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Abstract

This paper addresses the incremental and decremental maintenance

of the frequent pattern space. We conduct an in-depth investigation

on how the frequent pattern space evolves under both incremental and

decremental updates. Based on the evolution analysis, a new data struc-

ture, Generator-Enumeration Tree (GE-tree), is developed to facilitate the

maintenance of the frequent pattern space. With the concept of GE-tree,

we propose two novel algorithms, Pattern Space Maintainer+ (PSM+)

and Pattern Space Maintainer- (PSM-), for the incremental and decremen-

tal maintenance of frequent patterns. Experimental results demonstrate

that the proposed algorithms, on average, outperform the representative

state-of-the-art methods by an order of magnitude.
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1 Introduction

Updates are a fundamental aspect of data management. Updates allow obsolete

and incorrect records to be removed and new records to be included. When

a database is updated frequently, repeating the pattern discovery process from

scratch during each update causes significant computational and I/O overheads.

Therefore, it is important to analyze how the discovered patterns may change

in response to updates, and to formulate more effective algorithms to maintain

the discovered patterns on the updated database.

Pattern maintenance is also useful for interactive mining applications. For

example, pattern maintenance can be used to interactively analyze the evolution

trend of a time series data. This type of trend analysis usually focuses on a cer-

tain period of time, and patterns before the targeted period are first extracted

as a reference. Then records within the targeted period are inserted one by one

in time sequence. The patterns before and after the insertion are then com-

pared to find whether new patterns (trends) have emerged and how the existing

patterns (trends) have changed. Such an interactive study is a useful tool to de-

tect significant events, like the emergence of new trend, changes of the existing

trends, vanishing trends, etc. More importantly, through the study, we can also

identify the time when the significant events happened, which allows further in-

vestigation on the causes of the events. This type of “before vs. after” analysis

requires intensive pattern discovery and comparison computation. Solving the

problem using conventional pattern discovery methods involves large amount of

redundancies, and pattern maintenance can be used to effectively avoid these

redundancies.

This paper addresses the maintenance of the frequent patterns space. Fre-

quent patterns (Agrawal and Imielinski, 1993) are a very important type of

patterns in data mining. Frequent patterns play an essential role in various

2



knowledge discovery tasks, such as the discovery of association rules, correla-

tions, causality, sequential patterns, emerging patterns, etc. The frequent pat-

terns space, consisting of all the frequent patterns, is usually very large. Thus,

the maintenance of the frequent pattern space is computationally challenging.

We focus on two major types of updates in data management and interactive

mining. The first type, where new transactions are inserted into the original

dataset, is called an incremental update. The associated maintenance process

is called incremental maintenance. The second type, where some transactions

are removed from the original dataset, is called a decremental update. The

associated maintenance process is called decremental maintenance.

Our contributions in this paper are as follows. (1) We analyze how the space

of frequent patterns evolves under both incremental and decremental updates.

The space of frequent patterns is too huge to be studied directly. Therefore, we

propose to structurally decompose the pattern space into subspaces — equiva-

lence classes. This structural decomposition of the frequent pattern space allows

us to concisely represent the space with the borders of equivalence classes; the

decomposition also makes it possible to formally describe the evolution of the

pattern space based on the changes of equivalence classes; and, more impor-

tantly, the decomposition enables us to maintain the frequent pattern space in

a divide-and-conquer manner. (2) Based on the space evolution analysis, we

summarize the major computation tasks involved in frequent pattern mainte-

nance. (3) To effectively perform the maintenance tasks, we develop a data

structure, Generator-Enumeration Tree (GE-tree). GE-tree helps us efficiently

locate and update equivalence classes that are affected by the updates, and it

also ensures complete enumeration of new equivalence classes without any re-

dundancy. (4) We propose two novel maintenance algorithms, Pattern Space

Maintainer+ (PSM+) and Pattern Space Maintainer- (PSM-). With GE-tree,
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PSM+ and PSM- effectively maintain the frequent pattern space for incremental

and decremental updates. PSM+ and PSM- can be easily integrated, and we

name the integrated maintainer the Pattern Space Maintainer (PSM). We also

demonstrate that PSM can be extended to update the frequent pattern space for

support threshold adjustments. (5) We have conducted extensive experiments

to evaluate the effectiveness of our proposed algorithms. Experimental results

show that the proposed algorithms, on average, outperform the state-of-the-art

approaches by more than an order of magnitude.

The rest of the paper is organized as follows. In Section 2, we review the

related works of frequent pattern maintenance. In Section 3, we formally de-

fine the maintenance problem. In Section 4, we investigate how the space of

frequent pattern can be structurally decomposed into and represented by equiv-

alence classes. In Section 5 and 6, we discuss the proposed incremental and

decremental maintenance algorithms. The generalization and extension of the

proposed algorithms are discussed in Section 7, and the experimental results are

presented in Section 8. We conclude the paper in Section 9.

2 Related Work

In the literature, the frequent pattern maintenance algorithms can be classified

into four main categories: the 1) Apriori-based algorithms, 2) Partition-based

algorithms, 3) Prefix-tree-based algorithms and 4) Concise-representation-based

algorithms.

FUP (Cheung et al., 1996) is the first Apriori -based maintenance algorithm.

FUP focuses on the incremental maintenance of frequent patterns. Inspired by

Apriori (Agrawal and Imielinski, 1993), FUP updates the space of frequent pat-

terns iteratively based on the candidate-generation-verification framework. The

key technique of FUP is to make use of support information in previously dis-
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covered frequent patterns to reduce the number of candidate patterns. Since

the performance of candidate-generation-verification based algorithms heavily

depends on the size of the candidate set, FUP outperforms Apriori. FUP is

then generalized as FUP2H (Cheung et al., 1997) to handle both incremental

and decremental maintenance. Similarly, the partition-based algorithm SWF

(Lee et al., 2005) also employs the candidate-generation-verification framework.

However, SWF applies different techniques to reduce the size of candidate set.

SWF slices a dataset into several partitions and employs a filtering threshold

in each partition to filter out unnecessary candidate patterns. Even with all

the candidate reduction techniques, the candidate-generation-verification frame-

work still leads to the enumeration of large number of unnecessary candidates.

This greatly limits the performance of both Apriori -based and partition-based

algorithms.

To address this shortcoming of the candidate-generation-verification frame-

work, prefix-tree-based algorithms, such as CanTree (Leung et al., 2007), that

involve no candidate generation are proposed. CanTree evolves from FP-growth

(Han et al., 2000) — the state-of-the-art prefix-tree-based frequent pattern dis-

covery algorithm. CanTree arranges items according to some fixed canonical or-

der that will not be affected by data updates. This allows new transactions to be

efficiently inserted into the existing prefix-tree without node swapping/merging.

However, prefix-tree based algorithms still suffer from the undesirably large size

of the frequent pattern space.

To break this bottleneck, concise representations of the frequent pattern

space are proposed. The commonly used representations include “maximal pat-

terns” (Bayardo, 1998), “closed patterns” and “generators” (Pasquier et al.,

1999). Algorithms have also been proposed to maintain the concise representa-

tions. Moment (Chi et al., 2006) is one example. Moment dynamically maintains
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the frequent closed patterns. Moment focuses on a special update scenario where

each time only one new transaction is inserted and one obsolete transaction is

removed, and thus it is proposed based on the hypothesis that there are only

small changes to the frequent closed patterns given a small amount of updates.

Due to this unfavorable constraint, the performance of Moment degrades dra-

matically when the number of updates gets large. ZIGZAG (Veloso et al., 2002),

on the other hand, maintains the maximal patterns. Extended from the max-

imal pattern discovery algorithm GENMAX (Gouda and Zaki, 2001), ZIGZAG

updates the maximal patterns by a backtracking search, which is guided by the

outcomes of the previous maintenance iteration. However, the maximal patterns

are a lossy representation of the frequent pattern space, which do not provide

support information of frequent patterns.

We observe that most of the prior works in frequent pattern maintenance, e.g.

FUP, CanTree and ZIGZAG, are proposed as an extension of frequent pattern

discovery algorithms. Unlike these prior works, we propose our maintenance

algorithms based on an in-depth analysis on the evolution of the pattern space

under data updates. The evolution of the pattern space is analyzed using the

concept of equivalence classes. Different from the maximal pattern in ZIGZAG,

the equivalence class is a lossless 1 concise representation of the frequent pattern

space. Also, unlike Moment, which bears some unfavorable assumptions, our

maintenance algorithms aim to handle batch updates.

1We say a representation is lossless if it is sufficient to derive and determine the support
of all frequent patterns without accessing the datasets.
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3 Problem Definition

Let I = {i1, i2, ..., im} be a set of distinct literals called “items”, and also

let D = {t1, t2, ..., tn} be a transactional “dataset”, where ti (i ∈ [1, n]) is a

“transaction” that contains a non-empty set of items. Each subset of I is called

a “pattern” or an “itemset”. The “support” of a pattern P in a dataset D is

defined as sup(P,D) = |{t|t ∈ D ∧ P ⊆ t}|. A pre-specified support threshold

is necessary to define frequent patterns. The support threshold can be defined

in terms of percentage and absolute count. For a dataset D, the “percentage

support threshold”, ms%, and the “absolute support threshold”, msa, can be

interchanged via equation msa = dms% × |D|e. For this paper, we assume the

percentage support threshold is used unless otherwise specified. Given ms% or

msa, a pattern P is said to be frequent in a dataset D iff sup(P,D) ≥ msa =

dms%× |D|e. The collection of all frequent patterns in D is called the “space of

frequent patterns” or the “frequent pattern space” and is denoted as F(D,ms%)

or F(D,msa).

For incremental maintenance, we use the following notations: Dorg is the

original dataset, Dinc — the incremental dataset — is the set of new transactions

to be added to Dorg, and Dupd+ = Dorg ∪ Dinc is the updated dataset. We

assume without loss of generality that Dorg ∩ Dinc = ∅. This leads to the

conclusion that |Dupd+| = |Dorg|+ |Dinc|. Given ms%, the task of incremental

maintenance is to obtain the updated frequent pattern space F(Dupd+,ms%)

by updating the original pattern space F(Dorg,ms%).

Analogously, we use the following notations for decremental maintenance:

Ddec — the decremental dataset — is the set of old transactions to be removed,

and Dupd− = Dorg − Ddec is the updated dataset. We assume without loss

of generality that Ddec ⊆ Dorg. Thus |Dupd−| = |Dorg| − |Ddec|. Given ms%,

the task of decremental maintenance is to obtain the updated frequent pattern
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Figure 1: Process of pattern maintenance. Notations: Dorg, Dinc, Ddec andDupd

denote the original, the incremental, the decremental and the updated datasets
respectively; ms% is the minimum support threshold; and F(Dorg,ms%) and
F(Dupd,ms%) refer to the original and updated frequent pattern space.

space F(Dupd−,ms%) by updating the original pattern space F(Dorg,ms%).

In pattern maintenance applications, the maintenance process, as illustrated

in Figure 1, consists of two phases: the initialization phase and the maintenance

phase. Given the original dataset, Dorg, and the minimum support threshold,

ms%, a pattern discovery algorithm is employed in the initialization phase to

generate the original frequent pattern space F(Dorg,ms%). In this paper, the

discovery algorithm GC-growth (Li et al., 2005) is used. Note that the discovery

of the original pattern space needs to be done only once as initialization for

the subsequent updates. Therefore, the initialization phase is not considered

while evaluating the performance of maintenance algorithms. The initialization

phase is not our focus. We focus on the maintenance phase. In the maintenance

phase, a maintenance algorithm is employed. The maintenance algorithm takes

the original pattern space F(Dorg,ms%) as input and updates the space based

on the data updates, Dinc/Ddec. The updated pattern space F(Dupd,ms%) is

then input back into the maintenance algorithm for subsequent updates. The

objective of this paper is to develop an efficient maintenance algorithm for the

frequent pattern space.
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4 Structural Decomposition of Pattern Space

Understanding how the frequent pattern space evolves when data is updated is

essential for effective maintenance of the space. However, due to the vast size of

the frequent pattern space, direct analysis on the pattern space is extremely dif-

ficult. To solve this problem, we propose to structurally decompose the frequent

pattern space into sub-spaces.

We observe that the frequent pattern space is a convex space.

Definition 4.1 (Convex Space) A space S is convex if, for all X, Y ∈ S such

that X ⊆ Y , it is the case that Z ∈ S whenever X ⊆ Z ⊆ Y .

