient and 47 records belonging to the class normal. The classification methods

that we use include C4.5, Naïve Bayesian Classifier, Neural Network, Support Vector

Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian) and ECTracker. Except

for ECTracker, all the other six classification algorithms are applied from WEKA.

WEKA is an open source data mining and machine learning software [99].

4.5.1 Classification Based on Full Hemophilia Dataset

All the classifiers are evaluated using 5-fold cross-validation method. Table 4.6

below shows the performance of various classifiers including their respective precision

and recall. Precision is defined as the proportion of instances that are correctly classified

among all the instances that are predicted to be belonging to a particular class. Recall

(which is the same as True Positive Rate) is the proportion of instances that are correctly

classified among the all instances that are actually belonging to a class.

One of the possible settings of C4.5 in WEKA is the minimum number of

instance per leave. The default value of this setting is 2. When we perform classification

using the default settings for C4.5, 61.7% of the instances are classified correctly.

74

However, when we change the setting of the minimum number of instance per leave to 1,

the accuracy improved by about 2%, i.e. from 61.7% improve to 63.8%.

Naïve Bayesian Classifier is the simplest classifier in WEKA as it does not

require setting of any parameters. The predictive accuracy of Naïve Bayesian classifier is

not as good as C4.5.

For Artificial Neural Network, some of the parameter settings in WEKA include

the number of hidden layers, the number of epochs to train through, and the amount the

weights are updated. We vary the number of hidden layers from 0 to 22 (i.e. number of

attribute values + classes), and found that 2 hidden layers (i.e. number of classes)

produces a classifier with the highest accuracy. When we vary the number of epochs to

train from 500 to 1000, there is no change in the accuracy of the classifier. Next we vary

the amount of the weights to update from 0.1 to 0.9, and we find that values from 0.4 to

0.6 produce the best accuracy of 54.26%.

Some of the parameter settings for Support Vector Machine include filterType

which determines how the data will be transformed, exponent which determines the

degree of the polynomial kernel, RBF kernel, and gamma which is a parameter setting for

RBF kernel. There are three choices to the parameter filterType. The first choice is not to

transform the data, second choice is to normalize the data, and third choice is to

standardize the data. All three choices produce the same accuracy of 61.7%. Next we

vary the degree of polynomial kernel from 1 to 4. The best result they produce is 61.7%.

After that, we used RBF kernel varying the gamma from 0.01 to 0.1. The best result is

63.8%.

75

For K-Nearest Neighbor method, we vary the number of neighbors from 1 to 50,

used different distance weighting function, and used normalized and non-normalized

settings. The best result that we could obtain for the K-Nearest Neighbor method is

64.9%.

 For Bagging with Naïve Bayesian method as the base classifier, we vary the size

of each bag from 10% to 100%, and vary the number of iterations from 10 to 1000. The

best result obtained is about 62.3%. We also tried using KNN as the base classifier since

it produces good results as a single classifier. However, the results are similar to that of

using Naïve Bayesian method as the base classifier.

 For ECTracker, we vary the odds ratio p-values from 0.05 to 0.35 in training our

classifier. It was found that a p-value of less than or equal to 0.2, which is within the 80%

confidence interval produces the best classification results. As discussed previously in

Section 4.3.1, 70% of the samples have exactly the same allele values in all the markers

in both patient and normal controls. Hence when we set the p-value to a higher

confidence interval such as within 95% confidence interval, no significant odds ratio

patterns is found. The classification accuracy for ECTracker is 65.96%. As we can see

from Table 4.6, ECTracker has the highest accuracy compared to all the other classifiers.

76

4.5.2 Classification Based on the Pruned Hemophilia Dataset

As described in the earlier section of this chapter, the dataset is insufficient to

separate 70% of the samples. Hence in this section we concentrate our study on the

remaining 30% of the samples. There are 28 samples remaining after removing those

indistinguishable samples – 18 samples belonging to the disease phenotype and 10

samples belonging to the normal/control phenotype.

Instances
Correctly
predicted

Instances
Incorrectly
Predicted Accuracy

Precision
for Class
Patient

Recall
for
Class
Patient

Precision
for Class
Normal

Recall
for
Class
Normal

C4.5 60 34 63.83% 0.641 0.702 0.654 0.582

Naïve
Bayesian
Network

54 40 57.45% 0.585 0.524 0.576 0.627

Artificial
Neural
Network

51 43 54.26% 0.564 0.573 0.470 0.509

Support
Vector
Machine

60 34 63.83% 0.642 0.682 0.649 0.662

KNN 61 33 64.89% 0.659 0.640 0.650 0.665

Bagging 59 35 62.28% 0.659 0.636 0.625 0.627

ECTracker 62 32 65.96% 0.669 0.724 0.680 0.604

Table 4.6: Analysis of classifiers based on full hemophilia dataset

77

Similar to our previous analysis on the full hemophilia dataset, the classifiers used

include C4.5, Naïve Bayesian Classifier, Artificial Neural Network, Support Vector

Machine, K-Nearest Neighbor, Bagging, and ECTracker. However, we used the leave-

one-out evaluation method rather than the 5-fold cross-validation method in this analysis.

This is because we now have a smaller dataset and the leave-one-out evaluation method

allows more data to be used for training the classifiers.

Table 4.7 shows the performance of various classifiers. We vary the parameter

settings for the classifiers in a similar way as we did when we classified the full

hemophilia dataset. Only the best results of the classifiers are shown in Table 4.7.

Instances
Correctly
Predicted

Instances
Incorrectly
Predicted Accuracy

Precision
of Class
Patient

Recall
for
Class
Patient

Precision
for Class
Normal

Recall
for
Class
Normal

C4.5 20 8 71.43% 0.708 0.944 0.75 0.3

Naïve
Bayesian
Network

18 10 64.29% 0.70 0.778 0.5 0.4

Artificial
Neural
Network

22 6 78.57% 0.833 0.833 0.7 0.7

Support
Vector
Machine

20 8 71.43% 0.75 0.833 0.625 0.5

KNN 23 5 82.14% 0.81 0.944 0.857 0.6

Bagging 18 10 64.29% 0.682 0.833 0.5 0.3

ECTracker 24 4 85.71% 0.818 1.0 1.0 0.6

Table 4.7: Analysis of classifiers based on pruned hemophilia dataset

78

From Table 4.7, we find that all classifiers show improvement in performance

after we remove the indistinguishable samples. The classifier that gives the highest

accuracy is ECTracker with 85.71% predictive accuracy, and is followed by K-Nearest

Neighbor with 82.14% predictive accuracy.

Next, we build the same set of classifiers listed in Table 4.7 with the pruned

hemophilia dataset. The 70% of the inseparable samples that were being pruned earlier is

used as the test dataset for the classifiers. Table 4.8 shows the performance of the various

classifiers. ECTracker has the highest predictive accuracy.

Instances
Correctly
Predicted

Instances
Incorrectly
Predicted Accuracy

Precision
of Class
Patient

Recall
for
Class
Patient

Precision
for Class
Normal

Recall
for
Class
Normal

C4.5 29 37 43.94% 0.426 0.793 0.5 0.162

Naïve
Bayesian
Network

29 37 43.94% 0.426 0.793 0.5 0.162

Artificial
Neural
Network

29 37 43.94% 0.423 0.759 0.5 0.189

Support
Vector
Machine

29 37 43.94% 0.426 0.793 0.5 0.162

KNN 29 37 43.94% 0.435 0.931 0.5 0.054

Bagging 29 37 43.94% 0.426 0.793 0.5 0.162

ECTracker 36 30 54.55% 0.606 0.55 0.485 0.54

Table 4.8: Classification models built using pruned hemophilia dataset and

tested on the 70% inseparable data

79

Since there are substantial amount of inseparable instances (66 instances in total)

in the hemophilia dataset, we further modify the ECTracker algorithm to classify new

unseen cases to a third class call Unknown if the cases are almost indistinguishable from

those in the Patient and Normal classes. We modify Step 4 of the ECTracker algorithm

(refer to Section 4.2.2). Given a new unseen case u, let Spatient be the score of u for class

Patient and Snormal be the score of u for class Normal. The original ECTracker will assign

u as belonging to class Patient if Spatient > Snormal and u to class Normal otherwise. The

new modified ECTracker will assign the new unseen case u as belonging to class Patient

if Spatient > x*Snormal and assign u to class Normal if x*Spatient < Snormal, otherwise u will be

assigned to class Unknown.

