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Abstract	
	

As	we	move	towards	an	era	of	precision	medicine,	the	ability	to	predict	

patient-specific	drug	responses	in	cancer	based	on	molecular	information	such	as	

gene	 expression	 data	 represents	 both	 an	 opportunity	 and	 a	 challenge.	 	 In	

particular,	methods	are	needed	that	can	accommodate	the	high-dimensionality	of	

data	to	learn	interpretable	models	with	the	goal	of	providing	the	right	drug	for	the	

right	patient	at	the	right	time.	

We	 propose	 a	 method	 based	 on	 ideas	 from	 recommender	 systems	

(CaDRReS)	 that	 predicts	 cancer	 drug	 responses	 for	 unseen	 cell	 lines/patients	

based	 on	 learning	 projections	 for	 drugs	 and	 cell-lines	 into	 a	 latent	

pharmacogenomic	space.	Comparisons	with	other	proposed	approaches	for	this	

problem	 based	 on	 large	 public	 datasets	 (CCLE,	 GDSC)	 show	 that	 CaDRReS	

provides	 consistently	 good	models	 and	 robust	 predictions	 even	 across	 unseen	

patient-derived	cell	line	datasets.	Also,	analysis	of	the	pharmacogenomic	spaces	

inferred	 by	 CaDRReS	 can	 be	 used	 to	 understand	 drug	 mechanisms,	 identify	

cellular	subtypes,	and	characterize	drug-pathway	associations.	

Furthermore,	we	propose	a	modified	version	of	CaDRReS	for	single-cell	

RNA-seq	 data	 to	 investigate	 intra-patient	 drug	 response	 heterogeneity,	 using	

head	and	neck	cancer	as	a	case	study.	We	showed	that	systematically	combining	

cell-type	specific	drug	response	predictions	provided	better	concordance	with	in	

vitro	drug	response	when	comparing	to	prediction	based	on	bulk	gene	expression.	

Finally,	to	transfer	our	in	silico	prediction	to	a	clinic,	we	incorporate	clinical	drug	

response	information	to	predict	an	upfront	patient-specific	drug	combination	that	

could	inhibit	multiple	cell	types	identified	within	a	patient,	resolving	intra-patient	

heterogeneity.	 	
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Chapter	1	

Introduction	

Advances	in	DNA	sequencing	technologies	allow	us	to	now	generate	large	

amounts	of	data	to	understand	cancer,	a	genetic	disease	that	causes	millions	of	

deaths	worldwide	every	year.	A	key	question	in	cancer	genetics	and	treatment	is	

to	identify	the	genetic	basis	of	uncontrolled	growth	in	cancer	cells,	and	to	identify	

vulnerabilities	 that	 can	 be	 the	 target	 of	 anti-cancer	 drugs.	 Another	 critical	

challenge	 is	 to	 understand	 the	 heterogeneity	 of	 response	 to	 anti-cancer	 drugs	

across	 patients.	 In	 the	 last	 few	 years,	 several	 international	 consortiums	 have	

generated	datasets	based	on	 systematic	 screening	of	 anti-cancer	drugs	 against	

established	 cancer	 cell	 lines,	 along	 with	 their	 genetic	 and	 transcriptional	

molecular	profiles.	Consequently,  these	datasets	allow	us	to	identify	patterns	in	

these	molecular	 profiles	 that	 can	 explain	 the	 varying	 levels	 of	 drug	 sensitivity	

across	patients,	an	opportunity	that	forms	the	central	focus	of	this	thesis.	

In	the	rest	of	 this	chapter,	we	will	review	the	motivation	for	this	 thesis	

including	 a	 more	 detailed	 introduction	 to	 cancer	 genomics	 and	 the	 need	 for	

patient-specific	cancer	drug	response	prediction.	This	will	be	followed	by	the	list	

of	publications	as	well	as	my	contributions	to	each	work	in	the	areas	of	cancer	

driver	and	drug	response	prediction	 that	 represent	a	major	part	of	 this	 thesis.	
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Subsequent	chapters	in	this	thesis	will	expand	on	these	topics.	In	Chapter	2,	we	

will	 discuss	 the	 challenge	 of	 identifying	 genetic	 drivers	 of	 cancer	 and	 the	

development	 of	 a	 new	 “consensus-based”	 cancer	 driver	 prediction	 method.	

Chapter	3	introduces	the	concept	of	“precision	medicine”	as	it	relates	to	cancer,	

and	 details	 different	 existing	 models	 for	 cancer	 drug	 response	 prediction,	

together	with	 their	strengths	and	 limitations.	 In	Chapter	4,	we	propose	a	new	

cancer	drug	response	prediction	model	(CaDRReS,),	and	compare	its	performance	

against	state-of-the-art	methods.	Chapter	5	expands	on	this	theme	and	discusses	

the	 utility	 of	 the	 “pharmacogenomic	 space”	 model	 that	 is	 learnt	 by	 CaDRReS.	

Chapter	6,	discusses	challenges	related	to	tumor	heterogeneity	and	how	methods	

such	as	CaDRReS	can	be	extended	and	applied	in	this	context.	Finally,	Chapter	7	

summarizes	the	major	conclusions	from	this	thesis	and	discusses	some	important	

directions	for	future	work.	

1.1 Background:	Cancer	genomics	

Cancer	causes	several	million	deaths	worldwide,	and	the	number	of	new	

cases	is	rising1.	It	is	well-known	as	a	genetic	disease	caused	by	changes	in	DNA	

sequence,	i.e.,	mutations.	Mutations	can	introduce	abnormal	behaviors	in	healthy	

cells	 through	 a	 variety	 of	 mechanisms,	 such	 as,	 altering	 gene	 expression	 and	

protein	 function.	 Breakthroughs	 in	 sequencing	 technologies	 allow	 us	 now	 to	

rapidly	 and	 accurately	 detect	 mutations	 and	 measure	 gene	 expression.	

Consequently,	international	efforts	such	as	The	Cancer	Genome	Atlas	(TCGA)2	and	

International	Cancer	Genome	Consortium	(ICGC)3	have	been	conducted	to	collect	

omics	information	for	several	thousand	tumors,	across	multiple	cancer	types,	in	

an	effort	to	understand	the	underlying	mechanisms.	
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One	of	 the	major	challenges	 in	cancer	genomics	 is	 to	search	 for	 ‘driver’	

mutations	that	lead	to	tumor	formation,	typically	by	granting	a	growth	advantage	

to	 cancer	 cells.	 A	 driver	 gene	 harboring	 driver	mutations	 can	 be	 identified	 by	

detecting	signals	of	positive	selection,	cancer-specific	signatures	in	the	mutated	

DNA	sequence,	as	well	as	from	the	effects	of	mutations	on	transcriptomic	profiles	

and	 protein	 functions	 4.	 The	 ability	 to	 discover	 driver	 genes	 and	 their	 related	

biological	 functions/pathways	 has	 a	 significant	 impact	 on	 cancer	 treatment	 as	

cancer	driver	genes	can	be	candidate	drug	targets	5.	Moreover,	besides	genomic	

data,	 others	 types	 of	 omic	 profiles	 including	 transcriptomes,	 epigenomes,	

metabolomes	and	proteomes	also	provide	complementary	information,	enabling	

us	to	gain	insights	into	the	complex	mechanisms	underlying	cancer	6.	

Genomic	and	transcriptomic	data	are	the	two	most	commonly	available	

data	types	that	are	used	for	studying	cancer	biology.	The	ability	to	identify	key	

mutated	genes,	i.e.,	biomarkers,	that	can	be	used	for	determining	drug	response	

in	cancer	cells	can	help	us	to	better	target	treatments.	However,	variations	in	drug	

response	across	different	cancer	cell	lines	still	exists	within	a	group	that	harbors	

the	same	mutational	biomarkers	7,8.	Also,	it	has	been	shown	that	these	different	

drug	 responses	 in	 cancer	 cell	 lines	 can	 be	 explained	 by	 differences	 in	

transcriptomic	profiles9.	The	heterogeneity	of	drug	response	across	patients	leads	

us	 to	 the	 challenge	of	predicting	patient-specific	drug	 response	based	on	 their	

multi-omic	profiles.	

1.2 Motivation:	 the	 need	 of	 patient-specific	 drug	 response	

prediction	

In	precision	medicine	as	it	pertains	to	cancer,	it	is	crucial	to	understand	

heterogeneity	across	cancer	types	as	well	as	across	different	patients.	While	the	
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ultimate	goal	is	to	provide	the	right	drug	to	the	right	patient	at	the	right	time	to	

maximize	 treatment	 effectiveness,	 one	 of	 the	main	 challenges	 is	 the	 ability	 to	

predict	drug	response	based	on	the	unique	molecular	profiles	of	patients.	Besides	

accurate	drug	response	prediction,	interpretability	is	also	an	essential	property	of	

any	 drug	 recommender	 system,	 allowing	 us	 to	 understand	 drug	 response	

mechanisms	that	play	a	role.	

Many	 existing	methods	 focus	 on	 constructing	 a	model	 to	 predict	 drug	

responses	 of	 cancer	 cell	 lines,	 independently	 for	 each	 drug	 7,9,10.	 Although	 this	

strategy	 allows	 the	 model	 to	 learn	 specific	 mechanisms	 for	 a	 given	 drug,	

performance	and	robustness	are	limited	by	the	small	number	of	cell	types	tested	

for	 each	 drug.	 Subsequently,	 models	 based	 on	 multitask	 learning,	 in	 which	

parameters	are	shared	across	drugs,	have	been	proposed	to	increase	the	number	

of	training	samples	11.	To	capture	relationships	between	drugs	and	cell	lines,	a	few	

models	based	on	collaborative	filtering	techniques	have	been	proposed	12.	These	

models	simultaneously	learn	hidden	properties	of	cell	lines	and	drugs	to	predict	

sample-specific	drug	responses.		

To	exploit	 a	 larger	number	of	 samples	 to	 construct	a	more	generalized	

model	and	overcome	limitations	of	existing	models	–	such	as	an	inability	to	predict	

drug	response	for	unseen	samples	and	information	losing	in	data	normalization	

steps,	we	have	developed	Cancer	DRug	Response	prediction	using	Recommender	

System	(CaDRReS).	CaDRReS	learns	a	latent	pharmacogenomic	space	can	predict	

patient-specific	 drug	 response	 based	 on	 transcriptomic	 profiles.	 Comparisons	

with	other	existing	methods	based	on	large	public	datasets	shows	that	CaDRReS	

provides	 consistently	 good	models	 and	 robust	 predictions	 even	 across	 unseen	

patient-derived	 cell-line	 datasets.	 Moreover,	 the	 pharmacogenomic	 space	

captures	 drug-drug,	 cell	 line-cell	 line,	 and	 drug	 cell	 line	 relationships.	 Our	
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extended	downstream	analyses	demonstrate	that	the	pharmacogenomics	space	

learned	can	be	used	for	understanding	drug	response	mechanisms.	Furthermore,	

we	show	that	CaDRReS	can	be	extended	to	the	analysis	of	heterogenous	patient	

tumors	based	on	single-cell	sequencing	approaches	to	accurately	predict	cancer	

drug	response	and	even	recommend	suitable	drug	combinations.	

1.3 List	of	publications	and	contributions	

1)	Predicting	Cancer	Drug	Response	using	a	Recommender	System	

Chayaporn	 Suphavilai,	 Denis	 Bertrand,	 Niranjan	 Nagarajan.	 “Predicting	
Cancer	Drug	Response	using	a	Recommender	System.”	Bioinformatics.	

This	work	describes	the	CaDRReS	system	and	the	pharmacogenomic	space	

that	 it	 learns	 and	 is	 the	major	 contribution	of	 this	 thesis,	 including	Chapter	3	

which	 introduces	 the	 drug	 response	 prediction	 problem	 and	 reviews	 existing	

methods,	 Chapter	 4	 which	 details	 the	 development	 and	 benchmarking	 of	

CaDRReS,	 and	 Chapter	 5	 which	 describes	 downstream	 analysis	 based	 on	 the	

pharmacogenomic	space.	

2)	 ConsensusDriver	 Improves	 upon	 Individual	 Algorithms	 for	 Predicting	
Driver	Alterations	in	Different	Cancer	Types	and	Individual	Patients	

Bertrand,	 Denis,	 Sibyl	 Drissler,	 Burton	 K.	 Chia,	 Jia	 Yu	 Koh,	 Chenhao	 Li,	
Chayaporn	 Suphavilai,	 Iain	 Beehuat	 Tan,	 and	 Niranjan	 Nagarajan.	
"ConsensusDriver	 Improves	 upon	 Individual	 Algorithms	 for	 Predicting	 Driver	
Alterations	in	Different	Cancer	Types	and	Individual	Patients."	Cancer	Research	
(2017).		

This	work	details	results	from	a	systematic	comparison	of	18	diverse	cancer	

driver	prediction	methods	to	understand	their	strengths	and	weaknesses.	Some	

of	the	major	results	from	this	work	and	how	this	impacts	precision	oncology	is	

highlighted	in	Chapter	2.	Based	on	the	orthogonality	of	predictions,	we	report	a	

new	consensus	method	that	significantly	improves	over	all	existing	methods.	
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In	this	work,	my	contributions	are	identifying	relationships	between	cancer	

drivers	and	biological	pathways	via	pathway	analysis	and	studying	the	roles	of	

cancer	drivers	as	drug	targets	(actionable	drivers).	Our	observations	suggest	that	

the	actionable	drivers	could	be	used	as	biomarker	 features	 in	a	drug	response	

prediction	model.	

3)	Comprehensive	characterization	of	cancer	driver	genes	and	mutations	

Bailey,	Matthew	H.,	Collin	Tokheim,	Eduard	Porta-Pardo,	Sohini	Sengupta,	
Denis	 Bertrand,	 Amila	 Weerasinghe,	 Antonio	 Colaprico	 et	 al.	 "Comprehensive	
characterization	of	cancer	driver	genes	and	mutations."	Cell	173,	no.	2	 (2018):	
371-385.		

We	joined	The	Cancer	Genome	Atlas	Research	Network	to	predict	cancer	

drivers	for	a	newly	generated	dataset	consisting	of	over	11,000	tumors	from	33	

cancer	types.	In	this	paper,	our	contribution	is	to	apply	multiple	tools	to	identify	

cancer	 driver	 and	 perform	 analyses	 to	 identify	 the	 effects	 of	 predicted	 cancer	

driver	mutations	on	gene	expression	levels	and	pathways.	The	key	results	from	

our	analysis	are	highlighted	in	Chapter	2.	

4)	Perspective	on	Oncogenic	Processes	at	the	End	of	the	Beginning	of	Cancer	
Genomics	

Ding,	 Li,	 Matthew	 H.	 Bailey,	 Eduard	 Porta-Pardo,	 Vesteinn	 Thorsson,	
Antonio	Colaprico,	Denis	Bertrand,	David	L.	Gibbs	et	al.	"Perspective	on	Oncogenic	
Processes	at	the	End	of	the	Beginning	of	Cancer	Genomics."	Cell	173,	no.	2	(2018):	
305-320.		

This	follow-up	paper	provides	an	overview	of	different	types	of	multi-omic	

analyses	 based	 on	 the	 newly	 generated	 pan-cancer	 driver	 gene	 list.	 Our	

contributions	 are	 summarized	 in	 Figure	 5	 (Relationships	 between	 Oncogenic	

Processes	 and	Driver	Genes)	 in	 the	paper,	 including	 identifying	 the	 impacts	 of	

cancer	 drivers	 on	 various	 oncogenic	 processes,	 studying	 mutual	 exclusive	

patterns	of	cancer	drivers,	as	well	as	uncovering	the	associations	between	cancer	
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types	 and	 different	 cancer-related	 biological	 processes,	 as	 detailed	 further	 in	

Chapter	2.	

5)	 Predicting	 cancer	 drug	 response	 in	 silico	 for	 targeting	 tumor	

heterogeneity	

Chayaporn	 Suphavilai,	 Ankur	 Sharma,	 Lorna	 Tu,	 Shumei	 Chia,	 Ramanuj	
DasGupta,	and	Niranjan	Nagarajan	(manuscript	in	preparation)	

Tumor	heterogeneity	is	well	recognized	as	an	important	factor	in	defining	

treatment	response	and	clinical	outcomes	in	diverse	cancer	types.	The	increased	

availability	of	single-cell	omics	approaches	opens	up	 the	possibility	 that	 tumor	

heterogeneity	can	be	accounted	for	in	computational	models	for	drug	response.	

In	this	manuscript,	we	applied	CaDRReS-Sc,	a	new	version	of	CaDRReS	for	single-

cell	data	(Chapter	6),	to	explore	heterogeneity	in	drug	response	in	head	and	neck	

cancer.	 The	 ability	 to	 predict	 intra-patient	 drug	 response	 heterogeneity	 has	

important	 applications	 for	 combating	 drug	 resistance	 and	 metastasis,	 with	

ongoing	 efforts	 focused	 on	 confirming	 CaDRReS-Sc’s	 utility	 for	 identifying	

complementary	drug	combinations.	



Chapter	2	

Genomic	elements	driving	cancer	

Cancers	are	believed	to	arise	typically	from	the	accumulation	of	mutations	

that	 eventually	 transform	healthy	 cells	 into	 cancer	 cells13.	 The	development	of	

tumors	 resembles	 Darwinian	 evolution	 of	 species	 where	 individual	 cells	

continuously	 gain	 heritable	 genetic	 variations	 that	 increase	 their	 ability	 to	

compete,	 survive,	 and	 reproduce.	 Typically,	 genes	 that	 drive	 cancer	 can	 be	

classified	 into	 two	 types	 including	 oncogenes,	 which	 provide	 selective	 growth	

advantages,	 and	 tumor	 suppressor	 genes,	 which	 in	 their	 native	 form	 prevent	

uncontrolled	cell	growth14.	

One	of	 the	major	challenges	 in	cancer	genomics	 is	 to	search	for	 ‘driver’	

mutations	in	the	sea	of	‘passenger’	mutations	that	are	not	related	to	cancer.	Driver	

mutations	disrupt	critical	biological	processes,	giving	rise	to	genomic	instability,	

unlimited	 cell	 division,	 sustained	 proliferative	 signaling,	 evasion	 of	 growth	

suppression,	altered	cellular	energetics	and/or	resistance	to	apoptosis4.	Although	

the	majority	of	cancer	driver	studies	have	focused	only	on	genomic	information,	

multi-omic	datasets	provide	complementary	 information	and	could	allow	us	 to	

discover	novel	 cancer	drivers	 (Figure	2.1A).	Several	 international	efforts	have	

generated	 cancer	 multi-omic	 profiles	 for	 the	 community	 to	 investigate	 and	
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develop	 tools	 for	 predicting	 cancer	 drivers.	 Some	 examples	 of	 large	 datasets	

include	 those	 from	 The	 Cancer	 Genome	 Atlas	 (TCGA)15,	 International	 Cancer	

Genome	 Consortium	 (ICGC)3	 and	 Catalogue	 of	 Somatic	 Mutations	 in	 Cancer	

(COSMIC)16.		

