
 275

Chapter XIV
Maintenance of

Frequent Patterns:
A Survey

Mengling Feng
Nanyang Technological University, Singapore

Jinyan Li
Nanyang Technological University, Singapore

Guozhu Dong
Wright State University, USA

Limsoon Wong
National University of Singapore, Singapore

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter surveys the maintenance of frequent patterns in transaction datasets. It is written to be
accessible to researchers familiar with the field of frequent pattern mining. The frequent pattern main-
tenance problem is summarized with a study on how the space of frequent patterns evolves in response
to data updates. This chapter focuses on incremental and decremental maintenance. Four major types
of maintenance algorithms are studied: Apriori-based, partition-based, prefix-tree-based, and concise-
representation-based algorithms. The authors study the advantages and limitations of these algorithms
from both the theoretical and experimental perspectives. Possible solutions to certain limitations are
also proposed. In addition, some potential research opportunities and emerging trends in frequent pat-
tern maintenance are also discussed1.

276

Maintenance of Frequent Patterns

IntroductIon

A frequent pattern, also named as a frequent
itemset, refers to a pattern that appears frequently
in a particular dataset. The concept of frequent
pattern is first introduced in Agrawal et al. (1993).
Frequent patterns play an essential role in various
knowledge discovery and data mining (KDD)
tasks, such as the discovery of association rules
(Agrawal et al. 1993), correlations (Brin et al.1997),
causality (Silverstein et al. 1998), sequential pat-
terns (Agrawal et al. 1995), partial periodicity
(Han et al. 1999), emerging patterns (Dong &
Li 1999), etc.

Updates are a fundamental aspect of data man-
agement in frequent pattern mining applications.
Other than real-life updates, they are also used
in interactive data mining to gauge the impact
caused by hypothetical changes to the data. When
a database is updated frequently, repeating the
knowledge discovery process from scratch during
each update causes significant computational and
I/O overheads. Therefore, it is important to anal-
yse how the discovered knowledge may change
in response to updates, so as to formulate more
effective algorithms to maintain the discovered
knowledge on the updated database.

This chapter studies the problem of frequent
pattern maintenance and surveys some of the
current work. We give an overview of the chal-
lenges in frequent pattern maintenance and
introduce some specific approaches that address
these challenges. This should not be taken as an
exhaustive account as there are too many existing
approaches to be included.

The current frequent pattern maintenance
approaches can be classified into four main cat-
egories: 1) Apriori-based approaches, 2) Partition-
based approaches, 3) Prefix-tree-based approaches
and 4) Concise-representation-based approaches.
In the following section, the basic definitions and
concepts of frequent pattern maintenance are
introduced. Next, we study some representative
frequent pattern maintenance approaches from

both theoretical and experimental perspectives.
Some potential research opportunities and emerg-
ing trends in frequent pattern maintenance are
also discussed.

PrelImInArIes And Problem
descrIPtIon

discovery of Frequent Patterns

Let I = {i1, i2, ..., im} be a set of distinct literals
called ‘items’. A ‘pattern’, or an ‘itemset’, is
a set of items. A ‘transaction’ is a non-empty
set of items. A ‘dataset’ is a non-empty set of
transactions. A pattern P is said to be contained
or included in a transaction T if P ⊆ T. A pattern
P is said to be contained in a dataset D, denoted
as P ∈ D, if there is T ∈ D such that P ⊆ T. The
‘support count’ of a pattern P in a dataset D, de-
noted count(P,D), is the number of transactions
in D that contain P. The ‘support’ of a pattern P
in a dataset D, denoted sup(P,D), is calculated
as sup(P,D) = count(P,D)/|D|. Figure 1(a) shows
a sample dataset, and all the patterns contained
in the sample dataset are enumerated in Figure
1(b) with their support counts.

A pattern P is said to be frequent in a dataset
D if sup(P,D) is greater than or equal to a pre-
specified threshold ms%. Given a dataset D and
a support threshold ms%, the collection of all
frequent itemsets in D is called the ‘space of
frequent patterns’, and is denoted by F(ms% ,D).
The task of frequent pattern mining is to discover
all the patterns in the space of frequent patterns.
In real-life applications, the size of the frequent
pattern space is often tremendous. According to
the definition, suppose the dataset has l distinct
items, the size of the frequent pattern space can
go up to 2l. To increase computational efficiency
and reduce memory usage, concise representa-
tions are developed to summarize the frequent
pattern space.

 277

Maintenance of Frequent Patterns

concise representations of
Frequent Patterns

The concise representations of frequent patterns
are developed based on the a priori (or anti-mono-
tone) property (Agrawal et al. 1993) of frequent
patterns.

FACT 1 (A priori Property). Given a
dataset D and a support threshold ms%, if
pattern P∈F(D,ms%), then for every pattern
Q⊆P, Q∈F(D,ms%); on the other hand, if pat-
tern P∉F(D,ms%), then for every pattern Q⊇P,
Q∉F(D,ms%).

The a priori property basically says that all
subsets of frequent patterns are frequent and all
supersets of infrequent patterns are infrequent.

The commonly used concise representations of
frequent patterns include maximal patterns (Ba-
yardo 1998), closed patterns (Pasquier et al.1999),
key patterns (a.k.a. generators) (Pasquier et al.
1999) and equivalence classes (Li et al. 2005).
Figure 1(b) graphically demonstrates how the
frequent pattern space of the sample dataset can
be concisely summarized with maximal patterns,

closed patterns and key patterns, and Figure 1(c)
illustrates how the pattern space can be compactly
represented with equivalence classes.

Maximal Pattern Representation

Maximal patterns are first introduced in Bayardo
(1998). Frequent maximal patterns refer to the
longest patterns that are frequent, and they are
formally defined as follows.

Definition 1 (Maximal Pattern). Given
a dataset D and a support threshold ms%, a
pattern P is a frequent ‘maximal pattern’, iff
sup(P,D)≥ms% and, for every Q ⊃P, it is the case
that sup(Q,D)<ms%.

The maximal pattern representation is com-
posed of a set of frequent maximal patterns
annotated with their support values. The maxi-
mal pattern representation is the most compact
representation of the frequent pattern space. As
shown in Figure 1(b), one maximal pattern is
already sufficient to represent the entire pattern
space that consists of 15 patterns. Based on the a
priori property (Agrawal et al. 1993) of frequent

Figure 1. �a� An example of transaction dataset. �b� The space of frequent patterns for the sample data- �a� An example of transaction dataset. �b� The space of frequent patterns for the sample data-
set in (a) when ms%=25% and the concise representations of the space. (c) Decomposition of frequent
pattern space into equivalence classes.

