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Summary 

Summary 

Metabolic network is a powerful mathematical model for studying cellular metabolism. With 

many useful applications through systems biology and metabolic engineering, metabolic 

networks of hundreds species have been reconstructed. Despite that, most of the reconstructed 

networks are not complete and contain many gaps. Notably, reconstruction process is time 

consuming and intensively involves human curation. These issues become a bottle neck for 

obtaining high quality metabolic networks. 

In this thesis, we aimed to develop reliable automated computational methods to 

minimize time and manual effort for reconstructing high quality genome-scale metabolic 

networks. For this purpose, three problems were addressed, namely, gap filling, enzyme 

annotation, and network assembly. 

The first problem is to sufficiently fill metabolic gaps after the network has been 

reconstructed, thus improving network quality. Previous methods used enzyme families to find 

gap candidates; they failed for poorly characterized families. We look for functions at a low 

level such that no potential function is missed. Thus, multiple generic function predictors were 

retrofitted into gap fillers and then integrated into a combined MeGaFiller. Essentially, the 

method makes use of reliable individual enzyme homologs to avoid using poorly classified 

enzyme families. Our method was able to predict candidates for 35% of gaps in multiple 

networks that previous methods failed. 

The second problem is to reliably annotate enzyme functions for a given genome with 

high accuracy and coverage, hence minimize reconstruction errors in later steps. Remarkably, 

top down methods for enzyme classification suffer from low enzyme coverage, which causes 
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many missing reactions. We developed a novel bottom up method EnzDP based on protein 

functional domain composition and calibrated HMM profiles, to increase both prediction 

coverage and accuracy. Our method can annotate for more than 4000 substrate-specific 

enzymes, which is sufficient for building genome-scale network. EnzDP achieved 94% 

accuracy in solid 5-fold cross validation, and outperformed other alternatives.  

The third problem is to quickly assembly a connected network with minimized number 

of missing reactions from a given set of annotated enzymes. We showed that this problem is 

NP-Hard, and proposed an approximation algorithm called NetA to solve it. Following graph-

theoretic pathway-based approach, NetA predicts and then optimizes metabolic pathways by 

deleting no-evidence reactions while maintaining reaction connectivity. Benchmarking on 

S.cerevisiae and E.coli datasets, NetA achieved 85% coverage, and 45% precision. NetA was 

used to re-assemble metabolic network for A. oryzae, which resulted in a network containing 

742 unique reactions, across over 119 pathways in 11 major metabolic functions, in which 

72.4% of reactions have enzyme genes identified.  

With a combination of the three methods developed, an automated pipeline can be 

achieved to quickly reconstruct genome-scale metabolic networks. This helps pushing further 

research on cellular metabolism and systems biology, as well as leading to many metabolic 

engineering applications. 
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Introduction

Chapter 1 

Introduction 

1. Introduction 

1.1 Overview 

1.1.1 Metabolic network and metabolic reconstruction 

Inside a cell, a network of interconnected biochemical processes are continuously going on to 

perform fundamental cellular functions. These metabolic processes are series of metabolic 

reactions which are catalyzed by specific types of enzymes. Essentially, these enzymes are 

products of genes that the cell expresses to drive its desired capabilities. A metabolic network 

summaries this ultimate relationship among metabolic gene-protein-reactions, which provides 

a systematic tool for investigating metabolism.  

Increasingly, metabolic networks play important role in systems biology. It helps to 

reveal fundamental questions on evolutionary history of species. In fact, many metabolic 

pathways are common in all life forms, thus studying them contributes enormously to our 

understanding of life. More usefully, metabolic networks have a wide range of application 

through systems biology and bioengineering, from medicine, to food/energy industry 

processing. 

Such a metabolic network can be reconstructed from a genome, exploiting the specificity 

of the links between enzyme genes and metabolic reactions. The first step is to identify 

enzymatic functions coded in the genome. After that, a list of metabolic reactions associated 

with these enzyme is collected. Finally a network is reconstructed containing these reactions. 

However, these are just general steps; in reality, hundreds of complicated tasks with intensive 
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human involvement must be done. Nevertheless, in recent years, there has been an effort to 

reconstruct genome-scale metabolic networks of hundreds species, such as yeast [1, 2], fungi 

[3-6]. Each of these networks contains thousands of metabolic reactions, involves thousands of 

genes and metabolites. 

1.1.2 Challenges and approaches 

Despite that many methods have been developed [7, 8], most if not all of the reconstructed 

networks are still far from complete [9, 10]. The incompleteness is indicated by the existence 

of significant number of gaps [11, 12] in the reconstructed networks, as well as by the 

inconsistency between metabolic networks of the same species that reconstructed at different 

time. Recently, a protocol [11, 13] for building high quality genome-scale metabolic network 

has been proposed, which involves hundreds of steps to be done. Expert manual validation is 

essential for network quality control, thus it is unavoidable from network reconstruction. 

However, the manual curation task takes a lot of time. These issues become a bottle neck for 

obtaining high quality metabolic networks. Essentially, the use of computational tools that are 

highly reliable can substantially reduce the time and effort. Therefore, effective and reliable 

reconstruction-aid tools are of high demand. 

Filling gaps is the most time consuming task [11, 13]. Gaps still exist after gap filling 

has been performed. These gaps are difficult-to-fill, since no or very little evidence has been 

found to pinpoint any candidate. For example, in a version of A. oryzae network [3], 52 out 61 

gaps do not have proper protein family homologs, thus there is no direct way to identify 

potential candidates. This can only be unravelled by pursuing indirect approach such as our 

MeGaFiller (in Chapter 3). 

In fact, the origin of missing knowledge [11, 12] and inconsistency come from very first 

steps of network reconstruction. For example, genome annotation using regular bioinformatics 

tools may suffer from annotation errors [14-16] and coverage lost. These "bugs" propagate 

through the reconstruction pipeline that makes them difficult to completely resolve in later 

steps. In other words, candidate enzymes/reactions that were missed or wrongly included in 
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previous step hardly can be recovered in reconstruction stage. For example, after using 

MeGaFiller for filling gaps in a reconstructed network of A. oryzae, we found that MeGaFiller 

can supply more genes for existing reactions, as well as predicts new reactions that were not 

included in the network previously. This reveals that the annotation data in previous step is not 

complete, having missed many true candidate genes and reactions. Therefore, the enzyme 

classification procedure should be revised to get more reliable result.  

The most challenging problem in enzyme classification is that, one enzyme family can 

have multiple different protein domains, and at the same time, one domain can be carried by 

different families, as shown in Figure 4.1, Chapter 4 as an example. We carefully analyzed 

these cases and came up with a scoring scheme called DEAS to score the association between 

enzyme families and domain architecture, and use it later as a weighted score for clustering 

procedure. Together with this, we developed a stringent enzyme classifier EnzDP based on 

calibrated newly-built Hidden Markov Models profiles of protein domain composition. The 

method achieves high enzyme coverage as well as high prediction accuracy.  

After having identified a set of reliable enzymes, a list of associated reactions can be 

retrieved from reaction databases. Then it is ready to reassembly them into pathways and 

connect these pathways into a network. Reconstruction is not a one-time task; it is a multiple 

phase iterative process, in which any step may cause the whole process to be re-executing, 

should any new data is available. Thus, the challenge here is to quickly re-produce such a 

network reconstruction. Another challenge is to minimize the number of gaps while maintaining 

network reachability. Given this constraint, the problem is NP-Hard. We relaxed the minimum 

constraint in our developed approximation algorithm NetA. Following graph-theoretic 

pathway-based approach, NetA predicts and then optimizes metabolic pathways by deleting no-

evidence reactions while preserving network connectivity. NetA can be used together with 

EnzDP (for getting enzyme set) and MeGaFiller (for filling poorly characterized gaps) as a 

combined tool for quickly rebuilding a draft network from scratch. 
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1.1.3 The three problems 

Three problems are addressed in this thesis to improve network reconstruction process. The 

first problem is to accurately predict the set of enzymes from the genome and thus leading to 

an accurate set of metabolic reactions, and minimizing reconstruction errors. The second 

problem is to effectively fill the gaps after the network has been previously reconstructed. The 

third problem is to quickly assembly a network with minimum number of gaps. These problems 

can be addressed and solved separately from the common reconstruction pipeline, but methods 

developed for them can be used as a combined tool. 

1.2 Research aims and scope 

1.2.1 Aims 

The overall aim of the research in this thesis is to develop reliable high through-put 

computational methods in order to minimize time and manual effort for reconstruction of high 

quality genome-scale metabolic networks. This thesis addresses three important problems that 

can be separated from the common reconstruction protocol, namely: filling gaps in 

reconstructed networks, enzyme function annotation, and network assembly. The specific aims 

are: 

 To develop a novel and effective metabolic gap filler. The method would fill gaps in 

reconstructed networks, thus improving network quality.  

 To develop novel enzyme classification methods with high enzyme coverage and high 

accuracy. The high accuracy and coverage would help minimizing metabolic gaps 

and/or errors in network reconstruction.  

 To develop a quick automated network assembly method with minimized manual effort 

and missing knowledge. Together with the above two methods, a high-through put 

reconstruction pipeline is built. 

1.2.2 Research scope 

Research scope mainly focuses on developing computational methods for minimizing manual 

effort in network reconstruction. Notably, the expert manual curation is unavoidable. The 
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reconstruction protocol includes verification phase that involves in-silico modelling and 

experimental verification. These tasks should be done by expert systems biologists.  

To check the prediction results made by the developed methods, manual validation using 

reference databases is performed. However, the main scope of the research focuses on 

computational aspect of network reconstruction. Specifically, for gap filling problem, the local 

gaps will be attacked. Filling these local gaps is the most challenging task after reconstructing 

a network, thus is an important part described in this thesis. On the other hand, the global 

metabolic gaps involve gaps in all known species, and filling tem requires a much large cross-

species scale investigation, thus is out of current research scope. For enzyme function 

prediction, our work will focus on developing methods for increasing enzyme coverage at a 

considerable good accuracy, since enzyme coverage is more essential for minimizing 

reconstruction errors. For network assembly problem, computational approach produces initial 

network models; thus, further experimental verifications need to be done by experts to finalize 

these models.  

1.2.3 Thesis outline 

The outline of this thesis is following. This first chapter gives an overview on the problems 

addressing in this thesis, as well as research aims and scope. The second chapter introduces 

background and a literature review on general computational methods for reconstructing and 

enhancing metabolic networks. The third chapter presents our method MeGaFiller on filling 

critical gaps using retrofitted function prediction tools. Next chapter focuses on EnzDP - our 

novel enzyme classification method. After that, the fifth chapter describes our NetA method for 

assembling metabolic network, in which the enzyme annotation made by EnzDP is used. The 

last chapter gives conclusions on current research as well as addresses potential continuing 

research directions. 
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Background

 

Chapter 2 
Background 

 

2. Background 

2.1 Metabolic networks and computational reconstruction methods 

2.1.1 Metabolic network 

Metabolic network of a cell is a mathematical model [17] describing all metabolic processes 

that happen inside the cell. These processes determine the cell’s physiological and biochemical 

properties. They allow the cell to perform basic functions of life, such as growing, reproducing, 

maintaining cellular structures and responding to the outer environment. In fact, metabolism 

involves all processes that convert or use energy for living activities. More specifically, 

catabolic processes break down organic matter into basic blocks and harvest energy (e.g. in 

cellular respiration). On the other hand, anabolic processes use energy to build up all the cell 

components from those basic blocks (e.g. synthesis of proteins or nucleic acids).  
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Figure 2.1 – Example of metabolic reactions. 

The reaction on the top transforms glucose into glucose-6-phosphate, with help of hexokinase enzyme 
(EC:2.7.1.1). The reaction on bottom transforms back glucose-6-phosphate into glucose, with help of 
glucose-6-phosphatase enzyme (EC:3.1.3.9). 

Metabolic network can be described as a network of cellular metabolic reactions. Such 

a reaction involves a transformation of metabolites (from substrates into products, e.g. Figure 

2.1), with help of an enzyme catalyst. Ultimately, most of metabolic reactions do not occur 

spontaneously without catalyzed enzymes. These enzymes, which are products of genes, can 

lower the reaction energy barrier via theirs active sites, thus make the transformation happened. 

With the presence of the specific enzymes, metabolic reactions occur much more effectively, 

with a speedup rate up to million times faster. Significantly, each enzyme has unique active 

sites that can catalyze for only a specific type of reactions where it is able to bind to the 

substrates. Enzyme specificity is the mechanism for a living organism to drive its desired 

metabolic reactions in an organized manner via its gene products. Different cell has different 

set of metabolic reactions, depends on the set of enzymes that are expressed in the cell’s 

genome. This ultimate property suggests that, the presence of an enzyme in the genome infers 

the presence of the corresponding metabolic reaction in the cell, and vice versa. 

Enzymes play an important role in cellular metabolic activities, and thus are also of the 

most important component of metabolic network. To classify enzymes and metabolic reactions, 

an enzyme nomenclature [18] is used. In this system, an enzyme commission number (EC 

number) is described by a sequence of 4 digits with format EC:x.x.x.x. The first digit describes 

the class of the reaction; the second and third digits describe sub and sub-sub class of the 

reaction; while the last digit describes the specific enzyme or substrate binding. For example, 



Chapter 2 Background 
 

9 

the hexokinase enzyme is classified as EC:2.7.1.1, which means that, it is a transferase (EC:2.-

.-.-) that transfers phosphorous-containing groups (EC:2.7.-.-), with an alcohol group as 

acceptor (EC:2.7.1.-). Enzymes are divided into 6 main classes as shown in Table 2.1. 

Ultimately, biochemical functions of enzymes and enzymatic reactions can be described via EC 

numbers.  

Table 2.1 – Six classes of enzymes 

EC number Class Function 

EC 1.x.x.x Oxidoreductases Catalyze oxidation/reduction reactions 

EC 2.x.x.x Transferases Transfer a functional group (e.g. a methyl or phosphate group) 

EC 3.x.x.x Hydrolases Catalyze the hydrolysis of various bonds 

EC 4.x.x.x Lyases Cleave various bonds by means other than hydrolysis and 
oxidation 

EC 5.x.x.x Isomerases Catalyze isomerization changes within a single molecule 

EC 6.x.x.x Ligases Join two molecules with covalent bonds 

On the other hand, cellular chemical reactions occur in chains, in which products of first 

reaction become substrates for subsequent reactions, and so on. These chains of reactions form 

metabolic pathways. Each pathway performs a basic biological function for the cell. For 

example, the glycolysis pathway performs oxidation of glucose to obtain energy (in form of 

ATP) and pyruvate (see Figure 2.2). This pathway is present in almost all organisms as a basic 

function of energy metabolism.  
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Figure 2.2 – Reactions in glycolysis pathway 

Rectangles denote reactions with EC numbers. Small circles are metabolites. Arrows present the 
substrate-reaction relationship. Dashed arrows present the interconnection with other pathways 
(denoted by dashes rectangles). 

For a more detail view, metabolic network of a cell is a collection of all interconnected 

metabolic pathways that are present in the cell and containing all of its biochemical reactions. 

Such a network may contain hundreds of pathways with thousands of reactions. For example, 

a metabolic network reconstructed for Aspergillus oryzae [3] contains 2360 reactions, spread 

over 92 pathways.  

Depends on investigation purposes, metabolic networks can be visualized by different 

network representations. A network can be represented by undirected/directed graph of 

metabolites/reactions; bipartite digraph of reactions and metabolites; or, a mixed model of 

digraph of reactions and metabolites together with undirected edges that describe enzyme-

reaction relationship. In this thesis, we consider metabolic network as a directed graph of 

reactions and metabolites. In addition, the gene-protein-reaction relationship is described as a 

property of a reaction.  

Metabolic network is one of the best known biological networks. Increasingly, metabolic 

networks play important role in systems biology. It helps to reveal fundamental questions on 

evolutionary history of species. In fact, many metabolic pathways are common in all life forms, 

thus studying them contributes enormously to our understanding of life. More usefully, 
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metabolic networks have a wide range of applications through systems biology and 

bioengineering, from medicine, to food/energy industry. For example, analyzing metabolic 

networks of pathogens and parasites can help to identify effective drug targets in medicine. In 

food processing, metabolic models of interested microorganisms are analyzed to apply gene-

engineering techniques for the purpose of achieving the desired products with maximum yields 

[19-22].  

 

Figure 2.3 – Metabolic network representations 

A: Network of reactions, metabolites and enzymes. B: Network of reactions and metabolites. 
C: Network of enzymes (aka enzyme gene association network)  
 

 

In short, metabolic network summarizes knowledge about cell metabolism in a 

systematic way. Such a network contains thousands of metabolic reactions with their catalyzed 

enzymes. Enzymes are crucial for metabolic study, since they are products of genotypes yet are 

the “drivers” for phenotypes. The ultimate relationship between genes, proteins (enzymes) and 

metabolic reactions is visualized in metabolic networks. Identifying gene-protein-reaction 

relationship is a basic for reconstruction of a metabolic network from a genome. 

2.1.2 Metabolic network reconstruction 

Metabolic network of a microorganism can be reconstructed from its genome. A common 

reconstruction pipeline is illustrated in Figure 2.4, which consists of several tasks, from 

genome annotation, reaction identification, pathway assembly, to network verification [7, 8, 

Metabolite 

Reaction  

Enzyme 

A B C 
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23]. This section describes general reconstruction pipeline, in which the problem of network 

reconstruction is often referred to one step in the pipeline, that is, pathway/network assembly.  

From the input genome, the first step is to annotate the genome to collect metabolism-

related data. This can be done with help of bioinformatics tools and reference annotation 

databases such as NR (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/), UniProt [24, 25], Pfam [26, 27], 

CDD [28, 29], and KEGG [30-32]. In fact, genome annotation is also a starting point of any 

genomics investigation. This step can be separated from the pipeline as a single task. Thus, 

reconstruction often starts with annotated genome data. 

 

Figure 2.4 – Pipeline for reconstruction of metabolic networks from genomes 

From annotation data, a set of enzymes is identified. This can be done by using mappings 

between functional annotation descriptors and EC numbers, such EC2GO [33], Pfam2GO [34], 

EC2PDB [35]. Recent function annotation methods can produce EC number prediction directly, 

such as PRIAM [36], EFICAz [37, 38] and ModEnzA [39]. Leveraging on the enzyme 

specificity assumption that presence of an enzyme infers presence of its catalyzing reaction, the 

set of metabolic reactions can be listed. All relevant information of these reactions can be 

retrieved from reference enzyme databases such as KEGG, BRENDA [40]. 

The next step is to identify the set of metabolic pathways that are present in the cell, 

using reference pathways database (KEGG, BioCyc [41]). The presence of a pathway can be 

inferred by the presence of a significant number of its reactions. After that, the set of identified 
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pathways and reactions is assembled into a network. This draft network contains raw list of 

reactions and pathways.  

Such a draft network can be converted to a stoichiometric metabolic model, by adding 

stoichiometric coefficients from reference reaction databases. From this point, network 

checking/analysis can be performed to verify its consistency. After that, the model can be used 

for analyzing interested features as well as for useful applications 

However, such a reconstructed network is just an initial version. After analyzing the 

network, inconsistency and gaps may still exist. It must be further refined and/or enhanced by 

filling gaps and revising previous reconstruction steps. The whole pipeline must be repeated 

several times until a consistent network model is achieved. Significantly, in most of the steps, 

expert curation is needed to control the quality of the reconstructing network. This effort often 

is the most time consuming [13]. The problem of network assembly is presented in Chapter 5.  

2.1.3 Gap in reconstructed networks 

The comprehensiveness of reconstructed models greatly depends on quality of genome 

annotation. Although many sophisticated computational methods were developed to assist 

annotation process, many genes still remain as unknown function, and other genes may be 

assigned incomplete or even incorrect functions. Those un/miss-classified genes may code for 

20–60% of the proteins in most genomes [12]. For example, in the annotated genome of 

Aspergillus oryzae published in 2005 by Machida et al. [42], the number of hypothetical 

proteins is more than 50% of the annotated genes [3]. Furthermore, the metabolic databases 

used in reconstruction process may be incomplete, especially for less studied species. Hence, 

there are metabolic reactions that are not well characterized, and/or the enzymes catalyzed for 

these reactions are not known yet. The incompleteness of both metabolic databases and genome 

annotation is the original cause of missing metabolic knowledge, or the gaps, in reconstructed 

networks.  

There are two types of gaps: missing reaction gaps and missing gene gaps. A missing 

reaction gap is the reaction that actually occurs inside the cell, but the reconstruction method 
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has failed to include it into network, since there was no or very little known evidence to support 

its existence. These gaps can be indicated by the existence of dead-end metabolites, that is, 

metabolites that are consumed but not produced, or are produced but not consumed, by any 

included reaction. Reaction gaps reflect errors in network reconstruction. Therefore, 

reconstruction methods try to minimize the number of reaction gaps.  

The second type of gaps, missing gene gap (or metabolic gap), is a reaction that is 

included into the network but the gene encoding for the catalyzed enzyme is not known. 

Metabolic gaps are caused by genome annotation error/incompleteness and/or by failure of gap 

filling procedure that attempted previously. Filling these metabolic gaps are the most time 

consuming task in network refinement phase.  

Figure 2.5 demonstrates an example of a metabolic gap in A. oryzae sub-network. The 

metabolic gap filling problem here is to find in A. oryzae genome the D-Xylose reductase genes. 

 

Figure 2.5 – An example of metabolic gap in A. oryzae metabolic network 

This xylose degradation pathway contains 3 connected reactions. Two of them (EC:1.1.1.9 and 
EC:2.7.1.17) have already been found the enzyme coding genes (AO090020000635 and 
AO09002000060, respectively). The reaction with EC number EC:1.1.1.21 (D-Xylose reductase) which 
is a transformation between D-Xylose and Xylitol, is a gap, i.e. the gene encoding for D-Xylose 
reductase enzyme is unknown in the A. oryzae genome. 

Metabolic gaps are further categorized into 2 types [12]: local gaps and global gaps. A 

local metabolic gap is a metabolic gap in the reconstructed network of a specific species of 

interest. However, it is not a gap for other species. This means that, the similar enzyme genes 

are identified in other species, but missed in the species of interest. On the other hand, a global 

metabolic gap is a gap for all known species. In other words, it is a globally missing gene that 

has not been found in any known genome yet. 
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A completely gap-free metabolic network must include all reactions that actually occur 

and each reaction must have support evidence at gene-level. This means that all the reaction 

gaps and the metabolic gaps must be filled. In general, resolving gaps consists of two steps 

[17]: first, to identify reactions that could complete the network, and second, to find the missing 

enzyme genes. While the first task is mainly done in network reconstruction, the second task is 

usually separated from reconstruction pipeline as a single problem – the gap filling problem. 