In	 this	 chapter,	 we	 provide	 an	 overview	 of	 cancer	 driver	 prediction	

methods.	We	then	present	results	from	the	three	cancer	driver	papers	listed	in	

Section	1.3,	including	our	work	on	consensus	methods	for	predicting	drivers	and		

pan-cancer	 analysis	 with	 such	 tools	 that	 highlight	 the	 challenges	 of	 using	

mutation	 information	 for	 understanding	 cancer	 biology.	 Analysis	 of	 the	

relationships	between	actionable	cancer	drivers	—identified	based	on	different	

underlying	hypotheses	of	how	cancer	drivers	cause	cancers—	and	drug	responses	

suggest	 the	 roles	 of	 drivers	 as	drug	 response	biomarkers,	which	 in	 turn	 could	

serve	as	features	for	predicting	drug	response	in	the	future. 

	
Figure	2.1	An	overview	of	cancer	driver	prediction	and	applications.	(A)	Types	of	omic	data	
related	to	cancer	driver	discovery.	(B)	Three	types	of	methods	for	identifying	cancer	drivers	based	
on	genomic	profiles.	(C)	An	overview	of	integrative	cancer	driver	prediction	tools	based	on	multi-
omic	profiles.	(D)	Applications	of	cancer	drivers.	
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2.1 Cancer	driver	prediction	

As	shown	in	Figure	2.1B-C,	despite	the	diverse	approaches	used,	existing	

cancer	driver	prediction	methods	naturally	fall	into	two	classes,	(i)	those	that	are	

primarily	based	on	genomic	information	and	corresponding	signals,	and	(ii)	those	

that	 try	 to	 integrate	 across	 multiple	 omic	 profiles	 and	 thus	 improve	 their	

sensitivity.	As	we	discuss	 later,	 their	 complementary	 strengths	also	enable	 the	

design	 of	 consensus	 approaches	 that	 are	 simultaneously	 more	 sensitive	 and	

specific.	

Identifying	cancer	driver	genes	based	on	sample	genomic	profiles	

We	 can	 categorize	 existing	 methods	 in	 this	 class	 according	 to	 their	

approach	for	detecting	signals	of	cancer	drivers	—	using	background	mutation	

rate	 to	 identify	 genes	 with	 high-frequency	 of	 mutations	 in	 cancer	 samples	

(frequency-based),	 calculating	 the	 impact	 of	 mutations	 on	 protein	 function	

(functional	 impact-based),	 and	 incorporating	 biological	 networks	 to	 identify	

coherent	sets	of	driver	genes	(network-based)	(Figure	2.1B).	

Frequency-based	 tools	 rely	 on	 the	 hypothesis	 that	 frequently	 mutated	

genes	 across	 tumors	 likely	 have	 a	 signature	 of	 selective	 advantage.	 The	more	

frequently	a	certain	gene	is	mutated	in	a	sample	cohort,	the	more	likely	that	the	

gene	is	a	driver.	This	approach	typically	relies	on	statistical	power	based	on	access	

to	 data	 from	 a	 large	 number	 of	 samples,	 and	 the	 assumption	 that	 background	

mutation	 rates	 can	 be	 appropriately	 estimated	 across	 cancer	 types,	 mutation	

types,	and	genomic	regions17.	MutSigCV	is	one	of	the	most	widely	used	tools	 in	

this	 category	 and	 identifies	 frequently	 mutated	 genes	 with	 respect	 to	 the	

background	mutation	rate	estimated	for	each	gene	by	considering	heterogeneities	

within	 and	 across	 samples18.	 GISTIC2.0	 (Genomic	 Identification	 of	 Significant	
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Targets	in	Cancer)	similarly	identifies	recurrent	somatic	copy	number	alterations	

(SCNA)	by	estimating	overall	background	rates	of	formation,	scoring	the	SCNAs	

according	to	their	 likelihood	of	occurrence	to	identify	candidate	driver	genes19.	

OncodriveCLUST	 identifies	 genes	 containing	 a	 cluster	 of	 mutations	 with	 the	

underlying	hypothesis	that	gain-of-function	mutations	tend	to	cluster	in	specific	

protein	regions20.	

Functional	impact-based	tools	evaluate	the	impact	of	point	mutations	on	

protein	 structure	 and	 functions	 based	 on	 information	 from	 evolutionary	

conservation,	 protein	 structures,	 and	 biochemical	 properties	 of	 mutated	

residues21.	 SIFT,	 PolyPhen2,	 and	MutationAssessor22–24	 are	 some	of	 the	widely	

used	 tools	 in	 this	 category,	 but	 were	 not	 specifically	 designed	 for	 identifying	

cancer	drivers.	Methods	such	as	CHASM	and	 fathmm25,26	 improve	on	 this	basic	

paradigm	 by	 incorporating	 properties	 of	 known	 cancer	 genes.	 For	 example,	

CHASM	 (Cancer-specific	 High-throughput	 Annotation	 of	 Somatic	 Mutations)	

identifies	missense	mutations	that	most	likely	enhance	tumor	cell	proliferation	by	

using	a	 random	 forest	 classifier	 trained	on	a	 list	of	known	cancer	genes.	Their	

random	 forest	 model	 takes	 into	 account	 the	 average	 nucleotide-level	

conservation,	SNP	density,	and	frequency	of	different	types	of	missense	changes.		

Similarly,	 fathmm	 (functional	 analysis	 through	 hidden	markov	models)	 uses	 a	

machine-learning	model	 that	 captures	 the	 properties	 of	 drivers	 from	 a	 list	 of	

known	 cancer	 genes,	 based	 on	 sequence	 conservation,	 disease	 association	

information,	and	functionally	neutral	amino	acid	substitutions	as	a	control	set.	As	

CHASM	and	fathmm	are	based	on	limited	training	sets,	their	ability	to	generalize	

across	different	families	of	proteins	may	be	limited.	

Network-based	 tools	 incorporate	 biological	 networks	 such	 as	 pathways	

and	 protein-protein	 interaction	 networks	 that	 allow	 them	 to	 infer	 biologically	
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coherent	groups	of	mutated	genes	 that	may	contribute	 to	cancer.	For	example,	

NetBox27	searches	for	the	shortest	path	between	every	pair	of	mutated	genes	to	

define	a	set	of	strongly	interconnected	mutated	genes,	while	HotNet228	uses	a	heat	

diffusion	process	to	model	interactions	among	genes	and	identify	sub-networks	

that	 are	 mutated	 more	 than	 expected	 by	 chance.	 Other	 types	 of	 biological	

networks	 are	 also	 studied;	 for	 example,	 MAXDRIVER	 constructs	 a	 combined	

network	 based	 on	 gene	 similarities,	 disease	 phenotype	 similarities,	 and	 gene-

disease	associations	to	identify	driver	genes	targeted	by	CNAs29.	Another	strategy	

is	to	search	for	mutual	exclusivity	of	mutated	genes	in	biological	networks	based	

on	the	hypothesis	that	different	patients	may	have	different	sets	of	driver	genes	

that	perturb	the	same	pathways.	While	Miller	et	al30	and	CoMEt31	directly	identify	

a	set	of	mutually	exclusive	mutated	genes,	Mutex	identifies	driver	genes	based	on	

mutual	exclusivity	of	mutated	genes	that	have	common	downstream	genes	in	a	

signaling	pathway32.		

There	 are	 several	 limitations	 for	 methods	 that	 are	 solely	 based	 on	

genomic	data.	Firstly,	estimating	background	mutations	rate	is	a	challenging	task	

because	mutation	frequencies	can	vary	across	cancer	types,	tissue	types,	samples,	

and	 genomic	 regions.	 Secondly,	 recurrently	 copy	 number	 altered	 regions	 can	

contain	many	genes,	of	which	only	a	few	are	expected	to	be	drivers.	Also,	some	

frequency-based	and	network-based	tools	require	a	large	number	of	samples	to	

have	sufficient	 statistical	power	 for	distinguishing	drivers	or	detecting	a	 set	of	

mutually	exclusive	genes	above	background	noise.	For	 functional	 impact-based	

tools,	although	they	directly	assess	the	impact	of	mutations	on	protein	functions	

and	do	not	 require	a	 large	number	of	 samples,	a	high	confidence	 list	of	 cancer	

driver	mutations	or	genes	is	still	needed	for	model	training.	Additionally,	methods	
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that	only	rely	on	evolutionary	conservation	tend	to	have	a	higher	false	positive	

rate	as	not	every	mutation	in	conserved	regions	is	oncogenic21.	

Integrative	methods	for	cancer	driver	prediction	

Multiple	types	of	omics	data,	i.e.,	different	types	of	experimental	data	from	

various	 fields	 of	 biological	 study	 (-omics)	 can	 be	 integrated	 to	 identify	 cancer	

driver	 genes.	Combining	genomic	data	with	other	 types	of	omics	data,	 such	as	

transcriptomic	 data,	 can	 allow	 us	 to	 discover	 rare	 and	 novel	 cancer	 driver	

mutations	 33–35.	 Integrative	 methods	 can	 be	 classified	 based	 on	 the	 strategies	

employed	 into	 three	 categories:	 model-based,	 integrative	 network-based,	 and	

meta-analysis	tools.	

Model-based	 tools	 construct	 a	 computational	 model	 to	 predict	 cancer	

drivers	 based	 on	 sample	 multi-omic	 profiles.	 For	 instance,	 Oncodrive-CIS	

measures	cis	effects,	i.e.,	the	impact	of	an	alteration	on	the	expression	of	the	gene	

harboring	 it,	 and	predicts	 genes	 that	bias	 toward	deregulation	 caused	by	 copy	

number	alterations	as	candidate	drivers36.	iPAC	(in-trans	Process	Associated	and	

Cis-correlated	genes)	uses	statistical	tests	to	assess	both	cis	and	trans	effects,	i.e.,	

impacts	of	an	alteration	in	a	gene	on	other	genes	or	biological	processes	as	well,	

to	identify	candidate	driver	genes37.	CONEXIC	(COpy	Number	and	EXpression	In	

Cancer)	uses	a	Bayesian	network	to	discover	associations	between	a	candidate	

driver	and	a	set	of	differentially	expressed	genes	and	searches	for	combinations	

of	 candidate	 drivers	 that	 most	 likely	 explain	 changes	 in	 expression	 across	

samples38.	 The	 method	 CNAmet	 integrates	 genomic,	 transcriptomic,	 and	

epigenomic	data	through	a	model	that	uses	a	signal-to-noise	ratio	statistic	based	

on	 gene	 expression	 values	 across	 samples	 to	 calculate	 methylation	 and	 copy	

number	 weights	 for	 detecting	 driver	 genes39.	 Helios	 identifies	 significantly	

amplified	regions	and	uses	information	on	point	mutations,	gene	expression	data,	
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and	shRNA	screening	data	to	prioritize	driver	genes	inside	copy	number	altered	

regions40.	

Integrative	network-based	tools	incorporate	biological	networks	to	infer	

relationships	among	genes	and	link	different	types	of	omics	data	for	identifying	

cancer	drivers,	especially	driver	genes	that	rarely	harbor	mutations.	For	example,	

PARADIGM	incorporates	a	signed	and	directed	biological	network	to	construct	a	

factor	graph	based	on	gene	expression	and	mutations	and	calculates	an	activity	

value	 representing	 the	 probability	 that	 a	 given	 gene	 contribute	 to	 cancer41.	

PARADIGM-SHIFT	 predicts	 whether	 a	 particular	 mutation	 is	 neutral,	 gain-of-

function,	or	loss-of-function	for	each	sample	by	using	activity	scores	calculated	by	

PARADIGM.	 The	model	 evaluates	 the	 degree	 to	which	 a	mutation	 disturbs	 the	

influence	of	upstream	genes	on	downstream	genes	and	then	predicts	genes	having	

large	perturbations	as	drivers42.	Other	integrative	network-based	tools	require	a	

simpler	biological	network,	which	does	not	provide	directionality	and	interaction	

types	 but	 contains	 a	 larger	 set	 of	 genes.	 DriverNet	 calculates	 the	 impact	 of	

mutated	genes	on	expression	levels	of	the	neighboring	genes	in	the	network	by	

applying	 a	 greedy	 algorithm	 to	 identify	 the	 smallest	 set	 of	mutated	 genes	 that	

covers	the	largest	number	of	deregulated	genes	as	driver	genes34.	OncoIMPACT	

evaluates	 the	 impact	 of	 mutated	 genes	 on	 changes	 in	 gene	 expression	 by	

identifying	 a	 gene	 module	 that	 consists	 of	 mutated	 genes	 and	 associated	

differentially	expressed	genes	in	each	sample	and	then	predicts	sample-specific	

driver	genes	that	comprehensively	explain	the	deregulated	genes	in	the	sample	33.	

DawnRank	uses	a	modified	PageRank	algorithm	to	iteratively	rank	mutated	genes	

according	 to	 their	 impact	on	differentially	 expressed	genes	and	predicts	 genes	

with	higher	ranks	as	cancer	drivers35.	
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Meta-analysis	 based	 methods	 combine	 results	 from	 existing	 tools	 to	

predict	a	more	comprehensive	and	robust	list	of	driver	genes.	Cancer	genes	can	

have	different	signals	of	positive	selection	due	to	the	functional	diversity	of	their	

products.	For	example,	the	gene	RB1	is	identified	by	detecting	significantly	high	

mutation	frequency	but	could	not	be	detected	by	assessing	a	regional	clustering	

of	mutations,	 while	 the	 opposite	 is	 true	 for	 the	 gene	 HRAS43.	 These	 examples	

suggest	 that	 combining	 tools	 detecting	 different	 signals	 can	 increase	 the	

sensitivity	of	driver	prediction	as	well	as	reduce	the	number	of	false	positives.	For	

instance,	MutSig	combines	the	p-values	of	MutSigCV	and	MutSigCL	that	identify	

alterations	having	 a	 higher	degree	of	 positional	 clustering	 than	 expected,	with	

MutSigFN	 that	 detects	 the	 accumulation	 of	 alterations	 at	 locations	 of	 higher	

conservation	 relative	 to	 other	 sites	 in	 the	 gene44.	 OncodriveFM	 computes	

functional	 impact	scores	 from	SIFT,	PolyPhen	and	Mutation	Assessor,	and	then	

combines	the	scores	using	Fisher’s	exact	test45.	Another	way	to	combine	results	

from	 different	 types	 of	 methods	 is	 to	 use	 a	 quasi-majority	 vote	 approach	 to	

prioritize	 the	 predicted	 genes.	 For	 example,	 the	 Integrative	 Onco	 Genomics	

(IntOGen)	 database	 allows	 users	 to	 visualize	 and	 search	 for	 cancer	 drivers	

predicted	 by	 a	 specific	 number	 of	 tools46.	 DriverDB	 is	 another	 database	 that	

provides	 cancer	 drivers	 predicted	 by	 different	 types	 of	 methods	 including	

frequency-based,	 network-based	 and	 functional	 impact-based	 methods47.	

Moreover,	 several	 machine-learning	 algorithms,	 including	 a	 random	 forest	

classifier48,	support	vector	machine49	and	multi-kernel	learning50,	can	be	used	to	

combine	scores	and	p-values	obtained	from	individual	tools.	For	instance,	Liu	et	

al.	 combined	 the	 p-values	 and	 scores	 from	 multiple	 tools	 using	 an	 ensemble	

classifier	51.	

	



Chapter	2.	Genomic	elements	driving	cancer	

16	
	

2.2 ConsensusDriver	

In	this	second	part,	we	investigate	a	consensus	approach	to	combine	the	

strengths	of	different	types	of	cancer	driver	prediction	methods	discussed	in	the	

first	part.	Motivated	by	the	fact	that	driver	prediction	models	are	based	on	various	

assumptions,	we	have	developed	ConsensusDriver	that	allows	us	to	combine	the	

orthogonal	 strengths	 from	 18	 driver	 prediction	 methods	 on	 more	 than	 3,400	

tumor	 samples.	 ConsensusDriver	 uses	 a	 rank	 aggregation-based	 approach	 to	

systematically	select	a	subset	of	methods	from	different	classes	to	obtain	a	list	of	

high-quality	driver	genes.	We	used	a	cancer	gene	gold-standard	list	compiled	from	

several	sources	 for	evaluation.	ConsensusDriver	outperformed	those	 individual	

methods	and	other	meta-analysis	tools	for	both	cohort	and	patient-specific	levels.	

Besides	 the	 gold-standard	 gene	 list,	we	 constructed	 a	 list	 of	 actionable	

driver	genes	that	are	targets	of	anticancer	drugs	and	could	be	decision	support	in	

precision	medicine.	We	analyzed	the	top	5	driver	genes	predicted	from	different	

methods	and	observed	significant	variability	to	predict	actionable	driver	genes,	

highlighting	differences	in	underlying	models	of	various	methods.	We	also	found	

that	 methods	 that	 incorporate	 information	 of	 gene	 expression	 dysregulation	

predict	actionable	driver	genes	in	a	considerably	higher	number	of	patients.	Still,	

low	percentage	of	 the	patients	with	actionable	genes	was	observed,	suggesting	

that	predicting	actionable	cancer	drivers	is	a	challenging	problem.	

2.3 Characterization	of	cancer	drivers	and	oncogenic	processes	

The	Cancer	Genome	Atlas	Research	Network	(TCGA	Research	Network)	

has	conducted	the	Multi-Center	Mutation-Calling	Multi-tumor	Completion	(MC3)	

network	 consisting	 of	 over	 11,000	 tumors	 from	 33	 cancer	 types.	 To	 study	

characteristic	of	cancer	driver	genes	and	understand	impact	of	the	driver	genes	
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on	oncogenic	process,	we	 jointly	worked	with	The	TCGA	Research	Network	on	

two	 papers:	 1)	 “Comprehensive	 characterization	 of	 cancer	 driver	 genes	 and	

mutations,”	for	which	we	applied	our	driver	prediction	pipeline	to	predict	cancer	

driver	genes	for	a	subset	of	computational	tools	5	and	2)	“Perspective	on	Oncogenic	

Processes	at	the	End	of	the	Beginning	of	Cancer	Genomics”	for	which	we	examined	

impacts	of	tumor	genome	on	transcriptome	that	can	reveal	disrupted	biological	

processes	6.	