278

Maintenance of Frequent Patterns

patterns, one can enumerate all frequent patterns
from the frequent maximal patterns. However,
the representation lacks the information to derive
the exact support of frequent patterns. Therefore,
the maximal pattern representation is a lossy
representation.

Closed Pattern and Key Pattern
Representations

Unlike the maximal pattern representation, both
the closed pattern and key pattern representations
are lossless concise representations of frequent
patterns. We say a representation is lossless if it is
sufficient to derive and determine the support of all
frequent patterns without accessing the datasets.
The concepts of closed patterns and key patterns
are introduced together in Pasquier (1999).

Definition 2 (Closed Pattern). Given a dataset
D, a pattern P is a ‘closed pattern’, iff for every Q
⊃P, it is the case that sup(Q,D)<sup(P,D).

For a dataset D and support threshold ms%,
the closed pattern representation is constructed
with the set of frequent closed patterns, denoted
as FC(D,ms%), and their corresponding support
information. Algorithms, such as FPclose (Grahne
et al. 2003), CLOSET (Pei et al 2000) & CLOSET+
(Wang et al 2003), have been proposed to generate
the closed pattern representation effectively. As
shown in Figure 1(b), the closed pattern representa-
tion is not as compact as the maximal representa-
tion. However, it is a lossless representation. The
closed pattern representation can enumerate as
well as derive the support values of all frequent
patterns. For any frequent pattern P in dataset
D, its support can be calculated as: sup(P,D) =
max{sup(C,D)|C⊇P, C∈FC(D,ms%)}.

Definition 3 (Key Pattern). Given a dataset
D, a pattern P is a ‘key pattern’, iff for every Q
⊂P, it is the case that sup(Q,D)>sup(P,D).

For a dataset D and support threshold ms%,
the key pattern representation is constructed
with the set of frequent key patterns, denoted

as FG(D,ms%), and their corresponding support
information. The key pattern representation is
also lossless. For any frequent pattern P in dataset
D, its support can be calculated as: sup(P,D) =
min{sup(G,D)|G⊆P, G∈FG(D,ms%)}.

Equivalence Class Representation

Li et al. (2005) have discovered that the frequent
pattern space can be structurally decomposed
into sub-spaces --- equivalence classes.

Definition 4 (Equivalence Class). Let the
‘filter’, f(P,D), of a pattern P in a dataset D be
defined as f(P,D) = {T ∈ D | P ⊆ T}. Then the
‘equivalence class’ [P]D of P in a dataset D is the
collection of patterns defined as [P]D = {Q | f(P,D)
= f(Q,D), Q is a pattern in D}.

In other words, two patterns are ‘equivalent’
in the context of a dataset D iff they are included
in exactly the same transactions in D. Thus the
patterns in a given equivalence class have the same
support. Figure 1(c) graphically illustrates how the
frequent pattern space of the sample dataset can be
decomposed and summarized into 5 equivalence
classes. As shown in Figure 1, concise representa-
tions provide us effective means to compress the
space of frequent patterns. Concise representa-
tions not only help to save memory spaces, but,
more importantly, they greatly reduce the size
of the searching space and thus the complexity
of the discovery and maintenance problems of
frequent patterns.

mAIntenAnce oF Frequent
PAtterns

Data is dynamic in nature. Datasets are often
updated in the applications of frequent pattern
mining. Data update operations include addition/
removal of items, insertion/deletion of transac-
tions, modifications of existing transactions, etc.
In this chapter, we focus on two most common

dcswls
Cross-Out

dcswls
Replacement Text
search

dcswls
Inserted Text
the

 279

Maintenance of Frequent Patterns

update scenarios, where new transactions are
inserted into the original dataset and obsolete
transactions are removed.

When new transactions are added to the origi-
nal dataset, the new transactions are called the
‘incremental dataset’, and the update operation
is called the ‘incremental update’. The associated
maintenance process is called the ‘incremental
maintenance’. When obsolete transactions are
removed from the original dataset, the removed
transactions are called the ‘decremental dataset’,
and the update operation is called the ‘decremental
update’. The associated maintenance process is
called the ‘decremental maintenance’. For the rest
of the chapter, we use notations Dorg to denote the
original dataset, Dupd to denote the updated data-
set, d+ to denote the incremental dataset and d- to
denote the decremental dataset. In incremental
updates, where new transactions d+ are added,
we have Dupd = Dorg ∪ d+ and thus |Dupd| = |Dorg| +
|d+|. On the other hand, in decremental updates,
where existing transactions are removed, we have
Dupd = Dorg - d

- and thus |Dupd| = |Dorg| - |d
-|.

To effectively maintain the space of frequent
patterns, we first need to understand how the space
evolves in the response to data updates. Suppose
we have a dataset Dorg and the corresponding
frequent pattern space F(ms% ,Dorg) under support
threshold ms%. We can characterize the evolution
of the frequent pattern space by studying the
behaviour of individual patterns. In incremental
updates, we observe that, for every pattern P, exact
one of the following 4 scenarios holds:

1. P∉F(ms% ,Dorg) and P is not in d+. This cor-
responds to the scenario where pattern P is
infrequent in Dorg and it is not contained in
d+. In this case, pattern P remains infrequent
and no update action is required.

2. P∈F(ms% ,Dorg) and P is not in d+. This cor-
responds to the scenario where pattern P is
frequent in Dorg but it is not contained in d+. In
this case, count(P,Dupd) = count(P,Dorg), and

since |Dupd| = |Dorg| + |d+| > |Dorg|, sup(P,Dupd)
<sup(P,Dorg). The support count of P remains
unchanged but its support decrease. Then we
have two cases: first, if count(P,Dupd)≥|Dupd|×
ms%, pattern P remains to be frequent, and
only its support value needs to be updated;
second, if count(P,Dupd)<|Dupd|× ms%, pattern
P becomes infrequent in Dupd, and it needs
to be discarded.

3. P∉F(ms% ,Dorg) and P is in d+. This corre-
sponds to the scenario where pattern P is
infrequent in Dorg but it is contained in d+.
In this case, count(P,Dupd) = count(P,Dorg)
+ count(P,d+). Then we have two cases:
first, if count(P,Dupd)≥|Dupd|× ms%, pattern P
emerges to be frequent in Dupd, and it needs
to be included in F(ms% ,Dupd); second, if
count(P,Dupd)<|Dupd|× ms%, pattern P remains
to be infrequent, and no update action is
required.

