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Summary

The cell is the building block of life. Understanding how cells work is a major

challenge. Cellular processes are governed and coordinated by a multitude of biological

pathways, each of which can be viewed as a complex network of biochemical reactions

involving biomolecules (proteins, metabolite, RNAs). Thus it is necessary to have a

system-level understating of cellular functions and behavior and to so, one must develop

quantitative models.

Currently, a widely used means of modeling biological pathways is a system of

ordinary differential equations (ODEs). Since biological pathways are often complex

and involve a large number of reactions, the corresponding ODE systems will not admit

closed form solutions. Hence to analyze the pathway dynamics one will have to use

numerical simulations. However, the number of simulations required to carry out model

calibration and analysis tasks can become very large due to the following facts: Models

often contain many unknown parameters (rate constants in the differential equations

and initial concentration levels). Estimating their values will require a large number of

simulations. This also happens when performing tasks such as global sensitivity analysis

that involve sampling the high-dimensional value space induced by model parameters.

Further, the experimental data used for training and testing the model are often cell

population-based and have limited precision. Consequently, to simulate the model

and compare with such data, one must resort to Monte Carlo methods to ensure that

sufficiently many values from the distribution of model parameters are being sampled.

A major contribution of this thesis is to develop a computational approach by

which one can approximate the pathway dynamics defined by a system of ODEs as a

dynamic Bayesian network. Using this approximation, one can then efficiently carry

out model calibration and analysis tasks. Broadly speaking, our approach consists of

the following steps: (i) discretize the value space and the time domain; (ii) sample the

initial states of the system according to an assumed prior distribution; (iii) generate a

trajectory for each sampled initial state and view the resulting set of trajectories as an

approximation of the dynamics defined by the ODEs system; (iv) store the generated set

iv



of trajectories compactly as a dynamic Bayesian network and use Bayesian inference

techniques to perform analysis. This method has several advantages. Firstly, the

discretized nature of the approximation helps to bridge the gap between the accuracy of

the results obtained by ODE simulation and the limited precision of experimental data

used for calibration and validation. Secondly and more importantly, after investing in

this one-time construction cost, many interesting pathway properties can be analyzed

efficiently through standard Bayesian inference techniques instead of resorting to a

large number of ODE simulations.

We have demonstrated the applicability of our technique with the help of three

case studies. First, we tested our method on an EGF-NGF signaling pathway model

(Brown et al., 2004). We constructed the DBN approximation and used synthetic

data to perform parameter estimation and global sensitivity analysis. The results show

improved performance easily amortizing the cost of constructing the approximation. It

also is sufficiently accurate given the lack of precision and noise in the experimental

data. We further demonstrated this in the second case study using a segmentation

clock pathway model taken from Goldbeter and Pourquie (2008).

In the third case study, we built and analyzed a pathway model of the complement

system consisting of the lectin and classical pathways in collaboration with biologists

and clinicians (Liu et al., 2010). Using our approximation technique, we efficiently

trained the DBN model on in vivo experimental data and explored the key network

features. Our combined computational and experimental study showed that the antimi-

crobial response is sensitive to changes in pH and calcium levels, which determines the

strength of the crosstalk between two receptors called CRP and L-ficolin. Our study

also revealed differential regulatory effects of the inhibitor C4BP. While C4BP delays

but does not attenuate the classical pathway, it attenuates but does not delay the lectin

pathway. Further, we found that the major inhibitory role of C4BP is to facilitate the

decay of C3 convertase. These results elucidate the regulatory mechanisms of the com-

plement system and potentially contribute to the development of complement-based

immunomodulation therapies.
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Chapter 1

Introduction

Cells are the basic units of life. Understanding how cells function is one of the great-

est challenges facing science. The rewards of success will range from better medical

therapies to new generation of biofuels. Over the past decades, numerous experimental

techniques, such as microscopy, polymerase chain reaction (PCR), western blot, flow

cytometry and fluorescence resonance energy transfer (FRET), have been developed to

help biologists to investigate how cells work. Consequently, biology has made amazing

advances on characterizing components inside the cell as well as identifying their inter-

actions. These components are often referred as biomolecules, including large molecules

such as proteins, DNA, RNA, and polysaccharides, as well as small molecules such as

metabolites, sugars, lipids, vitamins, and hormones. The cell is like a hugely complex

machine consisting of millions of such basic parts, which are interacting with each other

and carrying out diverse cellular functions.

Conventional biology research, which focuses on identifying components and inter-

actions inside the cell, culminates in the emerging of a variety of fields of studies with

the suffix -omics, such as genomics, proteomics, metabolomics, lipidomics, and inter-

actomics. These fields aim to describe and integrate complete sets of knowledge about

biomolecules, resulting in a range of biological databases including gene databases

1



CHAPTER 1. INTRODUCTION 2

such as Entrez1 and GeneCards2, protein databases such as UniProt3 and PDB4, as

well as the protein-protein interaction databases such as BioGRID5 and BIND6. Hence,

roughly speaking, we already have a general picture of the basic constituents of the cell.

However, it is still far from an in-depth understanding of cellular processes, because

biomolecules do not function alone but exist in highly regulated complex assemblies

and networks. The next step in this line of research is to develop a systematic view

of how cells work, how cellular processes are regulated, and how cells response to their

changing internal and external environments.

This has motivated the emerging domain of systems biology that seeks to understand

how the individual biomolecules interact and evolve in time and space to realize the

various cellular functions. Systems biology integrates many different disciplines such as

biology, mathematics, physics, chemistry, computer science, and engineering. A long-

term vision of this field is to put all the relevant biological processes together and build

a model that can simulate the whole cell or even an entire organism. Such models

will have a substantial impact on our health care, food supplies and many other issues

that are essential to our survival. It will not only lead to a better understanding of

physiological mechanisms and human diseases, but also bring about more efficient drug

development and validation processes. Furthermore, with the help of models, we may

also engineer cells to have desired properties for biotechnological production of food,

fuel and materials.

1http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi
2http://www.genecards.org/
3http://www.uniprot.org/
4http://www.rcsb.org/pdb/
5http://www.thebiogrid.org/
6http://www.bind.ca/
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1.1 Context and Motivation

To achieve the long-term vision of systems biology, one must describe fundamental

intra- and intercellular processes. The cellular processes are driven by networks of

biochemical reactions, which have been termed biological pathways. This thesis focuses

on modeling and analyzing the dynamics of biological pathways. Among the current

modeling formalisms, a system of ordinary differential equations (ODEs) is the most

widely used one to model pathway dynamics (Aldridge et al., 2006; Materi and Wishart,

2007). In the past few decades, many ODE models have been developed to study

pathways governing various cellular functions ranging from cell cycle to cell death

(Marlovits et al., 1998; Legewie et al., 2006). Due to the popularity of ODE-based

modeling, standard markup languages such as SBML (Hucka et al., 2003) have been

proposed for efficient model exchange and reuse. Hundreds of software systems were

developed for editing, simulating and storing models. For instance, the BioModels

database (Le Novere et al., 2006; Li et al., 2010) archives more than 200 published

ODE models covering many of the known biological pathways.

ODE models enable many kinds of model analysis, such as sensitivity, perturbation,

and population-based analysis that can be performed by solving the ODEs with dif-

ferent initial conditions and parameters. For instance, Spencer et al. (2009) discovered

that the difference in initial concentrations of proteins regulating apoptosis signaling

pathways is the primary cause of the cell-to-cell variability in the timing and probabil-

ity of cell death, which may explain why only a fraction of tumor cells will be killed

after exposure to chemotherapy. Another striking example is by Lee et al. (2007), who

used ODE models to significantly increase the productivity of L-threonine, an amino

acid that has been widely used in industries of cosmetics and pharmacy.

The ODE-based modeling has become a major approach in systems biology. How-

ever, to gain success in practical applications, there are several challenges to be ad-

dressed.
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• Large-scale pathways. Biological pathways are often complex and involve a

large number of biochemical reactions (Weng et al., 1999; Lauffenburger, 2000).

For example, the ErbB signaling pathway model built by Chen et al. (2009)

consisting of 828 reactions among 499 species. Hence the corresponding systems of

ODEs will not admit closed form solutions. Instead, one will have to use numerical

integration methods such as Runge-Kutta to perform model simulations as well

as analysis. The challenge here is that numerically simulating high dimensional

ODE systems will be computational intensive.

• Experimental data. Experimental data will be needed for the model develop-

ment. Assuming parameter values are known, analysis will consist of comparing

simulated behavior with experimental data. However, the data generated will

only have very limited precision. Specifically, the initial concentration levels of

the various proteins and rate constants will often be available only as intervals

of values. Further, experimental data in terms of the concentration levels of a

few proteins at a small number of time points will also be available only in terms

of intervals of values. In addition, the data will often be gathered using a popu-

lation of cells. Hence the data will represent the average concentration levels of

proteins in many different cells. Consequently, when numerically simulating the

ODE model, one must resort to Monte Carlo methods to ensure that sufficiently

many values from the relevant intervals are being sampled. As a result, generat-

ing a single prediction to compare with the experimental data will require doing

a large number of simulations.

• Parameter estimation. The execution of simulation requires the values of

model parameters to be known. Large pathway models often possess many un-

known parameters which have to be estimated from the training data. A common

approach to parameter estimation is via optimizing the agreement between the
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model prediction and the training data. Since there are many unknown pa-

rameters, the induced search space will be high-dimensional and contain many

local minima. Hence one will have to use global methods such as evolutionary

strategies. In order to find a good solution, global methods often evaluate many

combinations of parameter values. An evaluation is done by simulating the whole

system and computing the error between the model prediction and the experi-

mental data. As a result, parameter estimation will require also doing a large

number of simulations. Further, if the population data with limited precision, as

mentioned above, is used as training data, even more simulations will be needed.

• Model analysis. Many kinds of model analysis require doing a large number

of simulations as well. A few examples will be reviewed in Section 2.5, includ-

ing global sensitivity analysis, perturbation optimization and population-based

analysis. Specifically, the global sensitivity analysis assesses the overall effects of

parameters on the model output by simultaneously perturbing all the parameters

within a parameter space. It often follows a Monte Carlo scheme: simulate the

system for a large number of combinations of parameter values and derive the

global sensitivities by statistically analyzing the simulation results. Perturbation

optimization aims to find the best perturbation to fulfill certain design goals such

as maximizing the production of a biochemical substance, while minimizing the

formation of undesirable byproducts. Due to the combinatorial nature of the

problem, the solution spaces of large models will contain a huge number of can-

didate perturbations. Consequently, similar to parameter estimation, finding the

best perturbation will require doing a large number of simulations.
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1.2 Our Approach and Contributions

ODE models are prevalent for modeling biological pathways. However, as pointed out

above, carrying out model calibration and analysis on large pathways will require a

large number of simulations, which is very computational expensive. This motivates

our main goal, namely, to approximate the dynamics of systems of ODEs modeling

biological pathways.

In this thesis, we propose an approach by which one can approximate the ODE

dynamics as a dynamic Bayesian network (DBN) (Murphy, 2002). As a result, tasks

such as parameter estimation and global sensitivity analysis can be efficiently carried

out through standard Bayesian inference techniques. Our techniques can be adapted

to modeling formalisms such as hybrid functional Petri nets (Matsuno et al., 2003b) as

well.

1.2.1 The Approximation Technique

Given a system of ODEs, we assume that the dynamics is of interest only for a finite

time horizon and that the states of the system are to be observed only at a finite set

of discrete time points. Next we partition the range of each variable into a finite set

of intervals according to the assumed observation precision. We also discretize the

range of each parameter into a finite set of intervals. The initial values as well as the

parameters of the ODE system are assumed as distributions (usually uniform) over the

intervals defined by the discretization. For unknown parameters, we assume they are

uniformly distributed within their ranges.

After fixing the discretization and the distribution of initial states, we sample the

initial states of the system (i.e. a vector which assigns an initial value for each variable

and parameter) and generate a trajectory by numerical integration for each of the

sampled initial states. The key idea is that a sufficiently large set of such trajectories

is a good approximation of the dynamics defined by the ODEs system.
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The second key idea is that this set of trajectories or rather, the statistical properties

of these trajectories can be compactly stored in the form of a dynamic Bayesian network

(DBN) (Murphy, 2002) by exploiting the network structure of the pathway and simple

counting. As a result, by querying this DBN representation using standard inferencing

techniques one can analyze, in a probabilistic and approximate fashion, the dynamics

defined by the system of ODEs.

The construction process consists of two steps: (i) derive the underlying graph of

the DBN approximation by exploiting the structure of the ODEs, (ii) fill up the entries

of the conditional probability tables associated with the nodes of the DBN by sampling

the prior distributions, performing numerical integration for each sample, discretiz-

ing generated trajectories by the predefined intervals and computing the conditional

probabilities by simple counting.

Since the trajectories are grouped together through the discretization, our method

bridges the gap between the accuracy of the results obtained by ODE simulation and

the limited precision of experimental data used for model development. In addition,

the approximation represents the dependencies between the variables more explicitly in

the graph structure of the underlying DBN. More crucially, many interesting pathway

properties can be analyzed efficiently through standard Bayesian inference techniques,

instead of resorting to large scale numerical simulations. Here we present a few exam-

ples informally:

• Probabilistic inference. Given initial state as evidence, the Bayesian inference

technique called the Factored Frontier algorithm (Murphy and Weiss, 2001) can

be used to approximately but efficiently infer the marginal probability of each

species’ concentration at a given time point.

• Parameter estimation. Our approximation approach enables a two-stage pa-

rameter estimation method. In the first stage, we infer the marginal distributions
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of the species at different points in the DBN. The mean of each marginal distri-

bution are computed in order to compare with the time serials training data.

Standard optimization methods are used for searching in the discretized param-

eter space. The result of this first stage is a maximum likelihood estimate of a

combination of intervals of parameter values. In the second stage, by treating the

resulting combination of intervals of parameter values from the first stage as the

(drastically reduced) search space, one can further estimate the real values for

unknown parameters. The second stage results in parameters with a finer granu-

larity, which can be used to perform simulations and analysis requiring perturbing

the initial concentrations.

• Global sensitivity analysis. We can use DBN approximation to perform global

sensitivity analysis. Monte Carlo samples are drawn from the discretized param-

eter space. Simulation trajectories will be approximated by the mean of marginal

distributions inferred from the DBN by supplying the selected combination of

intervals of parameter values as evidence.

Admittedly, there is a one-time computational cost incurred to construct the DBN

approximation. But this cost can be easily amortized by performing multiple analy-

sis tasks using the DBN approximation. This will be demonstrated by studying two

existing pathway taken from Brown et al. (2004) and Goldbeter and Pourquie (2008)

and a “live” pathway called complement system in collaboration with biologists and

clinicians (Liu et al., 2010).

Our work is, in spirit, related to the discretized approximations presented in Calder

et al. (2006b,c); Ciocchetta et al. (2009) that are based on stochastic modeling for-

malisms such as PEPA (Hillston, 1996) and the modeling language PRISM (Kwiatkowska

et al., 2002). In these works, the dynamics of a process-algebra-based description of

a biological pathway is given in terms of a Continuous Time Markov Chain (CTMC)
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which is then discretized using the notion of levels to ease analysis. Apart from the

fact that our starting point is a system of ODEs, a crucial additional step that we

take is to exploit the structure of the pathway to factor the dynamics into a DBN. We

then perform analysis tasks on this more compact representation. In a similar vein,

our model is more compact than the graphical model of a network of non-homogenous

Markov chains studied in Nodelman et al. (2002).

For sure, our DBN approximation may be viewed as a factored Markov chain. In

this sense, a crucial component of our construction mirrors the technique of factoring

a Hidden Markov Model (HMM) as a DBN by decomposing a system state into its

constituent variables (Russell and Norvig, 2003). This connection leads us to believe

that the techniques proposed in Langmead et al. (2006a), as well as the verification

techniques reported in Clarke et al. (2008); Heath et al. (2008) can be adapted to

our setting. Analyzing CTMC models PEPA requires stochastic simulations that are

often computationaly intensive Geisweiller et al. (2008). We note however the DBN

approximation is a probabilistic graphical model and hence we do not have to resort

to stochastic simulations. The inferencing algorithm we use (the Factored Frontier

algorithm (Murphy and Weiss, 2001)), in one sweep, gathers information about the

statistical properties of the family of trajectories encoded by the DBN approximation.

1.2.2 The Biological Contributions

The complement system is key to innate immunity and its activation is necessary for

the clearance of bacteria and apoptotic cells. However, insufficient or excessive com-

plement activation will lead to immune-related diseases. It is so far unknown how the

complement activity is up- or down- regulated and what the associated pathophysio-

logical mechanisms are. To quantitatively understand the modulatory mechanisms of

the complement system, we built a computational model involving the enhancement

and suppression mechanisms that regulate complement activity. Our model consists
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of 42 species, 45 reactions and 85 kinetic parameters with 71 of the parameters being

unknown. The ODE model is accompanied by a DBN as a probabilistic approxima-

tion of the ODE dynamics. We used the DBN approximation to perform parameter

estimation and sensitivity analysis. Our combined computational and experimental

study highlights the importance of infection-mediated microenvironmental perturba-

tions, which alter the pH and calcium levels. It also reveals that the inhibitor, C4BP

induces differential inhibition on the classical and lectin complement pathways and acts

mainly by facilitating the decay of the C3 convertase. These predictions were validated

empirically. Thus our results help to elucidate the regulatory mechanisms of the com-

plement system and potentially contribute to the development of complement-based

immunomodulation therapies.

1.3 Outline

The rest of this thesis is organized as follows.

In Chapter 2 we give an overview of the current state of pathway modeling. We

present the background knowledge on biological pathways and discuss the process of

pathway modeling. We then review several formalisms that are commonly used to

model the pathway dynamics. We also describe some existing methods for parameter

estimation. Further, we present two useful model analysis techniques.

Chapters 3-5 form the core of the work, in which we present our probabilistic

approximation technique. After introducing the preliminaries in Chapter 3, we describe

our method for constructing the DBN approximation in Chapter section 4. In Chapter

5, we present techniques for performing tasks such as basic inferencing, parameter

estimation and global sensitivity analysis using the DBN approximation.

Chapter 6 establishes the applicability of probabilistic approximation techniques.

In Section 6.1 and Section 6.2 we present two case studies on the EGF-NGF signaling

pathway and the segmentation clock pathway respectively. We compare the efficiency of
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our method to conventional approaches for parameter estimation and global sensitivity

analysis. We also compare the performance of different sampling techniques and the

accuracies of approximations constructed using different discretization schemes. In

Section 6.3 we further demonstrate the usefulness of our method by an integrated

computational and experimental study of the human complement system. We present

our model constructed for the complement regulatory mechanisms. We also discuss the

computational and experimental results as well as the biological insights we gained.

Finally, in Chapter 7, we summarize the main results and discuss the future lines

of research.
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S. Sethi, B. Ho, J. L. Ding, P.S. Thiagarajan. PLoS Computational Biology
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Chapter 2

Background and Related Work

In this chapter, we discuss the current state of bio-pathway modeling. After presenting

the background knowledge, we review the processes of model construction, calibration,

validation and analysis. We then discuss several formalisms that are used to capture

pathway dynamics. Next we review some existing methods for model calibration. Fi-

nally, we present two useful model analysis techniques, namely, sensitivity analysis, and

perturbation optimization.

2.1 Biological Pathways

Cellular processes are driven by networks of biochemical reactions, termed biologi-

cal pathways. Biological pathways can be loosely classified into signaling pathways,

metabolic pathways, and gene regulatory networks. Specifically:

• Signaling pathways. Signaling pathways describe how cells sense changes or

stimuli in their environment, pass the received signals messages via cascades of

biochemical reactions, and respond by modifying their metabolisms, transcrip-

tional activities or cell fates. The chief actors in signaling pathways are proteins

such as receptors, kinases, and transcription factors.

12
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• Metabolic pathways. Metabolic pathways consist of chemical reactions in-

volved in metabolism, through which cells acquire energy for survival and repro-

duction. The major players in metabolic pathways are chemical compounds such

as glucose, adenosine diphosphate (ADP), and adenosine triphosphate (ATP).

• Gene regulatory networks The expression of a gene is highly regulated by

transcription factors synthesized from other genes. Gene regulatory networks

often abstract the reactions involved in the processes of DNA transcription, RNA

translation, and post translation modification of proteins and depict the indirect

regulatory relationship among genes in the cell.

The three classes of biological pathways describe different aspects of cellular pro-

cesses. Cells rely on their tight cooperation to achieve proper functioning. In this

thesis, we focus mainly on signaling pathways, though our techniques can be applied

to metabolic pathways and gene regulatory networks as well.

Cellular processes are dynamic. In other words, the number of biomolecules such

as protein concentrations, metabolite concentrations, and gene expression levels are

changing over time. Hence the biological pathways can be viewed as dynamical sys-

tems, whose state is defined as a snapshot the quantity of involved species at a time

point. The dynamics of biological pathways are crucial for cellular functions. A re-

markable example is the biological pathway controlling the circadian rhythm (biological

clock). The built-in circadian rhythm in our body regulates the daily cycles of many

physiological processes such as the sleep-wake cycle and feeding rhythms (Bell-Pedersen

et al., 2005). It arises from the oscillatory expression of a number of genes. The time

profile of expression level of some related genes are shown in Figure 2.1. It can be ob-

served that the periods of the oscillations roughly equal to 24 hours. The oscillations of

gene expression are governed by the underlying signaling pathways. Figure 2.2 depicts

the Drosophila circadian rhythm pathway proposed by Matsuno et al. (2003a). The

oscillator is composed of interlocking feedback loops that regulate the concentrations of
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transcription factors. These transcription factors further control the expression of many

other genes, as the output of the oscillator, resulting in behavioral and physiological

rhythms.

TOC1 CCA1 PRR9

Figure 2.1: The expression of circadian rhythm related genes. This figure is reproduced
from James et al. (2008).

There are hundreds of biological pathways governing various cellular processes rang-

ing from cell cycle to cell death. Some of the heavily studied signaling pathways are

summarized in Figure 2.3 (Lodish, 2003). For instance, apoptosis pathways induce the

programmed cell death (Spencer et al., 2009). EGF/NGF signaling pathway determines

the cell differentiation or cell proliferation (Kholodenko, 2007). Wnt signaling pathway

governs the expression of developmental genes (Logan and Nusse, 2004). NF-κB path-

way regulates inflammatory responses (Egan and Toruner, 2006). Similar to circadian

rhythm pathway, these pathways often consist of many species and multiple feedback

loops. Consequently, it is very difficult to predict the dynamical behavior of the system

based on intuition. Hence one will have to resort to computational modeling.
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Figure 2.2: The Drosophila circadian rhythm pathway model. This figure is reproduced
from Matsuno et al. (2003a).

2.2 Pathway Modeling

To study the complex dynamics of biological pathways, a variety of computational

models have been proposed in recent years, ranging from qualitative models that focus

on the generic properties of biological networks (Papin and Palsson, 2004; Helikar

et al., 2008) to quantitative models that can simulate the time course of biological

pathways under various conditions (Vaseghi et al., 2001). The choice of a modeling

formalism depends on the goals of the modeling effort as well as the biological context.

For instance, the Boolean network is a frequently used qualitative formalism (Fisher

et al., 2007; Thakar et al., 2007), while typical quantitative formalisms are ordinary

differential equations (ODEs) (Aldridge et al., 2006), Petri nets (Matsuno et al., 2003b),

performance evaluation process algebra (PEPA) (Hillston, 1996), PRSIM (Kwiatkowska

et al., 2002), and κ (Danos et al., 2007). On what follows, we focus mainly on the

quantitate model.
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Figure 2.3: Overview of some of the important signaling pathways (Lodish, 2003)
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Regardless of the the type of quantitative model used, a typical computational

modeling effort involves the following steps:

1. Model construction. Decide the model scope and build the model structure

by capturing the current knowledge of the pathway.

2. Model calibration. Divide the available experimental observations of the path-

way dynamics into two parts -training data and test data- and calibrate the model

parameters so that model predictions are able to reproduce the observations in

the training data.

3. Model validation. Test the capability of a calibrated model by evaluating the

fitness of model predictions to the test data. (The test and training data can be

of different kinds. The key point is that the model must be validated using data

that was not used for training it.)

4. Model anlaysis. Perform various kinds of analyses on the validated model

in order to gain biological insights, reveal the network properties, and generate

hypotheses.

In Step 1, an initial model can be constructed based on the literature as well as

the pathway databases such as Reactome (Joshi-Tope et al., 2005). In this step one

often requires the guidance of biologists. In Steps 2 and 3, the experimental data

can include both quantitative and qualitative measurements. However, quantitative

measurements of the time serials of species concentration are preferred for Step 2, as

they may provide more constraints to the model. The calibration process of Step 2 is

also known as parameter estimation, which will be discussed in detail in Section 2.4.

If the model predictions fit the training data in Step 2 and can be validated by test

data in Step 3, we trust the model to be reasonably reliable and use it as a basis for

analysis in Step 4. Simulation is a useful tool for performing model analysis. Through
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simulations, one can observe the time profile of species or system behavior that have

not been measured, or even can not be measured via current technology. Further, one

can simulate the system under different conditions by modifying the model structure,

initial condition or kinetic parameters. In this manner, one can carry out “what if?”

experiments suggested by biologists through local modifications of the model. One can

also apply techniques such as sensitivity, perturbation and population-based analysis

etc. The corresponding wet-lab experiments will be, in general, very time consuming

and expensive. They might not even be possible due to the unavailability of the needed

bio-markers. In this sense, the model and its analysis techniques can serve as an

additional tool, which biologists can use to perform extensive in silico experiments

quickly and cheaply, in order to advance biological knowledge.

It is worth noting that, in practice, the process of model development may not

simply follow a linear order of the above steps but often involve a cyclic workflow. For

Step 2, if one is unable to find proper parameters so that the fitness between model

predictions generated using the estimated parameters and training data is acceptable,

one will have to go back to Step 1 and refine the model structure by adding further

structural details which had been left out. Similarly, for Step 3, if the model cannot be

validated, one could go back to Step 1 and improve the model. In addition, one could

also try to acquire more experimental data concerning the structure and dynamics.

But what if we still can not pass Step 2 and Step 3, when we already exhausted the

resources? Interestingly, the failure in Step 2 or Step 3 might become a seedbed for

generating hypotheses. By analyzing the mismatch between model prediction and the

data, one may propose missing links, cross-talks, feedback loops, etc. of the pathway,

which can guide biologists in their further investigations.
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2.3 Modeling Formalisms

In this section, we present some of the well-established quantitative models for captur-

ing and analyzing pathway dynamics.

2.3.1 Ordinary Differential Equations

Modeling biological pathway dynamics with ordinary differential equations (ODEs) is

a major approach in current systems biology research (Materi and Wishart, 2007). The

idea is to describe biochemical reactions such as biomolecular association and enzyme

catalytic modification, using equations derived from physicochemical theories (Aldridge

et al., 2006).

In the context of biological pathway modeling, one often uses t to denote time and

x to denote the concentration level of individual biomolecular species. As a result,

the function x(t) will depict the time profile of species x while its derivative dx
dt will

represent the rate of change of x.