The	TCGA	Research	Network	gathered	multiple	 research	groups	across	

different	countries	to	predict	cancer	driver	genes,	which	could	serve	as	new	drug	

targets	and	help	us	to	understand	the	mechanisms	of	each	cancer	type.	Different	

classes	of	driver	prediction	tools	output	different	sets	of	driver	genes,	highlighting	

that	 the	problem	 is	 challenging	 and	driver	 genes	 can	 cause	 cancers	 in	 various	

ways.	Next,	the	outputs	of	different	categories	of	cancer	driver	prediction	tools	

were	 combined	 to	 obtain	 a	 final	 driver	 consensus	 list	 consisting	of	 299	 genes,	

which	 consists	 of	 computationally	 predicted	 genes	 and	 driver	 genes	 obtained	

from	manual	curation	of	the	literature.	The	299	cancer	genes,	as	well	as	mutations	

positioning	within	the	genes,	have	been	extensively	analyzed	in	several	aspects.	

For	example,	missense	driver	mutations	occur	more	frequent	in	oncogene	than	

tumor	 suppressor	 genes,	while	 truncations	 or	 frameshifts	 occur	more	 often	 in	

tumor	 suppressor	genes.	Also,	 therapeutic	 implications	of	 the	predicted	driver	

genes	were	assessed	based	on	databases	of	known	drug	biomarkers	and	more	

than	half	of	the	samples	harbored	at	least	one	actionable	driver	genes.	However,	

the	 gene	 list	 is	 limited	by	 consist	 of	mutations	 and	 small	 indels	without	 other	

types	of	aberrations.	Many	important	issues	still	need	to	be	solved	such	as	moving	

beyond	the	effect	of	a	single	gene	and	integrative	analysis	that	takes	into	account	

multiple	types	of	omic-profiles.		
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Subsequently,	 the	 TCGA	Research	Network	 summarize	 and	 expand	 the	

findings	of	 the	TCGA	PanCancer	Atlas	Projects	 in	 a	manuscript	 “Perspective	 on	

Oncogenic	Processes	at	the	End	of	the	Beginning	of	Cancer	Genomics”6.	The	paper	

focuses	on	three	aspects	of	oncogenic	processes:	1)	somatic	and	germline	variants	

and	 their	 impacts	 in	 the	 tumors;	 2)	 the	 impact	 of	 the	 tumor	 genome	 and	

epigenome	 on	 transcriptome	 and	 proteome;	 and	 3)	 the	 relationships	 between	

tumor	 and	microenvironments,	 and.	 Our	 contribution	 for	 this	 paper	 is	 for	 the	

second	 aspect,	 where	 we	 investigated	 the	 impacts	 of	 driver	 mutations	 on	

transcriptomes	and	discovered	relationships	between	oncogenic	processes	and	

cancer	types	through	the	driver	consensus	list.	

For	 the	 first	 aspect,	 analyzing	 the	 interaction	 between	 somatic	 and	

germline	drivers	revealed	that	germline	variants	are	usually	from	genes	involved	

in	maintaining	 genomic	 stability,	while	 somatic	 alterations	 are	 involved	 in	 cell	

cycle,	metabolism,	signaling,	and	transcriptional/translational	regulation.		

The	 second	aspect	 studies	 cis-effects	 of	 driver	mutations	 and	mutation	

types	 on	 transcriptome	 indicated	 clear	 upregulation	 of	 cancer	 driver	 genes	

affected	 by	 missense	 mutations	 and	 downregulation	 affected	 by	 nonsense	 or	

frameshift	mutations.	Additionally,	we	used	OncoIMPACT	to	investigate	the	effect	

of	 driver	 mutations	 on	 transcriptome	 by	 integrating	 protein	 interaction,	

transcriptomic,	and	mutation	information.	We	found	that	driver	mutations	often	

affect	the	change	of	gene	expression	levels	of	interacting	genes	and	genes	in	the	

same	 biological	 pathways	 that	 are	 general	 tumorigenic	 processes	 and	 are	

frequently	 deregulated	 across	 cancer	 types.	 We	 also	 observed	 associations	

between	 oncogenic	 processes	 and	 cancer	 types,	 as	 well	 as	 known	 pairs	 of	

mutually	 exclusive	 mutated	 genes,	 suggesting	 that	 multiple	 drivers	 are	

functionally	interchangeable	in	particular	contexts.		
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To	 understand	 tumor	microenvironment,	 relationships	 between	 tumor	

cells	and	immune	cells	were	studied.	The	analysis	revealed	relationships	between	

lymphocytic	 infiltrate	 degrees	 measured	 by	 gene	 expression	 and	 feature	

extracted	from	imaging	data.	Also,	it	has	been	found	that	mutational	diver	genes	

may	affect	the	transcriptional	regulation	that	guides	immune	response,	which	can	

affect	response	to	immunotherapy	treatment.	

In	 this	 chapter,	we	explored	different	 types	of	 cancer	driver	prediction	

methods	and	combined	their	orthogonal	strengths	to	obtain	a	consensus	list	of	

cancer	 driver	 genes.	 Next,	 we	 studied	 the	 characteristics	 of	 cancer	 drivers	

including	both	oncogenes	and	tumor	suppressor	genes.	We	then	investigated	the	

impacts	of	cancer	driver	mutations	on	transcriptomic	information	of	oncogenic	

processes,	associations	among	driver	genes,	and	relationships	between	oncogenic	

processes	and	cancer	types.	We	learned	that	driver	genes	could	serve	as	a	drug	

target,	 which	 is	 useful	 for	 drug	 discovery,	 and	 gene	 expression	 could	 capture	

dysregulation	of	cancer-related	biological	processes,	mutation	effects,	and	tumor	

microenvironments.	 However,	 there	 are	 still	 remaining	 challenges	 in	 cancer	

treatment	and	one	of	the	key	challenges	is	the	variability	of	drug	response	levels	

which	could	be	different	across	patients.	Cancer	driver	genes	might	serve	as	drug	

targets	or	biomarkers,	while	transcriptomic	profiles	of	oncogenic	pathways	could	

be	used	for	predicting	patient-specific	drug	response.	In	Chapter	3,	we	discuss	

the	challenge	of	drug	response	prediction	and	different	 types	of	computational	

models	for	predicting	patient-specific	drug	responses.	



Chapter	3	

Drug	response	prediction	

3.1 Cancer	precision	medicine		

Precision	 medicine	 is	 about	 prevention	 and	 treatment	 that	 take	 into	

account	individual	variability	52.	In	cancer	precision	medicine,	the	goal	is	to	give	

the	 right	 treatment	 for	 the	 right	 patient	 at	 the	 right	 time	based	 on	multi-omic	

profiles	to	improve	effectiveness	and	reduce	the	side	effects	of	the	treatment.	The	

genomic	 and	 transcriptomic	 profiles	 can	 help	 us	 to	 understand	 drug	 response	

heterogeneity	across	patients	7,8	highlighting	the	need	of	computational	models	to	

learn	 patterns	 of	 the	 profiles	 to	 understand	 inter-patient	 drug	 response	

heterogeneity.	To	study	relationships	between	genomic/transcriptomic	profiles	

and	drug	response	behaviors,	international	efforts	such	as	CCLE7,	CTRP8,	GDSC9,	

and	NCI6053	have	generated	datasets	of	drug-screening	on	several	hundreds	of	

cancer	cell	lines.	A	drug-screening	experiment	measures	viabilities	of	a	cell	line	

for	each	drug	at	multiple	concentrations	and	then	a	dose-response	curve	is	fitted.	

Based	 on	 the	 dose-response	 curve,	 summary	 scores	 such	 as	 IC50	 (the	

concentration	 of	 a	 drug	where	 the	 cell	 viability	 is	 reduced	 by	 50%),	 EC50	 (the	

concentration	of	a	drug	that	gives	a	half-maximal	response),	and	AUC	(the	area	

under	 the	 dose-response	 curve)	 are	 calculated.	 The	 availability	 of	 both	 drug	
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response	data	and	multi-omic	profiles	allow	us	to	develop	a	computational	model	

to	predict	patient-specific	drug	responses.	

3.2 Computational	models	for	drug	response	prediction		

Several	 computational	models	 have	 been	 proposed	 for	 predicting	 drug	

responses	 using	 transcriptomic,	 genomic,	 or	 other	 omic-features11,54–56.	 We	

categorized	 the	 existing	 methods	 into	 two	 groups,	 drug-specific	 models,	 and	

models	 based	 on	 collaborative	 filtering	 techniques.	We	 discuss	 the	 underlying	

assumption	of	the	models,	as	well	as	their	strengths	and	weakness.	

A	drug-specific	model	for	predicting	drug	response	

A	common	strategy	to	predict	drug	response	is	to	construct	a	model	for	

each	 drug	 independently.	 With	 this	 strategy,	 the	 model	 learns	 patterns	 of	

transcriptomic/genomic	that	explain	drug	response	heterogeneity	of	a	given	drug	

across	cell	lines	and	identify	genes	explaining	drug	responses.	Many	drug-specific	

models	are	based	on	gene	expression,	while	 few	models	are	based	on	genomic	

information.	For	example,	both	CCLE	and	GDSC	papers	presented	drug	response	

prediction	based	on	gene	expression	using	an	ElasticNet	model.	Additionally,	for	

the	GDSC,	a	logic	model	was	trained	based	on	genomic	information	to	predict	a	

combination	of	mutated	genes	that	can	explain	drug	response	behaviors.	Other	

drug-specific	 models	 include	 linear	 regression	 models	 based	 on	 gene	

expression7,9,10	or	based	on	a	combination	of	gene	expression	and	other	genomic	

information	such	as	copy	number	alterations	and	DNA	methylation57,58.	Nonlinear	

models	include	neural	networks,	random	forests,	support	vector	machines,	kernel	

regression	 based	 on	 multiple	 types	 of	 genomic	 information59–61,	 and	 a	 neural	

network	model	that	also	incorporates	drug	property	information62.	
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Although	the	drug-specific	models	showed	good	predictive	performances,	

their	generalizability	is	limited	by	a	small	number	of	cell	lines	tested	for	each	drug.	

To	increase	the	number	of	data	points	and	obtain	a	more	robust	model,	a	Bayesian	

multitask	multiple	kernel	learning	(BMTMKL)	approach	has	been	proposed11.	The	

BMTMKL	 jointly	 learned	 across	 multiple	 drugs	 and	 achieved	 the	 best	

performance	 in	 the	 DREAM	 challenge	 for	 drug	 response	 prediction.	 This	

promising	result	highlighted	the	usefulness	of	sharing	information	across	drugs	

in	improving	the	accuracy	of	drug	response	prediction.	However,	one	limitation	

of	multitask	learning	is	that	it	learns	parameters	that	are	shared	across	all	drugs,	

preventing	us	from	learning	parameters	specific	for	each	drug	or	different	classes	

of	 drugs.	 Also,	 a	 multitask	 learning	 requires	 normalization	 of	 drug	 response	

values,	 causing	 a	 loss	 of	 drug	 ranking	 information	 for	 a	 given	 cell	 line.	

Consequently,	the	predicted	drug	response	might	not	be	suitable	to	use	in	cancer	

precision	medicine,	where	we	need	a	decision	support	system	to	suggest	drugs	

for	a	given	patient	based	on	their	molecular	profiles.	

Collaborative	filtering	based	models	

To	predict	the	drug	response	of	a	given	pair	of	drug	and	cell	line,	multitask	

learning	 assigns	 all	 drugs	 equal	 importance.	 However,	 it	 could	 be	 more	

meaningful	 to	 prioritize	 information	 from	 similar	 drugs,	 as	 is	 possible	 using	

collaborative	 filtering	 techniques.	 In	 other	 words,	 collaborative	 filtering	

techniques	have	an	ability	to	predict	drug	response	based	on	information	from	a	

subset	of	training	cell	 lines	(drugs)	that	have	similar	properties	as	a	predicting	

cell	line	(drug).	In	the	area	of	recommender	systems,	collaborative	filtering	is	a	

framework	 to	 analyze	 relationships	 between	 users	 (cell-lines/patients)	 and	

dependencies	 among	 items	 (drugs)	 to	 identify	 new	 user-item	 associations	

(patient-specific	drug	response)63.	The	two	major	classes	of	collaborative	filtering	
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techniques	 are	 (i)	 neighborhood	 methods,	 which	 predict	 the	 user-item	

association	 based	 on	 predefined	 user-user	 and	 item-item	 similarities,	 and	 (ii)	

latent	factor	models,	which	use	matrix	factorization	to	identify	a	latent	space	that	

captures	 user-item	 associations.	 Matrix	 factorization	 techniques,	 in	 particular,	

have	shown	promising	results	in	the	Netflix	Prize,	a	competition	for	collaborative	

filtering	methods	to	predict	user	ratings	for	movies	based	on	a	rating	history64.	

The	 collaborative	 filtering	 techniques	 have	 been	 used	 for	 predicting	

patient-specific	drug	responses.	Based	on	a	neighborhood	method,	Sheng	et	al.65	

define	drug-specific	cell	line	similarity	and	drug	structural	similarity,	then	predict	

unobserved	drug	responses	by	calculating	a	weighted	average	of	observed	drug	

responses	according	to	both	drug	and	cell	line	similarity.	However,	the	model	is	

solely	based	on	the	assumption	that	the	predefined	similarities	can	explain	drug	

responses	 and	 it	 does	 not	 take	 into	 account	 the	 observed	 drug	 response	

information	to	define	drug	similarity.	For	the	matrix	factorization	approach,	Khan	

et	 al.12	 construct	 component-wise	 kernelized	 Bayesian	 matrix	 factorization	

(cwKBMF)	model	to	predict	drug	responses	based	on	multiple	cell	 line	kernels.	

The	model	can	identify	drug-pathway	associations	and	outperformed	BMTMKL.	

However,	 both	 cwKBMF	and	BMTMKL	 require	per-drug	normalization	of	 drug	

response	 values	 and	 this	 preprocessing	 step	 leads	 to	 a	 loss	 of	 information	 on	

relative	ranking	of	drugs	within	each	cell	line.	Also,	we	note	that	Wang	et	al.	have	

proposed	 a	matrix	 factorization	model	 based	on	 cell	 line	 and	drug	 similarities	

(SRMF)	 that	 could	 outperform	 cwKBMF,	 but	 the	 model	 does	 not	 tailor	 for	

predicting	drug	response	of	unseen	samples66.	

Overall,	 the	 small	 number	 of	 cell	 lines	 tested	with	 each	 drug	 lead	 to	 a	

challenge	of	learning	robust	models	that	provide	meaningful	predictions	in	a	new	

dataset.	 Some	models	 do	 not	 have	 an	 ability	 to	 predict	 drug	 response	 for	 an	
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unseen	patient/cell	line	or	are	not	suitable	for	predicting	drug	response	based	on	

transcriptomic	profiles	measured	from	different	technologies	such	as	microarray	

and	RNA	sequencing	(RNA-seq).	Additionally,	the	interpretability	of	models	and	

their	usage	to	obtain	biological	insights	has	not	been	extensively	explored	in	the	

field.	 In	 the	 next	 chapter,	 we	 proposed	 CaDDReS,	 a	 model	 based	 on	 matrix	

factorization	 technique	 to	 predict	 patient-specific	 drug	 response,	 address	 the	

limitations	 of	 existing	models,	 as	well	 as	 provide	 biological	 insights	 into	 drug	

response	 mechanisms.	 Although	 we	 mainly	 used	 cancer	 cell	 line	 datasets	 to	

develop	and	test	our	models,	for	the	sake	of	completeness,	we	discuss	other	data	

sources	that	provide	tumor	and	normal	tissues	information	and	existing	studies	

that	analyze	these	data	sources.	

3.3 Incorporating	multi-omic	profiles	of	tumors 

Drug	response	prediction	models	are	typically	developed	and	tested	on	

only	 cancer	 cell	 line	 datasets	 containing	 a	 thousand	 cell	 lines,	while	 there	 are	

several	datasets	such	as	TCAG	and	ICGC	that	provide	several	thousands	of	tumors	

and	 normal	 tissues	 (Chapter	 2).	 Although	 drug	 response	 information	 is	 not	

available	for	those	samples,	it	could	be	useful	to	combine	both	tumor	and	cell	line	

datasets.	For	example,	Allen	et	al.	constructed	a	database	of	drug-related	tumor	

alterations	 for	 genomics-driven	 therapy	 (TARGET)67.	 They	 also	 proposed	 an	

algorithm,	precision	heuristics	for	interpreting	the	alterations	landscape	(PHIAL),	

to	rank	alterations	observed	in	whole-exome	sequencing	(WES)	studies	based	on	

TARGET	 database,	 known	 cancer	 genes,	 pathway	 information,	mutation	 types,	

and	 gene	 expression.	 PHIAL	 can	 identify	 and	 prioritize	 clinically	 relevant	

alterations	including	both	in	standard-of-care	and	unexpected	clinically	relevant	

alterations.	To	assign	clinical	 relevance	 to	WES	data,	Ghazani	et	al.	proposed	a	

framework	based	on	PHIAL	for	assessing	somatic	and	germ-line	variants	detected	
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in	patients,	as	well	as	a	computational	framework	for	annotating	clinical	relevant	

that	has	superior	scalability	comparing	to	a	tumor	expert	board68.	

Besides	methods	for	ranking	actionable	alterations	based	on	the	curated	

database,	 Lorio	 et	 al.	 integratively	 analyzed	 both	 human	 tumor,	 consisting	 of	

>6,800	samples,	and	cancer	cell	line	datasets	9.	Based	on	the	tumor	dataset,	they	

identified	 Cancer	 functional	 events	 (CFEs)	 comprising	 of:	 1)	 predicted	 cancer	

driver	 genes	 based	 on	 multiple	 cancer	 driver	 prediction	 tools,	 2)	 recurrently	

aberrant	copy	number	segments,	and	3)	hypermethylated	sites.	They	showed	that	

a	large	panel	of	cell	lines	could	cover	CFEs	identified	in	patients	and	then	applied	

different	 computational	 models	 to	 determine	 the	 power	 of	 CFEs	 for	 drug	

sensitivity	prediction	on	the	cell	line	dataset.	They	constructed	ANOVA	analysis	

and	LOBICO	 (a	 logic	model)	 to	 identify	 drug	 response-related	 single	 CFEs	 and	

combination	 of	 CFEs,	 respectively.	 Finally,	 they	measured	 the	 contributions	 of	

different	 types	 of	 omics	 data	 and	 observed	 that	 for	 pan-cancer	 analysis	 gene	

expression	 performed	 the	 best,	 while	 in	 the	 cancer-specific	 analysis	 the	 best	

performing	models	are	based	on	genomic	features.		

Geeleher	et	al.	recently	proposed	an	imputed	drug-wise	association	study	

(IDWAS),	 a	 framework	 for	 discovering	 pharmacogenomic	 biomarkers	 in	 the	

human	tumor	using	a	model	learned	from	transcriptomic	profiles	of	cancer	cell	

lines69.	With	the	ten	times	larger	number	of	samples	in	tumor	dataset	compared	

to	the	cell	 line	dataset,	the	framework	could	improve	the	detection	of	clinically	

actionable	 somatic	 alterations	 and	 identify	 new	 biomarkers,	 highlighting	 the	

usefulness	of	analyzing	both	cancer	cell	lines	and	human	tumor	datasets.	