4. P∈F(ms% ,Dorg) and P is in d+. This cor-
responds to the scenario where pattern P
is frequent in Dorg and it is contained in
d+. Similar to scenario 3, count(P,Dupd) =
count(P,Dorg) + count(P,d+). Again we have
two cases: first, if count(P,Dupd)≥|Dupd|× ms%,
pattern P remains to be frequent, and only
its support value needs to be updated; sec-
ond, if count(P,Dupd)<|Dupd|× ms%, pattern
P becomes infrequent in Dupd, and it needs
to be discarded.

For decremental updates, similar scenarios can
be derived to describe the evolution of the frequent
pattern space. (Detailed scenarios can be derived
easily based on the duality between incremental
updates and decremental updates. Thus, details
are not included.) The key observation is that both
incremental and decremental updates may cause
existing frequent patterns to become infrequent
and may induce new frequent patterns to emerge.
Therefore, the major tasks and challenges in fre-
quent pattern maintenance are to:

280

Maintenance of Frequent Patterns

1. Find out and discard the existing frequent
patterns that are no longer frequent after the
update.

2. Generate the newly emerged frequent pat-
terns.

Since the size of the frequent pattern space
is usually tremendous, effective techniques and
algorithms are required to address these two
tasks.

mAIntenAnce AlgorIthms

The maintenance of frequent patterns has at-
tracted considerable research attention in the last
decade. The proposed maintenance algorithms
fall into four main categories: 1) Apriori-based,
2) Partition-based, 3) Prefix-tree-based and 4)
Concise-representation-based. In this section,
we will study these four types of approaches
first from the theoretical perspective and then
proceed on to the experimental investigation of
their computational effectiveness.

Apriori-based Algorithms

Apriori (Agrawal et al. 1993) is the first frequent
pattern mining algorithm. Apriori discovers
frequent patterns iteratively. In each iteration,
it generates a set of candidate frequent patterns
and then verifies them by scanning the dataset.
Apriori defines a ‘candidate-generation-verifica-
tion’ framework for the discovery of frequent
patterns. Therefore, in Apriori and Apriori-based
algorithms, the major challenge is to generate
the minimum number of unnecessary candidate
patterns.

FUP (Cheung et al. 1996) is the representa-
tive Apriori-based maintenance algorithm. It is
proposed to address the incremental maintenance
of frequent patterns. Inspired by Apriori, FUP
updates the space of frequent patterns based on
the candidate-generation-verification framework.

Using a different approach from Apriori, FUP
makes use of the support information of the previ-
ously discovered frequent patterns to reduce the
number of candidate patterns. FUP effectively
prunes unnecessary candidate patterns based on
the following two observations.

FACT 2. Given a dataset Dorg, the incremental
dataset d+ , the updated dataset Dupd =Dorg∪d+
and the support threshold ms%, for every pattern
P∈F(ms% ,Dorg), if P∉F(ms% ,Dupd), then for every
pattern Q⊇P, Q∉F(ms% ,Dupd).

FACT 2 is an extension of the a priori property
of frequent patterns. It is to say that, if a previ-
ously frequent pattern becomes infrequent in the
updated dataset, then all its supersets are definitely
infrequent in the updated dataset and thus should
not be included as candidate patterns. FACT 2
facilitates us to discard existing frequent patterns
that are no longer frequent. FACT 3 then provides
us a guideline to eliminate unnecessary candidates
for newly emerged frequent patterns.

FACT 3. Given a dataset Dorg, the incremental
dataset d+ , the updated dataset Dupd =Dorg∪d+
and the support threshold ms%, for every pattern
P∉F(ms% ,Dorg), if sup(P,d+)<ms% , P∉F(ms%
,Dupd).

FACT 3 states that, if a pattern is infrequent
in both the original dataset and the incremental
dataset, it is definitely infrequent in the updated
dataset. This allows us to eliminate disqualified
candidates of the newly emerged frequent patterns
based on their support values in the incremental
dataset. The support values of candidates can be
obtained by scanning only the incremental dataset.
This greatly reduces the number of scans of the
original dataset and thus improves the effective-
ness of the algorithm. (In general, the size of the
incremental dataset is much smaller than the one
of the original dataset.)

In Cheung et al. (1997), FUP is generalized to
address the decremental maintenance of frequent
patterns as well. The generalized version of FUP
is called FUP2H. Both FUP and FUP2H generate
a much smaller set of candidate patterns compared

dcswls
Cross-Out

dcswls
Cross-Out

dcswls
Replacement Text
large

 281

Maintenance of Frequent Patterns

to Apriori, and thus they are more effective. But
both FUP and FUP2H still suffer from two major
drawbacks:

1. they require multiple scans of the original and
incremental/decremental datasets to obtain
the support values of candidate patterns,
which leads to high I/O overheads, and

2. they repeat the enumeration of previously
discovered frequent patterns.

To address Point 2, Aumann et al (1999) pro-
posed a new algorithm---Borders.

Borders is inspired by the concept of the ‘bor-
der pattern’, introduced in Mannila & Toivonen
(1997). In the context of frequent patterns, the
‘border pattern’ is formally defined as follows.

Definition 5 (Border Pattern). Given a da-
taset D and minimum support threshold ms%, a
pattern P is a ‘border pattern’, iff for every Q⊂P,
Q∈F(ms% ,D) but P∉ F(ms% ,D).

The border patterns are basically the shortest
infrequent patterns. The collection of border pat-
terns defines a borderline between the frequent
patterns and the infrequent ones. Different from
FUP, Borders makes use of not only the support
information of previously discovered patterns
but also the support information of the border
patterns.

We illustrate the idea of Borders using an in-
cremental update example. When the incremental
dataset d+ is added, Borders first scans through
d+ to update the support values of the existing
frequent patterns and the border patterns. If no
border patterns emerge to be frequent after the
update, the maintenance process is finished.
Otherwise, if some border patterns become fre-
quent after the update, new frequent patterns and
border patterns need to be enumerated. Those
border patterns that emerge to be frequent after
the update are called the ‘promoted border pat-
terns’. The pattern enumeration process follows
the Apriori candidate-generation-verification
method. But, distinct from Apriori and FUP,

Borders resumes the pattern enumeration from
the ‘promoted border patterns’ onwards and thus
avoids the enumeration of previously discovered
frequent patterns.