Gap filling problem is presented in Chapter 3. 

2.1.4 Enzyme function prediction 

Genome annotation is a starting point of any genomics investigation. It is also the first step for 

metabolic network reconstruction. The specific genome annotation problem here is to predict 

metabolic functions for the given genome. This problem is called enzyme function prediction, 

or enzyme classification, which is a specific instance of function prediction problem. 

Enzyme functions can be recognized via text description in reference databases (such as 

GeneBank, NR). However, this requires biologist-expert to interpret the text annotation. For a 

more convenient way, functions of enzymes are described via gene ontology (GO) terms or 

enzyme commission (EC) numbers. EC number precisely describes enzymatic activities of an 

enzyme, thus using EC numbers is the most preferred way.  

If function annotation provides only GO term description, one may need EC2GO 

mappings [39] to map back GO terms to EC numbers. There are several other mappings that 

provide equivalence between different function descriptors, such as Pfam2GO [34], and 

ips2GO. These mappings can be used together with EC2GO to interpret EC number annotation.  

Enzyme function prediction often uses genome sequences as the input. There also exist 

approaches that use protein-protein interactions or 3D structure comparison for inferring 

function. However, methods that use sequence input are of the most original and effective. In 

this research, we are interested in developing enzyme function prediction methods with high 

enzyme coverage and reliable accuracy to aid metabolic network reconstruction from the first 
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step. Enzyme annotation is an important task to reduce gaps for later phase of gap filling and 

network refinement. Our enzyme function prediction method EnzDP is presented in Chapter 4. 

2.2 Literature review 
To thoroughly understand the three problems addressing in current work, literature reviews 

have been done. This chapter gives details on the metabolic gap filling problem, enzyme 

function prediction problem, and network assembly problem.  

2.2.1 Enzyme Function Prediction Problem 

Enzyme function prediction, or more generally, protein function prediction is a fundamental 

problem for any genomics investigation. Significantly, a huge amount of genomics data has 

been generating with an exponential rate, therefore analyzing and interpreting biological 

functions become truly challenging. Furthermore, experimentally verifying gene functions is 

costly and slow, doing so for every gene is impossible. This gives rise to computational methods 

for automated function prediction, which can significantly reduce time and effort for manual 

verification. Automated function prediction is being routinely used as a powerful 

bioinformatics tool.  

The definition of biological function must be clarified at the concrete context where it is 

used. For example, describing function of a protein as a catalytic enzyme is generally accepted, 

but not enough to specify the concrete catalytic activities, since enzymes can catalyze different 

chemical bonds and bind to different substrates. Thus, using proper function descriptor is 

essential for specific investigation purpose. 

Generally, gene function is annotated in text form. In fact, the heaviest amount of 

function annotation is in text, which is stored in reference databases and literature. For text 

annotation, one may need a text mining tool to look for a function of interest. After all, text 

annotation requires human expert for curation. To enable automated function prediction, 

computer readable annotation is adopted. This form of annotation often specifies Gene 

Ontology terms and/or EC number as function’s descriptors. However, while GO term 

hierarchy provides a general function description, for describing enzyme functions, EC number 
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system should be used. Furthermore, for purpose of metabolic network reconstruction, the 

enzyme function must be known at substrate binding level (e.g. all 4 digits of EC numbers). 

In this work, we focus on specific enzyme functions at substrate binding level. This 

section describes only those methods that can produce 4 digits of EC number prediction. There 

are several good reviews on automated function prediction [43, 44] and enzyme function 

prediction [45], which thoroughly describe each approach in details. Here, we give an overview 

on three main approaches for enzyme function prediction, namely homology-based, structure-

based and network-based.  

Homology-based methods 

Sequence-based methods firmly rely on sequence similarity for homology transfer. The 

assumption is that, similarity of sequence infers similarity of function. The most widely used 

tools are BLAST and its variations. However, simple sequence similarity may mislead the 

homology transfer, due to several issues. Firstly, homologous enzymes may have low sequence 

similarity, since the enzyme functions may be “less conserved than anticipated” [46]. On the 

other hand, high sequence similarity may or may not be enough to transfer enzyme function at 

substrate binding level. Tian et al. [47] have shown that, to transfer enzyme function with 4 

digit EC number, 60% sequence identity or higher is needed. Secondly, public annotation 

databases may contain erroneous annotation that can propagate throughout other databases. 

This is problematic since the data has been growing exponentially while expert labor for manual 

curation is expensive.  

Liu et al. [48] combined different sequence-based kernels with evolution information to 

detect remote homology, which gives promising results. This multiple kernel-based approach 

can be extended with other sequence-based methods to further improve performance. 

In fact, homology-based approach is the most original and effective for general purpose. 

Homology-based methods can sacrifice precision for coverage, by setting low cut-off threshold, 

and vice versus. The high coverage of this approach is dependent to the fact that much more 

homology data is available, in comparison with other genomics/post-genomics data.  
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Recently, a more favorable strategy for boosting accuracy is to consider small regions 

that are conserved, instead of the whole genome sequences. These conserved regions are 

distinct structural and functional domains of proteins. Millions of known protein sequences 

(as in UniProt database [25]) are composed of only about 13 thousands of such domain families 

(as in CDD and Pfam databases). Shen et al. [49], Forslund et al. [50] and Messih et al. [51] 

used domain architecture as new insight for enhancing enzyme function prediction. However, 

these methods currently focus on classifying enzyme classes only at first level. Thus, more 

work is needed for predicting all 4 levels of enzyme classes. 

Top-down homology-based approach 

Top-down approach focuses on mapping protein domains/features to biological functions. Pfam 

and CDD provide platforms for identifying such features, as well as a mapping between domain 

identifiers to EC numbers. A combination of EC2GO with Pfam2GO mappings (we called 

PF2GO2EC mappings), can translate domain identifiers into EC number annotation, via GO 

annotation. PROSITE [52] provides a library of profiles/patterns for recognizing enzyme 

functions. Methods using these domain features showed significant improvement on prediction 

accuracy. For example, standard PROSITE [52] patterns/profiles can predict EC numbers with 

an average precision of 92%.  

Bottom-up homology-based approach 

Bottom-up methods are being more favored recently. These methods rebuild sequence profiles 

for all known enzymes, and then use these profiles to classify new enzymes. Several bottom-

up methods, such as PRIAM, EFICAz, ModEnzA, and CatFam [53] have been developed. A 

comparison between these methods is shown in Table 2.2. 

Although these methods share a common classification protocol, they differ in two 

important steps: (1) the strategy for properly clustering enzyme sequences into subgroups 

before building profiles, and (2) the threshold setting for enzyme profiles. PRIAM assumes that 

the shortest sequence in a collection (of the same EC number) is the unit of functional module, 

thus it uses that shortest sequence to search for similar regions in other sequences and then 
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builds a PSSM for that functional module. This procedure repeats for the remaining set. Other 

methods, including EFICAz, CatFam and ModEnzA, simply cluster sequences based on the 

sequence similarity (BLAST e-value). For setting profile threshold, ModEnzA modifies HMM 

profiles using negative sequences, and then performed cross-validation for optimizing the cut-

off. PRIAM and CatFam simply use a predefined BLAST e-value for all profiles. For 

calculating the likelihood of a prediction, PRIAM assigns the hit’s e-value to the prediction 

score. EFICAz and CatFam do not provide likelihood score for their final predictions.  

Table 2.2 – A comparison on classification protocol of different methods 

 EnzDP [54] PRIAM EFICAz ModEnzA CatFam 

Similarity metric Domain 
composition 
score by DEAS 

Blast e-value Blast e-value Blast e-value Blast e-value 

Use of domain? Pfam domain MKDOM 
functional module 

No No No 

Clustering DEAS, rule MKDOM, rule MCL MCL MCL 

Profile type HMM PSSM HMM HMM PSSM 

Training source Swiss-Prot Swiss-Prot Swiss-Prot Swiss-Prot Swiss-Prot 

Profile threshold Individual Common (1e-30) FDRs (functional 
discriminate residues) 

- Individual 

Profile quality 
control 

Optimized F1 By protocol By protocol By protocol Optimized False 
Positive Rate 

MSA ClustalO PSI-Blast ClustalW ClustalW ClustalW 

Profile builder HMMER PSI-Blast HMMER HMMER Psi-Blast 

Profile search HMMER PSI-Blast HMMER HMMER Psi-Blast 

Hit overlap check? Yes Yes No No No 

Classification rule Yes Yes - - - 

Active site check? Yes - FDRs - - 

Prediction score Yes Yes No - No 

Software avail. Yes Yes Yes - Yes 

Latest data avail. Feb-2015 Mar-2014 Jan-2011 - Oct-2008 
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 Structure-based methods 

While sequence and domain similarity may not specific enough to transfer functions, 3D 

structure of proteins of same functions is much more conserved. In other words, low sequence 

similarity proteins may still have significant structural similarity. Thus, using 3D structure to 

predict function may achieve better accuracy. However, majority of known proteins have not 

been annotated for 3D structures, thus making this approach limited power, especially in 

coverage.  

Given a sequence, one can scan the library of known 3D structure (PDB) to match 

structural similarity. After that, the function of the hit structures can be transferred to the query 

proteins. Multiple programs provide such searching, include FAST [55] , FATCAT [56], and 

VAST [57]. However, no method can give the completely accurate predictions, thus multiple 

methods should be used [58].  

The catalytic site atlas database [59, 60] provides a resource for known active sites and 

catalytic sites of enzymes in their 3D structure. George et al [61] leverage on specific amino 

acid residues that matched with active sites to infer enzymatic function. However, the issue in 

all these methods is that, the set of known active sites is far from complete and currently covers 

a small fraction of known enzymes in Swiss-Prot [24]. Thus, the coverage of enzyme function 

predictable is much lower than that of using simple homology transfer. 

Another database for enzyme structural annotation is PDBSum [35], which provides 

mappings between EC numbers and known 3D structures. Once the structure of a protein is 

predicted, it can be used to translate the corresponding EC number that the protein should be 

classified to. However, the accuracy of this approach strongly depends on performance of 3D 

structure prediction from sequence, which still needs significant improvement. On the other 

hand, as of June-2014, the current mappings contain only one third of all known EC numbers. 

This significantly limits the enzyme prediction coverage. Nevertheless, with increase of 

structural data, coverage of this method will be improved. 

In short, protein structure can give a more specific and accurate indicator for determining 

biological functions. At the same time, the accuracy of structure-based methods depends on the 
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ability of correctly predicting structure from sequences, which is still progressing. Furthermore, 

the coverage of these methods is currently limited by the number of known structures.  

Network-based methods 

Network-based methods [62, 63] use the association/interaction of genes in the same sub-

network to infer gene function, based on the observation that genes closer in the gene 

association network have similar biological functions. Many types of association data have been 

used for inferring functional relationship, including: protein-protein interaction [64], gene 

clusters, genetic interactions, phylogenetics profiles [65] , gene clusters and operons [66, 67], 

and gene fusion [68].  

The general idea behind network-based approach is the use of network-context in a 

functionally interact network of genes for inferring gene functions. The first step is to 

reconstruct such a gene network and locate the network neighborhood of the interested gene for 

function transferring. The gene of interest are assumed to have relevant functions to its 

direct/non-direct neighbors.  

For reconstructing gene network, functional links between genes must be first identified. 

Several types of data can be used to infer functional links. The most high through put source of 

functional association data comes from protein-protein interaction (PPI) discovering [69]. The 

PPI data describes how proteins physically interact to co-function. Closely interact proteins 

may form protein complexes that work in a pathway to perform a specific function, thus having 

similar functions. The data can be identified by mass spectrometry techniques or in hybrid 

approaches. After that, a network of PPIs can be formed, re-scored and used for functional 

inferring.  

The second type of functional association data is derived from expression data. 

Microarray expression technique allows measuring expression level of multiple genes at the 

same time. From experiment data in multiple conditions, expression profile of each gene can 

be generated. Using these profiles, pairs of genes that co-express or inhibit each other can be 

derived. These gene pairs with significantly correlated profiles will form a network of co-
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expressed genes. Finally, the network can further be used for inferring related functions of 

different genes [70, 71]. 

Many other types of functional association evidence can be used for network building, 

such as phylogenetics profiles [65], gene clusters and operons [66, 67], gene fusion [68], etc. 

These data provides plentiful resources for functional linkages establishment. Significantly, 

these types of data are increasingly generated and stored in public databases, such as BioGrid 

[72], MIPS [73], STRING [74], ProLinks, [75] and GeneMANIA [76].  

After reconstructing a functional interaction gene network, network-based function 

prediction will be carried out. Most if not all methods base on the assumption that the closer 

genes in network the more similar function between them [62]. Thus, function of a gene can be 

inferred from its neighborhood in the network. The rule of Guilt-by-Association can be applied 

for set of direct neighbors of the gene of interest. However, function similarity may extent to 

indirect neighbors as well [77]. Thus, a neighborhood radius [78] should be considered for 

function transferring.  

Significantly, in network-based approach, multiple data sources are combined to get a 

consensus measure of functional linkage. Chua et al. [77] proposed a simple yet effective and 

scalable FS-weight scheme to integrate heterogeneous resources, with different confidence 

weights. This method has shown that the combined network can improved significantly the 

performance of function prediction compared to single networks. Recently, GeneMANIA 

platform allows integrating multiple types of functional association for protein function 

prediction. These functional association data types can be retrieved from BioGrid and many 

other sources. Each type is then calibrated for a confidence score. After that, machine learning 

techniques are applied to learn the best fit combined network, as well as to predict the most 

functionally relevant genes for a given gene of interest.  

Many other engines have also been developed for the purposed of network identification 

and integration. GENIES [79] utilizes supervised learning to infer unknown part of gene 

network from genome data. Olga et al. employed a Bayesian framework to combine 

heterogeneous function association data to predict protein function in yeast. More and more 
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methods now focus on integrating data [80]. These methods increasingly give impact on new 

way to attack this challenge problem.  

Interestingly, the combination of homology and network-based data has recently shown 

to be effective in predicting enzyme functions. Espadaler et al. [64] have attempted to combine 

sequence similarity with PPI data. The combination has led to 10% improvement in predicting 

3 EC number digits over simple BLAST-based methods. Other types of combinations between 

network data and profile-based methods have not been tried. However, since using simple 

sequence similarity by BLAST can be easily improved with profile-based methods, the 

improvement of network-based data for profile-based method is not significant. While the 

network-based methods can work for non-homologous sequences, combine network data for 

profile-based may not work better than homology-based alone for homologous data, due to 

highly noise of functional association data. This also can be explained by the fact that homolog 

evidence is much stronger than functional association evidence. Thus, network-based methods 

should be used for global missing gene only, where homology-based is unable for the work. 

In short, network-based methods exclusively use homology information, thus can be used 

as complement methods for homology-based. They also can work for non-homologous genes. 

However, the most significant limit of network-based methods is that, they cannot infer 

functions that more specific than functions of genes in network neighborhood, due to natural of 

the assumption behind. Furthermore, the functional data is often noisy, thus making prediction 

less precise. Another issue arises from the heterogeneity of functional association data sources, 

thus combining them is a challenge.  

2.2.2 Network assembly problem 

The problem of network assembly is described as following. Given a set of enzyme annotation 

of a genome, build a metabolic network that includes all these enzymes. The reconstructed 

network must be a connected network that contains all given enzymes and has minimum size. 

The first requirement is desired, since if the network is not connected, it obviously contains 

reaction gaps, which prevent analysis/simulation in later steps. If connectivity is not required, 
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the set of initial enzyme reactions itself is a trivial solution to the problem. Due to this 

requirement, the network may contain reactions that do not have gene(s) annotated yet, which 

are as known as metabolic gaps. For the second requirement, all known reactions are desired to 

be included so that no known activity is missing. The third requirement bases on the parsimony 

assumption that the minimum number of reactions happen to carry out all metabolic processes. 

Therefore, network size is expected to be minimized. This implies that, the reconstructed 

network must contain the minimum number of metabolic gaps, which shows a high quality 

reconstruction. 

There are two approaches to network assembly problem, namely pathway-based and 

network-based. The first approach firmly relies on reference pathways database – such as 

KEGG [31] and BioCyc [41], while the second approach relies on reconstructed networks of 

closely related species, such as Vongsangnak et al. [3].  

Pathway-based approach  

This approach uses template pathways from KEGG to reconstruct network for a specific 

species. In fact, KEGG provides the most comprehensive set of reference biological pathways, 

with more than 480 pathways (as of May-2016). Each reference metabolic pathway contains all 

possible known reactions that can happen in that pathway. In other words, KEGG is a superset 

of all known pathways for all known species. In addition, it uses KGML format (KEGG meta-

language), which is easily modifiable. Its pathway maps are manually drawn (in .png and .kgml 

format) and publicly available. Alternatively, BioCyc databases [41] contain metabolic 

pathways of many organisms, which were built by Pathway Tools software [81]. Many species 

specific pathway databases in BioCyc went through manual curation, however, the majority of 

databases is just the result of automated pathway prediction using Pathologic program [82]. 

Nevertheless, this provides an alternative to KEGG, with species oriented data. 

The main challenges of pathway-based approach are to predict the presence of pathways 

and to define the pathway boundaries for specific genome of interest. Since not all reference 

pathways should be present in a specific species, the task here is to predict which pathways (of 

those 480+ KEGG reference pathways) the species has. Furthermore, not all reactions in a 
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reference pathway are supposed to be included; therefore pathway-based methods have to 

predict the pathway boundary (by deleting reactions that are not present), maintaining 

connectivity of the pathway.  

Network-based approach  

This approach uses the reconstructed network of relevant organisms to build an initial network 

first, then refine and enrich the network. For example, Vongsangnak et al. [3] used 

reconstructed networks of several fungi, namely S. cerevisiae, A. niger, and A. nidulans to 

merge into a template network for A. oryzae. According to this method, reactions that appeared 

in at least 2 referenced networks are included in the target network. After an initial network is 

reconstructed, the network is analyzed for connectivity. And the next step to fill all the reaction 

gaps in the network to achieve connectivity for all the substrate – reaction – product 

relationship. In addition to building the network, network-based methods fill reaction gaps at 

this step. The purpose of filling reaction gaps is to add new reactions into the on-building 

network to connect all dead-ends, if any. Those new reactions are taken from reaction databases, 

and they may or may not have gene annotation available. All the methods in this approach try 

to minimize the number of new reactions, based on the parsimony assumption. This network 

reconstruction problem was proved to be an NP-hard problem [23, 83], due to the requirement 

of minimum reaction set. 

Within the network-based approach, 2 streams of methods were developed, namely, 

constraint-based and graph-theoretic methods [83]. Constrained-based methods make use of 

experimental data (e.g., growth rate) for gap filling, such as SMILEY [84], GapFill [85], and 

GrowMatch [86]. The simulated data is compared with the experimental data to check for 

discrepancy. If there is any discrepancy, these methods will try to add new reactions into the 

model to reduce gaps, minimizing discrepancy. The gap filling problem is formulated as an 

optimization problem, and is then solved by optimization methods, such as integer linear 

programming. Differences in these methods are the problem formulation and rules of adding 

new reactions.  
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The computational method SCAR [87] follows the graph-theoretic framework. It uses 

reachability of the network itself to constrain the optimization formulation, without 

experimental data. The network is reachable if all the reactions and metabolites are reachable. 

The network score is the sum of all its reaction scores, where reaction score is a sequence-

similarity score (BLAST e-value) of the homologs. The optimization setting is to maximize the 

network score while maintaining its reachability. 

2.2.3 Metabolic gap filling problem 

Although there are reaction gaps and metabolic gaps, we focus on metabolic gaps, since reaction 

gaps are resolved in network reconstruction as a general task. Furthermore, filing metabolic 

gaps in metabolic networks is a complicated problem because the missing enzyme encoding 

genes have little supported evidence; otherwise they should be found already by reconstruction 

methods. The metabolic gaps are also called missing gene reactions, and the metabolic gap 

filling problem is also called missing gene problem, as described in [12].  

Osterman and Overbeek [12] further classified metabolic gaps into 2 categories: local 

gaps and global gaps. A local metabolic gap is a metabolic gap in the reconstructed network of 

a species. However, it is not a gap in the reconstructed network of other species. This means 

that, the enzyme genes were identified in other species, but missed in the species of interest. On 

the other hand, a global metabolic gap is a gap that appears in all known species. In other words, 

the globally missing gene has not been found in any known genome yet. 

Metabolic gap filling problem is following: Given a metabolic network of a target 

organism and set of missing gene reactions, find in the target genome the genes that encode the 

corresponding enzymes. Note that, this problem is a duo problem with the function prediction 

problem (see Chapter 3 for more details). 

General frame work for metabolic gap filling 

A typical procedure for filling metabolic gaps consists of 3 steps [12], namely identifying a list 

of candidate genes, evaluating the candidates and finally, experimentally verifying. The first 

two steps can be approached by computational methods. However, the last step needs wet-lab 
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in vivo experiments, which is beyond the capacity of computation. Despite that, good result of 

in silico prediction would greatly reduce time and effort for the in vivo verification. 

Generally, there are two types of clues for identifying candidates for missing gene 

reactions. First, the missing gene may have significant sequence similarity (homology) with the 

known ones in other networks and/or reference databases that have the same functions. Second, 

the missing gene may have a functional association with other known genes in the same network 

(context). At the same time as candidates are identified, they can be evaluated by its sequence 

similarity score (homology) or functional association score (context). 

Table 2.3 – Method for finding missing genes in metabolic networks 

Methods and 
reference 

Type of evidences 
Organisms under 

study Homology Network 
structure Association evidences 

GFAOP, Vongsangnak et 
al., 2008 

√  None Aspergillus Oryzae 

Reed et al., 2003 √  None E. Coli 

MEP, Kharchenko et al., 
2004 

 √ Gene expression Yeast 

ADOMETA, Chen & 
Vitkup, 2006 

 √ Phylogenetic profiles Yeast, E. Coli 

ADOMETA, 
Kharchenko et al., 2006; 

 √ Phylogenetics, expression 
profiles, gene cluster, gene 
fusion 

Yeast, E. Coli, B. 
Subtilis 

Yamanishi et al., 2007  √ Chromosomal proximity, 
phylogenetics profiles, 
(and chemical information) 

P. Aeruginosa 

Pathway Hole Filler, 
Green& Karp, 2004 

√ √ Operon, gene cluster PGDBs, CauloCyc... 