Table 4.9 shows the predictions of the modified ECTracker on the pruned

hemophilia dataset and on the inseparable hemophilia dataset. As we can see that when

x=1.5 it maximizes the number of correct prediction on the pruned dataset and also

maximizes the prediction of the inseparable instances to the Unknown class.

 Instances from the pruned hemophilia
dataset (28 instances in total)

Inseparable instances from
the hemophilia dataset (66

instances in total)

x
Instances
correctly
predicted

Instances
incorrectly
predicted

Instances
predicted as

unknown

Instances predicted as
Unknown

1.2 18 7 3 22
1.25 18 5 5 22
1.3 18 5 5 22
1.35 18 4 6 25
1.4 18 4 6 25
1.45 17 3 8 51
1.5 17 2 9 53
1.55 16 2 10 53
1.6 16 2 10 53
1.65 16 2 10 53

Table 4.9: Predictive accuracy of modified ECTracker

80

4.5.3 Classification Based on Cystic Fibrosis and Friedreich Ataxia
Dataset

Finally we compared the predictive accuracies of the various machine learning

methods (i.e. C4.5, Naïve Bayesian Method, Artificial Neural Network, Support Vector

Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian as base) and ECTracker)

when applied to the Cystic Fibrosis and Friedreich Ataxia datasets. Tables 4.10 and 4.11

show the predictive accuracies. ECTracker has the highest predictive accuracy for Cystic

Fibrosis dataset, whereas Support Vector Machine has the highest predictive accuracy for

Friedreich Ataxia dataset.

Instances
Correctly
Predicted

Instances
Incorrectly
Predicted Accuracy

Precision
of Class
Patient

Recall
for
Class
Patient

Precision
for Class
Normal

Recall
for
Class
Normal

C4.5 124 56 68.89% 0.65 0.711 0.725 0.667

Naïve
Bayesian
Network

132 48 73.33% 0.720 0.778 0.825 0.689

Artificial
Neural
Network

127 53 70.56% 0.631 0.778 0.824 0.633

Support
Vector
Machine

123 57 68.33% 0.615 0.722 0.782 0.644

KNN 123 57 68.33% 0.716 0.744 0.759 0.622

Bagging 131 49 72.78% 0.700 0.789 0.821 0.667

ECTracker 145 35 80.56% 0.799 0.856 0.833 0.756

Table 4.10: Classification accuracies when applied to Cystic Fibrosis dataset

81

Instances
Correctly
Predicted

Instances
Incorrectly
Predicted Accuracy

Precision
of Class
Patient

Recall
for
Class
Patient

Precision
for Class
Normal

Recall
for
Class
Normal

C4.5 87 33 72.50% 0.737 0.691 0.763 0.754

Naïve
Bayesian
Network

86 34 71.67% 0.658 0.818 0.809 0.631

Artificial
Neural
Network

74 46 61.67% 0.589 0.581 0.645 0.646

Support
Vector
Machine

88 32 73.33% 0.714 0.727 0.763 0.738

KNN 74 46 61.67% 0.577 0.618 0.659 0.615

Bagging 82 38 68.33% 0.629 0.800 0.795 0.585

ECTracker 75 45 62.5% 0.629 0.800 0.808 0.509

Table 4.11: Classification models built using Friedreich Ataxia dataset

4.6 Discussion

In this work, we re-examined the issues of descriptive and predictive analyses

using our proposed method called ECTracker. In descriptive analysis, ECTracker is

capable of extracting comprehensible and useful patterns from the hemophilia A dataset

to facilitate haplotype analysis by medical practitioners. On the other hand, the patterns

derived by C4.5 used only intron-13 (CA)n for prediction and this derivation is not very

useful as described in Section 4.4.1. The main reason for the poor performance of C4.5 is

82

that the pruned hemophilia A dataset is very small. From this experimental result we

show that ECTracker is capable of extracting useful patterns even when the dataset is

very small.

In classification of hemophilia A dataset, ECTracker performed slightly better

than the rest of the other classifiers (i.e. C4.5, Naïve Bayesian Method, Artificial Neural

Network, Support Vector Machine, K-Nearest Neighbor, Bagging (with Naïve Bayesian

as base)) on both un-pruned and pruned hemophilia A datasets, as shown in Tables 4.6

and 4.7. 70% of the inseparable data (or records) from the original hemophilia A dataset

was removed to form the pruned dataset. Experiment was performed where the classifiers

were built using the pruned dataset and tested using the 70% of the inseparable data.

Table 4.8 shows the predictive accuracies when the classifiers are applied to the 70%

inseparable data. ECTracker outperformed the rest of the classifiers by about 10% higher

in predictive accuracy.

In classification of Cystic Fibrosis dataset, ECTracker outperformed the rest of

the classifiers with about 10% higher in predictive accuracy as shown in Table 4.10.

Furthermore the precision and recall values of ECTracker for both patient and normal

class are also the highest among the classifiers.

In classification of Friedreich Ataxia dataset, Support Vector Machine has the

highest predictive accuracy with about 10% higher in predictive accuracy compared to

the rest of the algorithms (refer to table 4.11). However, the recall value of patient class

for ECTracker and the precision value of normal class for ECTracker are both higher than

Support Vector Machine. This means that ECTracker has lower false negative rate and

higher false positive rate than Support Vector Machine on the Friedreich Ataxia dataset.

83

Some possible reasons for this are that there are 14 attribute values for each attribute in

the Friedreich Ataxia dataset. During the training phase only 56 normal class data and 47

patient class data were used. There were insufficient data to learn for each attribute value.

Furthermore, the Friedreich Ataxia dataset is originally used for linkage disequilibrium

mapping. As such, only the patient class data exhibits statistical dependencies among

attributes that are close to the disease gene, whereas dependencies among attributes in the

normal class data are very much random. However, the F-measure for Support Vector

Machine is 0.3602 and the F-measure for ECTracker is 0.3521, suggesting that the

overall performance difference on this dataset between the two methods is very small.

In this work, we explored methods that are capable of extracting understandable

and useful patterns, and also capable of performing inference on the patterns to make

prediction. Through our experimental studies, we show that our proposed method

ECTracker is capable of extracting useful patterns, and at the same time producing good

predictive accuracies in classification that are comparable to the leading machine learning

methods.

84

Chapter 5

Conclusion

5.1 Discussion

This thesis focuses on the knowledge extraction from haplotypes. First, the

problem of pattern extraction for linkage disequilibrium mapping was examined. The

major challenge is on how to maximize the haplotype information extraction in the

association mapping of complex diseases in case–control studies under extreme

conditions; in such conditions the occurrence of samples with the mutation of interest is

very low, and consists of errors or noise. We proposed a new method called

LinkageTracker to address the problem. Extensive performance studies show that the

predictive accuracies of LinkageTracker are consistently good under different conditions;

from the extremely difficult condition where the samples with the mutation of interest is

as low as 10% and with high noise level, to the easier condition where the samples with

the mutation of interest is as high as 50%. Experimental results in Section 3.4.2

elucidated the variation in predictive accuracies under different conditions for the various

algorithms; LinkageTracker has low variations and with good predictive accuracies under

all the different conditions. LinkageTracker and HapMiner have the best predictive

accuracies in general. However, the variances in the sum-squared error of the predictions

for HapMiner are higher than LinkageTracker for all the experiments. This means that

LinkageTracker is more consistent in its predictions as compared to HapMiner when

85

applied to datasets with different conditions. Furthermore, the predictive accuracies of

HapMiner with slightly modified parameter list are generally not as good when compared

to all the other algorithms, which means that HapMiner’s performance is extremely

sensitive to its parameter setting. However, HapMiner is the fastest algorithm among all

the algorithms. GeneRecon is comparable with LinkageTracker in terms of predictive

accuracies; however, the execution time of GeneRecon is orders of magnitude longer

than LinkageTracker. Furthermore, GeneRecon only works on bi-allelic markers. The

overall performance of LinkageTracker is promising as it provides consistently good

predictive accuracies while taking reasonably short processing times, and also it is easy to

use since it does not require the setting of complex parameters.