Since Borders successfully avoids unneces-
sary enumeration of previously discovered patters,
it is more effective than FUP. However, similar to
FUP, Borders requires multiple scans of original
and incremental/decremental datasets to obtain
the support values of newly emerged frequent
pattern and border patterns. Borders also suffers
from heavy I/O overheads. One possible way to
solve this limitation of FUP and Borders is to
compress the datasets into a prefix-tree (Han et
al. 2000). The prefix-tree is a data structure that
compactly records datasets and thus enables us
to obtain support information of patterns without
scanning of the datasets. Details will be discussed
in the section of Prefix-tree-based algorithms.

Partition-based Algorithms

Partition-based maintenance algorithms, similar
to Apriori, enumerate frequent patterns based on
the candidate-generation-verification framework,
but they generate candidate patterns in a different
manner. Candidate patterns are generated based
on the ‘partition-based heuristic’ (Lee et al. 2005):
given a dataset D that is divided into n partitions
p1, p2, …, pn, if a pattern P is a frequent pattern in
D, then P must be frequent in at least one of the
n partitions of D.

Sliding Window Filtering (SWF) (Lee et al.
2005) is a recently proposed partition-based
algorithm for frequent pattern maintenance.
SWF focuses on the pattern maintenance of
time-variant datasets. In time-variant datasets,
data updates involve both the insertion of the
most recent transactions (incremental update)
and the deletion of the most obsolete transactions
(decremental update).

Given a time-variant dataset D, SWF first
divides D into n partitions and processes one parti-
tion at a time. The processing of each partition is

282

Maintenance of Frequent Patterns

called a phase. In each phase, the local frequent
patterns are discovered, and they are carried
over to the next phase as candidate patterns. In
this manner, candidate patterns are cumulated
progressively over the entire dataset D. The set
of cumulated candidate patterns is called the
‘cumulative filter’, denoted by CF. According to
the ‘partition-based heuristic’, CF is the super-
set of the set of frequent patterns. Finally, SWF
scans through the entire dataset to calculate the
actual support of the candidate patterns and to
decide whether they are globally frequent. To
facilitate the maintenance of frequent patterns,
SWF records not only the support information
but also the ‘start partition’ of each candidate
pattern. The ‘start partition’ attribute of can-
didate patterns refers to the first partition that
the candidate pattern is first introduced. When
the most obsolete transactions are removed, the
‘start partition’ attribute allows us to easily locate
and thus update the candidate patterns that are
involved in the obsolete transactions. When new
transactions are added, the incremental dataset
d+ will be treated as a partition of the dataset and
will be involved in the progressively generation
of candidate patterns.

The major advantage of SWF is that, based
on the ‘partition-based heuristic’, SWF prunes
most of the false candidate patterns in the early

stage of the maintenance process. This greatly
reduces the computational and memory over-
head. Moreover, SWF requires only one scan of
the entire time-variant dataset to verify the set
of candidate patterns. We will demonstrate in
our experimental studies later that it is this very
advantage of SWF that allows it to significantly
outperform Apriori and FUP.

PreFIx-tree-bAsed AlgorIthms

The prefix-tree is an effective data structure that
compactly represents the transactions and thus
the frequent patterns in datasets. The usage of
the prefix-tree is a tremendous breakthrough in
frequent pattern discovery. With the prefix-tree,
we can compress the transactional dataset and
store it in the main memory. This enables fast ac-
cess of the support information of all the frequent
patterns. More importantly, we can now generate
frequent patterns by traversing the prefix-tree
without multiple scanning of the dataset and
generation of any candidate patterns (Han et al.
2000). To better appreciate the idea of prefix-tree,
let us study the FP-tree, the most commonly used
prefix-tree, as an example.

The FP-tree, in full ‘frequent pattern tree’, is
first proposed in Han et al. (2000). The FP-tree
is a compact representation of all relevant fre-

Figure 2. (a) The original dataset. (b) The projected dataset from the original dataset. (c) The construction
process of FP-tree.

 283

Maintenance of Frequent Patterns

quency information in a database. Every branch
of the FP-tree represents a ‘projected transaction’
and also a candidate pattern. The nodes along
the branches are stored in decreasing order of
support values of the corresponding items, so
leaves are representing the least frequent items.
Compression is achieved by building the tree in
such a way that overlapping transactions share
prefixes of the corresponding branches. Figure
2 demonstrates how the FP-tree is constructed
for the sample dataset given a support threshold
ms%. First, the dataset is transformed into the
‘projected dataset’. In the ‘projected dataset’, all
the infrequent items are removed, and items in
each transaction are sorted in descending order of
their support values. Transactions in the ‘projected
dataset’ are named the ‘projected transactions’.
The ‘projected transactions’ are then inserted into
the prefix-tree structure one by one, as shown in
Figure 2(c). It can be seen that the FP-tree ef-
fectively represents the sample dataset in Figure
2(a) with only four nodes.

Based on the idea of FP-tree, a novel fre-
quent pattern discovery algorithm, known as
FP-growth, is proposed. FP-growth generates
frequent pattern by traversing the FP-tree in a

depth-first manner. FP-growth only requires two
scans of the dataset to construct the FP-tree and
no candidate generations. (The detailed frequent
pattern generation process can be referred to
Han et al. (2000)). FP-growth is a very effec-
tive algorithm. It is experimentally shown that
FP-growth can outperform Apriori by orders of
magnitudes.

Now the question is, when the dataset is up-
dated, how to effectively update the prefix-tree and
thus to achieve efficient maintenance of frequent
patterns? To answer this question, Koh & Shieh
(2004) developed the AFPIM (Adjusting FP-tree
for Incremental Mining) algorithm AFPIM, as
the name suggested, focuses on the incremental
maintenance of frequent patterns. AFPIM aims
to update the previously constructed FP-tree by
scanning only the incremental dataset. Recall
that, in FP-tree, frequent items are arranged in
descending order of their support values. Inser-
tions transactions may affect the support values
and thus the ordering of items in the FP-tree.
When the ordering is changed, items in the FP-tree
need to be adjusted. In AFPIM, this adjustment
is accomplished by re-sorting the items through
bubble sort. Bubble sort sorts items by recursively

Figure 3. (a) The construction of CATS tree. (b) The construction of CanTree.

284

Maintenance of Frequent Patterns

exchanging adjacent items. This sorting process
is computational expensive, especially when the
ordering of items are dramatically affected by
the data updates. In addition, incremental update
may induce new frequent items to emerge. In this
case, the FP-tree can no longer by adjusted using
AFPIM. Instead, AFPIM has to scan the updated
dataset to construct a new FP-tree.