In	 this	work,	we	mainly	used	 cancer	 cell	 line	datasets	 to	 construct	 and	

evaluate	 our	models	 because	 they	 provide	 both	 drug	 response	 and	molecular	

information	 of	 the	 samples	 (Chapter	 4-5).	 However,	 we	 also	 analyzed	 TCGA	
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dataset	 that	contains	 information	about	tumors,	survivorship,	and	clinical	drug	

response	 of	 the	 corresponding	 patients	 to	 study	 intra-patient	 heterogeneities	

(Chapter	6).	

3.4 Toward	cancer	precision	medicine	

Several	drug	response	prediction	models	have	been	proposed	and	showed	

reasonable	performances.	In	most	studies,	the	evaluations	were	usually	done	per	

drug,	i.e.,	calculating	a	correlation	between	predicted	and	observed	drug	response	

values	for	each	drug.	However,	in	precision	medicine,	we	need	a	decision	support	

system	that	can	prioritize	drugs	for	a	patient	or	a	patient-derived	cell	line	based	

on	 the	multi-omic	profile.	Therefore,	a	predictive	performance	of	each	cell	 line	

should	also	be	evaluated,	especially	the	performance	of	unseen	samples.		

Interpretability	is	another	aspect	that	has	not	been	extensively	explored.	

For	the	drug-specific	models,	roles	of	each	gene	in	predicting	drug	response	were	

not	typically	discussed.	Also,	in	Chapter	4,	we	showed	that	the	sets	of	genes	that	

were	selected	to	predict	drug	response	were	not	robust	due	to	a	small	number	of	

cell	lines	tested	for	a	drug,	preventing	us	from	identifying	genes	to	study	different	

drug	response	behaviors	across	patients.	For	matrix	factorization-based	methods,	

they	learn	a	latent	space	that	captures	interactions	among	cell	lines	and	drugs	to	

predict	drug	response,	but	the	latent	spaces	were	not	yet	fully	explored.	

Normalization	of	predicting	drug	response	values	in	many	studies	could	

lead	to	loss	of	information	about	drug	ranking	within	a	cell	line.	Ideally,	we	need	

a	model	that	can	predict	an	accurate	patient-specific	dosage,	so	normalizing	the	

drug	response	values	might	prevent	us	from	transferring	knowledge	learned	from	

a	model	to	a	clinic.	Besides	the	predicting	drug	response	value,	sample	features	

such	 as	 gene	 expression	 might	 also	 need	 to	 be	 normalized	 or	 transformed.	
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Directly	using	gene	expression	values	might	not	appropriate	for	applying	a	model	

learned	on	gene	expression	measured	from	microarray	(CCLE	and	GDSC	datasets)	

to	predict	samples	with	gene	expression	measured	from	RNA-seq.	A	transformed	

cell	 line	 feature	 should	 allow	 us	 to	 apply	 a	 model	 to	 different	 samples	 with	

molecular	profiles	measured	from	various	technologies.	

Finally,	 predicting	 drug	 response	 for	 a	 patient	 based	 on	 bulk	 gene	

expression	 of	 tumor	 might	 not	 accurately	 represent	 the	 real	 drug	 response	

behavior	 due	 to	 intra-patient	 heterogeneity.	 A	 tumor	 sample	 can	 consist	 of	

various	cell	types	that	respond	to	the	same	drug	differently.	Recently,	single-cell	

RNA	sequencing	technologies	have	been	introduced,	and	they	allow	us	to	measure	

gene	expression	of	individual	cells	within	a	tumor.	Therefore,	an	ability	to	predict	

drug	response	based	on	the	gene	expression	of	unseen	samples	–	including	cancer	

cell	 lines,	 tumors,	 and	 cells	 –	 is	 essential	 to	 study	 intratumoral	 drug	 response	

heterogeneity.	



Chapter	4	

Cancer	DRug	Response	prediction	

using	Recommender	System	

(CaDRReS)	

4.1 What	is	CaDRReS	

We	 proposed	 Cancer	 Drug	 Response	 prediction	 using	 a	 Recommender	

System	 (CaDRReS)	 to	 predict	 drug	 response	 in	 cancer	 cell	 lines	 based	 on	

transcriptomic	profiles70.	The	term	‘recommender	system’	refers	to	a	method	for	

identifying	relationships	among	users	(patients)	and	items	(drugs)	for	predicting	

patient-specific	drug	response.	Inside	CaDRReS,	a	matrix	factorization	technique	

is	used	for	learning	a	latent	pharmacogenomic	space,	which	consists	of	drug	and	

cell	 line	 vectors,	 across	 multiple	 drugs	 and	 cell	 types	 (Figure	 4.1A	 and	 4.1B	

center).	 The	pharmacogenomic	 space	 captures	 interactions	 between	drugs	 and	

the	genomic	background	of	cell	lines	such	that	the	dot	product	between	a	cell	line	

vector	and	a	drug	vector	(𝒑 ⋅ 𝒒)	represents	the	interaction	between	the	drug	and	

the	cell	line.	As	shown	in	Figure	4.1B	(center),	cell	line	𝑢	is	sensitive	to	drug	𝑖	and	
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drug	𝑗 	while	 not	 being	 sensitive	 to	 drug	𝑘 .	 Similarly,	 cell	 line	𝑣 	and	 cell	 line	𝑢	

respond	to	drugs	𝑖	and	𝑗	differently.		

	
Figure	 4.1	 An	 overview	 of	 CaDRReS	 framework.	 (A)	 Schematic	 depicting	 the	 relationship	
between	the	drug	response	matrix	𝑆,	the	bias	terms	and	factorized	matrices	for	cell	lines	and	drugs.	
A	 transformation	 matrix	 (𝑊5 )	 is	 used	 for	 projecting	 cell	 lines	 onto	 the	 latent	 space.	 (B)	 The	
pharmacogenomic	latent	space	captures	interactions	between	drugs	and	cell	lines	and	thus	enables	
the	 study	 of	 drug-pathway	 associations,	 drug	 mechanism	 similarity,	 and	 cell	 line	 sub-types	 as	
discussed	in	later	sections.	

CaDRReS	learns	a	matrix	that	transforms	cell	line	transcriptomic	features	

into	cell	line	vectors	on	the	pharmacogenomic	space.	The	transformation	matrix	

allows	us	to	project	unseen	samples	such	as	patient-derived	cell	 lines,	onto	the	

pharmacogenomic	 space	 to	predict	drug	 response.	Additionally,	CaDRReS	does	

not	require	normalization	of	drug	response	values	and	the	objective	function	is	to	

minimize	the	difference	between	predicted	and	observed	drug	response	values,	

allowing	 us	 to	 predict	 exact	 drug	 response	 values	 that	 might	 be	 used	 in	 the	

following	experimental	validation.	Moreover,	to	enable	CaDRReS	to	work	across	
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different	 datasets	 generated	 based	 on	 different	 transcriptomic	 measurement	

technologies,	we	construct	a	kernel	feature	that	captures	similarity	between	cell	

lines	 instead	 of	 directly	 using	 of	 gene	 expression	 values	 for	 drug	 response	

prediction.	

As	a	result,	the	overall	predictive	performance	of	CaDRReS	is	among	the	

best	when	we	benchmark	it	with	state-of-the-art	methods	(Section	4.5).	Besides	

predicting	 drug	 response,	 the	 representation	 of	 cell	 lines	 and	 drugs	 on	 the	

pharmacogenomic	 space	 has	 many	 applications	 including	 (i)	 predicting	 drug	

responses	 of	 unseen	 samples	 (cell	 lines	 or	 patients),	 (ii)	 revealing	 drug	

mechanisms	 and	 (iii)	 subtypes	 of	 cell	 lines,	 and	 (iv)	 identifying	 drug-pathway	

associations	(Figure	4.1B	and	Chapter	5).	

4.2 Matrix	factorization	for	drug	response	prediction	

The	process	of	matrix	factorization	for	drug	response	prediction	can	be	

depicted	 as	 drug	 response	 matrix	 (𝑺 )	 being	 factorized	 into	 biases	 (𝑩 )	 and	

matrices	of	cell	lines	(𝑷)	and	drugs	(𝑸).	Rows	of	the	cell	line	matrix	(𝑷)	and	the	

drug	matrix	(𝑸)	are	vectors	of	cell	lines	and	drugs	in	a	latent	space,	respectively	

(Figure	4.1A).	There	are	few	other	studies	using	matrix	factorization	techniques,	

but	their	models	still	have	limitations	as	reviewed	in	Section	3.2.	In	particular,	

cwKBMF	requires	per-drug	normalization,	which	leads	to	loss	of	relative	ranking	

of	drugs	within	a	cell	line,	while	SRMF	does	not	provide	a	transformation	matrix	

to	 facilitate	 prediction	 of	 unseen	 samples.	 To	 address	 both	 limitations,	 we	

proposed	CaDRReS	based	on	the	following	objective	function:	

Equation	1.	

s;<= = µ + 𝑏B
C +	𝑏DE 	+	𝒒= ⋅ 	𝒑< 

														= µ + 𝑏B
C +	𝑏DE +	𝒒=(𝒙<𝑾E)J 
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A	drug	sensitivity	score	used	for	training	the	model	is	equal	to	– 𝑙𝑜𝑔(𝐼𝐶OP),	

where	 the	 higher	 of	 the	 value,	 the	more	 a	 cell	 line	 sensitive	 to	 a	 drug.	 In	 the	

objective	function,	�̂�DB	is	the	predicted	sensitivity	score	of	cell	line	𝑢	to	drug	𝑖,	𝜇	is	

the	 overall	 drug	 response,	𝑏B
C 	and	𝑏DE 	are	 bias	 terms	 for	 drug	𝑖 	and	 cell	 line	𝑢 ,	

respectively,	 	 𝒒B, 𝒑D ∈ ℝW 	are	 vectors	 for	 drug	 𝑖 	and	 cell	 line	 𝑢 	in	 the	 𝑓 -

dimensional	latent	space	and	𝑾5 ∈ ℝY	×Wis	a	transformation	matrix	that	projects	

cell	line	features	𝒙D ∈ ℝY 	onto	the	latent	space.	We	note	that	introducing	drug	and	

cell	line	bias	terms	allows	us	to	train	a	model	without	per-drug	normalization	step	

and	learning	𝑾5	allows	us	to	project	unseen	samples	onto	the	pharmacogenomic	

space.	The	value	of	𝑓	was	 set	 at	10	for	both	CCLE	and	GDSC	datasets	based	on	

cross-validation	performance.	

4.3 Datasets	and	preprocessing	

Drug-screening	data	for	cancer	cell	lines	were	obtained	from	two	large-

scale	studies,	CCLE	and	GDSC,	and	all	cell	lines	with	baseline	gene	expression	data	

were	retained.	Firstly,	a	Bayesian	sigmoid	curve	fitting	approach	was	applied	to	

raw	 intensity	 data	 at	 different	 drug	 dosages	 to	 estimate	 𝐼𝐶OP 	(minimal	

concentration	 that	 induces	50%	cell	death)	values	 that	were	more	comparable	

across	datasets.	Each	cell	line	in	CCLE	and	GDSC	was	tested	with	each	drug	at	8	

and	 9	 different	 concentrations,	 respectively.	 At	 each	 concentration,	 an	 activity	

value	was	calculated	as	follow:	

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑣𝑎𝑙𝑢𝑒 = 	
−(𝑡𝑒𝑠𝑡 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

	

where	𝑡𝑒𝑠𝑡 ,	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 	and	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 	are	 intensity	 values	 (cell	 counts)	measured	

from	 a	 well	 with	 the	 tested	 drug,	 positive	 control,	 and	 negative	 control,	

respectively.	
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Next,	we	applied	Bayesian	sigmoid	curve	fitting	using	JAGS	71	as	described	

by	Kruschke72	 to	 fit	 a	 dose-response	 curve	 for	 each	 pair	 of	 drug	 and	 cell	 line.	

Briefly,	 defining	𝑖 	as	 the	 cell	 line	 index,	𝑗	as	 the	 drug	 index,	𝑥Bf 	as	 the	 log-scale	

dosage,	and	𝑦Bf	as	the	response	for	a	given	pair	of	drug	and	cell	line,	modelled	as	

a	Student’s	 t	distribution	with	the	parameter	𝛽Ph 	representing	the	center	of	 the	

dose-response	curve	(i.e.	𝐼𝐶OP)	and	𝛽ih 	capturing	the	steepness	of	the	curve,	we	

get:	

 

	

The	two	parameters	of	the	drug-response	curve	𝛽Ph 	and	𝛽ihare	assumed	to	follow	

Normal	and	Gamma	distributions,	respectively.		

 

	

For	 the	 remaining	 parameters,	 non-informative	 priors	 were	 used	 as	

described	 by	 Kruschke72.	 Finally,	 we	 calculated	 log	(𝐼𝐶OP) 	based	 on	 the	 fitted	

sigmoid	curves,	where	𝐼𝐶OP	is	a	concentration	that	inhibits	50%	of	the	cells	73.	We	

observed	that	the	newly	calculated	IC50	values	from	raw	dose-response	data	show	

higher	Spearman	correlation	(for	each	drug)	between	CCLE	and	GDSC	datasets	

than	the	provided	IC50	values	(paired	t-test;	p-value	<	0.01,	Figure	4.2A-B).	The	

re-estimated	𝐼𝐶OP	values	were	used	for	all	methods	and	analyses	in	this	thesis.	We	

note	that	in	the	training	step	of	CaDRReS	to	obtain	a	pharmacogenomic	space	we	

defined	a	drug	sensitivity	score	as	– 𝑙𝑜𝑔(𝐼𝐶OP),	so	the	higher	score	the	more	drug	
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sensitivity,	corresponding	to	higher	values	of	the	dot	product	between	cell	 line	

and	drug	vectors.	

	
Figure	4.2	Estimating	𝑰𝑪𝟓𝟎	values.	(A)	Newly	calculated	IC50	values	from	raw	dose-response	data	
show	 higher	 Spearman	 correlation	 (for	 each	 drug)	 between	 CCLE	 and	 GDSC	 datasets	 than	 the	
provided	IC50	values	(paired	t-test;	p-value	<	0.01).	(B)	Examples	of	Spearman	correlation	between	
CCLE	and	GDSC	datasets	for	each	drug.	

Drugs	with	median	𝐼𝐶OP	less	 than	1	μM	tend	 to	be	cytotoxic	drugs	with	

consistently	high	toxicity	across	cell	lines	(Figure	4.3A-B).	Correspondingly,	they	

make	the	drug	response	prediction	problem	easier,	and	so	we	excluded	them	to	

focus	 our	 efforts	 on	 predicting	 response	 for	 targeted	 cancer	 drugs.	 Our	 final	

dataset	contained	491	cell	lines,	19	drugs,	and	9,096	experiments	from	CCLE,	and	

983	cell	lines,	223	drugs,	and	179,633	experiments	from	GDSC,	providing	a	large	

dataset	for	training	and	validation	of	our	models.		

We	also	obtained	an	in-house	dataset	based	on	screening	of	276	drugs	(65	

of	which	overlap	with	GDSC)	on	8	head	and	neck	cancer	(HNC)	patient-derived	

cell	lines	from	5	subjects74.	Two	of	the	cell	lines	were	found	to	be	not	sensitive	to	

any	of	the	overlapping	drugs	(inhibition	score	<50	at	1𝜇𝑀),	while	one	was	found	

to	be	sensitive	to	more	than	25%	of	the	overlapping	drugs.	These	three	cell	lines	

were	excluded	as	the	single	dosage	they	were	tested	on	does	not	seem	to	allow	

discrimination	 across	 drugs	 and	 thus	 appropriate	 evaluation	 of	 drug	 response	
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models,	 leaving	 us	 with	 325	 data	 points	 from	 5	 cell	 lines	 to	 be	 used	 as	 an	

independent	dataset	to	evaluate	predictions	from	different	models.	Additionally,	

transcriptomic	profiles	of	these	patient-derived	cell	lines	were	measured	by	using	

RNA-seq,	while	CaDRReS	was	trained	on	microarray	data	(CCLE	and	GDSC).	This	

allowed	us	to	evaluate	the	performance	of	the	model	for	unseen	samples	across	

different	gene	expression	platforms.	

	

Figure	4.3	Comparison	between	median	𝑰𝑪𝟓𝟎	and	rank	entropy.	(A)	CCLE	(B)	GDSC.	Drugs	with	
median	𝐼𝐶OP	less	than	1	μM	were	excluded.	Drugs	having	low	𝐼𝐶OP	tend	to	have	higher	ranks	across	
all	 the	cell	 lines	(low	rank	entropy)	suggesting	that	they	may	 lack	of	specificity	and	be	cytotoxic	
drugs.	

4.4 Model	training	

The	first	step	in	CaDRReS	is	to	calculate	cell	line	kernel	features	based	on	

gene	expression	 information.	With	 the	kernel	 feature,	we	 can	apply	 the	model	

trained	based	on	microarray	gene	expression	on	 the	 samples’	 gene	expression	

measured	by	RNA-seq.	To	do	this,	we	normalized	baseline	gene	expression	values	

for	each	gene	by	computing	fold-changes	compared	to	the	median	value	across	

cell	 lines.	For	 the	next	 step,	 since	 the	drug	 response	experiments	 in	GDSC	and	

CCLE	aim	to	measure	cell	death,	1,856	essential	genes	identified	based	on	large-

scale	 CRISPR	 experiments75	 were	 selected	 to	 condense	 the	 expression	

information	for	each	cell	line.	Pearson’s	correlation	for	every	pair	of	cell	lines	was	
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calculated	 using	 the	 expression	 fold-changes	 of	 these	 essential	 genes.	 Thus,	 in	

total,	we	had	491,	and	983	cell	line	features	for	CCLE	and	GDSC,	respectively.	

For	 training	 the	 model,	 a	 drug	 sensitivity	 score 	𝑠 = −log	(𝐼𝐶OP) 	was	

defined	where	the	higher	the	score,	the	more	sensitive	the	cell	line	is	to	the	drug.	

Models	were	trained	and	tested	independently	for	CCLE	and	GDSC	to	avoid	biases	

towards	 either	 of	 the	 datasets76,77.	 According	 to	 Equation	 1,	 the	 model	 was	

trained	by	optimizing	the	following	‘sum	of	squared	error’	loss	function:	

Equation	2.	