A biological pathway usually involves many species and can be viewed as a network

of biochemical reactions. The rate of change of the concentration of each species in

the network will be determined by the rates of reactions that produce or consume

this species. Based on suitable assumptions, physical and chemical laws (such as mass

action law, Michaelis-Menten law and power law) can be applied to calculating the

reaction rates from the concentrations of their participating species. For example, under

assumption the species are spatially homogeneous, the mass action law (Guldberg and

Waage, 1879) states that the rate of a reaction is proportional to the concentrations

of reacting species. Let’s consider a reversible binding process of two species shown as

follows:

A+B
v1


v2

AB (2.1)

whereA andB are substrates, AB denotes the formed complex, and v1 and v2 represents



CHAPTER 2. BACKGROUND AND RELATED WORK 20

the association rate and dissociation rate respectively. By the mass action law, we have:

v1 = k1 ·A ·B

v2 = k2 ·AB

where k1 and k2 are so-called rate constants.

The choice of a kinetics law depends on the nature of the reaction to be described.

For example, the enzyme catalyzed reactions such as protein phosphorylation are often

modeled using Michaelis-Menten equations. Equation 2.2 shows the reaction scheme

of a typical enzyme catalyzed reaction.

S + E
v→ P + E (2.2)

where S denotes substrate, E denotes enzyme, P denotes product and v denotes the

reaction rate. By assuming that S � E, v can be expressed by the Michaelis-Menten

equation as follows:

v =
k · S · E
Km + S

(2.3)

where k and Km are constants.

Once we write down rate equations for all reactions in a network, the rate of change

of each species can then be derived by summing all reaction rates that produce this

species and subtracting all reaction rates that consume this species. As reaction rates

are calculated from the concentrations of species and kinetic constants, the rate of

change of a species xi can be written as a function fi, typically nonlinear, involving

variables from {x1, x2, . . . , xn} and parameters (rate constants) from {p1, p2, . . . , pm}.

Consequently, a biological pathway can be modeled as a system of ODEs of the form:

dxi
dt

= fi(x(t),p) (2.4)
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A B

AB

S P

dA

dt
= −k1 ·A ·B + k2 ·AB

dB

dt
= −k1 ·A ·B + k2 ·AB

dAB

dt
= k1 ·A ·B − k2 ·AB

dS

dt
= −k · S ·AB

Km + S
dP

dt
=
k · S ·AB
Km + S

Figure 2.4: The ODE model of a small pathway.

where the vector x(t) represents the concentrations of species at time t, and the vector

p refer to the rate constants of the reactions.

Example Consider a small pathway which links the assembly process described in

Equation and the catalysis process described in Equation 2.2 by setting AB to be E

(see Figure 2.4, left panel). The ODE model of this pathway is shown in the right panel

of Figure 2.4.

Given the initial values of the variables and parameters (initial condition) and suit-

able continuity assumptions, a system of ODEs will have a unique solution specifying

how the system will evolve over time (Hirsch et al., 2004). Hence models defined with

ODEs can be used to produce predictions of system behavior by solving this initial

value problem. However, the ODE systems describing biological pathway dynamics

are usually high-dimensional and nonlinear. Hence they will not admit closed form

solutions. Instead, one will have to resort to numerical integration methods to get

approximate solutions. For example, finite difference methods numerically approxi-

mate the solutions of differential equations. The idea can be illustrated as follows. By

definition we have

x′(t) = lim
δ→0

x(t+ δ)− x(t)

δ
, (2.5)
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then a reasonable approximation of the derivative would be

x′(t) ≈ x(t+ δ)− x(t)

δ
(2.6)

for a sufficient small δ. Since x′(t) is known, by giving initial condition x(0), we can

iteratively compute x(t) for any t as follows:

x(t+ δ) = x(t) + δ · x′(t) (2.7)

This is the so-called Euler’s Method. To achieve high accuracy, it requires δ to be

very small. Accordingly, for a fixed T , the maximal time point of interest, the required

number of simulation steps T/δ will be a large number. As a result, solving large

ODE system will be computationally intensive. In the past decades, many advanced

ODE solvers have been developed to improve the performance of numerical integration.

Different solvers are usually specialized for better performance on some classes of ODEs.

To deal with the ODE systems of biological pathway models, methods such as Runge-

Kutta (Hindmarsh, 1983) and LSODA (Petzold, 1983) have been used. For example, let

x′(t) = f(x(t)) the formula of the fourth order Runge-Kutta (RK4) will be as follows:

A1 = f(x(t))

A2 = f(x(t) +
1

2
· δ ·A1)

A3 = f(x(t) +
1

2
· δ ·A2)

A4 = f(x(t) + δ ·A1)

x(t+ δ) = x(t) +
1

6
· δ · (A1 + 2A2 + 2A3 +A4)

However, it remains computationally expensive for solving large or stiff1 ODE systems,

1A system of ODEs is said to be stiff if explicit numerical methods such as Runge-Kutta require
very small step size to achieve the desired accuracy.
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which are often unfortunately induced by biological pathway models.

Simplifications

To reduce the complexity of ODE-based pathway models, simplification methods have

been proposed based on certain assumptions. First of all, during the model design pro-

cess, assumptions can be made about the model scope. Species will be included in the

model only if they are necessary for the target analysis. It is important to determine

the degree of details so that the model constructed contains as few species and param-

eters as possible, while meeting the design goals. For example, nuclear localization of

the transcriptional activator Nuclear factor κB (NF-κB) is controlled in mammalian

cells by NF-κB inhibitor protein IκB, which has three isoforms: IκBα, IκBβ, and IκBε.

Hoffmann et al. (2002) found that IκBα is responsible for strong negative feedback that

allows for a fast turn-off of the NF-κB response, whereas IκBβ and IκBε function to

reduce the system’s oscillatory potential and stabilize NF-κB responses during longer

stimulations (Hoffmann et al., 2002). Thus, their model includes all the three isoforms

with corresponding reactions in order to understand their different roles. On other

hand, in the model built by Cho et al. (2003), the three isoforms are treated as one

protein since they only aim to analyze the sensitivity of parameters in TNFα-mediated

NF-κB pathway and this will not be effected by the variation of IκB isoforms.

Secondly, one can simplify the ODE model by abstractions. In fact, the Michaelis-

Metnten equation is obtained by abstracting mass action kinetics. By assuming that

the concentration of substrate is much larger than the concentration of enzyme, it

eliminates the unnecessary intermediate products and replace the original parameters

that are hard to measure by fewer measurable ones (Klipp et al., 2005). The idea of

Michaelis-Menten approximation has been extended by Schmidt et al. (2008) to deal

with all rate expressions that can be written as a fraction between two polynomials.

For instance, after applying their algorithm, complex rate equations such as the one
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appear in (Teusink, 2000):

voriginal =
V ( [F16bP ]

KF16bP
− [DHAP ][GAP ]

KF16bPKKeq
)

1 + [F16bP ]
KF16bP

+ [DHAP ]
KDHAP

+ [GAP ]
KGAP

+ [F16bP ][GAP ]
KF16bPKGAP

+ [DHAP ][GAP ]
KDHAPKGAP

(2.8)

can be simplified as:

vsimplified =
K2[F16bP ]

1 +K1[F16bP ]
. (2.9)

Applications

In the recent years, ODE based modeling has played a dominant role in systems bi-

ology. Numerous insights have been gained through simulating and analyzing ODE

models. For example, Gallego et al. (2006) found that tau has an opposite role to

what we believed in circadian rhythms. Sasagawa et al. (2005) showed that transient

ERK activation depends on rapid increases of EGF and NGF but not on their final

concentrations, whereas substained ERK activation depends on the final concentration

of NGF but not on the temporal rate of increase. Spencer et al. (2009) discovered that

differences in the levels of proteins regulating receptor-mediated apoptosis are the pri-

mary causes of cell-to-cell variability in the timing and probability of death in human

cell lines. Basak et al. (2007) showed that mutant cells with altered balances between

canonical and noncanonical IkB proteins may exhibit inappropriate inflammatory gene

expression in response to developmental signals. With help of ODE models, all the

above example studies generated very interesting and important hypotheses, which

were confirmed or supported by further verification wet-lab experiments.

2.3.2 Petri Nets

Petri nets, originally proposed by Carl Adam Petri in 1962 (Petri, 1962), is a mathemat-

ical model for the representation and analysis of concurrent processes. It graphically

depicts the structure of a concurrent system as a directed bipartite graph with annota-
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tions. A Petri net consists of three primitive elements - places, transitions and directed

arcs. In the context of bio-pathway modeling, places often denote species while transi-

tions represent the biochemical reactions. The places are connected to the transitions

(and vice versa) via directed arcs to form a network.

In the graphical representation, places are drawn as circles, transitions are denoted

by bars or boxes, and arcs are labeled with their weights (positive integers), where

a k-weighted can be interpreted as the set of k parallel arcs. The input places of a

transition are the places from which an arc runs to it; its output places are those to

which an arc runs from it.

Places may contain any nonnegative number of tokens, which are represented as

block dots inside the corresponding place. A distribution of tokens over the places

of a net is called a marking. Transitions can fire (i.e. execute) if they are enabled,

which means there are enough tokens in every input place. When a transition fires, it

consumes a number of tokens from each of its input places, and produces a numbers of

tokens on each of its output places.

Example Figure 2.5 shows a Petri net model of the enzyme catalysis system. In this

example, the places E, S, P denote the enzyme, product and substrate respectively.

The transition T represents the enzyme catalyzed reaction. The number of tokens

depicts the concentration level of a species. The initial marking is shown in the left

panel of Figure 2.5. Transition T is enabled. After firing T once, the resulting marking

is shown in the right panel of Figure 2.5.

Petri nets support a number of qualitative analysis for checking the topological

properties of the network. To enable quantitative simulation and analysis, various

types of Petri nets have been proposed by extending the original Petri net, such as

timed Petri nets, stochastic Petri nets, hybrid Petri nets, and functional Petri nets

(Reisig and Rozenberg, 1998). Many of them have been deployed for simulating the
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Figure 2.5: A Petri net example of the enzyme catalysis system.

dynamics of biological pathways. For instance, Ruths et al. (2008) studied a MAPK and

AKT signaling network downstream from EGFR in two breast tumor cell lines using

stochastic Petri net. Bonzanni et al. (2009) used a coarse-grained quantitative Petri

net to mimic the multicelluar process of Caenorhabditis elegans vulval development.

Additional Petri net models of biological pathways can be found in Chen and Hofestaedt

(2003), Voss et al. (2003), Heiner et al. (2003), Koch et al. (2005), and Lee et al. (2006).

The Petri net-based approaches used in systems biology has been reviewed in Koch

et al. (2010). Among various types of Petri nets, the Hybrid Functional Petri net

(HFPN) (Matsuno et al., 2003c) is an useful approach that can capture both the discrete

and continuous features of pathway dynamics. This variant has been implemented in a

software tool called Cell Illustrator (Doi et al., 2003; Nagasaki et al., 2010), which has

been used to model and analyze a number of biological pathways (Tasaki et al., 2010;

Do et al., 2010; Li et al., 2009; Sato et al., 2009).

The HPFN inherits the notations of the hybrid Petri net (David and Alla, 1987)

and the functional Petri net (Valk, 1978) and adds more functionality. As it can deal

with both discrete and continuous components, two kinds of places and transitions are

used (the graphical notation are shown in Figure 2.6).

A discrete place is the same as a place in Petri net, i.e. it can only hold integer
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discrete place

continous place

discrete transition

continous transition

normal arc

test arc

inhibitory arc

Figure 2.6: HFPN notations.

number of tokens. In other hand, a continuous place can hold non-negative real num-

bers as its content. For transitions, a discrete transition can only fire when its firing

conditions are satisfied for certain duration of time, denoted by a delay function. In

contrast, a continuous transition fires continuously in and its firing speed is given as a

firing function of values at particular places in the model. The firing speed describes

the consumption rate of its input places and the production rate of its output places.

In addition, there are two more kinds of arcs - the inhibitory arc and the test arc

(Figure 2.6). An inhibitory arc with weight r enables the transition to fire only if the

content of the place at the source of the arc is less than or equal to r. A test arc,

behaves like a normal arc, except that it does not consume any content of the place

at the source of the arc when it fires. Furthermore, there are also some restrictions

for connection. For example, a discrete place cannot connect to a discrete place via a

continuous transition. Test and inhibitory arcs are restricted to only connect incoming

places to transitions as they both involve satisfying a precondition.

Example A HFPN model of the enzyme catalysis system is shown in Figure 2.7. In

this example, the markings of the continuous places E, P , and S denote concentrations

of the enzyme, product and substrate. The formula of the transition T specifies the

rate equation of the enzyme catalyzed reaction. Let k = 0.01, Km = 10, after firing T
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for a time step δ = 1, the resulting marking is shown in the right panel of Figure 2.7.
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Figure 2.7: A Petri net example of the enzyme catalysis system.

Notice that the execution process of this HFPN is equivalent to solving the following

ODE system using the Euler’s method.

dS

dt
= −k · S · E

Km + S
dP

dt
=
k · S · E
Km + S

dE

dt
= 0

In this manner, any ODE-based pathway model can be translated into a HFPN

model, which only contains continuous places and transitions as well as the arcs. Hence,

the HFPN can be viewed as an extension of the ODE formulism with discrete aspects.

2.3.3 Stochastic Models

Deterministic models such as ODE and HFPN assume that the concentrations of in-

volved species are sufficiently high and the molecules are uniformly distributed in cel-

lular compartments. However, when the concentrations of species are low (e.g. dozens

or hundreds), the variability of reaction processes will increase and may significantly

influence the systems behavior. For example, the development of phage λ infected E.
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coli cells (Arkin et al., 1998) is determined by a switch point. Two proteins with low

concentration levels competitively control this switch. As a result, the developmental

outcome is probabilistic and cannot be captured by conventional deterministic models.

In such cases, stochastic modeling will be required.

In stochastic modeling, one often described the state of the system by a vector

X(t) = (X1(t), X2(t), . . . , XN (t)), where Xi(t) is a nonnegative integer which expresses

the number of molecules of species i at time t. Starting from an initial state X(0) = x0,

X(t) can evolve its value when a reaction takes place, which is a stochastic event.

By modeling the probabilities of occurrences of reactions, the Chemical Master

Equation (CME) can be used to capture the evolution of X(t) (de Jong, 2002). How-

ever, its size grows exponentially as the number of species increase and does not have

analytical solutions. In order to efficiently simulate CME, Gillespie (1977) developed

a stochastic simulation algorithm. Instead of solving for the individual state transition

probabilities, the Gillespie’s algorithm generates trajectories of X(t). The statistical

properties of the ensemble of the trajectories generated by the algorithm can yield -

in principle- accurate information about the global stochastic dynamics as predicted

by the CME. Since the Gillespie’s algorithm is computationally expensive in terms of

time, many improvements have been proposed such as the τ -leaping approximation

(Wilkinson, 2006).

Note that if the value of Xi(t) represent a discret concentration level, X(t) can be

viewed as a Continuous Time Markov Chain (CTMC) (Ross, 2002). Hence the idea of

Gillespie’s algorithm can also been adapted by many stochastic modeling formalisms

such as PEPA (Hillston, 1996), PRISM (Kwiatkowska et al., 2002), and κ (Danos et al.,

2007), which are modeling languages describing the system’s dynamics in terms of a

CTMC.



CHAPTER 2. BACKGROUND AND RELATED WORK 30

PEPA

PEPA (Hillston, 1996) is a stochastic process algebra originally designed to modeling

computer and communication systems. Recently, it has also been applied to model-

ing biological pathways (Calder et al., 2006b,c; Ciocchetta et al., 2009). The PEPA

language have five combinators, prefix, choice, cooperation, hiding and constant.

• Prefix (α, r).P implies that after the component has performed activity α at rate

r, it behaves as componet P .

• Choice P1 + P2 sets up a competition between two possible alternatives.

• Cooperation P1 BC
L
P2 describes the synchronization of P1 and P2 over the ac-

tivities in the cooperation set L.

• Hiding P/L is a component behaves like P except that any activities of types

within L are hidden.

• Constant A
def
= P is a component whose meaning is given by a defining equation.

Example Figure 2.8 shows a PEPA model of a small network presented in Calder

et al. (2006a). Species A, B, and C are associated with distinct PEPA components.

The concentrations of species are discretized into high (H) and low (L) levels. A

stochastic rate is associated with each event in this process algebra.

A PEPA model can be mapped to a CTMC and can be simulated and analyzed

using stochastic simulation tools such as Dizzy (Ramsey et al., 2005). If we use numbers

of molecules instead of discrete concentration levels, a PEPA model can be mapped to a

CME that can be simulated using Gillespie’s algorithm. Interestingly, Geisweiller et al.

(2008) showed that an ODE model can also be derived from a PEPA representation.

Recently, an extension of PEPA called Bio-PEPA has been proposed in order to handle

more features of biological systems. Bio-PEPA is promising to support different kinds
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AL
def
= (b a, β).AH + (c a, γ).AH

AH
def
= (ab c, α).AL

BL
def
= (c b, δ).BH

BH
def
= (ab c, α).BL + (b a, β).BL

CL
def
= (ab c, α).CH

CH
def
= (c a, γ).CL + (c b, δ).CL

(AH
BC

{ab c,b a}
BH) BC

{ab c,c a,c b}
CL

Figure 2.8: A PEPA example of a small biopathway (Calder et al., 2006a).

of analysis, including stochastic simulation, ODE-based analysis, and PRISM-based

model checking.

PRISM

Probabilistic modeling checking is a formal verification technique for analyzing the

properties of stochastic systems (Kwiatkowska et al., 2007). PRISM (Kwiatkowska

et al., 2002) is the state of the art tool for carrying out probabilistic model checking

on CTMC models and has been applied to systems from various domains. Recently, it

has been used to analyze biological pathways (Kwiatkowska and Heath, 2009) such as

the ERK (Calder et al., 2005), and FGF signaling pathways (Kwiatkowska et al., 2006;

Heath et al., 2008).

The PRISM modeling language describes stochastic systems using variables and

modules. In the context of biopathway modeling, the values of variables are nonnegative

integer representing the discrete concentration levels of species. A module contains a

number of variables and specifies then updating rules for them. Each rule describes how

the values of variables involved in a biochemical reaction are updated under particular

conditions. Each update is also assigned a rate describing the probability of occurring.
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Example Figure 2.9 shows an example of the PRISM model of the reversible binding

process presented in equation 2.1.

ctmc 

const double k1 = 0.1; 

const double k2 = 0.01; 

module A 

 A : [0..5] init 5; 

 [bind] (A>0) -> A* k1 : (A’ = A - 1);  

endmodlue 

module A 

 A : [0..5] init 5; 

 [bind] (B>0) -> B* k1 : (B’ = B - 1);  

endmodlue 

module AB 

 AB : [0..5] init 0; 

 [bind] (AB < 5) -> k2 : (AB’ = AB + 1);  

endmodlue 

module RATES 

 [bind] true -> k1 : true; 

 [bind] true -> k2 : true; 

endmodlue 

Figure 2.9: A PRISM example of the binding process A+B 
 AB.

The main feature of PRISM-based modeling is that many interesting and complex

properties of the system can be verified via probabilistic model checking. PRISM allows

properties to be specified using various temporal logics such as Linear Temporal Logic

(LTL) (Pnueli, 1977), Probabilistic Continuous Temporal Logic (PCTL) (Hansson and

Jonsson, 1994) and Continuous Stochastic Logic (CSL) (Aziz et al., 2000). For instance,

a property can be written as the following logical formula:

(A < 2)⇒ P>0.2[trueU[0,4](AB = 3)] (2.10)

This property can be read as “if protein A’s concentration level is lower than 2, then the

probability of the complex AB’s concentration level being 3 within the next 4 seconds

is greater than 0.2”.
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A common limitation of the current stochastic models is scalability. As stochastic

simulations are computational intensive, the computations may become intractable

when analyzing large pathways. For instance, it has been reported by Calder et al.

(2005) that modeling checking an PRISM model of the ERK pathway, which consists

of only 11 species, with additional inhibition reactions, required the computational

power of a grid of over 90 computers.

2.4 Model Calibration

As discussed in previous section, many of the quantitative formalisms will induce a

large number of parameters. Usually, only a few of them are available in literature or

can be directly measured experimentally. Most of their values will be unknown. Thus,

one often has to estimate the values of unknown parameters from experimental data. In

this section, we focus on model calibration in the context of deterministic formalisms

such as ODEs and Petri nets, since stochastic models often assume parameters are

known and very little has been done for calibrating them.

The goal of model calibration is to estimate unknown parameter so that the model

can reproduce the experimental observations. Hence a common approach of parameter

estimation is to optimize the agreement between the model prediction and available

experimental data. In this manner, parameter estimation can be formulated as an

optimization problem with differential algebraic constraints. Typically, the goodness-

of-fit of a parameter combination is evaluated by the following objective function, which

measures the weighted sum of square error between model prediction and experimental

data:

fobj(p) =
∑
i,j

ωi(xi,j − yi,j(p))2 (2.11)

where p is the parameter set being tested, xi,j is the experimental observation of
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the concentration of species xi at time point j, yi,j(p) is the corresponding prediction

generated using p, and ωi is the normalization factor for xi which is usually the inverse

of the maximum value of xi.

In order to find the parameter set popt that has the minimum objective value, a

common scheme of optimization algorithms is to repeatedly execute two steps: (1)

make guesses regarding the values of the parameters; (2) evaluate the goodness-of-fit

of the guesses. For step (1), guesses may be generated randomly in the first round but

later guesses are usually made based on the results of previous rounds. For step (2), to

get the value of yi,j in equation 2.11, one will have to simulate the ODE system upto the

maximum time point of the experimental observations. Obtaining the optimal solution

often requires repeated executions of these two steps. Thus, the parameter estimation

process will often be computationally intensive.

To improve the performance of parameter estimation, a critical issue to be addressed

is how to make “clever” guesses based on guesses that have been evaluated. In other

words, how to traverse the solution space so that the optimal solution can be found

as fast as possible? The traversing process is also known as searching, which is the

major distinguishing feature of the parameter estimation algorithms. For instance, to

determine the next point in the solution space to search, the Steepest Descent (Fogel

et al., 1992) method will follow the direction of steepest descent on the hypersurface

of the objective function. The Levenberg-Marquardt (Levenberg, 2; Marquardt, 1963)

method combines this heuristic with the Newton methods. The Hooke and Jeeves (HJ)

method (Hooke and Jeeves, 1961; Swann, 1972) will remember the descent direction of

previous searches and suggest a new direction to search. These methods are classified

as the local methods. In practice, they converge quite fast. However, they suffer the

local minima problem (Moles et al., 2003) and often return suboptimal solutions with

bad quality.

On other hand, global methods in principle guarantee optimal solutions. Many
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global methods have been proposed based on a variety of heuristics inspired by nature.

For example, algorithms such as Genetic Algorithm (GA) (Back et al., 1997; Mitchell,

1995) and Evolutionary Strategy (ES) try to mimic evolution which is driven by repro-

duction and selection. The idea of ES is illustrated in Algorithm 1. Particle Swarm

Optimization (PSO) method develped by Kennedy and Eberhart (1995) is inspired by

a flock of birds or a school of fish searching for food. Benchmarking tests of the perfor-

mance of global methods on biological pathway models have been done by Moles et al.

(2003) and Fomekong-Nanfack et al. (2007). They separately showed that a variation

of ES called Stochastic Ranking Evolutionary Strategy (SRES) (Runarsson and Yao,

2000) outperform other commonly used global methods. Some recent works attempted

to improve SRES by either transforming the search space (Kleinstein et al., 2006) or

incorporating more heuristics such as Fisher information matrix analysis (Rodriguez-

Fernandez et al., 2006a,b). Although the resulting algorithms outperform others in

general cases, they might still fail to produce good results within acceptable time when

dealing with large signaling networks. A pragmatic strategy one may consider is to

optimize the standard parameter estimation algorithms using the network properties

of the particular biological pathways being studied. Such example can be found in

Birtwistle et al. (3) and Bentele et al. (2004).

As one of the difficulties of parameter estimation is due to the high dimensional-

ity of search space, Koh et al. (2005) proposed a decompositional approach that can

break down a large pathway model into smaller components by exploiting its structure.

As a result, estimating parameters within each component separately is allowed and

the computational cost is largely reduced. In this approach, components that share

common parts may have conflicting parameter estimations, as they are computed inde-

pendently. Thus, in a subsequent work (Koh et al., 2007), global consistency is achieved

by applying belief propagation techniques. Notice that not all the networks can be de-

composed into small components and decompositional approaches rely on other search
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begin
Initialize parent population Pµ = {p1, . . . ,pµ}
repeat

for i ← 1 to λ do
S ← Pµ

Randomly select parents pc1,pc2 ∈ Pµ

pnew ← Recombine(pc1,pc2)
pnew ← Mutate(pnew)
S ← S ∪ {pnew}
Sort(S)
Pµ ← Select first µ from S

end
until Stopping Criteria ;

end
Algorithm 1: (µ+ λ)-ES

methods to deal with single component. Further, the high cost of simulations remains

a major barrier. Another difficulty of parameter estimation is due to inherent uncer-

tainty of data. To deal with noisy data, probabilistic approaches that aim to estimate

the posterior distributions for parameters via Bayesian inference has been proposed

(Yoshida et al., 2008; Girolami, 2008; Koh et al., 2010a). Furthermore, experimental

data is often generated incrementally. When new data arrives, we may have to repeat

the whole process of parameter estimation which is very time consuming. A recent

work by Koh et al. (2010b) attempts to address this issue by representing the pathway

parameter estimates using probabilistic graphical models. As a result, parameter esti-

mation can be performed incrementally by integrating new experimental data into an

existing model.

2.5 Model Analysis

2.5.1 Sensitivity Analysis

In general, sensitivity analysis is the study of how the variation in the input of a compu-

tational model affects, qualitatively or quantitatively, the output of the model(Saltelli,
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2008). Here the input can be defined as the initial state or parameters of the model

and the output can be defined to be the dynamical behavior of a network component

of interest. Besides enriching our understanding, sensitivity analysis is also a powerful

technique for a range of purposes that have been summarized by van Riel (2006) as

follows:

• Drug target selection (Cascante et al., 2002; Rullmann et al., 2005).

• Biomarker selection (de Pillis et al., 2005).

• Experiment design (Rodriguez-Fernandez et al., 2006c; Cho et al., 2003; Gadkar

et al., 2005b).

• Model reduction (Bentele et al., 2004).

• Robustness analysis (von Dassow et al., 2000; El-Samad et al., 2005).

Local sensitivity analysis

Local sensitivity analysis is a particular form of sensitivity analysis similar to metabolic

control analysis (Salter et al., 1994). It has been widely applied on models of biological

pathways ranging from metabolic pathways (van Stiphout et al., 2006) to signaling

pathways (Schoeberl et al., 2002). Specifically, the sensitivity coefficient sij is defined

as the normalized first order derivatives of the model output oi with respect to the

model parameter pj :

sij :=
∂oi
∂pj
· pj
oi
≡ ∂ ln(oi)

∂ ln(pj)
(2.12)

Here one often specify pj to be a rate constant or the initial concentration of a species

and oi as a quantity that assets a characteristic of the system response. For instance,

we can define oi to be the transient concentration of a particular species (usually the

endpoint of signal transduction) at a specific time point t (Birtwistle et al., 3). In

this case, the sensitivity sij will become time dependent and can be denoted as sij(t).
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One may then plot sij(t) and further investigate how the sensitivities evolve over time

(Gunawan and Doyle, 2006). Furthermore, depending on the dynamical properties of

the system being studied, many other characteristics of the output response have been

used, such as: the amplitude and time of the response peak, the duration of the response

(Schilling et al., 2009), the integration of the response curve (Swameye et al., 2003), the

amplitude, period and phase of oscillation (Schoeberl et al., 2002; van Stiphout et al.,

2006; Gunawan and Doyle, 2006), the steady-state levels (Feng and Rabitz, 2004), the

deviation from the observations (Cho et al., 2003; Zi et al., 2005; Zhang and Rundell,

2006), etc.