 

Based on those clues, three categories of methods have been developed to find missing 

genes in metabolic network, namely homology-based methods (GFAOP [3], Reed et al. [88]), 

context-based methods (Yamanishi et al. [89], ADOMETA [90-92], Yamada et al. [93]) and 

hybrid methods (PHFiller [82]). Homology-based methods use sequence similarity for both 

identification and evaluation of candidates, while context-based methods use gene association 

evidences for identification candidates, and then either ranking candidates by a chosen cost 
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function or calculating the probability that the candidates have the desired function. A hybrid 

method, as a combination of those two, makes use of both methods. Table 2.3 lists current 

methods for metabolic gap filling. 

Current methods for metabolic gap filling 

This section give a discussion on several state-of-the-art gap filling methods, namely: Gap Filler 

for A. oryzae Pathway (GFAOP ), ADOMETA, Yamanishi et al. and Pathway Hole Filler 

(PHFiller). Summary of advantages and disadvantages are shown in Table 2.4. 

GFAOP 

GFAOP, which was developed by Vongsangnak et al. [3], can be considered as a 

representative of gap filling methods that use homology reference. The reference databases used 

are Pfam, COG, and NR. The COG (Clusters of Orthologous Groups of proteins) database 

maintains a system for classification of genes based on orthologous relationship, hence 

providing a comparative genomics framework for genome annotation and evolutionary studies. 

The Pfam (Protein family) database collects all protein families that conserved across several 

species. It also integrates bioinformatics tools for generating sequence profiles for each family 

such as HMMER. Hence, it is very convenient using Pfam to identify of enzyme sequences for 

given functions/family descriptions. On the other hand, NR (Non-Redundant protein sequence) 

database is a huge collection of all manually curated, non-redundant protein sequences from 

other comprehensive databases (such as Swiss-Prot, PIR, PDB, GenBank, EMBL, etc.). These 

databases are useful in genome functional annotation and manual validation. 

In the first step, GFAOP takes in an identifier of the protein family that is known to have 

required metabolic function of the gap. After that, it searches over Pfam, COG databases for 

the Hidden Markov Models profiles for the family. In the second step, the profiles are used to 

search against the target genome for candidates using PSI-BLAST. Finally, top candidates are 

validated using NR database.  

This homology-based method is simple yet effective, especially for reconstruction from 

scratch. It filled 210 over 278 metabolic gaps in initially reconstructed network of A. oryzae, 
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which leads to first version of A. oryzae network (iWV1314 [3]). However, a serious drawback 

of GFAOP is that, it requires the enzyme family must be known as input. The first step was 

done with help of expert curator, who knows what to look for. It may fail in the very first step 

if the family is not well defined, or not known yet. 

ADOMETA 

ADOMETA, which stands for “Adoption of Orphan Metabolic Activities”, was 

developed from combination of three works (Kharchenko et al., 2004 [90], Kharchenko et al., 

2006 [92], and Chen and Vitkup, 2006 [91]). ADOMETA rebuilds the metabolic gene network 

from the reconstructed metabolic network. Two genes are connected if their corresponding 

reactions share at least one common metabolite. A metabolic gap corresponds to an unknown 

gene in the gene network. Neighborhood distance up to 3 is considered when dealing with gaps.  

Chen and Vitkup [91] used phylogenetic profiles to score the similarity of gene 

neighborhood. The authors found that, the closer genes in the metabolic gene network, the more 

similar evolution history they have. Thus, candidate genes for a gap must have similar 

phylogenetic profiles with the gap’s neighbors. Leveraging on this hypothesis, they propose 

several cost functions to rank gap’s candidates. Furthermore, optimization techniques (such as 

simplex and simulated annealing) were used to tune cost function parameters, training on the 

set of known metabolic genes. The best function was then used for filling gaps.  

Together with phylogenetic profiles, Kharchenko et al. [92] used other type of functional 

association data, such as gene expression correlation, gene fusion, protein-protein interaction, 

gene cluster, etc. Combining these association data significantly improved the prediction 

performance. The most advantage is the use of association data instead of homology, thus it can 

fill global gaps. Furthermore, this method makes use of network structure. However, 

association evidence is not strong as homology evidence, thus the method has low precision. 

For example, for yeast iFF708 network, ADOMETA correctly predicted only 60% of known 

enzymes with a cut-off of top 50 candidates. 
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Table 2.4 – Advantages and disadvantages of current gap filling methods 

 Advantages Disadvantages 

GFAOP Simple yet effective, make use of other 
available tools; 

Works well for newly reconstructed 
networks, such as metabolic network 
of A. Oryzae (210 out of 278 missing 
genes are predicted); 

Can find only local missing genes; 

Gene family must be identified first; 

Does not make use of network structure, 
considers missing gene reactions as individuals; 

Candidates are not clearly evaluated; 

ADOMETA Combines multiple association 
evidences for both identification and 
evaluation of candidates; 

Consider missing gene reactions in 
context with neighborhood 
relationship; 

Could find global missing genes; 

Large amount of “expensive” data should be 
analyzed, such as building phylogenetic 
profiles, gene expression profiles, 

Association evidence is not as strong as 
homology evidence 

Require that networks are initially built; 

Yamanishi 
et al., 2007 

Use genomic context and functional 
association evidences; 

Make use of network structure; 

Guide select candidates based on 
chemical information described in EC 
number. 

Gene location information may not be useful for 
eukaryotes; 

Require building gene interaction network; 

3 digits of EC number are not enough to confirm 
specific metabolic function. 

PHFiller Use both homology and association 
evidences; 

Can be generalized for using multiple 
sources of evidences. 

Can find only local missing genes; 

Function of the missing gene must be well 
defined/characterized in reference species; 

Genomic context (operon) evidences may not 
applied for eukaryotes; 

  

Yamanishi et al. 

This method (described in [89]) uses KEGG databases as reference. This database 

contains a large collection of genomic information, from orthologous gene clusters to reference 

metabolic pathways. Genomic context and phylogenetic profiles are used as clue for finding 

missing genes. It applies machine learning technique with supervised approach to infer the gene 

interaction network and at the same time, evaluate the gene correlation. It not only proposes 

candidates but also guides selecting the right one by comparing first 3 digits of their EC 

numbers. 

An advantage of this method is that it uses machine learning technique for inferring gene 

network, and then compares with KEGG reference pathway to identify missing gene 

candidates. However, the same as ADOMETA, this method requires the network to be at least 
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partially reconstructed, thus cannot do de novo reconstruction. Significantly, the genomics 

context may not strong for eukaryotes, thus making them limited power. 

Pathway Hole Filler 

Developed by Green & Karp [82], PHFiller is a hybrid method, which combine 

homology evidence with genome context to predict gap candidates. Similar to the homology-

based methods, this method uses homology information as the main source to identify candidate 

genes. In addition, it takes into account additional information from genomic (operon) and 

functional context, as well as pathway context to evaluate the fitness of a candidate. Simple 

Bayesian classifiers were introduced to calculate the posterior belief of the prediction. The use 

of the Bayesian classifier is to reject or accept a candidate gene.  

The method achieved high precision and has advantages in comparison to GFAOP. First, 

it not only uses homology information, but also genomic and functional context information. 

Hence, the proposed candidates would be more reliable. Second, it can be generalized to 

combine multiple fitness evidences (e.g. other non-homology information) into a consensus 

measure by the Bayesian classifiers. Thus, it is more flexible with availability of data. 

However, since genome context is not strong for eukaryotes, this method is not well applied on 

them. Significantly, PHFiller heavily relies on homology, which makes it incapable of finding 

novel genes. The method performs best only for initial reconstruction. Furthermore, calculation 

of Bayesian classifiers using reference may be database-bias, thus its result depends greatly on 

how closely related the target genome with reference databases is. 
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MMeGaFiller 

Chapter 3 

MeGaFiller: retrofitting function 
predictors for filling metabolic gaps  

3. MeGaFiller: retrofitting function predictors for filling metabolic gaps 

To improve network quality, one significant procedure is to fill the gaps after the network has 

been reconstructed. The problem of metabolic gap filling is well known [11, 12] and is often 

referred to as missing gene problem. This chapter describes our approach to tackle this 

metabolic gap filling problem.  

Notably, filling metabolic gaps in reconstructed network is difficult. This is because these 

gaps have no or little evidence to find, otherwise they have been found in previous steps of 

network reconstruction already. Significantly, these gaps may be missed by previous gap filling 

methods that were perform during network reconstruction. Previous homology-based gap 

filling methods are generally based on identifying a protein family in related organisms and 

then using this family to help for finding the target gene in a given genome. However, these 

methods fail when the protein family is not well-defined. There are therefore still many gaps in 

current metabolic networks. For examples, in the reconstructed metabolic networks of yeast 

Saccharomyces cerevisiae [2], filamentous fungi Aspergillus oryzae [3], Aspergillus nidulans 

[5], and Aspergillus niger [6], and bacterium Streptomyces coelicolor [94], from 6% to 19% 

of the unique biochemical reactions are metabolic gaps. Here, we attempt to fill these gaps via 

an indirect approach by retrofitting protein function predictors and post-processing their results 

to identify the candidate genes.  
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As a result, we developed a novel method for metabolic gap filling, called MeGaFiller 

that uses an ensemble of multiple retrofitted state-of-the-art protein function predictors. The 

ensemble scheme was adopted to boost the prediction performance. MeGaFiller can propose 

the candidate genes for 35% of the metabolic gaps in different metabolic networks (i.e. yeast, 

three filamentous fungi and bacterium). MeGaFiller can predict novel candidate up to hundreds 

genes for earlier annotated functions in the metabolic networks. MeGaFiller can also provide 

novel candidate genes for novel putative reactions throughout the metabolic networks.  

MeGaFiller method demonstrates our first effort for filling metabolic gaps in the 

metabolic networks by retrofitted protein function predictors. It serves as a bioinformatics tool 

assisting for improved annotation through metabolic network reconstruction at a genome-scale. 

Outline of this chapter is following. First we describe the issues of current direct gap 

filling methods and overview of our approach to overcome them. Next we give details of our 

method, how we retrofit function predictors into gap fillers and integrate them into MeGaFiller. 

After that, experimental results as well as gap filling results will be presented. Finally 

discussion and conclusions will be given. 

3.1 Background 

3.1.1 Current metabolic gap filling methods 

Current direct methods for filling local metabolic gaps (i.e. genes that are un-annotated in the 

target organism, but have been found in other related organisms) are based on the profile of the 

protein family, such as GFAOP [3] and Reed et al. [88]. In these methods, the first step is to 

identify the specific protein family for the metabolic gap. The next step retrieves and/or builds 

a family profile of this protein from reference databases. Then this profile is used to search 

against the target organism (i.e. genome sequence) to detect candidate gene. Finally, candidate 

gene (if any) is manually validated by querying with annotation databases. These gap filling 

methods have been successfully used to fill some of the gaps in the metabolic networks of 

Escherichia coli [88] and A. oryzae. Despite that, many gaps still remain in these networks.  
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The success (and failure) of these direct gap filling methods is highly dependent on the 

first step of identification of the protein family for the metabolic gaps. This step requires an 

expert to precisely interpret the proper family that performs the intended enzymatic function 

(described by an EC number) of the metabolic gap, specific up to substrate binding. However, 

this first step is challenging for two reasons. Firstly, the protein family is not well-defined. For 

example, in the Swiss-Prot database, there are 251 annotated genes encoding for the 

EC:2.1.1.64. Of these, 242 genes have no known specific protein families which are available.  

Secondly, even if the protein family is found, it may not be particular enough to be helpful 

for finding the candidate gene with a specific function. Based on Swiss-Prot database, for 

example, there are a total of 673 annotated genes encoding for the EC:2.7.7.3 and all of them 

carry the Cytidylyltransferase (PF01467) domain. Meanwhile, there are the other 527 annotated 

genes encoding for the same domain, but show different functions. This indicates that the 

domain is too general and hence the generated protein family profile will not be specific enough 

to find good candidate gene for the EC:2.7.7.3. We noticed that a current A. oryzae metabolic 

network, 52 gaps (out of 61 gaps) do not have a specific protein family interpretation. Hence, 

these direct gap filling methods have failed in the beginning step as shown in example case of 

the A. oryzae metabolic network (iWV1314). 

3.1.2 Overview of our approach 

In this work, we aimed to develop MeGaFiller, an ensemble of indirect approach to overcome 

the difficulties of existing direct methods in cases of poorly characterized protein family. Our 

indirect approach leverages the following duality between gap filling and protein function 

prediction. In gap filling, we determine protein function (f), and we desire to search for 

candidate gene (p) in the genome sequence of the target organism with the protein function f. 

In protein function prediction, we determine a candidate gene p, and we desire to predict its 

protein functions f. Thus, gap filling and protein function prediction are dual problems of one 

another.  
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In theory, therefore, if we have a candidate gene p in the target organism (genome G) 

that performs a protein function f, then the “perfect” gap filler is able to find gene p in G given 

the protein function f, and the “perfect” protein function predictor is able to predict protein 

function f given the gene p in G. In reality, however both procedures are far from the “perfect”. 

Current direct gap filling methods are not able to find the genes encoding for some protein 

functions, as evident from the gaps in current metabolic networks. Additionally, current protein 

function predictor may miss some protein function f due to very low scores from the prediction. 

We propose to use the dual approach using protein function prediction methods to help 

find candidate gene p that have the predicted protein function f. We initially predict the 

functions of all the proteins in a target organism (genome G) using a protein function predictor. 

Then, we keep only the genes with predicted protein functions that are matched to those of the 

metabolic gaps. Once completed, the list of candidate genes is generated for the metabolic gaps. 

There are additional reasons to pursue this dual approach. Firstly, there has been 

tremendous progress in the state-of-the-art protein function prediction methods and they have 

vastly improved recall and precision rates. Many enhancements have been developed for 

BLAST-based protein function predictors and these included Gotcha [95], PFP [96, 97], and 

Blast2GO [98, 99]. There have also been enhancements to protein function predictors that used 

Hidden Markov Model (HMM) profiles with improved prediction accuracy and these included 

ModEnzA [39] and EFICAz [37, 38]. Hence, it is timely to leverage on these state-of-the-art 

protein function predictors to help find candidate genes for the “difficult-to-fill” metabolic gaps. 

Another crucial reason is that our dual approach does not require knowledge of the specific 

protein family and hence gets around the inherent challenge of identifying the proper family at 

the beginning. Thirdly, even in case where the protein family is not well-defined, there may 

still be some of individual protein list in the annotation databases that can infer function. Several 

protein function predictors can leverage on the protein list (via sequence similarity for BLAST-

based methods or profile similarity for HMM based methods) to help in their function 

prediction. In this way, the protein list may help, indirectly, to predict the given metabolic 

function for achieving the candidate genes, without having the certain protein family. 
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To successfully use this dual approach, we identified good protein function predictors 

that were suitable for retrofitting for the purpose of filling metabolic gaps. We focused on 

protein function predictors that gave more predicted functions, even those with low scores. To 

deal with a large pool of predictions, we needed a retrofitting procedure to carefully filter and 

find the “difficult-to-fill” candidate genes for the metabolic gaps (details are given in the next 

section). Based on this, we retrofitted gap fillers based on the different state-of-the-art function 

predictors. After evaluating their individual effectiveness, we found that no one method 

dominates the rest and each of them has different strengths and weaknesses. General protein 

function predictors tend to give many more predicted functions (per protein) and thus, achieve 

higher coverage, but lower accuracy. In contrast, enzyme-specific function predictors give 

fewer predicted functions (per protein) and gain higher accuracy, but lower coverage.  

To leverage on their different relative strengths, we developed novel MeGaFiller 

(Metabolic Gap Filler) method that uses a weighted ensemble of the individual retrofitted 

protein function predictors. We then optimized the relative weights of the individual protein 

function predictors within MeGaFiller. This optimization of MeGaFiller was then performed 

separately in each of five species, as our performance analysis showed that the optimal 

parameter setting is species-dependent. To the end, the optimized MeGaFiller was used to fill 

the gaps in five different metabolic networks. MeGaFiller showed effective in filling metabolic 

gaps remaining in these networks. It was also able to predict more candidate genes for existing 

reactions and novel putative reactions in these metabolic networks. 

3.2 MeGaFiller method 
Our proposed method is called MeGaFiller, which carefully combined the prediction results of 

several individual gap fillers based on retrofitted protein function predictors. In the following, 

we first explain how these individual gap fillers were designed, and then discuss how they were 

retrofitted into MeGaFiller. 

In the dual approach for gap filling, we used protein function predictors to indirectly find 

candidate genes that have the predicted protein functions of the metabolic gaps. For a given 
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metabolic network of a target genome G, and any chosen protein function predictor (FP), the 

general procedure is as follows: First, we used FP to predict the functions of all the proteins in 

a target genome. This produces, for each gene p in the target genome G, a list of predicted 

protein functions (given in EC numbers or GO terms). Usually, these predicted protein 

functions were ranked based on a variety of scores (e.g. confidence, significance) depending on 

the predictor used. Metabolic gaps were given by their EC numbers. Hence, the next step was 

to use EC2GO mapping [21] to map any predicted GO terms into EC numbers. Next, we 

matched these predicted protein functions with the gaps in the metabolic network. For each 

metabolic gap with EC number, we collected all the genes for which the protein function f that 

was predicted by FP and formed the list of candidate genes for the metabolic gaps.  

We pointed out that the ranking/scores of candidate gene p for a given metabolic gap 

were produced by considering candidate gene p individually, and the ranking/scores were given 

relative to the other predicted protein functions for that candidate gene p. Hence, it does not 

make sense to directly compare the ranking/scores of genes in the candidate list. Hence, we 

may need to do some retrofitting by post-processing of the candidate list (for example, re-

ranking by their confidence/significance scores) to produce the list of missing gene candidates. 

With the recent advances and proliferation of protein function predictors, we selected 

suitable ones. For our purposes, we focused on state-of-the-art protein function predictors that 

are also relatively easy to retrofit for metabolic gap filling. We thus selected two general protein 

function predictors, PFP and Blast2GO that can predict general protein functions. We also 

selected an enzyme-specific function predictor, EFICAz. We ran all the three protein function 

predictors using their default settings.  

3.2.1 Retrofitting procedures 

In this section, we describe how we retrofitted function predictors for gap filling and called 

them as PFP-GF, B2G-GF, and EFICAz-GF, respectively. 

PFP-GF: Retrofitted PFP for Gap Filling 
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Among the general protein function predictors tested, PFP gave the most predicted functions 

with the best coverage (but low accuracy). Given an input as protein sequences, PFP uses PSI-

BLAST on the UniProt database to predict a list of GO terms, each of which comes with several 

scores (i.e. rank, raw score, P-value, and three different confidence scores). By default, PFP 

sorts GO terms by the “4-edge confidence score”. This list contains many predicted protein 

functions (some may contain up to 500 GO terms), including many predicted protein functions 

with very low scores. 

We retrofitted the protein function predictor PFP for gap filling as shown in Figure 3.1. 

After PFP was done, the output GO terms were mapped into EC numbers using EC2GO. Then, 

for each EC number, we re-ranked the list of candidate genes based on the following criteria 

(in priority order): confidence score, raw score, and P-value. A top-rank cut-off to filter the 

candidate list was chosen to maximize the F2 score. The best F2 score for PFP-GF was obtained 

when setting this cut-off to keep only the top 5 candidates. 

B2G-GF: Retrofitted Blast2GO for Gap Filling 

The other general protein function predictor, Blast2GO, is very simple to retrofit. Blast2GO 

produces EC numbers for their predicted functions. It produces relatively few predicted 

functions per proteins and they tend to have high accuracy. Thus, the retrofitting procedure 

consists of just matching predicted functions per proteins with the given set of EC numbers, 

and consolidating all the candidate genes for each of the given EC numbers.  

EFICAz-GF: Retrofitted EFICAz for Gap Filling 

EFICAz is an enzyme-specific function predictor. It predicts only enzyme-specific functions. 

It gives relatively few predicted functions and these have high accuracy. The predicted protein 

functions are also given by their EC numbers. Thus, like B2G-GF, retrofitting consists of just 

matching predicted functions per proteins with the given set of EC numbers, and consolidating 

all the candidate genes for each of the given EC numbers. 
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Figure 3.1 – Retrofitting procedure for gap filler PFP-GF 

The original PFP takes a genome sequence as an input and generates a list of predicted GO 
terms for each sequence. PFP-GF takes the PFP’s output, the EC2GO mapping, and a 
metabolic gap described by an EC number. Then, PFP-GF generates the sorted list of 
candidate genes for the gaps. 

  

3.2.2 Our proposed method: MeGaFiller 

To achieve better prediction results and higher confidence, our proposed method, MeGaFiller, 

considers an ensemble of these three individual gap fillers. For this integration, we need to 

handle the fact that the three individual gap fillers produce different types of prediction scores. 

Specifically, PFP-GF gives several scores, and, after our performance analysis, the confidence 

score was chosen as the score for PFP-GF. In contrast, B2G-GF ranking relies on the BLAST 

hit score, thus the best bit score of hits was chosen as the score of candidates for B2G-GF. 

Finally, EFICAz-GF does not produce any prediction score, and so all its predictions were 

equally weighted (i.e. all have score of 1.0). 
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Figure 3.2 – Ensemble scheme for MeGaFiller 

A big circle denotes an EC number, while a small circle presents a candidate gene. Scores of 
predictions made by each predictor were normalized. Then, the predictions were combined 
by the weight wi of each predictor. Finally, MeGaFiller applied a threshold θ to filter the final 
prediction list. 

To rationally combine these gap fillers, a generic weighted ensemble scheme (similar to 

[77]) was adopted, as shown in Figure 3.2. Firstly, for each EC number (e), the scores for each 

candidate gene p for e were normalized using as follows: 

 

where  is the normalized score and  is the predicted score of pair (e, 

p) produced by gap filler (i). Secondly, we assigned weight (wi) to each gap filler i as a measure 

of its prediction significance. These were also normalized, i.e.: 
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The combined score, C(e, p), for a pair of  a candidate gene p and an EC number e, was 

given by a weighted summation over all individual gap filler, as follows: 

 

To the end, the candidate gene list was filtered, keeping only candidates with the 

combined scores not below a given threshold (θ). 

3.2.3 Data sources and performance metrics 

In this research, we focused on using MeGaFiller to fill metabolic gaps in the reconstructed 

metabolic network of A. oryzae iWV1314. However, we have also run MeGafiller on the other 

four networks, those for S. cerevisiae iIN800, A. niger iMA871, A. nidulans iHD666, as well as 

S. coelicolor iIB711. These metabolic networks were obtained from BioMet Toolbox [100] 

website (http://biomet-toolbox.org/) 

Each of these metabolic networks contains two datasets: the known dataset (NK) and the 

metabolic gap dataset (NG). NK is a list of known pairs of metabolic reaction associated between 

EC numbers and gene. The NK was used to tune the parameters of MeGaFiller and its component 

gap fillers. NG is a list of metabolic gaps associated between EC numbers and gap reactions. 