𝐿(𝜃) = 	
1
2|𝜅|

ss𝑒DBt

BD

	
 

e<= = s<= − s;<=  

where	𝑠DB 	and	 �̂�DB	are	 observed	 and	 predicted	 sensitivity	 scores	 for	 cell	 line	𝑢	

using	 drug	𝑖 ,	 respectively,	𝜽	 = 	 {𝑏B, 𝑏D,𝑾5, 𝒒B} ,	 and	 |𝜅| 	is	 the	 number	 of	 drug	

response	experiments	in	the	training	dataset.	Finally,	we	applied	gradient	descent	

to	optimize	this	loss	function	and	obtain	all	parameters	in	𝜽	based	solely	on	the	

assayed	 drug-response	 values.	 Gradient	 functions	 for	 the	 parameters	

𝑏B
y, 𝑏D5,𝑾5,𝑾y	were	calculated	as	follows:	
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We	 initialized	 𝑏B
y, 𝑏D5 	to	 be	 zeros	 and	𝑾5,𝑾y 	using	 small	 uniformly	

random	numbers	 in	 the	range	of	 [-0.05,	0.05],	and	performed	a	batch	gradient	

descent	 using	 the	 above-calculated	 gradients	 to	 optimize 	𝑏B
y, 𝑏D5,𝑾5	and	𝑾y .	

Additionally,	we	tested	CaDRReS’	robustness	by	constructing	ten	different	models	

using	different	random	starting	points	for	the	gradient	descent	optimization.	We	

observed	 that	 the	 models	 show	 similar	 performance	 (Figure	 4.4A).	 We	 also	

compared	the	latent	space	of	the	models	that	were	trained	based	on	ten	different	

random	 initializations	 using	 the	 CCLE	 dataset.	 Because	 the	 latent	

pharmacogenomic	 space	 captures	 the	 drug-drug,	 sample-sample,	 drug-sample	

relationships	through	the	dot	product,	we	calculated	cosine	similarity	of	all	pairs	

of	drug	and	cell	line	vectors,	and	then	compared	the	cosine	similarity	values	of	the	

pharamacogenomic	 spaces	 learned	 based	 on	 different	 random	 initializations.	

High	correlations	of	the	cosine	similarity	were	observed	(Figure	4.4B;	Pearson’s	

correlation	=	[0.92,	0.97]	for	all	45	pairs	of	pharmacogenemic	spaces),	indicating	

that	the	pharamacogenomic	spaces	capture	similar	relationships.	Taken	together,	

these	results	suggest	that	CaDRReS	is	robust	against	random	starting	points.	

	
Figure	4.4.	Performance	comparison	of	CaDRReS	based	on	different	 initial	values.	 (A)	Ten	
CaDRReS	models	trained	based	on	different	random	starting	points	produced	a	similar	performance	
per	cell	line.	(B)	A	comparison	of	cosine	similarity	values	of	the	pharamacogenomic	spaces	learned	
using	different	random	initializations.	
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Finally,	to	prediction	the	drug	response	of	unseen	cell	lines,	we	calculated	

the	cell	line	kernel	features,	which	are	Pearson’s	correlation	of	the	essential	genes	

between	the	input	cell	lines	and	the	cell	lines	used	for	training	the	model.	Then	

we	 used	 the	 transformation	 matrix	 to	 project	 the	 input	 cell	 lines	 onto	 the	

pharmacogenomic	space	for	drug	response	prediction.	

4.5 Evaluations	

We	 compared	 the	 predictive	 performance	 and	 robustness	 of	 CaDRReS	

against	 other	 existing	 methods	 including	 a	 method	 based	 on	 the	 elastic	 net	

regression	 model	 (ElasticNet7,9,	 cwKBMF12,	 the	 method	 from	 Sheng	 et	 al.65,	

SRMF66,	as	well	as	a	control	method	based	on	random	permutations	of	the	drug	

sensitivity	 scores	 for	 each	 cell	 line	 (Control).	 For	 ElasticNet,	 the	 model	 was	

trained	for	each	drug	as	described	previously7,9	using	the	Elastic	Net	library	from	

Scikit-learn78	 (𝑙1-ratio	=	0.5),	where	 the	model	automatically	selects	 the	genes.	

For	the	method	proposed	by	Sheng	et	al.65,	we	re-implemented	it	as	described	in	

the	paper,	normalized	drug	response	data,	calculated	drug	similarity	and	drug-

specific	cell	 line	similarity	scores	and	set	 the	parameters	𝑟Y 	(number	of	similar	

drugs)	 =	 3	 and	𝑟~ 	(number	 of	 similar	 cell	 lines)	 =	 9	 as	 used	 in	 the	 paper.	 For	

cwKBMF,	drug	response	data	were	normalized	for	each	drug	as	described	in	the	

paper	 and	 the	 provided	MATLAB	 source	 code	was	 used	 to	 train	 a	model.	 For	

SRMF,	cell	line	similarities	were	calculated	as	described	in	the	paper	and	we	set	

𝜆Y 	to	zero	because	it	has	been	shown	that	SRMF	performed	the	best	when	drug	

similarity	is	ignored.	We	also	set	the	number	of	dimensions	to	10	as	used	in	both	

cwKBMF	and	CaDRReS.	

To	benchmark	the	performance	of	drug	response	prediction	methods,	we	

evaluated	the	prediction	for	both	drug	and	cell	line	perspectives.	The	drug	aspect	
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measures	an	ability	of	the	model	to	capture	transcriptomic	patterns	that	explain	

the	different	drug	response	levels	for	a	particular	drug,	while	cell	line	(sample)	

aspect	evaluates	potentiality	of	the	model	to	suggest	drugs	for	a	given	patient	in	

precision	oncology.	

Firstly,	 for	 each	 drug,	 we	 calculated	 Spearman	 correlation	 ( 𝑟� )	 and	

reported	 the	average	correlation	across	drugs.	The	higher	correlation	suggests	

that	the	model	can	capture	the	mechanism	of	the	drug.	Next,	to	evaluate	models	

for	each	cell	 line,	 the	normalized	discounted	cumulative	gain	(NDCG),	a	widely	

used	score	for	evaluating	ranking	recommendations,	was	calculated	as	follows:	

𝑁𝐷𝐶𝐺(𝒓;, 𝒔) = 	
𝐷𝐶𝐺(𝒓;, 𝒔)
𝐷𝐶𝐺(𝒓, 𝒔)

	 	

𝐷𝐶𝐺(𝒓;, 𝒔) =s
2�� − 1

logt �̂�B + 1B

	 	

where		𝒓;	is	the	predicted	rank	of	drugs	tested	on	a	cell	line,	𝒔	is	a	list	of	observed	

drug	sensitivity	scores	and	𝒓	is	the	known	ranking	of	drugs	calculated	based	on	

the	measured	drug	response	values.	NDCG	ranges	from	0	to	1,	where	1	indicates	

that	the	model	correctly	predicts	the	ranking	of	drugs.	The	numerator	in	DCG	is	

designed	to	give	greater	weight	to	a	drug	with	higher	sensitivity	score,	while	the	

denominator	gives	preference	to	drugs	predicted	to	have	higher	ranks.	The	higher	

NDCG	suggests	that	the	model	can	correctly	suggest	most	effective	drugs	for	each	

unseen	cell	line,	highlighting	the	usefulness	of	the	model	in	precision	medicine.	

We	 performed	 5-fold	 cross-validation	 to	 evaluate	 the	 predictive	

performance	of	 the	models	both	drug	and	cell	 line	perspectives.	Moreover,	we	

assessed	the	stability	of	the	five	models	learned	based	on	different	sets	of	cell	lines	

from	 cross-validation	 data.	 For	 ElasticNet,	 for	 each	 drug,	 we	 identified	 the	

selected	 genes	 (genes	 with	 non-zero	 coefficient)	 and	 counted	 the	 number	 of	
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overlapping	genes	across	the	five	different	models.	For	CaDRReS,	we	compared	

drug	 cosine	 similarity	 (and	 cell	 line	 cosine	 similarity)	 calculated	 on	 the	

pharmacogenomic	space	for	the	five	models	learned	from	the	different	set	of	cell	

lines	(and	drugs).	

4.6 Performance	and	robustness	

A	common	way	to	evaluate	drug	response	prediction	methods	is	to	assess	

their	correlation	by	comparing	the	predicted	responses	to	known	responses	for	

each	drug	(across	cell	lines)	in	a	cross-validation	framework	7,9.	We	performed	ten	

sets	 of	 5-fold	 cross-validation	 to	 measure	 the	 predictive	 performance	 of	 the	

models.	Using	 the	matrix-factorization	based	approaches,	 SRMF,	CaDRReS,	 and	

cwKBMF	showed	significantly	better	performance	than	ElasticNet,	Sheng	et	al.,	as	

well	as	the	Control	method	(p-value	<10-30)	in	both	the	CCLE	and	GDSC	datasets	

(Figure	4.5A	and	4.6A).	

While	the	ability	to	predict	cell	line	responses	for	a	given	drug	is	useful	for	

understanding	drug	efficacy	and	characterizing	drug	mechanisms,	ranking	drugs	

for	a	given	unseen	cell-line/patient	may	be	more	relevant	for	precision	oncology	

applications.	 Based	 on	 a	 weighted	 scoring	 of	 rankings	 (NDCG),	 we	 noted	 that	

CaDRReS	 and	 ElasticNet	 exhibited	 similar	 performance	 and	 improved	 notably	

over	cwKBMF,	SRMF,	Sheng	et	al.,	and	the	Control	method	(p-value	<10-20;	Figure	

4.5B	and	 4.6B).	 Taken	 together,	 these	 results	 suggest	 that	 CaDRReS	 improves	

over	 existing	 approaches	 in	 providing	 models	 that	 are	 useful	 for	 both	 drug	

response	prediction	across	cell-lines	and	within	a	cell	line.	
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Figure	 4.5	 Performance	 and	 robustness	 of	 the	 CaDRReS	 model.	 (A)	 Average	 performance	
(Spearman	 correlation)	 across	 drugs	 based	 on	 5-fold	 cross-validation	 (error	 bars	 represent	 1	
standard	 deviation).	 (B)	 Average	 NDCG	 scores	 across	 unseen	 cell-lines	 based	 on	 5-fold	 cross-
validation.	
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Figure	 4.6	 Performance	 and	 robustness	 of	 the	 CaDRReS	 model.	 (A)	 Average	 spearman	
correlation	across	10	runs	of	5-fold	cross-validation	(error	bars	represent	1	standard	deviation).	(B)	
Average	 NDCG	 scores	 across	 10	 runs	 of	 5-fold	 cross-validation.	 (C)	 Average	 percentage	 of	
overlapping	genes	 in	ElasticNet	across	different	CCLE	cross-validation	datasets.	 (D)	A	violin	plot	
presents	the	distribution	of	gene	expression	correlations	between	genes	identified	based	on	every	
pair	 of	ElasticNet	models	of	 the	 same	drug,	 and	 the	 control	 is	 a	distribution	of	 gene	expression	
correlations	of	random	gene	pairs.	(E)	Concordance	between	drug-specific	bias	terms	as	inferred	by	
CaDRReS	for	every	pair	of	models	from	the	5-fold	cross-validation	analysis.	Each	color	represents	a	
drug	in	the	CCLE	dataset.	(F)	Concordance	between	cell	line	bias	terms	as	inferred	by	CaDRReS	for	
every	pair	of	models	from	the	5-fold	cross-validation	analysis.	Each	color	represents	a	cell	line	in	
the	CCLE	dataset	(first	50	cell	lines).	(G)	Average	hit	rate	(number	of	sensitive	drugs	identified)	in	
the	top	five	predictions	of	each	method.	Baseline	refers	to	an	approach	that	sorts	drugs	by	their	
average	sensitivity	across	cell	lines.	

For	 drug	 response	 prediction	 within	 a	 cell-line,	 although	 ElasticNet	

models	 were	 trained	 independently	 for	 each	 drug,	 their	 NDCG	 scores	 were	

surprisingly	 high.	 However,	 we	 suspected	 that	 there	 could	 be	 high	 variance	

among	 the	models	 trained	based	on	different	sets	of	 cell	 lines	due	 to	a	 limited	

number	of	cell	lines	for	each	drug.	To	assess	this	we	evaluated	the	robustness	of	

ElasticNet	models	learned	across	cross-validation	runs	and	found	that	<10%	of	

the	selected	genes	were	shared	across	folds	and	half	of	the	genes	were	selected	in	

only	 one-fold	 (Figure	 4.6C).	 Although	 the	 number	 of	 overlapping	 genes	were	

small,	 the	 expression	 levels	 of	 non-overlapping	 genes	 could	 be	 correlated.	 To	

investigate	 this,	 for	 each	model	 pair	 of	 the	 same	 drug,	we	 identified	 the	 best-

matched	gene,	i.e.,	highest	absolute	correlation,	for	each	gene	in	the	smaller	gene	

set	 (Figure	4.6D).	We	observed	 that	approximately	half	of	 the	genes	were	not	

overlapped	 and	 the	 expressions	 of	 the	non-overlapping	 genes	were	not	 highly	

correlated.	The	ElasticNet	models	that	were	trained	on	different	sets	of	cell	lines	

selected	different	 sets	 of	 genes	 for	 the	 same	drug,	 limiting	us	 from	obtained	a	

consistent	interpretation	from	the	model.	

In	contrast,	CaDRReS	showed	consistently	high	correlation	for	drug	biases	

(0.99;	Figure	4.6E)	and	cosine	similarity	of	inferred	drug	vectors	(0.96)	across	

cross-validation	runs,	as	well	as	high	correlation	for	cell	line	biases	(0.96;	Figure	
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4.6F)	and	cosine	similarity	of	the	inferred	cell	line	vectors	(0.88),	highlighting	the	

robustness	of	its	models.	

To	 further	evaluate	 their	performance,	CaDRReS	and	ElasticNet	models	

were	 trained	 on	 the	GDSC	dataset	 and	 tested	 on	 an	 independent	 dataset	 from	

patient-derived	HNC	cell-lines.	Sheng	et	al.	and	cwKBMF	were	not	included	here	

because	they	require	per-drug	normalization	of	drug	response	values,	which	leads	

to	a	loss	of	drug	ranking	information	within	a	cell	line,	while	SRMF	was	excluded	

because	it	is	not	tailored	for	predicting	drug	response	for	unseen	samples.		

Despite	 having	 similar	 performance	 on	 the	 GDSC	 dataset,	 CaDRReS	

outperformed	ElasticNet	on	this	independent	dataset	(Figure	4.6G),	emphasizing	

its	 ability	 to	 provide	 more	 robust	 and	 generalizable	 models.	 In	 particular,	

CaDRReS	was	able	to	identify	on	average	at	least	one	drug	that	elicited	a	strong	

response	 for	 each	 cell-line	 among	 its	 top	 three	 predictions,	 while	 a	 baseline	

method	based	on	average	response	across	cell	lines	identified	none.	The	results	

also	highlighted	the	usefulness	of	the	cell	line	kernel	features	that	allow	the	model	

to	perform	across	different	gene	expression	measurement	platforms	(microarray	

for	GDSC	and	RNA-seq	for	the	patient-derived	cell	lines).	

Overall,	we	explained	how	to	construct	CaDRReS,	as	well	as	presented	the	

benchmarking	 results	 of	 CaDRReS	 and	 other	 state-of-the-art	 models.	 We	 also	

showed	in	the	head	and	neck	case	study	that	CaDRReS	has	an	ability	to	predict	

drug	response	for	unseen	samples	across	different	gene	expression	platforms.	In	

the	next	 chapter,	we	 focused	on	 the	 interpretability	 of	 CaDRReS	by	discussing	

applications	of	the	pharmacogenomic	space,	including	studying	drug	mechanisms	

and	subtypes	of	cell	lines,	as	well	as	identifying	drug-pathway	associations.	
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4.7 Discussion	

We	proposed	CaDRReS,	a	model	 for	predicting	drug	response	based	on	

transcriptomic	 profiles	 by	 using	 a	 matrix	 factorization	 technique	 that	

simultaneously	 learns	 across	 multiple	 drugs	 and	 samples	 to	 obtain	 a	

pharmacogenomic	space.	To	train	the	model,	we	minimized	the	objective	function,	

i.e.,	the	overall	error	between	observed	and	predicted	IC50	values.	However,	the	

calculation	of	IC50	does	not	take	into	account	cell	growth	rate,	so	the	IC50	tends	to	

be	low	for	the	cell	lines	with	fast	growth	rate	because	the	inhibition	can	be	earlier	

observed79.	Due	to	the	lack	of	cell	growth	rate	information	of	the	cell	line	in	the	

GDSC	and	CCLE	datasets,	we	could	not	incorporate	the	growth	rate	information	in	

our	analysis.	Nevertheless,	with	an	availability	of	growth	rate	information	in	the	

future,	growth	rate	index	(GR50)	is	a	better	drug	response	value	because	it	corrects	

for	the	cell	growth	bias.	

For	 the	 ElasticNet	 as	 well	 as	 other	 drug-specific	 models,	 the	 smaller	

number	of	cell	lines	tested	for	each	drug	might	lead	to	overfitting	problem,	i.e.	few	

hundreds	 cell	 lines	 (N)	 and	 ten	 thousand	 parameters	 for	 genes	 (G),	 as	 we	

observed	when	we	applied	the	model	to	the	head	and	neck	patient-derived	cell	

line	dataset.	In	contrast,	for	CaDRReS,	the	number	of	parameters	of	the	projection	

matrix	𝑾	is	10N,	where	N	the	number	of	training	cell	lines	and	the	dimension	of	

the	latent	pharmacogenomic	space	is	10.	The	10N	parameters	and	N+D	biases	are	

trained	 based	 on	ND	 data	 points,	where	D	 is	 the	 number	 of	 drugs.	 The	 larger	

number	 of	 data	 points	 with	 respect	 to	 the	 number	 of	 training	 parameters	

highlights	the	benefit	of	the	ability	to	learn	across	multiple	drugs	to	obtain	a	more	

robust	model.	

The	 inconsistency	 of	 CCLE	 and	 GDSC	 datasets	 have	 been	 discussed	 in	

several	 studies76,80,	 including	 different	 types	 of	 negative	 and	 positive	 controls,	
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different	post-treatment	durations,	and	the	dose-response	curves	were	estimated	

by	different	computational	methods.	 In	 this	study,	we	obtained	a	raw	intensity	

data	 and	 re-estimated	 the	 dose-response	 curve	 (Section	 4.3)	 to	 unify	 the	

calculation	 of	 IC50	 values,	 but	 disagreement	 of	 the	 response	 values	 was	 still	

observed.	Therefore,	we	construct	a	model	separately	for	each	dataset	to	avoid	a	

possible	ambiguity	in	the	performance	evaluation	step	and	the	interpretation	of	

the	latent	pharmacogenomic	space.	Nonetheless,	we	calculated	a	kernel	feature	to	

avoid	 direct	 using	 gene	 expression	 values,	 allowing	 the	 model	 to	 make	 a	

prediction	based	on	gene	expression	values	measured	from	different	platforms.	

