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Summary

After ten years of development, Next-generation sequencing (NGS) has already been

successfully commercialized and widely applied in many scenarios. As a basic application,

genomic de novo assembly has also benefited from the development of many assemblers.

During a comparison between assemblies from different assemblers, it was found that

existing metrics only provided limited insight on specific aspects of genome assembly

quality, and sometimes even disagreed with each other. For better integrative comparison

between assemblies, I propose a new genome assembly metric, PDR, in this thesis. It

derives from a common question in genetic studies, and takes completeness, contiguity,

and correctness into consideration. The comparison between PDR and other metrics

on publicly available datasets showed its ability to integratively assess the quality of a

genome assembly. In fact, this ability is guaranteed by its definition.

Beyond assemblers, many assembly strategies were also developed, e.g. mate-pair library,

optical map, chromatin interaction, and genetic map. Among these strategies, genetic

map is the most widely adopted one in breeding studies. But genetic map construction

requires numerous computational resources and underperforms when draft assembly

contains misassembly. To address these limitations, I propose a new assembly-improving

method, CAST, in this thesis. It corrects and scaffolds a draft assembly by genetic

information in progenies’ NGS data, without the construction of a genetic map. In

theory, it first splits the draft assembly at genetically incoherent positions, and then

scaffolds contigs at genetically coherent positions. The evaluation on two public datasets

suggests that CAST was able to significantly improve a draft assembly’s contiguity and

correctness.
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Chapter 1
Overview

1.1 Introduction

1.1.1 Sequencing

Sequencing is a powerful tool for investigation of genomes. It is instrumental to revealing the

underlying mechanisms of many biological processes. The Sanger sequencing technique, also known

as First-Generation Sequencing, was presented in 1977 [Sanger et al., 1977]; however, it was very

time-consuming and costly. In the late 1990s, some high-throughput sequencing techniques called

Next-Generation Sequencing(NGS) were developed and commercialized. Subsequently, the cost of

NGS has decreased dramatically as shown in Figure 1.1 [Wetterstrand, 2013].

In 2006, it cost 14 million dollars to sequence a human genome; in contrast, that only cost about

1000 dollars in 2016. This makes sequencing affordable for a lot of research projects and even some

clinical applications. There are also several new sequencing techniques developed in recent years, with

read length longer than ten thousand bases. However, up to now, these long-read length techniques

are relatively expensive and error-prone.

1.1.2 Genome assembly

The reads from sequencers are small fragmented segments of a sample’s genome. When a reference

genome is absent, de novo assembly is usually performed to provide a global view of the sample’s

genome. Along with sequencing technologies, assembly methods have also evolved over the last

ten years. Different representations were proposed to better describe and model information in

sequencing data. Overlap-Layout-Consensus methods like Celera Assembler [Myers et al., 2000]
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Figure 1.1: Cost per raw megabase of DNA sequence.

were commonly used in early assemblies. These methods usually perform a pairwise alignment on

sequencing reads, and then arrange a layout of all reads. The consensus sequence from such a layout

is outputted as assembly result. But these methods require a large memory as well as long runtime

for high-throughput NGS sequencing data. To address this, de Bruijn graph was first introduced in

EULER [Pevzner et al., 2001] and later adopted by Velvet [Zerbino and Birney, 2008] and Spades

[Bankevich et al., 2012]. These de Bruijn graph-based methods use sliding window to decompose

sequencing reads into substrings of length k (called k-mers). Then, k-mers are used to construct a

de Bruijn graph where each node represents a distinct k-mer and each edge links two k-mers with an

overlap of k-1 bases. Finally, an assembly is generated by Euler paths in subgraphs. Due to their low

memory requirements, de Bruijn graph-based methods quickly became mainstream. Recently, some

assemblers deploy even more elaborate algorithms to fit the characteristics of specific platforms; e.g.

Canu [Koren et al., 2017] and miniasm [Li, 2016] were specially designed for long but noisy reads

from Pacific Biosciences and Oxford Nanopore.

However, these assembly methods still often produce assemblies that are fragmented, incomplete,

and even contain misassembled segments. This is mainly due to repeat regions in the genome. It

is very difficult to uniquely determine the flanking sequence on either side of a repeat region when

2



the repeat is too long to be spanned by a single read. Conservative assemblers leave these flanking

sequences as separate contigs, resulting in fragmented assemblies. In contrast, aggressive assemblers

try to resolve repeat regions based on subtle clues, at the cost of making misassemblies. Obviously,

misassembly as well as poor connectivity hinders downstream analysis.

1.1.3 PDR

To evaluate assemblies from different assemblers, various metrics have been proposed for assessment

of genome assembly. However, current popular genome assembly quality metrics evaluate contiguity,

completeness, and correctness separately; it is not straightforward to get a correct picture of the

overall quality of an assembly from these.

To address this problem, I consider the requirements of a good assembly: it should be highly similar

to the real genome, especially in the aspect of genetic structure and property. Specifically, two

genomes (or assemblies) are more similar to each other if the distance between any pair of positions

in one genome is more similar to their distance in the other genome. This inspires me to propose a

new metric PDR. It measures the quality of an assembly by the average ratio of the distance between

any pair of positions in the reference genome to their distance in the draft assembly. It not only

integrates contiguity, completeness, and correctness, but also makes good biological sense. Definitely,

the computation over all pairs of positions in a large genome requires an efficient algorithm, otherwise

the runtime is quadratic to the genome size. Thus, I also propose an approximation to compute

PDR by integral. The error of this approximation is observed to be extremely small on a recent

benchmark dataset. The result on this benchmark also shows that none of contiguity, completeness,

or correctness has overwhelming impact on PDR. The PDR implementation based on integral is

available at https://github.com/XLuyu/PDR.

1.1.4 CAST

With PDR as a reasonable metric, I have a deeper understanding about the limitation of tuning

the aggressiveness of a genome assembler. In fact, there is a need of a better approach to further

improve the quality of draft assembly, rather than to simply look for trade-off between contiguity and

correctness by tuning the aggressiveness of a genome assembler.
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In parent-progeny studies, as progeny sequence data are available, genetic map-anchoring approaches

have an important budget advantage compared to other approaches (e.g. Hi-C experiments and

optical maps) for improving genome assembly quality. However, when an appropriate genetic map

is not available, the high time and memory demand of de novo genetic map construction severely

hinders the application of genetic map-anchoring approaches on large genomes.

I recall the idea behind a genetic map, i.e. the law of genetic linkage: the closer two loci are in a

genome, the more likely they are inherited together. Thus by abduction 1, given many progenies, if

two positions in these progenies have highly correlated alleles, these two positions are likely close

together in the parent genome. This inspires me that it is not necessary to explicitly construct

a genetic map. Genetic information can be integrated into an assembly by checking whether its

contigs follow the law of genetic linkage. In other words, when two contigs in a draft assembly have

many positions with highly correlated alleles in many progenies, these two contigs can be scaffolded

or even merged; conversely, when two halves of a contig in a draft assembly have many positions

with uncorrelated alleles in many progenies, this contig can be split into two. Based on this idea, I

propose CAST, a new correction and scaffolding tool for draft assembly. CAST uses progeny data

but requires no genetic map. I have evaluated CAST on two datasets and have verified the correction

and scaffolding made by CAST, using Hi-C data and synteny analysis against reference genomes.

The results show that CAST improves the contiguity and correctness of draft genome assemblies.

CAST is available at https://github.com/XLuyu/CAST.

1.2 Thesis organization

This thesis consists of 4 chapters. In Chapter 2, a new metric PDR is proposed to better assess

assemblies. It is compared to existing metrics on a benchmark. Chapter 3 first provides a detailed

review of several assembly-improving methods. Then, I propose a new method to correct and scaffold

draft assembly, followed by its evaluation on two datasets. Finally, I conclude these works and propose

some future work in chapter 4.

1A form of logical inference which starts with an observation or set of observations then seeks to find the simplest
and most likely explanation for the observations
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Chapter 2
PDR: a new genome assembly evaluation metric

2.1 Background

Over the past dozen years, NGS (Next-Generation Sequencing) has become a popular and powerful

tool for genetic research. Its decreasing cost makes it affordable even for large genomes. Therefore,

more and more species are sequenced and assembled. Meanwhile, assembly methods have also

evolved along with sequencing technologies. Tens of assemblers have been developed with various

strategies. Most of them are optimized for a specific sequencing technology or genome property.

Thus, these assemblers outperform others on specific data for which they are optimized. Given

the number of available assemblers, it has been a difficulty for people to select a suitable one. To

provide some insight and guide such selection, many assembler benchmarks have been developed.

Assemblathon [Earl et al., 2011, Bradnam et al., 2013] was first launched in the form of an assembly

competition on given datasets. It compared assemblies from participating groups by tens of metrics.

Salzberg et al. [2012] built up a benchmark GAGE on real datasets and tested 8 popular assemblers

with a few metrics for multiple aspects. As genome assembly is shifting from short reads to long noisy

reads in recent years, some comparison studies and benchmarks were proposed to assess assemblers

for long noisy reads. In the same year, Sović et al. [2016] and Jayakumar and Sakakibara [2017]

evaluated several assemblers for Pacbio SMRT data and Oxford Nanopore data, respectively. Beyond

assemblers, assembly reconciliation tools were also compared and evaluated by Alhakami et al. [2017].

2.1.1 Contiguity

In principle, there is no standard metric set for genome assembly evaluation. Nevertheless, some

metrics are commonly used in almost all of such works. A typical example is N50, which is defined as
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Figure 2.1: An example of NG50 (N50). Two assemblies are sorted and lined up. The 50th percentile of genome size (assembly
size) is marked by black dot line. The NG50 (N50) length contigs are highlighted. The blue assembly is overall better than the
red one, but its NG50 and N50 are lower.

the length of the longest scaffold (or contig) that at least 50% length of the assembly is contributed

by scaffolds (or contigs) equal to or longer than it. This statistic has been widely used as well as

criticized. An early challenge argued that the comparison could be unfair for assemblies with different

sizes, especially when these assemblies come from an identical sample. NG50 was thus proposed,

which is similar to N50 except the assembly size is replaced by an estimated genome size [Earl et al.,

2011]. However, even NG50 could be misleading in some cases. Figure 2.1 shows an example where

the blue assembly is overall better than the red one, but has lower NG50 and N50. QUAST [Gurevich

et al., 2013] addressed this problem by offering NGx (Nx) plot to avoid domination of the 50th

percentile.

However, this plot is not able to solve another problem in NG50: misassembly (a.k.a misjoin or

structural error) resulting in larger contigs and thus inflated NG50. To fix this, when a reference

genome is available, many benchmarks and evaluation tools used alignment block length to replace

contig length in NG50 counting. These metrics include contig path NG50s [Earl et al., 2011],

corrected Nx [Salzberg et al., 2012], normalized N50 [Mäkinen et al., 2012], and NGA50 [Gurevich

et al., 2013]. Although they slightly differ in definition and implementation, their principle is identical:

break erroneous contigs at misassembled points. This series of metrics are usually used in assessment

of contiguity.

Besides these, there are some other contiguity metrics, despite they were only used in limited studies.

For example, E-size was proposed in GAGE and defined as the expected contig length at which a

random position locates. Similar to N50, this metric only reflects the distribution of contig lengths

and can be inflated by misassemblies. With a reference genome, another metric U50 [Castro and

Ng, 2017] identified unique, target-specific contigs by removing overlapping sequence, aiming at

circumventing some limitations that are inherent to the N50 metric. In Assemblathon [Earl et al.,
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2011, Bradnam et al., 2013], CC50 was defined as a distinct idea. A pair of positions in a chromosome

is correctly contiguous (CC) if they are identified in the same contig as well as right order. The

distances between such 2 positions in the reference genome are gathered, and CC50 is the 50-th

percentile of them. As its computation is time-consuming, it was only estimated by a sampling-based

method.