For a convex space S, we define the collection of all “most general” patterns

in S as a “bound” of S. A pattern X is most general in S if there is no proper

subset of X in S. Similarly, we define the collection of all “most specific”

patterns as another bound of S. A pattern X is most specific in S if there is

no proper superset of X in S. We call the former bound the “left bound” of

S, denoted L; and the latter bound the “right bound” of S, denoted R. We

call the pair of left and right bound the “border” of S, which is denoted by

〈L,R〉. It is easy to show that a convex space can be concisely represented by

its borders without loss of information.

Fact 4.2 (Cf. Li et al. (2005)) F(ms%,D) is convex. Furthermore, it can

be structurally decomposed into convex sub-spaces — equivalence classes.

We further found that, due to its convexity, the frequent pattern space can

be structurally decomposed into sub-spaces, which are much smaller in terms

of size. The sub-space is called the equivalence class, and it is formally defined

as follows.

Definition 4.3 (Equivalence Class) Let the “filter”, f(P,D), of a pattern P

in a dataset D be defined as f(P,D) = {T ∈ D | P ⊆ T}. Then the “equivalence
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class” [P ]D of P in a dataset D is the collection of patterns defined as [P ]D =

{Q | f(P,D) = f(Q,D), Q is a pattern in D}.

In other words, two patterns are “equivalent” in the context of a dataset D
iff they are included in exactly the same transactions in D. Thus the patterns

in a given equivalence class have the same support. So we extend the notations

and write sup(P,D) to denote the support of an equivalence class [P ]D and P ∈
F(ms,D) to mean the equivalence class is frequent. Furthermore, equivalence

classes are also convex and thus they can be compactly represented by their

borders without loss of information (Li et al., 2005). The right bound of an

equivalence class is actually a closed pattern, and the left bound is a group of

generators (key patterns).

Definition 4.4 (Generator & Closed Pattern (Pasquier et al., 1999))

A pattern P is a “key pattern” or a “generator” in a dataset D iff for every

P ′ ⊂ P , it is the case that sup(P ′,D) > sup(P,D). In contrast, a pattern P

is a “closed pattern” in a dataset D iff for every P ′ ⊃ P , it is the case that

sup(P ′,D) < sup(P,D).

Based on the definition of the border of a convex space, we can define gen-

erators and closed patterns in an alternative way.

Fact 4.5 A pattern P is a key pattern or a generator in a dataset D iff P is a

most general pattern in [P ]D. A pattern P is a closed pattern in a dataset D iff

P is the most specific pattern in [P ]D.

Therefore, the closed pattern and generators form the border of the corre-

sponding equivalence class, and they, furthermore, uniquely define the corre-

sponding equivalence class. This implies that, to mine or maintain generators

and closed patterns, it is sufficient to mine or maintain the borders of equiva-

lence classes, and vice versa.

10



Sample Dataset

ms% = 20%, msa = 1

a, b, c, d
b, d
a, c, d
a, c

{}

a : 3 c : 3 d : 3 b : 2

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

 a b : 1 b c : 1

a b c : 1 b c d : 1

a b c d : 1

a b d : 1

 a b : 1 b c : 1

a b c : 1 a b d : 1 b c d : 1

a b c d : 1

Generator

Closed Pattern

(a) (b) (c)

Figure 2: Demonstration of the structural decomposition of the frequent pattern
space. (a)The sample dataset; (b) decomposition of the frequent pattern space of
the sample dataset into 5 equivalence classes; (c) the “border” of an equivalence
class.

Figure 2 (b) shows the frequent pattern space for the sample dataset in (a)

when ms% = 20%/msa = 1. Figure 2 (b) also graphically demonstrates how the

pattern space, which consists of 15 patterns, can be structurally decomposed

into 5 equivalence classes. Figure 2 (c) then demonstrates how an equivalence

class can be concisely represented by its border patterns — the generators and

closed pattern.

In addition, we observe that generators follow the “a priori” (or anti-

monotone) property.

Fact 4.6 (Cf. Li et al. (2005)) Let P be a pattern in D. If P is frequent,

then every subset of P is also frequent. If P is a generator, then every subset

of P is also a generator in D. Thus, if P is a frequent generator, then every

subset of P is also a frequent generator in D.

The equivalence class is an effective concise representation for pattern spaces.

In the literature, the equivalence class has been used to summarize cells in data

cubes (Li et al., 2004). Here we use equivalence classes to concisely represent

the space of frequent patterns. Structurally decomposing the pattern space into

equivalence classes allows us to investigate the evolution of the pattern space via

studying the evolution of equivalence classes, which is much smaller and easier
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to study. Moreover, the structural decomposition simplifies the maintenance

problem from updating the entire space to the update of equivalence classes,

and it also allows us to maintain the pattern space in a divide-and-conquer

manner.

5 Incremental Maintenance of Pattern Space

This section discusses the incremental maintenance of the frequent pattern

space. In the incremental update, a set of new transactionsDinc are inserted into

the original dataset Dorg, and thus the updated dataset Dupd+ = Dorg ∪ Dinc.

Given a support threshold ms%, the task of incremental maintenance is to ob-

tain the updated pattern space by maintaining the original pattern space.

To develop effective incremental maintenance algorithm, we start off with a

study on the evolution of the frequent pattern space under incremental updates

using the concept of equivalence class. Through the space evolution study, we

summarize the major computational tasks in the incremental maintenance. To

complete the computational tasks efficiently, we develop a new data structure,

Generator-Enumeration Tree (GE-tree). Based on the GE-tree, a novel incre-

mental maintenance algorithm, named Pattern Space Maintainer+ (PSM+), is

proposed.

5.1 Evolution of Pattern Space

We first investigate how the existing (frequent) equivalence classes evolve when

new transactions are added. We observe that, after an incremental update, the

support of an equivalence class can only increase and the size of an equivalence

class can only shrink.
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Proposition 5.1 Let P be a pattern in Dorg. Then [P ]Dupd+ ⊆ [P ]Dorg and

sup(P,Dupd+) ≥ sup(P,Dorg).

Proof: Suppose Q ∈ [P ]Dupd+ . Then f(Q,Dupd+) = f(Q,Dorg)∪ f(Q,Dinc) =

f(P,Dupd+) = f(P,Dorg) ∪ f(P,Dinc). Since Dinc ∩ Dorg = ∅, we have

f(Q,Dorg) = f(P,Dorg). This means Q ∈ [P ]Dorg
for every Q ∈ [P ]Dupd+ . Thus

we can conclude [P ]Dupd+ ⊆ [P ]Dorg
. Also, sup(P,Dupd+) = sup(P , Dorg) +

sup(P,Dinc) ≥ sup(P , Dorg). ut

In particular, we discover that, under an incremental update, the existing

equivalence classes evolve in three different ways. The first way is to remain

unchanged without any change in support, such as EC2 in Figure 3 (a). The

second way is to remain unchanged but with an increased support, such as

EC3 and EC4 in Figure 3 (a). The third way is to split into two or more

classes, such as EC1 in Figure 3 (a). In this case, the size of equivalence classes

will shrink as described in Proposition 5.1. On the other hand, an incremental

update may induce new 2 (frequent) equivalence classes to emerge. E.g. EC5′

in Figure 3 (a).

To have an in-depth understanding on how the pattern space evolve under

the incremental update, we now investigate the exact conditions for the three

ways that existing equivalence classes may evolve and also the conditions for new

equivalence classes to emerge. We denote the closed pattern of an equivalence

class [p]D as Clo([p]D) and the generators or key patterns of [p]D as Keys([p]D).

We assume the incremental dataset Dinc contains only one transaction t+ for

ease of discussion.

Theorem 5.2 Let Dorg be the original dataset, Dinc be the incremental dataset,

Dupd+ = Dorg ∪ Dinc and ms% be the support threshold. Suppose Dinc consists

2We call an equivalence class “new” iff the patterns in the class are not in the original
pattern space but in the updated pattern space.
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Incremental 

Dataset, Dinc

a, e
b, d, e+

Frequent equivalence classes: 

EC1: { {a}, {c}, {a, c} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3: { {b}, {b, d} } : 2

Frequent equivalence classes: 

EC2': { {c}, {a, c} } : 3

EC1': { {a} } : 4

Updated Dataset 

(ms% = 50%,msa = 3)

a, b, c, d, e
b, d
a, c, d
a, c
a, e
b, d, e

EC5': { {e} } : 3

unchanged

support 

increase

newly emerged

Notation: {.} : x refers to an equivalence class with x as support value and consists of patterns {.}.

Original Dataset 

(ms% = 50%,msa = 2)

a, b, c, d, e
b, d
a, c, d
a, c

EC4: { {d} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3': { {b}, {b, d} } : 3

EC4': { {d} } : 4

split

ECorg

C t+

Split 

Up

C t+

: generators

t+: incremental transaction

(a) (b)

Note: Due to the increase in msa, EC2 has become infrequent and thus is removed.

EC'

EC''

C'

C, C' : closed patterns

Figure 3: (a) The evolution of the frequent pattern space under the incremental
update; (b) the splitting up of an equivalence class ECorg after t+ is inserted.

of only one transaction t+. For every frequent equivalence class [P ]Dupd+ in

F(ms%,Dupd+), exactly one of the 5 scenarios below holds:

1. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q 6⊆ t+ for all Q ∈ [P ]Dorg
, corresponding

to the scenario where the equivalence class remains totally unchanged. In

this case, [P ]Dupd+ = [P ]Dorg
and sup(P,Dupd+) = sup(P,Dorg).

2. P ∈ F(ms%,Dorg), P ⊆ t+ and Q ⊆ t+ for all Q ∈ [P ]Dorg
, corre-

sponding to the scenario where the equivalence class has remained un-

changed but with increased support. In this case, [P ]Dupd+ = [P ]Dorg
and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

3. P ∈ F(ms%,Dorg), P ⊆ t+ and Q 6⊆ t+ for some Q ∈ [P ]Dorg
, cor-

responding to the scenario where the equivalence class splits. In this

case, [P ]Dorg splits into two new equivalence classes, and [P ]Dupd+ is

one of them. [P ]Dupd+ = {Q|Q ∈ [P ]Dorg
∧ Q ⊆ t+}, Clo([P ]Dupd+) =

Clo([P ]Dorg
) ∩ t+ and Keys([P ]Dupd+) = {K|K ∈ Keys([P ]Dorg

) ∧K ⊆
t+}.

4. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q ⊆ t+ for some Q ∈ [P ]Dorg
, also
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corresponding to the scenario where the equivalence class splits. This sce-

nario is complement to Scenario 3. [P ]Dorg
splits into two new equivalence

classes, [P ]Dupd+ is one of them, and the other one has been described

in Scenario 3. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg ∧ Q 6⊆ t+},
Clo([P ]Dupd+) = Clo([P ]Dorg

) and Keys([P ]Dupd+) = min{{K|K ∈
Keys([P ]Dorg

) ∧K 6⊆ t+} ∪ {K ′ ∪ {xi}, i = 1, 2, · · ·|K ′ ∈ Keys([P ]Dorg
) ∧

K ′ ⊆ t+, xi ∈ Clo([P ]Dorg ) ∧ xi 6∈ t+}}.

5. P 6∈ F(ms%,Dorg), P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e,
corresponding to the scenario where a new frequent equivalence class has

emerged. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg
∧ Q ⊆ t+} and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

Proof: Refer to Appendix. ut

Scenario 3 and 4 in Theorem 5.2 describe the cases where an existing equiv-

alence class splits. The splitting up of an equivalence class is a bit complicated.

Thus a graphical example is shown in Figure 3 (b). The original equivalence

class ECorg splits up due to the insertion of transaction t+. The resulting

equivalence class EC ′′ corresponds to the equivalence class [P ]Dupd+ described

in Scenario 3, and EC ′ corresponds to [P ]Dupd+ described in Scenario 4.

Theorem 5.2 summarizes how the frequent pattern space evolves when a

new transaction is inserted. More importantly, the theorem describes how the

updated frequent equivalence classes of Dupd+ can be derived from the exist-

ing frequent equivalence classes of Dorg. Theorem 5.2 provides us a theoret-

ical framework for effective incremental maintenance of the frequent pattern

space. Note that: although the theorem focuses on the case where only one

new transaction is inserted, it is also applicable to batch updates 3. Suppose
3A generalized version of Theorem 5.2, which describes how the frequent pattern space

evolves when a batch of new transactions are added, is presented in Feng et al. (2009).
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Dinc = {t1, · · · , tn}. To obtain the updated pattern space F(Dupd+,ms%), we

just need to update the original space F(Dorg,ms%) iteratively based on The-

orem 5.2 for each ti ∈ Dinc (1 ≤ i ≤ n).