Given a parameter pj , the corresponding oi can be predicted by simulating the

model. Thus, centered difference approximation techniques (Gunawan et al., 2005) can

be employed to compute sensitivity coefficients sij as follows:

sij =
∂oi
∂pj
· pj
oi
≈ oi(pj + ∆pj)− oi(pj −∆pj)

2∆pj
· pj
oi

(2.13)

Local sensitivity analysis assesses the effects of perturbations within a small local re-

gion around a specific point in parameter space. In other words, the computed local

sensitivities rely on the actual values of model parameters. However, in practice, the

values of many parameters have to be estimated form noisy and limited value. It is

possible for local sensitivity analysis to draw different conclusions about the importance

of the same parameter based on different sets of estimated values. Furthermore, even

if all the parameters can be measured experimentally, changes in cellular environments

may induce extensive variations of model parameters that might lead to different local

sensitivities. Therefore, it is a good to do sensitivity analysis in a more global manner

by exploring the effects of perturbations within a large region of parameter space.
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Global sensitivity analysis

To overcome the limitations of traditional local sensitivity analysis methods, various

global methods have been recently applied on biological pathway models (Cho et al.,

2003; Zi et al., 2005; Bentele et al., 2004; Zhang and Rundell, 2006; Lüdtke et al.,

2008; Rodriguez-Fernandez and Banga, 2008). These methods assess the overall effects

of parameters on the model output by simultaneously perturbing all the parameters

within a parameter space. A common Monte Carlo scheme adopted by many of them

can be described as follows: (1) draw a representative number of samples from the

parameter space (2) simulate the system for each sampled combination of parameters

(3) derive the global sensitivities of parameters by a statistical or information theoretic

analysis of the simulation results.

In step (3), the global sensitivities are measured in different ways depending on

the method used. For instance, the partial rank correlation coefficient (PRCC) analy-

sis calculates the global sensitivities from the Pearson correlation coefficients between

model output and input parameters (Draper and Smith, 1981). The global sensitivi-

ties calculated by Bentele et al. (2004) is a weighted average of the local sensitivities

of sampled values of parameters, where the weights are determined by a Boltzmann

distribution function of the error between model simulation and experimental data.

Sobol’s method estimates the partial variances of the model output for input param-

eters and defines the global sensitivities as the ratio of the related partial variances

to the overall variance of the model output (Sobol, 2001). In Multi-parametric sensi-

tivity analysis (MPSA) (Cho et al., 2003), the sampled parameter sets are classified

into two classes based on the objective value of each sample, which measures the er-

ror between experimental data and prediction generated by selected parameters. The

global sensitivities are then evaluated as the Kolmogorov-Smirnov statistic Kirjavainen

et al. (2008) of cumulative frequency curves of the parameter values associated with

the two classes. There are also attempts of deriving global sensitivities via information
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theoretic analysis. For example, Lüdtke et al. (2008) treated the pathway system as

a ‘communication channel’ and quantified the associations between input parameters

and model output by decomposing their mutual information. More methods for global

sensitivity analysis have been reviewed in the book by Saltelli (2008).

Biological pathway models often contain many parameters, which lead to a high

dimensional parameter space. Hence step (1) of the above scheme will require a large

number of samples to explore the parameters space. Consequently, carrying out global

sensitivity analysis becomes computationally extremely expensive. To get around of

this, efficient sampling methods have been proposed. For instance, Latin hypercube

sampling (LHS) is a sampling method requiring fewer samples while guaranteeing that

individual parameter ranges are evenly covered. It has been adopted to improve MPSA

(Zi et al., 2005) and PRCC (Zhang and Rundell, 2006) analysis. Instead of random

sampling, heuristic sampling from optimization algorithms has been used for comput-

ing global sensitivities with certain special definition (Sahle et al., 2008). Furthermore,

Zhang and Rundell (2006) proposed to reuse the computational effort put during pa-

rameter estimation to improve the performance of global sensitivity analysis.

2.5.2 Perturbation Optimization

With a comprehensive understanding of cellular mechanisms, the modern technologies

enable us to have many controls over the cellular functioning and phenotype. Such

controls are often accomplished by means of genetic modifications or drug treatment,

which perturb properties of components or interactions in a biological network. As a

result, desired cellular properties or dynamical behaviors might be achieved to facilitate

the development of many applications, ranging from therapeutic strategies for diseases

(Khosla and Keasling, 2003) to industrial applications of metabolic engineering (Raab

et al., 2005) and synthetic biology (Andrianantoandro et al., 2006; Heinemann and

Panke, 2006) such as production of various biochemical substance including proteins
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(Vives et al., 2003), amino acids (Park and Lee, 2010), biofuels (Keasling and Chou,

2008), etc. For example, L-threonine is an amino acid that has been widely used in in-

dustries of cosmetics and pharmacy (Lee et al., 2007). L-threonine has been produced

from bacteria such as Escherichia coli through biosynthetic pathways. The produc-

tivity can be improved by genetically mutating genes encoding pathway components.

The goal here is to maximize the production of L-threonine, and in the meantime, to

minimize the formation of undesirable byproducts. To achieve this goal, one has to

answer the question ”which genes shall we mutate?”. Similar questions will be raised

by all applications presented above. However, it is very difficult to answer due to the

inherent complexity of biological networks. As the number of candidate perturbation

strategies will be exponential, it is impossible to test the effect of strategies one by one

to pinpoint the best strategy. Instead, one will have to resort to computational mod-

els, on which in silico perturbations effects can be cheaply simulated and examined, to

figure out the optimal solution. We term this kind of model analysis as perturbation

optimization.

Mathematically, perturbation optimization is a combinatorial optimization prob-

lem:

maximize: f(x)

subject to: c(x),

where the decision variable x denotes a perturbation, the objective function f to max-

imize quantifies simulation results of the model with the corresponding perturbation,

and c is a set of constraints specifying the requirements that must be met to ensure

cells survive and have proper functioning. A perturbation can be the mutation of a set

of genes, which will result in the changes of initial conditions or kinetic parameters in

the model. For instance, in an ODE model of metabolic pathways in E. coli Lee et al.

(2007), deleting the lysA gene will induce the initial concentration of diaminopimelate

decarboxylase to be zero. Furthermore, a point mutation replacing the 290th C with
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T of the ilvA gene will decrease the activity of threonine dehydratase and result in

the changes on related kinetic parameters. It is worth noting that the E. coli model

constructed by Lee et al. (2007) consists of 979 reactions and 814 species. Due to the

combinatorial nature of the problem, such large models will induce solution spaces con-

taining a huge number of candidate perturbations. Hence the optimization procedure is

often very computationally intensive as it requires a large amount of model simulations.

To combat the combinatorial explosion of solution space, many optimization methods

have been used in recent years. A review of several standard methods employed can

be found in Banga (2008), including Linear programming (LP) (Papoutsakis, 1984),

Bilevel optimization (BLO) (Burgard et al., 2003; Chang and Sahinidis, 2005; Gad-

kar et al., 2005a), Mixed Integer nonlinear programming (MINLP) (Vital-Lopez et al.,

2006), and Dynamic optimization (DO) (Lebiedz, 2005).



Chapter 3

Preliminaries

In this chapter, we develop the notions leading to the fact that the flows (vector fields)

that arise as the solution to our systems of ODEs will be measurable functions. This

will secure the mathematical basis for our approximation. More information can be

found in (Hirsch et al., 2004; Ammann, 1990; Durrett, 2004; Feldman, 2008).

3.1 Continuity, Probability and Measure Theory

Let N denote the set of non-negative integers. Assume that X and Y are metric spaces

(Bryant, 1985). A function f : X → Y is said to be of class Ck, where k ∈ N, if

the derivatives f ′, f ′′, . . ., f (k) exist and are continuous. Thus, the class C0 consists

of all continuous functions and the class C1 consists of all continuously differentiable

functions.

A σ-algebra over a set X is a nonempty collection of subsets of X that is closed

under complementation and countable unions. The Borel σ-algebra on a topological

space X, denoted as BX , is the minimal σ-algebra containing all the open sets of X.

A probability space is a triple (Ω,F ,P) consisting of a set Ω, a σ-algebra F over

Ω, and a function P : F → [0, 1] such that:

43
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(i) P(Ω) = 1;

(ii) if {Aw}w∈W is a countable family of pairwise disjoint sets in F , then P(∪wAw) =∑
w P(Aw).

Let X and Y be nonempty sets and M and N be σ-algebras of subsets of X and

Y respectively. A function f : X → Y is said to be (M,N )-measurable if

E ∈ N ⇒ f−1(E) ∈M. (3.1)

The following fact is crucial for our purposes.

Proposition 3.1. (Feldman, 2008) If X and Y are metric spaces and f : X → Y is

continuous, then f is (BX ,BY )-measurable.

3.2 ODEs and Flows

Through the rest of this chapter, we assume a set of ODEs

ẋi(t) = fi(x(t),p) (3.2)

involving the variables {x1, x2, . . . , xn}. Each variable xi(t) is a real-valued function of

t with the domain of t being the set of reals. {p1, p2, . . . , pm} is the set of real-valued

parameters. We will require the ODEs to be autonomous in the sense t does not appear

explicitly in any fi. In our setting, we will often be interested in studying the dynamics

for different combinations of values for the parameters. Hence it will be convenient to

treat them also as variables. However they will be time-invariant; once their values are

fixed at t = 0, these values will not change through the passage of time. Consequently,

we will implicitly assume m additional differential equations of the form ṗj(t) = 0 with

j ranging over {1, 2, . . . ,m}. We will often let v range over Rn+, the values space of the
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variables and k range over Rm+ , the values space of the parameters and z range over

Rn+m
+ , the combined values space. In vector form, our system of autonomous ODEs

may be represented as:

Z′ = F (Z). (3.3)

We shall assume that the ODEs will be modeling mass action or Michaelis-Menten

kinetics (Klipp et al., 2005). However, our method will be applicable for many other

types of reaction kinetics too.

Based on the preceding remarks, we can assume fi : Rn+m
+ → R+ to be of the form:

ri∑
j=1

cjnijgj , (3.4)

where ri is the number of reactions associated with species xi and cj = −1 (cj = +1)

if xi is a reactant (product) of the jth reaction. Further, the quantities nij ∈ Z denote

the stoichiometric coefficients and gj are rational functions of the form gj = pαxaxb

(mass action) or gj = pαxaxb/(pβ + xa) (Michaelis-Menten) with a, b ∈ {1, 2, . . . , n}

and α, β ∈ {1, 2, . . . ,m}, describing the kinetic rates of the corresponding reactions.

Consequently, we shall assume that gi are differentiable and g′i are continuous on R+.

As a result, gi are C1 (continuously differentiable) functions. This leads us to fi ∈ C1

for each i and hence F : Rn+m
+ → Rn+m

+ can also be assumed to be a C1 function.

Furthermore, the variables representing the concentration level of a species within a

single cell as well as the parameters capturing the reaction rates will take values from

a bounded interval. Hence the domain of F can be restricted to a bounded region D

of Rn+m
+ .

Given z0 = (v0,k) where v0 specifies the initial values of the variables and k

specifies the parameters values, the system of ODEs will have a unique solution since

F ∈ C1 (Hirsch et al., 2004). We shall denote this solution by Z(t) with Z(0) = z0

and Z′(t) = F (Z(t)). We are guaranteed that Z(t) will be a C0-function (Hirsch et al.,
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2004).

It will be convenient to define the flow Φ : R+ ×D → D of Z′ = F (Z) for arbitrary

initial vectors z. It will be a C0-function given by: Φ(t, z) = Z(t) with Φ(0, z) = Z(0) =

z and ∂(Φ(t, z))/∂t = F (Φ(t, z)) for all t (Hirsch et al., 2004). Further, Φ(t, ·) will be

bijective.

Since the flow Φ is C0, i.e. continuous and D ⊆ Rn+m is a metric space we are

assured that Φ(t, ·) is (BD,BD)-measurable by Proposition 3.1. In what follows, we use

Φt to denote Φ(t, ·) and summarize the above observations via:

Proposition 3.2. Suppose Z′ = F (Z) is an autonomous system of ODEs with F in

C1 and with the domain of F being a bounded region D of Rn+m
+ . Then there exists a

unique flow Φ : R+ × D → D for arbitrary initial vectors z satisfying: Φ(t, z) = Z(t)

with Φ(0, z) = Z(0) = z and ∂(Φ(t, z))/∂t = F (Φ(t, z)) for all t. Further, Φ(t, ·) will

be in C0 and hence BD-measurable. As a result, for all t ∈ R:

B ∈ BD ⇒ Φ−1
t (B) = {z ∈ D | Φ(t, z) ∈ B} ∈ BD. (3.5)

3.3 Markov Chains

A Markov Chain (Norris, 1997) is a pair (S, {pij}) where S = {s1, s2, . . . , sn̂} is set

of states and pij ∈ [0, 1] are the transition probabilities with Σn̂
j=1pij = 1 for every i.

Thus if the system is in state si at t then it will be in state sj at t+ 1 with probability

pij . Given an initial probability distribution Ψ0 over S at t = 0, viewed as an 1× n̂-row

vector, the probability distribution Ψk over S at t = k will be given by (Ψ0)T k where

T is the n̂× n̂ transition probability matrix with Tij = pij .
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3.4 Bayesian Networks

A Bayesian network (Russell and Norvig, 2003) is a finite acyclic directed graph

BN = (V,E) which has a finite-valued random variable Xv and a conditional prob-

ability table CPTv associated with each node v. The entries in CPTv will be of

the form Pr(Xv = x|Xv1 = x1, Xv2 = x2, . . . , Xvj = xj) where {v1, v2, . . . , vj} is

the set of parents of v given by Pa(v) = {u | (u, v) ∈ E}. BN represents -often

compactly- the joint probability distribution over the random variables {Xv}v∈V given

by: Pr(Xv1 = x1, Xv2 = x2, . . . , Xvň = xň) =
∏ň
i=1 Pr(Xvi = xi|Xvi1 = xi1, Xvi2 =

xi2, . . . , Xvij = xij) with Pa(vi) = {vi1, vi2, . . . , vij}.

3.5 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are Bayesian networks that model temporal

evolution of systems whose (local states) are modeled as random variables (Murphy,

2002). There are many variants of dynamic Bayesian networks. We will be dealing

with a restricted class of time-variant two-slice dynamic Bayesian networks. They will

be of the form (B0, {Bd
→}d̂d=1, Pa), where B0 defines the initial probability distributions

{Pr(X0
i )} of the random variables {Xi}li=1. And {Bd

→} are two-slice temporal Bayesian

networks for the time points {t1, . . . , td̂}. The nodes of the Bayesian network Bd
→

denoted V d is given by V d = {Xd−1
i | 1 ≤ i ≤ l} ∪ {Xd

i | 1 ≤ i ≤ l} (here we

are identifying the nodes with the random variables associated with them). The edge

relation Ed will be the subset of {Xd−1
i | 1 ≤ i ≤ l} × {Xd

i | 1 ≤ i ≤ l} satisfying

(Xd−1
j , Xd

i ) ∈ Ed iff Xj ∈ Pa(Xi). As might be expected, Pa : X → 2X with X =

{Xi | 1 ≤ i ≤ l}. Each node Xd
i will also a conditional probability table CPT di

associated with it with entries of the form Pr(Xd
i = x | Xd−1

i1 = xi1, . . . X
d−1
ij = xij),

where Pa(Xi) = {Xi1, . . . Xij}.

Thus the way the nodes of the (d+ 1)th layer are connected to the nodes of the dth
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layer will remain invariant. However CPT d+l
i will be, in general, different from CPT di .

An example of such a dynamic Bayesian network is shown in Figure 3.1. To avoid

clutter we have not shown the CPTs associated with each node. In our setting these

dynamic Bayesian networks will represent an associated Markov chain in a factored

form.

Pa(X1) = {X1, X3}

Pa(X2) = {X2, X1, X4}

Pa(X3) = {X3}

Pa(X4) = {X4}

Figure 1: A DBN example.

1. We start with a system of ODEs; a discretization of the value space of each variable and
rate constant into a finite set of intervals; and a discretization of the temporal domain of
interest into a finite set of time points {t0, t1, . . . , tmax}. We also assume a prior distribution
of the initial values (usually, a uniform distribution) over some of the intervals of the value
space. The flow induced by the system of ODEs, together with the prior distribution of initial
values will induce a Markov chain MCideal via the discretization. In a sense, this Markov
chain represents the dynamics of an uncountably infinite family of trajectories TRAJideal,
defined by the given set of initial values (and their prior probabilities).

2. One can not explicitly compute MCideal when the ODEs system does not admit a closed
solution. However, it can be approximated by sampling the set of initial values according to
the prior and using numerical integration to generate a representative subset TRAJapprox ⊆
TRAJideal of trajectories. Then, using the discretization and simple counting, we can con-
struct the Markov ChainMCapprox which will approximateMCideal.

3. However,MCapprox can be very large since the number of states that this Markov chain will
be, in the worst case, exponential in the number of variables. To get around this, we exploit
the pathway structure (i.e. the way the variables are coupled to each other in the system
of ODEs) to represent MCapprox compactly as a time-variant two-slice dynamic Bayesian
network. This representation of MCapprox is our final destination and will be called the
Bayesian Dynamics Model (BDM).

It is important to note that this three step procedure is just a conceptual framework; we
construct the BDM directly from the given system of ODEs instead of passing through a Markov
chain. We shall now provide more technical description the steps involved in constructing the BDM
model.

3.1. The Markov ChainMCideal
Pathways models are usually validated by experimental data available only for a few time points

with the concentrations measured at the final time point typically signifying the steady state value.
Hence we assume the dynamics is of interest only for discrete time points and that too only up to
a maximal time point. We then denote these time points as t0, t1, . . . , tmax. It is not necessary to
uniformly discretize the time domain. However, to simplify the notations of the following sections,
we fix a time step ∆t > 0 and the time points of interest is assumed to be the set {d ·∆t} with d
ranging over {0, 1, . . . , d̂}. Thus d̂ ·∆t is the maximal time point of interest.

Next we assume that the values of the variables can be observed with only finite precision
and accordingly partition the range of each variable xi into Li intervals [vmin

i , v1i ), [v
1
i , v

2
i ), . . .,

6

Figure 3.1: A DBN example.
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The Dynamic Bayesian Network

Approximation

Here we present our technique for approximating the pathway dynamics defined by a

systems of ODEs as a dynamic Bayesian network (DBN).

At the first step we show how the discretization of the value space and time domain

leads to the derivation of a Markov chain from the ODEs dynamics. We then show

how this Markov chain can be further approximated as a dynamic Bayesian network

by introducing independence assumptions obtained from the network structure.

4.1 Overview

Conceptually, our approximation technique consists of two major steps. First we dis-

cretize the value spaces of the variables and parameters into a finite sets of intervals.

We also discretize the time domain of interest into a finite number of time points. In

addition, we assume a prior distribution of initial values over the intervals. As a result,

the flow defined by our system of ODEs will induce a Markov chain MCideal.

In the second step we further approximateMCideal as a dynamic Bayesian network

49
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(DBN). This second step is motivated by a number of considerations. To start with,

MCideal can not be computed explicitly since the ODEs systems of interest will not

admit closed form solutions. Secondly, if we approximateMCideal directly as a Markov

chain, say MCapprox, then the resulting Markov chains size will be exponential in the

number of variables involved in the ODEs system. To get around this we introduce

independence assumptions based on the way the variables are coupled to each other

in the biochemical reactions network. We then approximate MCideal as a dynamic

Bayesian network, which in this context, may be viewed as a factored Markov chain.

We compute the conditional probability tables of the DBN by sampling the initial

states according to the prior sufficiently many times and generating a trajectory for

each of the sampled initial states. Then by a simple process of counting tied to the

discretized value space and time domain, we obtain the dynamic Bayesian network.

This two step procedure is however just a conceptual framework. We shall construct

the DBN approximation directly from the given system of ODEs instead of passing

through a Markov chain. We now proceed with a more technical description the steps

involved in constructing the DBN approximation. In doing so, we shall assume that we

are given the system of ODEs ẋi(t) = fi(x(t),p) with n variables and m rate parameters

specified in the previous chapter with the associated notations and assumptions.

4.2 The Markov Chain MCideal

Biological pathway models are usually validated by experimental data available only

for a few time points with the concentrations measured at the final time point typically

signifying the steady state value. Hence we assume the dynamics is of interest only for

discrete time points and that too only up to a maximal time point. We denote these

time points as {t0, t1, . . . , tmax}. It is not necessary to uniformly discretize the time

domain. However, to simplify the notations of the following sections, we fix a time step

∆t > 0 and the time points of interest is assumed to be the set {d ·∆t} with d ranging
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over {0, 1, . . . , d̂}. Thus d̂ ·∆t is the maximal time point of interest.

Next we assume that the values of the variables can be observed with only finite pre-

cision and accordingly partition the range of each variable xi into Li intervals [vmini , v1
i ),

[v1
i , v

2
i ), . . ., [vLi−1

i , vmaxi ]. We denote this set of intervals as Ii. We also similarly dis-

cretize the range of each parameter pj into a set of intervals denoted as In+j . The set

I = {Ii}1≤i≤n ∪ {In+j}1≤j≤m is called the discretization. Again, we wish to empha-

size that the value space can be discretized non-uniformly and our constructions will

go through.

As pointed out earlier, the initial values as well as the rate constants (even when they

are known) will be given not as point values but as distributions (usually uniform) over

the intervals defined by the discretization. We correspondingly assume we are given a

prior distribution in the form of a probability density function Υ0 capturing the initial

values.

For example, suppose we are given that the initial values are uniformly distributed

within a hypercube Î1 × Î2 × . . . × În+m, where Îi ∈ Ii for each i. Let Îi = [li, ui)

and ŵi = ui− li. Then the corresponding prior probability density function Υ0 will be

given by:

Υ0(z) =


1

ŵ1·ŵ2·...·ŵn+m
if z ∈ Î1 × Î2 × . . .× În+m,

0 otherwise.

(4.1)

The associated probability space we have in mind is (D,BD,P0) where D is the

domain of the ODEs (see Section 3.2), BD is the Borel σ-algebra over D; the minimal

σ-algebra containing the open sets of D under the usual topology. P0 is the probability

distribution induced by Υ0 and is given by:

P0(B) =

∫
B

Υ0(z)dz, for every B ∈ BD. (4.2)

Further, TRAJideal = {Φt(z)}t≥0 with z ranging over Î1 × Î2 × . . . × În+m is the
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family of trajectories starting from all the possible points in this hypercube. As before,

Φ is the flow induced by the system ODEs.

Φ is measurable by Proposition 3.1. Hence we can define the probability distribution

Pt over BD for every t as:

Pt(B) = P0(Φ−1
t (B)), for every B ∈ BD. (4.3)

Let v be a real number in the range of xi. We define [v] as the interval in which v

falls. In other words, [v] = I iff v ∈ I. Similarly, [k] = J if k ∈ J for a parameter value

k of pj with J ∈ In+j .

Lifting this notation to the vector setting, if z = (v1, v2, . . . , vn, k1, k2, . . . , km) ∈

Rn+m
+ , we define [z] = ([v1], [v2], . . . , [vn], [k1], . . . , [km]) and refer to it as a discrete

state.

Definition 4.1. An MC-state is a pair (s, d), where s is a discrete state and d ∈

{0, 1, . . . , d̂}.

We next define Pr((s, d)) = Pd·∆t({z | z ∈ I1 × I2 × . . . × In+m}), where s =

(I1, I2, . . . , In+m). We term the MC-state M to be feasible iff Pr(M) > 0.

Definition 4.2. The transition relation denoted as →, between MC-states is defined

via: M = (s, d)→M ′ = (s′, d′) iff d′ = d+1 and both M and M ′ are feasible and there

exist z0, z, and z′ such that Φ(d ·∆t, z0) = z and Φ((d+1) ·∆t, z0) = z′. Furthermore,

[z] = s and [z′] = s′.

Let E, F denote, respectively, the event that the system is in the discrete state

s at time d · ∆t and in the discrete state s′ at time (d + 1) · ∆t for two feasible

MC-states (s, d · ∆t) and (s′, (d + 1) · ∆t). Let EF = E ∩ F denote joint event

{z0 | Φ(d ·∆t, z0) ∈ s,Φ((d+ 1) ·∆t, z0) ∈ s′}. Consequently, we define the transition

probability Pr((s, d) → (s′, d′)) = Pr(F |E) = Pr(EF )/Pr(E). Since Pr(E) > 0 this

transition probability is well-defined.
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Definition 4.3. Let M = {M1,M2, . . . ,Mn̂} be the set of M-states. We can now

define the Markov chain MCideal = (M, {pij}) with transition probabilities pij =

Pr(Mi →Mj) as above.

Example A typical biochemical equation depicting an enzyme catalyzed reaction can

be written as follows:

S + E
k1


k2

ES
k3−→ E + P (4.4)

As the basic component of signal transduction pathways (Stryer, 1988), it accounts

for one step in the transduction of a signaling cascade. In this reaction, the enzyme

E binds reversibly to the substrate S, before converting it into the product P and

releasing it. The parameters k1, k2 and k3 are the rate constants that govern the speed

of these reactions. The corresponding ODE model will be:

dS

dt
= −k1 · S · E + k2 · ES

dE

dt
= −k1 · S · E + (k2 + k3) · ES

dES

dt
= k1 · S · E − (k2 + k3) · ES

dP

dt
= k3 · ES

Assuming that the range of each variable or parameter is: S ∈ [0, 15], E ∈ [0, 10],

ES ∈ [0, 10], P ∈ [0, 15], k1 ∈ [0, 1], k2 ∈ [0, 1], k3 ∈ [0, 1] (for simplicity, we ignore all

units in this example), we partition each range into 5 equal-sized intervals and form

the discretization I = {IS , IE , IES , IP , Ik1 , Ik2 , Ik3}, where IS = IP = {[0, 3), [3, 6),

[6, 9), [9, 12), [12, 15]}, IE = IES = {[0, 2), [2, 4), [4, 6), [6, 8), [8, 10]} and Ik1 = Ik2 =

Ik3 = {[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1]}. We fix the time step ∆t to be

0.1 and fix the number of time points to be 100. We have adopted equal-sized intervals
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and fixed time steps only for convenience.

Suppose we are given a prior distribution that the initial values z0 = (S, E, ES, P ,

k1, k2, k3) are uniformly distributed within a hypercube C = [12, 15]× [8, 10]× [0, 2)×

[0, 3) × [0.2, 0.4) × [0.4, 0.6) × [0.2, 0.4). We then have the prior probability density

function Υ0 given by:

Υ0(z) =


1

(15−12)(10−8)(2−0)(3−0)(0.4−0.2)(0.6−0.2)(0.4−0.2) = 125
36 if z ∈ C,

0 otherwise.