2.1.2 Completeness

Completeness is another dimension in genome assembly evaluation. In some benchmarks, only

contiguity was evaluated and completeness was considered as a part of it. In fact, completeness

focuses more on the loss caused by an assembly, while contiguity reflects the reconstruction of

local context. A universal metric of completeness is alignment coverage. It is very straightforward

but sometimes poorly discriminative: not only good assemblies but also raw reads can achieve an

alignment coverage above 90%. When a reference genome is not available, completeness can be

assessed by CEGMA [Parra et al., 2007] and BUSCO [Simão et al., 2015]. They collect a set of

conserved single-copy orthologs and test whether an assembly contains them. In other words, what

they reflect is the completeness of gene space, not exact completeness of the assembled genome. So,

they are actually sampling tests.

2.1.3 Correctness

One more aspect in genome assembly evaluation is correctness. The commonly used metrics are

more straightforward than those for contiguity and less improved over time. These metrics usually

include single base errors (mismatch), indels, and misassemblies. Misassembly is regarded as the

most harmful type and widely used in metrics for assessment of correctness. To better profile this

type, in QUAST, it is further categorized into: (a) relocation, a position whose flanking sequences

are aligned to the same chromosome but away from each other; (b) inversion, a position whose

flanking sequences are aligned to the same chromosome but on opposite strands; (c) translocation, a

position whose flanking sequences are aligned to different chromosomes. Though these are enough to

assess correctness, they are limited by the need of a reference genome, which is usually not available

in de novo assembly. Moreover, these counts on the number of misassemblies do not reflect the size
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and effect of misassemblies.

Thus, REAPR [Hunt et al., 2013] and LAP [Ghodsi et al., 2013] were proposed to evaluate an

assembly by checking the consistency between the assembly and the sample’s sequencing reads in

the absence of a reference genome. REAPR requires mapped pair-end reads with long insert size

(>1000 bp) and utilized their pairing and mapping information as assessment evidence. Therefore, its

performance is subject to the quality and insert size of reads. LAP defines quality as the conditional

probability of observing the sequenced reads from the assembled sequence. But it is only applicable

to comparing assemblies derived from the same read set. Similar to REAPR and LAP, FRCurve

[Narzisi and Mishra, 2011] utilizes read layout information to detect misassembly features. Then, it

plots a Feature-Response curve which shows the maximal total length of contigs (Y-axis) within a

given number of misassembly feature count (X-axis). In fact, FRCurve not only evaluates correctness,

but also contiguity. To give a quantitative metric, the plot is used to compute corrected N50. Unlike

NGA50, the corrected N50 does not completely avoid the drawbacks of N50. A few misassemblies in

large contigs can still heavily inflate corrected N50. Another problem of FRCurve is that all error

features (e.g. alignment breakpoints, low depth, and abnormal read orientation) are equally weighted

regardless of their effect in downstream analysis.

2.1.4 Need for an overall metric

There is a trade-off between contiguity and correctness. Specifically, some aggressive assemblies are

better in contiguity at the cost of correctness, while others yield shorter contigs with fewer errors.

Divergence mostly happens during contig extension at repeat regions. When a repeat region is too

long to be spanned by a single read, assemblers have multiple choices to extend a contig but do

not know which is the right one. Conservative assemblers stop extension when they lack enough

evidence to make a decision, resulting in fragmented assemblies. In contrast, aggressive assemblers

continue to extend the sequence along the way with subtle clues, at the risk of misassembly. Different

assemblers have their own strategies to determine whether to continue extension; and if to continue,

which choice is better.

In benchmarks and evaluation tools, each of contiguity, completeness, and correctness(C3) is usually

investigated by a few metrics to provide a multidimensional comparison and global profile of assemblies.
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However, as criticized by Haiminen et al. [2011], providing tables full of different assembly metrics

complicates the comparison between assemblies as each metric has its own front runner. Such overly

detailed information does not really guide practice. It is still hard to tell which assembly is overall

better. To address this, it is desirable to have an overall metric or score which integrates all three

aspects, viz. contiguity, completeness, and correctness. Thus, I propose a new metric for genome

assembly assessment to fill this gap. Pairwise Distance Reconstruction(PDR) integrates C3 into one

value by reasonable weights derived from a basic concern in genetic studies.

2.2 Methods

2.2.1 Definition

PDR is designed to answer the question: How accurately the distance of two positions on the genome

can be obtained from the assembly? First, a position in a genome can be denoted by a coordinate

(c, p) where c is the chromosome and p is the index on the chromosome (hereafter, chromosome and

contig refer to sequences in the reference genome and the assembly respectively). Then, the distance

between two positions A = (cA, pA) and B = (cB, pB) is defined as:

|AB| =


|pB − pA| cA = cB

+∞ cA 6= cB

(2.1)

Similarly, a position in an assembly is also denoted as a coordinate. For example, A and B in the

reference genome map to A′ = (cA′ , pA′) and B′ = (cB′ , pB′) in the assembly, respectively. A quality

score S(A,B) ∈ [0, 1] can be defined to quantify the relative fold change of the distance between

the reference genome and the assembly:

S(A,B) =


|AB|
|A′B′| |AB| ≤ |A

′B′|

|A′B′|
|AB| |AB| > |A′B′|

= min(|AB|, |A′B′|)
max(|AB|, |A′B′|)

(2.2)

Note the convention that 0
+∞ = 0 and +∞

+∞ = 1 in Equation 2.2 for practical reason. Figure 2.2 shows
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Figure 2.2: Quality score examples. The blue and red bars are reference chromosomes and assembly contigs, respectively. The
lines between them are mappings for positions labeled by capitals. The score for each position to A is marked under blue bar,
e.g. S(A, B) = 0.5, S(A, D) = 1 .

a few examples of quality score. Definitely, if two positions locate on the same chromosome but

map to different contigs, then the quality score is 0 as the assembly provides incorrect information,

and vice versa (AE and AF in Figure 2.2). In contrast, if the distances in the reference genome

and assembly are identical like AD or AG in Figure 2.2, the quality score is 1 as the information is

perfectly reconstructed. Otherwise, if one of |AB| and |A′B′| is half of the other one (AB and AC

in Figure 2.2), the quality score is 0.5 as downstream genetic analysis, e.g. genetic distance, will

be biased by a factor of 0.5. Thus, this quality score reflects the accuracy of the information for a

pair of positions in the assembly. Finally, the PDR of an assembly A can be simply defined as the

average quality score of all pairs in the reference genome G:

PDR(A) = 1
|G|2

∑
A,B∈G

S(A,B) (2.3)

For easier reading and interpretation, PDR is preferred to be expressed as a percentage because

0 ≤ PDR ≤ 1 always holds.

Note that if I define S(A,B) = 1 for all pairs located on the same chromosome and same contig,
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regardless of distance, then Equation 2.2 degenerates to:

Sd(A,B) =



1 cA = cB and cA′ = cB′

0 cA 6= cB and cA′ = cB′

0 cA = cB and cA′ 6= cB′

1 cA 6= cB and cA′ 6= cB′

(2.4)

And the corresponding PDRd(A) = 1
|G|2

∑
A,B∈G Sd(A,B) is exactly the probability that the assembly

can successfully answer whether two randomly specified reference genome positions A and B locate

on the same chromosome. This is a very basic question in genetic linkage studies. In further studies

like genetic distance estimation, the distance on the same chromosome between A and B matters.

And this is the reason I extend Equation 2.4 to Equation 2.2.

2.2.2 Relation to C3

In Equation 2.3, it is assumed that every position in the reference genome can be mapped to the

assembly. However, there is no such guarantee in practice. In fact, an assembly usually has an

alignment coverage, denoted as α. Any pair involving at least one uncovered position has score 0.

Thus by Equation 2.3, PDR(A) ≤ α2. In this way, completeness is integrated in PDR as the upper

bound.

Contiguity is also a part of what PDR evaluates. In a fragmented assembly, widespread separated

pairs (e.g. AE in Figure 2.2) score 0 and lower the PDR. In contrast, increase of contiguity essentially

converts separated pairs to linked pairs (i.e. on the same chromosome like AB, AC, AD) and thus

increases PDR.

To analyze the effect of correctness, misassemblies including relocation, inversion, and translocation

are considered. In Figure 2.3a, AB and AC are two typical examples of relocation. Compared to

perfect pairs, such relocation pairs are penalized by a factor of fold change of the sequence length

in the middle. Second, consider another simple case that B and C are boundary of an inversion,

as shown in Figure 2.3b. In this case, like relocation, AB and AC are penalized. Note that the

position Y at the exact middle of B and C has a score 1 for AY , because this position keeps the

11



(a) Relocation example. The green block is relo-
cated at the middle between A and B due to mis-
assembly. Not only the distance between A and C
changes, but the distance between A and B also
increases. S(A, B) and S(A, C) are therefore only
0.5.

(b) Inversion example. The block between B and C
is inverse due to misassembly. S(A, Y ) = 1 because
Y is the center of inversion. All other positions be-
tween B and C are penalized by 0 ∼ 0.5, depending
on their distance changes. (e.g. S(A, B) = 0.5 and
S(A, C) = 0.5)

(c) Translocation example. A perfect assembly is shown on the left side, where S(A, F ) = 1. Another
assembly with translocation is shown on the right side. S(A, F ) reduces to 0 as A′ and F ′ are incorrectly
placed on the same contig in this assembly.

Figure 2.3: Examples of correctness. The blue and red bars are reference chromosomes and assembly contigs, respectively. The
lines between them are mappings for positions labeled by capitals. The score for each position to A is marked under blue bar,
e.g. S(A, B) = 0.5, S(A, Y ) = 1

right distance to A. Thus, the penalty for inversion is similar to that of relocation but each position’s

penalty depends on its distance to the center of inversion. For translocation, Figure 2.3c shows

a simple comparison. In the fragmented but correct assembly, S(A,F ) = 1 as the information is

consistent to the reference genome. However, in the other assembly with translocation, S(A,F ) = 0

because the assembly draws a misleading conclusion about A and F . In fact, all pairs bridging

the translocation point have a score of 0. This is an essential difference between PDR and other

contiguity-only metrics like X50 series. Even in NGA50, misassemblies are just simply split and no

penalty is applied on such misleading information in the assembly. Ignoring the risk of misassemblies,
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benchmarks and comparisons become unfair for conservative assemblers. PDR addresses this problem

by integrating contiguity and correctness with reasonable implicit weights in the context of genetic

studies.

2.2.3 Computation

As PDR needs to compute the average of quality scores for all pairs of positions in a reference genome

of size |G|, its computational complexity is O(|G|2). This complexity is impractically high for a large

genome. Thus, I approximate it by an integral of mapping segment pairs. (The error is extremely

small, as verified in Section 2.3.)

First, each chromosome in the reference genome is split into non-overlapping blocks by a fixed length

l, except the last block which is allowed 50% more or less than l. Then, these blocks are mapped

to the assembly by an aligner like BWA [Li and Durbin, 2009] or Minimap2 [Li, 2016]. Contiguous

blocks are merged if they are mapped to contiguous positions in the assembly. The merged blocks

are called mapping segments, denoted as the set M. Compared to |G|, |M| is much smaller. Then,

pairwise computation of all mapping segments is performed where each pair of mapping segments

can be computed in constant time. For simplicity, the multi-mapping case is postponed.

First consider a simple example shown in Fig 2.4a, where two segments AB and CD only map to

(a) I = 1 when C′D′ and A′B′ are mapped on the
same strand.

(b) I = −1 when C′D′ and A′B′ are mapped on
different strands.

Figure 2.4: Mapping segments in pairwise computation. In each subfigure, two segments AB and CD map to A′B′ and C′D′,
respectively. X and Y are enumerated on AB and CD, respectively.
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A′B′ and C ′D′. For any position X on AB, and Y on CD:

S(X,Y ) = min(|XY |, |X ′Y ′|)
max(|XY |, |X ′Y ′|) = min(|d+ y − x|, |d′ + y − x|)

max(|d+ y − x|, |d′ + y − x|) (2.5)

where d = |AC|, d′ = |A′C ′|, x and y are offsets from the start of segments. Then, the sum of all

such XY pairs is the quality score for AB and CD:

S(AB,CD) =
|CD|∑
y=0

|AB|∑
x=0

min(|d+ y − x|, |d′ + y − x|)
max(|d+ y − x|, |d′ + y − x|)

≈
∫ ly

y=0

∫ lx

x=0

min(|d+ y − x|, |d′ + y − x|)
max(|d+ y − x|, |d′ + y − x|)dxdy

(2.6)

where lx = |AB|+1−ε, ly = |CD|+1. During computation, the mapping segments are enumerated by

reference coordinate order. Thus, without loss of generality, it can be assumed that A < B < C < D

(hereinafter, position variables on the same chromosome/contig are comparable by coordinate). Also,

an additional infinitesimal ε in lx avoids d+ y − x = 0 with a negligible effect on the integral result.