To	evaluate	the	drug	response	predictions,	most	studies	focused	on	the	

predictive	performance	or	accuracy	for	each	drug,	while	the	performance	should	

also	 be	 assessed	 for	 each	 sample	 to	 determine	 the	 usefulness	 of	 a	 model	 in	

precision	medicine.	Therefore,	in	this	study,	we	aim	to	measure	the	ability	of	the	

model	 for	 capturing	 transcriptomic	 patterns	 (that	 explain	 the	 different	 drug	

response	levels	for	a	particular	drug)	and	suggesting	drugs	for	a	given	patient	in	

precision	oncology.	Therefore,	we	evaluated	the	predictions	for	both	drug	and	cell	

line	 perspectives	 by	 using	 Spearman	 correlation	 and	 NDCG,	 respectively	

(described	in	Section	4.5).	For	each	drug,	the	Spearman	correlation	suggests	how	

good	the	model	can	rank	cell	lines	by	the	drug	sensitivity	levels	predicted	based	

on	 transcriptomic	 profiles.	 For	 each	 cell	 line,	 NDCG	 suggests	 an	 ability	 of	 the	

model	to	predict	top	few	drugs	with	strong	observed	sensitivity,	while	drugs	at	

the	bottom	of	the	predicted	list	have	lesser	contributions	to	the	score.	

Additionally,	 in	a	cross-validation	framework,	 the	drug-response	values	

are	typically	split	 into	multiple	folds	regardless	of	samples,	preventing	us	from	

evaluating	the	actual	predictive	performance	for	unseen	samples.	Hence,	 to	we	

measure	the	predictive	performance	in	different	scenarios,	we	applied	two	cross-
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validation	schemes:	1)	seen	samples,	where	random	cells	 in	 the	drug	response	

matrix	(row=sample	and	column=drug)	are	held	out;	2)	unseen	samples,	where	

random	rows	in	the	drug	response	matrix	are	held	out.	The	seen	case	measures	

the	performance	of	the	models	for	predicting	the	response	of	cell	lines	to	a	specific	

drug	with	prior	knowledge	of	responses	to	other	drugs,	which	could	be	useful	in	

the	case	that	the	sample	has	already	been	tested	for	a	subset	of	drugs.	The	unseen	

case	measures	the	predictive	performance	for	unseen	samples,	which	correspond	

to	the	case	that	no	prior	drug	response	information.	

Correlation	 between	 in	 silico	 predicted	 and	 in	 vitro	 observed	 drug	

responses	were	calculated	to	measure	the	correlation	in	our	study	as	well	as	most	

of	the	other	studies.	However,	the	correlation	does	not	fully	capture	the	dosage	

error	as	the	value	can	be	high	while	the	range	of	predicted	and	observed	values	

are	 largely	 different,	 preventing	 us	 from	 using	 the	 predictions	 to	 determine	

dosage	to	be	used	in	experimental	validation	or	in	a	clinic. 

Lastly,	 the	concept	of	CaDRReS	 is	not	 limited	 to	predicting	cancer	drug	

response	 IC50	 values.	We	 could	 apply	 CaDRReS	 to	 predict	 other	 types	 of	 drug	

response	measurements	such	as	area	under	the	dose-response	curve,	GR50,	and	

IC90.	Additionally,	an	ability	to	predict	multiple	values	of	the	dose-response	curve	

could	be	more	useful	than	predicting	a	single	value	of	drug	response.	The	concept	

can	also	be	applied	to	other	domains	such	as	studying	epigenomic	features	that	

affect	response	to	immunotherapy,	predicting	gene	expression	after	treatment	to	

investigate	drug-resistant	mechanism,	and	identifying	anti-bacterial	drugs.	



Chapter	5	

A	pharmacogenomic	space	

A	pharmacogenomic	space	allows	us	to	study	drug	response	mechanisms,	

highlighting	interpretability	of	CaDRReS.	This	chapter	presents	applications	of	the	

pharmacogenomic	 space	 including	 explaining	 drug	 response	 mechanisms,	

classifying	the	cell	lines,	identifying	drug	similarity,	and	detecting	drug-pathway	

associations.	Firstly,	we	 trained	CaDRReS	models	on	 the	 full	datasets	 to	obtain	

drug	and	cell-line	biases,	as	well	as	the	pharmacogenomic	spaces	capturing	drug-

drug,	 cell	 line-cell	 line,	and	drug-cell	 line	associations	 for	both	CCLE	and	GDSC	

(Figure	5.1).		

To	study	drug	mechanisms,	we	took	vectors	defined	for	each	drug	in	the	

pharmacogenomic	space,	computed	cosine	similarities	between	every	pair,	and	

compared	these	to	a	commonly	used	drug	structural	similarity	score	(Tanimoto	

coefficient	of	SMILES	calculated	using	the	SMSD	toolkit81).	Drug	cosine	similarities	

were	 significantly	 higher	 for	 drug	 pairs	 having	 high	 structural	 similarities	

(Tanimoto	coefficient	> 0.3;	Wilcoxon	test	p-value	<0.04	for	CCLE	and	<0.001	for	

GDSC),	 suggesting	 that	 in	general,	 similarly	 structured	drug	pairs	 tend	 to	have	

higher	 cosine	 similarity	 on	 the	pharmacogenomic	 space	 and	 thus	 elicit	 similar	

responses	(Figure	5.2).	
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Figure	5.1	Comparison	between	observed	and	predicted	𝑰𝑪𝟓𝟎	for	the	full	datasets.	(A)	CCLE	
(B)	GDSC.	Colors	represent	different	drugs.	The	scatter	plots	show	that	the	pharmacogenomic	space	
correctly	captured	the	observed	drug	responses,	drug	biases,	and	cell	line	biases	for	both	datasets.	

	
Figure	5.2	Comparison	between	structural	similarity	and	cosine	similarity	between	drugs.			
(A)	 CCLE	 (B)	 GDSC.	 A	 box-plot	 shows	 that	 drugs	 pairs	 with	 high	 structural	 similarities	 have	
significantly	 higher	 cosine	 similarity	 on	 the	 pharmacogenomic	 space,	 and	 thus	 have	 similar	
responses.	 x-axis	 represents	 high	 (>0.3)	 and	 low	 structural	 similarity	 and	 y-axis	 represents	 the	
cosine	similarity.	p-values	were	calculated	based	on	the	Wilcoxon	test.	

However,	there	are	indeed	exceptions	to	this	rule	where	drugs	that	elicit	

a	 similar	 response	 profile	 have	 significantly	 different	 chemical	 structures.	 For	

instance,	PD-0332991	and	PHA-665752	have	a	relatively	low	structural	similarity	



Chapter	5.	A	pharmacogenomic	space	

48	
	

(Tanimoto	 coefficient	 =	 0.07),	 but	 high	 correlation	 for	 the	 observed	 drug	

responses	 (0.51	 with	 p-value	 <	 10-29).	 This	 is	 likely	 due	 to	 the	 fact	 that	 PD-

0332991	is	a	CDK4/6	inhibitor	that	can	reduce	RB	phosphorylation82,	while	PHA-

665752	 can	 inhibit	 c-MET	 and	 thus	 result	 in	 reduced	 phosphorylation	 of	 RB	

downstream	83.		Therefore	drug	similarity	in	the	pharmacogenomic	space	has	the	

potential	 to	 capture	 deeper	 similarities	 in	 drug	 response	mechanisms	 beyond	

those	observed	purely	based	on	drug	structural	similarity.	

5.1 A	 pharmacogenomic	 space	 capturing	 drug	 response	

mechanisms	

In	 the	 pharmacogenomic	 space,	 we	 observed	 that	 clusters	 of	 drugs	

frequently	represent	groups	that	target	the	same	gene	or	pathway	(Figure	5.3A).	

For	 example,	 EGFR	 inhibitors	 (Lapatinib,	 ZD-6474,	 AZD0530,	 Erlotinib),	 RAF	

inhibitors	 (RAF265,	 PLX4720)	 and	MEK	 inhibitors	 (PD-0325901,	 AZD6244)	 in	

CCLE	 formed	 separate	 clusters	 based	 on	 cosine	 similarity.	 In	 addition,	 cosine	

similarities	 among	 the	 five	 MEK1	 inhibitors	 in	 GDSC	 (CI-1040,	 PD-0325901,	

RDEA119,	Trametinib,	and	selumetinib)	were	significantly	higher	than	between	

MEK1	 inhibitors	 and	 other	 drugs	 (p-value	 <10�iO ).	 A	 similar	 trend	 was	 also	

observed	 for	 the	 four	 BRAF	 inhibitors,	 AZ628,	 Dabrafenib,	 PLX4720,	 and	

SB590885	(p-value	<10��;	Figure	5.3B).	These	observations	are	interesting	given	

that	CaDRReS	was	trained	based	solely	on	drug	response	data,	without	any	other	

information	on	drug	properties.	

By	examining	dimensions	of	 the	pharmacogenomic	 space,	we	observed	

that	 each	 dimension	 captured	 different	 aspects	 of	 sensitivity	 to	 various	 drug	

classes	(Figure	5.3C).	For	example,	EGFR	inhibitors	dominated	in	the	5th	and	9th	

dimensions	and	thus	cell	lines	that	were	projected	close	to	the	positive	sides	of	
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these	 dimensions	 have	 higher	 EGFR	 inhibitor	 sensitivity.	 Additionally,	 we	

observed	that	MEK	inhibitors	lie	on	the	negative	side	of	the	8th	dimension	and	the	

values	of	cell	line	vectors	in	this	dimension	were	most	positively	correlated	with	

activity	 scores	 for	 the	 EIF2	 pathway	 (0.217),	 indicating	 that	 cell-lines	 with	

inactivated	 EIF2	 pathway	 may	 be	 more	 sensitive	 to	 MEK	 inhibitors.	 This	

observation	is	in	agreement	with	prior	work	showing	that	MEK	inhibitors	work	

by	inducing	activation	of	eIF-2B,	which	results	in	a	shutdown	of	cellular	protein	

synthesis	 and	 leads	 to	 apoptosis84,85.	 These	 results	 highlight	 the	 utility	 of	 the	

pharmacogenomic	 space	 learned	 by	 CaDRReS	 for	 capturing	 interpretable	

information	related	to	drug	mechanisms	and	pathways.	

 
Figure	5.3	Clustering	of	drugs	on	the	pharmacogenomic	space	and	its	relation	to	mechanism-
of-action.	(A)	Heatmap	presenting	average	linkage	hierarchical	clustering	of	drugs	based	on	cosine	
similarity	on	the	pharmacogenomic	space	(CCLE).	(B)	Distribution	of	within-	and	between-group	
cosine	 similarities	 of	 drugs	 targeting	 MEK1	 (GDSC)	 and	 BRAF	 (GDSC).	 (C)	 Representation	 of	
dimensions	of	the	pharmacogenomic	space	capturing	different	drug	mechanisms.	For	each	target,	
the	average	vector	of	the	corresponding	drugs	was	calculated	for	EGFR,	RAF,	and	MEK	inhibitors	
(CCLE).	

5.2 Cell	line	subtypes	in	the	pharmacogenomic	space	

Clusters	of	cell-lines	in	the	pharmacogenomic	space	should	in-principle	be	

tuned	to	capture	drug	response	similarities.	However,	not	surprisingly	we	found	
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that	they	also	capture	tissue	type	signatures,	with	cell-lines	from	the	same	tissue	

type	showing	significantly	higher	cosine	similarity	than	cell-lines	from	different	

tissue	 types	 (Figure	5.4A,	5.5A),	and	also	being	visually	distinct	 in	 t-SNE86	2D	

space	(Figure	5.4B,	5.5B).	Further	segregation	into	histological	subtypes	was	not	

always	 as	 clear,	 though	most	 small	 cell	 lung	 carcinoma	 (SCLC)	 cell-lines	were	

distinct	from	non-small	cell	lung	carcinoma	(NSCLC)	cell	lines	(except	for	NSCLC	

carcinoid	 cell-lines;	 Figure	5.4C).	 The	 placement	 of	NSCLC	 carcinoid	 cell-lines	

with	SCLC	cell-lines	is	clearly	reflected	in	their	drug-response	profiles:	e.g.,	while	

NSCLC	 cell-lines	 were	 typically	 sensitive	 to	 PD-0325901	 (MEK	 inhibitor),	

carcinoid	cell-lines	were	not	(Figure	5.6).	Also,	we	found	that	cell	lines	with	KRAS	

mutations	had	significantly	higher	predicted	PD-0325901	sensitivity	(adjusted	p-

value	<1.4 × 10��),	and	that	KRAS	mutations	were	common	in	NSCLC	cell	 lines	

(~30%)	but	not	seen	often	in	SCLC	or	carcinoid	cell-lines	(~3%),	in	agreement	

with	 prior	 work	 on	 	 KRAS	 mutations	 being	 activation	 biomarkers	 for	 MEK	

inhibitors87.	

	

Figure	 5.4	 Subtypes	 of	 cell-lines	 on	 the	 pharmacogenomic	 space.	 (A)	 Kernel	 density	 plot	
showing	 distributions	 of	 cosine	 similarities	 between	 cell-lines	 of	 the	 same	 tissue	 type	 and	 of	
different	tissue	types	(GDSC).	(B)	Visualization	of	GDSC	cell-lines	from	top	5	most	frequent	tissue	
types	using	t-SNE.	(C)	Visualization	of	different	subtypes	of	GDSC	lung	cancer	cell	lines	using	t-SNE.	
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Figure	5.5	Subtypes	of	cell-lines	on	the	pharmacogenomic	space	(CCLE).	 (A)	Kernel	density	
estimation	plot	showing	cosine	similarity	within	tissue	type	was	significantly	higher	than	between	
different	 tissue	 types.	 (B)	 t-SNE	 plot	 of	 top	 5	 tissue	 types.	 (C)	 t-SNE	 plot	 for	 subtypes	 of	
hematopoietic	and	lymphoid	tissue	cell	lines.	

	
Figure	 5.6	 Comparison	 of	 drug	 response	 values	 between	 different	 cancer	 subtypes.	 (A)	
predicted	drug	response	(B)	observed	drug	response.	Kernel	density	plot	showing	that	NSCLC	cell	
lines	were	more	sensitive	to	PD-0325901	(inhibitor	of	MEK1	and	MEK2).	The	NSCLC	carcinoid	cell	
lines	seem	to	follow	the	distribution	of	SCLC	rather	than	NSCLC	cell	lines.	

By	leveraging	pathway	information,	we	observed	that	activity	scores	for	

the	ERK	pathway	in	NSCLC	cell-lines	(mean=1.52)	were	significantly	higher	than	

for	SCLC	cell-lines	(mean=-3.24;	p-value	<1.3 × 10��),	and	the	activation	of	ERK	

pathway	due	to	KRAS	mutation	could	play	a	role	in	the	increased	sensitivity	to	

MEK	 inhibitors	 (RAF-MEK-ERK	 pathway;	 Stinchcombe	 and	 Johnson,	 2014).	 In	

contrast,	 cell-lines	 with	 RB1	mutations	 had	 a	 significantly	 lower	 PD-0325901	
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sensitivity	 (adjusted	 p-value	 <7 × 10�� ),	 and	 correspondingly	 RB1	 mutations	

were	more	 common	 in	 SCLC	 cell-lines	 (67%)	 than	 in	 NSCLC	 cell-lines	 (10%).	

These	 observations	 corroborate	 earlier	work	 suggesting	 that	mutations	 in	 the	

RB1	pathway	can	inhibit	the	RAF-MEK-ERK	pathway	and	thus	induce	resistance	

to	MEK	 inhibitors	 88.	Cell-line	clusters	determined	by	CaDRReS	 thus	correlated	

well	 with	mutation	 and	 pathway	 activation	 in	 explaining	 drug	 responses,	 and	

could	serve	to	construct	new	testable	hypotheses	when	such	information	is	not	

known. 

5.3 Association	between	drugs	and	pathways	

Associations	between	cancer	drugs	and	key	pathways	can	be	identified	in	

the	pharmacogenomic	space	based	on	pathway	activity	scores,	cell	line	vectors,	

and	drug	vectors,	as	follows.	Firstly,	using	217	Biocarta	pathway	gene	sets	from	

MSigDB85,	pathway	activity	scores	were	calculated	for	each	cell	line	by	summing	

up	 gene	 expression	 fold-changes	 of	 genes	 in	 each	 pathway.	 To	 identify	 drug-

pathway	 associations,	 we	 then	 calculated	 the	 Pearson	 correlation	 between	

pathway	activity	scores	and	predicted	drug	responses	(𝐥𝐨𝐠	(𝑰𝑪𝟓𝟎);	lower	values	

indicate	greater	response),	where	a	negative	correlation	suggests	that	a	pathway	

is	 essential	 for	 drug	 effectiveness,	while	 a	 positive	 correlation	 suggests	 that	 it	

plays	a	role	in	drug	resistance.		

As	 expected,	 we	 observed	 that	 drugs	 targeting	 the	 same	 gene	 were	

frequently	associated	with	the	same	set	of	pathways	(Figure	5.7A,	Figure	5.8).	

For	instance,	four	EGFR	inhibitors	had	IC50	values	that	were	negatively	correlated	

with	 activation	 scores	 for	 the	 EGFR	 SMRTE	 pathway	 (assistant	 association),	

consistent	with	a	study	showing	that	amplification	of	the	EGFR	gene	is	correlated	

with	high	response	to	anti-EGFR	agents89.	Similarly,	two	RAF	inhibitors	showed	
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assistant	associations	with	the	VEGF-Hypoxia-Angiogenesis	pathway	(VEGF),	 in	

agreement	with	previous	studies	showing	that	VEGF	expression	induced	by	Raf	

promotes	 angiogenesis,	 while	 RAF	 inhibitors	 can	 block	 the	 RAF/MEK/ERK	

pathway	and	inhibit	tumor	angiogenesis	90,91.	

	
Figure	5.7	Drug-pathway	associations	identified	on	the	pharmacogenomic	space.	(A)	Drug-
pathway	associations	based	on	CCLE	data.	For	visualization,	the	top	40	pathways	having	the	highest	
associations	 across	 drugs	 (average	 absolute	 correlation)	 were	 selected.	 Negative	 and	 positive	
correlations	between	pathway	activity	and	drug	sensitivity	scores	are	denoted	as	being	“assistant”	
and	“resistant”	associations,	 respectively.	 (B)	Assistant	associations	between	L-685458	(gamma-
secretase	inhibitor)	and	IGF-1	MTOR	pathway.	(C)	Assistant	associations	between	Lapatinib	(EGFR	
inhibitor)	and	EGFR	SMRTE	and	HER2	pathways.	

We	 also	 observed	 resistant	 associations	 between	 the	 MTA3	 pathway	

(MTA3)	and	multiple	drugs	such	as	L-685458	(gamma-secretase	inhibitor)	and	

PD-0332991	(CDK4/6	 inhibitor),	 suggesting	 that	 the	cell	 lines	with	 inactivated	

MTA3	pathway	tend	to	be	sensitive	to	these	drugs.	In	addition,	the	study	of	Fujita	

et	al.	showed	that	the	absence	of	MTA3	leads	to	invasive	growth	in	breast	cancer92.	