Thus, M0 = (s0 = ([12, 15], [8, 10], [0, 2), [0, 3), [0.2, 0.4), [0.4, 0.6), [0.2, 0.4)), 0) will be

the initial MC-state of the induced Markov chain MCideal. Clearly Pr(M0) = 1 since

Pr(M0) = P0({z | z ∈ C}) =

∫
{z|z∈C}

Υ0(z)dz = 1. (4.5)

The ODEs system will typically not admit a closed form solution. Hence Φ can not

be derived explicitly and as a consequence, MCideal can not be explicitly computed

either. Thus, one can only compute approximations of MCideal. For instance, one

could sample z (the initial state) many times according to the prior distribution P0

and for each sampled initial z, determine through numerical integration the M-states

[Φ(d · ∆t, z)], with d ranging over {0, 1, . . . , d̂} as well as the transitions along this

trajectory. Then through a simple counting process involving the generated trajectories,

a Markov chain can be computed as an approximation ofMCideal. However, the number

of states of such approximated Markov chain will be exponential in n. As a result, for

many biological pathways, it will be simply too large. Instead, we shall construct a

time-variant two-slice DBN to compactly represent and approximate MCideal.



CHAPTER 4. THE DYNAMIC BAYESIAN NETWORK APPROXIMATION 55

4.3 The DBN Representation

The key observation is that the structure of the system of ODEs can be exploited to

factorizeMCideal into a time-variant 2-slice DBN. This DBN will have (n+m)×(d̂+1)

nodes. The node v will have associated with it a random variable Xd
i . This random

variable will take as values the intervals in Ii; the intervals into which the value space

of xi (in case i ≤ n) or the parameter pi−n (in case i > n) has been discretized. The

superscript d will stand for the fact the probability distribution associated with Xd
i

describes the probability of the value of the variable xi (or the parameter pi−n) falling

into various intervals in Ii at time d ·∆t (since the parameter pi−n is a constant, it can

be associated with dpi−n

dt = 0 ). In what follows, for convenience, we will use the same

name to denote a node and the random variable associated with it. From the context

it should be clear which role is intended. We now proceed with the construction of the

DBN (B0, {Bd
→}d̂d=1, Pa).

We assume that the prior distribution of initial values of the variables and parame-

ters are independent of each other. This is often a reasonable assumption. Even when

the assumption is violated it is certainly reasonable to assume that marginal prior prob-

abilities of each variable and parameter can be computed and thus B0 = {Pr(X0
i )}n+m

i=1

can be computed. Next, the parent relation Pa is defined as follows. In doing so, it

will be convenient to identify the variable xi with Xi and the parameter pj with Xn+j .

Suppose z, z′ ∈ {x1, x2, . . . , xn, p1, p2, . . . , pm}. Then z′ ∈ Pa(z) iff z′ = z or z is a

variable and z′ appears in the right-hand side of the equation for dz/dt in the system

of ODEs.

Thus the structure of the ODEs and more precisely, the structure of the biochemical

network induces the underlying graph of the DBN.

V d, the set of nodes of the Bayesian network Bd
→ = (V d, Ed) will be: V d = {Xd−1

i |

1 ≤ i ≤ n + m} ∪ {Xd
i | 1 ≤ i ≤ n + m}. The edge relation Ed is defined in the

obvious way now using the function Pa. To spell it out, it will be the subset of
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Figure 4.1: A slice of the DBN approximation of the enzyme-kinetic system.

{Xd−1
i | 1 ≤ i ≤ n + m} × {Xd

i | 1 ≤ i ≤ n + m} satisfying (Xd−1
j , Xd

i ) ∈ Ed iff

Xj ∈ Pa(Xi).

Finally, suppose Pa(xi) = {z1, . . . , zl}. Then conditional probability table (CPT)

associated with the node Xd
i will have entries of the form Pr(Xd

i = I | zd−1
1 =

I1, . . . , zd−1
l = I l) = h with I ranging over Ii and Ij ranging over Ij for 1 ≤ j ≤ l and

h ranging over [0, 1]. This entry captures probability of the value of the variable xi

(assuming i ≤ n) falling in the interval I at time d ·∆t given that at time (d− 1) ·∆t,

the value of the variable (parameter) zj was in the interval Ij for 1 ≤ j ≤ l. It is in this

sense the dynamics defined by MCideal is captured in a factored form by the DBN.

Example (continued) Figure 4.1 shows two adjacent slices in the DBN approxi-

mation of the enzyme-kinetic system. The structure of this DBN is derived from the

ODEs presented in section 4.2. For instance, the parent nodes of P d+1 are P d, ESd

and kd3 since P d, P d+1 refer to the same variable P while ES, k3 appear in the ex-

pression for dP/dt. As mentioned earlier, the parameters are assumed to retain their

values during a run and hence we denote kdi as simply ki and there will be no CPTs

associated with these nodes. On the other hand, the CPT associated with the node

P d+1 will have entries of the form Pr(P d+1 = I | P d = I ′, ESd = I ′′, k3 = I ′′′) = h,
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where I, I ′ ∈ IP , I ′′ ∈ IES , I ′′′ ∈ Ik3 and h ∈ [0, 1]. As illustrated in this example, the

connectivity between the nodes in successive slices will remain invariant. However, due

to the fact that the CPTs associated with the nodes capture the transition probabilities

at different time points, they will be time variant.

MCideal will have, in the worst case, O((d̂+ 1)Kn) states and O(d̂K2n) transitions,

where K is the maximum of |Ii| with 1 ≤ i ≤ n + m. In contrast, the number of

nodes in the DBN representation is O(d̂(n+m)) and the conditional probability table

associated each node will have at most O(KR+1) entries, where R is the maximal

number of parents a node can have. Usually, the reactants in pathway models will be

sparsely coupled to each other and hence R will be much smaller than n. For instance,

in the first case study to be presented in the next chapter, n = 32 and R = 5.

Since our ODE system will not admit a closed form solution, the conditional prob-

abilities of the DBN can not be directly derived explicitly. To fill up the entries of the

CPTs associated with the nodes of DBN, we shall approximately compute conditional

probabilities as follows.

We sample z (the initial state) a sufficiently large number of times, say N , according

to the prior distribution P0 (we say more about N below). Since we assume that the

initial values are independent of each other, the values of a variable/parameter can

be sampled according to its marginal prior distribution. For instance, in our running

example, we can randomly choose a value from [12, 15] for S, a value from [8, 10] for E,

a value from [0, 2) for ES, a value from [0, 3) for ES, a value from [0, 1] for k1, a value

from [0, 1] for k2, a value from [0, 1] for k3, and then form a vector of initial values.

After picking N sample initial value vectors, we perform numerical integration to

generate N trajectories and discretize those trajectories by the predefined intervals and

compute the conditional probabilities for each node by simple counting. For example,

suppose 132 trajectories hit (P 0 = [0, 3), ES0 = [0, 2), k3 = [0.2, 0.4)) at time 0 and 12

of them in turn hit (P 1 = [3, 6)) at time 0.1, then Pr(P 1 = [3, 6) | P 0 = [0, 3), ES0 =
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[0, 2), k3 = [0.2, 0.4)) = 12/132 = 0.091.

As a result, we can obtain a DBN approximating the idealized DBN induced by

introducing the conditional independences to MCideal. It is not difficult to show that

a canonical Markov chain can be recovered from the DBN (Nunez, 1989). We note

that this Markov chain is an approximation of MCideal. In next section, we discuss

the error between them due to the following: (i) factorizing MCideal into the idealized

DBN is based on assumed conditional independences,(ii) the N trajectories used for the

construction of the approximated DBN are generated through numerical integration,

and (iii) the sample size N is finite.

4.3.1 Error Analysis

The error induced by the numerical integration will depend on the method adopted.

For example, the step’s errors of Euler’s method and fourth-order Runge-Kutta method

described in Section 2.3.1 are O(h2) and O(h5) respectively, where h is the step size.

In general, the error induced by the pth-order numerical integration method is O(hp+1)

(Press et al., 1992) and it will tend to 0 as h tends to 0 or p tends to ∞.

Further, numerical integration methods compute zi(t+δ) using zi(t) and the values,

at time t, of other variables/parameters that appear in the right-hand side of the

equation for dzi/dt (see the formulas of Euler’s method and RK4 in Section 2.3.1).

In other words, the value of zi(t + δ) only depends on the values of zj(t) where zj ∈

Pa(z). Hence the independence assumption is consistent with the numerical integration

methods. There will be no additional error induced by the independence assumption

when ∆t in the DBN equals to δ used for generating the trajectories.

Since N is finite, there will be an error between the conditional probabilities com-

puted using the N trajectories and the ones induced by MCideal. By the central limit

theorem (Durrett, 2004), this error can be probabilistically bounded. For each entry

of the DBN, let r̂ represent the conditional probability computed via sampling and r
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be the actual one induced by the MCideal, we have:

Proposition 4.4. Suppose the number of samples is N . Then ε will be the error with

probability c between r̂ in the DBN approximation and the corresponding r induced by

the MCideal where

ε = φ−1(
c+ 1

2
)

√
r(1− r)
N

with φ(x) = 1√
2π

∫ x
−x e

−y2/2dy.

Proof. Let X be a random variable such that X = 1 (X = 0 resp.) denote the event

that a sample trajectory passes (not passes resp.) a discrete state s at time d·∆t. Hence

X will have a Bernoulli distribution with parameter pij with µ = r and σ2 = r(1− r).

If X1, X2, . . . , XN are the N measurements, by Central Limit Theorem, we have:

P{−ε ≤
∑N

i=1Xi

N
− µ ≤ ε} ≈ 2φ(ε

√
N

σ
)− 1

where ε is the error and φ(x) = 1√
2π

∫ x
−x e

−y2/2dy. Thus,

ε = φ−1(
c+ 1

2
)

√
r(1− r)
N

with probability c.

Therefore, given an error bound ε and a confidence level c, we can compute N , the

number of samples required to get an error less than or equal to ε with likelihood c. For

instance, let ε = 0.01 and c = 0.95. To estimate Pr(P 1 = [3, 6) | P 0 = [0, 3), ES0 =

[0, 2), k3 = [0.2, 0.4)), we need d(
√

0.091(1− 0.091) · φ−1((0.95 + 1/2)/0.01)2e = 3178

samples. Further, this error will tend to 0 with probability 1 as N tends to ∞.

The above error analysis is preliminary. It mainly aims to show that the error

between our approximation and MCideal induced by the pathway dynamics can tend

to 0 under certain condition. In practice, to construct the DBN, one will need to make
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a chose of N . However, it is difficult to determine N with guaranteed error bounds

since MCideal is not computable. Hence one must make a pragmatic choice of N . In

the next section, we present several sampling methods and the corresponding ways of

determining N .

4.3.2 Sampling Methods

Direct sampling

Since we have n variables andm parameters, theN sampled initial values vectors should

be picked from a (n + m)-dimensional space. According to the prior distribution, the

value of each variable or known parameter often lies in one interval. For instance, the

value of species E in our running example lies in [8, 10]. Thus, for existing models

or for those for which the parameter estimation has already been carried out, we can

randomly pick a value for each variable/parameter according to their marginal prior

and then form a vector of initial values. We term this type of sampling as direct

sampling. This method does not ensure any coverage. One can determine N based on

the computational time one would like to spend on the DBN construction.

Global sampling

However, the value of an unknown parameter will range over all its intervals. For

instance, in our running example, the value of each unknown parameter should be

sampled from 5 intervals. Thus if we have u unknown parameters whose value spaces

have been discretized to K intervals each, one will require a sample size of N = J ·Ku

to ensure J samples for each possible combinations of interval values of the unknown

parameters. We term this as global sampling. Thus the number of samples this method

would require will be exponential in the number of unknown parameters. This will often

be an unacceptably large number.
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Local sampling

At the other end of the spectrum, we can pick J samples for each possible interval

of variables or parameters. The idea is to randomly choose a point within the target

interval I of, say, the variable xi and then arbitrarily extend this point value to an (n+

m)-dimensional vector over the allowed intervals of the other variables and parameters.

We term this as local sampling and it will require a sample size of N = (n+m) · J ·K

with coverage of J per interval. Hence local sampling will require a much smaller

sample size. However, it can not guarantee adequate coverage for combinations of

interval values of the parameters.

To bring this out through an artificial but simple case, suppose x takes values in

the interval I1 and I2 while y takes values in the intervals I3 and I4. To get a local

coverage of 100 samples per interval, we may pick 100 points from I1 and extend it

by combining it with a random value for y (which will fall in I3 or I4). Let S1 be the

set of such samples. Similarly let S2 be the set of 100 samples obtained by picking

100 points from I2 and extending each of them randomly to a value for y. Finally, let

S3 (S4) be the 100 samples obtained by picking 100 values from I3 (I4) and extending

each of them randomly to a value for x. In this way, with 400 samples we will be able

to guarantee a minimum of 100 hits for each of the intervals {I1, I2, I3, I4}. However

suppose the y-values of all the samples in S1 (S2) fall in S3 (S4) and the x-values of all

the samples in S3(S4) fall in S1(S2). Then none of the 400 samples will fall in I1 × I4

(I2 × I3) and hence we will get 0-coverage for the combination of this pair of intervals!

To ensure that we are exploring the ODEs dynamics adequately, we need to ensure

that all the possible combinations of interval values of unknown parameters govern-

ing any single equation are being sampled an adequate number of times. Otherwise,

the probabilistic inference we need to to perform on the DBN approximation during

parameter estimation and sensitivity analysis will have poor quality.
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Equation sampling

Hence to get good coverage in the presence of many unknown parameters, one will have

to resort to more sophisticated methods. Here we propose a method called equation

sampling by which numerical simulations can be carried out in the presence of unknown

parameters while ensuring that the local dynamics defined by the individual equations

are being explored adequately. To bring out the main idea, suppose the equation for

the variable xi involves the unknown parameters k1 and k2 and the values of k1 (k2)

have been divided into three intervals I1 (I ′1) , I2 (I ′2) and I3 (I ′3). Then for a specific

combination of intervals, say I2 and I ′3 we pick 100 samples such the k1 value lies in I2

and the k2 value lies in I ′3 for each of the samples. In this way we can pick 900 samples

which ensure that there are at least 100 samples for each combination of interval values

for k1 and k2. In general, we will be able provide a coverage of J samples for each

possible combination of interval values of the unknown parameters in the equation

for each variable with the help of N = n · J · KR samples, where R is the maximal

number of unknown parameters appearing in an equation. Since the positive terms

(negative terms) in the differential equation of a species describe the rates of reactions

that producing (consuming) this species, equation sampling will provide of a coverage

of all possible local conditions that determines the dynamics of a single species. Thus,

with this type of sampling, the quality of model analysis tasks can be ensured with an

acceptable sample size.

4.3.3 Optimizations

Various optimizations can be developed to reduce the practical complexity of the DBN

construction. Specifically, the sampling process followed by the generation of a tra-

jectory can be easily parallelized and executed on a computing cluster. In addition,

the CPTs can be stored using a sparse representation. Yet another optimization is

to split up a “fat” node with a large number of parents into nodes with smaller fan-
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Figure 4.2: Node splitting.

in degrees and thus reduce R. As shown in Figure 4.2, the reduction can be based

on the form of the differential equation associated with the variable. Given that

dES/dt = k1 · S · E − (k2 + k3) · ES, we introduce two internal nodes X and Y ,

where X corresponds to the positive term of dES/dt, namely, k1 · S · E and Y corre-

sponds to the negative term (k2 + k3) ·ES. As a result, R can be reduced from 6 to 3.

We note however, at present we consider this optimization only to reduce the sizes of

the CPTs and not to reduce the number of samples when using the equation sampling

method.

4.4 Discussion

In this chapter, we have described our probabilistic approximation scheme for pathway

dynamics specified as a systems of ODEs. For sure, the construction of the DBN

approximation will involve a significant computational effort but it is a one time cost

and significant optimizations can be deployed. Moreover, once the DBN approximation

has been constructed, many of the analysis tasks can be performed very efficiently and
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the one time cost of constructing the DBN approximation can be easily amortized. The

experimental results presented in Chapter 6 will support this claim.



Chapter 5

Analysis Methods

In this chapter we present some of the analysis techniques we have developed for

the DBN representation. These techniques are founded on a basic Bayesian infer-

ence method realized via the FF (Factored Frontier) algorithm (Murphy and Weiss,

2001). Specifically we develop parameter estimation and sensitivity analysis methods

for the DBN approximation. Our goal here is not to develop new algorithms to solve

these problems. Rather, we wish to demonstrate how standard techniques for tackling

these problems can be adapted to DBN approximation framework.

5.1 Probabilistic Inference

Given a Bayesian network, some observed evidence and some knowledge about the

distribution of values of a set of variables, Bayesian inference aims to compute posterior

distribution for a set of query variables. In our setting, the observed evidence will

consist of known initial conditions and parameters as well as experimental data. Query

variables will typically be selected random variables in the DBN approximation.

65
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Exact inference

As the state space of our DBN is discrete, exact inference is always theoretically possible

(Murphy, 2002). In this case, there will be no error induced by performing inference.

However, the exact inference often be computationally prohibitive. For instance, the

time and space complexity of the frontier algorithm (Zweig, 1996) -a standard exact

inference algorithm- is O(d̂(n+m)Kn+m+2) , where as before, d̂ is the number of time

slices of the DBN, n is the number of variables, m is the number of parameters and K

is the maximal number of intervals associated with a variable or rate constant’s value

domain. Hence for large pathway models, we must resort to approximate inference

methods.

Boyen-Koller algorithm

The Boyen-Koller (BK) algorithm (Boyen and Koller, 1998, 1999) is a standard algo-

rithm for approximate inference on DBN. It approximates the joint distribution over

the variables in one time slice (a belief state) as a product of marginals over clusters

of variables. For example: Pr(xd1, x
d
2, x

d
3) ≈ Pr(xd1, x

d
2)Pr(xd3). When we do infer-

ence using BK in our setting, starting with the approximated belief state of current

time slice Pr(xd1, x
d
2, . . . , x

d
n+m), we perform one step of exact Bayesian updating to get

Pr(xd+1
1 , xd+1

2 , . . . , xd+1
n+m), which will be then projected as a product of marginals over

clusters of variables.

A great advantage of the BK algorithm is that the error induced can be shown to

be bounded over time. The detailed proof can be found in Boyen and Koller (1998).

Intuitively, even though projection introduces an error at every time step, the stochastic

nature of the transitions and the informative nature of the observations, will reduce

the error sufficiently to stop it building up.
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Factored frontier algorithm

Unfortunately, for large pathway models, the one-step exact updating of BK algorithm

can still be intractable. Therefore, we adopt a more aggressive form of approximation

than BK, namely, the factored frontier (FF) algorithm (Murphy and Weiss, 2001).

The FF algorithm approximates, at each time point, joint distributions as products

of marginal distributions. For example: Pr(xd1, x
d
2, x

d
3) ≈ ∏3

i=1 Pr(x
d
i ). Hence the

posterior distribution will be computed according to:

Pr(xdi |D) =
∑
I

(Pr(xdi |Pa(xdi ) = I)
∏

u∈Pa(xdi )

Pr(u|D)). (5.1)

Here Pr(u|D) are the marginal distributions over the parents, D is the evidence regard-

ing initial conditions and experimental observations, and Pa(xi) denotes the parents of

xi. The implementation of FF is straightforward. By storing Pr(xdi |Pa(xdi )) in the con-

ditional probability tables and propagating Pr(u|D) to the next time point, we can use

(5.1) to compute Pr(xdi |D). The time complexity of this algorithm is O(d̂(n+m)KR+1),

where as before, K is the maximal number of intervals associated with a variable or

rate constant’s value domain and R is the maximal number of parents a node can have.

Except for the one-step exact updating, FF is very close to the fully factorized

BK that use one cluster per variable. Currently, there are no error analysis for FF.

However, experimentally comparisons results of exact, BK and FF show that the error

induced by FF is acceptable and close to the fully factorized BK (see Figure 5.1). Here

we define the total L1 error in the marginals for variable xi at time slice d as:

εdi =
∑
I

|Pr(xdi = I)− P̂ r(xdi = I)| (5.2)

where P̂ r(·) is the exact posterior and Pr(·) is the approximate posterior. The results

shown in Figure 5.1 indicate that the error induced by FF is close to fully factorized
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FF 

BK 

Figure 5.1: Comparison of exact, fully factorized BK and FF inference results of the
enzyme-kinetic system.

BK.

Using the FF algorithm, and with some additional computations, many queries can

be answered. For instance, given the initial conditions, a single run of FF algorithm

will infer the marginal distributions of each variable at every time point. These prob-

ability distributions can then be used to validate the model by comparing them with

experimental data. Flow cytometry data may provide direct information about the

probability distributions of species concentration in a cell population. For such data,

we may discretize it into distributions over intervals and supply it to the FF algorithm.

On the other hand, western blot data, which is more common, will provide the aver-

ages of species concentration in a cell population. Suppose we have the data for xi

at time d ·∆t, denoted as Dd·∆t
xi . Note the marginal distribution of xdi inferred by FF

algorithm is over discrete values Ii. To compute the real-valued “mean” of xdi that can

be compared with Dd·∆t
xi , we identify each interval I = [l, u) in I with its mid-point

(l+ u)/2. Then the expected value E(xdi ) can be computed and compared with Dd·∆t
xi .

The rationale of this approach is: (1) the western blot data Dd·∆t
xi can be assumed to

be the observations for the mean computed from the marginal probabilities induced by
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MCideal, denoted as Ê(xd·∆ti ); and (2) the E(xdi ) we use to compare with the data is

an approximation of Ê(xd·∆ti ) with bounded error. Here we estimate the error between

Ê(xd·∆ti ) and E(xdi ) and show it is bounded as follows:

Proposition 5.1. For any xi at each time point d ·∆t, we have

|E(xdi )− Ê(xi(d ·∆t)| ≤ rIi , where rIi = max
[uk,lk)∈Ii

{uk − lk
2
}. (5.3)

Proof. As discussed in Section 3.2, Φt is a bijective and continuous function. Further,

it can be proved that Φt is also differentiable (Hirsch et al., 2004). Given the prior

probability density function Υ0 we can define the probability density function Υt for

every t as:

Υt(z) := Υ0(Φ−1
t (z))

∣∣∣det
(
JΦ−1

t
(z)
)∣∣∣ (5.4)

where JΦ−1
t

denotes the Jacobian of the inverse of Φ. We then define a probability

density function gxi for each variable xi at time point t by marginalization:

gtxi(z) :=

∫
. . .

∫
Υt(z1, z2, . . . , zi−1, z, zi+1 . . . , zn+m)dz1dz2 . . . dzi−1dzi+1 . . . dzn+m

(5.5)

Similarly, we define a probability mass function mxi for each variable xi at time point

d ·∆t by marginalize Pr(s, d) in the MCideal induced by a discretization I:

md
xi(s) :=

∑
s1

∑
s2

. . .
∑
si−1

∑
si+1

. . .
∑
sn+m

Pr((s1, s2, . . . , si−1, s, si+1 . . . , sn+m), d) (5.6)

Thus, we have

md
xi(s) =

∫ u

l
gd·∆txi (z)dz, where s = [l, u) ∈ Ii. (5.7)

Let Ii = {I1 = [v0, v1), I2 = [v1, v2), . . . , IL = [vL−1, vL]}, we set ri = (vi − vi−1)/2
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and denote the maximal ri as rmax.

E(xdi ) =
∑
Ii

vi−1 + vi

2
·md

zi(s)

Ê(xi(d ·∆t)) =

∫ vL

v0

z · gd·∆txi (z)dz

=

∫ v1

v0

z · gd·∆txi (z)dz +

∫ v2

v1

z · gd·∆txi (z)dz + . . .+

∫ vL

vL−1

z · gd·∆txi (z)dz

≤
∫ v1

v0

v1 · gd·∆txi (z)dz +

∫ v2

v1

v2 · gd·∆txi (z)dz + . . .+

∫ vL

vL−1

vL · gd·∆txi (z)dz

= v1

∫ v1

v0

gd·∆txi (z)dz + v2

∫ v2

v1

gd·∆txi (z)dz + . . .+ vL
∫ vL

vL−1

gd·∆txi (z)dz

= v1md
xi(I1) + v2md

xi(I2) + . . .+ vLmd
xi(IL) =

∑
Ii

vimd
xi(Ii).

Similarly, we have Ê(xi(d ·∆t)) ≥
∑
Ii

vi−1md
xi(Ii).

Thus, |E(xdi )− Ê(xi(d ·∆t))| ≤
∑
Ii

ri ·md
xi(Ii) ≤ rmax.

5.2 Parameter Estimation

Lack of knowledge about the parameters and hence the need to perform parameter

estimation using limited data is a major bottleneck to pathway modeling. As reviewed

in Section 2.4, current approaches to parameter estimation formulate it as a non-linear

optimization problem (Banga, 2008). A typical procedure will involve searching in a

high dimensional solution space, in which each point represents a vector of parameter

values. Whether a point is good or not is measured by an objective function, which

will capture the difference between experimental data and prediction generated by

simulations using the corresponding parameters.

For a large pathway model, one often needs to evaluate a very large number of

solution points involving a numerical integration for each evaluation. This makes the

process computationally intensive. The DBN representation allows us search for good
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parameter values using a two-stage method. Due to the discretized nature of the DBN

approximation, the solution space is transformed into a rectilinear grid tessellated by

hyperrectangles that we call blocks. An important observation is that kinetic param-

eters are often robust (Gutenkunst et al., 2007). In other words, the points around a

good solution in the search space will also have relatively small objective values. Note

that searching in this discrete space with finite number of blocks is much simpler than

in the original continuous solution space. Thus, instead of searching point by point

in the solution space, we can first search for a few promising blocks and then take a

closer look within these small blocks. Guided by this intuition, the general scheme of

our “grid search” algorithm consists of two stages:

(1) identify good blocks,

(2) do local search within candidate blocks.

For executing Stage (1), we can apply any standard search algorithms over the

discretized search space. As this space is much smaller than the original one, simple

direct search algorithm such as Hooke & Jeeves’s search (Hooke and Jeeves, 1961)

can be adopted and the overall search process will only require a small number of

evaluations of the objective function.

A block dictates a combination of intervals of parameter values. In order to evaluate

the goodness of a block, we execute FF algorithm once by supplying the chosen parame-

ter values -in terms of intervals- as evidence. Then the objective value can be computed

by comparing the expected value of marginal distributions with the experimental data

as described in the previous subsection.

Stage (1) will return a maximum likelihood estimate of a combination of intervals

of parameter values. Through probabilistic inference techniques, it can be used to

carry out model analysis for fixed distribution of initial concentrations. Hence, in

principle, given the noisy and limited experimental data and the high dimensionality



CHAPTER 5. ANALYSIS METHODS 72

of the system, one could stop with Stage (1) and try to work an interval of values for

each parameter rather than a point value.

We note that Stage (2) is necessary only when we want to estimated the real values

of parameters and use the ODE model too for some analysis and simulations that

requires perturbing the initial concentrations and a finer granularity of parameters.

For instance, in the case studies presented in Chapter 6: in the first and the second

case study, we skip Stage (2), whereas in the third case study, we execute Stage (2)

and further estimate the real values for unknown parameters for conducting in silico

experiments such as varying initial concentrations.