Next, we examined methodologies capable of extracting useful and easily

comprehensible patterns, and subsequently making use of the patterns extracted for

classification. We proposed an algorithm called ECTracker to perform the tasks on

haplotypes, to extract previously unknown, potentially useful and easily comprehensible

haplotype patterns or genetic variations to provide insights about the genetic

manifestations of diseases. The extracted patterns are subsequently used for classification

to help in carrier detection. Extensive experiments were performed in comparing

ECTracker with machine learning methods such as C4.5, Naïve Bayesian Method,

Artificial Neural Network, Support Vector Machine, K-Nearest Neighbor, and Bagging

(with Naïve Bayesian as base). Three real biological datasets were used in our

experiments –namely the Hemophilia dataset, Cystic Fibrosis dataset and Friedreich

Ataxia dataset. When comparing the expressiveness of patterns extracted with C4.5, we

showed that ECTracker is capable of deriving more useful patterns when the dataset is

86

very small. In classification, ECTracker showed good performance in the Cystic Fibrosis

dataset with the highest predictive accuracy, precision and recall compared to all the

other methods. In instances where ECTracker is not the algorithm with the highest

predictive accuracy, ECTracker exhibits comparability to the algorithm with the highest

predictive accuracy with very small difference in the F-measures between the two

algorithms. Furthermore, ECTracker has an extra feature whereby it allows samples to be

classified as unknown if the samples are almost indistinguishable from the defined

classes.

5.2 Future Research Directions

For LinkageTracker, we have restricted the interestingness of patterns to be

guided by statistical odds ratio, generalizing to other types of scoring methods is certainly

a possible extension. LinkageTracker is easy to use as it does not require any population

ancestry information about the disease and the genealogy of the haplotypes as input. On

the other hand, the main weakness of LinkageTracker is that it is not able to make use of

the extra information (such as population ancestry information about the disease and the

genealogy of the haplotypes) to improve performance even when the extra information is

available. Hence, the next possible task will be to study how LinkageTracker can be

improved to accept extra information for the prediction process.

For ECTracker, the predictive accuracy in the classification of Friedreich Ataxia

dataset is not as good as some of the machine learning methods such as Support Vector

Machine. However, it is observed that the recall for the class patient and the precision for

87

the class normal for ECTracker are both higher than Support Vector machine. This means

that ECTracker is able to predict the patient class very well but not the normal class. And

as in the discussion section of chapter 4, we mentioned that the possible reasons for such

observations are that there are 14 attribute values to each attribute in the Friedreich

Ataxia dataset, and there are insufficient data to learn for each attribute value. Also,

Friedreich Ataxia dataset is originally used for linkage disequilibrium mapping, which

means that only the patient class data exhibits statistical dependencies among attributes

that are close to the disease gene, whereas dependencies among attributes in the normal

class data are random. To improve the classification accuracies for datasets where only

alleles within the disease chromosomes exhibit allelic associations that are higher than

random chance and the allelic association within the normal chromosomes are equivalent

to random chance, the finding of high precedence patterns pertaining only to the disease

set may be worth exploring.

88

Bibliography

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.: Morgan
Kaufmann, 2006.

[2] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, M.

Herr, and J. Kere, "Data Mining Applied to Linkage Disequilibrium Mapping,"
American Journal of Human Genetics, pp. 133-145, 2000.

[3] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, and J.

Kere, "Gene Mapping by Haplotype Pattern Mining," in Proceedings of IEEE
International Symposium on Bio-Informatics and Biomedical Engineering (BIBE),
2001, pp. 99-108.

[4] J. Li and T. Jiang, "Haplotype-based linkage disequilibrium mapping via direct

data mining," Bioinformatics, vol. 21, pp. 4384-4393, 2005.

[5] J. Liu, C. Sabatti, J. Teng, B. Keats, and N. Risch, "Bayesian Analysis of

Haplotypes for Linkage Disequilibrium Mapping " Genome Research, vol. 11, pp.
1716-1724, 2001.

[6] X. Lu, T. Niu, and J. Liu, "Haplotype information and linkage disequilibrium

mapping for single nucleotide polymorphisms," Genome Research, vol. 13, pp.
2112-2117, 2003.

[7] T. Mailund, M. H. Schierup, C. N. S. Pedersen, J. N. Madsen, J. Hein, and L.

Schauser, "GeneRecon - A coalescent based tool for fine-scale association
mapping," Bioinformatics, vol. 22, pp. 2317–2318, 2006.

[8] J. Quinlan, C4.5: Programs for Machine Learning. San Mateo: Morgan

Kaufmann, 1993.

[9] P. Langley, W. Iba, and K. Thompson, "An Analysis of Bayesian Classifiers," in

International Conference on Artificial Intelligence, 1992, pp. 223-228.

[10] L. Fu, Neural Networks in Computer Intelligence: McGraw-Hill, 1994.

[11] V. N. Vapnik, The Nature of Statistical Learning. New York: Springer, 1995.

[12] D. Aha and D. Kibler, "Instance-based learning algorithms," Machine Learning,

vol. 6, pp. 37-66, 1991.

89

[13] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.

[14] B. S. Kerem, J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, and A.

Chakravarti, "Identification of the cystic fibrosis gene: genetic analysis," Science,
vol. 245, pp. 1073-1080, 1989.

[15] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "Mining of Correlated Rules in

Genome Sequences," in Proceedings of the AMIA Conference, San Antonio,
Texas, 2002.

[16] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "Mining of Disease Associated

Haplotype Patterns for Hemophilia A," in Asia-Pacific Conference on Human
Genetics (HUGO) Biopolis , Singapore, 2004.

[17] L. Lin, L. Wong, T. Y. Leong, and P. S. Lai, "LinkageTracker: A Discriminative

Pattern Tracking Approach to Linkage Disequilibrium Mapping," in Proceedings
of the International Conference on Database Systems for Advanced Applications
(DASFAA), Beijing - China, 2005, pp. 30-42.

[18] L. Lin, L. Wong, T. Y. Leong, and L. P.S., "ECTracker – An Efficient Algorithm

for Haplotype Analysis and Classification," in Proceedings of the 12th World
Congress on Health (Medical) Informatics – Building Sustainable Health
Systems, 2007, pp. 1270-1274

[19] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus, "Knowledge Discovery in

Databases: An Overview," AI Magazine, pp. 213-228, 1992.

[20] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining: MIT Press, 2001.

[21] R. Agrawal, H. Mannila, R. Srikant, H. Tiovonen, and A. I. Verkamo, "Fast

Discovery of Association Rules," Advances in Knowledge Discovery and Data
Mining, pp. 307-328, 1996.

[22] D. W. Cheung, V. T. Ng, and Y. Fu, "Efficient Mining of Association Rules in

Distributed Databases," in IEEE Transaction on Knowledge and Data
Engineering, 1996, pp.911-922.

[23] H. Mannila, H. Tiovonen, and I. Verkamo, "Efficient Algorithms for Discovering

Association Rules," in AAAI Workshop on Knowledge Discovery in Databases,
1994, pp. 181-192.

90

[24] A. Sarasere, E. Omiecinsky, and S. Navathe, "An Efficient Algorithm for Mining
Association Rules in Large Databases," in International Conference on Very
Large Databases (VLDB), 1995, pp. 432-444.

[25] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules Between

Sets of Items in Large Databases," in ACM SIGMOD International Conference on
Managament of Data, Washington, 1993, pp. 207-216.

[26] S. Brin, R. Motwani, and C. Silverstein, "Beyond Market Baskets: Generalizing

Association Rules to Correlations," in ACM SIGMOD International Conference
on Managament of Data, 1997, pp. 265-276.

[27] C. Silverstein, S. Brin, and R. Motwani, "Beyond Market Baskets: Generalizing

Association Rules to Dependence Rules," Data Mining & Knowledge Discovery,
pp. 39-68, 1998.

[28] C. C. Aggarwal and P. S. Yu, "A New Framework for Itemset Generation," in

Proceedings of the PODS Conference, 1998.

[29] P. Tan and V. Kumar, "Interestingness Measures for Association Patterns: A

Perspective," Research Report 00-036 Computer Science and Engineering,
University of Minnesota, Twin Cities Research Report 00-036, 2000.