From each metabolic network of the five species, we extracted NK and NG and the statistics are 

shown in Table 3.1 and Table 3.2. 

Table 3.1 – Metabolic networks used in this study 

Network  Species Strain Release Genome Source 

 iIN800 Saccharomyces cerevisiae S288c 2008 SGD1 

 iWV1314 Aspergillus oryzae RIB40 2008 DOGAN2 

 iHD666 Aspergillus nidulans  FGSC A4 2008 AspGD3 

 iMA871 Aspergillus niger ATCC1015 2008 AspGD3 

 iIB711 Streptomyces coelicolor A3(2) 2005 S. coelicolor4 

 1 http://www.yeastgenome.org/ 
 2 http://www.bio.nite.go.jp/dogan/top 
 3 http://www.aspgd.org/ 
 4 http://www.sanger.ac.uk/resources/downloads/bacteria/streptomyces-coelicolor. 
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Table 3.2 – Metabolic network contents 

Network characteristics iIN800 iWV1314 iHD666 iMA871 iIB711 

Number of gene-EC number pairs 573 1,329 847 818 694 

Number of unique EC numbers 481 711 455 482 407 

Number of metabolic rxns w/o genes 83 65 29 112 72 

Number of unique EC numbers without 
genes (number of gaps) 

52 61 28 90 68 

Percentage of metabolic gaps 11% 9% 6% 19% 17% 

Note: This table shows detailed content of the five metabolic networks. Unique EC numbers 
are accounted for the set of EC numbers appeared in the network. Number of metabolic gaps is 
the number of unique metabolic reactions that have no genes annotated. Percentage of gaps is 
calculated as ratio of gaps over unique EC numbers 

We retrieved genome sequences of these five species from reference databases (S. 

cerevisiae S288c – SGD (http://www.yeastgenome.org/) [101], A. oryzae RIB40 – DOGAN 

(http://www.bio.nite.go.jp/dogan/top) [42], A. niger ATCC1015 and A. nidulans FGSC A4 – 

AspGD (http://www.aspgd.org/) [102] and S. coelicolor 

(http://www.sanger.ac.uk/resources/downloads/bacteria/streptomyces-coelicolor.html) [103]. 

We used these genomes to extract the list of protein sequences to serve as input to MeGaFiller 

(and to the individual metabolic gap fillers).  

To tune the parameters of MeGaFiller and its component gap fillers, we ran them on the 

known datasets NK of the five species and measured the following performance metrics: 

precision, recall, and F2 score, calculated as follows: Suppose that a gap filler method proposes 

a candidate gene p for an input EC number e. Then the predicted pair (e, p) is said to be a true 

positive if (e, p) is in the NK; otherwise it is called as a false positive. A pair (e, p) is called a 

false negative if it is in the NK, but is not predicted by the gap filler. Let TP, FP and FN denote 

the number of true positive, false positive and false negative, respectively. Then the 

performance metrics are calculated as the following:  

Recall = TP / (TP + FN) 

Precision = TP / (TP + FP) 

F2 = 5 * Precision * Recall / (4 * Precision + Recall) 
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We used F2 score to put more weight (double the importance) on the prediction coverage 

(recall), which is more important than the prediction precision for the purpose of finding 

missing gene candidates.  

The aim of MeGaFiller is to find candidate genes to fill gaps that existing direct gap 

filling methods have already failed. So, MeGaFiller is biased towards higher true positives and 

finding new candidate genes, at the expense of an increase in the number of false positives. In 

other words, it is more important to be able to find the candidate genes while incorrect 

predictions may be ruled out later by manual curation with the help of additional independent 

data sources.  

3.2.4 Parameter tuning for MeGaFiller  

MeGaFiller has several parameters, the weights wi for the component gap fillers and the 

threshold (θ). We tuned parameters using the known datasets as follows: Consider a species 

with genome G and reconstructed metabolic network N as NK(G). Let R(G) is the list of 

metabolic reactions (given by their EC numbers) in NK(G). For any given values of the 

parameters wi and θ, we ran MeGaFiller using the genome G and the R(G) to predict pair (e, p), 

namely to predict gene p in G for the EC number e in R(G). Let P(wi, θ, G) denotes this list of 

predicted pair obtained by MeGaFiller with parameters wi and θ. We then matched the predicted 

pair with NK (G) to compute F2 (P (wi, θ, G) | NK (G)), the F2 score for this parameter setting. 

These parameters are tuned by optimizing the F2 score: 

(wi, θ)G = argmax (F2(P(wi, θ, G) | NK(G))) 

All parameters were searched in the range (0,1) with step-size of 0.01.  

3.2.5 Manual curation of candidate genes for metabolic gaps  

For new predictions made by MeGaFiller (and others methods) to fill the metabolic gaps in 

various networks, there is no ground truths. To evaluate, hence the reliability of these new 

predictions by MeGaFiller, we manually curated some of them to provide independent 

supporting evidences. For each predicted pair (e, p), we used the protein sequences of the 

candidate gene p to search against several annotation databases, such as NR 
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(http://www.ncbi.nlm.nih.gov/refseq/), UniProt, Pfam, CDD  and KEGG  databases to look for 

significant hits with annotation of the function e. We also looked at the updated function 

annotation of the candidate p if such annotation exists in genome databases of the species. All 

the relevant supporting information for the candidate gene p was collated for further manual 

curation. 

3.3 Results  
We now present our extensive results which are organized as follows: We first show an 

evaluation of individual retrofitted gap fillers using the known datasets from the five species 

studied. We show how these results supported our use of an ensemble scheme in MeGaFiller. 

Next, we provide results on parameter tuning of MeGaFiller. We show that MeGaFiller (with 

default optimal parameters) outperformed the individual component gap fillers with the highest 

recall and F2 score. 

We then describe the main result of this study, namely using MeGaFiller for gap filling 

and the ability of MeGaFiller to fill critical gaps in the A. oryzae network. Besides, we then 

show comparison of our method, MeGaFiller with two other existing methods: GFAOP, a 

homology-based method and ADOMETA, a context-based method. Finally, we discuss how to 

use MeGaFiller to predict novel candidate genes for existing reactions and/or predict novel 

putative reactions in the metabolic network for a given species. 

3.3.1 Evaluation of the individual retrofitted gap fillers  

To evaluate the relative performance of the retrofitted gap fillers (PFP-GF, B2G-GF, EFICAz-

GF), we ran each of them on the same known datasets of the different species. A completely 

uniform comparison was not possible since each method relies on its own (different) reference 

data that were retrieved at different timestamps. To do a fairer comparison, we restricted the 

comparison to only those reactions that found in all three methods. We also excluded those EC 

numbers that were too general and focused on those that were specified in all 4 digits. We noted 
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that, across the 5 genomes, from 1.0% to 8.3% of the pairs, were excluded by this process (and 

overall of only 4.7%).   

After this pre-processing, the known dataset for metabolic network iIN800 contains 573 

known gene-EC number pairs, while the known dataset for network iWV1314 contains 1,329 

known pairs. (The numbers of gene-EC number pairs in known datasets for iMA871, iHD666 

and iIB711 are 818, 847 and 694 pairs, respectively).  

Figure 3.3 shows the prediction results of PFP-GF, B2G-GF, and EFICAz-GF on the 

known datasets for iIN800 and iWV1314 datasets. For the well-studied yeast iIN800 dataset, 

PFP-GF gave the largest number of true positive predictions, 520 out of 573. This was followed 

by EFICAz-GF with 445 true positive predictions while B2G-GF gave 402 true positives. 

However, PFP-GF also predicted more false positives (1,438) compared to B2G-GF (164) and 

EFICAz-GF (119). 

 

Figure 3.3 – Performance evaluation of retrofitted gap fillers 

The dot plots show the number of true positives and false positives on iIN800 (S. cerevisiae) 
dataset (left), and iWV1314 (A. oryzae) dataset (right) by component gap fillers and the 
MeGaFiller. 

For the relatively less well-studied filamentous fungus iWV1314 dataset, PFP-GF and 

B2G-GF gave many more true positive results (833 and 844 out of 1,329) than EFICAz-GF 

(445). PFP-GF also had the highest false positives (2137), while the enzyme-specific EFICAz-
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GF had the lowest (119), and B2G-GF was in between (682), but closer to EFICAz-GF. The 

results for the other three genomes (also less well-studied and annotated) were similar to that 

for iWV1314 and are not shown in Figure 3.3.  

We combined the results for all five genomes and observed that the retrofitted general 

protein function predictors gave higher average recall (PFP-GF: 67.5%, B2G-GF: 57.2%) 

compared to retrofitted enzyme-specific function predictors (EFICAz-GF: 46.4%). EFICAz-

GF has higher precision (77.5%) than B2G-GF (62.4%) and PFP-GF (27.4%). 

This can be explained by the fact that, enzyme-specific function predictors like EFICAz 

focuses on accurately classifying only enzymatic functions. Hence, they tend to make fewer 

predictions that are more accurate (higher precision) and they may lose in prediction coverage 

(lower recall), especially on datasets of less well-studied species. On the other hand, PFP, being 

a general protein function predictor gave more predictions than either EFICAz or Blast2GO, 

but suffered from lower precision.  

3.3.2 Evidence to support an ensemble approach  

We compared the actual predictions made by PFP-GF, B2G-GF, and EFICAz-GF for the 

iIN800 and iWV1314 datasets. The Venn diagram is shown in Figure 3.4. For each species, we 

observed that the number of true positive predictions in the 3-way common intersection is quite 

small, and each of gap filler produced its own unique true positive predictions. We also 

observed that PFP-GF gave the most unique true positive predictions, but with a high false 

positive rate. Thus, combining the prediction results of PFP-GF with that of B2G-GF or 

EFICAz-GF will increase the precision.  

More generally, this suggests that we need to leverage on the results of all the gap fillers. 

Our method, MeGaFiller used a weighted ensemble scheme to combine the results of all three 

gap fillers to leverage on the high recall of PFP-GF and the high precision of the B2G-GF and 

EFICAz-GF.  
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Figure 3.4 – Intersection of predictions made by different gap fillers 

Common predictions made by different methods and the corresponding correctly predicted 
portion for iIN800 (left) and iWV1314 (right) datasets. There are 357 predictions made by all 
gap fillers on iIN800 dataset, in which 331 predictions are correct (93%). None of methods 
can cover all possible correct predictions. 

3.3.3 Parameter tuning for MeGaFiller 

To tune MeGaFiller, the known datasets of the five species for different parameter settings were 

used. The weights wi for the component gap fillers and the threshold θ were searched for the 

parameter setting in order to obtain the highest F2 score. As mentioned earlier, the parameters 

were searched in the range (0,1) with step-size of 0.01.  

We found that the optimal parameter setting was species dependent. So, we optimized 

the parameters for each species (dataset) separately as shown in Table 3.3. These were used as 

default settings for MeGaFiller on corresponding dataset. As can be seen, the iIB711 dataset 

(the last one) gave different results from the other 4 datasets. So, we discuss results for the first 

4 datasets. The optimal weights wi for PFP-GF and B2G-GF were high while the optimal 

weights for EFICAz-GF were the lowest (except for the iIB711 dataset). The optimal threshold 

θ ranged from 0.4 to 0.63. For each dataset, the optimal θ was quite close to the highest weight 

wi. This suggests that the score of the highest weight component gap filler (usually PFP-GF) 

must be very close to 1 or it is made by at least two component gap fillers (e.g. Recall that 

EFICAz-GF scores are all 1.0, while PFG-GF scores range from 0.1 to 1). This result is 

consistent with our earlier stated objective of (a) leveraging the high recall of PFP-GF and (b) 

increasing the precision by having it “confirmed” by the other component gap filler. 
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Table 3.3 – Optimal parameters for MeGaFiller 

Network dataset w1 
(PFP-GF) 

w2 
(B2G-GF) 

w3 
(EFICAz-GF) Θ 

iIN800 0.60 0.10 0.30 0.63 

iWV1314 0.43 0.47 0.10 0.40 

iHD666 0.65 0.20 0.15 0.63 

iMA871 0.40 0.50 0.10 0.40 

iIB711 0.13 0.30 0.57 0.30 

Note: values of parameters (wi, θ) optimized by maximizing F2 score on the known dataset NK 
for each network. These weights and thresholds were used for gap filling on corresponding 
metabolic network. 

3.3.4 Evaluation of MeGaFiller on known datasets  

After parameter tuning, the optimized parameter settings were then used as default for 

MeGaFiller on the given dataset. The prediction results of MeGaFiller on known datasets for 

iIN800 and iWV1314 are shown in Figure 3.3. For both species, MeGaFiller produced more 

true positives than any one of its component gap fillers. In addition, the number false positive 

has improved drastically as compared to PFP-GF.  

For the yeast iIN800 dataset, the number of true positives from MeGaFiller was 524, 

compared to 520 for PFP-GF, 445 for B2G-GF and 402 for EFICAz-GF. Additionally, the 

number of false positive was 154, drastically lower than 1,438 for PFP-GF, and comparable to 

those of EFICAz-GF (164) and B2G-GF (119). For the filamentous fungus iWV1314 dataset, 

the number of true positives for MeGaFiller was 931, which was much better than 833 for PFP-

GF, 844 for B2G-GF and 489 for EFICAz-GF. While the number of false positive went down 

to 979, compared with 2,137 for PFP-GF, 682 for EFICAz-GF and 119 for B2G-GF. 

Figure 3.5 shows the F2 score of MeGaFiller and the individual gap fillers, (PFP-GF, 

B2G-GF, and EFICAz-GF) on the known datasets of all five species.  Clearly, MeGaFiller was 

consistently better than all of its component gap fillers over all the five datasets. In particular, 

we noted that the iMA871 dataset, MeGaFiller had F2 score of almost 60%, even when all the 

component gap filler had F2 score below 50%. Summing over all the five species studied, 
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MeGaFiller achieved average F2 score of 68%, with average recall of 73% and average 

precision of 55%. 

 
Figure 3.5 – Relative performance of different gap fillers and MeGaFiller 

F2 score is shown for each method on 5 network datasets. MeGaFiller achieved the highest 
value, which outperformed all components. 

3.3.5 Comparing MeGaFiller with other variants of ensemble scheme  

To further analyse the contribution of the weighted ensemble scheme used in MeGaFiller, we 

compared with two other ensemble variants. The first is a Non-Weighted ensemble in which 

the weights are equal (in this case, wi = 1/3 for each of the 3 components). The second, called 

Common-2 ensemble, uses simple voting and keeps only predictions made by at least 2 

component gap fillers (this version ignores all the weights and the scores in MeGaFiller).  

We repeated the evaluation on these two ensemble variants and compared them with 

MeGaFiller. Table 3.4 shows the F2 score of the three ensemble variants. As expected, the three 

variants have very similar F2 scores. This table also shows that MeGaFiller (the weighted 

version) achieved the highest F2 score over all five datasets. The non-weighted ensemble 

variant performed only slightly better than the common-2 ensemble variant. We suggest that if 

no parameter tuning can be done, then the common-2 ensemble variant based on simple voting 

may also be a good strategy. 
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Table 3.4 – Performance of different variants of our ensemble gap fillers 

Network dataset MeGaFiller Non-weighted Common-2 

iIN800 88.27 86.71 86.40 

iWV1314 62.67 60.48 59.86 

iHD666 61.55 58.77 58.39 

iMA871 58.86 54.53 53.64 

iIB711 67.91 67.14 66.91 

Note: F2 score [%] of the weighted ensemble (MeGaFiller) is always better than that of non-
weighted version and common-2 voted version. The non-weighted version was run the same as 
weighted version, except that the weights were fixed equally. The common voted version was 
run by taking only predictions that were made by at least 2 component gap fillers (ignoring both 
weights and scores). The largest value for each row is shown in bold. The non-weighted version 
slightly performed better than the common-2 voted version. 

3.3.6 Comparing MeGaFiller with GFAOP and ADOMETA 

MeGaFiller vs GFAOP 

We compared MeGaFiller with an existing homology-based direct gap filling method, GFAOP. 

A direct comparison with GFAOP was not possible since the first step of GFAOP with 

identifying the protein family given the EC number requires expert domain knowledge which 

is not easy to automate in software. Instead, we compared the predictions of MeGaFiller against 

the set of metabolic gaps in A. oryzae that were previously filled by the GFAOP method. While 

this comparison is not ideal, it is a reasonably close approximation. GFAOP used older datasets 

than MeGaFiller, but GFAOP have domain expert input while MeGaFiller does not.  

For this comparison, we first extracted the set of metabolic gaps from the A. oryzae 

iWV1314 metabolic network that were previously filled by GFAOP, together with the set of 

gene-EC number pairs predicted by GFAOP. This set represents the “difficult-to-fill” metabolic 

gaps that had remained in the network before applying GFAOP, but were then successfully 

filled by GFAOP. We called this the recently-filled gaps dataset WV-RFG and it contains 162 

gene-EC number pairs.  

We used MeGaFiller to fill these metabolic gaps in WV-RFG. MeGaFiller managed to 

predict 169 gene-EC number pairs. These predictions were compared with WV-RFG (the 
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results obtained by GFAOP in [3]). MeGaFiller also predicted 102 (or 63%) of the 162 gene-

EC number pairs filled by GFAOP. We note that this is a reasonably good performance by 

MeGaFiller since GFAOP uses domain expert input while MeGaFiller does not.   

We then analysed the other 67 pairs predicted by MeGaFiller that were not in the WV-

RFG. These predictions are either false predictions or additional gene-EC number pairs that 

were missed by GFAOP earlier. After our manual curation, we found that 38 (out of 67) pairs 

have strong supporting homology evidences over multiple annotation databases (e.g. CDD, 

Pfam, and UniProt databases). Thus, it is likely that these 38 pairs predicted by MeGaFiller are 

actually additional gene-EC number pairs for the A. oryzae metabolic network, but they were 

missed by GFAOP.  In the following, we give two illustrative examples.  

Example 1: Consider the endo-1,4-beta-xylanase reaction (EC:3.2.1.8) which is a 

metabolic gap in WV-RFG and is in the Polysaccharide metabolism. GFAOP predicted 6 gene-

EC number pairs. For this reaction (EC:3.2.1.8), MeGaFiller gave a total of 8 gene-EC number 

pairs (including the 6 pairs predicted by GFAOP). The two additional pairs involve candidate 

genes with identifier AO090026000103 and AO090103000141 in A. oryzae. But, both these 

genes are currently un-annotated in the A. oryzae genome.  

Through our manual curation, we found that both these candidates AO090026000103 

and AO090103000141 matches (with e-value 2.3e-44 and 2.5e-44, respectively) to Glycoside 

hydrolase (Glyco_hydro_11) domain in Pfam (PF00457) database. The family 11 of this 

domain comprises enzymes with only one known activity of xylanase (EC:3.2.1.8).  

The previous method GFAOP missed both candidates. We found that there are two 

protein families (PF00457 and PF00331) that can perform this metabolic activity. We 

conjecture that GFAOP probably took only one family (PF00331) as its input and hence missed 

these predictions.  

Example 2: Consider the A. oryzae gene with identifier AO090009000675, which is 

currently annotated in DOGAN database as a putative sugar kinase, and assigned in the A. 

oryzae iWV1314 network as a NADH kinase (EC:2.7.1.86, in NAD and NADP Conversion 

pathway). MeGaFiller predicted (by all component gap fillers) this gene for another metabolic 
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reaction NAD(+) kinase (EC:2.7.1.23). The Pfam homology confirms that it is a member of 

NAD(+) kinase family (PF01513) with an e-value (1.3e-47). This kinase family (PF01513) 

includes both EC:2.7.1.23 and EC:2.7.1.86 enzymatic functions. GFAOP found one of these, 

namely the EC:2.7.1.86 enzymatic function, while MeGaFiller found both of them.  In this 

instance, MeGaFiller filled a gap and at the same time, found an additional metabolic reaction 

for an existing enzyme. This example shows that MeGaFiller can also supplement protein 

function predictions, and in this case, it improves the network for the NAD and NADP 

conversion co-factor pathway.  

Explaining why GFAOP missed the remaining 61 metabolic gaps:  

We analyzed why the GFAOP missed the 61 metabolic gaps in the iWV1314 network. To fill a 

gap (given by EC number), GFAOP firstly needs to find specific protein family for the given 

EC number. Examining the 61 EC numbers of the gaps in the iWV1314 dataset, we found that 

only 9 EC numbers (of the 61) have corresponding Pfam protein family translation. However, 

GFAOP could not find any protein encoding in the genome of A. oryzae that matches with these 

9 protein families. The remaining 52 EC numbers cannot map into specific Pfam protein family 

(as already explained in Background section). Some of these are too general, some are mapped 

to many Pfam families, and some are grouped under complicated Pfam sub-domain structures. 

Thus, there is no single specific protein family that can be used by GFAOP for those gaps. In 

contrast, MeGaFiller was able to fill 12 of these 52 gaps in this category, as explained earlier. 

MeGaFiller vs. ADOMETA 

We also carried out a comparison of MeGaFiller with ADOMETA [90-92] which is a context-

based method for gap filling. ADOMETA leverages gene association data [90-92] and can be 

used to predict new gaps as well as filling existing and predicting gaps. For comparison of 

MeGaFiller with ADOMETA, the published results of ADOMETA were used. The dataset used 

in ADOMETA was the metabolic network iFF708 of yeast S. cerevisiae from a year 2003. This 

dataset has 513 genes, 386 EC numbers, and 541 pairs. It was reported that during self-testing 

for ADOMETA with this iFF708 dataset and combined with gene association data, achieved 
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60% recall based on their top-50 predicted candidates. It is noted that the precision of 

ADOMETA was not reported.  

We ran MeGaFiller on the same iFF708 dataset, and achieved a recall of 87% with a 

precision of 77%. These are significantly better results, in both recall and precision. Of course, 

this is not a completely fair comparison – part of the improvement could be due to the more up-

to-date reference information used by the component protein function predictors. However, we 

believe that homology evidence (where they exist) is stronger than association evidence in 

predicting these candidate genes. By relying on homology evidence to make its prediction, we 

believe that the candidate genes predicted by MeGaFiller are more reliable. 

This result also suggests that one reason MeGaFiller worked well for less-characterized 

genomes is that the homology reference for them, in other existing genomes, was richly 

available and these could help MeGaFiller and other homology based methods like GFAOP to 

find the correct candidate genes. 