For executing Stage (2), we treat the resulting combination of intervals of parameter

values from Stage (1) as the (drastically reduced) search space. For an m-dimensional

search space with K discretized intervals for each dimension, Stage (1) can reduce the

search space by a factor of 1/Km. For most parameter estimation methods, reducing

the solution space increases the chance of randomly picking good starting points which

in turn will lead to faster convergence. Hence the reduction of solution space we

achieved using the DBN approximation contributes in this way too in improving the

performance of the parameter estimation procedure.

Note that during the construction of the DBN approximation, if we do not have

any knowledge about the prior distributions of unknown parameters, we can assume

they are uniformly distributed within their ranges. Then after filling up all the entries

of the CPTs of the DBN, the FF algorithm will be able to evaluate the goodness of

any block in the discretized search space.

Example (Continued from the enzyme catalysis example presented in Chapter 4)

Assume that only k1 and k2 are unknown parameters and that k3 ∈ [0.2, 0.4). Assume

further that we have experimental data for S and P at time points {1, 2, 5, 10}. We

then construct a DBN approximation according to a prior distribution that the initial
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values z0 = (S,E,ES, P, k1, k2, k3) are uniformly distributed within the hypercube

[12, 15] × [8, 10] × [0, 2) × [0, 3) × [0, 1] × [0, 1] × [0.2, 0.4). Since |Ik1 | = |Ik2 | = 5, the

solution space [0, 1]×[0, 1] is discretized into 25 blocks. In phase(1), we try to search for

good blocks among the 25 blocks. Suppose we conduct a Hooke & Jeeves’s search and

evaluate blocks one by one. For instance, to evaluate block ([0.4, 0.6), [0.2, 0.4)), we set

Pr(k1 = [0.4, 0.6) = 1 and Pr(k2 = [0.2, 0, 4) = 1 (the distributions of S0, E0, ES0, P 0,

and k3 are the same as the prior distribution for constructing the DBN approximation)

and execute FF algorithm. If the inferred distribution of S10 is {Pr(S10 = [12, 15]) =

0.6, P r(S10 = [9, 12)) = 0.4}, we have E(S10) = (15−12)/2·0.6+(12−9)/2·0.4 = 12.3.

Then we can compute the weighted square root error between E(S10) and the available

data. After searching suppose we find that ([0.2, 0.4), [0.4, 0.6)) is the best block (i.e.

it has the minimal objective value), we then can either execute phase(2) by searching

within the solution space [0.2, 0.4) × [0.4, 0.6) or just return {k1 ∼ U(0.2, 0.4), k2 ∼

U(0.4, 0.6)} as a probabilistic estimate (U stand for uniform distribution).

5.3 Global Sensitivity Analysis

As discussed in Section 2.5.1, sensitivity analysis has been used to identify the critical

parameters in signal transduction (van Riel, 2006). To overcome the limitations of tra-

ditional local sensitivity analysis methods, global methods have been proposed recently

such as multi-parametric sensitivity analysis (MPSA) (Cho et al., 2003). The MPSA

procedure consists of:

(1) draw samples from parameter space and for each combination of parameters,

compute the weighted sum of squared error between experimental data and pre-

dictions generated by selected parameters;

(2) classify the sampled parameter sets into two classes (good and bad) using a

threshold error value;
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(3) plot the cumulative frequency of the parameter values associated with the two

classes;

(4) evaluate the sensitivities as the Kolmogorov-Smirnov statistic (Sheskin, 2004) of

cumulative frequency curves.

Signaling pathway models often contain a large number of parameters. Hence it is

necessary to sample a representative set from all possible combinations of parameter

values. To improve this process, (Zi et al., 2005) adopts Latin Hypercube Sampling

(LHS) since it requires fewer samples while guaranteeing that individual parameter

ranges are evenly covered. Briefly, the range of each parameter is divided into K

equal-sized intervals. Then for each parameter, one randomly sample K values, one

from each interval of the parameter. Then to generate combinations of parameter values

which is samples for MPSA, values are chosen in a random order from the K values

for each parameter. This method helps to computationally manage the large number

of parameters being varied simultaneously, while ensuring maximal sampling through

each parameter dimension (McKay et al., 2000). In our DBN setting, MPSA can be

performed in a similar manner using LHS since the parameter space is discretized into

blocks. In addition, the number of samples used to reach convergence is reduced since

we can quickly evaluate the goodness of the whole block using the FF algorithm instead

of having to draw samples from a block.



Chapter 6

Case Studies

The algorithms presented in previous chapters for constructing and analyzing DBN

approximations have been implemented in our software tool called PAthway Dynamics

Approximator (PADA). PADA is open-source and is freely available at our website1.

It is a Java program that supports the import of ODE-based pathway models in SBML

format. It can generate parallelized code, to be executed on computer clusters, for the

construction process of DBN approximations, as well as sequential code, to be executed

on a single CPU, for carrying out probabilistic inference, parameter estimation and

global sensitivity analysis.

In this chapter, we present three case studies which demonstrate the applicability of

our probabilistic approximation technique. The first case study (Section 6.1) involves

a signaling network built by Brown et al. (2004), which aims to study the influence

of the nerve growth factor (NGF) and the mitogenic epidermal growth factor (EGF)

in rat pheochromocytoma (PC12) cells. The second case study (Section 6.2) deals

with a signaling network studied by (Goldbeter and Pourquie, 2008) to investigate

a remarkable example of biological rhythms, namely, the segmentation clock. These

two case studies validate our techniques and demonstrate good performance. The

1http://www.comp.nus.edu.sg/~rpsysbio/pada

75
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results reported show that the constructed DBN approximations have high quality and

the efficiency of performing parameter estimation and global sensitivity analysis has

been improved. It is worth noting that, in the first case study, we also compare the

performance (Section 6.1.4) of different sampling techniques presented in Chapter 4,

as well as the accuracies of approximations constructed using different discretization

schemes (Section 6.1.4). Furthermore, we also identified critical parameters in signal

transduction of the two pathways via rapid global sensitivity analysis.

The evaluations of our DBN approximation approach in the first and the second

case studies were done using synthetic (training) data. We further demonstrate the

capability and effectiveness of this approach by the third study (Section 6.3), which is

an integrated computational and experimental study of the regulatory mechanisms of

the human complement system. In this study, we built and analyzed a “live” pathway

model for the complement system in collaboration with Prof Ding Jeak Ling’s group

in Department of Biological Science, National University of Singapore and clinicians

from National University Hospital (Liu et al., 2010). To overcome the computational

challenges resulting from the large model size, we applied our techniques to train the

model on in vivo experimental data and explored the key network features of the model.

The results show the capability of our approach to deal with a large bio-pathway

especially in the context of performing tasks such as parameter estimation and global

sensitivity analysis. More importantly, this study has resulted in some crucial insights

into the complement regulatory mechanisms and has the potential to contribute to the

development of complement-based immunomodulation therapies.

6.1 The EGF-NGF Signaling Pathway

PC12 cells are a valuable model system in neuroscience. They proliferate in response

to EGF stimulation but differentiate into sympathetic neurons in response to NGF.

This interesting phenomenon has been intensively studied (Kholodenko, 2007). It has
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Figure 6.1: The reaction network diagram of the EGF-NGF pathway (Brown et al.,
2004)

been reported that the signal specificity is correlated with different Erk dynamics.

Specifically, a transient activation of Erk1/2 has been associated with cell proliferation,

while a sustained activity has been linked to differentiation. How EGF and NGF affect

the dynamics of active Erk through a network of intermediate signaling proteins is

shown schematically in Figure 6.1.

This model includes a common pathway to Erk through Ras shared by both the

EGFR and NGFR, and also two important side branches through PI3K and C3G.

This introduces multiple feedback loops leading to sophisticated dynamics. The ODE

model of this pathway is available in the BioModels database (Le Novere et al., 2006).

It consists of 32 differential equations and 48 associated rate parameters (estimated

from multiple sets of experimental data).

6.1.1 Construction of the DBN approximation

To construct the DBN approximation, we first derived its graph from its ODEs (see

Table 6.1). We then discretized the ranges of each variable and parameter into 5
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equal-size intervals and fixed the time step ∆t to be 1 minute. These choices were

made mainly in order to proceed with the DBN construction smoothly but without

trivializing the effort. Further, the experimental data (western blot) is such that 5

uniform intervals seemed a reasonable choice. However our construction can be easily

extended to non-uniform values intervals and time points. To fill up the conditional

probability tables associated with the nodes, 3× 106 trajectories were generated up to

100 mins by sampling initial states and parameters from the prior which are assumed

to be uniform distributions over certain intervals (Table 6.2 and Table 6.3). Since we

planned to study the effectiveness of our DBN based parameter estimation method

(Section 5.2), we singled out 20 of the 48 parameters to be unknown (marked with *

in Table 6.3) . When generating the 3 × 106 initial states, the sampled initial values

of these parameters were chosen from their full range of possible values and not biased

towards any specific intervals.

These samples were generated using the direct sampling method. We recall that

in this method, the initial values of those trajectories are according to prior distri-

bution (except for the parameters designated to be “unknown” as described above).

Specifically, we randomly pick a value for each variable/parameter according to their

marginal prior and then form a vector of initial values. The computational workload

was distributed on 10 Opteron 2.2GHz processors in a cluster. It took around 4 hours

to construct the DBN approximation. All the subsequent experiments reported below

were done using an Intel Xeon 2.8GHz processor.

6.1.2 Probabilistic inference

To test the quality of our approximation, we implemented Monte Carlo integration

for the ODE model to get good estimates by sampling and averaging. Specifically,

we numerically generated a number of random trajectories -according to the prior-

using ODEs and computed the average values of the variables at the chosen time
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Name Variable Parents

EGF x1 k1, x1, x3, k2, x4

NGF x2 k3, x2, x5, k4, x6

free EGF Recepter x3 k1, x1, x3, k2, x4

bound EGF Recepter x4 k1, x1, x3, k2, x4

free NGF Recepter x5 k3, x2, x5, k4, x6

bound NGF Recepter x6 k3, x2, x5, k4, x6

inactive Sos x7 k9, x10, x8, x8, k10, k5, x4, x7, x7, k6, k7, x6, x7, x7, k8

active Sos x8 k9, x10, x8, x8, k10, k5, x4, x7, x7, k6, k7, x6, x7, x7, k8

inactive P90Rsk x9 k27, x21, x9, x9, k28

active P90Rsk x10 k27, x21, x9, x9, k28

inactive Ras x11 k11, x11, x11, k12, k13, x13, x12, x12, k14

active Ras x12 k11, x11, x11, k12, k13, x13, x12, x12, k14

active RasGap x13 x13

inactive Raf x14 k15, x12, x14, x14, k16, k45, x32, x15, x15, k46, k35, x25, x15, x15, k36

active Raf x15 k15, x12, x14, x14, k16, k45, x32, x15, x15, k46, k35, x25, x15, x15, k36

inactive B-Raf x16 k43, x29, x16, x16, k44, k47, x32, x17, x17, k20

active B-Raf x17 k43, x29, x16, x16, k44, k47, x32, x17, x17, k20

inactive Mek x18 k17, x15, x18, x18, k18, k19, x17, x18, x18, k48, k21, x31, x19, x19, k22

active Mek x19 k17, x15, x18, x18, k18, k19, x17, x18, x18, k48, k21, x31, x19, x19, k22

inactive Erk x20 k23, x19, x20, x20, k24, k25, x31, x21, x21, k26

active Erk x21 k23, x19, x20, x20, k24, k25, x31, x21, x21, k26

inactive PI3K x22 k29, x4, x22, x22, k30, k31, x12, x22, x22, k32

active PI3K x23 k29, x4, x22, x22, k30, k31, x12, x22, x22, k32

inactive Akt x24 k33, x23, x24, x24, k34

active Akt x25 k33, x23, x24, x24, k34

inactive C3G x26 k37, x6, x26, x26, k38

active C3G x27 k37, x6, x26, x26, k38

inactive Rap1 x28 k39, x27, x28, x28, k40, k41, x30, x29, x29, k42

active Rap1 x29 k39, x27, x28, x28, k40, k41, x30, x29, x29, k42

active RapGap x30 x30

active PP2A x31 x31

active RafPP x32 x32

Table 6.1: The DBN structure of the EGF-NGF signaling pathway model
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Probability distribution

x1 ∼ U(8801760.0, 1.10022× 107)
x2 ∼ U(401280.0, 501600.0)
x3 ∼ U(70400.0, 88000.0)
x4 ∼ U(0.0, 17600.0)
x5 ∼ U(8800.0, 11000.0)
x6 ∼ U(0.0, 2200.0)
x7 ∼ U(105600.0, 132000.0)
x8 ∼ U(0.0, 26400.0)
x9 ∼ U(105600.0, 132000.0)
x10 ∼ U(0.0, 26400.0)
x11 ∼ U(105600.0, 132000.0)
x12 ∼ U(0.0, 26400.0)
x13 ∼ U(105600.0, 132000.0)
x14 ∼ U(105600.0, 132000.0)
x15 ∼ U(0.0, 26400.0)
x16 ∼ U(105600.0, 132000.0)
x17 ∼ U(0.0, 26400.0)
x18 ∼ U(528000.0, 660000.0)
x19 ∼ U(0.0, 132000.0)
x20 ∼ U(528000.0, 660000.0)
x21 ∼ U(0.0, 132000.0)
x22 ∼ U(105600.0, 132000.0)
x23 ∼ U(0.0, 26400.0)
x24 ∼ U(105600.0, 132000.0)
x25 ∼ U(0.0, 26400.0)
x26 ∼ U(105600.0, 132000.0)
x27 ∼ U(0.0, 26400.0)
x28 ∼ U(105600.0, 132000.0)
x29 ∼ U(0.0, 26400.0)
x30 ∼ U(105600.0, 132000.0)
x31 ∼ U(105600.0, 132000.0)
x32 ∼ U(105600.0, 132000.0)

Table 6.2: Prior (initial) probability distribution of variables
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Parameter Range Nominal probability distribution

k1* [0, 4.37006 × 10−5] k1 ∼ U(1.748024 × 10−5, 2.622036 × 10−5)
k2* [0, 0.0242016] k2 ∼ U(0.00968064, 0.01452096)
k3* [0, 2.76418 × 10−7] k3 ∼ U(1.105672 × 10−7, 1.658508 × 10−7)
k4* [0, 0.01447622] k4 ∼ U(0.005790488, 0.008685732)
k5 [0, 1389.462] k5 ∼ U(555.7848, 833.6772)
k6 [0, 1.217214 × 107] k6 ∼ U(4868856.0, 7303284.0)
k7 [0, 778.856] k7 ∼ U(311.5424, 467.3136)
k8 [0, 4225.32] k8 ∼ U(1690.128, 2535.192)
k9 [0, 3223.94] k9 ∼ U(1289.576, 1934.364)
k10 [0, 1793792.0] k10 ∼ U(717516.8, 1076275.2)
k11* [0, 64.688] k11 ∼ U(25.8752, 38.8128)
k12* [0, 71908.6] k12 ∼ U(28763.44, 43145.16)
k13 [0, 3018.72] k13 ∼ U(1207.488, 1811.232)
k14 [0, 2864820.0] k14 ∼ U(1145928.0, 1718892.0)
k15* [0, 1.768192] k15 ∼ U(0.7072768, 1.0609152)
k16 [0, 124929.2] k16 ∼ U(49971.68, 74957.52)
k17* [0, 371.518] k17 ∼ U(148.6072, 222.9108)
k18 [0, 9536700.0] k18 ∼ U(3814680.0, 5722020.0)
k19 [0, 250.178] k19 ∼ U(100.0712, 150.1068)
k20 [0, 315896.0] k20 ∼ U(126358.4, 189537.6)
k21 [0, 5.66486] k21 ∼ U(2.265944, 3.398916)
k22 [0, 1037506.0] k22 ∼ U(415002.4, 622503.6)
k23* [0, 19.70734] k23 ∼ U(7.882936, 11.824404)
k24 [0, 2014680.0] k24 ∼ U(805872.0, 1208808.0)
k25 [0, 17.7824] k25 ∼ U(7.11296, 10.66944)
k26 [0, 6992980.0] k26 ∼ U(2797192.0, 4195788.0)
k27* [0, 0.0427394] k27 ∼ U(0.01709576, 0.02564364)
k28* [0, 1527046.0] k28 ∼ U(610818.4, 916227.6)
k29* [0, 21.3474] k29 ∼ U(8.53896, 12.80844)
k30 [0, 369824.0] k30 ∼ U(147929.6, 221894.4)
k31 [0, 0.1542134] k31 ∼ U(0.06168536, 0.09252804)
k32 [0, 544112.0] k32 ∼ U(217644.8, 326467.2)
k33* [0, 0.1132558] k33 ∼ U(0.04530232, 0.06795348)
k34* [0, 1307902.0] k34 ∼ U(523160.8, 784741.2)
k35 [0, 30.2424] k35 ∼ U(12.09696, 18.14544)
k36 [0, 238710.0] k36 ∼ U(95484.0, 143226.0)
k37* [0, 293.824] k37 ∼ U(117.5296, 176.2944)
k38* [0, 25752.4] k38 ∼ U(10300.96, 15451.44)
k39* [0, 2.8029] k39 ∼ U(1.12116, 1.68174)
k40 [0, 21931.2] k40 ∼ U(8772.48, 13158.72)
k41* [0, 54.53] k41 ∼ U(21.812, 32.718)
k42 [0, 591980.0] k42 ∼ U(236792.0, 355188.0)
k43* [0, 4.4199] k43 ∼ U(1.76796, 2.65194)
k44* [0, 2050920.0] k44 ∼ U(820368.0, 1230552.0)
k45 [0, 0.252658] k45 ∼ U(0.1010632, 0.1515948)
k46 [0, 2123.42] k46 ∼ U(849.368, 1274.052)
k47 [0, 882.574] k47 ∼ U(353.0296, 529.5444)
k48 [0, 2.1759 × 107] k48 ∼ U(8703600.0, 1.30554 × 107)

Table 6.3: The range and nominal probability distributions of parameters. For un-
known parameters (marked with *), we assume the their prior are uniform distributions
over their ranges.
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Figure 6.2: Simulation results of the EGF-NGF signaling pathway. Solid lines represent
nominal profiles and dash lines represent DBN simulation profiles.

points. Our experiments show that the average values converge when the number

of random trajectories generated is roughly 104. The averaged trajectories projected

to individual protein concentration time series values are termed to be the nominal

simulation profiles.

Using the implemented FF algorithm the mean of each variable over time was

computed. In doing so, for the 20 parameters which were assumed to be unknown

during the DBN construction process, their values were presented as specific intervals

(derived from the original ODE model) in the form of evidence.

The time profiles resulting from the execution of the FF algorithm are termed to

be the DBN-simulation profiles. As summarized in Figure 6.2, our DBN-simulation

profiles fit the nominal simulation profiles quite well for most of the cases.

In terms of running time, a single execution of FF inference required 0.08 seconds

while generating a stable nominal profile requires 105.4 seconds. Thus, the total com-

putation time will be sharply reduced for our approach when many such “queries” need

to be answered.
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6.1.3 Parameter estimation

In order to test the performance of the DBN-based parameter estimation method, we

synthesized experimental time series data for 9 (out of 32) proteins {bounded EGFR,

bounded NGFR, active Sos, active C3G, active Akt, active p90RSK, active Erk, active

Mek, active PI3K}, measured at the time points {2, 5, 10, 20, 30, 40, 50, 60, 80, 100}

(min). This data was synthesized using prior knowledge about initial conditions and

parameters (see Table 6.2 and Table 6.3). To mimic western blot data which is cell

population based, we first averaged 104 random trajectories generated by sampling

initial states and rate constants, and then added observation noise with variance 5%

to the simulated values. With the assumed measurement precision, those values were

discretized into 5 intervals, which represent the concentration levels in western blot

data. We reserved the data of 7 proteins for training the parameters and reserved the

rest data for testing the quality of the estimated parameter values.

With 20 of the 48 parameters having been designated during the DBN construction

as being unknown, the Hooke & Jeeves algorithm was implemented to search in the

discretized parameter space. The estimated parameter values in terms of maximal

likelihoods of certain combination of interval values (of the 20 unknown parameters) can

be found in Table 6.4. As shown in Figure 6.3, the DBN-simulation profiles generated

using the estimated parameters matches the training data as shown and also has good

agreement with the test data.

We compared the efficiency and quality of our results with the following ODE-

based optimization algorithms: Levenberg-Marquardt (LM) (Levenberg, 2), Genetic

Algorithm (GA) (Back et al., 1997), Stochastic Ranking Evolutionary Strategy (SRES)

(Runarsson and Yao, 2000), and Particle Swarm Optimization (PSO) (Kennedy and

Eberhart, 1995). These optimization algorithms were executed using the COPASI

(Hoops et al., 2006a) tool. We scored the resulting parameters obtained from all the

algorithms using the weighted sum-of-squares difference between the experimental data
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Parameter Range Posterior probability distribution

k1* [0, 4.37006× 10−5] k1 ∼ U(2.62204E × 10−5, 3.49605× 10−5)
k2* [0, 0.0242016] k2 ∼ U(0.01452096, 0.01936128)
k3* [0, 2.76418× 10−7] k3 ∼ U(1.65851× 10−7, 2.21134× 10−7)
k4* [0, 0.01447622] k4 ∼ U(0.011580976, 0.01447622)
k11* [0, 64.688] k11 ∼ U(38.8128, 51.7504)
k12* [0, 71908.6] k12 ∼ U(28763.44, 43145.16)
k15* [0, 1.768192] k15 ∼ U(1.4145536, 1.7681922)
k17* [0, 371.518] k17 ∼ U(74.3036, 148.6072)
k23* [0, 19.70734] k23 ∼ U(7.882936, 11.824404)
k27* [0, 0.0427394] k27 ∼ U(0, 0.00854788)
k28* [0, 1527046] k28 ∼ U(0, 305409.2)
k29* [0, 21.3474] k29 ∼ U(0, 4.26948)
k33* [0, 0.1132558] k33 ∼ U(0.06795348, 0.09060464)
k34* [0, 1307902] k34 ∼ U(784741.2, 1046321.6)
k37* [0, 293.824] k37 ∼ U(117.5296, 176.2944)
k38* [0, 25752.4] k38 ∼ U(20601.92, 25752.4)
k39* [0, 2.8029] k39 ∼ U(2.24232, 2.8029)
k41* [0, 54.53] k41 ∼ U(43.624, 54.53)
k43* [0, 4.4199] k43 ∼ U(3.53592, 4.4199)
k44* [0, 2050920] k44 ∼ U(1230552, 1640736)

Table 6.4: Parameter estimation results. The posterior distributions of unknown pa-
rameters inferred by our method.

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0

2 . 6 0 x 1 0 4

5 . 2 0 x 1 0 4

7 . 8 0 x 1 0 4

1 . 0 4 x 1 0 5

1 . 3 0 x 1 0 5

 

 

 

P I 3 K *

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0 0

1 . 3 2 0 x 1 0 5

2 . 6 4 0 x 1 0 5

3 . 9 6 0 x 1 0 5

5 . 2 8 0 x 1 0 5

6 . 6 0 0 x 1 0 5

 

 

 

M e k *

( b )

0 2 0 4 0 6 0 8 0 1 0 0

2 . 6 0 x 1 0 4

5 . 2 0 x 1 0 4

7 . 8 0 x 1 0 4

1 . 0 4 x 1 0 5

1 . 3 0 x 1 0 5

 

 

 

A K T *

( a )

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0

2 . 4 0 x 1 0 3

4 . 8 0 x 1 0 3

7 . 2 0 x 1 0 3

9 . 6 0 x 1 0 3

1 . 2 0 x 1 0 4

 

 

 

b N G F R

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0

2 . 6 0 x 1 0 4

5 . 2 0 x 1 0 4

7 . 8 0 x 1 0 4

1 . 0 4 x 1 0 5

1 . 3 0 x 1 0 5

 

 

 

C 3 G *

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0

2 . 6 0 x 1 0 4

5 . 2 0 x 1 0 4

7 . 8 0 x 1 0 4

1 . 0 4 x 1 0 5

1 . 3 0 x 1 0 5

 

 

 

S o s *

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0

2 . 6 0 x 1 0 4

5 . 2 0 x 1 0 4

7 . 8 0 x 1 0 4

1 . 0 4 x 1 0 5

1 . 3 0 x 1 0 5

 

 

 

p 9 0 R S K *

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0 0

1 . 3 2 0 x 1 0 5

2 . 6 4 0 x 1 0 5

3 . 9 6 0 x 1 0 5

5 . 2 8 0 x 1 0 5

6 . 6 0 0 x 1 0 5

 

 

 

E r k *

Figure 6.3: Parameter estimation results. (a) DBN-simulation profiles vs. training
data. (b) DBN-simulation profiles vs. test data.
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Figure 6.4: Performance comparison of our parameter estimation method (BDM) and
four other methods.

and the corresponding simulation profiles (i.e. low scores correspond to low errors).

The results are summarized in Figure 6.4, which suggests that our method achieves

a good balance between accuracy and performance. We also note that the cost of

constructing the DBN representation gets rapidly amortized.

6.1.4 Global sensitivity analysis

We modified and implemented the MPSA method for the DBN approximation setting.

Using the same experimental data set introduced in previous subsection, the global

sensitivities (K-S statistics) of the rate constants were computed. The results are

shown in Figure 6.5. The cumulative frequency distributions for the acceptable and

unacceptable cases can be found in Figure 6.6. Specifically, the reactions involved in

the phosphorylation of Erk (k23), Mek (k17), Akt (k34) and p90RSK (k28) have the

highest sensitivities, indicating that these reactions affect the system behavior most

directly. These results are consistent with previous findings (Kholodenko, 2007; Babu

et al., 2004).
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The MPSA method adopts Monte Carlo strategy for the ODE model. We recorded

the running time of the algorithm till the K-S values converged. The total running time

of the ODE-based MPSA method was about 22 hours, while the MPSA method based

on the DBN approximation required only 34 minutes. Thus the cost of constructing the

DBN approximation can be easily recovered when one performs parameter estimation

followed by sensitivity analysis.
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Figure 6.5: Parameter sensitivities
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Figure 6.6: Cumulative frequency distributions of the MPSA with respect to the un-
known parameters. Solid line denotes the acceptable samples and the dashed line
indicates the unacceptable samples. The sensitivity of a parameter is defined as the
maximum vertical difference between its two curves (K-S statistic) for the parameter.
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Figure 6.7: The effects of different discretizations. Solid black lines represent nominal
profiles, dash-dotted purple lines present BDM profiles with K = 8, dashed blue lines
present BDM profiles with K = 5, dotted cyan lines present BDM profiles with K = 3.
(b) Accuracy and efficiency comparison of different discretizations.
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Figure 6.8: Accuracy and efficiency comparison of different discretizations.

To evaluate the effects of different discretizations, we constructed DBN approxi-

mations for the EGF-NGF pathway by fixing K intervals for each variable, with K

ranging over {3, 4, 5, 6, 7, 8}. We then computed the mean of each variable over time

using FF algorithm for each DBN approximation. The resulting profiles were compared

with the nominal profiles. The comparison results are shown in Figure 6.7 . As might

be expected, as K increases, the quality of our approximations will improve. However,

since the time and space complexity of DBN based analysis depends on K, there is
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Figure 6.9: The comparison of two sampling methods. Solid lines represent direct
sampling with 3 millions samples and dash lines present J-coverage sampling with
J = 1000.

a tradeoff between efficiency and accuracy. To help decide on a good value of K, we

scored the discretizations with different Ks using the weight sum-of-square difference

between nominal profiles and DBN profiles, and measured the running time of a single

FF inference. The results are summarized in Figure 6.8 showing that discretizations

with 5 or 6 intervals might be good choices, at least in the present context.

