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AbstrAct

This chapter surveys the maintenance of frequent patterns in transaction datasets. It is written to be 
accessible to researchers familiar with the field of frequent pattern mining. The frequent pattern main-
tenance problem is summarized with a study on how the space of frequent patterns evolves in response 
to data updates. This chapter focuses on incremental and decremental maintenance. Four major types 
of maintenance algorithms are studied: Apriori-based, partition-based, prefix-tree-based, and concise-
representation-based algorithms. The authors study the advantages and limitations of these algorithms 
from both the theoretical and experimental perspectives. Possible solutions to certain limitations are 
also proposed. In addition, some potential research opportunities and emerging trends in frequent pat-
tern maintenance are also discussed1.
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IntroductIon

A frequent pattern, also named as a frequent 
itemset, refers to a pattern that appears frequently 
in a particular dataset. The concept of frequent 
pattern is first introduced in Agrawal et al. (1993). 
Frequent patterns play an essential role in various 
knowledge discovery and data mining (KDD) 
tasks, such as the discovery of association rules 
(Agrawal et al. 1993), correlations (Brin et al.1997), 
causality (Silverstein et al. 1998), sequential pat-
terns (Agrawal et al. 1995), partial periodicity 
(Han et al. 1999), emerging patterns (Dong & 
Li 1999), etc.

Updates are a fundamental aspect of data man-
agement in frequent pattern mining applications.  
Other than real-life updates, they are also used 
in interactive data mining to gauge the impact 
caused by hypothetical changes to the data. When 
a database is updated frequently, repeating the 
knowledge discovery process from scratch during 
each update causes significant computational and 
I/O overheads. Therefore, it is important to anal-
yse how the discovered knowledge may change 
in response to updates, so as to formulate more 
effective algorithms to maintain the discovered 
knowledge on the updated database.

This chapter studies the problem of frequent 
pattern maintenance and surveys some of the 
current work. We give an overview of the chal-
lenges in frequent pattern maintenance and 
introduce some specific approaches that address 
these challenges.  This should not be taken as an 
exhaustive account as there are too many existing 
approaches to be included.

The current frequent pattern maintenance 
approaches can be classified into four main cat-
egories: 1) Apriori-based approaches, 2) Partition-
based approaches, 3) Prefix-tree-based approaches 
and 4) Concise-representation-based approaches. 
In the following section, the basic definitions and 
concepts of frequent pattern maintenance are 
introduced. Next, we study some representative 
frequent pattern maintenance approaches from 

both theoretical and experimental perspectives. 
Some potential research opportunities and emerg-
ing trends in frequent pattern maintenance are 
also discussed.

 

PrelImInArIes And Problem 
descrIPtIon

discovery of Frequent Patterns

Let I = {i1, i2, ..., im} be a set of distinct literals 
called ‘items’. A ‘pattern’, or an ‘itemset’, is 
a set of items. A ‘transaction’ is a non-empty 
set of items. A ‘dataset’ is a non-empty set of 
transactions. A pattern P is said to be contained 
or included in a transaction T if P ⊆ T. A pattern 
P is said to be contained in a dataset D, denoted 
as P ∈ D, if there is T ∈ D such that P ⊆ T. The 
‘support count’ of a pattern P in a dataset D, de-
noted count(P,D), is the number of transactions 
in D that contain P. The ‘support’ of a pattern P 
in a dataset D, denoted sup(P,D), is calculated 
as sup(P,D) = count(P,D)/|D|. Figure 1(a) shows 
a sample dataset, and all the patterns contained 
in the sample dataset are enumerated in Figure 
1(b) with their support counts.

A pattern P is said to be frequent in a dataset 
D if sup(P,D) is greater than or equal to a pre-
specified threshold ms%. Given a dataset D and 
a support threshold ms%, the collection of all 
frequent itemsets in D is called the ‘space of 
frequent patterns’, and is denoted by F(ms% ,D). 
The task of frequent pattern mining is to discover 
all the patterns in the space of frequent patterns. 
In real-life applications, the size of the frequent 
pattern space is often tremendous. According to 
the definition, suppose the dataset has l distinct 
items, the size of the frequent pattern space can 
go up to 2l. To increase computational efficiency 
and reduce memory usage, concise representa-
tions are developed to summarize the frequent 
pattern space.
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concise representations of  
Frequent Patterns

The concise representations of frequent patterns 
are developed based on the a priori (or anti-mono-
tone) property (Agrawal et al. 1993) of frequent 
patterns.

FACT 1 (A priori Property). Given a 
dataset D and a support threshold ms%, if 
pattern P∈F(D,ms%), then for every pattern 
Q⊆P, Q∈F(D,ms%); on the other hand, if pat-
tern P∉F(D,ms%), then for every pattern Q⊇P, 
Q∉F(D,ms%).

The a priori property basically says that all 
subsets of frequent patterns are frequent and all 
supersets of infrequent patterns are infrequent.

The commonly used concise representations of 
frequent patterns include maximal patterns (Ba-
yardo 1998), closed patterns (Pasquier et al.1999), 
key patterns (a.k.a. generators) (Pasquier et al. 
1999) and equivalence classes (Li et al. 2005). 
Figure 1(b) graphically demonstrates how the 
frequent pattern space of the sample dataset can 
be concisely summarized with maximal patterns, 

closed patterns and key patterns, and Figure 1(c) 
illustrates how the pattern space can be compactly 
represented with equivalence classes.

Maximal Pattern Representation

Maximal patterns are first introduced in Bayardo 
(1998). Frequent maximal patterns refer to the 
longest patterns that are frequent, and they are 
formally defined as follows.

Definition 1 (Maximal Pattern). Given 
a dataset D and a support threshold ms%, a 
pattern P is a frequent ‘maximal pattern’, iff 
sup(P,D)≥ms% and, for every Q ⊃P, it is the case 
that sup(Q,D)<ms%.