To address the limitations of AFPIM, Cheung
& Zaïane (2003) proposed the CATS tree (Com-
pressed and Arranged Transaction Sequences
tree), a novel prefix-tree for frequent patterns.
Compared to the FP-tree, the CATS tree intro-
duces a few new features. First, the CATS tree
stores all the items in the transactions, regardless
whether the items are frequent or not. This feature
of CATS tree allows us to update CATS tree even
when new frequent items have emerged. Second,
to achieve high compactness, CATS tree arranges
nodes based on their local support values. Figure
3(a) illustrates how the CATS tree of the sample
dataset in Figure 2(a) is constructed and how the
nodes in the tree are locally sorted. In the case
of incremental updates, the CATS tree is updated
by merging the newly inserted transactions with
the existing tree branches. According to the

construction method of CATS tree, transactions
in incremental datasets can only be merged into
the CATS tree one by one. Moreover, for each
new transaction, searching though the CATS
tree is required to find the right path for the new
transaction to merge in. In addition, since nodes
in CATS tree are locally sorted, swapping and
merging of nodes are required during the update
of the CATS tree (as shown in Figure 3(a)).

CanTree (Leung et al. 2007), Canonical-or-
der Tree, is another prefix-tree designed for the
maintenance of frequent patterns. The CanTree
is constructed in a similar manner as the CATS
tree, as shown in Figure 3(b). But in the CanTree,
items are arranged according to some canonical
order, which can be determined by the user prior
to the mining process. For example, items in the
CanTree can be arranged in lexicographic order,
or, alternatively, items can be arranged based on
certain property values of items (e.g. their prices,
their priority values, etc.). Note that, in CanTree,
once the ordering of items is fixed, items will fol-
low this ordering for all the subsequent updates.
To handle data updates, the CanTree allows new
transactions to be inserted easily. Unlike the CATS
tree, transaction insertions in the CanTree require

Figure 4. (a) Sample dataset. (b) The backtracking tree of the sample dataset when ms%=40%. Bolded
nodes are the frequent maximal patterns, nodes that are crossed out are enumeration termination points,
and nodes that are linked with a dotted arrow are skipped candidates.

dcswls
Cross-Out

dcswls
Replacement Text
be

 285

Maintenance of Frequent Patterns

no extensive searching for merge-able paths. Also
since the canonical order is fixed, any changes in
the support values of items caused by data updates
have no effect on the ordering of items in the
CanTree. As a result, swapping/merging nodes
are not required in the update of CanTree. The
simplicity of the CanTree makes it a very powerful
prefix-tree structure for frequent pattern mainte-
nance. Therefore, in our experimental studies, we
choose CanTree to represent the prefix-tree-based
maintenance algorithms.

concise-representation-based
Algorithms

It is well known that the size of the frequent pat-
tern space is usually large. The tremendous size
of frequent patterns greatly limits the effective-
ness of the maintenance process. To break this
bottleneck, algorithms are proposed to maintain
the concise representations of frequent patterns,
instead of the entire pattern space. We name this
type of maintenance algorithms as the concise-
representation-based algorithms.

ZIGZAG (Veloso et al. 2002) and TRUM (Feng
et al. 2007) are two representative examples of this
type of algorithms. ZIGZAG (Veloso et al. 2002)
maintains only the maximal frequent patterns.
ZIGZAG updates the maximal frequent patterns
with a backtracking search, which is guided by
the outcomes of the previous mining iterations.
The backtracking search method in ZIGZAG is
inspired by its related work GenMax (Guoda
2001). ZIGZAG conceptually enumerates the
candidates of maximal frequent patterns with a
‘backtracking tree’. Figure 4(b) shows an example
of backtracking tree. In the backtracking tree, each
node is associated with a frequent pattern and its
‘combination set’. For a particular frequent pattern
P, the ‘combination set’ refers to the set of items
that form potential candidates by combining with
P. Take the backtracking tree in Figure 4(b) as an
example. Node {a} is associated with combination
set {b, c, d}. This implies that the union of {a}
and the items in the combination set, which are
{a, b}, {a, c} and {a, d}, are potential candidates
for maximal frequent patterns.

Figure 5. The evolution of frequent equivalence classes under decremental updates.

286

Maintenance of Frequent Patterns

ZIGZAG also employs certain pruning tech-
niques to reduce the number of generated false
candidates. First, ZIGZAG prunes false candidates
based on the a priori property of frequent pat-
terns. If a node in the backtracking tree is not
frequent, then all the children of the node are not
frequent, and thus candidate enumeration of the
current branch can be terminated. In Figure 4(b),
crossed out nodes are the enumeration termination
points that fall in this scenario. Second, ZIGZAG
further eliminates false candidates based on the
following fact.

FACT 4. Given a dataset D and a support
threshold ms%, if a pattern P is a maximal frequent
pattern, then for every pattern Q⊃P, Q is not a
maximal frequent pattern.

FACT 4 follows the definition of the maximal
frequent pattern. In Figure 4(b), nodes, which are
pointed with a dotted line, are those pruned based
on this criterion.

On the other hand, TRUM (Transaction Remov-
al Update Maintainer) maintains the equivalence
classes of frequent patterns. TRUM focuses on the
decremental maintenance. In Feng et al. (2007),
it is discovered that, in response to decremental
updates, an existing frequent equivalence class can
evolve in exactly three ways as shown in Figure 5.
The first way is to remain unchanged without any
change in support. The second way is to remain
unchanged but with a decreased support. If the
support of an existing frequent equivalence class
drops below the minimum support threshold, the
equivalence class will be removed. The third way
is to grow by merging with other classes. As a
result, the decremental maintenance of frequent
equivalence classes can be summarized into
two tasks. The first task is to update the support
values of existing frequent equivalence classes.
The second task is to merge equivalence classes
that are to be joined together.

Figure 6. (a) The original dataset and the frequent equivalence classes in the original dataset when
ms%=40%. (b) The Tid-tree for the original dataset. (c) The update of the Tid-tree under decremental
update.