In addition, if the support threshold is defined in terms of percentage, ms%,

an incremental update affects the absolute support threshold, msa. Recall that

msa = dms% × |D|e. Since |Dupd+| > |Dorg|, the updated absolute support

threshold ms′a = dms%×|Dupd+|e ≥ msa = dms%×|Dorg|e. Thus, in this case,

the absolute support threshold, msa, increases after an incremental update.

Moreover, this increase in msa may cause some existing frequent equivalence

classes to become infrequent. EC2 in Figure 3 (a) is an example.

Combining all the above observations, we summarize that the incremental

maintenance of the frequent pattern space involves four major computational

tasks: (1) update the support of existing frequent equivalence classes; (2) split

up equivalence classes that satisfy Scenario 3 and 4 of Theorem 5.2; (3) discover

newly emerged frequent equivalence classes; and (4) remove existing frequent

equivalence classes that are no longer frequent. Task (4) can be accomplished

by filtering out the infrequent equivalence classes when outputting them. This

filtering step is very straightforward, and thus we will not elaborate its de-

tails. We focus here on the first three tasks, and we name them respectively

as the support update task, class splitting task and new class discovery

task. To efficiently complete these three tasks, a new data structure, Generator-

Enumeration Tree (GE-tree), is developed.

5.2 Maintenance Data Structure:

Generator-Enumeration Tree

The Generator-Enumeration Tree (GE-tree) is a data structure inspired by the

idea of the Set-Enumeration Tree (SE-tree). Thus we first recap the concept
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Figure 4: The Set-Enumeration Tree with item order: d <0 c <0 b <0 a. The
number on the left top corner of each node indicates the order at which the
node is visited.

of SE-tree. We then introduce the characteristics of GE-tree, and we further

demonstrate how the GE-tree can help to efficiently complete the computational

tasks of incremental maintenance.

5.2.1 Set-Enumeration Tree

Set-Enumeration Tree (SE-tree), as shown in Figure 4, is a conceptual data

structure that guides the systematic enumeration of patterns.

Let the set I = {i1, ..., im} of items be ordered according to an arbitrary

ordering <0 so that i1 <0 i2 <0 · · · <0 im. For itemsets X, Y ⊆ I, we write

X <0 Y iff X is lexicographically “before” Y according to the order <0. E.g.

{i1} <0 {i1, i2} <0 {i1, i3}. We say an itemset X is a “prefix” of an itemset Y

iff X ⊆ Y and X <0 Y . We write last(X) for the item α ∈ X, if the items in

X are α1 <0 α2 <0 · · · <0 α. We say an itemset X is the “precedent” of an

itemset Y iff X = Y − last(Y ). E.g. pattern {d, c} in Figure 4 is the precedent

of pattern {d, c, b}.
A SE-tree is a conceptual organization on the subsets of I so that {} is its

root node; for each node X such that Y1, ..., Yk are all its children from left to

right, then Yk <0 · · · <0 Y1; for each node X in the set-enumeration tree such
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that X1, ..., Xk are siblings to its left, we make X ∪X1, ..., X ∪Xk the children

of X; |X ∪Xi| = |X| + 1 = |Xi| + 1; and |X| = |Xi| = |X ∩Xi| + 1. We also

induce an enumeration ordering on the nodes of the SE-tree so that given two

nodes X and Y , we say X <1 Y iff X would be visited before Y when we visit

the set-enumeration tree in a left-to-right top-down manner. Since this visit

order is a bit unusual, we illustrate it in Figure 4. Here, the number besides the

node indicates the order at which the node is visited.

The SE-tree is an effective structure for pattern enumeration. Its left-to-right

top-down enumeration order effectively ensures complete pattern enumeration

without redundancy.

5.2.2 Generator-Enumeration Tree

The Generator-Enumeration Tree (GE-tree) is developed from the SE-tree. As

shown in Figure 5 (a), GE-tree is constructed in a similar way as SE-tree, and

GE-tree also follows the left-to-right top-down enumeration order to ensure com-

plete and efficient pattern enumeration.

New features have been introduced to the GE-tree to facilitate incremental

maintenance of frequent patterns. In the literature, SE-tree has been used to

enumerate frequent patterns (Wang et al., 2000), closed patterns (Wang et al.,

2003) and maximal patterns (Bayardo, 1998). However, GE-tree, as the name

suggested, is employed here to enumerate frequent generators. Moreover, unlike

SE-tree, in which the items are arranged according to some arbitrary order, in

GE-tree, items are arranged based on the support of the items. This means

items i1 <0 i2 if sup({i1},D) < sup({i2},D). This item ordering effectively

minimizes the size of the GE-tree. Also, different from SE-tree, which only acts

as a conceptual data structure, GE-tree acts as a compact storage structure for

frequent generators. As shown in Figure 5, each node in GE-tree represents a

generator, and each frequent generator is linked to its corresponding equivalence
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Figure 5: (a) The GE-tree for the original dataset. (b) The updated GE-tree
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transaction {a, f} is inserted.
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class. This feature allows frequent generators and their corresponding equiva-

lence classes to be easily updated in response to updates. The most important

feature of GE-tree is that: it stores the “negative generator border” in addition

to frequent generators. For the GE-tree in Figure 5, the “negative generator

border” refers to the collection of generators under the solid line. The “negative

generator border” is a newly defined concept for effective enumeration of new

frequent generator and equivalence classes.

More details of these new features will be discussed as we demonstrate how

GE-tree can help to effectively complete the computational tasks of incremental

maintenance. Recall that the major computational tasks in the incremental

maintenance of the frequent pattern space include the support update task,

class splitting task and new class discovery task.

Support update of existing frequent equivalence classes can be efficiently

accomplished with GE-tree. The main idea is to update only the frequent equiv-

alence classes that need to be updated. We call these equivalence classes the

“affected classes”, and we need a fast way to locate these affected classes.

Since generators are the right bound of equivalence classes, finding frequent

generators that need to be updated is equivalent to finding the equivalence

classes. GE-tree can help us to locate these generators effectively. Suppose a

new transaction t+ is inserted. We will traverse the GE-tree in the left-to-right

top-down manner. However, we usually do not need to traverse the whole tree.

For any generator X in the GE-tree, X needs to be updated iff X ⊆ t+. If

X 6⊆ t+, according to Scenario 1 in Theorem 5.2, no update action is needed for

X and its corresponding equivalence class. Furthermore, according to the “a

priori” property of generators (Fact 4.6), all the children of X can be skipped for

the traversal. For example, in Figure 5 (c), when transaction {a, f} is inserted,

only node {a} needs to be updated and all the other nodes are skipped.
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In addition, since GE-tree also stores the support information of frequent

generators and negative border generators, the support of generators and their

equivalence class can be updated without scanning of the original and incremen-

tal dataset. This greatly reduced the I/O overheads involved in PSM+. The

support update process is graphically illustrated in Figure 5.

Class splitting task can also be completed efficiently with the help of GE-

tree. The key here is to effectively locate existing frequent equivalence classes

that need to be split. Extended from Scenario 3 and 4 in Theorem 5.2, we have

the following corollary.

Corollary 5.3 Suppose a new transaction t+ is inserted into the original

dataset Dorg. An existing frequent equivalence class [P ]Dorg
splits into two iff

∃Q ∈ [P ]Dorg
such that Q ⊆ t+ but Clo([P ]Dorg

) 6⊆ t+, where Clo([P ]Dorg
) is

the closed pattern of [P ]Dorg .

Therefore, for an affected class X that has been identified in the support

update step, X splits into two iff Clo(X) 6⊆ t+. In Figure 5, equivalence class

EC5 splits into two, EC5′ & EC6′, after the insertion of {b, c, d}. This is

because pattern {c, d}(∈ EC5) ⊂ {b, c, d} but Clo(EC5) = {a, c, d} 6⊆ {b, c, d}.
New class discovery task is the most challenging computational task in-

volved in the incremental maintenance of the frequent pattern space. This is

because, unlike the existing frequent equivalence classes, we have little infor-

mation about the newly emerged frequent equivalence classes. To address this

challenge, a new concept — the “negative generator border” is introduced.

5.2.3 Negative Generator Border

The “negative generator border” is defined based on the the idea of “nega-

tive border”. The notion of negative border is first introduced in Mannila and

Toivonen (1997). The negative border of frequent patterns refers to the set of
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minimal infrequent patterns. On the other hand, the negative generator border,

as formally defined in Definition 5.4, refers to the set of infrequent generators

that have frequent precedents in the GE-tree. In Figure 5, the generators imme-

diately under the solid line are “negative border generators”, and the collection

of all these generators forms the “negative generator border”.

Definition 5.4 (Negative Generator Border) Given a dataset D, support

threshold ms% and the GE-tree, a pattern P is a “negative border generator”

iff (1) P is a generator, (2) P is infrequent, (3) the precedent of P in the GE-

tree is frequent. The set of all negative border generators is called the “negative

generator border”.

As can be seen in Figure 5, the negative generator border records the nodes,

where the previous enumeration stops. It thus serves as a convenient starting

point for further enumeration of newly emerged frequent generators. This allows

us to utilize previously obtained information to avoid redundant generation of

existing generator and enumeration of unnecessary candidates.

When new transactions are inserted, the negative generator border is up-

dated along with the frequent generators. Take Figure 5 (b) as an example.

After the insertion of {b, c, d}, two negative border generators {b, c} and {b, d}
become frequent. As a result, these two generators will be promoted as frequent

generators, and their corresponding equivalence classes EC7 and EC8 will also

be included into the frequent pattern space. Moreover, these two newly emerged

frequent generators now act as starting points for further enumeration of gen-

erators. Following the SE-tree enumeration manner, the children of {b, c} and

{b, d} are enumerated by combining {b, c} and {b, d} with their left-hand-side

siblings, as demonstrated in Figure 5 (b). We discover that, after new transac-

tions are added, the negative generator border expands and moves away from

the root of GE-tree.
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Procedure 1 enumNewEC
Input: G, a starting point for enumeration; F the set of frequent equivalence classes; msa the

absolute support threshold and GE-tree.
Output: F and the updated GE-tree.
Method:
1: if G.support ≥ msa then
2: //Newly emerged frequent generator and equivalence class.
3: Let C be the corresponding closed pattern of G;
4: if ∃EC ∈ F such that EC.close = C then
5: G → EC.keys;

{The corresponding equivalence class already exists.}
6: else
7: Create new equivalence class EC′;
8: EC′.close = C, G → EC′.keys;
9: EC′ → F ;

10: end if
{Enumerate new generators from G}

11: for all X, where X is the left hand side sibling of G in GE-tree do
12: G′ := G ∪X;
13: if G′ is a generator then
14: enumNewEC(G′, F , msa, GE-tree);
15: end if
16: end for
17: else
18: G → GE-tree.ngb; {New negative generator border.}
19: end if
20: return F and GE-tree;

The detailed enumeration process is presented in Procedure 1. In Pro-

cedure 1 and all subsequent pseudo-codes, the following notations are used:

X.support denotes the support of pattern/equivalence class X; X.close refers

to the closed pattern of equivalence class X; X.keys refers to the generators of

equivalence class X; GE-tree.ngb refers to the negative generator border of the

GE-tree and X → Y denotes the insertion of X into Y .

Procedure 1 is called at a starting point node G in the current negative

generator border. If G is frequent (Line 1), then it is a newly emerged frequent

generator. If its equivalence class EC has already been created (Lines 3-4), we

simply include G into EC’s set of generators (Line 5). Otherwise, we create the

new frequent equivalence class EC ′ corresponding to G (Lines 6-10). Finally,

we recurse on the children of G (Lines 11-16). On the other hand, if G is

not frequent, then we insert G into the negative generator border and halt the

enumeration (Line 17-19).
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Algorithm 2 PSM+
Input: Dinc the incremental dataset; |Dupd+| the size of the updated dataset; Forg the original

frequent pattern space represented using equivalence classes; GE-tree and ms% the support
threshold.

Output: Fupd+ the update frequent pattern space represented using equivalence classes and the
updated GE-tree.

Method:
1: F := Forg ; {Initialization.}
2: msa = dms% × |Dupd+|e;
3: for all transaction t in Dinc do
4: for all items xi ∈ t that {xi} is not a generator in GE-tree do
5: Gnew := {xi}, Gnew.support := 0, Gnew → GE-tree.ngb;

{Include new items into GE-tree}
6: end for
7: for all generator G in GE-tree that G ⊆ t do
8: G.support := G.support + 1;
9: if G is an existing frequent generator then

10: Let EC be the equivalence class of G in F ;
11: if EC.close ⊆ t then
12: EC.support = G.support;{Corresponds to Scenario 2 of Theorem 5.2.}
13: else
14: splitEC(F , t, G); {split up EC.}

{Corresponds to Scenario 3 & 4 of Theorem 5.2.}
15: end if
16: else if G.support ≥ msa then
17: enumNewEC(G, F , msa, GE-tree); {Corresponds to Scenario 5 of Theorem 5.2.}
18: end if
19: end for
20: end for
21: Include the frequent equivalence classes in F into Fupd+;
22: return Fupd+ and the updated GE-tree;

In summary, GE-tree is an effective data structure that not only compactly

stores the frequent generators but also guides efficient enumeration of generators.