The maximal pattern representation is com-
posed of a set of frequent maximal patterns 
annotated with their support values. The maxi-
mal pattern representation is the most compact 
representation of the frequent pattern space. As 
shown in Figure 1(b), one maximal pattern is 
already sufficient to represent the entire pattern 
space that consists of 15 patterns. Based on the a 
priori property (Agrawal et al. 1993) of frequent 

Figure 1. �a� An example of transaction dataset. �b� The space of frequent patterns for the sample data- �a� An example of transaction dataset. �b� The space of frequent patterns for the sample data-
set in (a) when ms%=25% and the concise representations of the space. (c) Decomposition of frequent 
pattern space into equivalence classes.
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patterns, one can enumerate all frequent patterns 
from the frequent maximal patterns. However, 
the representation lacks the information to derive 
the exact support of frequent patterns. Therefore, 
the maximal pattern representation is a lossy 
representation.

Closed Pattern and Key Pattern  
Representations

Unlike the maximal pattern representation, both 
the closed pattern and key pattern representations 
are lossless concise representations of frequent 
patterns. We say a representation is lossless if it is 
sufficient to derive and determine the support of all 
frequent patterns without accessing the datasets. 
The concepts of closed patterns and key patterns 
are introduced together in Pasquier (1999). 

Definition 2 (Closed Pattern). Given a dataset 
D, a pattern P is a ‘closed pattern’, iff for every Q 
⊃P, it is the case that sup(Q,D)<sup(P,D).

For a dataset D and support threshold ms%, 
the closed pattern representation is constructed 
with the set of frequent closed patterns, denoted 
as FC(D,ms%), and their corresponding support 
information. Algorithms, such as FPclose (Grahne 
et al. 2003), CLOSET (Pei et al 2000) & CLOSET+ 
(Wang et al 2003), have been proposed to generate 
the closed pattern representation effectively. As 
shown in Figure 1(b), the closed pattern representa-
tion is not as compact as the maximal representa-
tion. However, it is a lossless representation. The 
closed pattern representation can enumerate as 
well as derive the support values of all frequent 
patterns. For any frequent pattern P in dataset 
D, its support can be calculated as: sup(P,D) = 
max{sup(C,D)|C⊇P, C∈FC(D,ms%)}.

Definition 3 (Key Pattern). Given a dataset 
D, a pattern P is a ‘key pattern’, iff for every Q 
⊂P, it is the case that sup(Q,D)>sup(P,D).

For a dataset D and support threshold ms%, 
the key pattern representation is constructed 
with the set of frequent key  patterns, denoted 

as FG(D,ms%), and their corresponding support 
information. The key pattern representation is 
also lossless. For any frequent pattern P in dataset 
D, its support can be calculated as: sup(P,D) = 
min{sup(G,D)|G⊆P, G∈FG(D,ms%)}.

Equivalence Class Representation

Li et al. (2005) have discovered that the frequent 
pattern space can be structurally decomposed 
into sub-spaces --- equivalence classes. 

Definition 4 (Equivalence Class). Let the 
‘filter’, f(P,D), of a pattern P in a dataset D be 
defined as f(P,D) = {T ∈ D | P ⊆ T}. Then the 
‘equivalence class’ [P]D of P in a dataset D is the 
collection of patterns defined as [P]D = {Q | f(P,D) 
= f(Q,D), Q is a pattern in D}.

In other words, two patterns are ‘equivalent’ 
in the context of a dataset D iff they are included 
in exactly the same transactions in D. Thus the 
patterns in a given equivalence class have the same 
support. Figure 1(c) graphically illustrates how the 
frequent pattern space of the sample dataset can be 
decomposed and summarized into 5 equivalence 
classes. As shown in Figure 1, concise representa-
tions provide us effective means to compress the 
space of frequent patterns. Concise representa-
tions not only help to save memory spaces, but, 
more importantly, they greatly reduce the size 
of the searching space and thus the complexity 
of the discovery and maintenance problems of 
frequent patterns.

mAIntenAnce oF Frequent 
PAtterns

Data is dynamic in nature. Datasets are often 
updated in the applications of frequent pattern 
mining. Data update operations include addition/
removal of items, insertion/deletion of transac-
tions, modifications of existing transactions, etc. 
In this chapter, we focus on two most common 
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update scenarios, where new transactions are 
inserted into the original dataset and obsolete 
transactions are removed.

When new transactions are added to the origi-
nal dataset, the new transactions are called the 
‘incremental dataset’, and the update operation 
is called the ‘incremental update’. The associated 
maintenance process is called the ‘incremental 
maintenance’. When obsolete transactions are 
removed from the original dataset, the removed 
transactions are called the ‘decremental dataset’, 
and the update operation is called the ‘decremental 
update’. The associated maintenance process is 
called the ‘decremental maintenance’. For the rest 
of the chapter, we use notations Dorg to denote the 
original dataset, Dupd to denote the updated data-
set, d+ to denote the incremental dataset and d- to 
denote the decremental dataset. In incremental 
updates, where new transactions d+ are added, 
we have Dupd = Dorg ∪ d+ and thus |Dupd| = |Dorg| + 
|d+|. On the other hand, in decremental updates, 
where existing transactions are removed, we have 
Dupd = Dorg - d

- and thus |Dupd| = |Dorg| - |d
-|. 

To effectively maintain the space of frequent 
patterns, we first need to understand how the space 
evolves in the response to data updates. Suppose 
we have a dataset Dorg and the corresponding 
frequent pattern space F(ms% ,Dorg) under support 
threshold ms%. We can characterize the evolution 
of the frequent pattern space by studying the 
behaviour of individual patterns.  In incremental 
updates, we observe that, for every pattern P, exact 
one of the following 4 scenarios holds:

1. P∉F(ms% ,Dorg) and P is not in d+. This cor-
responds to the scenario where pattern P is 
infrequent in Dorg and it is not contained in 
d+. In this case, pattern P remains infrequent 
and no update action is required.