 287

Maintenance of Frequent Patterns

Algorithm Strengths Weaknesses

Apriori-based FUP 	 Makes use of the support information of

the previously discovered frequent patterns to

reduce the number of candidate patterns

	 Generates large amount of unnecessary

candidates

	 Requires multiple scans of datasets

Borders 	 Avoids enumeration of previous discovered

patterns

	 Effective enumeration of new frequent

patterns from the border patterns

	 Generates large amount of unnecessary

candidates

	 Requires multiple scans of datasets

Partition-based SWF 	 Prunes most of the false candidates in

the early stage based on the ‘partition-based

heuristic’

	 Requires only one full scan of dataset

	 Still generates unnecessary candidates

P r e f i x - t r e e -

based

AFPIM 	 Dataset is summarized into a prefix-tree

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Inefficient update of the prefix-tree: the

whole tree needs to be re-organized for each

update

	 The prefix-tree needs to be rebuild if

new frequent items emerge

CATS tree 	 Dataset is summarized into a prefix-tree

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Items are locally sorted, which allows the

tree to be locally updated

	 The tree update mechanism allows new

frequent items to emerge

	 Node swapping and merging, which are

computational expensive, are required for the

local update of prefix-tree

CanTree 	 Dataset is summarized into a prefix-tree

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Items are arranged in a canonical-order that

will not be affected by the data update, so that

no re-sorting, node swapping and node merging

are needed while updating the prefix tree

	 CanTree is less compact compared to

CATS tree

Concise-repre-

sentation-based

ZIGZAG 	 Updates the maximal frequent patterns

with a backtracking search

	 Prunes infrequent and non-maximal pat-

terns in the early stage

	 Maximal patterns are lossy representa-

tions of frequent patterns

TRUM 	 Maintains frequent patterns based on

the concept of equivalence class --- a lossless

representation of frequent patterns

	 Employs an efficient data structure Tid-tree

to facilitate the maintenance process

	 Handles only the decremental mainte-

nance

Table 1 Summary of various maintenance algorithms.

288

Maintenance of Frequent Patterns

TRUM accomplishes the two maintenance
tasks effectively with a novel data structure called
the Tid-tree. The Tid-tree is developed based
on the concept of Transaction Identifier List, in
short Tid-list. Tid-lists, serve as the vertical pro-
jections of items, greatly facilitate the discovery
of frequent itemsets and the calculation of their
support. Moreover, Tid-lists can be utilized as the
identifiers of equivalence classes. According to the
definition of the equivalence class, each frequent
equivalence class is associated with a unique Tid-
list. The Tid-tree is a prefix tree of the Tid-lists
of the frequent equivalence classes. Figure 6(b)
shows how the Tid-lists of frequent equivalence
classes in Figure 6(a) can be stored in a Tid-tree.
The Tid-tree has two major features: (1) Each node
in the Tid-tree stores a Tid. If the Tid of the node
is the last Tid in some equivalence class’s Tid-list,
the node points to the corresponding equivalence
class. Moreover, the depth of the node reflects the
support of the corresponding equivalence class.
(2) The Tid-tree has a header table, where each
slot stores a linked list that connects all the nodes
with the same Tid.

When transactions are removed from the
original dataset, the Tid-tree can be updated by
removing all the nodes corresponding to the Tids
of the deleted transactions. This can be accom-
plished effectively with the help of the Tid header
table. As demonstrated in Figure 6(c), after a node
is removed, its children re-link to its parent to
maintain the tree structure. If the node points to
an equivalence class, the pointer is passed to its

parent. When two or more equivalence class point-
ers collide into one node, they should be merged
together. E.g. in Figure 4, equivalence classes
EC 2 and EC 3 of the original dataset merge into
EC 2’ after the update. With the Tid-tree, two
decremental maintenance tasks are accomplished
in only one step.

We have reviewed the representative main-
tenance algorithms for frequent patterns. The
strengths and weaknesses of these algorithms
are summarized in Table 1.

experimental studies

We have discussed the different types of mainte-
nance algorithms from theoretical and algorith-
mic perspectives. In this section, we justify our
theoretical observations with experimental results.
The performance of the discussed algorithms is
tested using several benchmark datasets from the
FIMI Repository, http://fimi.cs.helsinki.fi. In this
chapter, the results of T10I4D100K, mushroom,
pumsb_star and gazelle (a.k.a BMS-WebView-1)
are presented. These datasets form a good rep-
resentative of both synthetic and real datasets.
The detailed characteristics of the datasets are
presented in Table 1. The experiments were run
on a PC with 2.8GHz processor and 2GB main
memory.

The performance of the maintenance algo-
rithms is investigated in two ways. First, we study
their computational effectiveness over various
update intervals for a fixed support threshold

Table 2. Characteristics of Datasets
Datasets Size #Trans #Items MaxTL AvgTL

T10I4D100K 3.93MB 100,000 870 30 10.10

mushroom 0.56MB 8,124 119 23 23

pumsb_star 11.03MB 49,046 2,088 63 50.48

gazelle 0.99MB 59,602 497 268 2.51

 289

Maintenance of Frequent Patterns

ms%. For incremental updates, the update interval,
denoted as ∆+, is defined as ∆+=|d+|/|Dorg|. For dec-
remental updates, the update interval, denoted as
∆-, is defined as ∆-=|d-|/|Dorg|. Second, we study the
computational effectiveness of the maintenance
algorithms over various support thresholds ms%
for a fixed update interval. To better evaluate
the maintenance algorithms, their performance
is compared against two representative frequent
pattern mining algorithms: Apriori (Agrawal et
al. 1993) and FP-growth (Han et al. 2000).

First, let us look at the Apriori-based algo-
rithms: the FUP and the Borders. The experimen-
tal results of FUP and Borders are summarized
in Figure 7(a) and 8(a). It is discovered that both
FUP and Borders outperform Apriori over various
datasets and update intervals. FUP is on average
around twice faster than Apriori, and, especially
for the mushroom dataset, FUP outperforms
Apriori up to 5 times when the update interval
gets larger. Compared with FUP, Borders is much
more effective. Borders outperforms Apriori
on average an order of magnitude. This shows
that the ‘border pattern’ is a useful concept that
helps to avoid redundant enumeration of existing
frequent patterns. However, both FUP and Bor-
ders are much slower compared to FP-growth,
the prefix-tree based frequent pattern mining
algorithm. This is mainly because both FUP
and Borders require multiple scans of datasets
and thus cause high I/O overhead. To solve this
limitation, we employ a prefix-tree structure
with the Borders algorithm, and we name the
improved algorithm Borders�prefixTree�. It is
experimentally demonstrate that the employment
of a prefix-tree greatly improve the efficiency of
Borders. Borders�prefixTree� is faster then the
original Borders by at least an order of magnitude,
and it even beats FP-growth in some cases.

Second, the performance results of SWF,
the partition-based algorithm, are presented in
Figure 7(b) and 8(b). SWF is found to be more
effective than Apriori. SWF outperforms Apriori
on average about 6 times. However, since SWF

still follows the candidate-generation-verification
framework, its performance is not as efficient as
FP-growth, which discovers frequent patterns
without generation of any candidates.