3.3.7 Effectiveness of MeGaFiller in filling metabolic gaps  

We evaluated the effectiveness of MeGaFiller in filling the metabolic gaps in the metabolic gap 

dataset NG for the five metabolic networks. For each metabolic gap from the NG, MeGaFiller 

produced a list of candidate genes, if any, from the target genome that perform the function of 

the metabolic gap. We measured the number of gaps filled and the total number of candidate 

genes predicted for these gaps.  

Table 3.5 shows the results obtained by MeGaFiller. For each network, it shows the 

number of metabolic gaps, the number of gaps filled (putatively with at least one candidate 

gene), the total number of candidate genes predicted for these gaps, and the percentage of gaps 

putatively filled by MeGaFiller. For the iIN800 network, MeGaFiller putatively filled 15 out of 

52 gaps (29%), and for iWV1314 network, it putatively filled 12 out of 61 gaps (20%). It 

obtained even better results for two of the less well-studied species which were 37% for iIB711 

network and 61% for iHD666 network. On average, MeGaFiller putatively filled 35% of the 
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metabolic gaps in the five networks. In following description, we highlight some results from 

MeGaFiller.  

Table 3.5 – Number of putatively filled metabolic gaps for the five metabolic networks 

Network dataset iIN800 iWV1314 iHD666 iMA871 iIB711 

Number of metabolic gaps 52 61 28 89 68 
Number of metabolic gaps putatively filled 15 12 17 23 25 
Number of putative candidates 25 15 68 61 64 
Percentage of putative metabolic gap filled 29% 20% 61% 26% 37% 

Note: For A. oryzae metabolic network (iWV1314), MeGaFiller predicted one or more 
candidate genes for 12 (out of 61 (20%)) metabolic gaps (and a total of 15 candidates). 

Example 3: Consider the fumarylacetoacetate hydrolase reaction (EC:3.7.1.2) in 

Phenylalanine, tyrosine, and tryptophan biosynthesis pathway in the S. cerevisiae iIN800 

network. This is currently a metabolic gap in the S. cerevisiae iIN800 network. MeGaFiller 

predicted the candidate gene identifier YNL168C in S. cerevisiae for this reaction (EC:3.7.1.2). 

Through our manual curation, we found that YNL168C matches to the Pfam FAA_hydrolase 

family (PF01557) with an e-value of 1.1e-49, and significantly matches with InterPro entry 

IPR002529 (fumarylacetoacetase, EC:3.7.1.2). Hence, there is direct evidence to support this 

candidate gene, even though it is currently still unknown function in the SGD database. 

Example 4: In A. nidulans iHD666 network, the reaction EC:3.1.3.3 (phosphoserine 

phosphatase) is a metabolic gap. MeGaFiller predicted AN10593 is a candidate gene for this 

reaction. Currently, in AspGD database, this gene is annotated as uncharacterized function. In 

fact, this candidate gene hits to HAD family in Pfam database with significant e-value of 2.6e-

16. This family involves phosphoserine phosphatase activity. Besides, sequence similarity 

searching against Swiss-Prot database also gives supporting evidence for this candidate gene. 

Example 5: In A. niger iMA871 network, the reaction EC:4.2.3.5 (chorismate synthase) 

is a metabolic gap. MeGaFiller found the gene ID 54235 as a candidate in A. niger genome. 

This candidate matches well with the chorismate synthase domain with e-value of 6.5e-130 in 

Pfam database. 
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Example 6: In S. coelicolor iIB711 network, the reaction EC:4.1.1.36 

(phosphopantothenoylcysteine decarboxylase) is a metabolic gap. MeGaFiller predicted 

SCO1477 is a candidate gene. This candidate is annotated as putative flavoprotein homologue 

in UniProt database. However, it matches well with DFP (with e-value of 1.6e-69) and 

Flavoprotein (with e-value of 8.6e-34) domains in Pfam database. Furthermore, KEGG 

database also confirms EC:4.1.1.36 activity for this candidate gene. 

In addition, we further analysed which component gap fillers predicted the most gaps. 

As expected, within MeGaFiller, PFP-GF always produces the most number of candidate genes 

predictions. For examples, for the S. coelicolor iIB711 dataset, PFP-GF predicted 63 out of the 

64 candidate genes from MeGaFiller, while B2G-GF predicted 60 candidate genes and 

EFICAz-GF predicted 9 candidate genes. Overall, within MeGaFiller, the general gap fillers 

(PFP-GF and B2G-GF) always contribute more predictions than the enzyme-specific gap filler 

(EFICAz-GF).  

3.3.8 Filling critical gaps in metabolic network of A. oryzae 

A more detailed analysis of the metabolic network iWV1314 for A. oryzae shows that there are 

61 metabolic gaps (EC numbers) involved in 65 reactions that are spread over 37 metabolic 

pathways. To judge whether a gap is critical, we manually examined its reference pathway map 

given by KEGG database. A reaction in a pathway is called critical if it is the only reaction that 

consumes/produces a metabolite that is specific to the pathway. In other words, without that 

transformation, this pathway will not be connected, and hence the reaction is critical.  

There are 28 critical gaps in the A. oryzae iWV1314 network, and 33 non-critical gaps. 

Significantly, MeGaFiller predicted 12 candidate genes for 10 of these critical gaps. This means 

that MeGaFiller filled the gaps that are most likely to improve the connectivity of metabolic 

networks. 

Example 7: Consider the pantetheine-phosphate adenylyltransferase (PPAT) reaction 

(EC:2.7.7.3) which is currently a metabolic gap in the A. oryzae iWV1314 network. This 

reaction is a critical gap in the Coenzyme A and pantothenate biosynthesis pathway (see Figure 



Chapter 3 MeGaFiller 
 

57 

3.6) as it is the only transformation that produces Dephospho-CoA, which is the substrate to 

produce Coenzyme A. Without this reaction, the pathway is not functional and the Coenzyme 

A cannot be synthesized by this pathway. 

 

Figure 3.6 – Filling gap in Pantothenate and CoA biosynthesis pathway for A. oryzae 

The picture was modified from KEGG Pantothenate and CoA biosynthesis pathway (aor00770). 
Green-filled boxes are reactions with already identified genes in A. oryzae. White boxes are reactions 
without genes identified in A. oryzae. The EC:2.7.7.3 reaction (thick red-border box) is the “bottle-
neck” for producing Dephospho-CoA, the substrate metabolite for CoA synthesis. MeGaFiller 
predicted AO090023000706 is the protein that catalyses for this reaction in A. oryzae. 

This PPAT gap reaction by EC:2.7.7.3 was predicted by MeGaFiller (both PFP-GF and 

B2G-GF) to be catalysed by the candidate gene with identifier AO090023000706 in the A. 

oryzae genome. But, currently this gene shows un-annotated function in the DOGAN database.  

However, we found strong supporting evidence for this prediction. Firstly, the protein 

matches with PPAT_CoAS (phosphopantetheine adenylyltransferase domain) in CDD database 

with an e-value of 1.48e-36. It is also matches to Pfam’s cytidylyltransferase domain (which is 
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more general than PPAT) with an e-value of 6.1e-05. Another matching CDD entry is 

PRK01170, which is provisionally annotated as phosphopantetheine adenylyltransferase/ 

unknown domain fusion protein. In addition, the corresponding ortholog in yeast (assigned by 

Ortho-MCL database) is the gene YGR277C, which is annotated as a PPAT by SGD database. 

With these strongly supporting evidences, we believed that AO090023000706 is the missing 

gene for the reaction with EC:2.7.7.3. With the assignment of the gene AO090023000706 to 

this reaction, the pathway becomes complete function.  

3.3.9 Putative enhancement  

While MeGaFiller was designed primarily to fill metabolic gaps, we can also use it as a method 

to make putative enhancement to current metabolic networks. This enhancement is in the form 

of (a) putative candidate genes for existing reactions in the network, and (b) novel putative 

reactions for the current metabolic network. Here, we give some results. 

Novel Candidate Genes: To do this for any target species, we ran MeGaFiller on the 

genome of the target species using the list of all EC numbers from the metabolic network of the 

species. We then filtered out the predictions that were already found in the networks. The 

remaining predictions contain novel candidate genes for existing reactions in the network.  

Table 3.6 – Novel candidate genes predicted for the five metabolic networks 

Network dataset iIN800 iWV1314 iHD666 iMA871 iIB711 

Number of genes in current network 707 1346 674 831 711 

Number of novel candidate genes 231 587 384 289 280 

Note: The number of novel candidate genes predicted by MeGaFiller for the five metabolic 
networks. These candidates need to be further curated, but they represent big potential 
enhancement in the gene coverage of these metabolic networks. 

We ran this for all the five networks and the results are shown in Table 3.6. For the A. 

oryzae iWV1314 network, MeGaFiller predicted 587 novel candidate genes (for 215 EC 

numbers). The numbers of novel candidate genes for S. cerevisiae iIN800, A. nidulans iHD666, 

A. niger iMA871 and S. coelicolor iIB711 networks were 231, 384, 289 and 280, respectively. 
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These predicted candidate genes need to be further curated and validated, but they give a 

valuable supplement of candidate genes for enhancement of these metabolic networks.  

Novel Putative Metabolic Reactions: To use MeGaFiller to predict novel metabolic 

reaction for current networks, we first retrieved all the EC numbers in the reference metabolic 

pathway (with identifier ec01100) from KEGG database. In all, there were 1,464 EC numbers 

relevant to metabolism. We filtered all EC numbers that were already found in the A. oryzae 

network (iWV1314). The remaining 753 EC numbers were used as input for MeGaFiller. Of 

these, MeGaFiller predicted 369 candidate genes for 119 new EC numbers with corresponding 

novel putative metabolic reactions for A. oryzae. These novel putative reactions also need to be 

further curated and validated. Potentially they can further enhance the metabolic network. 

3.4 Discussion and conclusions 
Metabolic gaps that exist after network reconstruction are usually “difficult-to-fill”, since 

earlier gap filling methods have already failed to find them. While previous homology methods 

for gap filling that are based on protein family profile have been successfully used to enhance 

the reconstructed networks [3, 88], they may fail if the protein family is poorly defined. Our 

approach based on retrofitting protein function prediction has indeed overcome the issue, since 

it does not require the concrete protein family, any individual protein in reference databases 

could help. We demonstrated in this work that retrofitting state-of-the-art protein function 

predictors can help to find candidates for “difficult-to-fill” local metabolic gaps that missed by 

previous direct gap filling methods. We implemented and tested an ensemble MeGaFiller 

method, which rationally combined three retrofitted gap fillers. We also performed gap filling 

and manual curation for A. oryzae network, and putative enhancement for the other four 

reconstructed metabolic networks. The fact that MeGaFiller was able to fill 12 gaps (missed by 

previous method GFAOP for A. oryzae network), which have no specific protein family 

interpretation, has confirmed our idea. Furthermore, MeGaFiller is able to predict many 

additional candidate genes for existing reactions, as well as novel putative metabolic reactions. 
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Re-validation on filled gaps in A. oryzae network and manual inspection showed that our 

method was able to reliably propose more candidate genes that were missed by previous 

methods. There are strong supporting evidences found for these candidate genes in A. oryzae 

metabolic network, which suggests that our methodology is reliable. Thus, our method can 

serve as an effective bioinformatics tool for filling metabolic gaps and enhancing reconstructed 

metabolic networks. 
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EEnzDP 

Chapter 4 

EnzDP: improving enzyme annotation 
by domain composition profiles 

4. EnzDP: improving enzyme annotation by domain composition profiles 

4.1 Introduction 
An essential step for genome-scale metabolic reconstruction [13, 87] of a cell is to completely 

determine its enzymatic activities. The quality of this step strongly affects the quality of the 

reconstructed metabolic networks, especially by improving enzyme coverage and reducing 

missing genes/reactions [11, 12]. Essentially, the first step of network reconstruction is enzyme 

annotation, whereby enzymes are assigned 4-digit EC numbers to describe their metabolic 

functions, up to substrate-binding level. After that, reconstruction continues with network 

assembly, gap filling and network enhancement [17]. However, gaps (or holes) [90] that appear 

in later steps, become difficult to fill without revising the enzyme annotation procedure. It was 

shown in [104] that many difficult-to-fill gaps in A. oryzae network [3] can be filled by 

retrofitting function annotators with a better gap-finding strategy. Thus, gap filling and network 

enhancement can be done by improving enzyme annotation.  

In fact, reconstructed metabolic networks still contain gaps, as well as have low enzyme 

coverage. For example, in the reconstructed networks of 5 species under a study in 2014, 6-

19% of unique reactions are still gapped [104]. The presence of such a significant number of 

gaps implies that enzyme annotation in the first step was far from complete. Therefore, there is 

a need for new and robust idea to improve enzyme function classification quality. 
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The problem of enzyme function prediction is well established [45, 105] , and 3 main 

approaches have been attempted: network-based, structure-based and homology-based. Chapter 

2 gives a detail review on these approaches.  

Network-based and structure-based methods have low coverage of predictable enzyme 

families. Homology-based approaches may get high coverage, but its accuracy can be further 

improved. A bottom-up homology-based approach can improve coverage by re-building HMM 

profiles for all known enzymes. Briefly, training enzymes are clustered into subgroup families, 

and then each subgroup is represented by a sequence profile. 

A common issue with bottom-up methods is that, the clustering procedure relies firmly 

on the BLAST similarity score, ignoring information about protein functional domains and 

domain patterns. These ultimate features are conserved regions of proteins, which well 

characterize enzyme functions. Recently, Cai et al. [106] effectively used domain architectures 

for predicting first digit of EC numbers. This gives a hint for improving enzyme annotation 

with the use of domain architecture. 

In this research, a stringent protocol for enzyme annotation is presented. Our protocol 

integrates a novel idea of weighted protein domain architectures into bottom-up enzyme profile 

building. Specifically, we used domain architecture to score the association between domain 

families and enzyme families (this score is called DEAS). Then this score is used in the 

clustering step, instead of using BLAST similarity score as traditional methods do. We further 

improved the enzyme annotation protocol with a stringent classification procedure, including 

optimal threshold setting, overlap checking and active site checking. Our EnzDP protocol gives 

better enzyme coverage with higher prediction accuracy, compared to other alternatives.  

4.1.1 Pros and cons of current approaches 

Network-based methods work without using genome sequence data. They are thus able to 

predict the functions of novel genes (i.e. functions that have no known homologs). However, 

the significant limit is that this approach cannot infer functions that are more specific than 

functions of genes in their network neighborhood. Furthermore, since these methods use gene 
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association data, which is “weaker” than homology data, both the coverage and accuracy are 

worse than direct homology-based methods.  

Structure-based approaches make use of 3D structures, which are more specific and 

accurate indicators for determining biological functions. However, the current number of 

known 3D templates is limited. For example, the PDB, as of June-2014, contains domain 

structures that cover about 2900 enzyme families, which is only about 60% of known enzyme 

families annotated in Swiss-Prot. Therefore, structure-based approaches have low coverage.  

Conserved protein/family domains are reliable features for function identification. 

Despite that, methods that directly map domain identifications to enzyme function annotations 

have low prediction coverage. For example, the number of predictable EC numbers using 

PROSITE is less than 31% of all known EC numbers. The PF2GO2EC mapping also has very 

low coverage (13%) and may lead to misleading or incorrect assignment of enzymatic 

functions. The reason of these incorrect assignments is that, one enzyme family can carry 

multiple different domains, and at the same time, one domain is carried by different families, 

(see Figure 4.1 for example).  

 

Figure 4.1 – Example of enzymes and domains 

Nodes represent enzyme proteins. Edge thickness represents sequence similarity 
(Blast e-value) between nodes. Left: Domain PF00106 (short_adh) is carried by 
different enzyme families (only 3/90 families is shown). Right: Enzymes in 
EC:2.4.1.198 carry 6 different domains.. 
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Figure 4.1 shows examples of difficult cases. The domain short_adh (PF00106) (on the 

left) is carried by 700 sequences which belong to 90 different enzyme families (i.e, 90 enzyme 

numbers). Thus, sequence/pattern similarity may match a protein carrying this domain to any 

of those families, which is ambiguous. This can be overcome by using different thresholds for 

different families/sub-families individually. On the other hand, the EC:2.4.1.298 enzyme 

family contains 5 sub-families, each carries different set of domain families. Thus, to describe 

this family, multiple profiles should be used.  

To infer enzymatic functions from protein domain identifications, the association score 

between domain families and enzyme functions can be used. This association score (we called 

DEAS – see Methods) can be directly computed from Swiss-Prot database. Analysis shows 

that, DEAS can improve either coverage or accuracy, but not both.  

Bottom-up methods can improve both coverage and accuracy over other methods. 

However, in current annotation protocol, the clustering step is performed using Blast sequence 

similarity score, which can be improved by the above novel idea of domain enzyme association 

score. Furthermore, the threshold setting in the common protocol is too simple, which can be 

replaced by a more stringent strategy for each sub-family individually.  

4.1.2 EnzDP protocol 

In this work, we improve the common enzyme annotation protocol with (1) a stringent strategy 

for subgroup clustering, (2) a calibrated optimal threshold setting, and (3) an efficient 

classifying procedure.  

For the first improvement, our clustering strategy explicitly utilizes the weighted domain 

architectures of enzymes (DEAS) to cluster them into proper subgroups. Previous methods use 

whole-sequence similarity for clustering, while we focus on combination of conserved regions. 

This use of domain architectures is helpful for the cases of proteins with multiple domains, 

which are not rare in Swiss-Prot database. It was previously shown that protein domain 

architecture can be effectively used for clustering highly similar orthologous subgroups and 

improves BLAST-based ortholog assignment [107, 108]. Cai et al. [106] reported an overall 
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85.5% success rate in classifying first EC number digit for sequences of low identity, using 

domain architecture. In our work, we use weighted domain architecture for classifying enzymes 

up to all 4 digits. 

Due to fact that mis-annotations are common in public databases [109], training 

sequences should be carefully filtered. Furnham et al. [109] showed that, compared to other 

public databases, Swiss-Prot/Uniprot has the least number of mis-annotations. In addition, 

Uniprot has a large amount of constantly updated genomics annotation data. Our method 

retrieves high-quality training sequences from Swiss-Prot, since it is a large manually reviewed 

portion of Uniprot.  

In our approach, two training enzyme sequences are clustered into the same enzyme 

subgroup if: (a) they have the same EC number annotation, and (b), they carry two sets of 

functional domains that are highly similar, where similarity is weighted by the domain enzyme 

association score DEAS (see Methods). After that, a Hidden Markov Models (HMM) profile is 

built, with an optimized threshold, for each enzyme subgroup. The probabilistic HMM profiles 

[110] may be considered a better alternative to traditional PSSM profiles (used by PRIAM), 

especially for long domains/regions.  

For the second improvement, each profile is calibrated for an optimal cut-off threshold, 

based on maximizing F1 score in a strict 5-fold cross-validation procedure. Thus, profiles for 

the subgroups of each EC number may have different thresholds, which can discriminate 

members of different enzyme families. This is different from the PRIAM method, as in 2003 

[36], PRIAM uses a fixed optimized threshold (of 1e-30) for all profiles. 

The third improvement of our method is attributed to an efficient classification 

procedure. Firstly, the method classifies multi-enzymes (enzymes catalyzing multiple 

reactions) first, and then mono-enzymes (enzymes catalyzing for single enzymatic reaction) 

separately. Secondly, the classification procedure focuses on accurately rejecting false hits by 

evaluating the overlap of matching regions. Lastly, we also check for the set of known residues 

(active/binding sites) specific to each enzyme subgroup. The final prediction is assigned a 

relative precision score as the likelihood/reliability of the prediction.  
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Our analysis showed that, with this stringent protocol, our novel method achieved a high 

enzyme coverage, up to 90% of known annotated enzymes families in Swiss-Prot. EnzDP got 

a high accuracy (94.5%) in a solid 5-fold cross validation, and outperformed state-of-the-art 

methods in many experimental tests, including leave-one-out cross validation on several 

representative genomes (a variation of jackknife test) and validations on independent datasets 

of recently annotated enzymes. It is also a fast automatic enzyme annotator, which could 

annotate enzyme content for a metagenome of human oral microbes (500MB data) in few hours. 

Thus, it can be used for timely interpretation of whole-genome and metagenomics data. 

4.2 Methods 

4.2.1 Computing DEAS  

The weighted mappings between Pfam domain identifier and EC numbers was derived based 

on the frequency of their co-occurrences in manually curated annotation of Swis-Prot database. 

We called it domain-enzyme association score, DEAS.  

If a protein carries a domain fy and is annotated by an EC number ex, we say ex and fy 

are co-occurrence. The DEAS is calculated using Sørensen–Dice index by following formula: 

 (1) 

where: n(fy)  is the number of proteins that carry the domain fy ,  n(ex) is the number of 

proteins that annotated by the EC number ex, and  n(fy,ex) is the number of proteins that carry 

domain fy and are annotated by the EC number ex.  

Thus, each pair of the mappings is assigned a DEAS score. A higher score means a 

stronger association. Thus, a pair with score of 1.00 has 100% co-occurrence. This weighted 

mapping can be used with user predefined cut-off.  

4.2.2  EnzDP Protocol 

The training protocol in EnzDP contains 4 main steps (Figure 4.4), as follow.  

Training 



Chapter 4 EnzDP 
 

67 

In the first training step, protein sequences and annotations were retrieved from Swiss-Prot 

database. Enzymes and non-enzymes were separated into different sets. Known active site 

information, namely the active site amino acid and its position, was also retrieved. 

In second step, enzyme clustering was performed.  Enzyme domain architecture was used 

for clustering purpose. Domain architecture of an enzyme is the set of functional domains that 

it carries. Two enzyme sequences are clustered into the same subgroup if the two conditions 

below are satisfied at the same time: 

(a) They have the same EC number annotation, and 

(b) Their domain architectures are highly similar, where the similarity is measured by a 

weighted Sørensen–Dice index, as in formula (2).  

Denote the domain architecture of a protein P by P = (pi), where each pi is a functional 

domain carried by P. The similarity of domain architectures of two proteins P and Q, for a given 

EC number e, leverages on their common domains, is calculated by the following formula 

(which can be seen as a weighted version of Sørensen–Dice index): 

 (2) 

where DEAS was calculated by formula (1). 

For the second condition being satisfied, the similarity must be higher than a specified 

threshold, i.e., sim(P,Q|e) ≥ θ. In our setting, θ was chosen as 2/3. 