2. P∈F(ms% ,Dorg) and P is not in d+. This cor-
responds to the scenario where pattern P is 
frequent in Dorg but it is not contained in d+. In 
this case, count(P,Dupd) = count(P,Dorg), and 

since |Dupd| = |Dorg| + |d+| > |Dorg|, sup(P,Dupd) 
<sup(P,Dorg). The support count of P remains 
unchanged but its support decrease. Then we 
have two cases: first, if count(P,Dupd)≥|Dupd|× 
ms%, pattern P remains to be frequent, and 
only its support value needs to be updated; 
second,  if count(P,Dupd)<|Dupd|× ms%, pattern 
P becomes infrequent in Dupd, and it needs 
to be discarded.

3. P∉F(ms% ,Dorg) and P is in d+. This corre-
sponds to the scenario where pattern P is 
infrequent in Dorg but it is contained in d+. 
In this case, count(P,Dupd) = count(P,Dorg) 
+ count(P,d+). Then we have two cases: 
first, if count(P,Dupd)≥|Dupd|× ms%, pattern P 
emerges to be frequent in Dupd, and it needs 
to be included in F(ms% ,Dupd); second,  if 
count(P,Dupd)<|Dupd|× ms%, pattern P remains 
to be infrequent, and no update action is 
required.

4. P∈F(ms% ,Dorg) and P is in d+. This cor-
responds to the scenario where pattern P 
is frequent in Dorg and it is contained in 
d+. Similar to scenario 3, count(P,Dupd) = 
count(P,Dorg) + count(P,d+). Again we have 
two cases: first, if count(P,Dupd)≥|Dupd|× ms%, 
pattern P remains to be frequent, and only 
its support value needs to be updated; sec-
ond,  if count(P,Dupd)<|Dupd|× ms%, pattern 
P becomes infrequent in Dupd, and it needs 
to be discarded.

For decremental updates, similar scenarios can 
be derived to describe the evolution of the frequent 
pattern space. (Detailed scenarios can be derived 
easily based on the duality between incremental 
updates and decremental updates. Thus, details 
are not included.) The key observation is that both 
incremental and decremental updates may cause 
existing frequent patterns to become infrequent 
and may induce new frequent patterns to emerge. 
Therefore, the major tasks and challenges in fre-
quent pattern maintenance are to:
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1. Find out and discard the existing frequent 
patterns that are no longer frequent after the 
update.

2. Generate the newly emerged frequent pat-
terns.

Since the size of the frequent pattern space 
is usually tremendous, effective techniques and 
algorithms are required to address these two 
tasks. 

mAIntenAnce AlgorIthms

The maintenance of frequent patterns has at-
tracted considerable research attention in the last 
decade. The proposed maintenance algorithms 
fall into four main categories: 1) Apriori-based, 
2) Partition-based, 3) Prefix-tree-based and 4) 
Concise-representation-based. In this section, 
we will study these four types of approaches 
first from the theoretical perspective and then 
proceed on to the experimental investigation of 
their computational effectiveness.

Apriori-based Algorithms

Apriori (Agrawal et al. 1993) is the first frequent 
pattern mining algorithm. Apriori discovers 
frequent patterns iteratively. In each iteration, 
it generates a set of candidate frequent patterns 
and then verifies them by scanning the dataset. 
Apriori defines a ‘candidate-generation-verifica-
tion’ framework for the discovery of frequent 
patterns. Therefore, in Apriori and Apriori-based 
algorithms, the major challenge is to generate 
the minimum number of unnecessary candidate 
patterns.

FUP (Cheung et al. 1996) is the representa-
tive Apriori-based maintenance algorithm. It is 
proposed to address the incremental maintenance 
of frequent patterns. Inspired by Apriori, FUP 
updates the space of frequent patterns based on 
the candidate-generation-verification framework. 

Using a different approach from Apriori, FUP 
makes use of the support information of the previ-
ously discovered frequent patterns to reduce the 
number of candidate patterns. FUP effectively 
prunes unnecessary candidate patterns based on 
the following two observations.

FACT 2. Given a dataset Dorg, the incremental 
dataset d+ , the updated dataset Dupd =Dorg∪d+ 
and the support threshold ms%, for every pattern 
P∈F(ms% ,Dorg), if P∉F(ms% ,Dupd), then for every 
pattern Q⊇P, Q∉F(ms% ,Dupd).

FACT 2 is an extension of the a priori property 
of frequent patterns. It is to say that, if a previ-
ously frequent pattern becomes infrequent in the 
updated dataset, then all its supersets are definitely 
infrequent in the updated dataset and thus should 
not be included as candidate patterns. FACT 2 
facilitates us to discard existing frequent patterns 
that are no longer frequent. FACT 3 then provides 
us a guideline to eliminate unnecessary candidates 
for newly emerged frequent patterns.

FACT 3. Given a dataset Dorg, the incremental 
dataset d+ , the updated dataset Dupd =Dorg∪d+ 
and the support threshold ms%, for every pattern 
P∉F(ms% ,Dorg), if sup(P,d+)<ms% , P∉F(ms% 
,Dupd).

FACT 3 states that, if a pattern is infrequent 
in both the original dataset and the incremental 
dataset, it is definitely infrequent in the updated 
dataset. This allows us to eliminate disqualified 
candidates of the newly emerged frequent patterns 
based on their support values in the incremental 
dataset. The support values of candidates can be 
obtained by scanning only the incremental dataset. 
This greatly reduces the number of scans of the 
original dataset and thus improves the effective-
ness of the algorithm. (In general, the size of the 
incremental dataset is much smaller than the one 
of the original dataset.)