Equation sampling

We also implemented the equation sampling method described in section 4 that pro-

vides a coverage of J samples for each possible combination of interval values of the

unknown parameters in each equation. Using this method, we generated 495, 000 tra-

jectories to get a coverage of 1000 per combination. Figure 6.9 shows the comparison

of time profiles generated the using two sampling methods. The two set of profiles are

nearly indistinguishable, suggesting that the equation sampling can efficiently reduce

the number of samples required. This also motivated us to conduct our next case study

using this method.
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Figure 6.10: Segmentation clock pathway (Goldbeter and Pourquie, 2008)

6.2 The Segmentation Clock Network

In the developing vertebrate embryos, the segmental pattern of the spine is established

when the somites are rhythmically produced. The periodic formation process of somites

is governed by an oscillator called the segmentation clock, which drives the oscillatory

expression of a large network of signaling genes (Dequeant et al., 2006). The underlying

signaling network proposed by Goldbeter and Pourquie (2008) is shown in Figure 6.10.

It couples three oscillating pathways consisting of the FGF, Wnt and Notch signaling

pathways, whose periodic behaviors are produced by negative feedback loops. The

corresponding ODE model can be accessed in the BioModels database (Le Novere et al.,

2006). It includes 21 differential equations and 75 associated rate parameters. Again,

anticipating our goal of evaluating the DBN based parameter estimation method, 39 of

the 75 parameter values were singled out to be unknown. The rest of the experiments

were conducted as described in our first case study.

6.2.1 Construction of the DBN approximation

We first constructed a DBN for the segmentation clock model. The graph of DBN is

shown in Table 6.5. Similar to the previous case study, we discretized the ranges of

each variable and parameter into 5 equal-size intervals and fixed the time step ∆t to
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be 5 minutes. To provide an equation of coverage of 1000 per combination, 2, 585, 000

trajectories were generated up to 500 mins by sampling the prior (Table 6.6 and Table

6.7). It is worth noting that even though equation sampling was used, a much larger

sample size (in relation to the first case study in the context of equation sampling) is

required due to the larger number of parameters and “fatness” (i.e. the number of pa-

rameters appearing on the right hand side) of the equations involved. The construction

process consumed around 3.1 hours on a cluster consisted of 10 processors.

Name Variable Parents
Notch protien x1 x1, x5, k1, k2, k3,
cytosolic NicD x2 x1, x2, x3, x5, k4, k5,
nuclear NicD x3 x2, x3, k4, k5, k6, k7,
Lunatic fringe mRNA x4 x3, x4, x21, k8, k11,
Lunatic Fringe protien x5 x4, x5, k12, k13, k14,
phosph. beta-catenin x6 x6, x10, x20, k15,
nuclear beta-catenin x7 x7, x10, k22, k23,
Axin2 protien x8 x8, x9, x11, x20, k19, k20,
Gsk3 x9 x8, x9, x20,
beta-catenin x10 x6, x7, x10, x20, k22, k23,
Axin2 mRNA x11 x7, x11, x14, k16, k17, k18,
active Ras x12 x12, x17, k28, k29, k35, k36,
active ERK x13 x12, x13, x16, x18, k27, k37,
active TF X x14 x13, x14, x19, k38, k39,
Dusp6 mRNA x15 x14, x15, k31, k32, k33, k34,
Dusp6 protien x16 x15, x16, k24, k25, k26,
inactive Ras x17 x12,
inactive ERK x18 x13,
inactive TF X x19 x14,
Axin2/Gsk3 destruction complex x20 x9,
vsFK x21 x9, k9, k10,

Table 6.5: The DBN structure of the segmentation clock pathway model. (Known
parameters are not shown in the parent sets)

6.2.2 Probabilistic inference

To generate stable nominal profiles, we averaged 104 trajectories according to the prior.

The nominal profiles were then compared with the DBN-simulation profiles computed

from the FF inference results. The comparison results are shown in Figure 6.11, which
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Probability distribution

x1 ∼ U(0.16, 0.2)
x2 ∼ U(0.0, 0.4)
x3 ∼ U(0.0, 0.02)
x4 ∼ U(0.0, 0.8)
x5 ∼ U(0.0, 0.8)
x6 ∼ U(0.08, 0.1)
x7 ∼ U(0.0, 0.2)
x8 ∼ U(0.0, 0.2)
x9 ∼ U(2.56, 3.2)
x10 ∼ U(0.0, 0.4)
x11 ∼ U(0.0, 3.2)
x12 ∼ U(0.44, 0.88)
x13 ∼ U(0.0, 0.44)
x14 ∼ U(0.0, 0.44)
x15 ∼ U(0.0, 1.4)
x16 ∼ U(0.0, 2.4)
x17 ∼ U(0.0, 0.4)
x18 ∼ U(0.0, 0.4)
x19 ∼ U(0.0, 0.4)
x20 ∼ U(0.0, 0.6)
x21 ∼ U(0.0, 0.6)

Table 6.6: Prior (initial) probability distribution of variables
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Parameter Range Nominal probability distribution

k1* [1.26, 1.54] k1 ∼ U(1.372, 1.428)
k2* [0.207, 0.253] k2 ∼ U(0.2254, 0.2346)
k3* [2.538, 3.102] k3 ∼ U(2.7636, 2.8764)
k4* [0.09, 0.11] k4 ∼ U(0.098, 0.102)
k5* [0.09, 0.11] k5 ∼ U(0.098, 0.102)
k6* [0.0009, 0.0011] k6 ∼ U(0.00098, 0.00102)
k7* [0.09, 0.11] k7 ∼ U(0.098, 0.102)
k8* [0.6912, 0.8448] k8 ∼ U(0.75264, 0.78336)
k9* [2.25, 2.75] k9 ∼ U(2.45, 2.55)
k10* [2.7, 3.3] k10 ∼ U(2.94, 3.06)
k11* [1.728, 2.112] k11 ∼ U(1.8816, 1.9584)
k12* [0.333, 0.407] k12 ∼ U(0.3626, 0.3774)
k13* [0.351, 0.429] k13 ∼ U(0.3822, 0.3978)
k14* [0.27, 0.33] k14 ∼ U(0.294, 0.306)
k15* [6.3558, 7.7682] k15 ∼ U(6.92076, 7.20324)
k16* [1.476, 1.804] k16 ∼ U(1.6072, 1.6728)
k17* [0.63, 0.77] k17 ∼ U(0.686, 0.714)
k18* [0.45, 0.55] k18 ∼ U(0.49, 0.51)
k19* [0.018, 0.022] k19 ∼ U(0.0196, 0.0204)
k20* [0.54, 0.66] k20 ∼ U(0.588, 0.612)
k21* [0.567, 0.693] k21 ∼ U(0.6174, 0.6426)
k22* [0.63, 0.77] k22 ∼ U(0.686, 0.714)
k23* [1.35, 1.65] k23 ∼ U(1.47, 1.53)
k24* [0.45, 0.55] k24 ∼ U(0.49, 0.51)
k25* [1.8, 2.2] k25 ∼ U(1.96, 2.04)
k26* [0.45, 0.55] k26 ∼ U(0.49, 0.51)
k27* [1.215, 1.485] k27 ∼ U(1.323, 1.377)
k28* [0.45, 0.55] k28 ∼ U(0.49, 0.51)
k29* [0.0927, 0.1133] k29 ∼ U(0.10094, 0.10506)
k30* [0.09, 0.11] k30 ∼ U(0.098, 0.102)
k31* [0.45, 0.55] k31 ∼ U(0.49, 0.51)
k32* [0.45, 0.55] k32 ∼ U(0.49, 0.51)
k33* [0.81, 0.99] k33 ∼ U(0.882, 0.918)
k34* [0.45, 0.55] k34 ∼ U(0.49, 0.51)
k35* [4.4712, 5.4648] k35 ∼ U(4.86864, 5.06736)
k36* [0.369, 0.451] k36 ∼ U(0.4018, 0.4182)
k37* [2.97, 3.63] k37 ∼ U(3.234, 3.366)
k38* [1.44, 1.76] k38 ∼ U(1.568, 1.632)
k39* [0.45, 0.55] k39 ∼ U(0.49, 0.51)

Table 6.7: The range and nominal probability distributions of unknown parameters.
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Figure 6.11: Simulation results of segmentation clock pathway. Solid lines represent
nominal profiles and dash lines represent DBN-simulation profiles.

shows a good fit between them. In terms of running time, a single execution of FF

inference required 0.01 seconds while generating a stable nominal profile took 407.3

seconds.

6.2.3 Parameter estimation

We next tested the performance of the DBN-based parameter estimation method. We

synthesized population based experimental time series data for 8 (out of 22) proteins

{Notch protein, nuclear NicD, Lunatic fringe mRNA, Axin2 mRNA, active ERK, Dusp6

mRNA, Dusp6 protein, cytosolic NicD}, measured at the time points {400, 410, 420,

430, 440, 450, 460, 470, 480, 490} (min) based on the prior knowledge about initial

conditions and parameters (see Tables 6.6 and Table 6.7). We averaged 104 random

trajectories generated by sampling initial states and rate constants, and then added

observation noise with variance 5% to the simulated values. The data of 6 proteins

were reserved for training the parameters and the rest data were used for testing the

quality of the estimated parameter values.

For the 40 parameters which had been designated to be unknown, the DBN based

implementation of Hooke & Jeeves algorithm was applied. The results can be found in
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Table 6.7. As shown in Figure 6.12 (a) and (b), the DBN-simulation profiles generated

using the estimated parameters obtained (with the match to training data as shown)

has good agreement with the test data.

We then compared the efficiency and quality of our results with the ODE-based opti-

mization algorithms: LM, GA, SRES, and PSO introduced in previous case study. The

results are summarized in Figure 6.12 (c) suggesting again that our method achieves a

good balance between accuracy and performance and the cost of constructing the DBN

representation gets rapidly amortized.
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Figure 6.12: Parameter estimation results. (a) DBN-simulation profiles vs. training
data. (b) DBN-simulation profiles vs. test data. (c) Performance comparison of our
parameter estimation method (BDM) and 4 other methods.

6.2.4 Global sensitivity analysis

The global sensitivities of the parameters were computed using DBN based MPSA

method and are shown in Figure 6.13. Specifically, the reactions involved in the degra-

dation of Dusp6 mRNA (k34), the transcription of Dusp6 gene induced by TF X (k33)

and the transcription of the Axin2 gene induced by factor TF X (k18) have the highest

sensitivities, indicating that these reactions affect the system behavior most directly.

Since all these reactions are present in the FGF pathway, we hypothesize that FGF

pathway is the key regulatory mechanism that drives and synchronizes the oscillatory
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gene expression of segmentation clock.

The total running time of the ODE-based MPSA method was about 81.25 hours,

while the MPSA method based on the DBN required only 3.25 hours.
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Figure 6.13: Parameter sensitivities

6.3 The Complement System

The complement system is pivotal to defending against invading microorganisms. The

complement proteins recognize conserved pathogen-associated molecular patterns (PAMPs)

on the surface of the invading pathogens (Walport, 2001a) to initiate the innate im-

munity response. The complement proteins in the blood normally circulate as inactive

zymogens. Upon stimulation, proteases in the system cleave the zymogens to release

active fragments and initiate an amplifying cascade of further cleavages. The comple-

ment system constitutes over 30 proteins including serum proteins and cell membrane

receptors. There are three major complement activation routes: the classical, the lectin

and the alternative pathways (Walport, 2001b). Regardless of how these pathways are

initiated, the complement activity leads to proteolytic activation and deposition of the

major complement proteins C4 and C3, which induces phagocytosis, and the subsequent

assembly of the membrane attack complex which lyses the invading microbes. In the
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process, potent chemoattractant anaphylatoxins are released. However, complement is

a double-edged sword; adequate complement activation is necessary for killing the bac-

teria and removing the apoptotic cells, while excessive complement activation can harm

the host by generating inflammation and exacerbating tissue injury. Dysregulation of

the balance between complement activation and inhibition can lead to rheumatoid

arthritis (Okroj et al., 2007), systemic lupus erythematosus (Truedsson et al., 2007),

Alzheimer’s disease (Veerhuis et al., 2005) and age-related macular degeneration (An-

derson et al., 2010). Since the final outcome of complement related diseases may be

attributable to the imbalance between activation and inhibition, which is induced by in-

appropriate initiation of the cascade or deficiencies in specific regulators (Sjoberg et al.,

2009), manipulation of this balance using drugs represents an interesting therapeutic

opportunity awaiting further investigation. In light of this potential, complement in-

hibitors such as factor H and C4b-binding protein (C4BP) are critical since they play

important roles in tightly controlling the proteolytic cascade of complement and avoid-

ing excessive activation. Therefore, a systems-level understanding of the complement

activation and inhibition, as well as the roles of complement inhibitors, will contribute

towards the development of complement-based immunomodulation therapies.

As the frontline of host defense, complement is usually initiated by the interaction of

several pattern-recognition receptors with the surface of pathogens. C-reactive protein

(CRP), which is an acute phase reactant (Mold et al., 1981) and ficolins are two initia-

tors of the classical and lectin pathways, which boost immune responses by recognizing

phosphorylcholine (PC) or N-acetylglucosamine (GlcNAc), respectively, displayed on

the surface of invading bacteria (Marnell et al., 2005; Fujita et al., 2004; Ng et al.,

2007). Recently, it was discovered that under local infection-inflammation conditions

as reflected by pH and calcium levels, the conformations of CRP and L-ficolin change

which leads to a strong interaction between them (Zhang et al., 2009). This interaction

triggers crosstalk between classical and lectin pathways and induces new amplification
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mechanisms, which in turn reinforces the overall antibacterial activity and bacterial

clearance.

On the other hand, C4BP, a major complement inhibitor, is a large glycoprotein

synthesized and secreted by the liver. The estimated plasma concentration of C4BP

is 260 nM under normal physiological condition (Griffin et al., 1992). However, as

an acute phase reactant, its plasma level can be elevated up to four-fold during in-

flammation (Barnum and Dahlback, 1990; Boerger et al., 1987). Through its α-chain

(Blom et al., 2001, 1999), C4BP modulates complement pathways by controlling C4b-

mediated reactions in multiple ways: First, C4BP acts as a cofactor to factor I, in the

proteolytic inactivation of C4b, which prevents the formation and reconstitution of the

classical C3-convertase (C4bC2a) (Scharfstein et al., 1978). Second, C4BP prevents

the assembly of the classical C3 convertase by binding to nascent C4b, and accelerates

the natural decay of the C4bC2a complex (Gigli, 1979). Third, C4BP can compete

with C1q for the immobilized CRP (Sjoberg et al., 2006). Further, C4BP has been

proposed as a therapeutic agent for complement-related autoimmune diseases on the

premise that mice models supplemented with human C4BP showed attenuation in the

progression of arthritis (Blom et al., 2009). Therefore, it is important to understand

the systemic effect and the underlying inhibitory mechanism of C4BP.

With this background, we carried out a combined computational and experimental

study and obtained the following results.

6.3.1 Construction of the ODE model

A schematic representation of the complement system is shown in Figure 6.14. The re-

action network diagram of our model is shown in Figure 6.15. Processes such as protein

association, degradation and translocation are modeled with mass action kinetics and

processes such as cleavage, activation and inhibition with Michaelis-Menten kinetics.

The resulting ODE model was implemented using the open source software COPASI
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Figure 6.14: Simplified schematic representation of the complement system. The com-
plement cascade is triggered when CRP or L-ficolin is recruited to the bacterial surface
by binding to ligand PC (classical pathway) or GlcNAc (lectin pathway). Under inflam-
mation condition, CRP and ficolin interact with each other and induce amplification
pathways. The activated CRP and L-ficolin on the surface interacts with C1 and
MASP-2 respectively and leads to the formation of the C3 convertase (C4bC2a), which
cleaves C3 to C3b and C3a. Deposition of C3b initiates the opsonization, phagocytosis,
and lysis. C4BP regulates the activation of complement pathways by: (a) binding to
CRP, (b) accelerating the decay of the C4bC2a, (c) binding to C4b, and (d) preventing
the assembly of C4bC2a (red bars). Solid arrows and dotted arrows indicate protein
conversions and enzymatic reactions, respectively.
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(Hoops et al., 2006b). It consists of 42 species, 45 reactions and 85 kinetic parameters

with 71 unknown. The details can be found in Liu et al. (2010).

6.3.2 Construction of the DBN approximation

We next constructed the DBN approximations of the ODE model to carry out param-

eter estimation and global sensitivity analysis.

In the ODE model the PC-initiated and GlcNAc-initiated complement cascades

were merged for convenience. By suppressing these two cascades one at a time (by

setting the corresponding expressions in the reaction equations to zero), we constructed

two DBNs; one for the PC-initiated complement cascade (Table 6.8) and the other for

GlcNAc-initiated complement cascade (Table 6.9). The range of each variable and

parameter was discretized into 6 non-equal size intervals and 5 equal size intervals,

respectively. The time points of interest were set to {0, 100, 200, . . . , 12600} (seconds).

Here 12600 seconds is equivalent to 3.5 hours, which is the largest time point of our

training experimental data. We then employed the equation sampling method (Section

4.3.2) with a coverage of 1000 to construct the two DBNs. Each of the resulting DBN

approximations encoded 1.2× 106 trajectories generated by sampling the initial values

of the variables and the parameters from the prior, which was assumed to be uniform

distributions over certain intervals (Liu et al., 2010). The computational workload was

distributed on 20 processors in a cluster and the running time was around 12 h.

6.3.3 Parameter estimation

The values of initial concentrations and 14 kinetic parameters were obtained from

literature data (Table 6.10 and Table 6.11). To estimate the remaining 71 kinetic

parameters, we generated training data by incubating human blood under normal and

infection-inflammation conditions with beads coated with PC or GlcNAc followed by

immunodetection of the deposited CRP, C4, C3 and C4BP in time series. For PC-
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Figure 6.15: The reaction network diagram of the mathematical model. Complexes
are denoted by the names of their components, separated by a “:”. Single-headed solid
arrows characterize irreversible reactions and double-headed arrows characterize re-
versible reactions. Dotted arrows represent enzymatic reactions. The kinetic equations
of individual reactions are presented in the supplementary material. The reactions with
high global sensitivities are labeled in red.
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Name Variable Parents
CRP px1 px1, px2, px3, k1, k2,
PC px2 px1, px2, px3, k1, k2,
PC/CRP px3 px3, pt9, pt10, pt11, pt12,
C4 px4 px4, pt1, pt2, pt3, pt4,
C4a px5 px4, px5,
C4b px6 px6, pt1, pt3, pt4, pt34, pa1,
C2 px7 px7, pt5, pt6, pt7, pt8,
C1 px8 px8, px19, pt15, pt16, k66,
PC/CRP/C1 px9 px3, px8, px9, k3, k4,
C2a px10 px10, pt5, pt13, pt14, pa2,
C2b px11 px7, px11,
C4b/C2a px12 px12, pt17, pt18, pt19, pt20,
C3 px13 px12, px13, k9,
C3a px14 px13, px14,
C3b px15 px12, px13, px15, k9, k89,
MASP px16 px16, px18, px24, pt30, k16, k64,
LF px17 px3, px17, px18, k28, k29,
PC/CRP/LF px18 px18, pt21, pt22, pt23, pt24,
PC/CRP/LF/MASP px19 px8, px19, pt31, k15, k66,
C4BP px20 px20, pt25, pt26, pt27, pt28, k88,
C4BP/PC/CRP px21 px3, px20, px21, k40, k41,
C4BP/C4b px22 px6, px20, px22, k45, k46,
C4b/C2a/C4BP px23 px12, px20, px23, k48, k49,
PC/CRP/LF/C1 px24 px16, px24, pt32, k53, k64,
C4BP/PC/CRP/LF px25 px18, px20, px25, k91, k92,
PC/CRP/LF/C1/MASP px26 px26, pt33, k65, k67,
TmpV art1 pt1 px4, px9, k5, k13,
TmpV art2 pt2 px4, px19, k17, k18,
TmpV art3 pt3 px4, px24, k54, k55,
TmpV art4 pt4 px4, px26, k68, k69,
TmpV art5 pt5 px7, px9, k6, k14,
TmpV art6 pt6 px7, px19, k30, k31,
TmpV art7 pt7 px7, px24, k56, k57,
TmpV art8 pt8 px7, px26, k70, k71,
TmpV art9 pt9 px1, px2, px9, k1, k4,
TmpV art10 pt10 px18, px21, k29, k41,
TmpV art11 pt11 px3, px8, k2, k3,
TmpV art12 pt12 px3, px17, px20, k28, k40,
TmpV art13 pt13 px12, px20, k8, k47,
TmpV art14 pt14 px6, px10, k7,
TmpV art15 pt15 px3, px8, px18, k3, k52,
TmpV art16 pt16 px9, px24, px26, k4, k53, k67,
TmpV art17 pt17 px2, px6, px10, k7, k49,
TmpV art18 pt18 px12, px20, k47,
TmpV art19 pt19 px12, px20, k8, k44,
TmpV art20 pt20 px12, px20, k48, k90,
TmpV art21 pt21 px16, px18, k16, k29,
TmpV art22 pt22 px3, px17, px19, k15, k28,
TmpV art23 pt23 px8, px18, px20, k52, k91,
TmpV art24 pt24 px24, px25, k53, k92,
TmpV art25 pt25 px3, px6, px20, k40, k46,
TmpV art26 pt26 px21, px22, k41, k45,
TmpV art27 pt27 px12, px18, px20, k48, k91,
TmpV art28 pt28 px23, px25, k49, k92,
TmpV art29 pt29 px12, px22, k8, k45,
TmpV art30 pt30 px19, px26, k15, k65,
TmpV art31 pt31 px16, px18, px26, k16, k67,
TmpV art32 pt32 px8, px18, px26, k52, k65,
TmpV art33 pt33 px8, px16, px19, px24, k64, k66,
TmpV art34 pt34 px6, px10, px20, k7, k46,
TmpV ara1 pa1 pt2, pt18, pt29,
TmpV ara2 pa2 pt6, pt7, pt8,

Table 6.8: The structure of DBN approximation of PC-initiated classical complement
pathway
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Name Variable Parents
CRP gx1 gx1, gx15, gx18, k32, k33,
C4 gx2 gx2, gt1, gt2, gt3, gt4,
C4a gx3 gx2, gx3,
C4b gx4 gx4, gt3, gt4, gt9, gt10, ga1,
C2 gx5 gx5, gt5, gt6, gt7, gt8,
C1 gx6 gx6, gt11, gt12,
C2a gx7 gx4, gx7, gt8, gt13, ga2, k7,
C2b gx8 gx8, gt5, gt6, gt7, gt8,
C4b/C2a gx9 gx9, gt14, gt15, gt16, k8,
C3 gx10 gx9, gx10, k9,
C3a gx11 gx9, gx10, gx11, k9,
C3b gx12 gx9, gx10, gx12, k9, k89,
MASP gx13 gx13, gx15, gt17, gt18, k21,
GlcNAc gx14 gx14, gx15, gx16, k19, k20,
GlcNAc/LF gx15 gx15, gt19, gt20, gt21, k20,
LF gx16 gx14, gx15, gx16, k19, k20,
GlcNAc/LF/MASP gx17 gx13, gx15, gx17, k21, k22,
GlcNAc/LF/CRP gx18 gx18, gt22, gt23, gt24, gt25,
GlcNAc/LF/CRP/C1 gx19 gx13, gx19, gt26, k1, k35,
C4BP gx20 gx9, gx20, gt27, gt28, k48, k88,
C4BP/GlcNAc/LF/CRP gx21 gx18, gx20, gx21, k42, k43,
C4BP/C4b gx22 gx4, gx20, gx22, k45, k46,
C4b/C2a/C4BP gx23 gx9, gx20, gx23, k48, k49,
GlcNAc/LF/CRP/MASP gx24 gx6, gx24, gt29, k59, k66,
GlcNAc/LF/CRP/C1/MASP gx25 gx25, gt30, k2, k67,
TmpV art1 gt1 gx2, gx17, k23, k24,
TmpV art2 gt2 gx2, gx19, k36, k37,
TmpV art3 gt3 gx2, gx24, k60, k61,
TmpV art4 gt4 gx2, gx25, k84, k85,
TmpV art5 gt5 gx5, gx17, k25, k26,
TmpV art6 gt6 gx5, gx19, k38, k39,
TmpV art7 gt7 gx5, gx24, k62, k63,
TmpV art8 gt8 gx5, gx25, k86, k87,
TmpV art9 gt9 gx9, gx22, k8, k45,
TmpV art10 gt10 gx4, gx7, gx20, k7, k46,
TmpV art11 gt11 gx19, gx25, k35, k67,
TmpV art12 gt12 gx6, gx18, gx24, k34, k66,
TmpV art13 gt13 gx9, gx20, k8, k47,
TmpV art14 gt14 gx4, gx7, gx23, k7, k49,
TmpV art15 gt15 gx9, gx20, k44, k47,
TmpV art16 gt16 gx9, gx20, k48, k90,
TmpV art17 gt17 gx17, gx24, gx25, k2, k22, k59,
TmpV art18 gt18 gx13, gx18, gx19, k1, k58,
TmpV art19 gt19 gx14, gx16, k19,
TmpV art20 gt20 gx17, gx18, k22, k33,
TmpV art21 gt21 gx1, gx13, gx15, k21, k32,
TmpV art22 gt22 gx1, gx15, gx19, k32, k35,
TmpV art23 gt23 gx21, gx24, k43, k59,
TmpV art24 gt24 gx13, gx18, gx20, k42, k58,
TmpV art25 gt25 gx6, gx18, k33, k34,
TmpV art26 gt26 gx6, gx18, gx25, k2, k34,
TmpV art27 gt27 gx21, gx22, gx23, k43, k45, k49,
TmpV art28 gt28 gx4, gx18, gx20, k42, k46,
TmpV art29 gt29 gx13, gx18, gx25, k58, k67,
TmpV art30 gt30 gx6, gx13, gx19, gx24, k1, k66,
TmpV ara1 ga1 gx9, gx20, gt1, gt2, k47,
TmpV ara2 ga2 gt5, gt6, gt7,

Table 6.9: The structure of DBN approximation of GlcNAc-initiated classical comple-
ment pathway
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beads, the concentration levels of deposited CRP, C4, C3 and C4BP were measured at

8 time points from 0 to 3.5 hours (Figure 6.16:A-B, red dots). For GlcNAc-beads, the

concentration levels of deposited MASP-2, C4, C3 and C4BP were also measured at 8

time points from 0 to 3.5 hours (Figure 6.16:C-D, red dots).

We then deployed the two-stage DBN based method to estimate unknown kinetic

parameters. As mentioned above, each unknown parameter’s value space was divided

into 5 equal intervals. In the first stage, we used stochastic ranking evolutionary strat-

egy (SRES) to search in the discretized parameter space consisting of 571 combinations

of interval values of the unknown parameters. The SRES search was done using a

modified version of the tool libSRES (Ji and Xu, 2006) (The modification enables one

to perform search in a discrete solution space). The result of this first stage was a

maximum likelihood estimate of a combination of intervals of parameter values.