Example  

Consider 3 proteins P, Q, and R of the same EC number e, with domain content as P = 

(d,b), Q = (d,c), R = (b,c). For non-weighted version (all DEAS component in the above formula 

equals to 1), any pair of these proteins will have similarity of 1/2. However, suppose the domain 

d is associated with the enzyme e much more stronger than other domain b and c, with following 

scores: DEAS(d,e) = 0.5, and DEAS(b,e) =DEAS(c,e) = 0.1. Then, these similarities become: 

sim(P,Q|e) = 5/6; sim(P,R|e) = sim(Q,R|e) = 1/ 4. In this case, the pair (P, Q) has much higher 

similarity, since both the proteins carry the strong domain d. Note that, if two proteins have the 
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same domain contents, then they will have 100% similarity. Thus, if this enzyme family has 

another protein S with the domain content S = (b,c), the similarity between (R,S) will be 1. 

Furthermore in this step, if an enzyme sequence cannot be grouped with any other 

enzymes, it forms a singleton subgroup. As of Jan-2014, there are 1.22% (3083/ 253797) of 

known enzymes are in singleton subgroups. Thus, ignoring these enzymes has negligible effect. 

However, there are 461 (11.2%) of 4126 EC numbers that have only 1 enzyme sequence 

annotated. Thus, these 461 singleton subgroups are representative. We treated all representative 

subgroups for these 461 single-sized enzymes, and any other subgroup of size 2 or more as 

primary. While, remaining 2667 singleton subgroups were treated as optional.  

In the third step, a hidden Markov Model (HMM) profile was built for each enzyme 

subgroup. First, the training sequences were aligned using multiple sequence alignment (MSA) 

software Clustal-Omega [111]. Then, from the MSA, a HMM profile was built using hmmbuild 

program in HMMER3.0 package [110]. At the end of this process, raw HMM profiles were 

obtained. 

Profile threshold calibration  

In the last step, profile threshold calibration was performed. We used the following rule to set 

the optimal threshold, in which the F1-score (harmonic mean of recall and precision) is 

optimized. First, the profile is used to search against Swiss-Prot database. True hits, false hits 

and their corresponding bit-scores were recorded. After that, for each possible cut-off threshold 

among those recorded scores, the number of true positives, false positives, and corresponding 

F1-score were calculated. Next, the smallest cut-off score S that maximizes the F1-measure was 

calculated: 

S = argmax F1(s) 

Then, the optimal threshold S* was set by: S* = (S+S’)/2, where S’ is the next score after 

S in sorted decreasing order of recorded scores.  

Significantly, the threshold calculation for each subgroup of each EC number was 

averaged after a k-fold cross validation procedure, as following. For each EC number subgroup, 
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the training sequences were equally randomly split into k parts. Each round, (k-1) parts of 

enzyme sequences were used for training, while the remaining part was set hidden from training 

and used in testing. The optimal S* is averaged over a total 10*k rounds. Only EC numbers 

with at least 3 sequences were run through cross validation. We set k = 5 for EC numbers with 

5 or more sequences, and k =3 (or 4), for EC numbers with 3 (or 4) sequences. 

Finally, the calculated scores s and their corresponding precisions pre(s) were stored 

together with the profiles as a library of enzyme profiles. 

Classification  

Enzyme classification procedure in EnzDP protocol (Figure 4.4, right) is following. Firstly, the 

profile library was scanned against the input sequences, using hmmsearch program in the 

HMMER3.0 package. The raw hits with corresponding bit-scores of at least 0.05 were recorded. 

After that, each hit was analyzed and a score r was assigned to it by following description. First, 

a precision measure pre(s) was calculated for s, based on the recorded scores of true and false 

hits that were stored together with the profiles. Then, the relative precision r for a prediction 

with score s is calculated as follows: 

 
 

where, S* is the optimal threshold of the profile. Note that, if the hit score is greater than 

the optimal score, and the optimal score has 100% precision, then the relative precision of the 

hit is set as one (rs = 1). Otherwise, it is scaled down relatively, comparing to the optimal 

threshold. 

Secondly, the list of candidates was filtered, as follows. All hits with scores lower than a 

user specified threshold were discarded. After that, if the hit enzyme subgroup belongs to a 

multi-enzyme family, EnzDP accepts it immediately as a candidate. If two different candidate 

subgroups do not belong to a multi-enzyme family, then EnzDP looks at the two regions on the 

input sequence that hit by the two profiles. If these two regions overlap by more than 20% of 
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their combined length, the hit with smaller score is rejected. At the end, candidates that remain 

after filtering are collected as final predictions. 

On the other hand, hits from the first step above will also be analyzed for match active 

sites, if active site information for the profile is available. This is done by analyzing the 

alignment between input sequence and hit profiles, and looking for match residues and match 

positions. The match active site information was stored separately for manual inspection. 

4.2.3 Evaluation Criteria 

For each test, the number of true positives (TP), false positives (FP), false negatives (FN) and 

true negatives (TN) was counted. Following measurements were calculated to evaluate the 

prediction performance. 

Recall = TP / (TP + FN) 

Precision = TP / (TP + FP) 

F1 = 2 * Recall * Precision / (Recall + Precision) 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

For cross validation over N enzyme families, micro and macro performances were 

calculated as following. 
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where TPi, FPi, TNi, FNi, Reci, Prei and Acci are TP, FP, TN, FN, Recall, Precision, and 

Accuracy for the test on the family ith, respectively. 

Leave one-out cross validation 

This validation was done by excluding one whole genome at a time from training data and using 

it for testing. We performed leave one-out cross validation (LOOCV) for several genomes, 

namely E. coli, B. aphidicola, P. falciparum, H. influenzae, and M. genitalium. These species 

was chosen for testing since their genomes are completely annotated in the benchmark Swiss-

Prot.  

Five-fold cross validation 

To evaluate EnzDP, we performed a solid 5-fold cross validation for each EC number that has 

at least 3 sequences annotated. Overall, the number of EC classes have been validated is 2619 

(from Swiss-Prot release Sep-2013, excluding EC numbers of less than 3 EC digits). For EC 

number of 3 (or 4) sequences, we performed 3-fold (or 4-fold) validation only. For each EC 

number, we randomly split the enzyme sequences in 5 parts. Each round, we used 4 parts for 

training and the remaining part for testing. This imitates the situation in which only 80% of the 

enzymes is known, and used to predict the unseen 20%. More rigorously, each testing set also 

contains the false-members that best hit to the profiles. These best hits were excluded in the 

threshold calculation during training. Furthermore, the number of false-members was selected 

equal to the number of correct members to avoid bias towards true negatives. Finally, the 

average performance was calculated over all rounds of cross validation. 

4.2.4 Data preparation 

Training data was retrieved from manually curated Swiss-Prot database. Protein sequence, 

enzyme annotation, Pfam domain identifier, and active site information were collected. For the 

release of Swiss-Prot on January-2014, there are 542258 proteins, in which 253797 are enzymes 

(46.8%). Among these enzymes, 242081 (95.4%) are mono-enzyme (enzyme annotated with 1 

EC number), and 11716 (4.6%) multi-enzymes. All these 253797 enzymes were annotated to 
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4216 EC numbers, to form 268282 EC number – protein identifier pairs.  Similar statistics for 

other releases are shown in Table 4.1. 

On the other hand, there is a total of 89311 proteins have known active site. Among 

those, 3008 proteins are non-enzymes, 80672 mono-enzymes and 3631 multi-enzymes. 

Enzymes with active sites belong to 1870 different EC numbers. This active site information 

(namely, the amino acid of the site and its position in the enzyme) was used to map into the 

corresponding profile. The sites and theirs mapped position were stored together with the 

profile. 

Table 4.1 – Statistics of enzyme datasets from Swiss-Prot  

 #EC numbers # enzymes # pairs 

Oct 2008 2610 169192 176823 

Jan 2011 3217 244680 256929 

Jan 2014 4126 253797 268282 

Jan14-Oct08 1252 60024 62500 

Jan14-Jan11 586 2463 2591 

Note: Statistics of Swiss-Prot database is showed at different release timestamps: Jan14-Oct08 
(Jan14-Jan11) denotes data newly added from Oct-2008 (Jan-2011) to Jan-2014. 

To evaluate methods, we used newly added sequences between different releases of 

Swiss-Prot. Since the training data of EFICAz was Jan-2011 and of CatFam was Oct-2008, we 

retrieved data at these timestamps to train our method. After that, we selected sequences that 

exclusively belong to Jan-2014 release for testing. Furthermore, EC numbers that were un-

predictable from training dataset were excluded. For example, from Jan-2011 to Jan-2014, there 

are 909 = (4126-3217) EC numbers newly added. These new EC numbers were newly found 

after Jan-2011, and thus were excluded since all methods cannot predict them. The testing 

enzyme datasets, Jan14-Oct08 and Jan14-Jan11, were obtained as shown in Table 4.1. Note 

that, we excluded enzymes with incomplete EC number annotation, which are those of less than 

3 known digits. 
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4.3 Results 

4.3.1 Domain-Enzyme Association Scoring (DEAS) 

To derive a direct mapping between domain identifiers and EC numbers, the domain enzyme 

association score, DEAS, was computed (see Methods). This association score leverages on the 

frequency of the co-occurrence between domain identifiers and EC numbers in all manually 

curated Swiss-Prot database entries. The DEAS score is directly proportional to the co-

occurrence frequency, and inversely proportional to the sum of individual occurrences. A 

higher DEAS value implies a stronger association. If an EC number and a domain always appear 

together, its DEAS is 100%. The DEAS not only provides mappings between EC numbers and 

domain identifications, it also gives a weight for each pairing. Therefore, the mapping can be 

used with different user-predefined cut-off thresholds. 

A 5-fold cross validation procedure was performed to evaluate the accuracy of this 

mapping. For each of 5 rounds, 1 out of 5 equal random parts of Swiss-Prot proteins was set 

hidden from training and used for testing. The statistics were averaged for each EC number 

first, then for all predictable EC numbers. Figure 4.2 shows its performance against different 

cut-off thresholds.  

As can be seen, there is a trade-off between coverage and performance of DEAS. While 

the precision gradually increased with the increasing of cut-off, the coverage decreased sharply. 

DEAS precision increased from 50% to 100%, but its coverage decreased from 2526 

predictable EC numbers down to 220 (more than 11 times lower). The 220 EC numbers with 

DEAS score of 1 is only 5.2% of all predictable EC numbers. This means that there are very 

few enzyme families that have unique functional domains associated. 

Figure 4.3 shows the intersection between PF2GO2EC (a combination of EC2GO and 

Pfam2GO mappings) and DEAS-50 (i.e. DEAS with cut-off 0.5). They share 406 mappings. 

Those common mappings have higher recall of 88%, precision of 92%, over 347 predictable 

EC numbers. 
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Figure 4.2 – Coverage and performance of DEAS with varying cut-off thresholds 

Coverage is the number of predictable EC numbers. Performance is shown in percentage 

 

Figure 4.3 – Intersection of DEAS and PF2GO2EC mappings 

They have 406 mappings in common, which covers 347 EC numbers. These common 
mappings achieved 88% recall and 92% precision, over those 347 predictable EC numbers. 

The agreement between the two mappings is low. The intersection covers only 16% of 

the union. These common mappings are the most accurate, compared to the non-common 

mappings. Significantly, the DEAS exclusive mappings had much higher average recall (91%) 

and precision (70%) than PF2GO2EC exclusive mappings. This indicates that our mapping is 

more accurate than PF2GO2EC. However, both mappings can still be improved. 
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4.3.2 EnzDP protocol 

EnzDP protocol leverages on clustering enzyme subgroups by weighted domain architectures, 

scored by DEAS. Training protocol and classification protocol are shown in Figure 4.4 (see 

Methods section for more details.) 

 

Figure 4.4 – EnzDP protocol: (left) profile training and (right) enzyme classifying 

For the Oct-2014 training data, EnzDP built a library of 9501 profiles. Amongst those, 

6834 profiles are primary and 2667 are optional (built from 1 enzyme sequence.) Among 

primary profiles, 5181 (76%) were built from at least 3 sequences, which map to 2619 EC 

numbers. The number of predictable EC numbers is 3152 (with 6373 profiles) when considering 

profiles trained from at least 2 sequences. 

Table 4.2 shows a performance and coverage comparison between EnzDP with different 

top-down methods. As can be seen, EnzDP achieved the highest F1 score (more than 95%). 

This significantly outperformed top-down methods. Furthermore, our method had much higher 

coverage. For example, EnzDP can predict for 3152 EC numbers, which is 2.4-fold higher than 
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PROSITE, 6-fold higher than PF2GO2EC. Overall, this analysis showed a superior 

performance of our bottom-up method over top-down methods. 

Table 4.2 – F1 score and coverage of EnzDP in comparison to top-down methods 

  Coverage 

 F1 score #EC numbers % predictable ECs 

ProSite 90.6 1283 31.1 

PF2GO2EC 79.1 508 12.3 

EnzDP 97.3 3152 76.4 

All predictable - 4126 100 

 

4.3.3 Clustering strategy using domain composition and DEAS 

Our clustering strategy is based on a novel idea which explicitly uses domain composition’s 

similarity for subgroup clustering, instead of using sequence similarity. We demonstrate this 

stringent strategy by comparing it with 2 alternatives (PRIAM and EFICAz), as well as with a 

BLAST-based EnzDP (which is called EnzDP_bl), on two enzyme families (EC:2.4.1.198 and 

EC:3.1.3.36) as examples. These two families are chosen randomly with the criteria that they 

have a reasonable number of enzymes (20-30 members – for illustration purpose), and not too 

few/too many domains associated (3-6 domains). To make a fair comparison, we used the 

trained data from Swiss-Prot database (Jan-2011), the same as all other methods. The test data 

was retrieved from KEGG (Dec-2014). 

The first family, EC:2.4.1.198 (Figure 4.5 – left), has 27 members (as of Jan-2011 in 

Swiss-Prot). As can be seen, these members are visually divided into 5 different clusters of the 

same domain content/architecture. EnzDP clustered this family into 5 subgroups, exactly as 

intuition. While, PRIAM and EFICAz usually break down EnzDP’s subgroups into smaller 

subgroups, resulted in 7 and 10 subgroups, respectively. This discrepancy comes from the fact 

that PRIAM and EFICAz use sequence similarity for clustering, while EnzDP uses domain 

architecture for the similarity metric. If we use BLAST score for clustering (using MCL), the 
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groups are divided exactly the same way as EFICAz did. In this example, EnzDP gives less 

number of subgroups than all the others.  

 

Figure 4.5 – Enzyme sub-family clustering by different methods 

Node represents enzyme-protein and its name. Edge’s thickness represents sequence similarity between 
proteins (by Blast e-value). Labels show domain composition of proteins. Left: EnzDP clustered 
EC:2.4.1.198 family into 5 sub-groups, while PRIAM and EFICAz clustered them into 7 and 10 sub-
groups, respectively. EnzDP_bl divided this family into 10 sub-groups, exactly the same as EFICAz. 
Right: EnzDP clustered EC:3.1.3.36 into 4 sub-groups, while PRIAM and EFICAz and EnzDP_bl 
clustered them into 1 group. 

  
Figure 4.6 – Performance of EnzDP on two datasets, in comparison with other 

methods 

 

For the second family (EC:3.1.3.36 – 24 members), PRIAM and EFICAz clustered them 

into one group, while EnzDP split them into 4 subgroups (as shown in Figure 4.5 –  right). Note 

that, all members carry the PF03372 domain in common, but different subgroups have different 

extra domains. In addition, the PF003372 domain is also carried by 13 different enzyme 
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families (data not shown). Thus, relying on only this domain for clustering and building profile 

may be misleading. In both examples, EnzDP clustering was more intuitive and reasonable. 

Figure 4.6 and Table 4.3 show a comparison of performance between 4 methods. For the 

first family, EFICAz and EnzDP_bl (used 10 subgroups) suffered both low recall and low 

precision, compared to PRIAM (7 subgroups) and EnzDP (5 subgroups). While for the second 

family, both PRIAM and EFICAz (used 1 subgroup) had lower recall than EnzDP (used 4 

subgroups). The enforced-version EnzDP_bl (using Blast score for clustering), where no DEAS 

is used, had low recall. EnzDP and EnzDP_bl are only different on the clustering strategy, all 

other steps were set the same. In fact, EnzDP_bl performed as well as EFICAz. In all 

comparison, EnzDP consistently achieved the best recall and F1 score. 

Table 4.3 – Performance comparison among PRIAM, EFICAz, EnzDP_bl, and EnzDP 

Method #predicted #correct Recall (%) Precision (%) F1 (%) 

EC:2.4.1.198 (237 sequences from KEGG) 
PRIAM 231 227 95.8 98.3 97.0 
EFICAz 186 174 73.4 93.5 82.3 
EnzDP 235 232 97.9 98.7 98.3 
EnzDP_bl 197 182 76.8 92.4 83.9 

EC:3.1.3.36 (384 sequences from KEGG) 
PRIAM 156 156 40.6 100 57.8 
EFICAz 312 286 74.5 91.7 82.2 
EnzDP 369 340 88.5 92.1 90.3 
EnzDP-1 320 290 75.5 90.6 82.4 

Methods were trained on the same Swiss-Prot data, and tested on the same KEGG data. EnzDP-
bl is EnzDP with clustering based on Blast e-value (instead of DEAS). 

4.3.4 Five-fold cross validation.  

In statistical prediction, the following three cross-validation methods are often used to examine 

a predictor for its effectiveness in practical application: independent dataset test, subsampling 

test, and jackknife test. However, of the three test methods, the jackknife test is deemed the 

least arbitrary that can always yield a unique result for a given benchmark dataset. Accordingly, 

the jackknife test has been increasingly used and widely recognized by investigators to examine 
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the quality of various predictors (see, e.g. [112-114]). However, to reduce the computational 

time, we adopted the 5-fold cross-validation in this study, as done by many investigators. 

 
Figure 4.7 – Performance of EnzDP in 5-fold cross validation 

Recall, precision and accuracy curves are showing with varying cut-off scores. 

In this validation, a strict setting was adopted. Briefly, the false members were included 

in both training and testing. In testing, we chose the false-members as the ones that best hit to 

the profiles. These false-members were excluded in threshold calculation, but used in testing. 

This imitates an extreme situation, when the false hits are similar to the true hits, and thus the 

number of false positives may increase.  

The macro and micro performances were calculated for the 5-fold cross validation (see 

Methods). Figure 4.7 shows recall, precision and accuracy curves of EnzDP by varying cut-off 

threshold. EnzDP achieved micro-recall from 82% to 95%, and micro-precision from 80% to 

99%, with the best micro-accuracy of 94.7%. The best macro-accuracy was 96.0%. Macro-

recall was better than micro-recall, but, micro-precision was better than macro-precision. In 

general, the resulted macro-accuracy was always higher than micro-accuracy, for the same cut-

off value. This implies that profiles for bigger enzyme families got higher accuracy. 

Interestingly, EnzDP got at least 77% macro-precision at zero score threshold, without 

any cut-off. This indicates that the profiles could reject false members quite accurately. In other 
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words, false members were rarely hit by the profiles, or the hit scores were too small that they 

were filtered by the preprocessing step in profile searching. 

 
Figure 4.8 – Accuracy for different enzyme classes 

Ligases are easier to classify than oxidoreductases. 

Figure 4.8 shows the macro-accuracy curves for each enzyme classes. As shown, the 

EC:6.x class (ligases) got the best accuracy, while EC:1.x class (oxidoreductases) was the 

worst. This indicates that ligases were easier to classify than oxidoreductases, in general. Shen 

et al [49] reported an overall success rate of 98.3% for classifying EC:6.x, much higher than 

the success rate for EC:1.x (86.7%). Their success rates for remaining classes (EC:2.x, EC:3.x, 

EC:4.x, EC:5.x) were in range from 93% to 96% (95.8%, 95.9%, 94.4%, 93.3%, respectively). 

Our result is mostly consistent with their reported result. 

In leave-one-out cross validation, EnzDP was trained with Swiss-Prot data, excluding 

the enzyme set of a species each time, and then tested on that enzyme set data. This experiment 

was done in comparison with PRIAM, EFICAz, and ModEnzA on 5 datasets. EnzDP 

consistently shows improvements on both accuracy and coverage. 

4.3.5 Comparison with other methods on recently annotated enzymes.  

To directly compare our method with other alternatives, EnzDP was trained on the same 

datasets as these methods. The testing datasets contain all newly added proteins, exclusively in 
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the Jan-2014 release of Swiss-Prot. We excluded enzymes of new EC numbers, since all 

methods cannot predict them (see Table 4.1 for details of datasets). Comparison is summarized 

in Figure 4.9. 

Jan11-Jan14 dataset 

Figure 4.9 – left shows the precision-recall curves of different methods on Jan11-Jan14 

dataset. As can be seen, for the same recall, EnzDP got the highest precision among all methods. 

PRIAM was slightly worse than our method. In fact, EnzDP and PRIAM significantly 

outperformed the remaining 3 methods. EFICAz achieved a high precision (more than 80%) on 

average, but its recall was low (less than 37%).  

 
Figure 4.9 – Comparison of Precision-Recall curves on different datasets 

On the other hand, BLAST had a base-line performance only. For example, at recall 

value of 60%, the precision of BLAST is about 40%. At that same recall, PRIAM and EnzDP 

achieved 2-fold improvement on precision, which was 80% and 85%, respectively. BLAST 

achieved the highest possible recall, as expected. However, there was a clear trade-off between 

recall and precision of BLAST, where precision decreased sharply with increasing of recall. At 

recall of 75%, precision of BLAST went down to 24%. 

Oct08-Jan14 dataset 

Figure 4.9 – right shows the precision-recall curves on Oct08-Jan14 dataset. EnzDP was 

trained at the same data of Oct-2008 as CatFam. This dataset contains 60024 enzymes, 

distributed into 1252 EC numbers. EnzDP achieved the best performance among 3 methods. 
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Both CatFam and EnzDP maintained high precisions for this dataset. In fact, their precision 

slowly decreased as recall increased.  

Shared domain dataset 

To check the effect of shared domains, we tested methods on the subset of enzymes that 

carried shared domains. Only domains that are shared between enzymes and at least 10 non-

enzymes were considered. This setting makes sure that the domains are not uniquely associated 

with one enzyme family, and thus they may cause ambiguity. The subset of shared domain for 

Jan11-Jan14 dataset (we called Jan11-Jan14-shared-domain) contains 1059 enzymes, 

associated with 255 EC numbers and formed 1122 EC number enzyme sequence pairs. 

Figure 4.9 – center shows the precision-recall curves for 4 methods on this dataset (and 

a projection of BLAST performance on Jan11-Jan14 dataset, for comparison purpose). 

Performance of all methods had same trend, and EnzDP was the best. Significantly, in 

comparison with the same curves on the original Jan11-Jan14 dataset, Blast had a clear loss of 

performance. For examples, at the recall of 60%, precision of BLAST decreased from 40% to 

30% (25% loss). At 50% recall, BLAST precision decreased from 52% to 38% (26.9% loss). 