In Cheung et al. (1997), FUP is generalized to 
address the decremental maintenance of frequent 
patterns as well. The generalized version of FUP 
is called FUP2H. Both FUP and FUP2H generate 
a much smaller set of candidate patterns compared 
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to Apriori, and thus they are more effective. But 
both FUP and FUP2H still suffer from two major 
drawbacks:

1. they require multiple scans of the original and 
incremental/decremental datasets to obtain 
the support values of candidate patterns, 
which leads to high I/O overheads,  and

2. they repeat the enumeration of previously 
discovered frequent patterns.

To address Point 2, Aumann et al (1999) pro-
posed a new algorithm---Borders. 

Borders is inspired by the concept of the ‘bor-
der pattern’, introduced in Mannila & Toivonen 
(1997). In the context of frequent patterns, the 
‘border pattern’ is formally defined as follows.

Definition 5 (Border Pattern). Given a da-
taset D and minimum support threshold ms%, a 
pattern P is a ‘border pattern’, iff for every Q⊂P, 
Q∈F(ms% ,D) but P∉ F(ms% ,D).

The border patterns are basically the shortest 
infrequent patterns. The collection of border pat-
terns defines a borderline between the frequent 
patterns and the infrequent ones. Different from 
FUP, Borders makes use of not only the support 
information of previously discovered patterns 
but also the support information of the border 
patterns. 

We illustrate the idea of Borders using an in-
cremental update example. When the incremental 
dataset d+ is added, Borders first scans through 
d+ to update the support values of the existing 
frequent patterns and the border patterns. If no 
border patterns emerge to be frequent after the 
update, the maintenance process is finished. 
Otherwise, if some border patterns become fre-
quent after the update, new frequent patterns and 
border patterns need to be enumerated. Those 
border patterns that emerge to be frequent after 
the update are called the ‘promoted border pat-
terns’. The pattern enumeration process follows 
the Apriori candidate-generation-verification 
method. But, distinct from Apriori and FUP, 

Borders resumes the pattern enumeration from 
the ‘promoted border patterns’ onwards and thus 
avoids the enumeration of previously discovered 
frequent patterns.

Since Borders successfully avoids unneces-
sary enumeration of previously discovered patters, 
it is more effective than FUP. However, similar to 
FUP, Borders requires multiple scans of original 
and incremental/decremental datasets to obtain 
the support values of newly emerged frequent 
pattern and border patterns. Borders also suffers 
from heavy I/O overheads. One possible way to 
solve this limitation of FUP and Borders is to 
compress the datasets into a prefix-tree (Han et 
al. 2000). The prefix-tree is a data structure that 
compactly records datasets and thus enables us 
to obtain support information of patterns without 
scanning of the datasets. Details will be discussed 
in the section of Prefix-tree-based algorithms.

Partition-based Algorithms

Partition-based maintenance algorithms, similar 
to Apriori, enumerate frequent patterns based on 
the candidate-generation-verification framework, 
but they generate candidate patterns in a different 
manner. Candidate patterns are generated based 
on the ‘partition-based heuristic’ (Lee et al. 2005): 
given a dataset D that is divided into n partitions 
p1, p2, …, pn, if a pattern P is a frequent pattern in 
D, then P must be frequent in at least one of the 
n partitions of D.

Sliding Window Filtering (SWF) (Lee et al. 
2005) is a recently proposed partition-based 
algorithm for frequent pattern maintenance. 
SWF focuses on the pattern maintenance of 
time-variant datasets. In time-variant datasets, 
data updates involve both the insertion of the 
most recent transactions (incremental update) 
and the deletion of the most obsolete transactions 
(decremental update).

Given a time-variant dataset D, SWF first 
divides D into n partitions and processes one parti-
tion at a time. The processing of each partition is 
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called a phase. In each phase, the local frequent 
patterns are discovered, and they are carried 
over to the next phase as candidate patterns. In 
this manner, candidate patterns are cumulated 
progressively over the entire dataset D. The set 
of cumulated candidate patterns is called the 
‘cumulative filter’, denoted by CF. According to 
the ‘partition-based heuristic’, CF is the super-
set of the set of frequent patterns. Finally, SWF 
scans through the entire dataset to calculate the 
actual support of the candidate patterns and to 
decide whether they are globally frequent. To 
facilitate the maintenance of frequent patterns, 
SWF records not only the support information 
but also the ‘start partition’ of each candidate 
pattern. The ‘start partition’ attribute of can-
didate patterns refers to the first partition that 
the candidate pattern is first introduced. When 
the most obsolete transactions are removed, the 
‘start partition’ attribute allows us to easily locate 
and thus update the candidate patterns that are 
involved in the obsolete transactions. When new 
transactions are added, the incremental dataset 
d+ will be treated as a partition of the dataset and 
will be involved in the progressively generation 
of candidate patterns.

The major advantage of SWF is that, based 
on the ‘partition-based heuristic’, SWF prunes 
most of the false candidate patterns in the early 

stage of the maintenance process. This greatly 
reduces the computational and memory over-
head. Moreover, SWF requires only one scan of 
the entire time-variant dataset to verify the set 
of candidate patterns. We will demonstrate in 
our experimental studies later that it is this very 
advantage of SWF that allows it to significantly 
outperform Apriori and FUP.

PreFIx-tree-bAsed AlgorIthms

The prefix-tree is an effective data structure that 
compactly represents the transactions and thus 
the frequent patterns in datasets. The usage of 
the prefix-tree is a tremendous breakthrough in 
frequent pattern discovery. With the prefix-tree, 
we can compress the transactional dataset and 
store it in the main memory. This enables fast ac-
cess of the support information of all the frequent 
patterns. More importantly, we can now generate 
frequent patterns by traversing the prefix-tree 
without multiple scanning of the dataset and 
generation of any candidate patterns (Han et al. 
2000). To better appreciate the idea of prefix-tree, 
let us study the FP-tree, the most commonly used 
prefix-tree, as an example.