Based on these, d+ y − x > 0 are guaranteed and the absolute-value function for it can be removed.

Also, AB and CD are mapped on the same strand in this example. But this is not guaranteed in all

mappings, e.g. inversion in Fig 2.4b. To simplify the computation, the strand on which AB maps is

defined as the plus strand. By this way, A′ < B′ is fixed. To indicate the strand CD maps on, an

indicator I is introduced to Equation 2.6:

S(AB,CD) ≈
∫ ly

y=0

∫ lx

x=0

min(d+ y − x, |d′ + Iy − x|)
max(d+ y − x, |d′ + Iy − x|)dxdy (2.7)

where I = 1 when CD maps on the same strand as AB (Fig 2.4a), otherwise I = −1 (Fig 2.4b).

In practice, a reference block can map to multiple positions in the assembly. This is mainly due to

the repeat regions in the genome. A reasonable solution is to try every mapping position of each

segment in the computation of Equation 2.7, and take the maximal quality score (In fact, it does not

matter as discussed later in Section 2.3.4). Finally, PDR is approximated to:

PDR(A) ≈ 1
|G|2

∑
AB,CD∈M

S(AB,CD) (2.8)

14



Figure 2.5: The surfaces of d + y − x and |d′ + Iy − x| when I = 1, d = 10, d′ = −4.

2.2.4 Integral

In Equation 2.7, the integrand contains absolute value, min, and max. Therefore, it is solved

as a piecewise function. For a given y, the sub-function changes at |d′ + Iy − x| = 0 and

d+y−x = |d′+ Iy−x|. To illustrate this, Fig 2.5 plots the surfaces of 10 +y−x and |−4 +y−x|.

The first boundary is always a line d′ + Iy − x = 0, while the second boundary depends on the value

of I.

When I = 1, d+ y − x = |d′ + Iy − x| has two solutions. For d′ + y − x ≥ 0, the solution is d = d′

and thus sub-function has no change. For d′ + y − x < 0, the solution is x = (d+ d′)/2 + y. The
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(a) I = 1 (b) I = −1 and d < d′

(c) I = −1 and d ≥ d′

Figure 2.6: Illustration of sub-domain in piecewise integral. The sub-domains satisfying d′ + Iy − x < 0 are green, otherwise
red. Shadow masks sub-domains satisfying |d′ + Iy − x| > d + y − x.

integral sub-domains are illustrated by Fig 2.6a and the Equation 2.7 is extended to:

S(AB,CD) ≈
∫ ly

y=−d′

∫ d′+y

x=0

d′ + y − x
d+ y − x

dxdy

+
∫ lx−d′

y=−(d+d′)/2

∫ (d+d′)/2+y

x=d′+y

−(d′ + y − x)
d+ y − x

dxdy

+
∫ lx−(d+d′)/2

y=0

∫ lx

x=(d+d′)/2+y

d+ y − x
−(d′ + y − x)dxdy

(2.9)

When I = −1, the two solutions of d+y−x = |d′+ Iy−x| have different forms. For d′−y−x ≥ 0,

the solution is y = (d′ − d)/2. For d′ − y − x < 0, the solution is x = (d + d′)/2. Note that

0 < (d′ − d)/2 and (d+ d′)/2 < lx are never satisfied simultaneously: If d > d′ then 0 > (d′ − d)/2;

otherwise d ≤ d′ ⇒ (d + d′)/2 ≥ d = |AC| ≥ lx. This leads to different sub-domain layouts, as
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shown in Fig 2.6b and Fig 2.6c. The Equation 2.7 is thus extended to:

S(AB,CD) ≈



∫ ly

y=d′−lx

∫ lx

x=d′−y

−(d′ − y − x)
d+ y − x

dxdy

+
∫ d′

y=(d′−d)/2

∫ d′−y

x=0

d′ − y − x
d+ y − x

dxdy

+
∫ (d′−d)/2

y=0

∫ lx

x=0

d+ y − x
d′ − y − x

dxdy

d < d′

∫ ly

y=d′−lx

∫ (d+d′)/2

x=d′−y

−(d′ − y − x)
d+ y − x

dxdy

+
∫ d′

y=0

∫ d′−y

x=0

d′ − y − x
d+ y − x

dxdy

+
∫ ly

y=0

∫ lx

x=(d+d′)/2

d+ y − x
−(d′ − y − x)dxdy

d ≥ d′

(2.10)

During integral computation, regardless of the value of I, all sub-domains need to be pruned by

intersecting with x ∈ [0, lx] and y ∈ [0, ly]. This may result in empty sub-domains as well as further

sub-domains from trapezoidal sub-domains. Finally, the integral expression of all sub-domains are

generalized; each sub-domain can be transformed to one of the following four generalized forms:

1. ±
∫ v

w

∫ p
q

a+Ly−x
b+Ky−xdxdy

2. ±
∫ v

w

∫ p+y
q

a+y−x
b+y−xdxdy

3. ±
∫ v

w

∫ p−y
q

a−y−x
b+y−xdxdy

4. ±
∫ v

w

∫ p+y
q+y

a+y−x
b+y−xdxdy

where L,K ∈ {−1, 1}. The leading ± is jointly determined by the sign of d′ + Iy − x and whether

x’s upper limit and lower limit are swapped during transformation. For simplicity, they are solved

without considering ±.
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∫ v

w

∫ p

q

a+ Ly − x
b+Ky − x

dxdy

=
∫ v

w
(x− (Ly −Ky + a− b) log (Ky + b− x))|pqdy

=1
2
(
(p− q)(v − w)(2−K(K − L))

+ v(Kv − Lv − 2a+ 2b)(log (−Kv − b+ p)− log (−Kv − b+ q))

− w(Kw − Lw − 2a+ 2b)(log (−Kw − b+ p)− log (−Kw − b+ q))

+ (b− p)(−2Ka+Kb+Kp+ Lb− Lp)(log (2K(Kv + b− p))− log (2K(Kw + b− p)))

− (b− q)(−2Ka+Kb+Kq + Lb− Lq)(log (2K(Kv + b− q))− log (2K(Kw + b− q)))
)

(2.11)

∫ v

w

∫ p+y

q

a+ y − x
b+ y − x

dxdy

=
∫ v

w
(x− (a− b) log (b− x+ y))|p+y

q dy

=v2

2 −
w2

2 − (w − v)(p− q)

+ (a− b)(b− q)(log (b− q + v)− log (b− q + w))

+ (a− b)(v log (−b+ q − v)− w log (−b+ q − w))

+ (w − v)(a− b)(log (−b+ p) + 1)

(2.12)

∫ v

w

∫ p−y

q

a− y − x
b+ y − x

dxdy

=
∫ v

w
(x+ (−a+ b+ 2y) log (−b+ x− y))|p−y

q dy

=(w − v)(w + v + b− p)
2

+ v(−a+ b+ v)(log (−b+ p− 2v)− log (−b+ q − v))

− w(−a+ b+ w)(log (−b+ p− 2w)− log (−b+ q − w))

+ (a− q)(b− q)(log (b− q + v)− log (b− q + w))

+ 1
4(b− p)(−2a+ b+ p)(log (2b− 2p+ 4v)− log (2b− 2p+ 4w))

(2.13)
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∫ v

w

∫ p+y

q+y

a+ y − x
b+ y − x

dxdy

=
∫ v

w
(x− (a− b) log (b− x+ y))|p+y

q+ydy

=(v − w)(p− q − (a− b) log (−b+ p) + (a− b) log (−b+ q))

(2.14)

2.3 Experiment

2.3.1 Dataset

To profile and further investigate PDR’s properties, three datasets from the QUAST-LG benchmark

(available on http://cab.spbu.ru/software/quast-lg/) were selected to compute PDR for all assemblies

in each dataset. The basic information are summarized in Table 2.1. As shown in the table, these

datasets have different genome sizes and were assembled by multiple assemblers. So, they have

enough diversity to test PDR’s robustness. In each dataset, besides assemblies from assemblers,

Mikheenko et al. [2018] also proposed a "UpperBound" assembly inferred from the given sequencing

data and a reference genome to indicate the theoretically best assembly.

PDR was then compared with metrics in the original QUAST reports. From the original reports,

genome fraction (a.k.a alignment coverage) was selected as key metrics for completeness, while

contiguity is reflected by NG50 and NGA50. In terms of correctness, misassembly count is a common

representative. Meanwhile, for the yeast dataset and the worm dataset, an accurate PDR defined by

Equation 2.3 was also computed by brute force to verify the error introduced by the approximation in

Table 2.1: The basic information of datasets.

Dataset Genome
Size (bp)

Sequencing Platform Assemblers

S. cerevisiae (Yeast) 12.1M Illumina pair-ends and
PacBio SMRT

UpperBound, Canu, FALCON,
Flye, MaSuRCA, Miniasm

C. elegans (Worm) 100.3M Illumina pair-ends and
PacBio SMRT

UpperBound, Canu, FALCON,
Flye, MaSuRCA, Miniasm

Human HG001 3.1G Illumina pair-end and
Oxford Nanopore

UpperBound, Canu, Flye
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Equation 2.8.

The PDR computation for all assemblies was carried out on a computing node with two six-core Intel

Xeon E5-2620 v3 2.4GHz CPUs and 64G random-access memory. Whereas, the brute force for the

accurate PDR was executed on a distributed system comprising of 36 nodes.

2.3.2 Aligner and block size

Before considering other aspects, aligner and block size l were first investigated to find the best

settings in practice. The yeast dataset includes 6 assemblies and was used to compute PDR based

on BWA and Minimap2, varying the block size from 30 to 100 bases. Figure 2.7 shows the result.

Although BWA converged faster than Minimap2 on all assemblies, Minimap2 also converged with

block size increase. After convergence, the differences between assemblies were much larger than

those between aligners. Thus, aligner is not a key factor in PDR computation, as long as the block

size is large enough.

As BWA had better accuracy and converges earlier then Minimap2, the following evaluations were

Figure 2.7: PDR on different block sizes and aligners. All 6 assemblies (distinguished by color here) from the yeast dataset were
used to compute PDR. During PDR computation, BWA (solid lines) and Minimap2 (dashed lines) were used as aligner. Block
size was tuned along X-axis.
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carried out based on BWA. And the block size l was set to 1000 for the sake of runtime.

2.3.3 Approximation

Since an approximation is used for fast computation of PDR, its acceleration effect and introduced

error need to be measured. Table 2.2 and Table 2.3 show a comparison between approximated PDR

and accurate PDR on the yeast dataset and the worm dataset. The human dataset was not used

because the brute force computation of PDR could not finish within one day.

According to the |PDR-aPDR| row in these tables, it is obvious that the approximation in Equation 2.8

had an extremely small error, which is below 1E-9. In contrast, the runtime differences were very

large. The computation for PDR for each assembly in the yeast dataset and the worm dataset finished

Table 2.2: Approximation and acceleration effect on the yeast dataset. The "PDR" in this table was computed by the integral
approximation on a single computing node, while the "aPDR" is the accurate PDR computed by brute force on 36 computing
nodes. (Aligner’s runtime was not included)

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

PDR 98.74% 93.64% 91.44% 94.49% 88.49% 93.27%

aPDR 98.74% 93.64% 91.44% 94.49% 88.49% 93.27%

|PDR-aPDR| 6.5937E-11 2.3E-11 1.98E-10 2.9E-11 1.437E-10 2.5E-11

PDR runtime 1s 1s 1s 1s 1s 1s

aPDR runtime 201s 185s 178s 172s 90s 172s

Table 2.3: Approximation and acceleration effect on the worm dataset. The "PDR" in this table was computed by the integral
approximation on a single computing node, while the "aPDR" is the accurate PDR computed by brute force on 36 computing
nodes. (Aligner’s runtime was not included)

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

PDR 87.81% 85.15% 82.23% 84.33% 82.72% 83.46%

aPDR 87.81% 85.15% 82.23% 84.33% 82.72% 83.46%

|PDR-aPDR| 8.44802E-12 3.6E-12 2.69E-11 2.3E-11 4.396E-12 1.6E-11

PDR runtime 1s 1s 1s 1s 1s 1s

aPDR runtime 9916s 7048s 4517 6010s 2632s 4012s
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within 1 second. In fact, for a human assembly, it was able to finish within 10 minutes. However, even

on a distributed platform with 36 nodes, thousands of seconds were required to compute accurate

PDR for any assembly in the worm dataset. It would cost more than one day if this was run on a

single node like approximated PDR, and even much longer for the human dataset. This verified that

the approximation accelerates the PDR computation with negligible accuracy loss.