We have demonstrated with examples that the GE-tree greatly facilitate the

incremental maintenance of the frequent pattern space.

5.3 Proposed Algorithm: PSM+

A novel incremental maintenance algorithm, Pattern Space Maintainer+

(PSM+), is proposed based on the GE-tree. The pseudo-code of PSM+ is pre-

sented in Algorithm 2, Procedure 1 and Procedure 3.

Algorithm 2 maintains the frequent pattern space by considering only one

incremental transaction at a time (Line 3). If the incremental transaction con-

tains some new items (Line 4), Algorithm 2 starts off by inserting these new

items, as singleton generators4, into the negative generator border of GE-tree
4Singleton generators refer to generators that contain only one item.
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Procedure 3 splitEC
Input: F the set of frequent equivalence classes; t the incremental transaction; and G the updating

generator.
Output: The updated F .
Method:
1: Let EC be the equivalence class of G in F ;
{First split out:}

2: EC.keys = min{{K|K ∈ EC.keys ∧ K 6⊆ t} ∪ {K′ ∪ {xi}|K′ ∈ EC.keys ∧ K′ ⊆ t, xi ∈
EC.close ∧ xi 6∈ t}}; {EC.close remains the same.}
{Second split out:}

3: Cnew = EC.close ∩ t;
4: if ∃EC′′ ∈ F such that EC′′.close = Cnew then
5: EC′′.support = G.support; {EC′′ already exists.}
6: G → EC′′.keys;
7: else
8: Create new equivalence class EC′;
9: EC′.close = Cnew, EC′.support = G.support, G → EC′.keys;

10: EC′ → F ;
11: end if
12: return F ;

(Line 5). Next, for each generator G in the GE-tree that is contained in the in-

cremental transaction (Line 7), we first updates its support (Line 8). Then, we

have two cases. In the first case, G is an existing frequent generator (Line 9).

In this case, we carry on to update EC, the corresponding equivalence class

of G (Line 10-15). If the closed pattern of EC is subset of the incremental

transaction, the maintenance is simple. We just need to update the support of

EC (Line 12). Otherwise, equivalence class EC needs to be split into two as

described in Procedure 3. In the second case, G is a newly emerged frequent

generator. In this case, the update of G is handled by Procedure 1 as described

in the previous section. Finally, the updated frequent pattern space is formed

with all the updated and newly generated frequent equivalence classes (Line 21).

Theorem 5.5 PSM+ presented in Algorithm 2 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for incremental

updates.

Proof: Refer to Appendix. ut
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5.3.1 A Running Example

We demonstrate how PSM+ updates the frequent pattern space with the ex-

ample shown in Figure 5. In Figure 5, the original dataset, Dorg, consists

of 6 transactions; the minimum support threshold ms% = 20%; and two

incremental transactions {b, c, d} and {a, f} are to be inserted. Therefore,

|Dupd+| = |Dorg| + |Dinc| = 8, and the updated absolute support threshold

msa = dms% × |Dupd+|e = 2 (Line 2 of Algorithm 2). For each incremental

transaction, PSM+ updates the affected equivalence classes through updating

their corresponding generators. In Figure 5 (b) and (c), the affected generators

and equivalence classes are highlighted in bold.

We further illustrate in detail how PSM+ addresses different maintenance

scenarios with a few representative examples. First, we investigate the scenario,

where only the support of the corresponding equivalence class needs to be up-

dated. Suppose incremental transaction {b, c, d} is inserted, and let us consider

generator {c} as an example. Since {c} ⊆ {b, c, d} (Line 7 of Algorithm 2), {c}
is an affected generator. The support of {c} is then updated by Line 8. Also

Since {c} is an existing frequent generator (Line 9), we carry on to update its

corresponding equivalence class, EC2. As shown in Figure 5 (b), the closed

pattern of EC2 is also {c}. Thus, we have EC2.close ⊆ {b, c, d} (Line 11).

Therefore, the support of EC2 is then updated by Line 12, and EC2 skips all

other update actions as desired.

Second, we investigate the scenario, where the updating equivalence class

needs to be split. Still consider the case, where the incremental transaction

{b, c, d} is inserted. We use generator {d, c} as an example. The support of {d, c}
is updated in the same way as generator {c} in the above example. However,

different from generator {c}, the corresponding equivalence class of {d, c} is

EC5 in Figure 5 (a), and, more importantly, EC5.closed = {d, c, a} 6⊆ {b, c, d}.
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Therefore, Line 11 of Algorithm 2 is not satisfied. Thus, as desired, EC5 will

be split into two as described in Procedure 3. As shown in Figure 5 (b), EC5

splits into EC5′ and EC6′. In Procedure 3, EC6′ is considered as the first split

out of EC5, and it is updated by Line 2 of Procedure 3. On the other hand,

EC5′ is considered as the second split out, and it is constructed by Line 3 to 11.

Third, we investigate the scenario, where new frequent generator and equiv-

alence class have emerged. In this case, negative border generator {b, c} in

Figure 5 (a) is used as an example. After the insertion of {b, c, d}, the support

of {b, c} is updated in the same manner as the previous two examples. Different

from the previous examples, {b, c} is not a frequent generator but a negative

border generator. As a result, Line 9 in Algorithm 2 is not satisfied. However,

as highlighted in Figure 5 (b), generator {b, c} becomes frequent after the up-

date (Line 16 of Algorithm 2). Thus, the corresponding equivalence class EC7

is then included as frequent equivalence class by Line 1 to 11 of Procedure 1.

Furthermore, {b, c} also acts as a starting point for further enumeration of new

generators as stated in Line 12 to 19 of Procedure 1.

Lastly, we investigate the scenario, where new items are introduced. In-

cremental transaction {a, f} is an good example for this scenario. Different

from transaction {b, c, d}, transaction {a, f} consists of new item f (Line 4 of

Algorithm 2). Therefore, as illustrated in Figure 5 (c), after the insertion of

transaction {a, f}, generator {f} is inserted into the GE-tree (Line 5 of Al-

gorithm 2) as negative border generator. Note that the support of {f} is first

initiated to 0. This is because the support of {f} will be then updated by Line 8

as the update goes on.

5.3.2 Time Complexity

We have justified the correctness of PSM+ with a theoretical proof and a running

example. We now demonstrate that PSM+ is also computationally effective. Re-
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dataset #PSM+ #FPgrowth* #GC-growth

bms-pos (ms% = 0.1%) 80 110K 110K

bms-webview1 (ms% = 0.1%) 250 3K 3K

chess (ms% = 40%) 350K 6M 1M

connect-4 (ms% = 20%) 80K 1800M 1M

mushroom (ms% = 0.5%) 10K 300M 165K

pumsb* (ms% = 30%) 2K 400K 27K

retail (ms% = 0.1%) 270 8K 8K

T10I4D100K (ms% = 0.5%) 11 1K 1K

T40I10D100K (ms% = 10%) 7K 70K 55K

Table 1: Comparison of the number of patterns enumerated by PSM+, FP-
growth* and GC-growth. Notations: #PSM+, #FPgrowth* and #GC-growth
denote the approximated number of patterns enumerated by the respectively
algorithms.

call that the incremental maintenance of frequent patterns involves three major

computational tasks: the support update task, class splitting task and new class

discovery task. We have demonstrated that, with the help of GE-tree, the sup-

port update task and the class splitting task can be efficiently completed with

little computational overhead. Therefore, the major contribution to the time

complexity of PSM+ comes from the new class discovery task. For the new class

discovery task, the time complexity is proportional to the number of patterns

enumerated. As a result, the time complexity of PSM+ can be approximated

as O(Nenum), where Nenum is the number of patterns enumerated. We have

conducted some experiments to compare the number of patterns enumerated

by PSM+ with the ones of FPgrowth* and GC-growth. FPgrowth* is one of the

fastest frequent pattern discovery algorithms (Goethals and Zaki, 2003), and

GC-growth is one of the fastest discovery algorithms for frequent equivalence

classes (Li et al., 2005). In the experiment, the number of patterns enumerated

is recorded for the scenario where the size of new transactions Dinc is 10% of

the original data size. The comparison results are summarized in Table 1. We

observe that the number of patterns enumerated by PSM+ is smaller than the

other two by a few orders of magnitude. Therefore, based on computational
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Figure 6: (a) Showcase of a GE-tree node. (b) The frequent equivalence class
table, highlighting the corresponding equivalence class of the GE-tree node in
(a).

complexity, PSM+ is much more effective than FPgrowth* and GC-growth.

5.3.3 Implementation Details

Storage of Frequent Pattern Space

PSM+ takes the original frequent pattern space as input and obtains the

updated pattern space by maintaining the original space based on the incremen-

tal updates. The frequent pattern space is usually huge. Therefore, effective

data structures are needed to compactly store the original and updated pat-

tern spaces. We propose to concisely represent the frequent pattern space with

borders of equivalence classes — closed patterns and generators.

We develop GE-tree to compactly store the frequent generators and negative

border generators. As shown in Figure 5 and 6 (a), each node in GE-tree stores

a generator, and, if the generator is frequent, the node is also linked with its

corresponding equivalence class. Frequent equivalence classes, as graphically

illustrated in Figure 6 (b), are stored in a hash table to achieve fast retrieval.

Since each equivalence class is uniquely associated with one closed pattern,

frequent equivalence classes are indexed based on their closed patterns. Each

bucket in the hash table records the closed pattern and the support value of the

associated equivalence class, and it also points to the corresponding generators
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in the GE-tree. Both GE-tree and the frequent equivalence class table can be

simply constructed with a single scan of the existing frequent equivalence classes,

which are represented by their closed patterns and generators.

We employ GC-growth5 (Li et al., 2005) to generate the original frequent

pattern space represented in frequent closed patterns and generators. Note

that, besides frequent generators, PSM+ also needs the information on negative

border generators. As a result, the implementation of GC-growth is modified

slightly to generate also the negative border generators. The modification is

straightforward: GC-growth just needs to output the points, where the enumer-

ation stops.

Generation of Closed Patterns

GE-tree, with negative border generators, enables effective enumeration of

newly emerged frequent generators. To complete the borders of equivalence

classes, the generation of corresponding closed patterns is required. A prefix

tree structure, named mFP-tree, is developed for this task.

mFP-tree is a modification of FP-tree (Han et al., 2000), which is the rep-

resentative prefix tree that concisely summarizes transactional datasets. The

key features and construction of FP-tree can be referred to (Han et al., 2000).

We emphasize here the two major modifications in mFP-tree. (1) In FP-tree,

only frequent items of each transaction are recorded, but, in mFP-tree, all items

are recorded. E.g. in Figure 7 (b), although item e is not a frequent item,

it is still recorded in the mFP-tree. This modification allows mFP-tree to be

updated without re-scanning of the original dataset. (2) Items in mFP-tree are

sorted based on their support values in the original dataset. More importantly,

the ordering of items remains unchanged for all subsequent updates. This fixed

ordering of items, as demonstrated in Figure 7 (c), allows new transactions to

5The implementation of GC-growth can be found in http://www.comp.nus.edu.sg/

~wongls/projects/pattern-spaces/gcgrowth-v1/.
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Figure 7: (a) A sample data set with ms% = 20% and msa = 2. (b) The
mFP-tree for the dataset in (a). (c) The updated mFP-tree after the insertion
of transaction {b, c, d}.

be inserted into mFP-tree easily without any re-sorting and swapping of nodes.

With mFP-tree, the generation of closed patterns for newly emerged frequent

generators becomes straightforward. We use the mFP-tree in Figure 7 (c) as an

example. Suppose we want to find the closed pattern of generator {b}. We first

extract all the branches that consist of generator {b} by traversing through the

horizontal links (dotted lines in the figure). We then accumulate the counts for

all items involved in these branches. In the example, we have item a with count

1, item c with 2, item d with 2 and item b itself with 4. Since no items have

the same count as item b, we can derive that none of them appears in the same

transaction as b. Therefore, the closed pattern of generator {b} is also {b}.
The original mFP-tree is generated with GC-growth in the initialization

phase. Since GC-growth also employs mFP-tree to enumerate frequent gen-

erators and closed patterns, no extra overhead is introduced. Moreover, the

mFP-tree is constantly updated as the incremental transactions are inserted.