The FP-tree, in full ‘frequent pattern tree’, is 
first proposed in Han et al. (2000). The FP-tree 
is a compact representation of all relevant fre-

Figure 2. (a) The original dataset. (b) The projected dataset from the original dataset. (c) The construction 
process of FP-tree.
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quency information in a database. Every branch 
of the FP-tree represents a ‘projected transaction’ 
and also a candidate pattern. The nodes along 
the branches are stored in decreasing order of 
support values of the corresponding items, so 
leaves are representing the least frequent items. 
Compression is achieved by building the tree in 
such a way that overlapping transactions share 
prefixes of the corresponding branches. Figure 
2 demonstrates how the FP-tree is constructed 
for the sample dataset given a support threshold 
ms%. First, the dataset is transformed into the 
‘projected dataset’. In the ‘projected dataset’, all 
the infrequent items are removed, and items in 
each transaction are sorted in descending order of 
their support values. Transactions in the ‘projected 
dataset’ are named the ‘projected transactions’. 
The ‘projected transactions’ are then inserted into 
the prefix-tree structure one by one, as shown in 
Figure 2(c). It can be seen that the FP-tree ef-
fectively represents the sample dataset in Figure 
2(a) with only four nodes. 

Based on the idea of FP-tree, a novel fre-
quent pattern discovery algorithm, known as 
FP-growth, is proposed. FP-growth generates 
frequent pattern by traversing the FP-tree in a 

depth-first manner. FP-growth only requires two 
scans of the dataset to construct the FP-tree and 
no candidate generations. (The detailed frequent 
pattern generation process can be referred to 
Han et al. (2000)). FP-growth is a very effec-
tive algorithm. It is experimentally shown that 
FP-growth can outperform Apriori by orders of 
magnitudes. 

Now the question is, when the dataset is up-
dated, how to effectively update the prefix-tree and 
thus to achieve efficient maintenance of frequent 
patterns? To answer this question, Koh & Shieh 
(2004) developed the AFPIM (Adjusting FP-tree 
for Incremental Mining) algorithm AFPIM, as 
the name suggested, focuses on the incremental 
maintenance of frequent patterns. AFPIM aims 
to update the previously constructed FP-tree by 
scanning only the incremental dataset. Recall 
that, in FP-tree, frequent items are arranged in 
descending order of their support values. Inser-
tions transactions may affect the support values 
and thus the ordering of items in the FP-tree. 
When the ordering is changed, items in the FP-tree 
need to be adjusted. In AFPIM, this adjustment 
is accomplished by re-sorting the items through 
bubble sort. Bubble sort sorts items by recursively 

Figure 3. (a) The construction of CATS tree. (b) The construction of CanTree.
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exchanging adjacent items. This sorting process 
is computational expensive, especially when the 
ordering of items are dramatically affected by 
the data updates. In addition, incremental update 
may induce new frequent items to emerge. In this 
case, the FP-tree can no longer by adjusted using 
AFPIM. Instead, AFPIM has to scan the updated 
dataset to construct a new FP-tree.

To address the limitations of AFPIM, Cheung 
& Zaïane (2003) proposed the CATS tree (Com-
pressed and Arranged Transaction Sequences 
tree), a novel prefix-tree for frequent patterns. 
Compared to the FP-tree, the CATS tree intro-
duces a few new features. First, the CATS tree 
stores all the items in the transactions, regardless 
whether the items are frequent or not. This feature 
of CATS tree allows us to update CATS tree even 
when new frequent items have emerged. Second, 
to achieve high compactness, CATS tree arranges 
nodes based on their local support values. Figure 
3(a) illustrates how the CATS tree of the sample 
dataset in Figure 2(a) is constructed and how the 
nodes in the tree are locally sorted. In the case 
of incremental updates, the CATS tree is updated 
by merging the newly inserted transactions with 
the existing tree branches. According to the 

construction method of CATS tree, transactions 
in incremental datasets can only be merged into 
the CATS tree one by one. Moreover, for each 
new transaction, searching though the CATS 
tree is required to find the right path for the new 
transaction to merge in. In addition, since nodes 
in CATS tree are locally sorted, swapping and 
merging of nodes are required during the update 
of the CATS tree (as shown in Figure 3(a)).

CanTree (Leung et al. 2007), Canonical-or-
der Tree, is another prefix-tree designed for the 
maintenance of frequent patterns. The CanTree 
is constructed in a similar manner as the CATS 
tree, as shown in Figure 3(b). But in the CanTree, 
items are arranged according to some canonical 
order, which can be determined by the user prior 
to the mining process. For example, items in the 
CanTree can be arranged in lexicographic order, 
or, alternatively, items can be arranged based on 
certain property values of items (e.g. their prices, 
their priority values, etc.). Note that, in CanTree, 
once the ordering of items is fixed, items will fol-
low this ordering for all the subsequent updates. 
To handle data updates, the CanTree allows new 
transactions to be inserted easily. Unlike the CATS 
tree, transaction insertions in the CanTree require 

Figure 4. (a) Sample dataset. (b) The backtracking tree of the sample dataset when ms%=40%. Bolded 
nodes are the frequent maximal patterns, nodes that are crossed out are enumeration termination points, 
and nodes that are linked with a dotted arrow are skipped candidates.
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no extensive searching for merge-able paths. Also 
since the canonical order is fixed, any changes in 
the support values of items caused by data updates 
have no effect on the ordering of items in the 
CanTree. As a result, swapping/merging nodes 
are not required in the update of CanTree. The 
simplicity of the CanTree makes it a very powerful 
prefix-tree structure for frequent pattern mainte-
nance. Therefore, in our experimental studies, we 
choose CanTree to represent the prefix-tree-based 
maintenance algorithms.

 
concise-representation-based  
Algorithms

It is well known that the size of the frequent pat-
tern space is usually large. The tremendous size 
of frequent patterns greatly limits the effective-
ness of the maintenance process. To break this 
bottleneck, algorithms are proposed to maintain 
the concise representations of frequent patterns, 
instead of the entire pattern space. We name this 
type of maintenance algorithms as the concise-
representation-based algorithms.