2.3.4 Repeat handling

As described in Section 2.2, when facing a multi-map segment caused by a repeat region, my PDR

implementation tries every mapping position of each segment and intuitively takes the maximal

quality score. To investigate the effect of this multi-map resolution, a revised PDR value, which

takes minimal quality score during multi-map resolving, was computed for all three datasets.

As shown in Table 2.4, Table 2.5, and Table 2.6, the percentages of multi-map blocks are all below 5%

Table 2.4: PDR values in the yeast dataset under different repeat resolutions. The "Multi-map block" indicates the percentage
of blocks mapping to multiple positions in an assembly. The "PDR" was computed by taking maximal quality score for multi-map
segments. In contrast, the "PDRmin" took minimal quality score.

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

Multi-map block 0.10% 1.23% 0.81% 0.83% 1.24% 0.86%

PDR 98.74% 93.64% 91.44% 94.49% 88.49% 93.27%

PDRmin 98.74% 93.64% 91.44% 94.49% 88.49% 93.27%

|PDR-PDRmin| 0 0 0 0 0 0

Table 2.5: PDR values in the worm dataset under different repeat resolutions. The "Multi-map block" indicates the percentage
of blocks mapping to multiple positions in an assembly. The "PDR" was computed by taking maximal quality score for multi-map
segments. In contrast, the "PDRmin" took minimal quality score.

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

Multi-map block 0.06% 0.28% 0.45% 0.45% 0.35% 0.29%

PDR 87.81% 85.15% 82.23% 84.33% 82.72% 83.46%

PDRmin 87.81% 85.15% 82.23% 84.33% 82.72% 83.46%

|PDR-PDRmin| 0 0 0 0 0 0
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Table 2.6: PDR values in the human dataset under different repeat resolutions. The "PDR" was computed by taking maximal
quality score for multi-map segments. In contrast, the "PDRmin" took minimal quality score.

Metrics UpperBound Canu Flye

Multi-map block 0.46% 3.09% 1.20%

PDR 94.24% 82.73% 79.64%

PDRmin 94.24% 82.73% 79.64%

|PDR-PDRmin| 0 2.6E-14 1.1E-14

because the block size is long enough to span most repeat regions. More importantly, no difference

between two resolutions (PDR and PRDmin in the tables) were found in the yeast dataset and the

worm dataset; only negligible difference was observed in the human dataset. So, in fact, it does not

matter whether we take max or min to resolve multi-map segments.

2.3.5 Correlation to C3

Table 2.7 and Table 2.8 show the PDR results on the yeast dataset and the worm dataset respectively,

accompanied by selected metrics from the original reports.

On both datasets, the traditional metrics did not totally agree to each other. However, they were

consistent across datasets in some degree. Therefore, the character of each assembler can be inferred

from these metrics. For example, FALCON introduced the least number of misassemblies, but

obtained the lowest genome fractions. So it is a typical conservative assembler. It keeps contigs

Table 2.7: Metrics on yeast dataset. For each metric, the best values are colored blue while the worst values are colored red.

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

Genome fraction 99.92% 98.77% 96.07% 98.04% 97.41% 97.31%

# misassemblies 0 35 19 24 60 35

NG50 776,910 776,810 762,979 776,728 432,306 737,373

NGA50 776,910 668,909 694,355 676,772 345,836 663,236

PDR 98.74% 93.64% 91.44% 94.49% 88.49% 93.27%
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Table 2.8: Metrics on worm dataset. For each metric, the best values are colored blue while the worst values are colored red.

Metrics UpperBound Canu FALCON Flye MaSuRCA Miniasm

Genome fraction 99.95% 99.54% 98.67% 99.31% 99.18% 99.41%

# misassemblies 0 147 94 122 138 262

NG50 3,507,402 3,634,244 2,013,998 2,321,891 1,435,395 2,105,818

NGA50 3,507,402 1,292,248 1,176,205 1,305,538 1,016,420 1,214,817

PDR 87.81% 85.15% 82.23% 84.33% 82.72% 83.46%

separated when the repeats are too similar to each other. In contrast, Canu could be a representative

of aggressive assemblers. It achieved good completeness and contiguity at the cost of correctness.

Without an integrated metric, it may be hard to choose between a cleaner assembly and a more

complete assembly. PDR makes them comparable.

In the yeast dataset, PDR indicates that a good balance between completeness and correctness was

achieved by Flye, where contiguity was also served. This also proves that neither completeness nor

correctness is able to dominate PDR. In terms of contiguity, Canu has higher NG50 while FALCON

has higher NGA50. This is because NGA50 partially eliminates the influence from misassembly.

Although Canu and FALCON beat Flye in NG50 and NGA50 respectively, Flye obtained higher PDR

than these two. Thus, contiguity is also not a dominating factor. But these two observations do

not imply they are unconsidered. For example, MaSuRCA reasonably got the lowest PDR because

it underperformed others in term of correctness and contiguity, despite its moderate completeness.

In the worm dataset, FALCON had the lowest PDR because of poor completeness and unsatisfying

contiguity, though it consistently made the fewest misassemblies.

To quantitatively investigate the correlation between PDR and other metrics, the Pearson Correlation

Coefficient was calculated for each pair of metrics within these two datasets. Table 2.9 and Table 2.10

show the results in matrix form.

On the yeast dataset, it can be observed that PDR always kept good correlation (>0.75) with all

other metrics. Given that genome fraction was poorly correlated to NG50, NGA50, and the number

of misassemblies, PDR played a role as a bridge between completeness, contiguity and correctness.
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Table 2.9: Pearson correlation between PDR and other metrics on yeast dataset. Cells are colored by their value. Dark red
indicates high correlation. "# misassembly" is negated as less misassembly is preferred.

Genome fraction PDR # misassemblies NG50 NGA50

Genome fraction 1 0.764352278 0.411333157 0.247482277 0.342096991

PDR 0.764352278 1 0.860966054 0.730571659 0.834831891

# misassemblies 0.411333157 0.860966054 1 0.791050105 0.907051293

NG50 0.247482277 0.730571659 0.791050105 1 0.966809906

NGA50 0.342096991 0.834831891 0.907051293 0.966809906 1

Table 2.10: Pearson correlation between PDR and other metrics on worm dataset. Cells are colored by their value. Dark red
indicates high correlation. "# misassembly" is negated as less misassembly is preferred.

Genome fraction PDR # misassemblies NG50 NGA50

Genome fraction 1 0.908765273 0.24103203 0.708747995 0.729736332

PDR 0.908765273 1 0.571649643 0.844333425 0.890795898

# misassemblies 0.24103203 0.571649643 1 0.411291529 0.725016538

NG50 0.708747995 0.844333425 0.411291529 1 0.625937718

NGA50 0.729736332 0.890795898 0.725016538 0.625937718 1

On the worm dataset, PDR had even higher correlation to other metrics except the number of

misassemblies. It is worth noting that the correlation between PDR and the number of misassemblies

was less stable. As a correctness metric, the number of misassemblies weights every misassembly

equally, regardless the impact of each single misassembly. This makes it only partially responsive to

and reflective of assembly quality. And this is exactly what PDR addresses.

2.3.6 Non-reference genome

In practice, a reference genome is sometimes absent. So, PDR performance is also studied using

a close species’ genome as the reference. Table 2.11 shows the metrics of the human dataset,

computed based on a human reference genome and a chimpanzee genome (RefSeq assembly accession:

GCF_002880755.1).

Among these metrics, NG50 was least changed because it only takes reference size into consideration,

regardless of its content. Besides, genome fraction reasonably kept its order as well. However, the
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Table 2.11: Evaluation metrics for 3 human assemblies from HG001 dataset. Given human or chimpanzee genome as reference,
each metric was computed for these 3 assemblies. The best values are colored blue while the worst values are colored red.

Reference Metric UpperBound Canu Flye

Human

Genome fraction 99.07% 92.25% 91.91%

# misassemblies 0 853 673

NG50 7,862,149 3,241,232 3,767,461

NGA50 7,862,149 2,744,681 3,172,168

PDR 94.24% 82.73% 79.64%

Chimpanzee

Genome fraction 88.43% 85.13% 72.85%

# misassemblies 5632 3630 3029

NG50 8,113,773 3,311,085 3,810,280

NGA50 2,109,898 1,377,976 922,952

PDR 75.39% 68.82% 64.46%

number of misassemblies became unreliable as many differences between chimpanzee and human

were counted into this metric. NGA50 was thus influenced. It is originally designed to obtain pure

contiguity metric by eliminating correctness impact from NG50. But under a close species’ genome,

some contigs were broken into smaller pieces due to reference differences. For example, in Table 2.11,

Canu had lower NGA50 under human genome, while Flye became lower under chimpanzee genome.

Therefore, NGA50 and misassemblies count are not effective for comparing assemblies based on close

genome. Fortunately, most structural differences between close species only involve short fragments.

As a result, PDR was not caused to have large fluctuations by these differences. Meanwhile, its

sensitivity to significant misassemblies was retained for quality comparison of assemblies.

2.3.7 Discrimination on similar assemblies

When assemblies come from different sequencing platforms or assemblers, they usually differ from

each other in many aspects due to technical characteristics. But for those similar assemblies, e.g.

one is refined or derived from another, the traditional metrics usually lack of discrimination power.

This can be illustrated by an A. Thaliana example. The A. Thaliana reference genome was downloaded
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(a) MUMmer plot: reference genome vs. Draft assembly (b) MUMmer plot: reference genome vs. refined assembly

Figure 2.8: MUMmer plots of the draft assembly and the refined assembly against the reference genome. In each MUMmer
plot, X-axis is the reference genome while Y-axis is an assembly. Each diagonal black line (which may degrade to a dot)
indicates an alignment between corresponding reference segment on X-axis and assembly segment on Y-axis. Blue box is for easy
interpretation.

Table 2.12: Metrics on A. thaliana draft assembly and its refined assembly. Change rates are calculated by (Refined-
Draft)/Draft*100%

Assembly Draft Refined Change rate

Genome Fraction (%) 98.797 98.795 -0.002%

Misassembly Count 2224 2184 -1.8%

NG50 7,853K 22,731K +189.46%

NGA50 778K 784K +0.77%

PDR 84.67% 98.02% +15.77%

from NCBI (GenBank accession number: GCA_001651475.1). A draft assembly was obtained from

Pacbio public sample data (https://github.com/PacificBiosciences/DevNet/wiki/Arabidopsis-P5C3).

It was refined to a more contiguous assembly by scaffolding (method detailed in Chapter 3). We used

SyMap [Soderlund et al., 2006] which invokes MUMmer [Marçais et al., 2018] to plot alignments

between the reference genome and the draft assembly as well as the refined assembly. The alignments

are shown in Figure 2.8.

Intuitively, the chromosome-level refined assembly is much better than the fragmented draft assembly.
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However, this is not reflected by traditional metrics. Table 2.12 lists the typical metrics on these

two assemblies. After scaffolding, NGA50 only increased less than 1%, and misassembly count

only decreased less than 2%. More than that, genome fraction even counter-intuitively decreased

0.002%. Obviously, all these did not match the sense we obtained from Figure 2.8: the scaffolding

indeed improved the assembly. Only NG50 reflects this improvement. However, NG50 is the least

reliable metric among them. Because it would be very large even when all contigs were disorderly

concatenated together. In other words, with only NG50, one can not tell whether the improvement

on contiguity is achieved at a huge cost to correctness. Compared to these typical metrics, PDR

profiled and quantified the improvement by a more reasonable value change. A value of 98% for the

refined assembly also suggests that there is almost no room for further improvement on the refined

assembly.