At the same time, the precision of EnzDP, PRIAM, and EFICAz slightly changed in both 

directions. In fact, EnzDP, PRIAM had a slightly increased precision.  

This analysis shows that EnzDP (as well as PRIAM and EFICAz) was not affected by 

shared domain issue, while BLAST was. A possible explanation for this failure of BLAST is 

that, shared domains cause BLAST to match to wrong hits.  Thus, if the threshold cut-off for 

BLAST is not carefully chosen for each family, it may miss true positives and at the same time, 

give false positives. 

4.3.6 Accuracy improved by checking active sites  

EnzDP was evaluated with the ability of checking active sites as post-filtering. This version 

(called EDP+Site) accepts a prediction if it satisfies EnzDP filtering threshold, and if the input 

sequence has correct sites matched to active sites of the hit profiles (see Methods). For the 

dataset in Swiss-Prot release of Jan-2014, there is a small portion of proteins (89311/542258) 
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that have known active site annotated. Thus, we used the subset of data that contains active site 

annotation from Swiss-Prot (we called AS dataset), to test EDP+Site. For subset AS of Jan14-

Nov11 dataset, 474 enzymes have active site annotation, distributed into 328 EC numbers. For 

subset AS of Jan14-Oct08 dataset, there are 11576 enzymes with active site annotation, 

belonging to 538 EC numbers. 

 
Figure 4.10 – Improved accuracy by checking active sites 

EDP denotes overall performance of EnzDP on original dataset. EDP.AS denotes 
performance of EnzDP on subset (AS) of enzymes that have known active sites. EDP+Site.AS 
denotes performance on this subset of EnzDP method with stringent active site checking.  

Figure 4.10 shows the performance of EDP+Site and two other versions without active 

site checking. As can be seen, performance of the method (without active site checking) on 

active-site datasets (EDP.AS) was higher than on the original datasets. Both recall and precision 

were improved. This indicates that enzyme families with known active-sites were easier to 

classify than enzyme families without known active-sites. In other words, active-site 

information helps improve classification accuracy. EnzDP allows checking of active sites as an 

option. 

EDP+Site (EnzDP with active site checking) had substantial higher precision with 

slightly lower recall. On the AS subset of Jan14-Jan11 dataset, while precision of EDP (without 



Chapter 4 EnzDP 
 

84 

active site checking) was only 75%, precision of EDP+Site was 85%.Thus the precision was 

significantly improved. The loss of recall was small (from 83% to 81%). For AS subset of 

Jan14-Oct08, the precision improvement was also significant (from 83% to 88%), and recall 

loss was negligible. Thus, this analysis confirms that checking active site can improve 

precision, if active site information is available. 

4.3.7 Improvement by threshold setting 

To evaluate the improvement of threshold setting, we compared several settings of EnzDP, and 

compared to a standard BLAST method. Figure 4.11 shows recall-precision curves of the 

settings on the dataset of short_adh (PF00106) domain. This dataset contains 706 proteins, 

which belong to 90 enzyme families and non-enzymes. 

 
Figure 4.11 – Comparison of different threshold setting strategies on PF00106 dataset 

Four settings were included: EnzDP with individual threshold for each profile 
(EnzDPindividualT), EnzDP with one threshold for all profiles (EnzDP1T), EnzDP with no 
profile threshold (EnzDPnoT – only ranking of output is used), and BLAST with one common 
bit-score threshold (BlastoneT). Right chart is a zoomed snapshot of the left chart (from recall 
75% onward). 

As can be seen, EnzDP with individual threshold had much better precision (for the same 

recall) compared to other settings. The recall range of EnzDP and EnzDPnoT is also better. For 

example, these two settings have recall range from 75% to 96%, while for BlastoneT and 

EnzDP1T the recall range started from a very low 10%, without improvement of precision. In 

other words, this implies that using individual threshold improves precision greatly, without 

reducing recall.  
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4.3.8 Leave one out cross validation comparison 

We performed leave one-out cross validation for several genomes, namely E. coli, B. 

aphidicola, P. falciparum, H. influenzae, and M. genitalium. Each time a genome was excluded 

from training, and was used in testing. For each genome, we re-trained EnzDP on data excluding 

it, and then used it for testing. This imitates the situation of annotating newly sequenced 

genome. We compared our result with the results of other classifiers that recently developed 

and achieve high accuracy, namely EFICAz, ModEnzA, and PRIAM. Unfortunately, a direct 

comparison between all methods was not feasible, since for this validation procedure, each of 

these methods was trained on data that retrieved at a different timestamp. Thus, we only 

compared our results with their reported results. Comparison is shown in Table 4.4. 

Table 4.4 – Performance in leave-one-out cross-validation 

 EnzDP ModEnzA EFICAz PRIAM 

Training time 2014 2010 2004 2003 

E. coli Sequences 93.9/ 92.9 92.45/ 84.93 86.11/ 81.44 - 

E. coli ECs 93.5/ 97.6 91.06/ 88.12 86.26/ 88.87 88/ 92 

B. aphidicola Sequences 98.3/ 97.9 95.63/ 96.33 93.81/ 94.50 - 

B. aphidicola ECs 98.9/ 98.9 88.70/ 94.42 91.53/ 95.37 91/ 86 

P. falciparum Sequences 61.0/ 82.2 60.66/ 75.87 54.91/ 61.66 - 

P. falciparum ECs 61.5/ 75.2 70.23/ 86.77 62.20/ 75.30 - 

H. influenzae Sequences 97.9/ 92.3 - - 91/ 94 

M. genitalium Sequences 97.9/ 93.4 - - 87/ 86 

Each time, a genome was excluded from training and was used as testing dataset. The recall/precision 
for each method are shown for enzyme sequence classification (Sequences) and EC number prediction 
(ECs). The number in bold indicates the best result for each row. The statistics of EFICAz, ModEnzA, 
and PRIAM methods were retrieved from their works. 

As can be seen, EnzDP achieved the recalls ranged from 61-98.9% and precisions ranged 

from 75.2-98.9% for both enzyme sequence and EC number predictions, for multiple genomes. 

Our result outperformed EFICAz, ModEnzA, and PRIAM for most genomes. In fact, all 

methods show high accuracy on B. alphidicola dataset, and low accuracy on P. falciparum 

dataset. This can be explained by the existence of many other well-annotated B. alphidicola 
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strains in the Swiss-Prot. On the other hand, P. falciparum has only small number of sequence 

annotations that were manually reviewed, (157/ 5356) as of Dec-2013. 

The statistic in Table 4.4 also shows that, methods at later training time often get higher 

performance. One of possible reasons is that, later methods had more data to train than previous 

methods, and thus their performances improved. However, while improvement of ModEnzA 

(2010) over EFICAz (2004) was not consistent, our method (2014) clearly showed a better 

performance than all other methods over all datasets (except for P. falciparum.) 

4.4 Conclusions  
Determining the entire complement of enzymes and their enzymatic functions is a fundamental 

step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in 

enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and 

increasing the enzyme coverage. Currently, structure-based and network-based approaches can 

only cover a limited number of enzyme families, and the accuracy of homology-based 

approaches can be further improved. Bottom-up homology-based approach improves the 

coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. 

However, its clustering procedure firmly relies on BLAST similarity score, ignoring protein 

domains/patterns, and is sensitive to changes in cut-off thresholds.  

Here, we use functional domain architecture to score the association between domain 

families and enzyme families (DEAS). The DEAS score is used to calculate the similarity 

between proteins, which is then used in clustering procedure, instead of using sequence 

similarity score. We improve the enzyme annotation protocol using a stringent classification 

procedure, and by choosing optimal threshold settings and checking for active sites.  

Our analysis shows that stringent protocol EnzDP can cover up to 90% of enzyme 

families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on 5-fold cross 

validation. EnzDP outperforms existing methods across testing scenarios. Thus, EnzDP serves 

as a reliable automated tool for enzyme annotation and network reconstruction. 
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5. NetA: assembling metabolic network from genome annotation 

5.1 Background 

5.1.1 Overview  

The problem of metabolic reconstruction is well established, yet remains a difficult problem 

[13, 23]. It may take years to complete and requires a lot of manual labour of human experts, 

especially manual quality control is unavoidable. Therefore, it is sensible to develop automated 

tools in order to speed up reconstruction process and reduce human involvement. Indeed, the 

reconstruction pipeline (see Figure 2.4, section 2.1.2) gives a basic guideline to divide the whole 

process into smaller tasks; each task can be resolved separately using different tools. This 

chapter addresses the network assembly problem – the central part of the pipeline. 

In literature network assembly is referred to as network reconstruction problem. In fact, 

this network assembly problem may show that our metabolic knowledge gained from all 

previous steps is not complete. Especially, it reveals the metabolic/reaction gaps that previous 

steps failed to show. In consequence, gap filling step will be carrying out, and the whole 

reconstruction process may be re-performing from the first step. 

Therefore, the most important issue in the assembly problem is to achieve a high quality 

network, which can be evaluated by the network connectivity, the reaction’s coverage, and the 

amount of missing knowledge. The connectivity shows that all the metabolic reactions are 

feasible in the network, without any dead-end. With connectivity, the network is usable for 

modelling and simulation in later steps. The reaction coverage is the most important factor of 
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high quality. It is counted for only those reactions with enzyme-gene evidence. Thus, quality 

of assembled network is strongly affected by quality of enzyme annotation in previous step. In 

addition, assembly method should not miss any known reactions. Last but not least, it is desired 

that the network contains the minimum missing metabolic knowledge, with minimum number 

of metabolic gaps. 

Another important consideration in network assembly is the possibility of quickly 

reproducing the network if any new data is available. This is usually the case when gaps are 

filled or new knowledge is gained from later steps, such as, gap filling, model verification and 

simulation. Therefore, automated tools for minimizing manual work are desired.  

5.1.2 Pros and cons of current methods 

There are two approaches to network assembly problem, namely pathway-based and network-

based. The first approach firmly relies on reference pathways database – such as KEGG [31] 

and BioCyc [41], while the second approach relies on reconstructed networks of closely related 

species, such as Vongsangnak et al. [3]. Chapter 2, section 2.2.2 gives more details on these 

approaches. Here we discuss the pros and cons of each approach. 

Pathway-based methods cannot reconstruct new pathways, since it follows predefined 

templates that do not allow to add new reactions. However, since biological function organized 

by pathways, it makes sense to look at pathway individually. Intuitively, it is relatively easier 

to handle pathways separately than handling whole network at once. Furthermore, this approach 

is reliable, as known metabolic knowledge has been summarized in reference pathways of 

KEGG. 

Network-based methods can predict novel pathways, since new reactions can be added 

into the network, which is useful for predicting new network from scratch. It reconstructs a 

whole network at a time. However, constrained-based methods require experimental data, 

which may not be available from the beginning. The main concern about network-based 

approach is to fill reaction gaps, but it leaves those filled reaction gaps as metabolic gaps. In 
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fact, both approaches still allow gaps in the resulting network, and the added reactions may 

have no gene evidence. 

5.1.3 Our approach 

We aim to develop computational methods for automating the process of building a backbone 

network, from genome annotation. We try to improve network quality, focusing on network’s 

connectivity with high enzyme coverage and minimum metabolic gaps. Our methods do not 

use experimental data, and thus, the prediction result requires further experimentally verified. 

Validation requirements are out of current research’s scope. 

Finding that the quality of network reconstruction strongly depends on quality of 

annotation set, we first focus on improving the enzyme annotation set by using multiple source 

of annotation, including computational predictions by EnzDP and MeGaFiller. The initial 

reaction set is reliable with gene evidence. We follow the pathway-based approach, in which 

we use KEGG reference pathways to predict the presence of all possible metabolic pathways 

for the given set of enzymes. We then optimize each predicted pathway to get minimum number 

of gaps. Finally we merge those optimized pathways into a network, via combining resultant 

KGML files.  

For predicting presence of pathways, we assume that a pathway is present in a genome 

G, if majority of its reactions have enzymes expressed in G. Thus, our approach relies on a 

presence ratio, which is the ratio of enzyme-supported reactions over the total number of 

reactions included in the reference pathway. The threshold of presence ratio will be tuned by 

experimental training datasets.  

The next step after predicting presence of pathways is pathway optimization. Our 

approach uses the reference template to optimize the pathway for the given set of enzyme 

annotation. Specifically, for each reference pathway P that is present in the genome of interest, 

we try to find a minimum sub-pathway P*, such that P* is connected, and contains all possible 

known reactions for the genome of interest (in that pathway) and minimum number of missing 
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enzyme reactions. We prove that the problem of finding optimal pathway is NP-Hard. 

Consequently, an approximation algorithm called MiniPath is developed. 

After that, a network is assembled by merging these optimized pathways. This can be 

done by merging the resulting KGML files of optimized pathways, using available tool 

KGML2SBMLconverter. And finally, with the use of the same tool, SBML format of the 

reconstructed network will be produced. More details are presented in Method section. 

5.2 Methods 

5.2.1 General description and definitions 

First, general definitions and descriptions on network assembly problem will be presented. 

Then the algorithms for predicting pathway presence, finding optimal pathways, and network 

assembling will be described in details. 

Reaction: a metabolic reaction r transforms a set S of substrate metabolites into a set T 

of product metabolites. The set M of metabolites of reaction r is the union set of S and T. 

Example of KEGG R00303 reaction (Fig 1.1 - bottom): 

 

 

 

 

Universal set R of reactions: set of all known metabolic reactions. This set is the global 

metabolic network, which can be retrieved from reaction databases. 

Pathway: a pathway P is a set of some reactions: 

 

Note that, by the above definition, pathway may or may not be connected. To describe 

connectivity of pathways, the notion of reachability is used, as the following. 

Reachability 

Given a pathway P and a set S of source metabolites, a metabolite m is reachable in a 

pathway P from S, denote by relation reachable (m|P,S) if: 
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 There is a reaction r in P such that r directly transforms some metabolites in S 

to m, that is:  and  

 Or, m is one of product metabolites of a reachable reaction ra: 

 

A reaction r is reachable in P from S, denote by relation reachable (r|P,S), if r is a 

reaction of P, and either: 

 r is directly reachable from S, that is, , or 

 All substrate metabolite m of r is reachable:  

Pathway’s outcome: outcome of a pathway P given a set S of source metabolites, O(P | 

S), is set of all metabolites that are reachable in P from S, that is,  

 

In other words, it is the union of all product metabolites of reachable reactions in P from 

S. 

Pathway completeness: The completeness of a pathway P towards a set T of required 

target metabolites given set S of source metabolites is defined as:  

 

In other words, it is the ratio of target metabolites that reachable from S, to the target set 

T. This ratio is easy to compute, using graph traversal algorithm like BFS to check the 

reachability for each metabolite and reaction. 

5.2.2 Find pathway problem 

Given a universal set R of reactions, set S of source metabolites, and set T of target metabolites, 

and a pathway completeness threshold w, find a pathway P  R such that: 

 

Note that, if we set w = 1, we require that all target metabolites are reachable, or in other 

words, the pathway must be connected. 
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Find pathway with known reaction set 

Given a universal set R of reactions, a set of initially known reaction R0, set S of source 

metabolites, a set T of target metabolites, and a pathway completeness threshold w, find a 

pathway P  R such that  and: 

 

In fact, this problem is the same as the Find pathway problem, by encoding the 

requirement of R0 into the set of target metabolites. The fact that R0 is known to be occurred in 

P is equivalent to that all metabolites in R0 are reachable in P. 

With the setting , the problem becomes finding P such that 

 

Find minimum pathway problem 

(Find-Minimum-Pathway) Given a universal set R of reactions, set S of source metabolites, a 

set T of target metabolites, and the pathway completeness threshold w, among all pathways P 

 R such that: 

 

find the pathway P* with minimum size: |P*| ≤ |P| for all P. 

This problem is an NP-Hard problem. In a setting up to atom level metabolic network, 

Pitkanen et al [83] have proved its NP-Hardness. The same idea can be applied for metabolite 

level. For illustration purpose, the idea will be adapted and presented next. 

5.2.3 Find-Minimum-Pathway is NP-Hard 

Proof: 

NP-Hardness of Find-Minimum-Pathway can be shown via a reduction from the Minimum-

Set-Cover problem. In a nutshell, we will show that:  

Minimum-Set-Cover ≤p Find-Minimum-Pathway 

Minimum-Set-Cover: Given a universe U set of n elements U = (1,2,...,n), and collection 

C of k sub sets whose union equals the universe, C = (C1, C2, ...,Ck), . Find the smallest 
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sub collection C* of C, such that union of C* equals the universe, that is 

.  

Given an instance (U, C) of the Minimum-Set-Cover, an instance of Find-Minimum-

Pathway, (R, S, T, w), can be reconstructed as following. 

For each element u of U, introduce 2 metabolites su and tu. Set  and . 

For each sub set Ci of C, introduce a reaction ri. Suppose Ci = (j,k,l,...), then correspondingly, 

the substrate metabolites for ri are: sj, sk, sl, ..., and the product metabolites for ri are: tj, tk, tl, ... 

Set  and w = 1. Note that, w = 1 means Find-Minimum-Pathway requires finding 

a complete pathway, i.e., all metabolites in T are reachable. 

 

Figure 5.1 – Reduction of Minimum-Set-Cover to Find-Minimum-Pathway 

Picture adapted from Pitkanen et al. [83] Left: An instance of Minimum-Set-Cover with U 
= (1,2,3,4,5,6); C = (C1,C2,C3,C4), C1 =(1,2), C2=(1,3), C3=(2), C4=(4, 5, 6). Right: Find-
Minimum-Pathway instance with 12 metabolites and 4 reactions. Pathway completeness 
w = 1. Source set of metabolites S = (s1,...,s6), target set of metabolite T = (t1,...,t6). Arrows 
denote mapping of metabolites over reactions. In particular, mappings shown with 
similarly dashed arrow lines belong to the same reaction.  

Assume P is a solution of Find-Pathway problem. Clearly, the corresponding solution 

for Set-Cover problem is: . And on the other hand, it can be seen that, if a 

solution of Set-Cover problem is Cp, then the corresponding to the solution for Find-Path 

problem is P. Thus, an optimal solution C* can also be reconstructed from the optimal solution 

P*. 
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It is not hard to see that, all the above reconstruction can be done in polynomial time. Thus, 

Minimum-Set-Cover is polynomial time reducible to Find-Minimum-Pathway. The NP-

Hardness of the former implies the NP-Hardness of latter. Q.E.D. 

5.2.4 Network assembly problem:  

Metabolic network: Metabolic network N is a collection of pathways: 

N = (Pi) 

Metabolic network assembly problem: Given a set of known reactions N0, reconstruct a 

metabolic network N that contains N0, i.e. for any r in N0, there exists P in N such that r is in P 

Predicting presence of pathways 

To reconstruct a metabolic network from a set N0 of known reactions, we use KEGG 

pathway templates, and reconstruct pathway by pathway. So, the first task is to decide whether 

a template pathway should be included into the result network. Intuitively, if a majority of 

reactions in a reference pathway P is known, then P should be included. To qualify the presence 

of pathway P, we define the presence ratio hP as the following. 

 

 

If the presence ratio hP is higher than a predefined threshold, P will be included into the 

list of pathways for the result network. The pathway P is then further optimized to get a 

minimum pathway before it can be added into the final network. 

Finding minimum pathways 

Given a reference pathway P, and a set of known reactions R0 in P, we want to find a 

minimum pathway P* that covers R0, is connected, and contains minimum number of gaps. As 

discussed previously, this problem is the same as finding minimum pathway, with an extension 

to the set of target metabolites   
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Algorithm MiniPath (P, Sp, Tp, R0): 

Input:  
P – A reference pathway, with input and output metabolites Sp and Tp.  
R0 – A set of known reactions 
Begin 

Set    
Set P’ = P 
Set D = P – R0 
for each reaction d in D: 
 P’ = P’ – (d) 
 check if pathway is complete, i.e. C(P’| Sp, T) >= 1 
  if not: P’ = P’ + (d) 
return P’ 

End 
Output: 
P’ – A minimal pathway 

Due to the NP-Hardness of Find-Minimum-Pathway problem, we propose a simple 

approximation algorithm MiniPath to find a minimal pathway. We assume each of KEGG 

reference pathways is complete. That is, all reactions in a reference pathway are reachable from 

pathway’s input. This is reasonable assumption, since KEGG pathways are manually curated 

and drawn. Our approximation idea is to delete unnecessary reactions from the template, while 

keeping the reachability of all required reactions (in R0). The reachability can be easily checked 

using a graph search, e.g. BFS algorithm. 

In a nutshell, MiniPath first computes the set D of reactions that might be deleted from 

P, D = P – R0. Then it tries to delete each reaction d of D from the result pathway: P’ = P’ – 

(d). If after the deletion, not all required metabolites are reachable, then it reverts the deletion, 

P’ = P’ + (d). In fact, MiniPath will stop only if none of remaining reactions can be deleted 

without violating the pathway connectivity. Therefore, it finds a local optimal solution.  

Complexity of MiniPath algorithm 

MiniPath runs in quadratic time and takes linear space. Indeed, checking reachability for 

all reactions and metabolites can be done by any graph traversal algorithm, such as BFS or 

DFS, and it takes linear time. Thus, overall MiniPath runs in quadratic time, that is, O(|P|2). It 

uses no more than O(|P|) memory. 
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Approximation ratio of MiniPath 

In the worst case, MiniPath deletes only 1 reaction, while the optimal solution can delete 

all the other |D|-1 reactions. In this case, |P’| = |P| - 1, while for the optimal solution |P*| = 

|R0|+1 

We have, the worst case approximation ratio r is: 

 

where, hp is indeed the presence ratio of the pathway P. So, it means that if we set the 

presence ratio threshold to be ½, then the MiniPath has an approximation ratio of 2. 

Network assembly algorithm 

Given an initial reaction set, the final goal is to build a metabolic network that contains 

these reactions. Following the pathway-based approach, our method first predicts the presence 

of pathways for those initial reactions, using KEGG pathway templates. Those pathways with 

presence ratio greater than a predefined threshold h0 will be included into the network. Each of 

these pathways will be optimized by MiniPath algorithm to get a minimal pathway. At the end, 

these optimized pathways will be merged into the final network. Our network assembly 

algorithm NetA is following.  