ZIGZAG (Veloso et al. 2002) and TRUM (Feng 
et al. 2007) are two representative examples of this 
type of algorithms. ZIGZAG (Veloso et al. 2002) 
maintains only the maximal frequent patterns. 
ZIGZAG updates the maximal frequent patterns 
with a backtracking search, which is guided by 
the outcomes of the previous mining iterations. 
The backtracking search method in ZIGZAG is 
inspired by its related work GenMax (Guoda 
2001). ZIGZAG conceptually enumerates the 
candidates of maximal frequent patterns with a 
‘backtracking tree’. Figure 4(b) shows an example 
of backtracking tree. In the backtracking tree, each 
node is associated with a frequent pattern and its 
‘combination set’. For a particular frequent pattern 
P, the ‘combination set’ refers to the set of items 
that form potential candidates by combining with 
P. Take the backtracking tree in Figure 4(b) as an 
example. Node {a} is associated with combination 
set {b, c, d}. This implies that the union of {a} 
and the items in the combination set, which are 
{a, b}, {a, c} and {a, d}, are potential candidates 
for maximal frequent patterns.

Figure 5. The evolution of frequent equivalence classes under decremental updates.
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ZIGZAG also employs certain pruning tech-
niques to reduce the number of generated false 
candidates. First, ZIGZAG prunes false candidates 
based on the a priori property of frequent pat-
terns. If a node in the backtracking tree is not 
frequent, then all the children of the node are not 
frequent, and thus candidate enumeration of the 
current branch can be terminated. In Figure 4(b), 
crossed out nodes are the enumeration termination 
points that fall in this scenario. Second, ZIGZAG 
further eliminates false candidates based on the 
following fact.

FACT 4. Given a dataset D and a support 
threshold ms%, if a pattern P is a maximal frequent 
pattern, then for every pattern Q⊃P, Q is not a 
maximal frequent pattern.

FACT 4 follows the definition of the maximal 
frequent pattern. In Figure 4(b), nodes, which are 
pointed with a dotted line, are those pruned based 
on this criterion. 

On the other hand, TRUM (Transaction Remov-
al Update Maintainer) maintains the equivalence 
classes of frequent patterns. TRUM focuses on the 
decremental maintenance. In Feng et al. (2007), 
it is discovered that, in response to decremental 
updates, an existing frequent equivalence class can 
evolve in exactly three ways as shown in Figure 5. 
The first way is to remain unchanged without any 
change in support. The second way is to remain 
unchanged but with a decreased support. If the 
support of an existing frequent equivalence class 
drops below the minimum support threshold, the 
equivalence class will be removed. The third way 
is to grow by merging with other classes. As a 
result, the decremental maintenance of frequent 
equivalence classes can be summarized into 
two tasks. The first task is to update the support 
values of existing frequent equivalence classes. 
The second task is to merge equivalence classes 
that are to be joined together.

Figure 6. (a) The original dataset and the frequent equivalence classes in the original dataset when 
ms%=40%. (b) The Tid-tree for the original dataset. (c) The update of the Tid-tree under decremental 
update.
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Algorithm Strengths Weaknesses

Apriori-based FUP 	 Makes use of the support information of 

the previously discovered frequent patterns to 

reduce the number of candidate patterns

	 Generates large amount of unnecessary 

candidates

	 Requires multiple scans of datasets

Borders 	 Avoids enumeration of previous discovered 

patterns

	 Effective enumeration of new frequent 

patterns from the border patterns

	 Generates large amount of unnecessary 

candidates

	 Requires multiple scans of datasets

Partition-based SWF 	 Prunes most of the false candidates in 

the early stage based on the ‘partition-based 

heuristic’

	 Requires only one full scan of dataset

	 Still generates unnecessary candidates

P r e f i x - t r e e -

based

AFPIM 	 Dataset is summarized into a prefix-tree 

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Inefficient update of the prefix-tree: the 

whole tree needs to be re-organized for each 

update

	 The prefix-tree needs to be rebuild  if 

new frequent items emerge

CATS tree 	 Dataset is summarized into a prefix-tree 

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Items are locally sorted, which allows the 

tree to be locally updated

	 The tree update mechanism allows new 

frequent items to emerge

	 Node swapping and merging, which are 

computational expensive, are required for the 

local update of prefix-tree

CanTree 	 Dataset is summarized into a prefix-tree 

and requires only two scans of the dataset

	 No false candidate is enumerated

	 Items are arranged in a canonical-order that 

will not be affected by the data update, so that 

no re-sorting, node swapping and node merging 

are needed while updating the prefix tree

	 CanTree is less compact compared to 

CATS tree

Concise-repre-

sentation-based

ZIGZAG 	 Updates the maximal frequent patterns 

with a backtracking search

	 Prunes infrequent and non-maximal pat-

terns in the early stage

	 Maximal patterns are lossy representa-

tions of frequent patterns

TRUM 	 Maintains frequent patterns based on 

the concept of equivalence class --- a lossless 

representation of frequent patterns

	 Employs an efficient data structure Tid-tree 

to facilitate the maintenance process

	 Handles only the decremental mainte-

nance

Table 1 Summary of various maintenance algorithms.
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TRUM accomplishes the two maintenance 
tasks effectively with a novel data structure called 
the Tid-tree. The Tid-tree is developed based 
on the concept of Transaction Identifier List, in 
short Tid-list. Tid-lists, serve as the vertical pro-
jections of items, greatly facilitate the discovery 
of frequent itemsets and the calculation of their 
support. Moreover, Tid-lists can be utilized as the 
identifiers of equivalence classes. According to the 
definition of the equivalence class, each frequent 
equivalence class is associated with a unique Tid-
list. The Tid-tree is a prefix tree of the Tid-lists 
of  the frequent equivalence classes. Figure 6(b) 
shows how the Tid-lists of frequent equivalence 
classes in Figure 6(a) can be stored in a Tid-tree. 
The Tid-tree has two major features: (1) Each node 
in the Tid-tree stores a Tid. If the Tid of the node 
is the last Tid in some equivalence class’s Tid-list, 
the node points to the corresponding equivalence 
class. Moreover, the depth of the node reflects the 
support of the corresponding equivalence class. 
(2) The Tid-tree has a header table, where each 
slot stores a linked list that connects all the nodes 
with the same Tid.