2.4 Discussion

In this chapter, I have proposed a new metric PDR to integrate all three aspects in assembly

assessment, i.e. contiguity, completeness, and correctness. In fact, PDR does not provide a new

aspect, but instead weights these three aspects in the context of genetic studies. Each contig is

weighted by its value in downstream analysis, while each misassembly is penalized by its misleading

impact. As a reasonable weighted sum, the overall score is able to guide the selection of assemblies

from various library construction strategies, sequencing technologies, and assemblers. Meanwhile, I

have also proposed an efficient implementation of PDR. My implementation runs in minutes instead

of the hours needed by a brute-force implementation, and the results show that the introduced error

is usually extremely low and thus negligible.
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Chapter 3
CAST: refining a parent assembly using many progenies’

reads

3.1 Background

Although a lot of efforts have been made to improve genome assembly algorithms for better

performance, limited improvement can be made on assemblers to overcome repeat regions because

short sequencing reads by themselves do not provide enough information for this purpose. Instead of

optimizing assembly algorithms, researchers have tried to adopt new assembly strategies.

3.1.1 Mate-pair library

The most commonly-used strategy is mate-pair sequencing. By generating long-insert paired-end

libraries, two mates of a read are able to flank a repeat region. Therefore, many assemblers, for

example SPADES [Bankevich et al., 2012] and SOAPdenovo2 [Luo et al., 2012], support mate-pair

library as scaffolding evidence. For a large genome, multiple mate-pair libraries with various insert

sizes may be prepared to provide hierarchical resolutions. Even so, the typical insert sizes of mate-pair

libraries are usually not larger than 20kb. This limits its application on repeat regions longer than this

value, which is not rare in highly repetitive genomes like plants’. Moreover, with the commercialization

of long read sequencing technologies (e.g. Oxford Nanopore and Pacbio SMRT), mate-pair sequencing

is gradually being replaced.
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3.1.2 Optical map

To better deal with long repeat regions, informations from other sources were integrated to form a

backbone (also called a skeleton), to which contigs are anchored or mapped. Based on the backbone,

contigs are assigned with order and orientation to yield a more informative assembly. A choice of

information source is optical maps. Neto et al. [2011] described the application of optical mapping

in de novo assembly, which places contigs by mapping the in silico restriction map of contigs to the

optical map. The direction and position of an anchored contig can thus be determined. Although an

optical map is able to provide chromosome-scale information to improve assembly, the relatively high

cost of experiments makes it unattractive for projects with limited budget.

3.1.3 Chromatin interaction

Besides optical map, chromatin interaction data can also be used to improve assembly. Contact

frequency between a pair of loci is negatively correlated with distance on a chromosome sequence.

Burton et al. [2013] exploited this to generate chromosome-scale de novo assemblies of human,

mouse and Drosophila genomes by NGS and Hi-C data. This idea was further developed in assembly

pipelines like 3D-DNA [Dudchenko et al., 2017] and SALSA [Ghurye et al., 2017]. These pipelines

not only merge contigs but also try to split suspicious misassembled contigs based on discordant

contact frequency between adjacent regions. Although these pipelines showed substantial effect on

assembly improvement, their accuracy are limited by the low resolution of Hi-C data. The complexity

of library preparation as well as data analysis is another factor that further restricts the use of this

assembly strategy.

3.1.4 Genetic map

Another information source is genetic maps, which depict the relative locations of genes and other

markers by exploiting the idea of linkage: the closer two genes are to each other, the greater

probability that they will be inherited together. As a traditional method, genetic maps are well

studied even before sequencing became common, and thus are easy to obtain for some model species.

For example, Mascher et al. [2013] proposed a pipeline to anchor contigs onto an existing genetic

map; and in the absence of an available genetic map, to first also infer a genetic map from population
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data. Before placement of contigs, another pipeline RPGC [Hahn et al., 2014] first polished an initial

assembly. It iteratively identified and corrected split alleles and collapsed alleles (i.e. repeats that

have wrong copy numbers in assembly) by abnormal allele segregation. This improved the precision

of genotyping. Therefore, the later genetic-map construction and contigs anchoring benefited from

this. Rather than loose coupling of assembly and genotyping, Nossa et al. [2014] integrated SNP

identification into the assembly process for better genotyping with low sequencing depth. First, reads

were assembled by a de Bruijn graph with highly conservative criteria. K-mer pairs with only one

mismatch to each other were tracked and termed SNPmer. Samples’ genotypes at each SNPmer were

then inferred by a probabilistic model. Finally, SNP markers were ordered by hierarchical clustering.

These pipelines have been successfully applied in a few studies. In some of these studies, descendants

are specially sequenced for parents’ genome assembly. More commonly, in many crop-breeding

research projects, the sequencing data of descendants are already available as part of these projects

and thus can be directly used to help the assembly of parent strains. However, there are still some

limitations of genetic maps. In cases where the organism is polyploid1, some traditional genetic-map

algorithms are not able to handle complex heterozygote2. Another limitation is that if the organism

has hundreds of thousands of markers, genetic-map construction becomes very time consuming, even

infeasible. Besides, these pipelines only try to anchor and order the contigs; they do not correct any

misassembly inconsistent with the genetic map. In addition, these pipelines are not fully automated

as they utilized existing tools by a few customized scripts. Even worse, some of their components

have become unavailable due to lack of maintenance.

3.2 Method

3.2.1 Overview

To address the problems in existing genetic map-based methods, I present a new method, CAST

(Correction And Scaffolding Tool), to improve draft assembly by sequencing data of a progeny

population. It exploits the fact that the closer two alleles are, the more likely they are passed on to

1The state of a cell or organism having more than two paired (homologous) sets of chromosomes.
2An individual who has more than one different form of a particular gene.
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Figure 3.1: The pipeline of CAST. CAST takes a draft assembly and a batch of progeny alignments as input. It first splits
contigs in the draft assembly at incoherent sites, and then scaffolds them by coherent sites. Later, contigs are merged by overlap.
Finally, it produces an improved assembly as well as a coherence report.

the next generation together unless recombination happens. This idea is common in genetic-map

construction. But instead of mapping genomic sequences to a genetic map, CAST inspects genetic

coherence along contigs in an initial draft assembly. Contigs are split by adjacent sites incoherent to

each other, and then merged by coherent sites. In this way, the draft assembly is improved without

time-consuming construction of a genetic map.

Figure 3.1 shows the pipeline of CAST. Progeny reads are previously mapped to the parent draft

assembly by an alignment tool, e.g. BWA [Li and Durbin, 2009]. Then, CAST takes the draft

assembly and the progeny alignments in BAM format as input, and goes through each contig in

the draft assembly to inspect whether adjacent sites are coherent in genotype. It splits contigs at

incoherent sites, and links unsplit contigs together with split contigs by genotype coherence at ends

of contigs. For each linked chain of contigs, CAST tries to merge neighbouring contigs by overlap.

Finally, it outputs an improved assembly in fasta format as well as a contig-linkage report.

3.2.2 Notation and definition

For a given position (i.e. a single base on a reference genome) i on some contig, the counts of 5

possible alleles (A, C, G, T, and gap) from aligned reads of progeny j form a 5 dimensional vector

cij . The genotype of progeny j at position i is defined as a vector comprising of these 5 allele ratios,

i.e. rij = cij/
∑
cij . Figure 3.2 shows two examples. Compared to the traditional character-based

genotype representation, this quantitative definition is able to better describe heterozygote, even

potentially in polyploidy. To profile the correlation among progenies, CAST calculates a distance
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Figure 3.2: Examples of genotyping for one progeny. First, reads of this progeny (cyan bars) are mapped to the parent’s contigs
(dark blue bar). Then, each column in the alignment is inspected. Orange boxes show two examples. The genotypes of these
two columns are corresponding ratios, in order, of base A, C, G, T, and gap.

matrix Di for each position i; the k-th element of the j-th row is the half Manhattan distance

between the genotypes of progeny j and progeny k:

djk = τ(rij , rik)
2 (3.1)

where τ is the Manhattan distance. In such a matrix, each element 0 ≤ djk ≤ 1 indicates the

dissimilarity between progeny j and progeny k. Obviously, there is no difference among progenies on

most positions. Such positions (called non-polymorphic positions) contain no genetic information and

thus they are not considered. Figure 3.3 gives a few examples on polymorphic positions. For simplicity,

the examples hereafter are double haploid, so that genotypes are homozygous. Note that D18 and D10

have similar matrices and thus are coherent even if their genotypes are totally different. Specifically,

djk is a similarity matrix reflecting whether progeny j and progeny k are likely to have inherited their

genotype at position i from the same parent (i.e. their father or their mother). Theoretically, these

distance matrices are enough to profile the correlation of progenies. But noise from sequencing errors

and erroneous alignments may prejudice genotype and thus single positions cannot be directly used

to make decision. CAST solves this problem by combining multiple consecutive polymorphic positions

to dilute effects from unreliable positions. Specifically, CAST defines a haplotype length H (0.1%

of genome length by default) and average all polymorphic positions D within a range of H. For

each polymorphic position i, the left (right) haplotype matrix Li(Ri) is computed by Equation 3.2
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Figure 3.3: Examples of distance matrices. The dark blue bar represents a parent contig, while each cyan bar here is not a read
but genotype information of one progeny from its reads. At position 2, all progenies have same genotype (0,0,0,1,0), thus D2 is
a zero matrix (transparent). At position 10, three progenies have (1,0,0,0,0) while another two progenies have (0,0,1,0,0). At
position 18, three progenies have (0,1,0,0,0) while another two progenies have (0,0,0,1,0). D10 and D18 have the same color
because they are similar. At position 26, progeny 5 has genotype (0.5,0.5,0,0,0). D26 is differentially colored as it has different
pattern from D18 and D10.

(Equation 3.3). Figure 3.4 shows an example of these computations.

Li = Avg{Dx|i−H ≤ x ≤ i} (3.2)

Ri = Avg{Dx|i ≤ x ≤ i+H} (3.3)

Given two haplotype matrices Lp and Rq, their sum of absolute difference is defined as:

δ(Lp, Rq) =
∑
|Lpij −Rqij | (3.4)

δ(Lp, Rq) is likely to be small when there is genetic linkage between positions q and p. Otherwise, it

should be much larger.

3.2.3 Correction

CAST utilizes sliding windows to compute haplotype matrices Li and Ri for each polymorphic

position i. During the scan, CAST checks whether each pair of adjacent polymorphic positions v

and w are coherent. A sampling-based permutation test (see Section 3.2.5) is performed on Lv and

Rw, for the null hypothesis that positions v and position w are not close to each other and thus not
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Figure 3.4: Examples of haplotype matrices and splitting. The top layer is a parent contig, on which the grey region harbors
a misassembly. The tracks in the second layer shows inheritance of five progenies. Orange segments come from one parent;
purple segments come from the other parent. The third layer is distance matrices. Grey matrices are zero matrices due to non-
polymorphism, while cyan and red matrices are from different chromosomes (misassembled into this contig). Fourth and fifth
layers show Li and Ri respectively. Around the misassembled region, haplotype matrices are converted gradually as indicated by
gradient colors. Finally, the parent contig is split into 2 segments as shown in bottom layer.

bound by genetic linkage. The permutation test shuffles the label of progenies and then compute

empirical distribution of δ(Lv, Rw). If p-value of the test is larger than a predefined significant level

P , a misassembly between pv and pw is assumed. In such a case, the contig is split into two "broken"

contigs and each broken contig retains a copy of the sequence from pv to pw for potential merging,

named flexible ends (see grey regions in Figure 3.4). Flexible ends are free to be partially or totally

discarded during merging because the assumed misassembly may happen at an arbitrary position

between pv to pw. Note that a contig may be split more than once to generate several broken

contigs. Hereafter, original contigs without splitting and broken contigs are all called segment for

easy reference. Each segment may have zero, one, or two flexible ends depending on the splittings.