Algorithm NetA (N0, K, h0) 

Input:  
 N0 – Initial reaction set 
 K – KEGG reference pathways 
 h0 – pathway presence threshold 
Begin 

N = () 
For each pathway P of K: 
  
 Calculate  
 If hp >= h0: 
  P’ = MiniPath(P, Sp, Tp, R0) 
  Merge(N,P’) 
Return N 

End 
Output 
 N – metabolic network 
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Procedure Merge(N,P’) is in fact merging the pathway P’ into a network N. It first uses 

the KGML file retrieved for the reference pathway P, and modifies it according to reactions in 

P’. It then merges the modified KGML file into the KGML file of the resulting network. Finally, 

it uses an available tool called KGML2SBMLConverter to convert the merged KGML file into 

a network of SBML format. The merging step runs in linear time. 

Since MiniPath runs in O(n2) time, where n is the maximum number of reactions in a 

reference pathway, it implies that NetA algorithm runs in O(k.n2) time, where k is the number 

of reference pathways available. 

5.2.5 Experimental setting 

To tune for the optimal presence ratio threshold, the sets of manually annotated pathways of 

S.cerevisiae (72 pathways) and E.coli (82 pathways) retrieved from KEGG are used as a 

benchmark. NetA predicts pathways for those genomes by varying the presence ratio 

thresholds. For each value of presence ratio, sets of predicted pathways by NetA are compared 

with the benchmark. Ratio that produces the best Jaccard Score is chosen as threshold for NetA.   

After tuning for optimal presence ratio, NetA is used to find optimal pathways. For each 

pathway, result optimized by NetA is compared to the benchmarks. The set of gene-reaction 

relationships in resulted optimal pathway is compared to that in the benchmark, by computing 

the recall and precision values:  

Recall = TP / (TP + FN) 

Precision = TP/(TP + FP) 

TP is number of gene-reaction pairs that predicted and correct compared to the 

benchmark. FP is number of pairs that predicted but not correct. FN is number of pairs that are 

in the benchmark but not predicted. 
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5.3 Results 

5.3.1 Presence ratio 

NetA depends on a presence ratio to predict the set of pathways that should be included into 

the final network. To obtain an optimal value of ratio threshold, parameter tuning was 

performed as following. For each value of ratio threshold r from 0.05 to 0.75 with step of 0.01, 

NetA uses r to predict pathways for S.cerevisiae and E.coli. The result is then compared with 

benchmark data, and a Jaccard score is computed. Best ratio was deemed to be chosen at the 

best Jaccard score. To get a better sense about the dependency of NetA on the input initial 

annotation sets, multiple annotation sets were used. These annotation sets were made by EnzDP 

with different cut-off likelihoods.  

Figure 5.2 shows plots of Jaccard scores against presence ratio values, for multiple input 

initial annotation data of S. cerevisiae and E. coli.  Optimal values were obtained in range [0.17, 

0.25], with best value around 0.2 point. As can be seen, this value is consistent for both SC and 

EC, across multiple annotation inputs.  

 
Figure 5.2 – Tuning pathway presence ratio 

Jaccard scores were plotted again each presence ratio value in range [0.05, 0.75] with step 
of 0.01. Optimal value was obtained around the ratio value r = 0.2.  

A small value of optimal presence ratio is expected, since a specific genome may have a 

small number of metabolic reactions expressed for a specific biological pathway. In fact, a 



Chapter 5 NetA 
 

99 

reference pathway contains all possible reactions for all known species across all 3 domains of 

life. For majority of pathways, a specific genome of interest may have a small portion in 

common with the reference pathway. The optimal value of 0.2 achieved in our experiments 

suggests that, an organism specific pathway only covers about 20% of reactions in the reference 

pathway. It also showed that, with increasing this ratio, the corresponding Jaccard score is 

sharply decreasing. Thus, we recommend a ratio in range of [0.17, 0.25] for practical 

applications. 

5.3.2 Pathway optimization 

After predicting the set of pathways that are present in the genome of interest, NetA uses the 

MiniPath algorithm (see Methods for more details) to optimize predicted pathways. The overall 

idea is to delete those unnecessary reactions from the reference pathways, while maintaining 

the reachability of all metabolites in the targeted set. MiniPath does not guarantee a global 

optimum solution, however, it will find a local minimal pathway, in which deleting any more 

reaction will disconnect the current pathway. 

To evaluate the effectiveness of MiniPath algorithm, NetA was run on S.cerevisiae and 

E.coli benchmark datasets. For each pathway the predicted set of reactions was compared to 

the benchmarks. Performance on common pathways was summarized in Figure 5.3. As can be 

seen, MiniPath achieved an average recall of 84.8% (87.4%) and an average precision of 48.6% 

(44.5%) on S.cerevisiae (E. coli) dataset. This suggests that about 85% of reactions in the 

benchmark is agreed with MiniPath. While, almost half of the predicted reactions is agreed with 

the benchmark.  

The fact that NetA achieves a high coverage, but relatively low precision suggests that, 

NetA predicts more reactions that are not in the current benchmark. Provided that the 

benchmark itself is not fully complete, the low precision of NetA is expected. 
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Figure 5.3 – Performance of NetA for optimizing pathways in S. cerevisiae and E. coli  

 

5.3.3 Application on A. oryzae genome 

We apply the reconstruction pipeline on Aspergillus oryzae genome using EnzDP, NetA, and 

MeGaFiller. This fungus plays an important role in food production industry [20, 115]. Building 

its metabolic model is essential to in-silico analysing its metabolic features. The first and only 

genome-scale metabolic network of this fungus was reconstructed in 2008, by Vongsangnak et 

al [3]. Our analysis suggests that the current network can be expanded about half in enzyme 

gene coverage. 

Enzyme annotation by EnzDP 

EnzDP with default settings was run on genome sequences of A. oryzae to annotate enzymatic 

functions. Annotation was validated if the assignment between genes and enzyme families have 

any support domain family annotated by Pfam.  

Table 5.1 shows enzyme content predicted for A. oryzae. EnzDP found 1923 genes have 

enzymatic functions, across 962 enzyme families (EC numbers). In result, EnzDP assigned 
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2210 pairs between EC-numbers and genes, in which 1571 (81%) of the pairs have support 

Pfam evidence.  

Table 5.1 – Enzyme annotation made by EnzDP on A. oryzae genome 

 EC numbers Enzyme genes EC-gene pairs Pairs with Pfam support 

EnzDP 962 1923 2210 1571 (71%) 

iWV1314 637 1246 1375 918 (67%)  

Shared count 460  843  719  586 (82%) 

Shared coverage 72.2 % 67.7 % 52.3 % - 

Shared count is the number shared between EnzDP predictions and iWV1314 network. Shared 
coverage is the percentage of shared count over the iWV1314 network. 

In comparison with annotation included in [3], EnzDP shared 460 unique EC numbers, 

which is 72.2% of the number of unique EC numbers in iWV1314 network. The number of 

genes (pairs) in common is 843 (719, respectively). Significantly, EnzDP predicted additional 

51% enzyme families and 54% of novel enzyme genes that missed by the iWV1314. This 

represents a potential expansion for A.oryzae network. 

Network assembly by NetA 

We ran NetA algorithm on A. oryzae dataset with the annotation made by EnzDP. The presence 

ratio was set at 20% as default. After predicting pathways’ presence, MiniPath was run to 

optimize those template pathways. Optimized pathways were then merged into a back-bone 

network of metabolic reactions. The network in .kgml format was finally converted into .sbml 

format. 

NetA predicted 119 metabolic pathways for A. oryzae. On average, each pathway after 

optimization contains 23 reactions. The average enzyme coverage in all pathways is about 

72.4%. Table 5.2 shows top 15 dense pathways with highest coverage. 

It can be seen from the table that there still has a significant number of metabolic gaps. 

The average percentage of reactions without enzymes is about 27.6%. This may indicate that 

MiniPath algorithm is not optimal, as it included those metabolic gaps reactions to make the 



Chapter 5 NetA 
 

102 

network connected. It also can be explained by the fact that the initial set of reactions is not 

complete, thus allowing holes in the final network. Anyway, the result produced by NetA 

revealed that our current metabolic knowledge on A. oryzae is far from complete. 

Table 5.2 – Top 15 dense pathways with highest number of reactions 

pathway 
id pathway name 

Reaction 
count Gene count 

#Reactions 
without genes 

Enzyme 
coverage 

00685 Pyrimidine metabolism 87 75 16 81.6 

00676 Glycerophospholipid 
metabolism 

64 85 17 73.4 

00675 Cysteine and methionine 
metabolism 

62 79 14 77.4 

00673 Glycine, serine and 
threonine metabolism 

59 115 15 74.6 

00686 Propanoate metabolism 48 113 14 70.8 

00629 Chlorocyclohexane and 
chlorobenzene degradation 

47 64 7 85.1 

00621 Galactose metabolism 45 45 9 80.0 

00620 Pyruvate metabolism 43 77 8 81.4 

00622 Valine, leucine and 
isoleucine degradation 

42 63 8 80.9 

00690 Alanine, aspartate and 
glutamate metabolism 

39 37 11 71.8 

00632 Fatty acid degradation 37 45 9 75.7 

00628 Steroid biosynthesis 37 33 6 83.8 

00691 Glycolysis / 
Gluconeogenesis 

35 73 9 74.3 

00696 Sphingolipid metabolism 34 73 9 73.5 

00624 Lysine biosynthesis 31 48 5 83.9 

Note: Enzyme coverage (last column) is counted as percentage of number of reactions that have 
gene annotation. 

The resulted network of A.oryzae organises in 11 major metabolic functions, as shown 

in Figure 5.4. The biggest amount of enzymes goes into carbohydrate metabolic processes, with 

19.8% of enzymes. This confirms the fact the fungus is very active in different sources of sugar. 

The fungus is also strong on lipid metabolism, in which this metabolic functional category has 

10.7% of total enzymes and is ranked 3rd in the list. 
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Figure 5.4 – Percentage of enzymes in major pathways of A. oryzae 

 

Filling gaps by MeGaFiller 

After NetA was run on annotation set made by EnzDP, MeGaFiller with common-2 settings 

(see section 3.3.5 for more details) was applied on the network produced by NetA. The list of 

metabolic gaps extracted from the network is used as input for MeGaFiller. The predicted 

candidates were then mapped back to the network. Table 5.3 shows statistics of gaps that are 

putatively filled for A. oryzae. 

Table 5.3 – Filling gaps using MeGaFiller 

Number of unique metabolic gaps 376 

Number of metabolic gaps putatively filled 93 

Number of putative candidates 202 

Percentage of metabolic gaps filled 24.7 

As can be seen, MeGaFiller can filled 93 gaps that NetA and EnzDP missed. These 

numbers are accounted for 24.7% of the current metabolic gaps. The number of candidates 

proposed by MeGaFiller for the gaps is 202, which is 2.2 candidates per gap, on average. 
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Interestingly, if the threshold for EnzDP is set lower at 0.20, 11% of gaps can be recovered. 

Figure 5.5 in the next section shows an example of gap filling result.  

Example of finding minimal pathway  

This section illustrates an example of finding minimal pathway by MiniPath algorithm. 

MiniPath was run on Folate biosynthesis pathway using annotation made by EnzDP for A. 

oryzae. The resulted minimal pathway is shown on Figure 5.5. The pathway is connected, i.e. 

any possible output metabolite is reachable from input metabolites. The reactions in white are 

those in template pathway, but were removed by NetA because they neither have enzyme 

annotation nor connectivity dependency. Those reactions can safely be deleted from the 

pathway without making the pathway disconnected.  

The reactions in blue are those with enzyme evidence. The two red reactions (4.2.3.12 

and 4.1.3.38) are metabolic gaps as currently they have no enzyme gene support, but they are 

critical to the network connectivity. The pink reaction (2.7.6.3) was initially a metabolic gap, 

but latter was filled by MeGaFiller. Manual inspection shows that, EnzDP missed enzyme for 

2.7.6.3, but this reaction is required for network connectivity. MeGaFiller predicted the enzyme 

for this reaction as AO090011000631. In fact, EnzDP assigned the enzyme AO090011000631 

to the 4.1.2.25 activity, but MeGaFiller predicted that the enzyme has both functions. Other 

annotation sources also confirmed this MeGaFiller prediction. If the likelihood cut-off for 

EnzDP is set lower (at 0.20, lower than the default value of 0.4), this assignment will showed 

up. 

In this example, result of MiniPath is optimal. But in general, MiniPath is an 

approximation algorithm, with an approximation ratio of hp, where 1/hp is the pathway presence 

ratio. The example also shows that MeGaFiller is useful in filling gap when EnzDP misses a 

prediction due to cut-off filtering. 
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Figure 5.5 – Example of pathway predicted by NetA for A. oryzae 

This 00790 pathway was predicted with 26 reactions, including 3 gaps (orange and pink) and 23 
reactions (blue) covered by enzyme genes. One of the gap (2.7.6.3 – pink) was later filled by 
MeGaFiller-2.White reaction are those in template pathway but were removed by NetA due to no 
support evidence. 

 

Comparison to iWV1314 

Compared to iWV1314 network, the network built by NetA contains more reactions and 

enzymes. However, there is a significant discrepancy between the two networks. Figure 5.6 

shows a comparison in three categories. While they agreed mostly on the unique reaction set, 

the enzyme set and gene-reaction pair set showed relatively lower agreement.  
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Figure 5.6 – Compare result of NetA on A. oryzae (right) to iWV1314 network (left) 

Note: A: Compare unique reaction sets. B: Compare enzyme sets. C: Compare gene-reaction 
pair sets. 

The discrepancy between NetA’s result and iWV1314 network can be explained that their 

gene annotations have small overlap. The Jaccard score between the two initial enzyme sets is 

only 0.4, which is low. This indicates that the discrepancy between them is significant. Or in 

other words, metabolic knowledge of A.oryzae is still significantly missing. 

5.4 Discussion and Conclusions 
In this work, we described the network assembly problem and showed that it is an NP-Hard 

problem. We then developed an approximation algorithm NetA for assembling a genome-scale 

metabolic network from a given set of enzyme annotation. First, NetA uses KEGG reference 

templates to predict which pathways are present in the genome. Analysis showed that, a 

reference template should be included into the network if at least 20% of its reactions whose 

enzyme is annotated. Then, NetA uses MiniPath algorithm to find minimal pathway given the 

template. MiniPath is an approximation algorithm that tries to delete maximum number of 

missing gene reactions from the template while maintaining pathway connectivity. Finally, 

NetA merges those optimized pathways into a network using KGML2SBMLconverter tool.  

Experiments on S. cerevisiae and E. coli dataset showed that MiniPath algorithm can 

cover 85% of the benchmark reactions over all predicted pathways, with an average precision 

of 45%. In fact, it predicts more reactions than the given dataset, and many of those reactions 

have support annotations, predicted by EnzDP. 

NetA was used to re-assembly metabolic network of A. oryzae. The resulting network 

contains 742 unique reactions, across over 119 pathways in 11 major metabolic functions. On 
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955 554 
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average over all predicted pathways, 72.4% of reactions have enzyme genes annotated. In 

comparison with iWV1314 network, the result of NetA on A. oryzae mostly agrees on unique 

reaction set. However, there is a significant discrepancy in enzyme set, and in gene-reaction 

pair set. 

The results also show that, there is a significant number (27.6%) of reactions that have 

no gene annotation. Those reactions are required for pathways connectivity, but currently no 

homologous genes are identified in A. oryzae. This is due to two main reasons: first, the failure 

of MiniPath algorithm and second, the incompleteness of annotations. Currently MiniPath does 

not guarantee optimal solutions. Our manual inspection of the result of MiniPath showed that, 

there many cases it could only produce local optimal. Meanwhile, the second reason is 

independent to the method, because there is no annotation data available to fill metabolic gaps 

in the resulting network. Our analysis on the initial enzyme annotation set of A. oryzae showed 

that, there is a significant inconsistency among current resources of A. oryzae genome 

annotations, including KEGG, Uniprot, DOGAN, AsperCyc databases. Computational 

predictions made by EnzDP and MeGaFiller also differ from those resources. This suggests that 

current metabolic knowledge of A. oryzae is far from complete. Thanks to re-assembling the 

metabolic network, this previously unknown fact is signified. 
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6. Conclusions and future works 

6.1 Conclusions 
Metabolic network is a powerful systems biology tool for modelling and investigating 

metabolism of species. With the availability of complete genome sequencing, genome 

annotation and pathways reference databases, as well as biochemical knowledge that 

accumulating in public databases, reconstructing a whole genome scale metabolic network 

becomes feasible. Metabolic networks of hundreds species have been reconstructed. Many 

computational methods have been developed to aid network reconstruction. However, there 

still has a significant number of gaps in these reconstructed networks. In addition, metabolic 

networks reconstructed by different sources have low agreement in their content. These issues 

indicate that those reconstructed networks are of low quality and not complete.  

To build a high quality genome scale metabolic networks, a comprehensive protocol has 

recently been proposed. The reconstruction process involves several stages, including enzyme 

annotation, network assembly, gap filling, and network modeling and validation. Notably, 

reconstruction process is time consuming and may take years to be done. Significantly, there is 

a lot of manual curation involved. These currently become bottleneck issues in network 

reconstruction.  

From the general reconstruction protocol, we have addressed three problems to improve 

network quality as well as reduce time and effort required in building such network. The first 

problem is to reliably annotate the set of enzyme encoding genes in a given genome. This 



Chapter 6 Conclusions and future works 
 

110 

problem is well established and widely known. However, while previous solutions focus on 

achieving a good precision, the predictable enzyme coverage needs further improvement. The 

second problem is to fill gaps after the network has initially been reconstructed. This problem 

involves predicting enzyme genes for existing metabolic reactions in the networks. The third 

problem is to quickly assembly a draft network, making use of reliable annotation resources. 

This procedure is important for updating new network as well as for rebuilding network from 

scratch. By addressing these three problems and developing computational methods for 

resolving them, network reconstruction become more productive and the human effort involved 

can be reduced.  

For the gap filling problem, we have developed MeGaFiller to fill metabolic gaps in 

reconstructed networks. MeGaFiller, which based on retrofitting and integrating multiple 

function predictors into gap filler, can indeed overcome the issues of poorly characterized 

enzyme families faced by previous homology based methods. Our method was able to predict 

candidates for “difficult-to-fill” gaps in reconstructed networks which previous methods failed. 

As a result, about 35% of current gaps in several networks has been proposed at least one 

candidate.  

For the enzyme annotation problem, we have developed EnzDP – an automated reliable 

enzyme function predictor. This is a novel strategy for enzyme classification based on the 

weighted architecture of functional domains DEAS and calibrated HMM profiles. Overall our 

bottom-up method had significantly improved accuracy and coverage over direct top-down 

methods. EnzDP achieved 94.5% micro-accuracy in 5-fold cross validation and outperformed 

other alternatives. EnzDP can serve as fast reliable enzyme classifier for timely analyze 

genomics and metagenomics sequence data. 

For network assembly problem, we developed NetA to assembly a connected network 

without reaction gaps, with minimized number of metabolic gaps. Input of NetA is a set of 

annotated enzymes, which can be produced by EnzDP. We showed that the network assembly 

problem is NP-Hard, and developed NetA as an approximation algorithm. Following graph-

theoretic approach, NetA predicts and optimizes template pathways by deleting unnecessary 
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reactions while maintaining connectivity. We applied EnzDP, NetA and MeGaFiller as a 

combined tool on rebuilding A.oryzae network, which resulted in an improved enzyme 

coverage, and reliable predictions. 

6.2 Summary of contributions 
In this research, a proof of concept methodology to improve the genome-scale metabolic 

network reconstruction pipeline has been developed. The combination of developed methods 

(EnzDP, NetA, and MeGaFiller) serves as a quick and effective tool to reduce time and human 

involvement in reconstructing high quality networks. This will push further the research on 

genome-scale reconstructions, which potentially leads to plentiful applications in medicine, 

bioengineering, and bio-energy/food processing industry.  

Three contributions are: 

 A novel method for finding missing gene and gap filling problem, which can improve 

quality of reconstructed networks, as well as help enriching metabolic annotation; 

 A stringent high throughput reliable enzyme classifier for annotating genomics 

sequences. This high throughput method is essential to timely interpret the huge amount 

of genomics data. The predictor produces high quality annotation data, which initiates 

other metabolic/genomics investigations. As a direct result, the method helps to reduce 

reconstruction errors towards a high quality metabolic reconstruction;  

 A quick and effective network assembly method with no reaction gaps and minimum 

number of metabolic gaps, to reduce time and manual effort in genome-scale metabolic 

reconstruction. Making use of gap filling, enzyme function prediction, and network 

assembly methods, this combined reconstruction aid tool will lead to new or updated 

metabolic networks as direct applications. 

6.3 Future works 
Though we have made every effort to improve the network reconstruction process which 

resulted in developed stringent tools, there is still room for further improvement towards a 
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comprehensive and complete genome-scale reconstruction. This section points out some of 

directions that deserve more attention.  

6.3.1 Pathway predictions and optimizations  

On doing network assembly, we find that available resources is not consistent and not fully 

complete, which significantly affect the reconstruction quality. Thus better algorithms for 

network assembly with less dependence on availability of annotation data are essential.  

An improvement to consider is to break down template pathways into smaller viable 

branches. Currently, we use template pathways that contain all possible metabolic 

transformations that can happen in the pathway, across all known organisms. However, an 

organism-specific pathway may express only a small part of it. Experiments showed that, only 

about 20% of reactions of the templates are occurred in S. cerevisiae and E. coli. Therefore, 

general template pathways may contain transformations that are irrelevant to the genome of 

interest. This issue complicates the MiniPath algorithm, since the algorithm has to connect those 

irrelevant pathway branches. So, to improve overall result, better set of template pathways 

should be use. Beside KEGG pathways, BioCyc database is a good alternative.  

On the other hand, MiniPath is currently an approximation algorithm, which has faced 

many sub-optimal cases. Thus, there is still a lot of room for improving MiniPath with optimal 

algorithm, e.g., with good heuristics. 

6.3.2 Network refinement and model simulation  

NetA currently produces a back-bone network of reactions, which is referred to as a draft 

reconstruction. To refine the network, the tasks in the pipeline should perform iteratively, with 

help of the combined tool. Indeed, to transform the network into usable model, more 

information should be added into the network. Essentially, network reconstruction should 

proceed to the phase of the pipeline to verify those predicted metabolic pathways. Information 

such as transcriptome/expression data is essential to improve network reliability 
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6.3.3 Transport proteins  

Transporters are proteins that serve the function of transporting chemicals within cellular 

environment across biological membranes. They are important to metabolic processes as they 

move ions, micro and macro molecules, thus connecting metabolic pathways between cell 

compartments. With expansion of transporters, a metabolic pathway/network becomes much 

more comprehensive and integrative, which potentially leads to more useful systems biology 

applications. Therefore, it is essential to annotate transporter functions expressed in the genome, 

and add them into the network. Predicting transporter functions from genomics data is also a 

challenging problem to be explored. 
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