[30] H. Xiong, S. Shekhar, P. Tan, and V. Kumar, "Exploiting a Support-Based Upper

Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly
Correlated Pairs," in Proceedings of the Conference on Knowledge Discovery &
Data Mining (KDD), 2004, pp. 334-343.

[31] H. Xiong, S. Shekhar, P. Tan, and V. Kumar, "Taper: An Efficient Two-Step

Approach for All-Pairs Correlation Query in Transaction Databases," Research
Report 03-020, Computer Science and Engineering, University of Minnesota,
Twin Cities 2003.

[32] G. Dong and J. Li, "Efficient Mining of Emerging Patterns: Discovering Trends

and Differences," in Proceedings of the Conference on Knowledge Discovery &
Data Mining (KDD), 1999, pp. 43-52.

[33] G. Dong, J. Li, and X. Zhang, "Discovering Jumping Emerging Patterns and

Experiments on Real Datasets," in Proceedings of the International Database
Conference on Heterogeneous and Internet Databases (IDC99), Hong Kong,
1999, pp. 15-17.

91

[34] H. Li, J. Li, L. Wong, M. Feng, and Y. P. Tan, "Relative Risk and Odds Ratio: A
Data Mining Perspective," in Proceedings of the PODS Conference, Baltimore,
Maryland, 2005, pp. 368-377.

[35] J. Li, X. Zhang, G. Dong, K. Ramamohanarao, and Q. Sun, "Efficient Mining of

High Confidence Association Rules without Support Thresholds," in Proceedings
of the PKDD Conference, 1999, pp. 406-411.

[36] R. Agrawal and R. Srikant, "Fast Algorithm for Mining Association Rules," in

Proccedings of the 20th International Conference on Very Large Databases,
Santiago, Chile, 1994, pp. 487-499.

[37] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering Frequent Closed

Itemsets for Association Rules," in Proceedings of the 7th ICDT Conference,
1999, pp. 398-416.

[38] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Efficient Mining of

Association Rules Using Closed Itemset Lattices," Information Systems, pp. 25-
46, 1999.

[39] M. J. Zaki, "Mining Non-Redundant Association Rules," Data Mining and

Knowledge Discovery, pp. 223-248, 2004.

[40] M. J. Zaki and C. J. Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset

Mining," in Proceedings of the SIAM International Conference on Data Mining,
2002, pp. 457-473.

[41] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate

Generation," in ACM SIGMOD International Conference on Management of
Data, 2000, pp. 1-12.

[42] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach," Data Mining & Knowledge
Discovery, pp. 53-87, 2004.

[43] B. Ganter and K. Reuter, "Finding All Closed Sets: A General Approach," in

ORDER, 1991, pp. 283-290.

[44] R. J. Bayardo, "Efficiently Mining Long Patterns from Databases," in ACM

SIGMOD International Conference on Management of Data, 1998, pp. 85-93.

92

[45] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, "Depth First Generation of
Long Patterns," in Proceedings of the ACM SIGKDD Conference, 2000, pp. 108-
118.

[46] D. Burdick, M. Calimlim, and J. Gehrke, "MAFIA: A Maximal Frequent Itemset

Algorithm for Transactional Databases," in Proceedings of ICDE, 2001, pp. 443-
452.

[47] G. Yang, "The Complexity of Mining Maximal Frequent Itemsets and Maximal

Frequent Patterns," in Proceedings of the Conference on Knowledge Discovery &
Data Mining (KDD), 2004, pp. 344-353.

[48] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal, "Mining Frequent

Patterns with Counting Inference," ACM SIGKDD Explorations Newsletter, pp.
66 - 75, 2000.

[49] W. DuMouchel and D. Pregibon, "Empirical Bayes Screening for Multi-Item

Associations," in Proceedings of the ACM SIGKDD Conference, 2001, pp. 67-76.

[50] G. Grahne and J. Zhu, "Efficiently Using Prefix-Trees in Mining Frequent

Itemsets," in FIMI'03 Workshop on Frequent Itemset Mining Implementations,
2003.

[51] R. Rymon, "Search Through Systematic Set Enumeration," in Proceedings of the

International Conference on Principles of Knowledge Representation and
Reasoning, 1992, pp. 81-93.

[52] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, "CARPENTER: Finding

Closed Patterns in Long Biological Datasets," in Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 2003, pp. 673-642.

[53] S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn: Classification

and Prediction Methods from Statistical, Neural Nets, Machine Learning, and
Expert Systems, San Francisco: Morgan Kaufman, 1991.

[54] D. Michie, D. Spiegelhalter, and C. Taylor., Machine Learning, Neural and

Statistical Classification. New York: Ellis Horwood, 1994.

[55] R. Rojas, Neural Networks: A Systematic Introduction: Springer-Verlag, 1996.

[56] V. N. Vapnik, Statistical Learning Theory. New York: Wiley-Interscience, 1998.

93

[57] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines:
Cambridge University Press, 2000.

[58] S. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel Methods:

Support Vector Learning. Cambridge, MA: MIT Press, 1999.

[59] P. H. Winston, Artificial Intelligence, 3 ed.: Addison-Wesley, 1992.

[60] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression

Trees. Belmont, CA: Wadsworth International Group, 1984.

[61] J. Quinlan, "Induction of Decision Trees," Machine Learning, pp. 81-106, 1986.

[62] J. R. Quinlan, "Simplifying Decision Trees," International Journal of Man-

Machine Studies, pp. 221-234, 1987.

[63] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis: John Wiley

& Sons, 1973.

[64] P. Domingos and M. Pazzani, "On the Optimality of the Simple Bayesian

Classifier Under Zero-One Loss," Machine Learning, 1997.

[65] J. Pearl, "Bayesian networks: A model of self-activated memory for evidential

reasoning," in Proceedings of the 7th Conference of the Cognitive Science
Society, University of California, Irvine, 1985, pp. 329-334.

[66] N. E. Morton, "Linkage Disequilibrium Maps and Association Mapping," Journal

of Clinical Investigation, pp. 1425-1430, 2005.

[67] N. Maniatis, A. Collins, C. F. Xu, L. C. McCarthy, D. R. Hewett, W. Tapper, S.

Ennis, X. Ke, and N. E. Morton, "The First Linkage Disequilibrium (LD) Maps:
Delineation of Hot and Cold Blocks by Diplotype Analysis," Proceedings of the
National Academy of Sciences of the United States of America, pp. 2228-2233,
2002.

[68] A. Collins and N. E. Morton, "Mapping a Disease Locus by Allelic Association,"

Proceedings of the National Academy of Sciences of the United States of America,
pp. 1741-1745, 1998.

[69] J. Hastbacka, A. de-la-Chapelle, I. Kaitila, P. Sistonen, A. Weaver, and E. Lander,

"Linkage Disequilibrium Mapping in Isolated Founder Populations: Diastrophic
Dysplasia in Finland," Nature Genetics, pp. 204-211, 1992.

94

[70] L. Ozelius, P. Kramer, D. de-Leon, N. Risch, S. Bressman, and D. Schuback,
"Strong Allelic Association Between the Torsion Dystonia Gene (DYT1) and
Loci on Chromosome 9q34 in Ashkenazi Jews," American Journal of Human
Genetics, pp. 619-628, 1992.

[71] NCI, "National Cancer Institute. Cancer Facts

http://cis.nci.nih.gov/fact/3_62.htm," 2002.

[72] A. Beaudet, C. Scriver, W. Sly, and D. Valle, "Genetics, Biochemistry, and

Molecular Basis of Variant Human Phenotypes," in The Metabolic and Molecular
Basis of Inherited Disease, 7th ed, C. R. Scriver, A. L. Beaudet, and W. S. Sly,
Eds. New York: McGraw-Hill Inc, 1995, pp. 2351-2369.

[73] S. Malcolm, "Molecular Methodology," in Emery and Rimoin's Principles and

Practice of Medical Genetics, 3rd ed, D. L. Rimoin, J. M. Connor, and R. E.
Pyeritz, Eds. New York: Churchill Livingstone, 1997, pp. 67-86.

[74] B. Rannala and J. Reeve, "High-Resolution Multipoint Linkage-Disequilibrium

Mapping in the Context of a Human Genome Sequence," American Journal of
Human Genetics, pp. 159-178, 2001.