3.2.4 Scaffolding and merging

The genetic information of each segment can be characterized by its left-most haplotype matrix L1

and right-most haplotype matrix Rw, which are termed joints in the following description. CAST

computes δ for all pairs of joints from different segments. Two joints are considered to be close to
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(a) Alignment with loss=4 (b) Alignment without loss

Figure 3.5: Two potential alignments between a pair of segments. Red regions indicate flexible ends while blue regions are
alignments. (a) shows an alignment where aligned regions are out of flexible ends on both segments. The regions between
aligned regions and flexible ends count as loss (marked purple). So, loss=4 for this case. (b) is another alignment where the
aligned regions harbour within flexible ends and thus loss=0.

each other in the underlying genome if their joint matrices A and B has a p-value smaller than P in

permutation test described above. CAST reports these two joints with their δ value as a link.

It is common for a joint to have more than one link. To determine which is the best one to perform

merging with, CAST first sorts segments by their lengths, and then places them one by one from

long to short. For a given segment to place, it first forms a new scaffold. If this segment has no link

on its both joints, the placement is done. Otherwise, for its any joint with at least one link, the link

with the minimum δ is chosen to be a candidate. If any candidate links to a left-most or right-most

joint of some scaffold, then the new scaffold is merged with that one.

During merging, BLAST is called to find all significant alignments (E − value < 10 by default)

between the two involved segments in scaffolds. For each alignment, the loss of this alignment

is defined as the length of sequence between flexible end and aligned region (purple regions in

Figure 3.5), which is the unique sequence that will be discarded if merging is performed by this

alignment. In this definition, flexible ends are not counted. Because they are duplicated in splitting

and can be totally discarded without information loss. Therefore, if an aligned region overlaps with a

flexible end on a segment, then the alignment has no loss on this segment. For example in Figure 3.5a,

if merging is performed by this alignment, the sequence after the aligned region in the top contig

and the sequence before the aligned region in the bottom contig will be discarded. But the loss only

comes from purple regions, which is 4. In Figure 3.5b, the sequences need to be discarded are all

parts of flexible ends, so the loss is 0. Based on this definition of loss, alignments with a loss greater

than their aligned region length are filtered out. If no alignment is left, two segments are merged by

50 N’s in middle (called gapped merging). Otherwise, they are simply merged by overlapping aligned

regions in the alignment with minimum loss. On each segment, the overhanging end beyond the
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aligned region is truncated. For the sake of efficiency, sequence-merge operations are postponed in

my implementation and only applied after segments are all placed.

Sometimes, candidates may link to a joint in the middle of some scaffold. Such candidates are usually

ignored, except when two candidates of the same segment link to two joints previously gapped-merged.

This means the segment is supposed to place in the gap. In this case, the previous gapped merging

is reverted; and then the candidates are applied for merging. Note that this is reasonable because

the segments are placed from long to short, in this way the scaffolds are constructed from backbone

to detail. The advantages of this approach is to ensure the chromosome-level scaffolding first, and

then endeavour to resolve local conflicts which may have no perfect solution.

3.2.5 Implementation details

In all sequencing platforms, sequencing errors are prevalent. They may bias genotyping and produce

incoherent distance matrices. Especially, when sequencing depth is low, the genotype may be totally

converted to an incorrect one. To avoid this, CAST ignores bases with phred quality score less than

20. Although this cannot clean all sequencing errors, the survived sequencing errors are sparse enough

to be diluted by neighbouring distance matrices.

Besides platform noise, spontaneous mutations also influence distance matrices. When a new mutation

in a single progeny converts a non-polymorphic position to a polymorphic one, the generated distance

matrix has one non-zero row and one non-zero column. Obviously, this matrix is incoherent to

neighboring matrices, causing erroneous splitting around this position. CAST identifies these

mutations by checking whether one progeny’s genotype is roughly equally far from others. Specifically,

CAST inspects each row of a distance matrix after removing its principal diagonal. If the difference

between the lowest and highest elements in any row is less than a threshold γ (0.2 for diploid by

default), the position corresponding to this distance matrix is regarded as a spontaneous mutation

and ignored. With this rule, non-polymorphic positions are also filtered.

Another interference in genotyping is due to dispersed repeats on different chromosomes. The reads

from such repeats may map to arbitrary copies. Consequently, genotypes from the same sample but

different chromosomes pollute each other, and distance matrices also interpenetrate. Thus, repeat

regions should be excluded from scans. To this end, reads are inspected and called suspicious if any
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of the following criteria is satisfied:

• map quality (i.e. MAPQ field in BAM) is less than 30

• two mates of a paired read map to different contigs

• alternative mapping exists

• total length of indel, clip, and mismatch exceeds 10% of read length

Then, a position is identified as repeat if more than 10% of reads spanning it are suspicious in any

progeny. A position is also identified as repeat if its sequencing depth is larger than 1.8 times average.

Such positions are ignored.

The permutation test between adjacent haplotype matrices are computationally intensive. In fact,

there is no need to enumerate all permutations when the number of progenies is large. CAST uses

Monte Carlo to obtain a δ(A,B) null distribution by M (10000 by default) permutations of progeny

labels. Each permutation keeps A untouched and shuffles progeny labels of B. Then, A and shuffled

B are used to compute distance matrices, on which δ is calculated later. Finally, the (P ∗M)th

smallest value among M δ values is the threshold for significant level P .

When the number of polymorphic positions is also large, the permutation test is still time-consuming

even with Monte Carlo. To solve this problem, CAST first performs a preliminary Monte Carlo

where M = 1. δ values are collected from all pairs of adjacent polymorphic positions and form a

distribution. This distribution is used instead in the test.

3.3 Evaluation

3.3.1 Datasets

To evaluate the improvement of genome assembly processed by CAST, I used two datasets with

different experiment materials and designs.

The first dataset comes from a parent–progeny project on Arabidopsis thaliana [Yang et al., 2015].

Figure 3.6a illustrates the relationship between strains and data. The authors crossed two typical A.

thaliana strains Ler0 and Col to get F1; and then a single F1 seed was selfed to generate multiple F2
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(a) A. thaliana dataset (b) F. velutipes dataset

Figure 3.6: Illustration of datasets. Each circle represents an individual. The red and blue numbers in circles indicate the
sequencing depth of Pacbio and Illumina platform, respectively. Purple number indicates the sequencing depth of Hi-C experiment.
(a) In A. thaliana dataset, Ler0 was crossed with Col to get F 1. F 1 was then selfed to generate F 2. Ler0 and 67 F 2 individuals
were sequenced by Pacbio and Illumina platform respectively. (b) In F. velutipes dataset, 6-3 was crossed with 6-21 to get F 1.
107 spores generated by F 1 were single-spore cultured as F 2.

individuals, among which 67 individuals were sequenced by Illumina platform at depth of ∼ 40×. I

randomly downloaded 31 progenies out of 67 from NCBI (BioProject database accession number: PR-

JNA178613, see Table 3.1 for details) for evaluation. The parent Ler0’s Pacbio assembly was obtained

from Pacbio public sample data (https://github.com/PacificBiosciences/DevNet/wiki/Arabidopsis-

P5C3).

The reference genome in evaluation was downloaded from NCBI (GenBank accession number:

GCA_001651475.1).

The other dataset is from our ongoing Flammulina velutipes project to be published later. Figure 3.6b

illustrates the relationship between strains and data. A monokaryon strain 6-3 was crossed with

another monokaryon strain 6-21 to generate a hybrid strain F1. Spores of F1 were collected and

cultured as monosporous strains, of which 107 strains were sequenced later by Illumina platform at

depth of ∼ 100×. A random subset of 30 strains were used for evaluation. The parent strain 6-3

was sequenced by Illumina platform at depth of ∼ 200× and Pacbio platform at depth of ∼ 80×. I

evaluated improvement on both 6-3’s Illumina assembly and Pacbio assembly. Illumina assembly was

performed using Spades, while Canu and Pilon [Walker et al., 2014] were used in Pacbio assembly.

A BAC-based chromosome-level assembly was downloaded from NCBI genome database (GenBank

accession number: GCA_000633125.1) as the reference genome in evaluation. In addition, 6-3 was

39



Table 3.1: A. Thaliana dataset accession numbers.

BioSample Run Platform Organism
SAMN01797620 SRR611079 ILLUMINA Arabidopsis thaliana
SAMN01797660 SRR611084 ILLUMINA Arabidopsis thaliana
SAMN01797661 SRR611085 ILLUMINA Arabidopsis thaliana
SAMN01797630 SRR611092 ILLUMINA Arabidopsis thaliana
SAMN01797631 SRR611093 ILLUMINA Arabidopsis thaliana
SAMN01797632 SRR611094 ILLUMINA Arabidopsis thaliana
SAMN01797633 SRR611095 ILLUMINA Arabidopsis thaliana
SAMN01797634 SRR611096 ILLUMINA Arabidopsis thaliana
SAMN01797635 SRR611097 ILLUMINA Arabidopsis thaliana
SAMN01797636 SRR611098 ILLUMINA Arabidopsis thaliana
SAMN01797637 SRR611099 ILLUMINA Arabidopsis thaliana
SAMN01797638 SRR611100 ILLUMINA Arabidopsis thaliana
SAMN01797639 SRR611101 ILLUMINA Arabidopsis thaliana
SAMN01797640 SRR611102 ILLUMINA Arabidopsis thaliana
SAMN01797641 SRR611103 ILLUMINA Arabidopsis thaliana
SAMN01797642 SRR611104 ILLUMINA Arabidopsis thaliana
SAMN01797643 SRR611105 ILLUMINA Arabidopsis thaliana
SAMN01797644 SRR611106 ILLUMINA Arabidopsis thaliana
SAMN01797645 SRR611107 ILLUMINA Arabidopsis thaliana
SAMN01797646 SRR611108 ILLUMINA Arabidopsis thaliana
SAMN01797647 SRR611109 ILLUMINA Arabidopsis thaliana
SAMN01797648 SRR611110 ILLUMINA Arabidopsis thaliana
SAMN01797649 SRR611111 ILLUMINA Arabidopsis thaliana
SAMN01797650 SRR611112 ILLUMINA Arabidopsis thaliana
SAMN01797654 SRR611113 ILLUMINA Arabidopsis thaliana
SAMN01797655 SRR611114 ILLUMINA Arabidopsis thaliana
SAMN01797656 SRR611115 ILLUMINA Arabidopsis thaliana
SAMN01797657 SRR611116 ILLUMINA Arabidopsis thaliana
SAMN01797658 SRR611117 ILLUMINA Arabidopsis thaliana
SAMN01797659 SRR611118 ILLUMINA Arabidopsis thaliana
SAMN01797659 SRR616982 ILLUMINA Arabidopsis thaliana

also sequenced by Hi-C experiments at depth of ∼ 100× to be used in comparison of CAST and

Hi-C scaffolding tools. All data are publicly available (Accession numbers are listed in Table 3.2).

3.3.2 Measurements

The three main dimensions for genome assembly assessment are contiguity, completeness, and

correctness. Reliable assemblies are expected to be good on all these dimensions. However, contiguity

and correctness are usually dichotomous to some degree. Before assembly, initial reads are fragmented
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Table 3.2: F. velutipes dataset accession numbers.