In the first and the second case studies, we stopped with the first stage and worked

with this combination of intervals of parameter values. However, in this case study we

wanted to use the ODE model too for conducting in silico experiments such as varying

initial concentrations including the down and over expression of C4BP. This would have

been difficult to achieve by working solely with our current DBN approximation.

Thus, we then proceeded the second the stage and searched within this combination

of intervals having maximal likelihood. Consequently, the size of the search space for

the second stage was just 1/571 of the original search space. We performed the standard

SRES algorithm using libSRES tool to search for the vector of parameter values with

minimum objective value. The parameter values thus estimated are shown in Table

6.11.

Figure 6.16:A-D shows the comparison of the experimental time course training data

(red dots) with the model simulation profiles generated using the estimated parameters

(blue lines). The model predictions fit the training data well for most of the cases. In

some cases, the simulations were unable to reproduce the trends of the data well. This
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is likely due to the simplifications assumed by our model.
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BFigure 6.16: Experimental and simulated dynamics of the complement pathway. The
time profiles of deposited C3, C4, MASP-2, CRP and C4BP under the following four
conditions are simulated using estimated parameters and compared against the exper-
imental data: (A) PC-initiated complement activation under inflammation condition,
(B) PC-initiated complement activation under normal condition. (C) GlcNAc-initiated
complement activation under inflammation condition; (D) GlcNAc-initiated comple-
ment activation under normal condition. Blue solid lines depict the simulation results
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6.3.4 Model validation

We next validated the model using previously published experimental observations

(Zhang et al., 2009). In particular, normalized concentration level of deposited C3 was

used to predict the antibacterial activity since C3 deposition initiated the opsonization
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Name Initial Concentrations [nM]

CRP 0.2
PC 0.0327796
PC/CRP 0
C4 77
C4a 0
C4b 0
C2 31
C1 247
PC/CRP/C1 0
C2a 0
C2b 0
C4b/C2a 0
C3 465
C3a 0
C3b 0
dC3b 0
MASP 0.68
dC4b/C2a 0
GlcNac 0
GlcNac/LF 0
LF 2
GlcNac/LF/MASP 0
PC/CRP/LF 0
PC/CRP/LF/MASP 0
GlcNac/LF/CRP 0
GlcNac/LF/CRP/C1 0
C4BP 26
C4BP/PC/CRP 0
C4BP/GlcNac/LF/CRP 0
iC4b/C2a 0
C4BP/C4b 0
C4b/C2a/C4BP 0
dC4b/C2a/C4BP 0
PC/CRP/LF/C1 0
C4BP/PC/CRP/LF 0
GlcNac/LF/CRP/MASP 0
PC/CRP/LF/C1/MASP 0
GlcNac/HF 0
HF 0
GlcNac/HF/MASP 0
X 0
GlcNac/LF/CRP/C1/MASP 0

Table 6.10: The initial concentrations.
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Parameter Values

ka011 0.027599856
ka012 0.0109
ka021 7.4E − 4
ka022 0.0011
ka031∗ 2.0
ka041∗ 10.5
kc011 0.64564663
kc012 0.19455111
kc02 5.91E − 4
kc031 0.41400447
kc032 0.9964757
kc041 0.97783655
ka032 500.0
ka042 2500.0
kd022 0.1
kd021 0.0368011
kd031 66.3777
kd032 829.116
kb011 1.45E − 4
kb012 0.07761722
kb021 2.14E − 7
kb022 0.1
kb031 93.97925
kb032 8815.971
kb041∗ 1.1
kb042∗ 2000.0
kc042 0.19916244
kd011 7.07E − 5
kd012 7.23E − 5
kd041∗ 1.1
kd042∗ 2000.0
ke011 7.07E − 5
ke012 1.0E − 4
ke021 7.4E − 4
ke022 0.0011
ke031 2.0
ke032 500.0
ke041 10.5
ke042 2500.0
kf011 0.9699983
kf012 0.06902058
kf021 0.25880134
kf022 0.4837216
kf03 0.06135372
kf042 0.9836912
kf041 0.6134161

Parameter Values

kf05 0.98077756
kf061 0.613416
kf062 0.983691
kf071 0.613416
kf072 0.983691
kd051 7.4 × 10−4

kd052 0.0011
kd061∗ 2.0
kd062∗ 500.0
kd071∗ 10.5
kd072∗ 2500.0
ke051 2.14 × 10−7

ke052 0.1
ke061 93.97925
ke062 8815.971
ke071∗ 1.1
ke072∗ 2000.0
kd081 0.0368011
kd082 0.1
kd091 7.4 × 10−4

kd092 0.0011
kd101 71.17058
kd102 3796.2268
kd111 38.96259
kd112 5972.3066
kg011 1.45 × 10−4

kg012 0.07761722
kg021 2.14 × 10−7

kg022 0.1
kg031 93.97925
kg032 8815.971
kg041∗ 1.1
kg042∗ 2000.0
ke081 2.14 × 10−7

ke082 0.1
ke091 7.4 × 10−4

ke092 0.0011
ke101 83.52653
ke102 0.010678623
ke111 79.544876
ke112 42.56355
ktmp1 3.42 × 10−4

ktmp2 0.492901
ktmp3 0.0470911
ktmpf11 0.0
ktmpf12 0.0

Table 6.11: Parameter values. Known parameters are marked with *.
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process and the lysis of bacteria. We first simulated the concentration level of deposited

C3 at 1 hour under different conditions. We next normalized the results so that the

maximum value among them equals to 95% which is the maximum bacterial killing rate

reported in the experimental observations (Zhang et al., 2009). The normalized values

were then treated as predicted bacterial killing rates. The simulation results are shown

in Figure 6.17:A and 6.17:B as black bars. Consistent with the experimental data

(Figure 6.17:A, grey bars), our simulation results showed that under the infection-

inflammation conditions, the P. aeruginosa can be efficiently killed (95% bacterial

killing rate) by complement whereas under the normal condition, only 28% of the

bacteria succumbed (Figure 6.17:A, black bars). In the patient serum, depletion of

CRP or ficolin induced a significant drop in the killing rate from 95% to 33% or 25%

respectively, indicating that the synergistic action of CRP and L-ficolin accounted for

around 40% of the enhanced killing effect. However, in the normal serum, depletion

of CRP or ficolin only resulted in a slight drop in the killing rate from 28% to 18%

or 10% respectively. Furthermore, simulating a high CRP level (such as in the case of

cardiovascular disease) under the normal healthy condition did not further increase the

bacterial killing rate. As shown in Figure 6.17:B, the simulation results matched the

experimental data. Thus, our model was able to reproduce the published experimental

observations shown in both Figure 6.17:A and 6.17:B with less than 10% error. This

not only validated our model thus promoting its use for generating predictions, but

also yielded positive evidence in support of the hypothesized amplification pathways

induced by infection-inflammation condition. It also suggested that the antibacterial

activity can be simulated efficiently by the level of deposited C3 and this was used to

generate model predictions described in later sections.



CHAPTER 6. CASE STUDIES 109

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
3

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4B

P

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
R

P

time[h]

A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
3

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
R

P

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4B

P

time[h]

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
3

time[h]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 M
A

S
P

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4

time[h]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4B

P

time[h]

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
3

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4B

P

time[h]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 M
A

S
P

time[h]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 C
4

time[h]

D

0

20

40

60

80

100

B
a

ct
e

ria
l k

ill
in

g
 (

%
)

 

 simulation
 experiments

A

W
ho
le 
se
ru
m

CR
P‐

fic
oli
n‐

CR
P &

 fic
oli
n ‐

W
ho
le 
se
ru
m

CR
P‐

fic
oli
n‐

CR
P &

 fic
oli
n ‐

Infection‐inflammation Normal

Human serum albumin CRP
0

10

20

30

40

50

60

B
ac

te
ria

l k
ill

in
g 

(%
)

 simulation (C3)
 experiments (killing rate)

B

Figure 6.17: Model predictions and experimental validation of effects of the crosstalk.
(A) Simulation results (black bar) of end-point bacterial killing rate in whole serum,
CRP depleted serum (CRP-), ficolin-depleted serum (ficolin-), both CRP- and ficolin-
depleted serum (CRP- & ficolin-) under normal and infection-inflammation conditions
agree with the previous experimental observations (gray bar). (B) The simulated bac-
terial killing effect of high CRP level agrees with the experimental data.

6.3.5 Sensitivity analysis

In order to identify critical reactions that control complement activation during infec-

tion, we performed global sensitivity analysis using the DBN approximations. Multi-

parametric sensitivity analysis (MPSA) (Zi et al., 2005) was performed on the DBN for

PC-initiated complement cascade (the details are presented in Section 5.3). The results

are shown in Figure 6.18. Strong controls over the whole system are distributed among

the parameters associated with the immobilisation of C3b with the surface, interaction

between CRP and L-ficolin, cleavage of C2 and C4, and the decay of C3 convertase

(see Figure 6.15, reactions labeled in red). The sensitivity of reactions associated with

C3, C2 and C4 highlight the significant role of major complement components. The

high sensitivity of interaction of CRP and L-ficolin confirms that the overall antibacte-

rial response depends on the strength of the crosstalk between the classical and lectin

pathways. In addition, since the decay of C3 convertase is one of the regulatory targets
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of C4BP, the sensitivity of the system to a change in the rate of decay of C3 convertase

suggested that the regulatory mechanism by C4BP plays an important role in comple-

ment. Since the critical reactions identified are common in PC- and GlcNAc-initiated

complement cascades, MPSA results using the other DBN will produce similar results

and hence this analysis was not performed. We next focused our investigation on the

enhancement mechanism by the crosstalk and the regulatory mechanism by C4BP.

Figure 6.18: Global sensitivity analysis. Global sensitivities were calculated according
to the MPSA method. The most sensitive parameters are colored in light blue. kc2
refers to the association rate of C3b with the surface. kd01 1 refers to the association
rate of CRP and ficolin. kd07 1 and kd 07 2 are the Michaelis-Menten constants gov-
erning the cleavage rate of C2. kd08 1 and kd 08 2 are the Michaelis-Menten constants
governing the cleavage rate of C4. kt03 1 refers to the decay rate of C4bC2a. Those
reactions are colored in red in Figure 6.15.

6.3.6 The enhancement mechanism of the antimicrobial response

Under infection-inflammation conditions where PC-CRP:L-ficolin or GlcNAc-L-ficolin:CRP

complex is formed, the amplification pathways are triggered. Model simulation showed

that if C1 and L-ficolin or CRP and MASP-2 competed against each other, the an-

tibacterial activity of the classical pathway or lectin pathway might be deprived of
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the amplification pathways. Therefore, in order to achieve a stable enhancement, C1

and L-ficolin (or CRP and MASP-2) must simultaneously bind to CRP (or L-ficolin).

Further, the abilities of CRP and L-ficolin to trigger subsequent complement cascade

were not affected by the formation of this complex. This is consistent with the previous

experimental observation that two amplification pathways co-exist with the classical

and lectin pathways (Zhang et al., 2009).

The pH value and calcium level influence the conformations of CRP and L-ficolin

which in turn govern their binding affinities. To investigate the effects of pH and

calcium on the antibacterial response, We simulated the C3 deposition dynamics using

the predicted binding affinities at pH ranging from 5.5 to 7.4 in the presence of 2 mM

and 2.5 mM calcium. The results are shown in Figure 6.19. Under both 2 mM and

2.5 mM calcium conditions, decreasing pH induces not only the increase of the peak

amplitude (maximum activation) but also hastens the peak time (time of maximum

activation).
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Figure 6.19: Simulation of antibacterial response with different pH and calcium level.
(A) The deposited C3 time profile at pH ranging from 5.5 to 7.4, in the presence of 2
mM calcium. (B) The deposited C3 time profile at pH ranging from 5.5 to 7.4, in the
presence of 2.5 mM calcium.

To further compare the effects of the two calcium levels, the dose-response curves
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were generated as shown in Figure 6.20. At 2 mM calcium (blue curve), the antibacterial

response was clearly greater than at 2.5 mM calcium (pink curve) indicating that slight

hypocalcaemia enhanced the antibacterial activity in a stable manner. In addition, the

pH-responses were reaching saturation levels when pH was near 5.5 (Figure 6.20),

implying that the undesirable complement-enhancement by extreme low pH condition

can be avoided. This also suggests that the saturation of the pH-response was influenced

by the calcium level in the milieu.
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Figure 6.20: The pH-antibacterial response curves of complement activation in the
presence of 2 mM calcium (pink) or 2.5 mM calcium (blue).

6.3.7 The regulatory mechanism of C4BP on the complement system

We next investigated the complement regulation by the major inhibitor, C4BP, under

infection-inflammation conditions.

We varied the initial concentration of C4BP and simulated the PC- and GlcNAc-

initiated complement under infection-inflammation conditions. The simulation time

was chosen to be 5 hours which is slightly beyond the largest time point of our train-

ing experimental data. The predicted effects of the initial concentration of C4BP on

the antibacterial response in terms of C3 deposition are shown in Figure 6.21:A-B.
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For PC-initiated complement activation, when the starting amount of C4BP was per-

turbed around the normal level of 260 nM (Griffin et al., 1992), increasing C4BP level

only delayed the peak time but did not decrease the peak amplitude significantly. In

contrast, reducing the initial C4BP level clearly hastened the complement activation

and maximized the activity. Interestingly, the GlcNAc-initiated complement activation

(Figure 6.21:B) behaved differently from the PC-mediated complement activation (Fig-

ure 6.21:A). Around the normal level of 260 nM, perturbing the initial C4BP changed

the maximum activity but did not affect the peak time, suggesting that C4BP plays

distinct roles in regulating the classical and lectin pathways.
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Figure 6.21: Model prediction of effects of C4BP under infection-inflammation condi-
tion. Predicted profiles of the deposited C3 after knocking down or over-expressing
C4BP in the presence of PC (A) or GlcNAc (B).

Our results imply that C4BP regulates the lectin pathway more stringently than

the classical pathway, which is consistent with previous experimental findings (Rawal

et al., 2009). Further, for PC-initiated complement cascade, the over-expression of

C4BP only delays but does not “turn off” the antibacterial response. In contrast,

increased C4BP can efficiently inhibit GlcNAc-initiated complement activation. This

may explain previous observations that bacteria such as Yersinia enterocolitica, Strep-

tococcus pyogenes, Neisseria gonorrhoeae, Escherichia coli K1, Moraxella catarrhalis,
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Candida albicans, Bordetella pertussis (Kirjavainen et al., 2008; Thern et al., 1995;

Ram et al., 2001; Prasadarao et al., 2002; Nordstrom et al., 2004; Meri et al., 2004;

Berggard et al., 1997) can exploit C4BP to evade complement.

We next investigated how C4BP mediates its inhibitory function. As shown in

Figure 6.14, the inhibitory effects of C4BP target different sites in complement: (a)

binding to CRP and blocking C1, (b) preventing the formation of C4bC2a by binding

to C4b, (c) acting as a cofactor for factor I in the proteolytic inactivation of C4b, and

(d) accelerating the natural decay of the C4bC2a complex, which prevents the for-

mation of C4bC2a and disrupts already formed convertase. To identify the dominant

mechanism, we employed in silico knockout of the reactions involved for each mecha-

nism and performed simulations. Figure 6.22 shows the model predictions. Among the

four inhibitory mechanisms, only the knockout of reaction (d) significantly enhanced

the complement activation suggesting that facilitating the natural decay of C4bC2a

(C3 convertase) is the most important inhibitory function of C4BP. This is consistent

with our previous observations derived from sensitivity analysis, which identified the

decay of C3 convertase as a critical reaction. In addition, as the inhibitory effect of

reaction (d) is stronger than others, knocking out reaction (a) and (b) can even reduce

the complement activity, which is counter-intuitive and emphasizes the significance

of the systems-level understanding. As the enhancement mechanism by the crosstalk

between CRP and L-ficolin occurs upstream of the cascade, we envisage C4BP acts

downstream to ’quality control’ and modulate C3 convertase activity. Thus our results

suggest that efficient regulation of complement can be achieved by targeting the C3

convertase, where the complement pathways merge.

Our model predictions on the effects of C4BP have been experimentally verified.

The experimental methods and data can be found in Liu et al. (2010).
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Figure 6.22: Knockout simulations reveal the major role of C4BP. (A) Simulation
profiles of C3 deposition with or without reaction a. (B) Simulation profiles of C3
deposition with or without reaction b. (C) Simulation profiles of C3 deposition with or
without reaction c. (D) Simulation profiles of C3 deposition with or without reaction d.
Reactions (a-d) are labeled red in Figure 6.14 and explained in the caption: (a) C4BP
binds to CRP, (b) C4BP binds to C4b, (c) C4BP prevents the assembly of C4bC2a,
and (d) C4BP accelerates the decay of the C4bC2a.

In summary, by integrating our computational model and experimental observations

we have obtained novel insights into how the complement activation is enhanced dur-

ing infection and how excessive complement activity may be avoided. This introduces

a new level of understanding of the host defense against bacterial infection. It also

provides a platform for the potential development of complement-based immunomod-

ulation therapies by exploiting the sensitivities of the perturbations of the pH, calcium

and C4BP levels.



Chapter 7

Conclusion

We have proposed a probabilistic approximation scheme for biological pathway dynam-

ics specified as a system of ODEs. Assuming a discretization and an initial distribution,

it consists of pre-computing and storing a representative sample of trajectories induced

by the system of ODEs. We use a dynamic Bayesian network representation to com-

pactly represent these trajectories by exploiting the pathway structure. Basically, the

underlying graph of the DBN approximation captures the dependencies of the variables

on other variables and rate constants as defined by the system of ODEs. Due to the

probabilistic graphical representation, a variety of analysis questions concerning the

pathway dynamics traditionally addressed using Monte Carlo simulations can be con-

verted to Bayesian inference and solved more efficiently. Using the FF algorithm for

doing basic Bayesian inference, we have adapted standard parameter estimation and

sensitivity analysis algorithms to the DBN setting.

We have demonstrated the applicability of our techniques with the help of the EGF-

NGF signaling pathway, the segmentation clock pathway and the complement system.

The DBN approximations we constructed successfully captured the dynamics of the

three pathways. We showed that with the DBN approximations the unknown rate

constants can be efficiently estimated from noisy experimental data.
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We also gained insights about the pathway dynamics by identifying critical param-

eters in signal transduction via global sensitivity analysis. At the end of performing

these analysis tasks we had easily regained the initial computational investment made

to construct the DBN approximation.

Apart from its computational efficiency, it is worth noting that the DBN approx-

imation is a more realistic model for recording the current state of knowledge about

a biological pathway. In particular, the probabilistic and intervals-based estimates it

returns will better match the noisy experimental data with limited precisions.

Turning next to the biological contributions of this thesis, in the third case study,

we developed an ODE-based model for the complement system accompanied by DBN

approximations. The motivation was to understand how the complement activity is

boosted under local inflammation conditions while a tight surveillance is established to

attain homeostasis.

Our study has involved a tight integration of computational and experimental as-

pects. The model analysis confirmed that the enhancement of complement activity

under infection-inflammation condition was attributable to the synergistic action of

CRP and L-ficolin and supported the existence of the amplification pathways. We also

showed that the antimicrobial response is sensitive to changes in pH and calcium levels,

which determines the strength of the crosstalk between CRP and L-ficolin.

Through model analysis we found that the inhibitor C4BP regulates the lectin

pathway more stringently than the classical patwhay. The over-expresion of C4BP

only delays but dose not reduce classical complement activation, whereas it attenuates

but does not delay the complement activation of lectin pathway. We also found that,

of the four documented inhibitory roles, C4BP acts mainly by facilitating the natural

decay of the C3 convertase. These predictions were validated empirically. As the

enhancement mechanism by the crosstalk between CRP and L-ficolin occurs upstream

of the cascade, we envisage C4BP acts downstream to ’quality control’ and modulate
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C3 convertase activity. Thus our results suggest that efficient regulation of complement

can be achieved by targeting the C3 convertase, where the complement pathways merge.

These insights concerning the regulatory mechanisms of the complement system can

potentially contribute to the development of complement-based immunomodulation

therapies.

7.1 Future Work

A crucial ingredient in the construction of the DBN is the family of sample trajectories

that are needed to get a good approximation. The DBN we construct approximates

idealized Markov chain induced by the ODEs dynamics. Given an error bound, a

confidence level and the transition probabilities of the idealized Markov chain, we can

estimate (upper bound) the sample size required to fall within the given error bound

with the required confidence level. However, the transition probabilities of the idealized

Markov chain will not computable. Hence we pragmatically determine the sample size

based on our sampling methods. How to determine the sample size with guaranteed

error bounds is an issue we are continuing to study.

Though it is only a one-time cost, generating a representative set of trajectories to

construct the DBN approximation for large pathway models will be computationally

intensive. In the studies presented in this thesis, we parallelized the DBN construction

code and executed it on a PC cluster. Clusters and supercomputers are expensive and

the resources are often shared by a crowd of researchers. To enhance the usability of our

approach, we are mapping our implementation onto graphics processing units (GPUs)

in a on-going work in collaboration with computer architecture experts. We have been

able to map the DBN construction process onto the GPU. A preliminary study of the

EGF-NGF signaling pathway show promising results by achieving 5 fold speedup when

compared to the cluster implementation present in this thesis (Chattopdhyay, 2010).

We are continuing to explore the applicability of GPUs in our setting.
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The long term aim of our approach is to aid biologists to understand the mechanisms

of biological pathways. On this light, we need to apply our method to a variety of

pathway models. We are currently doing so in collaboration with biologists in the

settings of Apoptosis/Autophage pathways and DNA damage/repair pathways.

Further, it will be useful to augment the ODE model with some discrete features

(e.g. HFPN models) but this should be easy to achieve.

The PRISM tool facilitates the rule-based stochastic formalisms to explore complex

properties of the pathway dynamics via probabilistic model checking. However, as the

state space of the underlying CTMCs of such models are exponential in the number

of species, analyzing large pathways will be computation prohibitive. Hence, it is also

important to develop formal verification techniques based on the DBN representation.

In this context, we note that the FF algorithm can compute -although approximately-

the marginal probabilities of the discretized values of variables at specific time points.

Hence it will be appropriate to develop probabilistic bounded model checking methods

for the DBN approximation and we are beginning to pursue this.

Related probabilistic formalisms such as Multi Terminal Binary Decision Diagrams

(MTBDDs) and Probabilistic Decision Graphs (PDGs) are available for model checking.

It is not clear at present how they can be derived directly from the ODE model. One

could however try to convert our DBNs to MTBDDs for purposes of model checking

(Langmead et al., 2006b) or develop statistical model checking methods (Jha et al.,

2009). As compact representations of the probability distributions, PDGs are, in spirit,

similar to Bayesian networks (Bozga and Maler, 1999) and can be computationally as

efficient as Bayesian networks (Jaeger, 2004). Further, probabilistic inference can be

carried out with a time complexity linear in the size of the PDGs (Jaeger, 2004). Thus,

it will be an interesting future direction for us to explore the performance of PDGs in

our setting.

Finally, our approximation technique might have wider applicability. A rich class
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of dynamical systems can be captured via ODEs and in a variety of situations it may

be appropriate and useful to abstract their behaviors as dynamic Bayesian networks as

we have done here.



Appendix A

Supplementary Information for

Chapter 6

This appendix contains the supplementary information for the third case study pre-

sented in Chapter 6. We first show the ODEs of the complement system model we

constructed. We then present the details of the materials and methods for generating

the experimental data we used in this case study. More information can be found in

Liu et al. (2010).
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A.1 The ODE Model

d ([CRP] )

dt
= − ((ka011 · [PC] · [CRP] − ka012 · [PC/CRP]))

− ((ke011 · [GlcNac/LF] · [CRP] − ke012 · [GlcNac/LF/CRP]))

d ([PC] )

dt
= − ((ka011 · [PC] · [CRP] − ka012 · [PC/CRP]))

d ([PC/CRP] )

dt
= + ((ka011 · [PC] · [CRP] − ka012 · [PC/CRP]))

− ((ka021 · [PC/CRP] · [C1] − ka022 · [PC/CRP/C1]))

− ((kf011 · [C4BP] · [PC/CRP] − kf012 · [C4BP/PC/CRP]))

− ((kd011 · [PC/CRP] · [LF] − kd012 · [PC/CRP/LF]))

d ([C4] )

dt
= −

(
kd031 · [PC/CRP/LF/MASP] · [C4]

kd032 + [C4]

)
−

(
kb031 · [GlcNac/LF/MASP] · [C4]

kb032 + [C4]

)
−

(
ke031 · [GlcNac/LF/CRP/C1] · [C4]

ke032 + [C4]

)
−

(
ka031 · [PC/CRP/C1] · [C4]

ka032 + [C4]

)
−

(
kd061 · [PC/CRP/LF/C1] · [C4]

kd062 + [C4]

)
−

(
ke061 · [GlcNac/LF/CRP/MASP] · [C4]

ke062 + [C4]

)
−

(
kd101 · [PC/CRP/LF/C1/MASP] · [C4]

kd102 + [C4]

)
−

(
kg031 · [GlcNac/HF/MASP] · [C4]

kg032 + [C4]

)
d ([C4a] )

dt
= +

(
kd031 · [PC/CRP/LF/MASP] · [C4]

kd032 + [C4]

)
+

(
kb031 · [GlcNac/LF/MASP] · [C4]

kb032 + [C4]

)
+

(
ke031 · [GlcNac/LF/CRP/C1] · [C4]

ke032 + [C4]

)
+

(
ka031 · [PC/CRP/C1] · [C4]

ka032 + [C4]

)
+

(
kd061 · [PC/CRP/LF/C1] · [C4]

kd062 + [C4]

)
+

(
ke061 · [GlcNac/LF/CRP/MASP] · [C4]

ke062 + [C4]

)
+

(
kd101 · [PC/CRP/LF/C1/MASP] · [C4]

kd102 + [C4]

)
+

(
kg031 · [GlcNac/HF/MASP] · [C4]

kg032 + [C4]

)
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d ([C4b] )

dt
= +

(
kd031 · [PC/CRP/LF/MASP] · [C4]

kd032 + [C4]

)
+

(
kb031 · [GlcNac/LF/MASP] · [C4]

kb032 + [C4]

)
+

(
ke031 · [GlcNac/LF/CRP/C1] · [C4]

ke032 + [C4]

)
+

(
ka031 · [PC/CRP/C1] · [C4]

ka032 + [C4]

)
− ((kf041 · [C4BP] · [C4b] − kf042 · [C4BP/C4b]))

+ (kf05 · [C4b/C2a] · [C4BP])

+

(
kd061 · [PC/CRP/LF/C1] · [C4]

kd062 + [C4]

)
+

(
ke061 · [GlcNac/LF/CRP/MASP] · [C4]

ke062 + [C4]

)
+

(
kd101 · [PC/CRP/LF/C1/MASP] · [C4]

kd102 + [C4]

)
− ((kc011 · [C4b] · [C2a] − kc012 · [C4b/C2a]))

+

(
kg031 · [GlcNac/HF/MASP] · [C4]

kg032 + [C4]

)
d ([C2] )

dt
= −

(
kd041 · [PC/CRP/LF/MASP] · [C2]

kd042 + [C2]

)
−

(
kb041 · [GlcNac/LF/MASP] · [C2]

kb042 + [C2]

)
−

(
ke041 · [GlcNac/LF/CRP/C1] · [C2]

ke042 + [C2]

)
−

(
ka041 · [PC/CRP/C1] · [C2]

ka042 + [C2]