Taken	 together,	 these	 observations	 suggest	 that	 drugs	 having	 a	 resistant	

association	with	MTA3	pathway	might	be	effective	when	tumor	growth	is	caused	

by	the	downregulation	of	the	MTA3	pathway,	although	further	work	is	needed	to	

confirm	this	hypothesis.	
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Figure	5.	8	Drug-pathway	associations	for	GDSC	drugs	targeting	EGFR,	MEK,	and	BRAF.	

In	 terms	 of	 drug-pathway	 associations,	 we	 noted	 that	 the	 strongest	

assistant	 association	 was	 observed	 between	 the	 drug	 L-685458	 (gamma-

secretase	 inhibitor)	 and	 the	 IGF-1	 MTOR	 pathway	 (Figure	 5.7B).	 This	

observation	 is	 also	 borne	 out	 in	 studies	 reporting	 that	 gamma-secretase	

inhibitors	 can	 inactivate	 MTOR	 signaling	 pathway	 and	 consequently	 induce	

apoptosis93.	Interestingly,	we	observed	a	stronger	association	signal	for	predicted	

drug	 responses	 than	 observed	 drug	 responses,	 suggesting	 that	 CaDRReS	 may	

have	the	ability	to	reduce	the	noise	observed	in	experimental	drug	response	data.	

Stronger	signals	based	on	predicted	drug	responses	were	also	observed	for	other	

known	 assistant	 associations,	 such	 as	 the	 one	 between	 Lapatinib	 (an	 EGFR	

inhibitor)	and	 the	EGFR	SMRTE	pathway	 (R=-0.440	vs	 -0.329;	Figure	5.7C)	as	

well	as	the	HER2	pathway	(R=-0.288	vs	-0.242)	(Harari,	2004;	Medina	and	Goodin,	
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2008).	 These	 results	 highlight	 the	 utility	 of	 predictions	 from	 CaDDReS	 for	

discovering	pathway	biomarkers	for	drug	sensitivity.	

5.4 CaDRReS	for	cancer	precision	medicine	

We	proposed	CaDRReS	to	predict	patient-specific	drug	response	based	on	

transcriptomic	 profile,	 as	 well	 as	 addressed	 several	 issues	 in	 other	 existing	

models.	 We	 then	 showed	 that	 based	 on	 various	 evaluation	 criteria,	 CaDRReS’	

performance	was	 among	 the	 best	 compared	 to	 other	 state-of-the-art	methods	

(Chapter	 4).	 Additionally,	 we	 investigated	 several	 applications	 of	 the	

pharmacogenomic	 space	 including	 drug	 response	 prediction	 for	 unseen	

patients/cell	lines	(Chapter	4),	studying	drug	response	mechanisms,	classifying	

the	cell	lines	according	to	their	drug	response	profiles	and	tissue	types,	identifying	

a	 group	 of	 drugs	 having	 similar	 effects	 and	 targeting	 the	 same	 gene,	 and	

discovering	drug-pathway	associations.	

However,	 we	 have	 only	 addressed	 inter-patient	 drug	 response	

heterogeneity	by	applying	the	model	to	predict	patient-specific	drug	responses.	

Within	a	tumor	or	a	cell	line,	there	could	be	several	clones	of	various	cell	types	

that	respond	to	the	same	drug	differently	—	intra-patient	(or	intratumoral)	drug	

response	heterogeneity.	Therefore,	predicting	drug	response	based	on	the	gene	

expression	of	bulk	tumor	might	not	accurately	capture	the	right	drug	response	

behavior	 in	 a	 patient.	 In	 the	 next	 chapter,	 we	 investigated	 intra-patient	 drug	

response	 heterogeneity	 by	 analyzing	 tumor	 information	 obtained	 from	 TCGA	

dataset,	as	well	as	developed	a	new	version	of	CaDRReS	that	account	for	several	

challenges	in	predicting	drug	response	of	single-cell	data,	which	allow	us	to	study	

different	cell	types	within	a	tumor.	

	



Chapter	6	

Predicting	cancer	drug	response	in	

the	presence	of	tumor	heterogeneity	

Each	tumor	is	different	as	it	progressively	evolves	into	a	complex	system	and	

interacts	 with	 its	 microenvironment96,97.	 As	 the	 disease	 progresses,	 clonal	

expansion,	genetic	diversification,	and	clonal	selection	iteratively	occurs	within	

tissue	 ecosystems98.	 	 Advances	 in	 genomic	 technologies	 have	 allowed	 us	 to	

observe	 an	 even	 greater	 than	 anticipated	 genetic,	 phenotypic	 and	 functional	

heterogeneity	 in	 cancer.	 These	 technologies	 have	 enabled	 us	 to	 study	

heterogeneity	 in	 cancer	 across	 different	 patients,	 different	 tumors	 within	 a	

patient,	 and	 different	 cell	 types	 within	 a	 tumor	 in	 order	 to	 understand	 the	

initiation,	progression,	and	metastasis	of	cancer.	Analyzing	diversities	of	cell	types	

(or	cell	states)	within	a	tumor	is	one	way	to	decipher	intra-tumor	heterogeneity,	

allowing	 us	 to	 understand	 the	 biological	 complexity	 of	 tumors	 and	 cell	

compositions,	which	in	turn	have	been	shown	to	affect	patient	survival	rates	and	

drug	response99.		

While	 anti-cancer	 treatments	 can	 inhibit	 cancer	 clones,	 they	 can	 also	

induce	selective	pressure	for	the	expansion	of	resistant	variants,	which	could	lead	

to	 therapeutic	 failure98.	 In	 previous	 chapters,	we	 addressed	 inter-patient	 drug	
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response	 heterogeneity	 by	 using	 the	 information	 in	 tumor	 transcriptomic	

profiles.	 However,	 transcriptomic	 profiles	 measured	 from	 bulk	 tumors	 only	

represent	an	average	gene	expression	across	different	cell	types	within	a	tumor,	

and	using	bulk	gene	expression	could	prevent	us	from	identifying	resistant	cells	

that	lead	to	therapeutic	complications.	Emerging	single-cell	technologies	such	as	

single-cell	 RNA	 sequencing	 (scRNA-seq)	 can	 enable	 us	 to	 measure	 the	

transcriptomic	 profile	 of	 thousands	 of	 individual	 cells	 within	 a	 tumor.	 The	

increasing	 availability	 of	 scRNA-seq	 data	 presents	 both	 opportunities	 and	

challenges	 to	 understand	 intra-tumor	 drug	 response	 heterogeneity	 for	

supporting	precision	oncology.	

In	 this	 chapter,	we	study	 the	 impact	of	 tumor	heterogeneity	on	clinical	

outcomes,	as	well	as	investigate	applications	of	CaDRReS	to	predict	drug	response	

in	the	presence	of	intra-tumor	heterogeneity.	Firstly,	we	performed	a	large	scale	

tumor	deconvolution	analysis	of	more	than	ten	thousand	tumors	from	multiple	

cancer	 types.	 From	 the	 analysis,	 we	 observed	 relationships	 between	 tumor	

heterogeneity	and	clinical	features	such	as	patient	survival	rate	and	clinical	drug	

responses,	re-establishing	the	relationships	found	in	smaller	scale	analyses99,100.	

Next,	we	propose	CaDRReS-SC,	 a	new	version	of	CaDRReS	 that	 is	more	

suitable	for	predicting	cell	type-specific	drug	response	based	on	single-cell	data,	

to	study	intra-tumor	drug	response	heterogeneity.	Patient-derived	cell	lines	are	

cancer	cells	that	are	derived	from	a	patient	and	grown	in	a	laboratory	for	studying	

cancer	biology	and	testing	the	response	to	cancer	treatments.	In	this	analysis,	we	

obtained	 scRNA-seq	 data	 from	 cancer	 cell	 lines	 derived	 from	 head	 and	 neck	

cancer	patients	as	a	case	study,	as	they	allowed	us	to	test	drug	response	for	a	panel	

of	drugs	while	being	patient	proximal	and	retaining	a	higher	degree	of	cellular	

heterogeneity74.	We	then	applied	CaDRReS-SC	to	predict	drug	response	for	each	
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cell	 type	observed	 in	the	patient	derived	cell	 lines	based	on	the	transcriptomic	

profile.	

In	 addition,	 we	 introduce	 a	 Newton-like	 method	 for	 systematically	

aggregating	 cell	 type-specific	 drug	 response	 predictions	 to	 capture	 the	 overall	

response	 of	 a	 cell	 mixture.	 The	 aggregation	 method	 iteratively	 estimates	 an	

expected	drug	response	of	a	cell	line	by	taking	into	account	the	proportions,	the	

sigmoid	 shape	 of	 dose-response	 curve,	 and	 the	 predicted	 drug	 responses	 of	

multiple	 cell	 types	 identified	within	 the	 cell	 line.	 Compared	 to	 the	 predictions	

based	on	bulk	gene	expression,	the	aggregation	of	cell	type-specific	predictions	

based	on	single-cell	gene	expression	provided	better	concordance	with	 in	vitro	

drug	response	measurements	for	heterogeneous	cell	lines.	

Finally,	because	a	single-drug	treatment	might	not	be	able	to	inhibit	some	

existing	resistant	cell	types	in	a	tumor	that	could	lead	to	treatment	complications,	

it	is	useful	to	identify	a	combination	of	drugs	that	together	can	inhibit	various	cell	

types.	In	the	last	section,	we	investigate	the	application	of	CaDRReS-SC	to	predict	

drug	responses	for	different	cell	types	in	each	patient,	and	then	we	incorporate	

clinically-feasible	 drug	 dosage	 information	 to	 identify	 patient-specific	 drug	

combinations	to	inhibit	those	cell	types.	

6.1 Methods	

Identifying	relationships	between	heterogeneity	and	clinical	features	

We	obtained	a	dataset	of	10,956	tumors	from	32	cancer	types	(one	of	the	

most	 extensively	 characterized,	 publicly	 available	 tumor	 datasets)	 from	 The	

Cancer	Genome	Atlas	Research	Network	(TCGA	Research	Network)5.	The	TCGA	

dataset	 provides	multi-omic	 profiles	 of	 the	 tumor	 as	well	 as	 clinical	 outcomes	

including	survival	days	and	clinical	drug	responses.	For	gene	expression	used	in	
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this	 study,	 we	 obtained	 the	 TCGA	 pancan	 gene	 expression	 matrix101	 which	

contains	RSEM-normalized	RNA-Seq	values,	i.e.,	TPM	(Transcripts	per	Million).	

Next,	we	identified	cell	types	in	each	tumor	by	using	CIBERSORT100,	a	tool	

for	tumor	deconvolution	based	on	a	transcriptomic	profile.	CIBERSORT	requires	

a	cell	signature	matrix	that	contains	transcriptomic	profiles	of	different	cell	types.	

Two	 cell	 type	 panels	 were	 used	 for	 our	 analysis	 including	 a	 default	 panel	 of	

immune	cells	(LM22)	and	a	panel	of	cancer	cells	from	different	histology	subtypes	

of	 GDSC	 (GDSC).	 For	 each	 input	 tumor,	 CIBERSORT	 outputs	 percentages	 for	

different	cell	types	present	in	the	tumor.	

To	 measure	 the	 degree	 of	 heterogeneity	 in	 each	 tumor,	 we	 defined	 a	

heterogeneity	score	(H)	as	 information	entropy,	𝐻 = −∑ 𝑃B𝑙𝑜𝑔𝑃BB ,	where	𝑃B 	is	a	

percentage	of	cell	 type	𝑖	 identified	in	a	tumor.	Cell	 types	present	at	a	relatively	

small	percentage	(<5%)	were	excluded	to	reduce	the	impact	of	classification	noise	

and	make	the	score	more	robust.	For	each	cancer	type,	we	classified	tumors	into	

three	categories	based	on	their	heterogeneity	scores:	low	(<Q1,	i.e.	scores	in	the	

first	quartile	of	the	distribution),	medium	(Q1	to	Q3),	and	high	(>Q3).	Finally,	we	

performed	survival	analysis	for	each	cancer	type	to	identify	differences	in	survival	

rates	between	different	heterogeneity	classes.	The	p-values	were	calculated	based	

on	pairwise	the	logrank	test,	i.e.,	three	pairs	for	each	cancer	type,	and	corrected	

by	the	Bonferroni	correction.	

Comparing	 survivorship	 of	 tumors	 clustered	 by	 heterogeneity	 and	

transcriptomic	profile	

Besides	 the	 three	 groups	 of	 tumors	 categorized	 according	 to	 their	

heterogeneity	 scores,	 we	 clustered	 the	 tumors	 based	 on	 their	 transcriptomic	

profiles	 by	using	 the	non-negative	matrix	 factorization	 (NMF)	method102.	NMF	
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clustering	decomposes	a	gene	expression	matrix	 into	 two	matrices	(tumor	and	

gene),	and	the	latent	dimension	is	equal	to	the	number	of	clusters.	To	determine	

the	appropriate	number	of	clusters,	we	calculate	a	silhouette	score	that	captures	

how	similar	a	tumor	is	to	its	cluster	compared	to	other	clusters103.	For	each	cancer	

type,	 the	 number	 of	 clusters	 corresponding	 to	maximum	 silhouette	 score	was	

used.	

Single-cell	data	for	head	and	neck	cancer	patient-derived	cell	lines	and	cell	

clustering	

We	used	a	previously	published	scRNA-seq	dataset	consisting	of	12	cancer	

cell	lines	derived	from	both	primary	and	metastatic	tumors	for	six	head	and	neck	

cancer	patients74.	The	dataset	contains	1,241	cells	in	total,	and	expression	levels	

for	26,968	genes	was	measured	by	scRNA-seq.	In	addition,	each	patient-derived	

cell	line	was	tested	with	anti-cancer	drugs,	and	inhibition	scores	(the	proportion	

of	cancer	cells	inhibited	by	1	uM	of	a	drug)	were	calculated.	In	total,	there	are	90	

drugs	 that	 are	 predictable	 by	 CaDRReS	 model	 that	 was	 trained	 on	 the	 GDSC	

dataset.	 Finally,	 we	 obtained	 cluster	 information	 for	 the	 1,241	 cells,	 clustered	

based	 on	 transcriptomic	 profiles	 using	 Seurat,	 a	 package	 for	 scRNA-seq	 data	

analysis104.		

CaDRReS	for	single-cell	data	(CaDRReS-SC)	

CaDRReS-SC	 is	 a	 framework	 for	 predicting	 cell	 type-specific	 drug	

response	based	on	scRNA-seq	data.	The	framework	consists	of	a	new	objective	

function	for	CaDRReS	that	is	better	suited	for	analyzing	cell	types	that	are	not	part	

of	the	training	set,	a	combination	of	CaDRReS	models	trained	for	different	drug	

classes,	 and	 a	 preprocessing	 step	 for	 scRNA-seq	 data	 that	 allows	 us	 to	 apply	

CaDRReS	to	predict	cell	type-specific	drug	response.	
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Firstly,	we	observed	that	the	performance	of	CaDRReS	for	unseen	samples	

was	relatively	lower	than	for	seen	samples,	likely	due	to	challenges	in	estimating	

bias	 terms	 for	 unseen	 samples.	 Therefore,	 to	 improve	 the	 performance	 of	

CaDRReS	for	predicting	unseen	samples,	we	propose	a	new	objective	function	for	

training	the	model	(Equation	3).	Specifically,	we	removed	the	cell	line	bias	term	

from	the	original	objective	function	(Equation	1)	to	allow	the	pharmacogenomic	

space	 to	 directly	 capture	 the	 effect	 of	 cell	 line	 bias.	 Compared	 to	 the	 original	

objective	function,	the	predictive	performance	across	unseen	cell	lines	improved	

(37%	based	on	average	per-drug	Spearman	correlation	of	5-fold	cross-validation	

on	the	GDSC	dataset,	p-value	<	9.71e-37).	

Equation	3.	

s;<= = µ + 𝑏B
C +	𝒒= ⋅ 	𝒑< 

														= µ + 𝑏B
C +	𝒒=(𝒙<𝑾E)J 

	

Additionally,	we	trained	two	separate	CaDRReS	models	for	cytotoxic	and	

targeted	drugs,	allowing	the	models	to	 learn	pharmacogenomic	spaces	that	are	

more	specific	to	these	drug	classes.	

Due	to	the	low	sensitivity	of	scRNA-seq	data,	some	expressed	genes	might	

not	be	detected	 in	 a	 subset	 of	 the	 cells105.	 Thus	predictions	based	on	 applying	

CaDRReS	to	individual	gene	expression	values	for	each	cell	might	not	be	accurate	

and	robust.	Therefore,	we	aggregated	transcriptomic	profiles	of	cells	in	each	cell	

cluster	by	calculating	the	95th-percentile	of	expression	for	each	gene.	We	observed	

that	the	95th-percentile	of	each	gene	across	all	individual	cells	in	a	cell	line	showed	

higher	concordance	when	compared	with	the	bulk	RNA-seq	data	of	the	cell	line	

(Pearson	 correlation:	 0.78	 vs	0.70).	 For	 the	 following	 analysis,	we	 refer	 to	 the	

prediction	based	on	the	aggregated	gene	expression	of	each	cluster	as	cell	type-
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specific	 prediction,	 as	 each	 cluster	 consists	 of	 cells	 that	 have	 similar	 gene	

expression	signature.		

Cell	 type-specific	 predictions	 allow	 us	 to	 study	 drug	 response	

heterogeneity	 across	 different	 cell	 types	 within	 a	 cell	 line	 or	 tumor.	 We	 can	

aggregate	these	predictions	to	obtain	an	overall	response	of	each	a	specific	tumor,	

and	the	aggregated	prediction	can	guild	us	to	select	drugs	to	inhibit	the	tumor.	In	

addition,	due	to	the	lack	of	single-cell	drug	response	information,	we	can	compare	

the	aggregated	prediction	to	validate	the	cell	type-specific	predictions.	

CaDRReS-SC	can	predict	IC50	values,	which	define	positions	of	the	dose-

response	curves	of	different	cell	types,	which	occupy	different	proportions	in	a	

cell	line	or	tumor	(Figure	6.1A).	Each	dose-response	sigmoid	curve	is	defined	by	

the	following	equation:	

Equation	4.	

𝑦 =
1

1 + 2(���)�
	

where	𝑦	represents	cell	viability	ranging	from	0	to	1,	𝑥	is	drug	concentration	in	

the	log	scale,	𝑎	and	𝑏	define	position	and	slope	of	the	curve.	The	IC50	value	is	equal	

to	𝑎 	because	 it	 correspond	 to	𝑦	 = 	0.5 .	 Next,	 we	 define	 the	 aggregated	 dose-

response	curve	as	follow:	

Equation	5.	