BioSample Run Platform Organism
SAMN10175083 SRR7963008 PACBIO_SMRT Flammulina velutipes
SAMN10174861 SRR7962694 ILLUMINA Flammulina velutipes
SAMN10174860 SRR7962695 ILLUMINA Flammulina velutipes
SAMN10174853 SRR7962696 ILLUMINA Flammulina velutipes
SAMN10174852 SRR7962697 ILLUMINA Flammulina velutipes
SAMN10174855 SRR7962698 ILLUMINA Flammulina velutipes
SAMN10174854 SRR7962699 ILLUMINA Flammulina velutipes
SAMN10174857 SRR7962700 ILLUMINA Flammulina velutipes
SAMN10174856 SRR7962701 ILLUMINA Flammulina velutipes
SAMN10174859 SRR7962702 ILLUMINA Flammulina velutipes
SAMN10174858 SRR7962703 ILLUMINA Flammulina velutipes
SAMN10174851 SRR7962704 ILLUMINA Flammulina velutipes
SAMN10174850 SRR7962705 ILLUMINA Flammulina velutipes
SAMN10174845 SRR7962706 ILLUMINA Flammulina velutipes
SAMN10174844 SRR7962707 ILLUMINA Flammulina velutipes
SAMN10174843 SRR7962708 ILLUMINA Flammulina velutipes
SAMN10174842 SRR7962709 ILLUMINA Flammulina velutipes
SAMN10174849 SRR7962710 ILLUMINA Flammulina velutipes
SAMN10174848 SRR7962711 ILLUMINA Flammulina velutipes
SAMN10174847 SRR7962712 ILLUMINA Flammulina velutipes
SAMN10174846 SRR7962713 ILLUMINA Flammulina velutipes
SAMN10174866 SRR7962714 ILLUMINA Flammulina velutipes
SAMN10174867 SRR7962715 ILLUMINA Flammulina velutipes
SAMN10174868 SRR7962716 ILLUMINA Flammulina velutipes
SAMN10174869 SRR7962717 ILLUMINA Flammulina velutipes
SAMN10174862 SRR7962718 ILLUMINA Flammulina velutipes
SAMN10174863 SRR7962719 ILLUMINA Flammulina velutipes
SAMN10174864 SRR7962720 ILLUMINA Flammulina velutipes
SAMN10174865 SRR7962721 ILLUMINA Flammulina velutipes
SAMN10175083 SRR7963007 ILLUMINA Flammulina velutipes
SAMN10175084 SRR7963009 ILLUMINA Flammulina velutipes
SAMN10175083 SRR7968349 ILLUMINA Flammulina velutipes

but with no misassembly. During assembly, reads are iteratively merged into larger fragments and

thus sometimes misassemblies are introduced. A lot of criteria are applied in various assemblers

to mine clues and reduce the probability of misassembly. Even so, the probability of misassembly

dramatically increases when merging around repeats. Some assemblers stop merging to avoid this

hazard while others take the risk and attempt for better contiguity.

A few analysis tools as well as some proposed metrics have been used to assess assembly quality.
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Three types of misassembly are usually considered:

• relocation: flanking sequences are aligned to the same reference chromosome but with >1kb

offset

• translocation: flanking sequences are aligned to different reference chromosomes

• inversion: flanking sequences are aligned to the same reference chromosome but on opposite

strands

In our evaluation, I focus less on relocation as it is common to have repeat collapse around long

tandem repeats. In such a region, the repeat copies are highly similar to each other and thus pileup

in an assembler, yielding an underestimated copy number in an assembly. When collapsed repeat

regions are aligned to a reference genome, their flanking sequences could be aligned to positions far

away.

For contiguity, a well-known measure is NG50 [Earl et al., 2011] defined as the largest contig length

l satisfying: ∑
Li≥l

Li ≥ 50% ∗G (3.5)

where Li is the length of i-th contig and G is the total length of the reference genome. This value

reflects the contiguity of longer contigs, ignoring small fragments. However, it simply trusts every

contig and does not take misassembly into consideration. Thus one can ridiculously achieve high

NG50 by concatenating all contigs.

To fix this problem, Gurevich et al. [2013] proposed NGA50 which has a similar definition to NG50 but

uses aligned blocks in length counting instead of whole contig. In common implementation, contigs

are first aligned to a reference genome and then broken into aligned blocks without misassembly.

Although NGA50 is more reasonable than NG50, it is not perfect. In particular, it does not tolerate

collapsed repeats, which is a common misassembly but almost harmless to downstream analysis.

In this work, I choose a commonly used tool QUAST [Gurevich et al., 2013] to compute metrics

including NG50, NGA50 and misassembly counts. It was run with option "–skip-unaligned-mis-

contigs" to suppress a default mechanism which ignores contigs >50% unaligned. In addition, PDR

introduced in Chapter 2 was also computed for each assembly, to provide an overall assessment.
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In the evaluations on both datasets, I mainly compared draft assembly with CAST-improved assembly

to show the improvement made by CAST. CAST is also supposed to be compared with other

genetic-map based methods. However, they are all unavailable now. As commented in Fierst [2015],

POPSEQ and RPGC are actually proof-of-principle recipes rather than softwares. POPSEQ’s authors

only provided a tool for a marker anchoring step as a part of the whole pipeline. RPGC consists of

more than 40 commands with several sample-specific parameters. Also, its authors didn’t release a

key python script used in their final step. Unlike POPSEQ and RPGC, JointAssembly looks like a

complete program, but its documentation is incomplete. Worse, it is no longer being maintained.

Since all genetic-based methods are unavailable, I compared CAST with 2 Hi-C based method, SALSA

and 3D-DNA, on F. velutipes dataset where Hi-C data is available.

3.3.3 A. thaliana Pacbio assembly

CAST was first tested using the publicly available A. thaliana dataset described in Section 3.3.1. The

results are shown in Table 3.3.

Table 3.3: Improvement on A. thaliana Pacbio assembly. For each statistic, theoretical best values are colored blue; theoretical
worst values are colored red.

Assembly Draft CAST

# contigs 545 513

Genome fraction (%) 98.797 98.795

Total length 130,858K 130,647K

Total aligned length 118,974K 118,896K

Largest contig 13,211K 29,558K

Largest alignment 4,362K 4,362K

NG50 7,853K 22,731K

NGA50 778K 784K

# relocations 1142 1126

# translocations 1033 1016

# inversions 49 42

PDR 84.67% 98.02%
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(a) MUMmer plot: reference genome vs. Draft assembly (b) MUMmer plot: reference genome vs. CAST-improved
assembly

Figure 3.7: MUMmer plots of the draft assembly and the CAST-improved assembly against the reference genome. In each
MUMmer plot, X-axis is the reference genome while Y-axis is a assembly. Each diagonal black line (which may degrade to a
dot) indicates an alignment between corresponding reference segment on X-axis and assembly segment on Y-axis. Blue box is
for easy interpretation.

The draft assembly (i.e. the assembly to be improved) only yielded slightly better genome fraction,

total length, and total aligned length. In fact, this difference came from repeat collapse in CAST

merging, which usually does not mean a loss of informative sequence. However, the CAST assembly

outperformed the draft assembly in other metrics. Especially, largest contig, NG50, and PDR

significantly increased. Also, all three types of misassemblies decreased. This means CAST improved

the draft assembly’s contiguity and correctness simultaneously. In addition, PDR reveals that CAST

has made a big improvement on the draft assembly to a refined assembly of near perfection. This

improvement is clearly visible in Figure 3.7. Figure 3.7 is generated by SyMap [Soderlund et al., 2006],

which invokes MUMmer to plot alignments between the reference genome and the draft assembly as

well as the CAST-improved assembly. It can be seen that the draft assembly was relatively fragmented.

However, the CAST-improved assembly presented all five chromosomes, though there were some

local breakpoints. The comparison between these two figures illustrates the CAST improvement,

which may not be successfully reflected by some common metrics.

This dataset is also used to investigate the effects of sequencing depth and progeny count. To

evaluate CAST performance with different sequencing depths, each progeny sequencing data was

randomly down-sampled. For progenies whose original data were small, I kept them unchanged during
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Figure 3.8: The effect of sequencing depth. All 31 progenies were used. The sequencing depth of each progeny was tuned along
X-axis by random downsampling. Specially, 0 on X-axis indicates the draft assembly. To show the trend, all four Y-axes do not
start from 0. Misassembly (green line) refers to the total misassembly count including relocation, inversion, and translocation.

evaluation for depths beyond their own. Figure 3.8 shows the effect of sequencing depth with all 31

progenies. It can be seen that contiguity profiled by NGA50 converged at sequencing depth above

10-fold. Similarly, the correctness represented by the total misassembly count converged after 20-fold.

As a proxy for completeness, genome fraction decreased 0.03% from 10-fold to 30-fold. The reason

of this decrease could be randomness in heterozygous positions, which is reduced with increased

sequencing depth. In fact, the decrease is not critical since PDR is majorly correlated to misassembly

count. Overall, as suggested by PDR, 20-fold depth is enough for improvement, while 35-fold depth

produces stable result.

The effect of progeny count is shown in Figure 3.9. Unlike the effect of sequencing depth, contiguity

and completeness both converged early from 8 onward. However, limited by correctness, PDR

converged from 13 onward. This implies about 15 progenies are enough to make significant

improvement. The slight increase of NG50 at 27 progenies also suggested that more progenies

can further improve assembly. By contrast, the typical number of progenies needed in genetic-map

construction is 50 or more.
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Figure 3.9: The effect of progeny count. The progeny count was tuned along X-axis while original sequencing depths were
retained. Specially, 0 on X-axis indicates the draft assembly. To show the trend, all four Y-axes do not start from 0. Misassembly
(green line) refers to the total misassembly count which includes relocation, inversion, and translocation.

3.3.4 F. velutipes Pacbio assembly

To compare CAST with Hi-C scaffolding tools, I run SALSA and 3D-DNA with 6-3 strain Hi-C data

to improve the Pacbio draft assembly. Meanwhile, CAST is also run on the same draft assembly

with 31 progeny datasets. Then, all improved assemblies as well as the draft assembly are evaluated

by QUAST and PDR against the reference genome.

Table 3.4 shows the metrics for the draft and the improved assemblies. It is worth noting that both

SALSA and 3D-DNA yielded the largest contig with length of more than 10Mb. However, the largest

reference chromosome is less than 5Mb, which means SALSA and 3D-DNA mistakenly merged at

least three chromosomes. This was also reflected in the increase of translocations. In contrast to

these two tools, CAST not only reduced relocations and translocations, but also improved NG50

though NGA50 remained unchanged. In other aspects, there are only small differences across all

assemblies.

Note that the reference genome is not the exact 6-3 strain. This is the reason that all assemblies only

covered ∼ 70% of the reference genome. Also, the reference genome was assembled by Roche 454
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Table 3.4: Improvement on F. velutipes Pacbio assembly. For each statistic, theoretical best values are colored blue; theoretical
worst values are colored red. And the values in purple are abnormal.

Assembly Draft CAST SALSA 3D-DNA

# contigs 32 24 23 114

Genome fraction (%) 71.228 71.229 71.219 71.139

Total length 38,339K 38,246K 38,343K 38,391K

Total aligned length 27,251K 27,193K 27,250K 27,233K

Largest contig 4,487K 4,487K 10,168K 19,474K

Largest alignment 375K 375K 375K 260K

NG50 3,046K 3,174K 4,487K 19,474K

NGA50 30K 30K 30K 25K

# relocations 913 911 917 945

# translocations 1598 1588 1604 1611

# inversions 30 30 29 32

PDR 48.80% 48.96% 46.19% 30.40%

platform. The length of reads produced by Roche 454 platform is about 400 bp, providing limited

resolving ability to repeats. Thus, the reference genome may also harbour misassemblies. These

two factors are very likely the main sources of the misassembly counts in the evaluation. However,

as they contributed roughly same number of misassemblies in the evaluation of each assembly, the

comparison between these assemblies still made sense.

To further investigate the modifications made by CAST, I used SyMap to plot synteny of the draft

assembly and the CAST assembly against the reference genome. The synteny analysis is shown in

Figure 3.10. It can be seen that CAST merged partial or all blocks on chromosomes CM002705,

CM002704, CM002700, CM002699, CM002698, CM002697, and CM002696. Meanwhile, it also

extended the first block on CM002702. In total, the modifications covered 8 out of 11 chromosomes.

Although CAST did not improve NG50 and NGA50 too much, it definitely contributed a lot to

contiguity.

In Figure 3.11, the synteny analysis also provides an overview of the correctness of the CAST assembly.

The reference genome is aligned on the CAST assembly to label where contigs come from. From
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Figure 3.10: Assemblies aligned on the reference genome. Each row indicates a chromosome in the reference genome. Grey
bars in the same row represent the same chromosome. Each column is an assembly. The colored bars attached to a grey bar
are aligned blocks in this assembly to the reference chromosome. Within an assembly (i.e. a column in the table), bars with
identical color are from the same contig.