[75] J. Reeve and B. Rannala, "DMLE+: Bayesian Linkage Disequilibrium Gene

Mapping," Bioinformatics, pp. 894-895, 2002.

[76] D. Goldstein and M. Weale, "Population Genomics: Linkage Disequilibrium

Holds the Key," Current Biology, pp. R576-R579, 2001.

[77] M. Nordborg, "Coalescent theory," Handbook of Statistical Genetics, pp. 179–212

2001.

[78] C. Wiuf and P. Donnelly, "Conditional genealogies and the age of a neutral

mutant," Theoretical Population Biology, vol. 56, pp. 183-201, 1999.

[79] E. Pennisi, "A closer look at SNPs suggests difficulties," Science, vol. 281, p.

17871789, 1998.

[80] A. P. Morris, J. C. Whittaker, and D. J. Balding, "Fine-scale mapping of disease

loci via shattered coalescent modeling of genealogies," The American Journal of
Human Genetics, vol. 70, pp. 686–707, 2002.

[81] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation

of state calculations by fast computing machines," The Journal of Chemical
Physics, vol. 21, pp. 1087-1092 1953.

95

[82] M. Ester, H. P. Kriegel, H. Sander, and X. Xu, "A density-based algorithm for

discovering clusters in large spatial datasets with noise," in Proceedings of
Knowledge Discovery in Data (KDD), 1996, pp. 226–231.

[83] R. Fisher, Statistical Methods for Research Workers, 14th ed. New York:

Hafner/MacMillan, 1970.

[84] E. M. John, G. G. Schwartz, J. Koo, D. Van Den Berg, and S. A. Ingles, "Sun

Exposure, Vitamin D Receptor Gene Polymorphisms, and Risk of Advanced
Prostate Cancer," Cancer Research, pp. 5470-5479, 2005.

[85] N. Le Moual, V. Siroux, I. Pin, F. Kaufmann, and S. M. Kennedy, "Asthma

Severity and Exposure to Occupational Asthmagens," American Journal of
Respiratory Critical Care Medicine, 2005.

[86] D. Deheinzelin, M. T. Lourenco, C. L. Costa, and R. N. Younes, "The Level of

Nicotine Dependence is an Independent Risk Factor for Cancer: A Case Control
Study," Clinics, vol. 60, pp. 221-226, 2005.

[87] S. K. Kachigan, Statistical Analysis: Radius Press, 1986.

[88] J. A. Rice, Mathematical Statistics and Data Analysis: Wadsworth, 1993.

[89] A. Tamhane and D. Dunlop, Statistics and Data Analysis: From Elementary to

Intermediate: Prentice Hall, 2000.

[90] L. Ott, An Introduction to Statistical Methods and Data Analysis. Massachussetts:

PWS-Kent Publishing Company, 1988.

[91] S. J. Theodorou, D. J. Theodorou, and Y. Kakitsubata, "Statistical Analysis in

Clinical Studies: An Introduction to Fundamentals for Physicians," Internet
Medical Journal, 2004.

[92] J. Haldane, "The estimation and significance of the logarithm of a ratio of

frequencies," Annals of Human Genetics, vol. 20, pp. 309-311, 1956.

[93] A. Agresti, Categorical Data Analysis: Wiley, 2002.

[94] A. Long and C. Langley, "The Power of Association Studies to Detect the

Contribution of Candidate Genetic Loci to Variation in Complex Traits," Genome
Research, vol. 9, pp. 720-731, 1999.

96

[95] A. Wright, A. Carothers, and M. Pirastu, "Population Choice in Mapping Genes
for Complex Diseases," Nature Genetics, vol. 23, pp. 397-404, 1999.

[96] HAMSTeRS, Haemophilia A Mutation, Structure, Test and Resource Site.

[97] P. Ahrens, T. A. Kruse, M. Schwartz, P. B. Rasmussen, and N. Din, "A New

HindIII Restriction Fragment Length Polymorphism in the Hemophilia A Locus,"
Human Genetics, vol. 76, pp. 127-128, 1987.

[98] O. EL-Maarri, K. Kavakli, and H. Caglayan, "Intron 22 Inversions in the Turkish

Haemophilia A Patients: Prevalence and Haplotype Analysis," Haemophilia, vol.
5, pp. 169-173, 1999.

[99] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations: Morgan Kaufmann, 2000.

97

Appendix A

Detail Experimental Results

A.1 Cystic Fibrosis from Section 3.4.2.1

Experimental Setting 1

BLADE

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 1.5426 85.072 -0.6626 0.43904
Set 2 0.88 1.2259 73.19 -0.3459 0.11965
Set 3 0.88 1.3835 75.75 -0.5035 0.25351
Set 4 0.88 0.1258 70.835 0.7542 0.56882
Set 5 0.88 1.704 72.64 -0.824 0.67898
 75.4974 0.412

Table A.1.1: BLADE in Exp Setting 1 with 10% Founder Mutation

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.1053 77.965 0.7747 0.60016
Set 2 0.88 0.1616 78.48 0.7184 0.5161
Set 3 0.88 0.1886 73.74 0.6914 0.47803
Set 4 0.88 0.7102 56.28 0.1698 0.02883
Set 5 0.88 0.179 76.89 0.701 0.4914
 72.671 0.42291

Table A.1.2: BLADE in Exp Setting 1 with 20% Founder Mutation

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.6919 60.729 0.1881 0.03538
Set 2 0.88 0.6828 61.845 0.1972 0.03889
Set 3 0.88 0.7726 69.103 0.1074 0.01153
Set 4 0.88 0.7503 63.724 0.1297 0.01682
Set 5 0.88 0.7431 61.44 0.1369 0.01874
 63.3682 0.02427

Table A.1.3: BLADE in Exp Setting 1 with 30% Founder Mutation

98

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7209 67.314 0.1591 0.02531
Set 2 0.88 1.1344 84.11 -0.2544 0.06472
Set 3 0.88 0.8151 70.97 0.0649 0.00421
Set 4 0.88 0.8329 66.217 0.0471 0.00222
Set 5 0.88 0.8107 71.27 0.0693 0.0048
 71.9762 0.02025

Table A.1.4: BLADE in Exp Setting 1 with 40% Founder Mutation

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8251 75.904 0.0549 0.00301
Set 2 0.88 0.7959 76.33 0.0841 0.00707
Set 3 0.88 0.9292 73.824 -0.0492 0.00242
Set 4 0.88 0.9487 72.46 -0.0687 0.00472
Set 5 0.88 0.7484 70.587 0.1316 0.01732
 73.821 0.00691

Table A.1.5: BLADE in Exp Setting 1 with 50% Founder Mutation

HapMiner

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8598 2.501 0.0202 0.000408
Set 2 0.88 1.6298 2.483 -0.7498 0.5622
Set 3 0.88 0.8598 2.526 0.0202 0.000408
Set 4 0.88 0.8698 2.504 0.0102 0.000104
Set 5 0.88 0.8698 2.516 0.0102 0.000104
 2.506 0.1126448

Table A.1.6: HapMiner in Exp Setting 1 with 10% Founder Mutation

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8598 2.62 0.0202 0.000408
Set 2 0.88 0.5948 2.584 0.2852 0.081339
Set 3 0.88 0.6848 2.602 0.1952 0.038103
Set 4 0.88 0.7448 2.601 0.1352 0.018279
Set 5 0.88 0.8898 2.582 -0.0098 9.604E-05
 2.5978 0.027645

Table A.1.7: HapMiner in Exp Setting 1 with 20% Founder Mutation

99

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 2.593 0.0102 0.000104
Set 2 0.88 0.6148 2.57 0.2652 0.070331
Set 3 0.88 0.7098 2.562 0.1702 0.028968
Set 4 0.88 1.6298 2.576 -0.7498 0.5622
Set 5 0.88 0.8698 2.575 0.0102 0.000104
 2.5752 0.1323414

Table A.1.8: HapMiner in Exp Setting 1 with 30% Founder Mutation

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 2.574 0.0102 0.000104
Set 2 0.88 0.8698 2.556 0.0102 0.000104
Set 3 0.88 0.8698 2.577 0.0102 0.000104
Set 4 0.88 0.8598 2.55 0.0202 0.000408
Set 5 0.88 0.7448 2.853 0.1352 0.018279
 2.622 0.0037998