As a result, closed patterns for newly emerged frequent generators can be gen-

erated with the mFP-tree without re-visiting the original dataset.

Note that: although the above implementation techniques are discussed in

the context of PSM+, they are also employed in PSM- to facilitate the mainte-

nance process.
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6 Decremental Maintenance of Pattern Space

This section discusses the decremental maintenance of the frequent pattern

space. In the decremental update, some old transactions Ddec are removed from

the original dataset Dorg, and thus the updated dataset Dupd− = Dorg −Ddec.

Given a support threshold ms%, the task of decremental maintenance is to

obtain the updated pattern space by maintaining the original pattern space.

To develop effective decremental maintenance algorithm, we start off with a

study on the evolution of the frequent pattern space under decremental updates

using the concept of equivalence class. Through the space evolution study,

we summarize the major computational tasks in the decremental maintenance.

We then demonstrate how these computational tasks can also be completed

efficiently using GE-tree. Finally, a novel decremental maintenance algorithm,

named Pattern Space Maintainer- (PSM-), is proposed.

6.1 Evolution of Pattern Space

There is an obvious duality between incremental updates and decremental up-

dates. In particular, if we first increment a dataset with Dinc and then decre-

ment the resulting dataset with Ddec = Dinc, we get back the original dataset.

Conversely, if we first decrement a dataset with Ddec and then increment the

resulting dataset with Dinc = Ddec, we get back the original dataset. There-

fore, the decremental maintenance is actually the reverse process of incremental

maintenance.

After an incremental update, new frequent equivalence classes may emerge;

in contrast, existing frequent equivalence classes may become infrequent after a

decremental update. Moreover, for those existing frequent equivalence classes

that are still frequent after the decremental update, they may evolve in three

different ways. The first way is to remain unchanged without any change in
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support. The second way is to remain unchanged but with an decreased support.

The third way is to merge with other classes. We know from Proposition 5.1

that an equivalence class may shrink in size and increase in support after an

incremental update. It follows by duality that an equivalence class may increase

in size (by merging) and decrease in support after a decremental update.

Corollary 6.1 Let P be a pattern in Dupd−. Then [P ]Dupd− ⊇ [P ]Dorg , and

sup(P,Dupd−) ≤ sup(P,Dorg).

To have a deeper understanding on how the frequent pattern space evolves

under the decremental update, we investigate the exact conditions for each

evolution scenario to occur. We denote the closed pattern of an equivalence

class [p]D as Clo([p]D) and the generators or key patterns of [p]D as Keys([p]D).

Theorem 6.2 Let Dorg be the original dataset, Ddec be the decremental dataset,

Dupd− = Dorg − Ddec and ms% be the support threshold. For simplicity, we

assume Ddec consists of only one transaction t−. For every frequent equivalence

class [P ]Dorg
in F(ms%,Dorg), exactly one of the 5 scenarios below holds:

1. P 6∈ Ddec and there does not exists Q such that Q 6∈ [P ]Dorg but

f(Q,Dupd−) = f(P,Dupd−), corresponding to the scenario where the

equivalence class remains totally unchanged. In this case, [P ]Dupd− =

[P ]Dorg , sup(P,Dupd−) = sup(P,Dorg) and [P ]Dupd− ∈ F(Dupd−,ms%).

2. P 6∈ Ddec and f(Q,Dupd−) = f(P,Dupd−) for some Q 6∈ [P ]Dorg
,

corresponding to the scenario where the equivalence class of Q has to

merge into the equivalence class of P . Let all such Q’s be grouped into

n distinct equivalence classes [Q1]Dorg
, ..., [Qn]Dorg

, having represen-

tatives Q1, ..., Qn satisfying the condition on Q. Then [P ]Dupd− =

[P ]Dorg ∪
⋃

i[Qi]Dorg , sup(P,Dupd−) = sup(P,Dorg), Clo([P ]Dupd−) =

Clo([P ]Dorg
) and Keys([P ]Dupd−) = min{K|K ∈ Keys([P ]Dorg

) ∨ K ∈

33



Keys([Qi]Dorg ), 1 ≤ i ≤ n}. Furthermore, [P ]Dupd− ∈ F(Dupd−,ms%),

and [Qi]Dupd− = [P ]Dupd− for 1 ≤ i ≤ n.

3. P ∈ Ddec and sup(P,Dupd−) < dms% × |Dupd−|e, corresponding to the

scenario where an existing frequent equivalence class becomes infrequent.

In this case, [P ]Dorg
6∈ F(Dupd−,ms%).

4. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and there does not exists

Q such that Q 6∈ [P ]Dorg
but f(Q,Dupd−) = f(P,Dupd−), corresponding

to the scenario where the equivalence class remains the same but with

decreased support. In this case, [P ]Dupd− = [P ]Dorg
, sup(P,Dupd−) =

sup(P,Dorg)− sup(P,Ddec) and [P ]Dupd− ∈ F(Dupd−,ms%).

5. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and f(Q,Dupd−) =

f(P,Dupd−) for some Q 6∈ [P ]Dorg
, corresponding to the scenario where

the equivalence class of P has to merge into the equivalence class of Q.

This scenario is complement to Scenario 2. In this case, the equivalence

class, support, generators, and closed pattern of [P ]Dupd− is same as that

of [Q]Dupd− , as computed in Scenario 2.

Proof: Refer to Appendix. ut

Theorem 6.2 summarizes how the frequent pattern space evolves after a

decremental update. The theorem also describes how the updated frequent

equivalence classes in Dupd− can be derived from the existing frequent equiva-

lence classes of Dorg. Similar to Theorem 5.2, Theorem 6.2 lays a theoretical

foundation for the development of effective decremental maintenance algorithms.

In addition, opposite to the incremental update, the decremental update

decreases the absolute support threshold if the support threshold is initially

defined in terms of percentage. Let the original absolute support msa = dms%×
|Dorg|e. Since |Dupd−| = |Dorg|−|Ddec|, the updated absolute support threshold
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ms′a = dms%×|Dupd−|e < msa. This decrease in the absolute support threshold

induces new frequent equivalence classes to emerge.

Combining all the above observations, we summarize that the decremental

maintenance of the frequent pattern space involves four computational tasks:

(1) update the support of existing frequent equivalence classes; (2) merge equiv-

alence classes that satisfy Scenario 2 and 5 of Theorem 6.2; (3) discover newly

emerged frequent equivalence classes; and (4) remove existing frequent equiva-

lence classes that are no longer frequent. Task (4) is excluded from our discus-

sion, for its solution is straightforward. We here focus on the first three tasks,

and we name them respectively as the support update task, class merging

task and new class discovery task.

6.2 Maintenance of Pattern Space

We investigate here how the major computational tasks in decremental mainte-

nance of the frequent pattern space can be efficiently accomplished.

Due to the duality between the incremental and decremental maintenance,

most of the computational tasks in decremental maintenance can be effectively

handled with the GE-tree. In particular, the support update task in decre-

mental maintenance is actually the reverse operation of the one in incremental

maintenance. Therefore, the support of existing frequent equivalence classes

can be updated using GE-tree in the same manner described in Section 5.2.2.

Except that, in decremental maintenance, the support is decremented.

For the new class discovery task, newly emerged frequent equivalence

classes and generators can also be effectively enumerated based on the concept

of negative generator border. Details of the enumeration method is presented in

Procedure 1 in Section 5.2.3. Same as in incremental maintenance, the negative

generator border is updated after the removal of each old transactions. However,
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different from incremental updates, when old transactions are removed, the

negative generator border shrinks and move towards the root of GE-tree.

On the other hand, the class merging task can not be handled in the same

way as the class splitting task in incremental maintenance. However, extended

from the Scenario 2 in Theorem 6.2, we have the following corollary.

Corollary 6.3 Let [P ]Dorg
and [Q]Dorg

be two equivalence classes in Dorg

such that [P ]Dorg
∩ [Q]Dorg

= ∅, P 6∈ Ddec but Q ∈ Ddec. Then

f(P,Dupd−) = f(Q,Dupd−), meaning [P ]Dorg merges with [Q]Dorg in Dupd−,

iff (1) sup(P,Dupd−) = sup(Q,Dupd−) and (2) Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

).

Here Clo(X) denotes the closed pattern of equivalence class X.

Proof: We first prove the left-to-right direction. Suppose (i) P 6∈ Ddec,

(ii) Q ∈ Ddec and (iii) f(P,Dupd−) = f(Q,Dupd−). Point (ii) implies that

sup(P,Dupd−) = sup(Q,Dupd−). Combining Point (i),(ii) and (iii), we have

f(P,Dorg) = f(P,Dupd−) = f(Q,Dupd−) = f(Q,Dorg) − f(Q,Ddec). This im-

plies that f(P,Dorg) ⊂ f(Q,Dorg). Therefore, Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

).

We then prove the right-to-left direction. Suppose (i) sup(P,Dupd−) =

sup(Q,Dupd−) and (ii) Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

). Point (ii) implies that

f(P,Dorg) ⊂ f(Q,Dorg). Since P 6∈ Ddec, we have f(P,Dorg) = f(P,Dupd−) ⊂
f(Q,Dorg). Combining this with Point (i), we have f(P,Dupd−) = f(Q,Dupd−)

as desired. The corollary is proven. ut

Corollary 6.3 provides us a means to determine which two equivalence classes

need to be merged after an decremental update. Based on Corollary 6.3, one

way to handle the class merging task effectively is to first group the equivalence

classes based on their support. This can be done efficiently using a hash table

with support values as hash keys. Then, within the group of equivalence classes

that shared the same support, we further compare their closed patterns. two

equivalence classes are to be merged together, if their closed patterns are su-
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Algorithm 4 PSM-
Input: Ddec the decremental dataset; |Dupd−| the size of the updated dataset; Forg the original

frequent pattern space represented using equivalence classes ; GE-tree and ms% the support
threshold.

Output: Fupd− the updated frequent pattern space represented using equivalence classes and the
updated GE-tree.

Method:
1: F := Forg ; {Initialization.}
2: msa = dms% × |Dupd−|e;
3: for all transaction t in Ddec do
4: for all generator G in GE-tree that G ⊆ t do
5: G.support := G.support− 1;
6: if G is an existing frequent generator then
7: Let EC be the equivalence class of G in F ;

{Update the support of existing frequent equivalence classes.}
8: EC.support := G.support;
9: end if

10: if G.support < msa then
11: G → GE-tree.ngb; {Update the negative generator border.}
12: Remove all children of G from GE-tree.ngb;
13: end if
14: end for
15: end for
16: for all NG ∈ GE-tree.ngb that NG.support ≥ msa do
17: enumNewEC(NG, F , msa, GE-tree); {Enumerate new frequent equivalence classes.}
18: end for
19: for all equivalence class EC ∈ F do
20: if EC.support ≥ msa then
21: if ∃EC′ such that EC′.support = EC.support and EC.close ⊂ EC′.close then
22: EC′.keys = min{K|K ∈ EC.keys ∧K ∈ EC′.keys};

{Merging of equivalence classes.}
23: Remove EC from F ;
24: end if
25: else
26: Remove EC from F ;
27: end if
28: end for
29: Fupd− := F
30: return Fupd− and the updated GE-tree;

perset and subset to each other. Details of this merging process is presented in

Algorithm 4, which will be discussed in the next section.

6.3 Proposed Algorithm: PSM-

A novel algorithm, Pattern Space Maintainer- (PSM-), is proposed for the

decremental maintenance of the frequent pattern space. The pseudo-code of

PSM- is presented in Algorithm 4 and Procedure 1. In Algorithm 4 and

Procedure 1, we use notations: X.support to denote the support of pat-

tern/equivalence class X; X.close to denote the closed pattern of equivalence

class X; X.keys to denote the set of generators of equivalence class X and
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X → Y to denote the insertion of X into Y . Algorithm 4 begins with the

support-update phase. For each transaction in the decremental dataset (Line 3),

and for each existing generator that is contained in the transaction (Line 4), we

update the support of the generator and its equivalence class (Lines 5-9). If the

generator becomes infrequent, we move the negative generator border towards

it (Lines 10-13). After this update phase is completed, we inspect the negative

generator border to enumerate newly emerged frequent generators (Line 16-18).

Finally, we inspect all new and existing equivalence classes to merge those fre-

quent equivalence classes that should be merged (Lines 19-24) and to remove

those that have become infrequent (Lines 25-27).

Theorem 6.4 PSM- presented in Algorithm 4 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for decremental

updates.