Third, we have CanTree2, a prefix-tree-based
algorithm. Its performance is also summarized in
Figure 7(b) and 8(b). It is observed that CanTree
is a very effective maintenance algorithm.
CanTree is faster than both Apriori and FP-
growth. It outperforms Apriori at least an order
or magnitude. CanTree performs the best on the
mushroom dataset, where it is almost 1000 times
faster than Apriori and about 10 times faster than
FP-growth.

Lastly, we study ZIGZAG and TRUM, which
maintain the concise representations of frequent
patterns. The effectiveness of ZIGZAG and TRUM
is evaluated under decremental updates. They
are also compared with FUP2H, the generalized
version of FUP. Experimental results are sum-
marized in Figure 7(c) and 8(c). ZIGZAG and
TRUM maintains only the concise representa-
tions of frequent patterns, where the number of
involved patterns is much smaller compared to
the size of frequent pattern space. Therefore, they
are more effective, especially for small update
intervals, than the algorithms that discover or
maintain frequent patterns. However, it is also
observed that the advantage of ZIGZAG and
TRUM diminish as the update interval increases.
For some cases, ZIGZAG and TRUM are even
slower than FP-growth. Among the comparing
maintenance algorithms --- FUP2H, ZIGZAG and
TRUM, TRUM is the most effective decremental
maintenance algorithm.

In summary, for incremental maintenance,
we found that CanTree is the most effective
algorithm; on the other hand, for decremental
maintenance, TRUM is the most effective one.
In general, it is observed that the advantage of
maintenance algorithms diminishes as the up-
date interval increases. This is because, when
more transactions are inserted/deleted, a larger
number of frequent patterns are affected, and

290

Maintenance of Frequent Patterns

thus a high computational cost is required to
maintain the pattern space. It is inevitable that,
when the update interval reaches a certain level,
the frequent pattern space will be affected so dra-
matically that it will be better off to re-discover
the frequent patterns than maintaining them. In
addition, it is also observed that the advantage of
maintenance algorithms becomes more obvious
when the support threshold ms% is small. It is well
known that the number of frequent patterns and
thus the size of the frequent pattern space grow
exponentially as the support threshold drops.
Therefore, when the support threshold is small,
the space of frequent patterns becomes relatively
large, and the discovery process becomes more
‘expensive’. In this case, updating the frequent
pattern space with maintenance algorithms be-
comes a better option.

Future oPPortunItIes

We have reviewed the frequent pattern mainte-
nance algorithms for conventional transaction
datasets. Due to the advance in information
technologies, a lot of data now is recorded con-
tinuously like a stream. This type of data is called
‘data streams’.

A ‘data stream’ is an ordered sequence of
transactions that arrives in timely order. Data
streams are involved in many applications, e.g.
sensor network monitoring (Halatchev & Gru-
enwald 2005), internet packet frequency estima-
tion (Demaine et al. 2004), web failure analysis
(Cai et al. 2004), etc. Data steams are updated
constantly. Thus effective algorithms are needed
for the maintenance of frequent patterns in data
streams. Compared with the conventional trans-
action dataset, the frequent pattern maintenance
in data streams is more challenging due to the
following factors: first, data streams are continu-
ous and unbounded (Leung & Khan 2006). While
handling data streams, we no longer have the

luxury of performing multiple data scans. Once
the streams flow through, we lose them. Second,
data in streams are not necessarily uniformly
distributed (Leung & Khan 2006). That is to say
currently infrequent patterns may emerge to be
frequent in the future, and vice versa. Therefore,
we can no longer simply prune out infrequent
patterns. Third, updates in data streams happen
more frequently and are more complicated. Data
streams are usually updated in the ‘sliding win-
dows’ manner, where, at each update, one obsolete
transaction is removed from the window and one
new transaction is added. Data streams are also
updated in the ‘damped’ manner, in which every
transaction is associated with a weight and the
weight decrease with age.

The maintenance of frequent patterns in data
streams faces more challenges compared to the
conventional one. Some new algorithms (Manku
et al 2002 & Metwally et al 2005) have been pro-
posed to address the problem. However, certain
existing ideas in the maintenance algorithms
of transaction datasets could be useful to the
maintenance in data streams, e.g. the prefix-tree
(Leung & Khan 2006). In our opinion, to explore
how the existing maintenance techniques can be
used to benefit the frequent pattern maintenance
in data streams is a potential and promising re-
search direction.

conclusIon

This chapter has reviewed the maintenance of
frequent patterns in transaction datasets. We
focused on both incremental and decremental
updates. We have investigated how the space of
frequent patterns evolves in the response to the
data updates. It is observed that both incremen-
tal and decremental updates may cause existing
frequent patterns to become infrequent and may
induce new frequent patterns to emerge. We then
summarized the major tasks in frequent pattern

dcswls
Cross-Out

dcswls
Cross-Out

dcswls
Cross-Out

 291

Maintenance of Frequent Patterns

Figure 7. Computational performance over various update intervals. (a) The Apriori-based algorithms
--- FUP, Borders and Borders�prefixTree�. �b� Partition-based algorithm SWF and prefix-tree-based
algorithm CanTree. �c� Concise-representation-based algorithms --- ZIGZAG and TRUM.

292

Maintenance of Frequent Patterns

Figure 8. Computational performance over various support thresholds. (a) The Apriori-based algorithms
--- FUP, Borders and Borders�prefixTree�. �b� Partition-based algorithm SWF and prefix-tree-based
algorithm CanTree. �c� Concise-representation-based algorithms --- ZIGZAG and TRUM.

 293

Maintenance of Frequent Patterns

maintenance is to 1) locate and discard previously
frequent patterns that are no longer qualified and
to 2) generate new frequent patterns.

We have surveyed four major types of main-
tenance algorithms, namely the Apriori-based
algorithms, the partition-based algorithms, the
prefix-tree-based algorithms and the concise-rep-
resentation-based algorithms. The characteristics
of these algorithms have been studied from both
theoretical and experimental perspectives. It is
observed that algorithms that involve multiple
data scans suffer from high I/O overhead and
thus low efficiency. We have demonstrated that
this limitation can be solved by employing a pre-
fix-tree, e.g. FP-tree , to summarize and store the
dataset. According to the experimental studies,
for incremental maintenance, the prefix-tree-
based algorithm, CanTree, is the most effective
algorithm. On the other hand, TRUM, which
maintains the equivalence classes of frequent
patterns, is the most effective method for decre-
mental maintenance.

In addition, it is a challenging and potential
research direction to explore how the existing
maintenance techniques for transaction data can
be applied to effectively maintain frequent pat-
terns in data streams.

reFerences

Agrawal, R., Imielinski, T., & Swami, A. (1993).
Mining association rules between sets of items
in large databases. Proceedings of the 1993 ACM
SIGMOD International Conference on Manage-
ment of Data (pp. 207-216).