Table A.1.9: HapMiner in Exp Setting 1 with 40% Founder Mutation

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 2.59 0.0102 0.000104
Set 2 0.88 0.8598 2.559 0.0202 0.000408
Set 3 0.88 0.8598 2.565 0.0202 0.000408
Set 4 0.88 0.8698 2.569 0.0102 0.000104
Set 5 0.88 0.5948 2.578 0.2852 0.081339
 2.5722 0.0164726

Table A.1.10: HapMiner in Exp Setting 1 with 50% Founder Mutation

HapMiner (x + x * 0.001)

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0 4.071 0.88 0.7744
Set 2 0.88 1.6298 5.589 -0.7498 0.56220004
Set 3 0.88 0.5698 4.993 0.3102 0.09622404
Set 4 0.88 0.5698 4.062 0.3102 0.09622404
Set 5 0.88 0.5698 4.098 0.3102 0.09622404
 4.5626 0.32505443

Table A.1.11: HapMiner(x + x * 0.001) in Exp Setting 1 with 10% Founder Mutation

100

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.6198 4.487 0.2602 0.06770404
Set 2 0.88 0.5698 4.676 0.3102 0.09622404
Set 3 0.88 0.6848 5.569 0.1952 0.03810304
Set 4 0.88 0.5248 5.375 0.3552 0.12616704
Set 5 0.88 0.5248 4.31 0.3552 0.12616704
 4.8834 0.09087304
Table A.1.13: HapMiner(x + x * 0.001) in Exp Setting 1 with 30% Founder Mutation

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.5698 4.322 0.3102 0.09622404
Set 2 0.88 0.5348 4.29 0.3452 0.11916304
Set 3 0.88 0.7448 4.313 0.1352 0.01827904
Set 4 0.88 0.5698 4.314 0.3102 0.09622404
Set 5 0.88 0.5248 4.328 0.3552 0.12616704
 4.3134 0.09121144

Table A.1.12: HapMiner(x + x * 0.001) in Exp Setting 1 with 20% Founder Mutation

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8598 4.406 0.0202 0.00040804
Set 2 0.88 0.5698 4.296 0.3102 0.09622404
Set 3 0.88 0.5698 4.291 0.3102 0.09622404
Set 4 0.88 0.7448 4.302 0.1352 0.01827904
Set 5 0.88 0.8598 4.351 0.0202 0.00040804
 4.3292 0.04230864

Table A.1.14: HapMiner(x + x * 0.001) in Exp Setting 1 with 40% Founder Mutation

At 50%
Actual
Location Predicted Location Time (s) Error SSE

Set 1 0.88 0.8598 4.392 0.0202 0.00040804
Set 2 0.88 0.7798 4.293 0.1002 0.01004004
Set 3 0.88 0.8898 4.324 -0.0098 9.604E-05
Set 4 0.88 0.8898 4.305 -0.0098 9.604E-05
Set 5 0.88 0 4.286 0.88 0.7744
 4.32 0.15700803
Table A.1.15: HapMiner(x + x * 0.001) in Exp Setting 1 with 50% Founder Mutation

101

LinkageTracker

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.9048 4.644 -0.0248 0.000615
Set 2 0.88 0.7798 28.583 0.1002 0.01004
Set 3 0.88 0.9048 12.588 -0.0248 0.000615
Set 4 0.88 0.5948 62.78 0.2852 0.081339
Set 5 0.88 0.8598 28.94 0.0202 0.000408
 27.507 0.018603

Table A.1.16: LinkageTracker in Exp Setting 1 with 10% Founder Mutation

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.6148 74.406 0.2652 0.070331
Set 2 0.88 0.8898 146.993 -0.0098 9.6E-05
Set 3 0.88 0.6548 132.737 0.2252 0.050715
Set 4 0.88 0.9598 130.817 -0.0798 0.006368
Set 5 0.88 0.7798 96.526 0.1002 0.01004
 116.2958 0.02751

Table A.1.17: LinkageTracker in Exp Setting 1 with 20% Founder Mutation

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.6548 161.485 0.2252 0.050715
Set 2 0.88 0.6548 96.494 0.2252 0.050715
Set 3 0.88 0.8598 73.874 0.0202 0.000408
Set 4 0.88 0.6548 70.475 0.2252 0.050715
Set 5 0.88 0.6548 82.098 0.2252 0.050715
 96.8852 0.040654

Table A.1.18: LinkageTracker in Exp Setting 1 with 30% Founder Mutation

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.6548 152.645 0.2252 0.050715
Set 2 0.88 0.8598 72.889 0.0202 0.000408
Set 3 0.88 0.8598 142.121 0.0202 0.000408
Set 4 0.88 0.8598 140.809 0.0202 0.000408
Set 5 0.88 0.8598 95.098 0.0202 0.000408
 120.7124 0.010469

Table A.1.19: LinkageTracker in Exp Setting 1 with 40% Founder Mutation

102

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 133.009 0.0102 0.000104
Set 2 0.88 0.8598 136.689 0.0202 0.000408
Set 3 0.88 0.8598 117.406 0.0202 0.000408
Set 4 0.88 0.8598 142.181 0.0202 0.000408
Set 5 0.88 0.8598 105.29 0.0202 0.000408
 126.915 0.000347

Table A.1.20: LinkageTracker in Exp Setting 1 with 50% Founder Mutation

GeneRecon

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.69161 10680.225 0.18839 0.035490792
Set 2 0.88 0.699861 10265.17 0.180139 0.032450059
Set 3 0.88 0.680032 10498.042 0.199968 0.039987201
Set 4 0.88 0.673054 11995.49 0.206946 0.042826647
Set 5 0.88 0.743741 10592.007 0.136259 0.018566515
 10806.1868 0.033864243

Table A.1.21: GeneRecon in Exp Setting 1 with 10% Founder Mutation

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.763706 10605.693 0.116294 0.013524294
Set 2 0.88 0.73932 10079.124 0.14068 0.019790862
Set 3 0.88 0.695696 10061.951 0.184304 0.033967964
Set 4 0.88 0.768839 10556.584 0.111161 0.012356768
Set 5 0.88 0.807234 10289.456 0.072766 0.005294891
 10318.5616 0.016986956

Table A.1.22: GeneRecon in Exp Setting 1 with 20% Founder Mutation

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.733864 10333.018 0.146136 0.02135573
Set 2 0.88 0.750975 10386.504 0.129025 0.016647451
Set 3 0.88 0.723467 10185.117 0.156533 0.02450258
Set 4 0.88 0.776673 10582.594 0.103327 0.010676469
Set 5 0.88 0.748439 10180.494 0.131561 0.017308297
 10333.5454 0.018098105

Table A.1.23: GeneRecon in Exp Setting 1 with 30% Founder Mutation

103

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.689306 10411.834 0.190694 0.036364202
Set 2 0.88 0.739475 11330.605 0.140525 0.019747276
Set 3 0.88 0.79596 10527.768 0.08404 0.007062722
Set 4 0.88 0.747506 10326.67 0.132494 0.01755466
Set 5 0.88 0.702263 10368.42 0.177737 0.031590441
 10593.0594 0.02246386

Table A.1.24: GeneRecon in Exp Setting 1 with 40% Founder Mutation

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.730001 10596.035 0.149999 0.0224997
Set 2 0.88 0.766118 10277.057 0.113882 0.01296911
Set 3 0.88 0.858114 10044.474 0.021886 0.000478997
Set 4 0.88 0.788015 10356.582 0.091985 0.00846124
Set 5 0.88 0.744648 10274.784 0.135352 0.018320164
 10309.7864 0.012545842

Table A.1.25: GeneRecon in Exp Setting 1 with 50% Founder Mutation

Experimental Setting 2

BLADE

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7414 48.511 0.1386 0.01920996
Set 2 0.88 0.7522 43.284 0.1278 0.01633284
Set 3 0.88 0.6498 42.893 0.2302 0.05299204
Set 4 0.88 0.2272 54.299 0.6528 0.42614784
Set 5 0.88 1.2056 47.557 -0.3256 0.10601536
 47.3088 0.124139608