)
−

(
kd071 · [PC/CRP/LF/C1] · [C2]

kd072 + [C2]

)
−

(
ke071 · [GlcNac/LF/CRP/MASP] · [C2]

ke072 + [C2]

)
−

(
kd111 · [PC/CRP/LF/C1/MASP] · [C2]

kd112 + [C2]

)
−

(
kg041 · [GlcNac/HF/MASP] · [C2]

kg042 + [C2]

)
d ([C1] )

dt
= − ((ka021 · [PC/CRP] · [C1] − ka022 · [PC/CRP/C1]))

− ((ke021 · [GlcNac/LF/CRP] · [C1] − ke022 · [GlcNac/LF/CRP/C1]))

− ((kd051 · [PC/CRP/LF] · [C1] − kd052 · [PC/CRP/LF/C1]))

− ((kd091 · [PC/CRP/LF/MASP] · [C1] − kd092 · [PC/CRP/LF/C1/MASP]))

d ([PC/CRP/C1] )

dt
= + ((ka021 · [PC/CRP] · [C1] − ka022 · [PC/CRP/C1]))
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d ([C2a] )

dt
= +

(
kd041 · [PC/CRP/LF/MASP] · [C2]

kd042 + [C2]

)
+

(
kb041 · [GlcNac/LF/MASP] · [C2]

kb042 + [C2]

)
+

(
ke041 · [GlcNac/LF/CRP/C1] · [C2]

ke042 + [C2]

)
+ (kf05 · [C4b/C2a] · [C4BP])

+

(
ka041 · [PC/CRP/C1] · [C2]

ka042 + [C2]

)
+

(
kd071 · [PC/CRP/LF/C1] · [C2]

kd072 + [C2]

)
+

(
ke071 · [GlcNac/LF/CRP/MASP] · [C2]

ke072 + [C2]

)
− ((kc011 · [C4b] · [C2a] − kc012 · [C4b/C2a]))

+

(
kd111 · [PC/CRP/LF/C1/MASP] · [C2]

kd112 + [C2]

)
+

(
kg041 · [GlcNac/HF/MASP] · [C2]

kg042 + [C2]

)
d ([C2b] )

dt
= +

(
kd041 · [PC/CRP/LF/MASP] · [C2]

kd042 + [C2]

)
+

(
kb041 · [GlcNac/LF/MASP] · [C2]

kb042 + [C2]

)
+

(
ke041 · [GlcNac/LF/CRP/C1] · [C2]

ke042 + [C2]

)
+

(
ka041 · [PC/CRP/C1] · [C2]

ka042 + [C2]

)
+

(
kd071 · [PC/CRP/LF/C1] · [C2]

kd072 + [C2]

)
+

(
ke071 · [GlcNac/LF/CRP/MASP] · [C2]

ke072 + [C2]

)
+

(
kd111 · [PC/CRP/LF/C1/MASP] · [C2]

kd112 + [C2]

)
+

(
kg041 · [GlcNac/HF/MASP] · [C2]

kg042 + [C2]

)
d ([C4b/C2a] )

dt
= − (kf03 · [C4b/C2a] · [C4BP])

− (kf05 · [C4b/C2a] · [C4BP])

− ((kf061 · [C4b/C2a] · [C4BP] − kf062 · [C4b/C2a/C4BP]))

−
(
k1(tmp3) · [C4b/C2a]

)
+ ((kc011 · [C4b] · [C2a] − kc012 · [C4b/C2a]))

− ((kc041 · [C4b/C2a] − kc042 · [dC4b/C2a]))

d ([C3] )

dt
= − (kc02 · [C4b/C2a] · [C3])
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d ([C3a] )

dt
= + (kc02 · [C4b/C2a] · [C3])

d ([C3b] )

dt
= −

(
k1(tmp2) · [C3b]

)
+ (kc02 · [C4b/C2a] · [C3])

− ((kc031 · [C3b] − kc032 · [dC3b]))

d ([dC3b] )

dt
= + ((kc031 · [C3b] − kc032 · [dC3b]))

d ([MASP] )

dt
= − ((kb021 · [GlcNac/LF] · [MASP] − kb022 · [GlcNac/LF/MASP]))

− ((ke051 · [GlcNac/LF/CRP] · [MASP] − ke052 · [GlcNac/LF/CRP/MASP]))

− ((kd081 · [PC/CRP/LF/C1] · [MASP] − kd082 · [PC/CRP/LF/C1/MASP]))

− ((kg021 · [GlcNac/HF] · [MASP] − kg022 · [GlcNac/HF/MASP]))

− ((kd021 · [PC/CRP/LF] · [MASP] − kd022 · [PC/CRP/LF/MASP]))

d ([dC4b/C2a] )

dt
= − ((kf071 · [dC4b/C2a] · [C4BP] − kf072 · [dC4b/C2a/C4BP]))

+ ((kc041 · [C4b/C2a] − kc042 · [dC4b/C2a]))

d ([GlcNac] )

dt
= − ((kb011 · [GlcNac] · [LF] − kb012 · [GlcNac/LF]))

d ([GlcNac/LF] )

dt
= + ((kb011 · [GlcNac] · [LF] − kb012 · [GlcNac/LF]))

− ((kb021 · [GlcNac/LF] · [MASP] − kb022 · [GlcNac/LF/MASP]))

− ((ke011 · [GlcNac/LF] · [CRP] − ke012 · [GlcNac/LF/CRP]))

d ([LF] )

dt
= − ((kb011 · [GlcNac] · [LF] − kb012 · [GlcNac/LF]))

− ((kd011 · [PC/CRP] · [LF] − kd012 · [PC/CRP/LF]))

d ([GlcNac/LF/MASP] )

dt
= + ((kb021 · [GlcNac/LF] · [MASP] − kb022 · [GlcNac/LF/MASP]))

d ([PC/CRP/LF] )

dt
= − ((kd051 · [PC/CRP/LF] · [C1] − kd052 · [PC/CRP/LF/C1]))

−
((

k1(tmpf1) · [C4BP] · [PC/CRP/LF] − k2(tmpf1) · [C4BP/PC/CRP/LF]
))

+ ((kd011 · [PC/CRP] · [LF] − kd012 · [PC/CRP/LF]))

− ((kd021 · [PC/CRP/LF] · [MASP] − kd022 · [PC/CRP/LF/MASP]))

d ([PC/CRP/LF/MASP] )

dt
= − ((kd091 · [PC/CRP/LF/MASP] · [C1] − kd092 · [PC/CRP/LF/C1/MASP]))

+ ((kd021 · [PC/CRP/LF] · [MASP] − kd022 · [PC/CRP/LF/MASP]))

d ([GlcNac/LF/CRP] )

dt
= + ((ke011 · [GlcNac/LF] · [CRP] − ke012 · [GlcNac/LF/CRP]))

− ((ke021 · [GlcNac/LF/CRP] · [C1] − ke022 · [GlcNac/LF/CRP/C1]))

− ((kf021 · [C4BP] · [GlcNac/LF/CRP] − kf022 · [C4BP/GlcNac/LF/CRP]))

− ((ke051 · [GlcNac/LF/CRP] · [MASP] − ke052 · [GlcNac/LF/CRP/MASP]))
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d ([GlcNac/LF/CRP/C1] )

dt
= + ((ke021 · [GlcNac/LF/CRP] · [C1] − ke022 · [GlcNac/LF/CRP/C1]))

d ([C4BP] )

dt
= − ((kf011 · [C4BP] · [PC/CRP] − kf012 · [C4BP/PC/CRP]))

− ((kf021 · [C4BP] · [GlcNac/LF/CRP] − kf022 · [C4BP/GlcNac/LF/CRP]))

− ((kf041 · [C4BP] · [C4b] − kf042 · [C4BP/C4b]))

− ((kf061 · [C4b/C2a] · [C4BP] − kf062 · [C4b/C2a/C4BP]))

− ((kf071 · [dC4b/C2a] · [C4BP] − kf072 · [dC4b/C2a/C4BP]))

−
(
k1(tmp1) · [C4BP]

)
−

((
k1(tmpf1) · [C4BP] · [PC/CRP/LF] − k2(tmpf1) · [C4BP/PC/CRP/LF]

))
d ([C4BP/PC/CRP] )

dt
= + ((kf011 · [C4BP] · [PC/CRP] − kf012 · [C4BP/PC/CRP]))

d ([C4BP/GlcNac/LF/CRP] )

dt
= + ((kf021 · [C4BP] · [GlcNac/LF/CRP] − kf022 · [C4BP/GlcNac/LF/CRP]))

d ([iC4b/C2a] )

dt
= + (kf03 · [C4b/C2a] · [C4BP])

d ([C4BP/C4b] )

dt
= + ((kf041 · [C4BP] · [C4b] − kf042 · [C4BP/C4b]))

d ([C4b/C2a/C4BP] )

dt
= + ((kf061 · [C4b/C2a] · [C4BP] − kf062 · [C4b/C2a/C4BP]))

d ([dC4b/C2a/C4BP] )

dt
= + ((kf071 · [dC4b/C2a] · [C4BP] − kf072 · [dC4b/C2a/C4BP]))

d ([PC/CRP/LF/C1] )

dt
= + ((kd051 · [PC/CRP/LF] · [C1] − kd052 · [PC/CRP/LF/C1]))

− ((kd081 · [PC/CRP/LF/C1] · [MASP] − kd082 · [PC/CRP/LF/C1/MASP]))

d ([C4BP/PC/CRP/LF] )

dt
= +

((
k1(tmpf1) · [C4BP] · [PC/CRP/LF] − k2(tmpf1) · [C4BP/PC/CRP/LF]

))
d ([GlcNac/LF/CRP/MASP] )

dt
= + ((ke051 · [GlcNac/LF/CRP] · [MASP] − ke052 · [GlcNac/LF/CRP/MASP]))

d ([PC/CRP/LF/C1/MASP] )

dt
= + ((kd081 · [PC/CRP/LF/C1] · [MASP] − kd082 · [PC/CRP/LF/C1/MASP]))

+ ((kd091 · [PC/CRP/LF/MASP] · [C1] − kd092 · [PC/CRP/LF/C1/MASP]))

d ([GlcNac/HF] )

dt
= + ((kg011 · [X] · [HF] − kg012 · [GlcNac/HF]))

− ((kg021 · [GlcNac/HF] · [MASP] − kg022 · [GlcNac/HF/MASP]))

d ([HF] )

dt
= − ((kg011 · [X] · [HF] − kg012 · [GlcNac/HF]))

d ([GlcNac/HF/MASP] )

dt
= + ((kg021 · [GlcNac/HF] · [MASP] − kg022 · [GlcNac/HF/MASP]))

d ([X] )

dt
= − ((kg011 · [X] · [HF] − kg012 · [GlcNac/HF]))
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A.2 Experimental Materials and Methods

Antibodies, proteins & sera

Human C1 complex protein was purchased from Sigma-Aldrich (St. Louis, MO). Hu-

man C4b-binding protein was from Complement Technology (Tyler, Texas). Goat

anti-rabbit secondary antibody with HRP conjugation, polyclonal rabbit anti-C3d and

anti-C4c antibodies were purchased from Dako A/S (Glostrup, Denmark). Secondary

anti-sheep antibody was from Upstate (Lake Placid, NY). Rabbit anti-human C4BP

antibody and mouse anti-human C4BP antibody targeting N-terminal part of C4BP

were raised according to standard protocols. C4BP used as standard for ELISA was

purified from human plasma (Zadura et al., 2009; Dahlback, 1983). Serum samples were

obtained from healthy adults and infected patient volunteers with informed consent.

As an infecion marker, the CRP levels in the serum samples were determined using

the CRP Bioassay ELISA kit (BD Biosciences, San Jose, CA) to confirm the healthy

and infectious status of the samples. All experiments were performed according to na-

tional and institutional guidelines on ethics and biosafety (Institutional Review Board,

Reference Code: NUS-IRB 08-296).

Manipulation of C4BP level in the serum

The level of C4BP in the serum was increased by exogenously adding 100 µg purified

C4BP protein per ml serum. The C4BP level in the serum was reduced by immuno-

precipitation. One ml of serum was pre-cleared using 20 µl Protein G Sepharose (GE

healthcare, Uppsala, Sweden) at 4◦C for 1 hour with gentle shaking. Sheep polyclonal

anti-C4BP antibody (GeneTex Inc, Irvine, CA) was incubated with the pre-cleared

serum with gentle shaking at 4◦C for 1 hour. Protein G Sepharose (20 mul) was then

added to the serum containing the antibody-C4BP complex with gentle shaking at 4◦

C for 1 hour. The supernatant with reduced C4BP level was stored. For both treated
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and untreated serum samples, C4BP level was measured by C4BP sandwich ELISA

to ensure the successfully addition and depletion of C4BP (Figure A.3). 10% (v/v)

healthy serum, which was used in the subsequent experiments, was prepared by dilut-

ing the serum from healthy adult, in TBS buffer (25 mM Tris, 145 mM NaCl, pH 7.4,

2.5 mM CaCl2) and 10% (v/v) patient serum was prepared by diluting in MBS buffer

(25 mM MES, 145 mM NaCl, pH 6.5, 2.0 mM CaCl2).

C4BP quantification by sandwich ELISA

To compare the C4BP levels between treated and untreated sera, sandwich ELISA

was performed. 10 µl/ml of rabbit anti-human C4BP antibody in 50 µl coating buffer

(75 mM sodium carbonate, pH 9.6) was immobilized on 96-well Maxisorp plates (Nunc,

Roskilde, Denmark) by incubating overnight at 4◦C. After four washes with wash buffer

(50 mM Tris-HCL, pH 8.0 supplemented with 2 mM CaCl2, 0.15 M NaCl, 0.1% (v/v)

Tween-20), the wells were blocked with blocking buffer (1% BSA (w/v) in TBS) at

37◦C for 1 hour. Following four washes, treated and untreated sera were diluted 2000

times in blocking buffer and 50 µl was added to the wells and incubated at 37circC

for 1 hour. After four washes, C4BP protein amount was detected with mouse anti-

C4BP antibody (1 : 15000) followed by rabbit anti-mouse HRP-conjugated secondary

antibody (1 : 2000). ABTS substrate (Roche Diagnostics, Mannheim, Germany) was

added and the OD405nm was read. Wells incubated with blocking buffer instead of

serum served as a negative control.

Complement measurement by pull-down with GlcNAc- and PC- beads

Untreated serum or sera with increased or decreased C4BP from both healthy adults

and patients were challenged with GlcNAc-Sepharose (Sigma-Aldrich) to initiate L-

ficolin-mediated complement activation. 20 µl of GlcNAc beads was added to 500

µl of 10% serum. The beads were collected between 0.5 to 4.0 hours at intervals of
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0.5 hour. For patient’s serum, the beads also underwent incubation at shorter time

intervals of 0, 10 and 20 minutes. For CRP-mediated pathway, PC-Sepharose (Pierce,

Rockford, IL) was used in place of GlcNAc-Sepharose. Beads were washed thrice with

their corresponding incubation buffer and boiled in SDS-PAGE sample buffer.

Western blot

Protein samples of the different time points obtained from the previous step was elec-

trophoresed on 12% SDS-PAGE. The primary antibodies used were polyclonal sheep

anti-C4BP, polyclonal rabbit anti-C4c and polyclonal rabbit anti-C3d at dilutions of

1 : 1000. Secondary antibodies used were rabbit anti-sheep and goat anti-rabbit at dilu-

tions of 1 : 15000 and 1 : 2000 respectively. The fractionated proteins were transferred

to PVDF membranes (Bio-Rad). Membrane blots were incubated in blocking buffer

(3% skimmed milk (w/v) in TBS) overnight at 4circC. Primary antibodies were diluted

in TBS supplemented with 3% (w/v) BSA, 0.5% (v/v) Tween-20 and reacted with the

blots with gentle shaking for 2 hours at room temperature. After washing 4× for 15

minutes each with wash buffer (TBS supplemented with 0.5% (v/v) Tween-20), the

blots were incubated with HRP conjugated secondary antibodies with gentle shaking

for 2 hour at room temperature. Visualization was performed with the use of Super-

Signal West Pico Chemiluminescent Substrate from Thermo Scientific (Rockford, IL)

and exposed through X-ray. Densitometric analysis of the blots was performed using

GS-800 Calibrated Densitometer (Bio-Rad). Fixed amount of pure proteins were used

as positive controls and the amounts of protein on different gels were normalized to

the positive control and compared with each other. Data are representative of three

independent experiments.
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A.3 Experimental Data
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Figure A.1: Time serials experimental data under inflammation and normal conditions.
(A) PC-initiated complement activation, (B) GlcNAc-initiated complement activation.
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Figure A.2: Experimental verification of effects of C4BP under infection-inflammation
condition. Profiles of deposited C4BP or C3 across time points of 0 − 4 hours under
infection-inflammation condition via classical pathway (triggered by PC beads) or lectin
pathway (triggered by GlcNAc beads) in untreated or treated sera with increased C4BP
or decreased C4BP, were studied. The deposited protein was resolved in 12% reducing
SDS PAGE and detected using polyclonal sheep anti-C4BP. Same amount of pure
protein was loaded to each of the gels as the positive control (labeled as “C” in the
image). The black triangles point to the peaks of the time serials data.
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Figure A.3: C4BP levels measured by C4BP sandwich ELISA for both treated and
untreated serum samples.
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Guldberg, C. M. and Waage, P. (1879). Über die chemische affinitat. Prakt. Chem.,

19:69.

Gunawan, R., Cao, Y., Petzold, L., and Doyle, 3rd, F. J. (2005). Sensitivity analysis

of discrete stochastic systems. Biophys J, 88(4):2530–40.

Gunawan, R. and Doyle, 3rd, F. J. (2006). Isochron-based phase response analysis of

circadian rhythms. Biophys J, 91(6):2131–41.



BIBLIOGRAPHY 142

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and

Sethna, J. P. (2007). Universally sloppy parameter sensitivities in systems biology.

PLoS Computational Biology, 3(10):189.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability.

Formal Asp. Comput., 6(5):512–535.

Heath, J., Kwiatkowska, M., Norman, G., Parker, D., and Tymchyshyn, O. (2008).

Probabilistic model checking of complex biological pathways. Theoretical Computer

Science, 319(3):239–257.

Heinemann, M. and Panke, S. (2006). Synthetic biology–putting engineering into biol-

ogy. Bioinformatics, 22(22):2790–9.

Heiner, M., Koch, I., and Will, J. (2003). Model validation of biological pathways using

Petri nets - demonstrated for apoptosis. In Priami, C., editor, CMSB, volume 2602

of Lecture Notes in Computer Science, page 173. Springer.

Helikar, T., Konvalina, J., Heidel, J., and Rogers, J. A. (2008). Emergent decision-

making in biological signal transduction networks. PNAS, 105(6):1913–1918.

Hillston, J. (1996). A compositional approach to performance modelling. University

Press.

Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. Sci-

entific Computing, pages 55–64.

Hirsch, M. W., Smale, S., and Devaney, R. L. (2004). Differential Equations, Dynamical

Systems and In Introduction to Chaos. Elsevier, 2 edition.

Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002). The IκB-NF-κB

signaling module: Temporal control and selective gene activation. Science, 298:1241–

1245.



BIBLIOGRAPHY 143

Hooke, R. and Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical

problems. Journal of the Association for Computing Machinery, 8:212–229.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,

Mendes, P., and Kummer, U. (2006a). COPASI - a COmplex PAthway SImulator.

Bioinformatics, 22(24):3067–3074.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu,

L., Mendes, P., and Kummer, U. (2006b). Copasi–a complex pathway simulator.

Bioinformatics, 22(24):3067–3074.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin,

A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S.,

Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C.,

Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer,

U., Novre, N. L., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D.,

Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro,

B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner,

J., Wang, J., and Forum, S. B. M. L. (2003). The systems biology markup language

(sbml): a medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4):524–531.

Jaeger, M. (2004). Probabilistic decision graphs c combining verification and ai tech-

niques for probabilistic inference. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 12(Supplementary Issue 1):19–42.

James, A. B., Monreal, J. A., Nimmo, G. A., Kelly, C. L., Herzyk, P., Jenkins, G. I.,

and Nimmo, H. G. (2008). The circadian clock in Arbidopsis roots is a simplified

slave version of the clock in shoots. Science, 322(5909):1832–1835.

Jha, S., Clarke, E., Langmead, C., Legay, A., Platzer, A., and Zuliani, P. (2009). A



BIBLIOGRAPHY 144

bayesian approach to model checking biological systems. In Degano, P. and Gorrieri,

R., editors, Computational Methods in Systems Biology, volume 5688 of Lecture Notes

in Computer Science, pages 218–234. Springer Berlin / Heidelberg.

Ji, X. and Xu, Y. (2006). libsres: a c library for stochastic ranking evolution strategy

for parameter estimation. Bioinformatics, 22(1):124–126.

Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B.,

Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E., and

Stein, L. (2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids

Res, 33(Database issue):D428–32.

Keasling, J. D. and Chou, H. (2008). Metabolic engineering delivers next-generation

biofuels. Nat Biotechnol, 26(3):298–9.

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of

the Fourth IEEE International Conference on Neural Networks, pages 1942 – 1948,

Perth, Australia.

Kholodenko, B. N. (2007). Untangling the signalling wires. Nature Cell Biology,

9(3):247–249.

Khosla, C. and Keasling, J. D. (2003). Metabolic engineering for drug discovery and

development. Nat Rev Drug Discov, 2(12):1019–25.

Kirjavainen, V., Jarva, H., Biedzka-Sarek, M., Blom, A. M., Skurnik, M., and Meri,

S. (2008). Yersinia enterocolitica serum resistance proteins yada and ail bind the

complement regulator c4b-binding protein. PLoS Pathog, 4(8):e1000140.

Kleinstein, S. H., Bottino, D., and Lett, G. S. (2006). Nonunifrom sampling for global

optimization fo kinetic rate constants in biological pathways. In Proceedings of the

2006 Winter Simulation Conference (IEEE), pages 1161–1166.



BIBLIOGRAPHY 145

Klipp, E., Herwig, R., Kowald, A., Wierling, C., and Lehrach, H. (2005). Systems

Biology in Practice: Concepts, Implementation and Application. Wiley-VCH.

Koch, I., Junker, B. H., and Heiner, M. (2005). Application of petri net theory for

modelling and validation of the sucrose breakdown pathway in the potato tuber.

Bioinformatics, 21(7):1219–1226.

Koch, I., Reisg, W., and Schreiber, F., editors (2010). Modeling in systems biology: the

Petri net approach, volume 16 of Computational biology. Springer, New York, 1st.

ed edition.

Koh, C. H., Nagasaki, M., Saito, A., Wong, L., and Miyano, S. (2010a). Da 1.0: pa-

rameter estimation of biological pathways using data assimilation approach. Bioin-

formatics, 26(14):1794–6.

Koh, G., Hsu, D., and Thiagarajan, P. S. (2010b). Incremental signaling pathway

modeling by data integration. In Berger, B., editor, RECOMB, volume 6044 of

Lecture Notes in Computer Science, pages 281–296. Springer.

Koh, G., Tucker-Kellogg, L., Hsu, D., and Thiagarajan, P. (2007). Globally con-

sistent pathway parameter estimates through belief propagation. In Proceeding of

the Seventh Workshop on Algorithms in Bioinformatics (WABI), pages 420–430,

Philadelphia.

Koh, Y. N., Teong, H. F., Hsu, D., Clement, M.-V., and Thiagarajan, P. (2005).

Computational Modeling of the AKT Pathway. Unpublished.

Kwiatkowska, M. Z. and Heath, J. K. (2009). Biological pathways as communicating

computer systems. J Cell Sci, 122(Pt 16):2793–800.

Kwiatkowska, M. Z., Norman, G., and Parker, D. (2002). PRISM: Probabilistic sym-

bolic model checker. In Field, T., Harrison, P. G., Bradley, J. T., and Harder, U.,



BIBLIOGRAPHY 146

editors, Computer Performance Evaluation / TOOLS, volume 2324 of Lecture Notes

in Computer Science, pages 200–204. Springer.

Kwiatkowska, M. Z., Norman, G., and Parker, D. (2007). Stochastic model checking.

In Bernardo, M. and Hillston, J., editors, SFM, volume 4486 of Lecture Notes in

Computer Science, pages 220–270. Springer.

Kwiatkowska, M. Z., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., and Gaffney,

E. (2006). Simulation and verification for computational modelling of signalling

pathways. In Perrone, L. F., Lawson, B., Liu, J., and Wieland, F. P., editors,

Winter Simulation Conference, pages 1666–1674. WSC.

Langmead, C., Jha, S., and Clarke, E. (2006a). Temporal logics as query languages for

dynamic Bayesian networks: application to D. Melanogaster embryo development.

Technical report, Carnegie Mellon University.

Langmead, C. J., Jha, S., and Clarke, E. M. (2006b). Temporal-logics as query lan-

guages for dynamic bayesian networks: Application to d. melanogaster embryo de-

velopment. Technical report, Carnegie Mellon University.

Lauffenburger, D. A. (2000). Cell signaling pathways as control modules: Complexity

for simplicity? PNAS, 97(10):5031–5033.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li,

L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., and Hucka, M. (2006). BioModels

Database: A free, centralized database of curated, published, quantitative kinetic

models of biochemical and cellular systems. Nucleic Acids Research, 34:D689–D691.

Lebiedz, D. (2005). Exploiting optimal control for target-oriented manipulationof

(bio)chemical systems: A model-based approach to specific modification of self-

organized dynamics. International Journal of Modern Physics B, 19(25):3763–3798.



BIBLIOGRAPHY 147

Lee, D.-Y., Zimmer, R., Lee, S. Y., and Park, S. (2006). Colored Petri net modeling

and simulation of signal transduction pathways. Metabolic Engineering, 8:112–122.

Lee, K. H., Park, J. H., Kim, T. Y., Kim, H. U., and Lee, S. Y. (2007). Systems

metabolic engineering of escherichia coli for l-threonine production. Mol Syst Biol,

3:149.

Legewie, S., Bluthgen, N., and Herzel, H. (2006). Mathematical modeling identifies

inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Com-

putational Biology, 2(9):120–133.

Levenberg, K. (2). A method for the solution of certain nonlinear problems in least

squares. Quart. Appl. Math., 1994:164–168.

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He,

E., Henry, A., Stefan, M. I., Snoep, J. L., Hucka, M., Novre, N. L., and Laibe,

C. (2010). BioModels Database: An enhanced, curated and annotated resource for

published quantitative kinetic models. BMC Systems Biology, 4(92):1–14.

Li, C., Nagasaki, M., Ueno, K., and Miyano, S. (2009). Simulation-based model check-

ing approach to cell fate specification during caenorhabditis elegans vulval develop-

ment by hybrid functional petri net with extension. BMC Syst Biol, 3:42.

Liu, B., Zhang, J., Tan, P. Y., Hsu, D., Blom, A. M., Sethi, S., Ho, B., Ding, J. L., and

Thiagarajan, P. S. (2010). A computational and experimental study of the regulatory

mechanisms of the complement system. PLoS Computational Biology, accepted.

Lodish, H. F. (2003). Molecular cell biology. W.H. Freeman and Company, New York,

5th ed edition.

Logan, C. Y. and Nusse, R. (2004). The wnt signaling pathway in development and

disease. Annu Rev Cell Dev Biol, 20:781–810.



BIBLIOGRAPHY 148
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