Agrawal, R., & Srikant, R. (1995). Mining se-
quential patterns. Proceedings of the Eleventh
International Conference on Data Engineering
(pp. 3-14).

Aumann, Y., Feldman, R., Lipshtat, O. & Ma-
nilla, H. (1999). Borders: An efficient algorithm

for association generation in dynamic databases.
Intelligent Information Systems, 12(1), 61-73.

Bayardo, R. J. (1998). Efficiently mining long
patterns from databases. Proceedings of the
1998 ACM SIGMOD International Conference
on Management of Data (pp. 85-93).

Brin, S., Motwani, R., & Silverstein, C. (1997).
Beyond market basket: Generalizing association
rules to dependence rules. Data Mining and
Knowledge Discovery, 2(1), 39-68.

Cai, Y. D., Clutter, D., Pape, G., Han, J., Welge,
M., & Auvil L. (2004). MAIDS: mining alarming
incidents from data streams. Proceedings of the
2004 ACM SIGMOD international conference on
Management of data (pp. 919-920).

Cheung, D., Han, J., Ng, V. T., & Wong, C. Y.
(1996). Maintenance of discovered association
rules in large databases: an incremental update
technique. Proceedings of the 1996 International
Conference on Data Engineering (pp. 106-114).

Cheung, D., Lee, S. D., & Kao, B. (1997). A
general incremental technique for maintaining
discovered association rules. Database Systems
for Advanced Applications (pp. 185-194).

Cheung, W., & Zaïane, O. R. (2003). Incremental
mining of frequent patterns without candidate
generation or support constraint. Proceedings of
the 2003 International Database Engineering and
Applications Symposium (pp. 111-116).

Demaine, E. D., López-Ortiz, A., & Munro, J. I.
(2002). Frequency estimation of internet packet
streams with limited space. Proceedings of the
10th Annual European Symposium on Algorithms
(pp. 348-360).

Dong, G., & Li, J. (1999). Efficient Mining of
Emerging Patterns: Discovering Trends and
Differences. Proceedings of the Fifth ACM SIG-
KDD International Conference on Knowledge
Discovery and Data Mining (pp. 15-18).

294

Maintenance of Frequent Patterns

Feng, M., Dong, G., Li, J., Tan, Y-P., & Wong, L.
(2007). Evolution and maintenance of frequent
pattern space when transactions are removed.
Proceedings of the 2007 Pacific-Asia Conference
on Knowledge Discovery and Data Mining (pp.
489-497).

Grahne, G., & Zhu, J. (2003). Efficiently using
prefix-trees in mining frequent itemsets. Pro-
ceedings 1st IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, 2003.

Guoda, K., & Zaki, M. J. (2001). Efficiently min-
ing maximal frequent itemsets. Proceedings of
the 2001 IEEE International Conference on Data
Mining (pp. 163-170).

Han, J., Dong, G., & Yin, Y. (1999). Efficient
mining of partial periodic patterns in time series
database. International Conference on Data En-
gineering, (pp. 106-115).

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent
patterns without candidate generation. 2000 ACM
SIGMOD International. Conference on Manage-
ment of Data (pp. 1-12).

Halatchev, M., & Gruenwald, L. (2005). Estimat-
ing missing values in related sensor data streams.
International Conference on Management of
Data (pp. 83-94).

Jiang, N., & Gruenwald, L. (2006). Research is-
sues in data stream association rule mining. ACM
SIGMOD Record, 35(1), 14-19.

Koh, J-L., & Shieh, S-F. (2004). An efficient ap-
proach for maintaining association rules based on
adjusting FP-tree structures. Proceedings of the
2004 Database Systems for Advanced Applica-
tions (pp. 417-424).

Lee, C-H., Lin, C-R., & Chen, M-S. (2005). Slid-
ing window filtering: an efficient method for
incremental mining on a time-variant database.
Information Systems, 30(3), 227-244.

Leung, C. K-S., & Khan, Q. I. (2006). DSTree: A
Tree Structure for the Mining of Frequent Sets
from Data Streams. Proceedings of the Sixth
International Conference on Data Mining (pp.
928 - 932).

Leung, C. K-S., Khan, Q. I., Li Z., & Hoque, T.
(2007). CanTree: a canonical-order tree for incre-
mental frequent-pattern mining. Knowledge and
Information Systems, 11(3), 287-311.

Li, H., Li, J., Wong, L., Feng, M., & Tan, Y-P.
(2005). Relative risk and odds ratio: A data min-
ing perspective. Symposium on Principles of
Database Systems (pp. 368-377).

Manku, G. S., & Motwani, Q. (2002). Approxi-
mate frequency counts over data streams. VLDB
(pp. 346-357).

Mannila. H.. & Toivonen, H. (1997). Levelwise
search and borders of theories in knowledge dis-
covery. Data Mining and Knowledge Discovery,
1(2), 241-258.

Metwally, A., Agrawal, D., & Abbadi, A. E. (2005)
Efficient computation of frequent and top-k ele-
ments in data streams. International Conference
on Data Theory (pp. 398-412).

Pasquier N., Bastide Y., Taouil R., & Lakhal, L.
(1999). Efficient mining of association rules us-
ing closed itemset lattices. Information Systems,
24(1), 25-46.

Pei ,J., Han, J. & Mao R. (2000). CLOSET: An
efficient algorithm for mining frequent closed
itemsets. SIGMOD Workshop on Research Is-
sues in Data Mining and Knowledge Discovery
2000 (pp 21-30).

Silverstein, C., Brin, S., & Motwani, R. (1998).
Scalable techniques for mining causal structures.
Data Mining and Knowledge Discovery, 4(2),
163-192.

 295

Maintenance of Frequent Patterns

Veloso, A. A., Meira ,W. Jr.,Carvalho, M. B., Pos-
sas, B., Parthasarathy, S., & Zaki, M. J. (2002).
Mining frequent itemsets in evolving databases.
SIAM International Conference on Data Min-
ing, 2002.

Wang, J., Han, J., & Pei, J. (2003). CLOSET+:
Searching for the best strategies for mining
frequent closed itemsets. Proceedings of the
Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (pp.
236-245).

endnotes

1 This work is partially supported by an
A*STAR SERC PSF grant, a MOE AcRF
Tier 1 grant, and an A*STAR AGS scholar-
ship.

2 The CanTree algorithm in our experimental
studies is implemented by us based on Leung
et al. 2007.