Table A.1.26: BLADE in Exp Setting 2 with 10% Founder Mutation & Noise

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7253 41.604 0.1547 0.02393209
Set 2 0.88 0.8172 42.648 0.0628 0.00394384
Set 3 0.88 0.1044 53.643 0.7756 0.60155536
Set 4 0.88 0.7778 37.663 0.1022 0.01044484
Set 5 0.88 0.7491 44.571 0.1309 0.01713481
 44.0258 0.131402188

Table A.1.27: BLADE in Exp Setting 2 with 20% Founder Mutation & Noise

104

At 30% Actual Location Predicted Location
Time
(s) Error SSE

Set 1 0.88 1.4354 51.981 -0.5554 0.30846916
Set 2 0.88 0.7377 46.973 0.1423 0.02024929
Set 3 0.88 0.131 53.028 0.749 0.561001
Set 4 0.88 0.7695 48.281 0.1105 0.01221025
Set 5 0.88 0.7339 46.563 0.1461 0.02134521
 49.3652 0.184654982

Table A.1.28: BLADE in Exp Setting 2 with 30% Founder Mutation & Noise

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7691 50.63 0.1109 0.01229881
Set 2 0.88 0.7421 50.054 0.1379 0.01901641
Set 3 0.88 0.7499 48.927 0.1301 0.01692601
Set 4 0.88 0.7473 50.428 0.1327 0.01760929
Set 5 0.88 0.1949 50.698 0.6851 0.46936201
 50.1474 0.107042506

Table A.1.29: BLADE in Exp Setting 2 with 40% Founder Mutation & Noise

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7665 55.283 0.1135 0.01288225
Set 2 0.88 0.7417 53.274 0.1383 0.01912689
Set 3 0.88 0.106 49.736 0.774 0.599076
Set 4 0.88 0.7009 43.057 0.1791 0.03207681
Set 5 0.88 0.7051 40.678 0.1749 0.03059001
 48.4056 0.138750392

Table A.1.30: BLADE in Exp Setting 2 with 50% Founder Mutation & Noise

HapMiner

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0 1.158 0.88 0.7744
Set 2 0.88 0.8698 1.158 0.0102 0.00010404
Set 3 0.88 1.6298 1.559 -0.7498 0.56220004
Set 4 0.88 0.6848 1.553 0.1952 0.03810304
Set 5 0.88 0.0248 1.571 0.8552 0.73136704
 1.3998 0.421234832

Table A.1.31: HapMiner in Exp Setting 2 with 10% Founder Mutation & Noise

105

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 1.552 0.0102 0.00010404
Set 2 0.88 0.8698 1.589 0.0102 0.00010404
Set 3 0.88 0.8698 1.568 0.0102 0.00010404
Set 4 0.88 0.8698 1.593 0.0102 0.00010404
Set 5 0.88 0.8698 1.545 0.0102 0.00010404
 1.5694 0.00010404

Table A.1.32: HapMiner in Exp Setting 2 with 20% Founder Mutation & Noise

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 1.556 0.0102 0.00010404
Set 2 0.88 0.8698 1.56 0.0102 0.00010404
Set 3 0.88 0.8698 1.593 0.0102 0.00010404
Set 4 0.88 0.8698 1.551 0.0102 0.00010404
Set 5 0.88 0.8698 1.591 0.0102 0.00010404
 1.5702 0.00010404

Table A.1.33: HapMiner in Exp Setting 2 with 30% Founder Mutation & Noise

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 1.544 0.0102 0.00010404
Set 2 0.88 0.8698 1.544 0.0102 0.00010404
Set 3 0.88 0.8698 1.569 0.0102 0.00010404
Set 4 0.88 0.8698 1.597 0.0102 0.00010404
Set 5 0.88 0.8698 1.588 0.0102 0.00010404
 1.5684 0.00010404

Table A.1.34: HapMiner in Exp Setting 2 with 40% Founder Mutation & Noise

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8698 1.56 0.0102 0.00010404
Set 2 0.88 0.8698 1.561 0.0102 0.00010404
Set 3 0.88 0.8698 1.559 0.0102 0.00010404
Set 4 0.88 0.8698 1.563 0.0102 0.00010404
Set 5 0.88 0.8698 1.577 0.0102 0.00010404
 1.564 0.00010404

Table A.1.35: HapMiner in Exp Setting 2 with 50% Founder Mutation & Noise

106

HapMiner (x + x * 0.001)

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0 5.818 0.88 0.7744
Set 2 0.88 0.0248 6.719 0.8552 0.73136704
Set 3 0.88 1.6298 5.852 -0.7498 0.56220004
Set 4 0.88 1.6298 6.902 -0.7498 0.56220004
Set 5 0.88 1.6298 6.573 -0.7498 0.56220004
 6.3728 0.63847343
Table A.1.36: HapMiner(x + x * 0.001) in Exp Setting 2 with 10% Founder Mutation & Noise

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 1.6298 5.737 -0.7498 0.56220004
Set 2 0.88 0.0248 5.856 0.8552 0.73136704
Set 3 0.88 1.6298 5.935 -0.7498 0.56220004
Set 4 0.88 0.0248 5.876 0.8552 0.73136704
Set 5 0.88 1.6298 5.82 -0.7498 0.56220004
 5.8448 0.62986684
Table A.1.37: HapMiner(x + x * 0.001) in Exp Setting 2 with 20% Founder Mutation & Noise

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 1.6298 5.828 -0.7498 0.56220004
Set 2 0.88 0.9048 5.838 -0.0248 0.00061504
Set 3 0.88 0.0248 5.814 0.8552 0.73136704
Set 4 0.88 0.0248 5.822 0.8552 0.73136704
Set 5 0.88 0.0248 5.859 0.8552 0.73136704
 5.8322 0.55138324
Table A.1.38: HapMiner(x + x * 0.001) in Exp Setting 2 with 30% Founder Mutation & Noise

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 1.6298 5.715 -0.7498 0.56220004
Set 2 0.88 0.0248 5.842 0.8552 0.73136704
Set 3 0.88 1.6298 5.762 -0.7498 0.56220004
Set 4 0.88 0.0248 6.41 0.8552 0.73136704
Set 5 0.88 0.0248 5.871 0.8552 0.73136704
 5.92 0.66370024
Table A.1.39: HapMiner(x + x * 0.001) in Exp Setting 2 with 40% Founder Mutation & Noise

107

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.9048 6.25 -0.0248 0.00061504
Set 2 0.88 0.0248 6.381 0.8552 0.73136704
Set 3 0.88 0.0248 5.864 0.8552 0.73136704
Set 4 0.88 0.0248 5.817 0.8552 0.73136704
Set 5 0.88 1.6298 6.559 -0.7498 0.56220004
 6.1742 0.55138324
Table A.1.40: HapMiner(x + x * 0.001) in Exp Setting 2 with 50% Founder Mutation & Noise

LinkageTracker

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.9598 470.825 -0.0798 0.006368
Set 2 0.88 0.7798 147.081 0.1002 0.01004
Set 3 0.88 0.9048 151.777 -0.0248 0.000615
Set 4 0.88 0.7798 115.838 0.1002 0.01004
Set 5 0.88 0.7798 137.222 0.1002 0.01004
 204.5486 0.007421

Table A.1.41: LinkageTracker in Exp Setting 2 with 10% Founder Mutation & Noise

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7798 90.644 0.1002 0.01004
Set 2 0.88 0.6198 194.256 0.2602 0.067704
Set 3 0.88 0.8598 142.993 0.0202 0.000408
Set 4 0.88 0.8598 169.285 0.0202 0.000408
Set 5 0.88 0.8598 84.706 0.0202 0.000408
 136.3768 0.015794

Table A.1.42: LinkageTracker in Exp Setting 2 with 20% Founder Mutation & Noise

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7798 157.833 0.1002 0.01004
Set 2 0.88 0.7798 229.491 0.1002 0.01004
Set 3 0.88 0.7798 125.324 0.1002 0.01004
Set 4 0.88 0.7798 177.79 0.1002 0.01004
Set 5 0.88 0.7798 173.46 0.1002 0.01004
 172.7796 0.01004

Table A.1.43: LinkageTracker in Exp Setting 2 with 30% Founder Mutation & Noise

108

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.7798 151.721 0.1002 0.01004
Set 2 0.88 0.8698 149.133 0.0102 0.000104
Set 3 0.88 0.9048 133.529 -0.0248 0.000615
Set 4 0.88 0.8598 148.473 0.0202 0.000408
Set 5 0.88 0.8598 122.949 0.0202 0.000408
 141.161 0.002315