When transactions are removed from the 
original dataset, the Tid-tree can be updated by 
removing all the nodes corresponding to the Tids 
of the deleted transactions. This can be accom-
plished effectively with the help of the Tid header 
table. As demonstrated in Figure 6(c), after a node 
is removed, its children re-link to its parent to 
maintain the tree structure. If the node points to 
an equivalence class, the pointer is passed to its 

parent. When two or more equivalence class point-
ers collide into one node, they should be merged 
together. E.g. in Figure 4, equivalence classes 
EC 2 and EC 3 of the original dataset merge into 
EC 2’ after the update. With the Tid-tree, two 
decremental maintenance tasks are accomplished 
in only one step.

We have reviewed the representative main-
tenance algorithms for frequent patterns. The 
strengths and weaknesses of these algorithms 
are summarized in Table 1.

experimental studies

We have discussed the different types of mainte-
nance algorithms from theoretical and algorith-
mic perspectives. In this section, we justify our 
theoretical observations with experimental results. 
The performance of the discussed algorithms is 
tested using several benchmark datasets from the 
FIMI Repository, http://fimi.cs.helsinki.fi. In this 
chapter, the results of T10I4D100K, mushroom, 
pumsb_star and gazelle (a.k.a BMS-WebView-1) 
are presented. These datasets form a good rep-
resentative of both synthetic and real datasets. 
The detailed characteristics of the datasets are 
presented in Table 1. The experiments were run 
on a PC with 2.8GHz processor and 2GB main 
memory.

The performance of the maintenance algo-
rithms is investigated in two ways. First, we study 
their computational effectiveness over various 
update intervals for a fixed support threshold 

Table 2. Characteristics of Datasets
Datasets Size #Trans #Items MaxTL AvgTL

T10I4D100K 3.93MB 100,000 870 30 10.10

mushroom 0.56MB 8,124 119 23 23

pumsb_star 11.03MB 49,046 2,088 63 50.48

gazelle 0.99MB 59,602 497 268 2.51
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ms%. For incremental updates, the update interval, 
denoted as ∆+, is defined as ∆+=|d+|/|Dorg|. For dec-
remental updates, the update interval, denoted as 
∆-, is defined as ∆-=|d-|/|Dorg|. Second, we study the 
computational effectiveness of the maintenance 
algorithms over various support thresholds ms% 
for a fixed update interval. To better evaluate 
the maintenance algorithms, their performance 
is compared against two representative frequent 
pattern mining algorithms: Apriori (Agrawal et 
al. 1993) and FP-growth (Han et al. 2000). 

First, let us look at the Apriori-based algo-
rithms: the FUP and the Borders. The experimen-
tal results of FUP and Borders are summarized 
in Figure 7(a) and 8(a). It is discovered that both 
FUP and Borders outperform Apriori over various 
datasets and update intervals. FUP is on average 
around twice faster than Apriori, and, especially 
for the mushroom dataset, FUP outperforms 
Apriori up to 5 times when the update interval 
gets larger. Compared with FUP, Borders is much 
more effective. Borders outperforms Apriori 
on average an order of magnitude. This shows 
that the ‘border pattern’ is a useful concept that 
helps to avoid redundant enumeration of existing 
frequent patterns. However, both FUP and Bor-
ders are much slower compared to FP-growth, 
the prefix-tree based frequent pattern mining 
algorithm. This is mainly because both FUP 
and Borders require multiple scans of datasets 
and thus cause high I/O overhead. To solve this 
limitation, we employ a prefix-tree structure 
with the Borders algorithm, and we name the 
improved algorithm Borders�prefixTree�. It is 
experimentally demonstrate that the employment 
of a prefix-tree greatly improve the efficiency of 
Borders. Borders�prefixTree� is faster then the 
original Borders by at least an order of magnitude, 
and it even beats FP-growth in some cases.

Second, the performance results of SWF, 
the partition-based algorithm, are presented in 
Figure 7(b) and 8(b). SWF is found to be more 
effective than Apriori. SWF outperforms Apriori 
on average about 6 times. However, since SWF 

still follows the candidate-generation-verification 
framework, its performance is not as efficient as 
FP-growth, which discovers frequent patterns 
without generation of any candidates.

Third, we have CanTree2, a prefix-tree-based 
algorithm. Its performance is also summarized in 
Figure 7(b) and 8(b). It is observed that CanTree 
is a very effective maintenance algorithm. 
CanTree is faster than both Apriori and FP-
growth. It outperforms Apriori at least an order 
or magnitude. CanTree performs the best on the 
mushroom dataset, where it is almost 1000 times 
faster than Apriori and about 10 times faster than 
FP-growth.