Proof: Refer to Appendix. ut

Similar to PSM+, the major contribution to the time complexity of PSM-

comes from the new class discovery task. For the new class discovery task,

the computational complexity is proportional to the number of patterns enu-

merated. As a result, the time complexity of PSM- can also be approximated

as O(Nenum), where Nenum is the number of patterns enumerated. Moreover,

the number of patterns need to be enumerated is proportional to the number

of newly emerged frequent equivalence classes. In general, under decremental

updates, the number of newly emerged frequent equivalence classes is much

smaller than the total number of frequent equivalence classes. This theoreti-

cally demonstrates that maintaining the frequent pattern space with PSM- is

definitely much more effective than re-discovering the pattern space.
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7 Pattern Space Maintainer (PSM)

We have proposed a novel algorithm, PSM+, to address the incremental main-

tenance of the frequent pattern space, and we have also proposed a novel al-

gorithm, PSM-, for the decremental maintenance. Although these two mainte-

nance algorithms are discussed separately, PSM+ and PSM- share many similar-

ities and are both developed based on the same data structure — the GE-tree.

Thus the integration of PSM+ and PSM- involves negligible overheads. We

name the integrated version of PSM+ and PSM- the Pattern Space Maintainer,

in short PSM.

PSM is not only a useful tool for incremental and decremental maintenance,

it can also be employed to maintain the space of frequent patterns for support

threshold adjustment. Support threshold adjustment is a common interactive

mining operation, which is used to obtain the appropriate set of frequent pat-

terns. When the support threshold is adjusted up, existing frequent patterns

and equivalence classes may become infrequent. The maintenance for this sce-

nario is very straightforward, and thus we will not discuss it here. On the other

hand, when the support threshold is adjusted down, new (unknown) frequent

patterns and equivalence classes may emerge. The maintenance for this scenario

is much more challenging, for we have little information on the newly emerged

patterns. In this case, PSM can be used to effectively enumerate the newly

emerged equivalence classes based on the concepts of GE-tree and negative gen-

erator border. The detailed enumeration method is described in Procedure 1 in

Section 5.2.3.

39



Dataset Size #Trans #Items maxTL aveTL
accidents 34.68MB 340,183 468 52 33.81
BMS-POS 11.62MB 515,597 1,657 165 6.53
BMS-WEBVIEW-1 0.99MB 59,602 497 268 2.51
BMS-WEBVIEW-2 2.34MB 77,513 3,340 162 4.62
chess 0.34MB 3,196 75 37 37.00
connect-4 9.11MB 67,557 129 43 43.00
mushroom 0.56MB 8,124 119 23 23.00
pumsb 16.30MB 49,046 2,113 74 74.00
pumsb star 11.03MB 49,046 2,088 63 50.48
retail 4.07MB 88,162 16,470 77 10.31
T10I4D100K 3.93MB 100,000 870 30 10.10
T40I10D100K 15.13MB 100,000 942 78 39.61

Table 2: Characteristics of testing datasets. Notations: #Trans denotes the
total number of transactions in the dataset, #Items denotes the total number
of distinct items, maxTL denotes the maximal transaction length and aveTL is
the average transaction length.

8 Experimental Studies

The computational effectiveness of the proposed algorithms is tested on the

benchmark datasets from the FIMI Repository (http://fimi.cs.helsinki.

fi). The statistical information of the benchmark datasets is summarized in

Table 2. The benchmark datasets include 10 real datasets and 2 synthetic

datasets. Experiments were run on a PC with 2.4GHz CPU and 3.2G of memory.

The proposed algorithms are implemented in C++.

The performance of the proposed algorithms are compared with the state-

of-the-art approaches, including: FPgrowth* (Grahne and Zhu, 2005), one of

the fastest frequent pattern discovery algorithms; GC-growth (Li et al., 2005),

the fastest discovery algorithm for frequent equivalence classes; CanTree (Leung

et al., 2007), a prefix-tree based maintenance algorithm; moment (Chi et al.,

2006), a currently proposed algorithm that maintains frequent closed patterns;

and ZIGZAG (Veloso et al., 2002), a frequent maximal pattern maintenance

algorithm.
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Incremental Maintenance

In real applications, the size of the incremental dataset Dinc is usually much

smaller than the size of the original dataset, Dorg, e.g. a daily sales data vs.

an annual sales data, an hourly stock transaction vs. a daily transaction, etc.

As a result, the performance of PSM+ is evaluated for ∆+ ≤ 10%, where

∆+ = |Dinc|/|Dorg|. In addition, we observe that the performance of algorithms

varies slightly for different combinations of incremental and original datasets.

To have a stable performance measurement, for each update interval, 5 random

sets of transactions were first removed from the testing datasets: the removed

set of transactions was treated as the incremental dataset, Dinc, and the remain-

ing set of transactions was treated as the original dataset, Dorg. The average

performance over the 5 random combinations was then recorded. This averaging

strategy is applied in all experimental studies.

Figure 8 compares the performance of PSM+ with the discovery algorithms,

GC-growth and FPgrowth*. It can be seen that PSM+ is much faster than both

discovery algorithms, especially when the update interval is small. When ∆+

is below 1%, PSM+ outperforms the discovery algorithms by about 3 orders

of magnitude. When ∆+ is up to 10%, PSM+ is still at least twice faster,

and, for the particular dataset BMS-WEBVIEW-1, PSM+ is still more than

10 times faster. The detailed computational “speed up” achieved by PSM+ is

summarized in Table 3. As shown in the table, in the best scenarios, PSM+ is

faster than FPgrowth* by more than 3000 times and faster than GC-growth by

almost 2000 times; in the worst cases, PSM+ is still about twice faster; and, on

average, PSM+ outperforms both discovery algorithms by more than 2 orders

of magnitude.

PSM+ is also compared with the state-of-the-art maintenance algorithms,

which includes CanTree, moment and ZIGZAG. Some representative results are
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Figure 8: Performance comparison of PSM+ and the pattern discovery algo-
rithms: FPgrowth* and GC-growth. Notations: ∆+ = |Dinc|/|Dorg|.

graphically presented in Figure 9. According to the empirical results, PSM+ is

the most effective algorithm among all. Take dataset mushroom as an example.

PSM+ is more than an order of magnitude faster than CanTree, and, compared

with moment and ZIZAG, it is faster by almost 2 orders of magnitude. The

average “speed up” of PSM+ against the maintenance algorithms is also sum-

marized in Table 3. PSM+, on average, outperforms moment and ZIGZAG by
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Figure 9: Performance comparison of PSM+ and the pattern maintenance al-
gorithms, CanTree, ZIGZAG and moment. Notations: ∆+ = |Dinc|/|Dorg|.

more than 3 orders of magnitude and outperforms CanTree by over 700 times.

Decremental Maintenance

With the similar reason of incremental maintenance, the performance of

PSM- is evaluated for ∆− ≤ 10% , where ∆− = |Ddec|/|Dorg|. The performance

of PSM- is also compared with both pattern discovery and pattern maintenance

algorithms, as shown in Figure 10.
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Dataset Discovery Algorithms Maintenance Algorithms
FPgrowth* GC-

growth
CanTree ZIGZAG moment

accidents (50%) 12.5 76 15 270 22
accidents (40%) 1.6 9.5 2 56.5 6.2
BMS-POS (0.1%) 43 155 55 5,880 14,400
BMS-POS (0.5%) 126 390 130 13,500 23,000
BMS-WEBVIEW-1

(0.1%)

136 125 152 588 741

BMS-WEBVIEW-1

(0.05%)

963 370 1,015 672 75

BMS-WEBVIEW-2

(0.05%)

35 96 40 1,900 715

BMS-WEBVIEW-2

(0.01%)

1,300 316 1,420 13,000 615

chess (50%) 590 96 620 1,395 13,000
chess (40%) 169 18 180 172 18,100
connect-4 (50%) 2,280 8.2 2340 1,400 826
connect-4 (45%) 2,740 5.6 2,810 1,800 824
mushroom (0.1%) 3,085 380 3,121 47,800 3,216
mushroom (0.05%) 2,457 81 2,630 15,000 2,960
pumsb (70%) 1.6 1.5 1.8 6.9 1,662
pumsb (60%) 3.5 23.5 3.8 16.5 640
pumsb star (50%) 101 420 123 25.7 7,540
pumsb star (40%) 3.6 20 7.2 16 2,970
retail (0.1%) 640 247 735 27,100 18,210
retail (0.05%) 985 98.5 1,050 38,500 28,340
T10I4D100K
(0.5%)

150 374 200 261 609

T10I4D100K
(0.05%)

41 64 45.5 120 81

T40I10D100K
(10%)

140 1,145 955 102 1,415

T40I10D100K
(5%)

138 1,777 269 36 1,118

Average 672 262 746 7,067 5,878

Table 3: Average speed up of PSM+ over benchmark datasets. The percentage
in brackets after the dataset name indicates the minimum support threshold.

As illustrated in Figure 10 (a), PSM- is much more efficient than the discov-

ery algorithms. When the update interval, ∆−, is below 1%, PSM- outperforms

the discovery algorithms by around 2 orders of magnitude; and, when ∆− is
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Figure 10: (a) Performance comparison of PSM- and the pattern discovery al-
gorithms: FPgrowth* and GC-growth. (b) Performance comparison of PSM- and
the pattern maintenance algorithms: ZIGZAG, moment and TRUM. Notations:
∆− = |Ddec|/|Dorg|.

up to 10%, PSM- is still 5 times more efficient. Table 4 summarizes the aver-

age “speed up” achieved by PSM-. Compared with FPgrowth*, PSM- achieves

the highest speed up over dataset mushroom, where PSM- runs almost 2000

times faster. Compared with GC-growth, PSM- tops on datasets BMS-POS
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Dataset Discovery Algorithms Maintenance Algorithms
FPgrowth* GC-

growth
ZIGZAG moment

accidents (50%) 8.5 65 180 15
accidents (40%) 1.5 9 44 4.7
BMS-POS (0.1%) 40 98 5,100 12,000
BMS-POS (0.01%) 105 326 10,500 21,000
BMS-WEBVIEW-1

(0.1%)

4.6 40 3.8 150

BMS-WEBVIEW-1

(0.05%)

5.3 45 14.6 187

BMS-WEBVIEW-2

(0.05%)
11.8 24 53 210

BMS-WEBVIEW-2

(0.01%)
9.5 22 48 198

chess (50%) 37 7.6 50 2,800
chess (40%) 102 10 22 88,000
connect-4 (50%) 110 2.1 116 1,080
connect-4 (45%) 18 1.3 7.5 170
mushroom (0.5%) 135 44 140 7,200
mushroom (0.1%) 1,850 69 432 23,400
pumsb (70%) 4.5 6.6 1.3 510
pumsb (60%) 43 15 1.5 10,400
pumsb star (50%) 58 111 277 2,300
pumsb star (40%) 180 56 310 6,700
retail (0.1%) 42 143 270 143
retail (0.05%) 34 266 720 155
T10I4D100K
(0.5%)

47 80 75 1,120

T10I4D100K
(0.1%)

60 320 380 1,450

T40I10D100K
(10%)

7 5 1.3 63

T40I10D100K
(5%)

5 4 1.4 9

Average 121 73 780 7,470

Table 4: Average speed up of PSM- over benchmark datasets. The percentage in
the brackets after the dataset name indicates the minimum support threshold.

and T10I4D100K, where PSM- runs over 300 times faster. On average, PSM-

outperforms both discovery algorithms by around 2 orders of magnitude.

Figure 10 (b) graphically compares PSM- with other maintenance algo-
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Figure 11: Performance comparison of PSM and the discovery algorithms,
FPgrowth* and GC-growth, and the maintenance algorithm, ZIGZAG. Notations:
∆ms denotes the difference between the original support threshold and the up-
dated support threshold.

rithms. Compared with moment and ZIGZAG, PSM-, in most cases, is at least

10 times faster. According to Table 4, PSM-, on average, outperforms ZIGZAG

by almost 800 times and outperforms moment by almost 4 orders of magnitude.

Support Adjustment Maintenance

We have also evaluated the performance of PSM for support threshold ad-

justment. The effectiveness of PSM is tested with various degrees of threshold

adjustment. The experimental results are presented in Figure 11. As can been

seen from Figure 11, PSM outperforms both the pattern discovery and pattern

maintenance algorithms considerably.
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Discussions

We observe that, over three different types of updates, our proposed algo-

rithms outperform the discovery algorithms by multiple orders of magnitude.