Table A.1.44: LinkageTracker in Exp Setting 2 with 40% Founder Mutation & Noise

At 50% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.8598 129.973 0.0202 0.000408
Set 2 0.88 0.7798 111.198 0.1002 0.01004
Set 3 0.88 0.8598 113.558 0.0202 0.000408
Set 4 0.88 0.7798 95.551 0.1002 0.01004
Set 5 0.88 0.7798 107.757 0.1002 0.01004
 111.6074 0.006187

Table A.1.45: LinkageTracker in Exp Setting 2 with 50% Founder Mutation & Noise

GeneRecon

At 10% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.705008 4956.224 0.174992 0.0306222
Set 2 0.88 0.73948 4823.515 0.14052 0.01974587
Set 3 0.88 0.69765 4919.0305 0.18235 0.033251523
Set 4 0.88 0.751951 4560.585 0.128049 0.016396546
Set 5 0.88 0.727308 5075.69 0.152692 0.023314847
 4867.0089 0.024666197

Table A.1.46: GeneRecon in Exp Setting 2 with 10% Founder Mutation & Noise

At 20% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.736583 4864.913 0.143417 0.020568436
Set 2 0.88 0.775892 4872.767 0.104108 0.010838476
Set 3 0.88 0.774682 4819.892 0.105318 0.011091881
Set 4 0.88 0.73542 4928.143 0.14458 0.020903376
Set 5 0.88 0.836756 5230.18 0.043244 0.001870044
 4943.179 0.013054443

Table A.1.47: GeneRecon in Exp Setting 2 with 20% Founder Mutation & Noise

109

At 30% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.787769 4888.033 0.092231 0.008506557
Set 2 0.88 0.736737 4936.847 0.143263 0.020524287
Set 3 0.88 0.907675 5112.825 -0.02768 0.000765906
Set 4 0.88 0.811358 4763.55 0.068642 0.004711724
Set 5 0.88 0.740718 4914.5 0.139282 0.019399476
 4923.151 0.01078159

Table A.1.48: GeneRecon in Exp Setting 2 with 30% Founder Mutation & Noise

At 40% Actual Location Predicted Location Time (s) Error SSE
Set 1 0.88 0.716819 4755.65 0.163181 0.026628039
Set 2 0.88 0.73512 4750.287 0.14488 0.020990214
Set 3 0.88 0.755525 4783.789 0.124475 0.015494026
Set 4 0.88 0.659016 4823.139 0.220984 0.048833928
Set 5 0.88 0.718682 4956.897 0.161318 0.026023497
 4813.9524 0.027593941

Table A.1.49: GeneRecon in Exp Setting 2 with 40% Founder Mutation & Noise

At 50% Actual Location
Predicted
Location Time (s) Error SSE

Set 1 0.88 0.698576 4941.474 0.181424 0.032914668
Set 2 0.88 0.756794 4863.058 0.123206 0.015179718
Set 3 0.88 0.758039 4944.97 0.121961 0.014874486
Set 4 0.88 0.722735 4821.097 0.157265 0.02473228
Set 5 0.88 0.717372 4658.66 0.162628 0.026447866
 4845.8518 0.022829804

Table A.1.50: GeneRecon in Exp Setting 2 with 50% Founder Mutation & Noise

Experimental Setting 3

Blade
 Actual Location Predicted Location Error SSE Time (seconds)

Set 1 0.88 0.7468 0.1332 0.017742 59.509
Set 2 0.88 0.7544 0.1256 0.015775 56.732
Set 3 0.88 0.7443 0.1357 0.018414 59.866
Set 4 0.88 0.7832 0.0968 0.00937 56.323
Set 5 0.88 0.75 0.13 0.0169 57.671
Avg 0.01564 58.0202

Table A.1.51: Blade in Experimental Setting 3

110

HapMiner
 Actual Location Predicted Location Error SSE Time (seconds)

Set 1 0.88 0.8698 0.0102 0.000104 3.396
Set 2 0.88 0.7098 0.1702 0.028968 1.545
Set 3 0.88 0.8698 0.0102 0.000104 1.555
Set 4 0.88 0.8698 0.0102 0.000104 1.862
Set 5 0.88 0.8698 0.0102 0.000104 1.572
Avg 0.005877 1.986

Table A.1.52: HapMiner in Experimental Setting 3

HapMiner (x + x * 0.001)
 Actual Location Predicted Location Error SSE Time (s)

Set 1 0.88 0.9048 -0.0248 0.00061504 5.737
Set 2 0.88 0.0248 0.8552 0.73136704 6.349
Set 3 0.88 0.0248 0.8552 0.73136704 6.204
Set 4 0.88 0.0248 0.8552 0.73136704 6.203
Set 5 0.88 0.0248 0.8552 0.73136704 8.009
Avg 0.58521664 6.5004

Table A.1.53: HapMiner (x + x*0.001) in Experimental Setting 3

LinkageTracker
 Actual Location Predicted Location Error SSE Time (seconds)
Set 1 0.88 0.7798 0.1002 0.01004 83.501
Set 2 0.88 0.7798 0.1002 0.01004 86.718
Set 3 0.88 0.7798 0.1002 0.01004 94.778
Set 4 0.88 0.7798 0.1002 0.01004 135.789
Set 5 0.88 0.8598 0.0202 0.000408 226.884
Avg 0.008114 125.534

Table A.1.54: LinkageTracker in Experimental Setting 3

GeneRecon
 Actual Location Predicted Location Error SSE Time (seconds)
Set 1 0.88 0.821562 0.058438 0.003415 4788.231
Set 2 0.88 0.765088 0.114912 0.013205 4821.059
Set 3 0.88 0.80258 0.07742 0.005994 4780.1575
Set 4 0.88 0.778928 0.101072 0.010216 4766.607
Set 5 0.88 0.678859 0.201141 0.040458 4722.229
 0.014657 4775.6567

Table A.1.55: GeneRecon in Experimental Setting 3

111

A.2 Friedreich Ataxia from Section 3.4.2.2

Blade
 Actual Location Predicted Location Time (s) Error SSE
Set 1 9.8125 13.6597 742.909 -3.8472 14.80094784
Set 2 9.8125 7.8637 743.01 1.9488 3.79782144
Set 3 9.8125 4.2873 742.261 5.5252 30.52783504
Set 4 9.8125 9.0035 742.985 0.809 0.654481
Set 5 9.8125 8.3787 741.41 1.4338 2.05578244
Avg 742.515 10.36737355

Table A.2.1: Blade applied to Friedreich Ataxia Dataset

HapMiner
 Actual Location Predicted Location Time (s) Error SSE
Set 1 9.8125 9.75 3.258 0.0625 0.00390625
Set 2 9.8125 9.5 3.164 0.3125 0.09765625
Set 3 9.8125 9.5 3.226 0.3125 0.09765625
Set 4 9.8125 9.75 3.154 0.0625 0.00390625
Set 5 9.8125 9.5 3.168 0.3125 0.09765625
Avg 3.194 0.06015625

Table A.2.2: HapMiner applied to Friedreich Ataxia Dataset

HapMiner (x + x * 0.001)
 Actual Location Predicted Location Time (s) Error SSE
Set 1 9.8125 10.5 3.693 0.6875 0.47265625
Set 2 9.8125 10.25 3.676 0.4375 0.19140625
Set 3 9.8125 10.5 3.759 0.6875 0.47265625
Set 4 9.8125 10.5 3.7 0.6875 0.47265625
Set 5 9.8125 10.5 4.177 0.6875 0.47265625
Avg 3.801 0.41640625

Table A.2.3: HapMiner (x + x*0.001) applied to Friedreich Ataxia Dataset

LinkageTracker
 Actual Location Predicted Location Time (s) Error SSE
Set 1 9.8125 10.25 118.024 0.4375 0.191406
Set 2 9.8125 10.125 114.006 0.3125 0.097656
Set 3 9.8125 10.25 97.97 0.4375 0.191406
Set 4 9.8125 9.5 99.11 -0.3125 0.097656
Set 5 9.8125 9.5 111.851 -0.3125 0.097656
 108.1922 0.135156

Table A.2.4: LinkageTracker applied to Friedreich Ataxia Dataset