Lastly, we study ZIGZAG and TRUM, which 
maintain the concise representations of frequent 
patterns. The effectiveness of ZIGZAG and TRUM 
is evaluated under decremental updates. They 
are also compared with FUP2H, the generalized 
version of FUP. Experimental results are sum-
marized in Figure 7(c) and 8(c). ZIGZAG and 
TRUM maintains only the concise representa-
tions of frequent patterns, where the number of 
involved patterns is much smaller compared to 
the size of frequent pattern space. Therefore, they 
are more effective, especially for small update 
intervals, than the algorithms that discover or 
maintain frequent patterns. However, it is also 
observed that the advantage of ZIGZAG and 
TRUM diminish as the update interval increases. 
For some cases, ZIGZAG and TRUM are even 
slower than FP-growth. Among the comparing 
maintenance algorithms --- FUP2H, ZIGZAG and 
TRUM, TRUM is the most effective decremental 
maintenance algorithm.

In summary, for incremental maintenance, 
we found that CanTree is the most effective 
algorithm; on the other hand, for decremental 
maintenance, TRUM is the most effective one. 
In general, it is observed that the advantage of 
maintenance algorithms diminishes as the up-
date interval increases. This is because, when 
more transactions are inserted/deleted, a larger 
number of frequent patterns are affected, and 
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thus a high computational cost is required to 
maintain the pattern space. It is inevitable that, 
when the update interval reaches a certain level, 
the frequent pattern space will be affected so dra-
matically that  it will be better off to re-discover 
the frequent patterns than maintaining them. In 
addition, it is also observed that the advantage of 
maintenance algorithms becomes more obvious 
when the support threshold ms% is small. It is well 
known that the number of frequent patterns and 
thus the size of the frequent pattern space grow 
exponentially as the support threshold drops. 
Therefore, when the support threshold is small, 
the space of frequent patterns becomes relatively 
large, and the discovery process becomes more 
‘expensive’. In this case, updating the frequent 
pattern space with maintenance algorithms be-
comes a better option.

Future oPPortunItIes

We have reviewed the frequent pattern mainte-
nance algorithms for conventional transaction 
datasets. Due to the advance in information 
technologies, a lot of data now is recorded con-
tinuously like a stream. This type of data is called 
‘data streams’.

A ‘data stream’ is an ordered sequence of 
transactions that arrives in timely order. Data 
streams are involved in many applications, e.g. 
sensor network monitoring (Halatchev & Gru-
enwald 2005), internet packet frequency estima-
tion (Demaine et al. 2004), web failure analysis 
(Cai et al. 2004), etc. Data steams are updated 
constantly. Thus effective algorithms are needed 
for the maintenance of frequent patterns in data 
streams. Compared with the conventional trans-
action dataset, the frequent pattern maintenance 
in data streams is more challenging due to the 
following factors: first, data streams are continu-
ous and unbounded (Leung & Khan 2006). While 
handling data streams, we no longer have the 

luxury of performing multiple data scans. Once 
the streams flow through, we lose them. Second, 
data in streams are not necessarily uniformly 
distributed (Leung & Khan 2006). That is to say 
currently infrequent patterns may emerge to be 
frequent in the future, and vice versa. Therefore, 
we can no longer simply prune out infrequent 
patterns. Third, updates in data streams happen 
more frequently and are more complicated. Data 
streams are usually updated in the ‘sliding win-
dows’ manner, where, at each update, one obsolete 
transaction is removed from the window and one 
new transaction is added. Data streams are also 
updated in the ‘damped’ manner, in which every 
transaction is associated with a weight and the 
weight decrease with age.

The maintenance of frequent patterns in data 
streams faces more challenges compared to the 
conventional one. Some new algorithms (Manku 
et al 2002 & Metwally et al 2005) have been pro-
posed to address the problem. However, certain 
existing ideas in the maintenance algorithms 
of transaction datasets could be useful to the 
maintenance in data streams, e.g. the prefix-tree 
(Leung & Khan 2006). In our opinion, to explore 
how the existing maintenance techniques can be 
used to benefit the frequent pattern maintenance 
in data streams is a potential and promising re-
search direction. 

conclusIon

This chapter has reviewed the maintenance of 
frequent patterns in transaction datasets. We 
focused on both incremental and decremental 
updates. We have investigated how the space of 
frequent patterns evolves in the response to the 
data updates. It is observed that both incremen-
tal and decremental updates may cause existing 
frequent patterns to become infrequent and may 
induce new frequent patterns to emerge. We then 
summarized the major tasks in frequent pattern 
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Figure 7. Computational performance over various update intervals. (a) The Apriori-based algorithms 
--- FUP, Borders and Borders�prefixTree�. �b� Partition-based algorithm SWF and prefix-tree-based 
algorithm CanTree. �c� Concise-representation-based algorithms --- ZIGZAG and TRUM.
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Figure 8. Computational performance over various support thresholds. (a) The Apriori-based algorithms 
--- FUP, Borders and Borders�prefixTree�. �b� Partition-based algorithm SWF and prefix-tree-based 
algorithm CanTree. �c� Concise-representation-based algorithms --- ZIGZAG and TRUM.
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maintenance is to 1) locate and discard previously 
frequent patterns that are no longer qualified and 
to 2) generate new frequent patterns.

We have surveyed four major types of main-
tenance algorithms, namely the Apriori-based 
algorithms, the partition-based algorithms, the 
prefix-tree-based algorithms and the concise-rep-
resentation-based algorithms. The characteristics 
of these algorithms have been studied from both 
theoretical and experimental perspectives. It is 
observed that algorithms that involve multiple 
data scans suffer from high I/O overhead and 
thus low efficiency. We have demonstrated that 
this limitation can be solved by employing a pre-
fix-tree, e.g. FP-tree , to summarize and store the 
dataset. According to the experimental studies, 
for incremental maintenance, the prefix-tree-
based algorithm, CanTree, is the most effective 
algorithm. On the other hand, TRUM, which 
maintains the equivalence classes of frequent 
patterns, is the most effective method for decre-
mental maintenance.

In addition, it is a challenging and potential 
research direction to explore how the existing 
maintenance techniques for transaction data can 
be applied to effectively maintain frequent pat-
terns in data streams. 
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