Figure 3.11: The reference genome aligned on CAST assembly. Each grey bar represents a contig in the CAST assembly, and
the colored bars on it are aligned blocks from the reference genome. Each contig in the CAST assembly is named by draft contigs
which form it. Small contigs without alignment are compacted.
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(a) tig107 (b) tig121

Figure 3.12: Chromatin interaction heatmaps for tig107 and tig121. Darker color indicates higher interaction. This is usually
expected along the diagonal in a square heatmap, which represents interactions between close positions.

contigs’ name of the CAST assembly in this figure, it can be observed that tig107 and tig121 in

the draft assembly were split and merged with others. To verify whether these modifications are

reasonable, Hi-C data were mapped to the CAST assembly and interactions between regions are

counted by HiC-Pro [Servant et al., 2015]. Then, I visualized the interaction data on each chromosome

by HiCPlotter [Akdemir and Chin, 2015]. Based on the fact that interaction frequency between

regions is negatively correlated with the distance within a chromosome, the count for interaction

spanning a translocation point should be much lower than neighbouring points. Thus, discontinuous

coloring is expected in the heatmaps for misassembled contigs.

Figure 3.12 shows the chromatin interactions heatmap for tig107 and tig121. The misassembled

points can be easily identified at ∼0.5Mb in tig107 and ∼0.7Mb in tig121. These positions are

exactly where CAST split tig107 and tig121. So, these two splits are supported and consistent with

Hi-C analysis.

After this split verification, I also used Hi-C data to inspect merging made by CAST. In Figure 3.11, the

new contigs totally aligned to single chromosomes are considered as reliable (e.g. tig23, tig105_tig30).

But there are 4 contigs aligned to more than one chromosome (i.e. tig1, tig121_tig20, tig124_tig122)

or aligned to different strands of a chromosome (tig11_tig118). Figure 3.13 shows the smoothly
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(a) tig1 (b) tig11_118

(c) tig121_20 (d) tig124_122

Figure 3.13: Chromatin interaction heatmaps for 4 suspected contigs. Darker color indicates higher interaction. This is usually
expected along the diagonal in a square heatmap, which represents interactions between close positions.

colored heatmaps of these 4 contigs. No significant break is observed in these heatmaps; thus the

merging on these contigs are reliable and proper. In fact, no translocation can be observed in all

contig heatmaps (see Figure 3.14).

To verify the sequences lost in merging are repeats and therefore harmless, I investigate these

sequences one by one as well as the overlaps used for merging. Each sequence was queried against

CAST-improved assembly by BLAST. An alignment with >90% identity and >50% length of query
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Figure 3.14: Chromatin interaction heatmaps for all contigs > 500K in the CAST-improved assembly. Darker color indicates
higher interaction. This is usually expected along the diagonal in a square heatmap, which represents interactions between close
positions.
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Table 3.5: The length of overlap and sequence loss during merging. Left loss and right loss refer to the loss on different contigs,
while overlap shows the length of overlap. The numbers in parenthesis indicate the occurrence count of the corresponding
sequence in the CAST-improved assembly.

Merging Left Loss (Occur) Overlap (Occur) Right Loss (Occur)

11 and 118 0 14057(2) 0

25 and 121 0 7849(18) 0

107 and 117 0 16974(16) 0

117 and 115 0 13970(2) 0

115 and 054 0 2175(18) 0

124 and 122 0 17290(13) 0

105 and 30 3984(19) 1738(48) 4687(19)

20 and 121 0 21467(2) 0

35 and 113 0 1638(19) 0

sequence was counted as an occurrence. Table 3.5 summarizes the occurrence counts. In the table,

it can be seen that all sequences occur more than once. The lost sequences are definitely repeats,

and their other copies still exist in the CAST-improved assembly. The overlap sequences are either

too long to be covered by a single read, repeated over 10 times, or both. This result supports that

CAST improves assembly by resolving and merging repeat regions with almost harmless pruning of

hangover repeats.

In summary, all corrections and merging made by CAST on this dataset were supported by synteny

analysis and Hi-C heatmaps. Compared with Hi-C scaffolding tools, CAST better identified misas-

semblies. As synteny analysis showed, CAST rearranged the draft genome correctly, and took the

final step from scaffold-level assembly to chromosome-level assembly. However, the quality metrics

reported by QUAST was not sufficient to reflect the significance of those rearrangements. Because

misassemblies were only counted in quantity, regardless of their influence. The advantages of CAST

will be more apparent with a better metric weighted by misassembly’s influence. Therefore, I pursued

this aspect in Chapter 2.
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3.3.5 F. velutipes Illumina assembly

Although CAST was initially designed to improve draft assemblies obtained by long reads, I also

evaluated its robustness on draft assemblies obtained by short reads. The draft assembly here is the

Illumina assembly from Spades. All improved assemblies and draft assembly were evaluated against

the draft Pacbio assembly (described in Section 3.3.1) instead of the downloaded reference genome,

so that the difference between strain 6-3 and the reference genome can be eliminated. 3D-DNA was

not included in the comparison because it could not finish within 48 hours.

Table 3.6 shows the result on Illumina assembly. Unlike the evaluation on Pacbio assembly, SALSA

significantly improved contiguity metrics. Largest alignment and NGA50 were tripled and doubled,

respectively. But I also noticed that the largest contig increased by more than 50 times while NG50

incredibly surged over 400 folds. These rates of increase are disproportionate for NG50 against

NGA50 and the largest contig against the largest alignment. These disagreements suggest SALSA

made a lot of successful merging but also much more misassemblies. This inference is supported by

Table 3.6: Improvement on F. velutipes Illumina assembly. For each statistic, theoretical best values are colored blue; theoretical
worst values are colored red.

Assembly Draft assembly CAST SALSA

# contigs 2837 2769 1695

Genome fraction (%) 90.96 90.86 90.955

Total length 35,455K 35,418K 36,026K

Total aligned length 34,929K 34,891K 34,928K

Largest contig 466K 466K 25,269K

Largest alignment 466K 466K 1,251K

NG50 60K 66K 25,269K

NGA50 60K 62K 113K

# relocations 3 24 452

# translocations 10 9 149

# inversions 0 1 111

PDR 73.26% 73.37% 38.24%
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a large increase of misassembly counts as well as a significant decrease of PDR. SALSA introduced

250 translocations and inversions. Given that the number of contigs is reduced by 1142, at least

1142 contigs were merged with others, while translocations and inversions were introduced in 20%

of these merging. Overall, SALSA is an aggressive scaffolding tool which improves contiguity at a

non-negligible cost to correctness. In contrast, CAST is more conservative as it only slightly improved

contiguity metrics but was harmless to correctness if I ignore relocations caused by repeat collapse.

It even corrected 1 out of 10 translocations.

3.3.6 Run time evaluation

Without considering BLAST merging, the time complexity of CAST is O(P (GC+GP+N2P )), where

P , G, C, and N are progeny count, genome size, sequencing depth, and contig count respectively.

The progeny count has a non-negligible influence on the run time. Thus, I evaluated CAST run time

by tuning the number of progenies in A. thaliana dataset. I carried out all the experiments on the

same computer, which has two six-core Intel Xeon E5-2620 v3 2.4GHz CPUs and 64G random-access

memory, installed with the CentOS 7 operating system. Run time and the total file size are plotted

against progeny count in Figure 3.15. Although run time is quadratic to progeny count in theory, it is

approximately linear to total file size in practice. This is because files loading and reads preprocessing
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Figure 3.15: Total file size vs. run time. Total file size was tuned by using different progeny count.
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dominate the run time when progeny count is not too large. In normal use, CAST only requires tens

of progenies at most. So the overall run time is roughly proportional to total file size. Empirically, it

processed 100GB of data within 3 hours.

3.4 Discussion

CAST is designed to improve assembly by progeny sequencing data. The idea behind CAST is to

utilize haplotype in homologous recombination to span repeat regions and identify misassembly.

Similar to traditional anchoring methods based on genetic map, CAST also integrates genetic

information. But they differ on their backbones, as CAST uses a draft assembly as backbone to

move away from dependence on construction of a genetic map. For large genomes, constructing a

genetic map requires extremely long run time as well as large memory. CAST uses buffers during

scan to reduce memory usage, and its run time is theoretically linear to genome size or marker size.

It also requires fewer samples to achieve better improvement. Compared with Hi-C methods, CAST

is more sensitive and suffers less from technical noise.

To some degree, the performance of CAST depends on a draft assembly’s quality. For a draft

assembly obtained by short reads or assembled by a conservative assembler, CAST will improve

contiguity more than correctness as the contigs are relatively reliable. In contrast, CAST may identify

more misassemblies but contribute little to contiguity for a draft assembly obtained by long reads or

assembled by an aggressive assembler.

As observed from several evaluations, CAST often yields slightly shorter total length and total aligned

length, compared to the draft assembly. This is because CAST occasionally introduces or enlarges

repeat collapse during merging. However, repeat collapse is a common problem in genome assembly

and it is almost harmless as it does not effect most downstream applications like linkage analysis.

Thus, it is reasonable to trade for contiguity and correctness at some cost of repeat collapse.
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Chapter 4
Concluding remarks

4.1 Conclusion

Next-generation sequencing provides a powerful tool for many research topics. In sequencing projects,

a high-quality reference genome is the first step to understanding an organism. Many downstream

applications (e.g. genetic variant calling, transcriptome analysis, and epigenomic analysis) all highly

rely on the quality of the reference genome.

With sequencing data, people usually run a few assemblers separately, compare the assemblies

produced, and then select the best one for downstream analysis. However, there are too many ways

to define "best". Depending on downstream analysis, people may focus on contiguity, correctness,

completeness or some combination of them. In practice, tens of metrics are used and each of them

assesses assemblies on a specific aspect. In most cases, all of them are expected to be as high

as possible. However, due to strategic decisions made during a genome assembly, one of them is

sometimes sacrificed for another. Thus, PDR has been defined in this thesis to provide an integrative

metric, accompanied by an efficient approximated implementation of it. It is informative in guiding

the selection from various assemblers having their own advantages.

Based on a reasonable metric, people may want to further improve their draft assemblies. In this

thesis, CAST has been proposed to improve a draft assembly by using sequencing data of a progeny

population. Such data is usually available in breeding research projects. For those projects in which

population sequencing is not intended, CAST is also an option to obtain a better assembly when

budget is big enough. Individual sequencing has an upper bound on assembly quality due to technical

limitation. CAST breaks through this by integrating genetic information from progeny and exploiting

the law of genetic linkage: DNA sequences are likely to be inherited together during the meiosis
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phase of sexual reproduction, if they are close together on a chromosome.

4.2 Future work

PDR is theoretically defined on a perfect alignment between reference and assembly. However, in

practice, it is nearly impossible to acquire the perfect alignment. The quality of alignment depends

on aligners and their parameters. In Chapter 2, the fluctuation introduced by some popular aligners

have been qualitatively verified to be small enough in assembly comparison. Next, the quantitative

correlation between PDR and alignment statistics has also been investigated. Furthermore, a new

PDR implementation may be considered to avoid influence from alignment.

Although our experiment results have showed the merit of CAST, there are still some other aspects

to be investigated or verified. For example, sequencing cost could constraint its wide adoption in

practice. For projects which focus on plant breeding and genetic topics, progeny sequencing are usually

intended for downstream analysis and thus also available during genome assembly. In Chapter 3,

it has been verified that CAST improves assembly quality by integrating genetic information. But

for some other projects where progeny sequencing is not necessary, CAST introduces extra efforts

and cost. In such cases, people may want to know whether or in what degree CAST is better than

other assembly strategies. So, further investigation is required to show whether CAST is able to

outperform other strategies under the same amount of budget.

Theoretically, CAST is capable of handling polyploidy data. However, such species are usually plants

with large genome. Because of limited budget, it is unpractical to sequence tens of plant progenies by

high sequencing depth. Therefore, CAST has not been tested on polyploidy data. With decreasing

sequencing cost, it is promising to obtain suitable data for this purpose within a few years. Then,

CAST will be verified on some polyploidy data.
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