This is mainly due to three advantages of our algorithms. First, we structurally

decomposed the vast frequent pattern space into equivalence classes. The struc-

ture decomposition greatly simplifies the complexity of the maintenance problem

and allows us to address the problem in a divide-and-conquer manner. Second,

with GE-tree, our algorithms effectively maintain the frequent pattern space by

updating only the equivalence classes that are affected by the updates. Third,

as demonstrated in Table 1, while generating new frequent equivalence classes,

our algorithms enumerate much less candidates compared with the discovery

algorithms.

We also observe that the advantage of the proposed algorithms diminishes

as the size (or degree) of update increases. This is because large update size or

large variation in support threshold logically leads to more dramatic changes to

the frequent pattern space and makes the pattern space computationally more

expensive to be maintained. It is inevitable that when the amount of update

increases to a certain extent, the changes induced to the pattern space become

so significant that it becomes more efficient to re-discover the pattern space than

to maintain and update it.

9 Conclusion

This paper has studied the incremental and decremental maintenance of the

frequent pattern space. To develop efficient maintenance algorithms, we started

off by analyzing how the space of frequent patterns evolves under incremental

and decremental updates. Since the frequent pattern space is too huge to be

analyzed directly, we structurally decomposed the pattern space into convex
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equivalence classes. The structure decomposition allows us to formally describe

the evolution of frequent pattern space and also greatly simplifies the mainte-

nance problem. Based on this space evolution analysis, we have summarized

the major computation tasks involved in frequent pattern maintenance. To ef-

fectively perform the maintenance computational tasks, a new data structure,

Generator-Enumeration Tree (GE-tree), is developed. Based on GE-tree, we

proposed two novel algorithms, Pattern Space Maintainer+ (PSM+) and Pat-

tern Space Maintainer- (PSM-), for the incremental and decremental mainte-

nance of frequent patterns. We further demonstrated that PSM+ and PSM- can

be easily integrated and extended to update the frequent pattern space for sup-

port threshold adjustment. We have evaluated the effectiveness of our proposed

algorithms with extensive experimental studies. Experimental results show that

the proposed algorithms on average outperform the state-of-the-art approaches

by at least an order of magnitude.

This paper studied the evolution of the frequent pattern space. In the future,

we plan to explore the evolution and maintenance of other types of pattern

spaces, e.g. the space of emerging patterns, odds ratio patterns, etc.
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Appendix: Proofs of Theorems 6

Theorem 5.2 Let Dorg be the original dataset, Dinc be the incremental dataset,

Dupd+ = Dorg ∪ Dinc and ms% be the support threshold. Suppose Dinc consists

of only one transaction t+. For every frequent equivalence class [P ]Dupd+ in

F(ms%,Dupd+), exactly one of the 5 scenarios below holds:

1. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q 6⊆ t+ for all Q ∈ [P ]Dorg
, corresponding

to the scenario where the equivalence class remains totally unchanged. In

this case, [P ]Dupd+ = [P ]Dorg and sup(P,Dupd+) = sup(P,Dorg).

2. P ∈ F(ms%,Dorg), P ⊆ t+ and Q ⊆ t+ for all Q ∈ [P ]Dorg
, corre-

sponding to the scenario where the equivalence class has remained un-

changed but with increased support. In this case, [P ]Dupd+ = [P ]Dorg and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

3. P ∈ F(ms%,Dorg), P ⊆ t+ and Q 6⊆ t+ for some Q ∈ [P ]Dorg
, cor-

responding to the scenario where the equivalence class splits. In this

case, [P ]Dorg
splits into two new equivalence classes, and [P ]Dupd+ is

one of them. [P ]Dupd+ = {Q|Q ∈ [P ]Dorg
∧ Q ⊆ t+}, Clo([P ]Dupd+) =

Clo([P ]Dorg ) ∩ t+ and Keys([P ]Dupd+) = {K|K ∈ Keys([P ]Dorg ) ∧K ⊆
t+}.

4. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q ⊆ t+ for some Q ∈ [P ]Dorg
, also

corresponding to the scenario where the equivalence class splits. This sce-

nario is complement to Scenario 3. [P ]Dorg
splits into two new equivalence

classes, [P ]Dupd+ is one of them, and the other one has been described

in Scenario 3. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg ∧ Q 6⊆ t+},
Clo([P ]Dupd+) = Clo([P ]Dorg

) and Keys([P ]Dupd+) = min{{K|K ∈
6The appendices are attached at the back of the paper for revision purpose. If page limit

is a concern, the appendices will be removed from the final manuscript and placed on our
homepage.
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Keys([P ]Dorg ) ∧K 6⊆ t+} ∪ {K ′ ∪ {xi}, i = 1, 2, · · ·|K ′ ∈ Keys([P ]Dorg ) ∧
K ′ ⊆ t+, xi ∈ Clo([P ]Dorg

) ∧ xi 6∈ t+}}.

5. P 6∈ F(ms%,Dorg), P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e,
corresponding to the scenario where a new frequent equivalence class has

emerged. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg
∧ Q ⊆ t+} and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

Proof: Scenario 1 and 5 are obvious.

To prove Scenario 2, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii)

Q ⊆ t+ for all Q ∈ [P ]Dorg
. Point (ii) implies that f(P,Dupd+) = f(P,Dorg) ∪

{t+}, and point (iii) implies that, for all Q ∈ [P ]Dorg , f(Q,Dupd+) =

f(Q,Dorg) ∪ {t+}. According to the definition of equivalence class (Defini-

tion 4.3), f(P,Dorg) = f(Q,Dorg). Thus f(P,Dupd+) = f(P,Dorg) ∪ {t+} =

f(Q,Dorg) ∪ {t+} = f(Q,Dupd+). This means that, for all Q ∈ [P ]Dorg ,

Q ∈ [P ]upd+. Therefore, the equivalence [P ]Dorg
remains the same after the

update, but sup(P,Dupd+) = |f(P,Dupd+)| = sup(P,Dorg) + 1.

To prove Scenario 3, suppose (i) P ∈ F(ms%), (ii) P ⊂ t+, and (iii)Q 6⊆ t+

for some Q ∈ [P ]Dorg
. Point (ii) implies that f(P,Dupd+) = f(P,Dorg) ∪ {t+}.

Also for patterns Q that satisfy point (iii), f(Q,Dupd+) = f(Q,Dorg) 6=
f(P,Dupd+). This means Q 6∈ [P ]Dupd+ . According to Definition 4.3,

[P ]Dupd+ = {P ′|f(P,Dupd+) = f(P ′,Dupd+)} = {P ′|P ′ ∈ [P ]Dorg
∧ P ′ ⊆ t+},

and [Q]Dupd+ = {Q′|Q′ ∈ [P ]Dorg
∧ Q′ 6⊆ t+}. Since [P ]Dorg

= [P ]Dupd+ ∪
[Q]Dupd+ and [P ]Dupd+ ∩ [Q]Dupd+ = ∅, we say that, in this case, the equivalence

class [P ]Dorg
splits into two.

Next, we prove Clo([P ]Dupd+) = Clo([P ]Dorg ) ∩ t+. Let C = Clo([P ]Dorg ) ∩
t+. It is obvious that (1) C ⊆ Clo([P ]Dorg

), (2) C ⊆ t+ and (3) C ⊇ P (for

P ⊆ t+). According to the definition of convex space, point (1) & (3) imply

that C ∈ [P ]Dorg . Combining the facts that C ∈ [P ]Dorg and C ⊆ t+, we have
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C ∈ [P ]Dupd+ . We then assume that there exists C ′ such that C ′ ⊃ C and C ′ ∈
[P ]Dupd+ . C ′ ∈ [P ]Dupd+ implies that C ′ ∈ [P ]Dorg

and C ′ ⊆ t+. C ′ ∈ [P ]Dorg

further implies that C ′ ⊆ Clo([P ]Dorg
). Then we have C ′ ⊆ Clo([P ]Dorg

) and

C ′ ⊆ t+, and thus C ′ ⊆ C (for C = Clo([P ]Dorg ) ∩ t+). This contradicts with

the initial assumption. Therefore, C ∈ [P ]Dupd+ and there does not exist C ′

such that C ′ ⊃ C and C ′ ∈ [P ]Dupd+ . According to Definition 4.4, C is the

closed pattern of [P ]Dupd+ .

Then we prove Keys([P ]Dupd+) = {K|K ∈ Keys([P ]Dorg
)∧K ⊆ t+}. First,

let K = {K|K ∈ Keys([P ]Dorg
) ∧ K ⊆ t+} and let pattern X be any pattern

such that X ∈ K. X ∈ K implies that X ∈ [P ]Dorg and X ⊆ t+. This means

X ∈ [P ]Dupd+ . X ∈ K also means X ∈ Keys([P ]Dorg
), i.e. X is one of the most

“general” patterns in [P ]Dorg (Definition 4.4). Moreover, [P ]Dupd+ ⊂ [P ]Dorg .

Therefore, X must also be one of the most “general” patterns in [P ]Dupd+ . This

means that X ∈ Keys([P ]Dupd+) for every X ∈ K. Thus we have (A) K ⊆
Keys([P ]Dupd+). Second, we assume that there exists a pattern Y such that

Y ∈ Keys([P ]Dupd+) but Y 6∈ K. Y ∈ Keys([P ]Dupd+) means Y ∈ [P ]Dupd+ .

According to the definition of [P ]Dupd+ , we know Y ∈ [P ]Dorg
and Y ⊆ t+. Y ⊆

t+ and Y 6∈ K imply that Y 6∈ Keys([P ]Dorg ). This means there exists pattern

K ′ ⊂ Y such that K ′ ∈ [P ]Dorg
(Definition 4.4). Since K ′ ⊂ Y and Y ⊆ t+,

K ′ ⊂ t+, which implies K ′ ∈ [P ]Dupd+ . Thus, according to Definition 4.4,

Y 6∈ Keys([P ]Dupd+). This contradicts with the initial assumption. Thus there

does not exists pattern Y such that Y ∈ Keys([P ]Dupd+) but Y 6∈ K. Therefore,

we have (B) K ⊇ Keys([P ]Dupd+). Combining results (A) and (B), we have

Keys([P ]Dupd+) = K = {K|K ∈ Keys([P ]Dorg
) ∧K ⊆ t+}.

Scenario 4 is complementary to Scenario 3. The proof for the splitting of

equivalence class in Scenario 4 follows exactly the same as in Scenario 3. The

definitions of the closed pattern and generators for the equivalence class [P ]Dupd+
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follows from Definition 4.4.

Finally, we prove that Theorem 5.2 is complete. For patterns P ∈
F(ms%,Dorg), it is obvious that Scenario 1 to 4 enumerated all possible cases.

For pattern P 6∈ F(ms%,Dorg), Scenario 5 corresponds to the case where

P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e. The cases where P 6⊆ t+

or Sup(P,Dupd+) < dms% × |Dupd+|e are not enumerated, because, in these

cases, it is clear that P 6∈ F(ms%,Dupd+). As a result, we can conclude that

Theorem 5.2 is sound and complete.

ut

Theorem 5.5 PSM+ presented in Algorithm 2 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for incremental

updates.

Proof: According to Theorem 5.2, after the insertion of each new transaction

t+, there are only 5 scenarios for any frequent equivalence class [P ]Dupd+ . We

prove the correctness of our algorithm according to these 5 scenarios.

For Scenario 1, suppose (i)P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q 6⊆ t+

for all Q ∈ [P ]Dorg
. Point (i) implies that [P ]Dorg

is an existing frequent equiv-

alence class. Then Point (iii) implies that none of the generators of [P ]Dorg
will

satisfy the condition in Line 7. As a result, [P ]Dorg will skip all the maintenance

actions and remain unchanged as desired.

For Scenario 2, suppose (i)P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q ⊆ t+

for all Q ∈ [P ]Dorg . Point (iii) implies that the generators of [P ]Dorg satisfy

the condition in Line 7, and the support of the generators will be updated by

Line 8. Point (i) implies that [P ]Dorg
is an existing frequent equivalence class.

Thus the generators of [P ]Dorg are existing frequent generators, which satisfy

the condition in Line 9. Then Point (iii) also implies that the closed pattern of

[P ]Dorg
satisfies the condition in Line 11. Therefore, the support of [P ]Dorg

will
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be updated in Line 12, but [P ]Dorg remains unchanged as desired.

For Scenario 3, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q 6⊆ t+

for some Q ∈ [P ]Dorg
. Point (ii) implies that some generators of [P ]Dorg

will

satisfy the condition in Line 7, and Point (i) implies the condition in Line 9

is also satisfied. Then Point (iii) implies that the condition in Line 11 is not

satisfied. Thus the equivalence class will be split into two by Line 14 (Proce-

dure 3) as desired. In particular, [P ]Dupd+ described in Scenario 3 corresponds

to the “second split out” in Procedure 3, and it is updated in Line 3 to 11 of

Procedure 3.

For Scenario 4, suppose (i) P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q ⊆ t+

for some Q ∈ [P ]Dorg
. Point (iii) implies that some generators of [P ]Dorg

will

satisfy the condition in Line 7, and Point (i) implies the condition in Line 9 is

also satisfied. Then Point (ii) implies that the condition in Line 11 is not sat-

isfied. Thus the equivalence class will be split into two by Line 14 (Procedure 3)

as desired. Being complement to Scenario 3, [P ]Dupd+ described in Scenario 4

corresponds to the “first split out” in Procedure 3, and it is updated in Line 2

of Procedure 3.

For Scenario 5, suppose (i) P 6∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii)

Sup(P,Dupd+) ≥ dms% × |Dupd+|. For this scenario, we have two cases. In

the first case, P is in Dorg. In this case, the generators of [P ]Dorg
are already

included in the GE-tree. Therefore, Point (ii) implies that the condition in

Line 7 is satisfied. Point (i) then implies that Line 9 is not satisfied. Then we

check Line 16. Point (iii) implies that the generators of [P ]Dupd+ satisfy the

condition in Line 16. Therefore, we will go to Line 17 and go into Procedure 1.

In Line 3 to 11 of Procedure 1, [P ]Dupd+ is then constructed and included as a

newly emerged frequent equivalence class as desired. In the second case, P is

not in Dorg. In this case, the generators of [P ]Dorg
are not in the GE-tree yet.
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Therefore, the new generators will be included into the negative generator border

of GE-tree by Line 5. Then, the generators and the corresponding equivalence

class are updated in the same way as in the first case.

Finally, since an incremental update induces the data size and the absolute

support threshold to increase, Line 29 is put in to remove equivalence classes

that are no longer frequent. With that, the theorem is proven. ut

Theorem 6.2 Let Dorg be the original dataset, Ddec be the decremental dataset,

Dupd− = Dorg − Ddec and ms% be the support threshold. For simplicity, we

assume Ddec consists of only one transaction t−. For every frequent equivalence

class [P ]Dorg
in F(ms%,Dorg), exactly one of the 5 scenarios below holds:

1. P 6∈ Ddec and there does not exists Q such that Q 6∈ [P ]Dorg
but

f(Q,Dupd−) = f(P,Dupd−), corresponding to the scenario where the

equivalence class remains totally unchanged. In this case, [P ]Dupd− =

[P ]Dorg
, sup(P,Dupd−) = sup(P,Dorg) and [P ]Dupd− ∈ F(Dupd−,ms%).

2. P 6∈ Ddec and f(Q,Dupd−) = f(P,Dupd−) for some Q 6∈ [P ]Dorg
,

corresponding to the scenario where the equivalence class of Q has to

merge into the equivalence class of P . Let all such Q’s be grouped into

n distinct equivalence classes [Q1]Dorg , ..., [Qn]Dorg , having represen-

tatives Q1, ..., Qn satisfying the condition on Q. Then [P ]Dupd− =

[P ]Dorg
∪ ⋃

i[Qi]Dorg
, sup(P,Dupd−) = sup(P,Dorg), Clo([P ]Dupd−) =

Clo([P ]Dorg ) and Keys([P ]Dupd−) = min{K|K ∈ Keys([P ]Dorg ) ∨ K ∈
Keys([Qi]Dorg

), 1 ≤ i ≤ n}. Furthermore, [P ]Dupd− ∈ F(Dupd−,ms%),

and [Qi]Dupd− = [P ]Dupd− for 1 ≤ i ≤ n.

3. P ∈ Ddec and sup(P,Dupd−) < dms% × |Dupd−|e, corresponding to the

scenario where an existing frequent equivalence class becomes infrequent.

In this case, [P ]Dorg
6∈ F(Dupd−,ms%).
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4. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and there does not exists

Q such that Q 6∈ [P ]Dorg
but f(Q,Dupd−) = f(P,Dupd−), corresponding

to the scenario where the equivalence class remains the same but with

decreased support. In this case, [P ]Dupd− = [P ]Dorg , sup(P,Dupd−) =

sup(P,Dorg)− sup(P,Ddec) and [P ]Dupd− ∈ F(Dupd−,ms%).

5. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and f(Q,Dupd−) =

f(P,Dupd−) for some Q 6∈ [P ]Dorg
, corresponding to the scenario where

the equivalence class of P has to merge into the equivalence class of Q.

This scenario is complement to Scenario 2. In this case, the equivalence

class, support, generators, and closed pattern of [P ]Dupd− is same as that

of [Q]Dupd− , as computed in Scenario 2.

Proof: Scenario 1 and 3 are obvious.

We first prove Scenario 4. Suppose (i) P ∈ Ddec, (ii) sup(P,Dupd−) ≥
dms% × |Dupd−|e and (iii) there does not exists Q such that Q 6∈ [P ]Dorg

but

f(Q,Dupd−) = f(P,Dupd−). Point (ii) implies that [P ]Dupd− ∈ F(Dupd−,ms%).

According to Corollary 6.1, every member of [P ]Dorg
remains to be in [P ]Dupd−

after the update. Moreover, point (iii) implies that f(Q,Dupd−) 6= f(P,Dupd−)

for every pattern Q 6∈ [P ]Dorg
. This means no new members will be included into

[P ]Dupd− . Therefore, [P ]Dupd− = [P ]Dorg
and sup(P,Dupd−) = |f(P,Dupd−)| =

|f(P,Dorg)− f(P,Ddec)| = sup(P,Dorg)− sup(P,Ddec).

To prove Scenario 2, suppose (i) P 6∈ Ddec (ii) f(Q,Dupd−) = f(P,Dupd−)

for some Q 6∈ [P ]Dorg
. Point (ii) implies that some new patterns Q 6∈ [P ]Dorg

will

be included into [P ]Dupd− . Moreover, for such Qs, according to Corollary 6.1,

Q′ ∈ [Q]Dupd− for every pattern Q′ ∈ [Q]Dorg
. Thus it is also true that Q′ ∈

[P ]Dupd− for every Q′ ∈ [Q]Dorg
. Therefore, we say that [Q]Dorg

merge with

[P ]Dorg and [Q]Dupd− = [P ]Dupd− . Let all such Q’s be grouped into n distinct

equivalence classes [Q1]Dorg
, ..., [Qn]Dorg

, having representatives Q1, ..., Qn
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satisfying the condition on Q. Then we have [P ]Dupd− = [P ]Dorg ∪
⋃

i[Qi]Dorg .

Point (i) implies that f(P,Dupd−) = f(P,Dorg) and thus sup(P,Dupd−) =

sup(P,Dorg). Also since [P ]Dorg
∈ F(Dorg,ms%), sup(P,Dupd−) =

sup(P,Dorg) ≥ dms% × |Dorg|e ≥ dms% × |Dupd−|e. Therefore, [P ]Dupd− ∈
F(Dupd−,ms%).

Next we prove Clo([P ]Dupd−) = Clo([P ]Dorg
). Let C = Clo([P ]Dorg

) and

assume that there exists pattern C ′ ⊃ C that C ′ ∈ [P ]Dupd− . Since C is the

closed pattern of [P ]Dorg
and C ′ ⊃ C, according to Definition 4.4, we know

C ′ 6∈ [P ]Dorg
and f(C ′,Dorg) 6= f(P,Dorg). Also since P 6∈ Ddec, C 6∈ Ddec

(C ∈ [P ]Dorg) and C ′ 6∈ Ddec (C ′ ⊃ C). Thus f(C ′,Ddec) = ∅. Therefore,

f(C ′,Dupd−) = f(C ′,Dorg)−f(C ′,Ddec) = f(C ′,Dorg)−∅ = f(C ′,Dorg). Com-

bining the facts that f(C ′,Dorg) 6= f(P,Dorg) and f(P,Dorg) = f(P,Dupd−),

we have f(C ′,Dupd−) 6= f(P,Dupd−) and C ′ 6∈ [P ]Dupd− . This contradicts with

the initial assumption. Thus we can conclude that C ′ 6∈ [P ]Dupd− for all C ′ ⊃ C.

According to Fact 4.5, C is the closed pattern of [P ]Dupd− .

Then we prove Keys([P ]Dupd−) = min{K|K ∈ Keys([P ]Dorg
) ∨ K ∈

Keys([Qi]Dorg
), 1 ≤ i ≤ n}. This formula states that the generators of the

equivalence class [P ]Dupd− are the set of minimum (equivalent to the most gen-

eral) generators in the merging equivalence classes. This basically follows from

the definition of generators in Definition 4.4.

Scenario 5 is complement of Scenario 2. Therefore, it can be proven in the

same way as Scenario 2.

Last we prove that the theorem is complete. For patterns P 6∈ Ddec, it is obvi-

ous that Scenario 1 and 2 enumerated all possible cases. For patterns P ∈ Ddec,

it is also obvious that Scenario 3 to 5 enumerated all possible cases. Therefore,

the theorem is complete and correct.

ut

60



Theorem 6.4 PSM- presented in Algorithm 4 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for decremental

updates.

Proof: According to Theorem 6.2, after an decremental update, an existing

frequent equivalence class [P ]Dorg
may evolve in only 5 scenarios. We prove the

correctness of our algorithm according to these 5 scenarios.

For Scenario 1, suppose (i) P 6∈ Ddec and (ii) there does not exists Q such

that Q 6∈ [P ]Dorg
but f(Q,Dupd−) = f(P,Dupd−). In Line 1, [P ]Dorg

is included

into F as initialization. Then Point (i) implies that the condition in Line 4

will not be satisfied for all transactions in Ddec. Thus, Line 5 to 15 will be

skipped, and the support of [P ]Dorg
remains unchanged as desired. Also since

[P ]Dorg ∈ F(Dorg,ms%), sup(P,Dupd−) = sup(P,Dorg) ≥ dms% × |Dorg|e ≥
dms% × |Dupd−|e. Therefore, the condition in Line 20 is satisfied. Point (ii)

implies that Line 21 can not be true (Corollary 6.3). As a result, [P ]Dorg
is

included in Fupd− unchanged in Line 29 as desired.

For Scenario 2, suppose (i) P 6∈ Ddec and (ii) f(Q,Dupd−) = f(P,Dupd−)

for some Q 6∈ [P ]Dorg
. In Line 1, [P ]Dorg

is included into F as initialization.

Same as in Scenario 1, because of Point (i), the condition in Line 4 is not

satisfied, and thus Line 5 to 15 are skipped. The support of [P ]Dorg
remains

unchanged as desired. With the same reasoning in Scenario 1, Line 20 will be

true. Point (i) also implies that Line 21 cannot be true. However, Point (ii)

implies that there exists other equivalence classes EC1, · · · , ECn that satisfy

Line 21 and will merge with [P ]Dorg
. When the for-loop between Line 19 to 28

completes, all these equivalence classes EC1, · · · , ECn will merge with [P ]Dorg

to form [P ]Dupd− as desired. Finally, [P ]Dupd− is included in Fupd− in Line 29

as desired.

For Scenario 3, suppose (i) P ∈ Ddec and (ii) sup(P,Dupd−) < dms% ×
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|Dupd−|e. As usual, [P ]Dorg is included into F as initialization. Point (ii)

implies that Line 20 will not be true. Therefore, [P ]Dorg
will be removed from

F in Line 26, and it will not be included in Fupd− as desired.

For Scenario 4, suppose (i) P ∈ Ddec, (ii) sup(P,Dupd−) ≥ dms%×|Dupd−|e
and (iii) there does not exists Q such that Q 6∈ [P ]Dorg

but f(Q,Dupd−) =

f(P,Dupd−). As usual, [P ]Dorg
is included into F as initialization. Point (i) im-

plies that the condition in Line 4 will be satisfied for some transactions in Ddec.

Thus the support of [P ]Dorg
will be updated as desired by Line 8. Point (ii)

then implies that Line 10 is not true, and thus Line 11 to 12 are skipped.

Point (ii) and (iii) also implies that Line 20 will be true but Line 21 will not

be true (Corollary 6.3). As a result, [P ]Dorg
will be include in Fupd− with a

updated support as desired.

For Scenario 5, since it is complement to Scenario 2, patterns of Scenario 5

will also be correctly updated as explained in Scenario 2.

Finally, since an decremental update causes the data size and the absolute

support threshold to drop, new frequent equivalence classes may emerge. In PSM-

, all the newly emerged frequent equivalence classes will be enumerated from the

negative generator border by Line 17. With that, the theorem is proven. ut
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