𝑦 = 	s𝑝B
1

1 + 2(����)��
B

	

where	𝑝B 	is	a	percentage	of	cell	type	or	cluster	𝑖	in	a	given	cell	line	and	𝑎B 	and	𝑏B 	

are	position	and	slope	of	the	dose-response	curve	of	cell	type	𝑖.		
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To	obtain	the	overall	drug	response	IC50	of	a	cell	line	or	tumor,	we	have	to	

find	𝑥 	that	𝑦 = 0.5 	(Equation	 5).	 	 Therefore,	 we	 apply	 the	 Newton	method	 to	

estimate	 IC50	 of	 the	 aggregated	 dose-response	 sigmoid	 curve	 (Figure	 6.1B).	

Firstly,	we	initiate	𝑥,	calculate	𝑦	based	on	Equation	5,	and	calculate	a	slope	of	the	

tangent	line	at	(𝑥, 𝑦).	We	then	calculate	a	new	𝑥	based	on	the	slope	and	the	new	𝑥	

corresponds	to	the	value	of	𝑦	that	 is	closer	to	0.5.	Finally,	we	stop	the	 iterative	

process	when	we	identify	x	that	corresponds	to	𝑦	that	is	almost	equal	to	0.5.	The	

algorithm	for	aggregating	dose-response	curves	is	summarized	below.	

	

A	Newton-like	algorithm	for	estimating	IC50	of	the	combined	dose-response	curve	

Initiation:	 𝑥 = 	s𝑎B𝑝B
B

	 Initiate	the	dosage	value.	

Iterative	

estimation:	

m	

=	s
𝑝B2��(����)

(1 + 2��(����))t
	

B

 

Calculate	a	slope	of	the	tangent	line.	

	 𝑦	

= 	𝑝Bs
1

1 + 2(����)��
	

B

	

Calculate	 drug	 response	 based	 on	 the	

combined	 dose-response	 curve,	 which	

is	 a	 weighted-average	 of	 the	 dose-

response	curves	of	all	cell	types.	

	 𝑥 = 	𝑥	 +	
0.5 − 𝑦
𝑚

	 Update	 x	 to	 the	 new	 dosage	 which	 is	

closer	to	50%	cell	viability.	

Stop	criterion:	 |𝑦 − 0.5| < 𝜀 Stop	 and	 return	 𝑥 	when	 𝑦 	is	 almost	

equal	to	50%	cell	viability.	
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Figure	6.1	Aggregating	cell	type-specific	drug	response	predictions.	(A)	An	example	of	dose-
response	 curves.	 Cell	 types	 response	 to	 the	 same	 drug	 differently	 as	 illustrated	 in	 three	 dose-
response	 curves,	 while	 a	 dashed	 line	 represents	 IC50	 of	 the	 bulk.	 (B)	 A	 Newton-like	method	 to	
iteratively	calculate	IC50	of	the	combined	curve	by	taking	into	account	slope	and	position	of	each	cell	
type’s	curve	and	percentage	of	the	cell	type	in	a	cell	line.	

Comparing	 CaDRReS-SC	 prediction	 against	 observed	 drug	 responses	 in	

patient-derived	cell	lins	

Several	cancer	drugs	were	tested	on	the	head	and	neck	and	patient	cell	

lines,	and	the	inhibition	score	for	each	pair	of	drug	and	cell	line	was	calculated.		

However,	 to	 evaluate	 the	 predictive	 performance	 of	 the	models,	 the	 observed	

inhibition	 score	 should	 not	 be	 directly	 compared	 against	 the	 predicted	 IC50	

because	they	are	different	units.	Specifically,	the	inhibition	score	is	a	percentage	

of	cells	that	are	inhibited	at	1uM	of	a	drug,	while	IC50	is	a	dosage	that	the	drug	can	

inhibit	50%	of	the	cells.	Therefore,	we	applied	a	cutoff	at	50%	inhibition	to	classify	

in	vitro	drug	response	into	two	groups,	sensitive	and	resistant.	Finally,	for	each	

head	and	neck	patient-derived	cell	line,	we	counted	the	number	of	sensitive	drugs	

that	were	predicted	among	the	top-5	predictions	from	each	method.	

Predicting	patient-specific	drug	combination	

We	combined	single-cell	data	obtained	from	both	primary	and	metastatic	

cell	lines	derived	from	each	head	and	neck	cancer	patient	to	study	drug	response	

heterogeneity	at	a	patient-level,	as	a	cancer	treatment	can	affect	both	primary	and	

metastatic	tumors.	We	then	applied	CaDRReS-SC	to	predict	cell	type-specific	drug	
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responses	 and	 identified	 a	 combination	 of	 drugs	 that	 can	 inhibit	 all	 cell	 types	

detected	(at	>10%	frequency)	in	a	patient.		

Besides,	the	ranges	of	feasible	concentrations	are	different	across	drugs,	

so	predicting	drug	combination	solely	based	on	the	predicted	IC50	is	not	suitable.	

For	example,	we	might	tend	to	select	a	combination	of	drugs	that	have	low	IC50,	

while	 the	 dosages	 used	 in	 a	 clinic	 are	 yet	 lower.	 To	 address	 this	 issue,	 we	

incorporated	a	clinically	relevant	value,	i.e.,	the	maximum	plasma	concentration	

(Cmax),	 which	 is	 the	 drug	 concentration	 observed	 in	 plasma	 when	 using	

maximum	dosage	 indicated	on	 the	drug	 label106.	Based	on	Cmax	value,	we	 can	

identify	a	combination	of	drugs	that	can	inhibit	different	types	of	cells,	as	well	as	

have	appropriate	dosages	to	be	used	in	a	clinic.	

For	a	given	pair	of	drug	and	cell	 type,	we	classified	 the	predicted	drug	

response	into	four	groups	according	to	drug-specific	Cmax	values.	Firstly,	we	used	

Cmax	 as	 a	 drug-specific	 cutoff	 value	 to	 identify	 responders	 (predicted	 IC50	 <	

Cmax)	and	non-responders	(predicted	IC50	>	Cmax)	cell	types.	We	then	classified	

the	 responders	 into	 three	 groups	 (low	 dosage	 responder,	 medium	 dosage	

responder,	and	high	dosage	responder)	based	on	half	Cmax	and	a	quarter	of	the	

Cmax	value.	Lower	dosages	of	the	drug	could	reduce	potential	side	effects,	so	we	

prefer	drugs	 that	have	predicted	 IC50	values	significantly	 lower	 than	 the	Cmax.	

Next,	 we	 defined	 a	 weight	 for	 each	 group:	 non-responder	 =	 0,	 high	 dosage	

responder	=	1,	medium	dosage	 responder	=	2,	 and	 low	dosage	 responder	=	3.	

Finally,	we	solved	a	weighted	maximum	cover	problem	to	identify	the	appropriate	

patient-specific	drug	or	drug	combination.	In	the	case	that	multiple	combinations	

have	 equal	maximum	weight,	 we	 broke	 ties	 by	 prioritizing	 drugs	 with	 higher	

selectivity,	 i.e.,	 a	 drug	 that	 has	 a	 smaller	 total	weight	 (summing	up	 across	 cell	

types).	
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6.2 Results	

Identifying	 relationships	 between	 tumor	 heterogeneity	 and	 clinical	

outcomes	

As	cancers	progress,	clonal	expansion,	genetic	diversification,	and	clonal	

selection	lead	to	intra-tumor	heterogeneity,	i.e.,	multiple	cell	types	with	different	

genetic	 and	 transcriptomic	 profiles	 exist	 in	 a	 tumor.	 Traditionally,	 multi-omic	

profiles	 of	 a	 bulk	 tumor	were	measured	 to	 study	 the	 disease,	 but	 they	 do	 not	

directly	capture	information	on	proportions	of	various	cell	types	within	a	tumor.	

For	 example,	 different	 proportions	 of	 immune	 cells	 have	 been	 shown	 to	 have	

significant	 associations	 with	 patient	 clinical	 features	 and	 cancer	 genetic	

alterations99.	Also,	tumors	with	high	levels	of	intra-tumor	heterogeneity	can	have	

inferior	 clinical	 outcomes	 due	 to	 the	 expansion	 of	 pre-existing	 subclonal	

populations	or	from	the	evolution	of	drug-tolerant	cells107.		

In	this	section,	we	further	evaluated	the	relationship	between	intra-tumor	

heterogeneity	and	treatment	outcomes	based	on	large	cancer	genomics	datasets.	

The	Cancer	Genome	Atlas	(TCGA)	provides	transcriptomic	and	clinical	outcome	

such	as	survivorship	and	clinical	drug	response	data	for	several	thousand	cancer	

patients.	 The	 relationships	 between	 intra-tumor	 heterogeneity	 and	 treatment	

outcomes	has	not	been	 investigated	 in	such	 large	datasets	and	across	different	

cancer	types.	Here,	we	applied	a	tumor	deconvolution	approach	to	compute	the	

proportion	of	different	cell	types	in	tumors	to	estimate	their	heterogeneity	and	

association	with	clinical	features	(see	Methods).	

Firstly,	we	run	the	deconvolution	method	based	on	the	immune	cell	panel	

(LM22),	a	default	cell	type	panel.	It	has	been	shown	that	immune	cell	composition	

are	associated	with	patient	clinical	features	and	response	to	immunotherapy	in	
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some	cancer	types99.	In	our	analysis,	we	observed	that	same	cancer	type	patients	

could	have	different	 immune	infiltration	profiles,	as	the	tumor	samples	did	not	

cluster	based	on	cancer	 types	 (Figure	6.2A).	 In	addition,	 to	 study	relationship	

between	 tumor	 heterogeneity	 and	 clinical	 features	 including	 survivorship	 and	

drug	response	provided	by	the	TCGA	dataset,	we	decomposed	tumors	based	on	

the	GDSC	histology	subtype	panel	to	identify	different	cancer	cell	types	within	a	

tumor	(Figure	6.2B).	As	expected,	we	observed	clusters	of	tumors	from	the	same	

cancer	type,	suggesting	that	different	cancer	types	have	unique	cancer	cell	type	

compositions.	As	we	did	not	consider	immunotherapy	treatment	in	our	study,	we	

focused	on	the	deconvolution	results	based	on	the	GDSC	histology	subtype	panel,	

in	line	with	the	observation	in	Chapter	5	that	histological	subtypes	can	define	drug	

response.		

Next,	we	investigated	the	relationship	between	heterogeneity	and	clinical	

outcomes	 (see	 Method).	 Using	 survival	 analysis,	 we	 observed	 significantly	

different	 survivorships	 between	 low	 and	 high	 heterogeneity	 groups	 for	 some	

cancer	 types	such	as	Low	Grade	Glioma	(LGG,	p-value	<	1.24e-4)	and	Sarcoma	

(SARC,	p-value	<	2.88e-4).	These	results	suggest	that	intra-tumor	heterogeneity	

is	associated	with	survivorship	of	 the	patients	and	 the	effects	of	heterogeneity	

degrees	 could	 vary	 across	 cancer	 types	 (GDSC	 cancer	 subtypes	 panel,	 Figure	

6.2A).	
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Figure	6.2	Tumor	deconvolution	results.	(A)	LM22	immune	cell	type	panel.	(B)	GDSC	histological	
subtype	panel.	We	clustered	the	tumors	based	on	cell	type	compositions	and	observed	that	for	(B)	
the	tumors	were	clustered	based	on	cancer	 type.	For	example,	breast	(histological	subtype)	was	
enriched	for	Breast	invasive	carcinoma	(BRCA)	tumors.	

We	 hypothesized	 that	 the	 heterogeneity	 score	 might	 be	 superior	 in	

explaining	patient	survivorship	compared	to	transcriptomic	profiles.	To	examine	

this,	 we	 performed	 non-negative	 matrix	 factorization	 (NMF)	 clustering	 for	 all	

cancer	 types	 (see	 Methods).	 We	 applied	 NMF	 clustering	 on	 LGG	 and	 SARC	

samples	based	on	transcriptomic	profiles,	and	the	numbers	of	clusters	were	set	to	

2,	 corresponding	 with	 the	 highest	 overall	 average	 silhouette	 score.	 Based	 on	

survival	analysis,	we	observed	a	larger	survivorship	variation	between	different	

heterogeneity	 groups	 comparing	 to	 transcriptomic	 clusters,	 suggesting	 that	

heterogeneity	could	be	a	better	indicator	of	survivorship	(LGG:	p-value	<	3.72e-4	

vs	p-value	<	1.94e-2,	SARC:	p-value	<	8.64e-4	vs	p-value	<	5.98e-2,	Figure	6.3A-B).	

Additionally,	 we	 investigated	 the	 difference	 between	 two	 cluster	 types	 by	
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counting	the	number	of	overlapping	tumors	between	different	clusters.	For	SARC,	

we	 observed	 overlaps	 between	 the	 medium/high	 heterogeneity	 groups	 and	

cluster	2	(Jaccard	index	=	0.38,	0.39),	suggesting	that	heterogeneity	information	

could	further	differentiate	the	tumor	within	cluster	2	into	two	groups	that	have	

different	survivorship	(Figure	6.3C).	

Finally,	we	examined	the	relationship	between	intra-tumor	heterogeneity	

and	 clinical	 drug	 response	 categories	 (see	 Methods).	 For	 Doxorubicin	 (a	

chemotherapy	 drug	 for	 blocking	 an	 enzyme	 that	 manages	 DNA	 tangles),	 we	

observed	that	heterogeneity	scores	were	significantly	different	between	subjects	

falling	 into	 the	 categories	 of	 “Complete	 Response”	 and	 “Clinical	 Progressive	

Disease”	 (p-value	 <	 2.20e-4,	 Figure	 6.3D),	 highlighting	 that	 intra-tumor	

heterogeneity	plays	a	role	in	clinical	drug	response.	

	

Figure	 6.3	 	 Intra-tumor	 heterogeneity	 and	 clinical	 patient	 features.	 (A)	 Survival	 analysis	
comparing	the	different	degree	of	heterogeneity.	(B)	Survival	analysis	comparing	different	groups	
of	patients	based	on	NMF	clustering	using	gene	expression.	(C)	The	overlap	between	heterogeneity	
and	 gene	 expression	 clusters.	 (D)	 Comparison	 of	 heterogeneity	 scores	 for	 patients	 from	 four	
Doxorubicin	 response	 groups.	 (E)	 Comparison	 of	 heterogeneity	 scores	 and	 entropy	 values	
calculated	 from	 cell	 cluster	 percentages	 based	on	 single-cell	RNA-seq	data	 of	 12	head	 and	neck	
patient-derived	cell	lines.	
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We	 acknowledged	 that	 calculating	 intra-tumor	 heterogeneity	 scores	

based	 on	 GDSC	 histological	 subtypes	 is	 not	 the	 best	 strategy,	 and	 accuracy	 of	

heterogeneity	scores	needs	to	be	evaluated.	To	address	this	issue,	we	compared	

entropy	 based	 on	 CIBERSORT’s	 deconvolution	 results	 of	 the	 aggregated	

transcriptomic	 profiles	 (GDSC	 histological	 subtype	 panel,	 Figure	 6.2B)	 and	

entropy	based	on	cell	cluster	percentages	(Figure	6.4A)	across	12	head	and	neck	

patient-derived	cell	lines.	Here	we	only	considered	the	clusters	or	the	histological	

subtypes	with	at	least	5%	presence	to	avoid	the	noise.	Although	the	number	of	

cell	lines	is	small,	we	observed	a	significant	correlation	between	the	two	types	of	

entropy	 values	 (Figure	 6.3E,	 Pearson	 correlation	 =	 0.60,	 p-value	 <	 4.08e-2),	

suggesting	 that	 the	 heterogeneity	 scores	 could	 capture	 the	 gene	 expression	

heterogeneity	within	a	sample.	

Using	scRNA-seq	data	to	predict	drug	response	in	the	presence	of	cellular	

heterogeneity	

Using	scRNA-seq	data,	we	can	apply	CaDRReS	to	predict	drug	response	of	

each	cell	type	identified	within	a	tumor	or	patient.	Firstly,	we	obtained	scRNA-seq	

of	 head	 and	 neck	 patient-derived	 cell	 lines,	 as	 well	 as	 information	 of	 22	 cell	

clusters	 (Figure	 6.4A-B).	 Next,	 we	 proposed	 a	 modified	 version	 of	 CaDRReS,	

CaDRReS-SC,	to	further	improve	the	performance	on	an	unseen	sample,	alleviate	

a	challenge	of	scRNA-seq	data	which	typically	have	 low	sensitivity	 in	detecting	

genes,	 and	 predict	 overall	 drug	 response	 of	 a	 tumor	 by	 aggregating	 cell	 type-

specific	predictions	(see	Method).	

Next,	we	compared	CaDRReS-SC’s	drug	response	predictions	(IC50)	with	

the	in	vitro	observed	drug	response	(inhibition	score).	Both	CaDRReS	(predictions	

based	on	bulk	gene	expression)	and	CaDRReS-SC	(the	combined	cell	type-specific	

drug	 predictions)	 showed	 better	 performance	 than	 the	 baseline	 prediction.	
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Although	 the	 predictive	 performance	 of	 CaDRReS	 and	 CaDRReS-SC	 were	 not	

significantly	 different,	we	 observed	 that	 the	 predictions	 based	 on	CaDRReS-SC	

were	better	than	CaDRReS	for	the	cell	lines	with	a	higher	degree	of	heterogeneity;	

HN120M	 and	 HN160M	 that	 consist	 of	 three	 and	 four	 cell	 types,	 respectively	

(Figure	6.4A	and	6.5).	These	 results	 suggested	 that	 intra-tumor	drug	 response	

heterogeneity	should	be	considered	in	predicting	drug	response.	

	

Figure	6.4	(A)	Different	cell	types	were	identified	in	each	patient-derived	cell	line.	(B)	The	t-SNE	
plot	shows	clusters	of	single	cells.	

Predicting	 patient-specific	 drug	 combinations	 to	 treat	 heterogeneous	

tumors	

In	the	presence	of	intra-patient	heterogeneity,	single	drug	treatments	may	

not	be	sufficient	to	inhibit	all	subpopulations	of	cancer	cells	in	a	patient108,	and	

resistance	 to	 treatment	 can	 lead	 to	 the	 expansion	 of	 pre-existing	 subclonal	

populations	or	the	evolution	of	drug-tolerant	cells107.	Therefore,	we	studied	the	

application	of	CaDRReS-SC	to	predict	drug	combinations	that	can	inhibit	multiple	

cell	types	identified	within	a	patient.	Treatment	with	such	a	drug	cocktail	could	

potentially	prevent	the	emergence	of	aggressive	clones	due	to	drug-tolerant	cells.	

Additionally,	a	drug	combination	based	treatment	can	allow	for	smaller	dosages	

of	individual	drugs	and	thus	lead	to	lower	overall	toxicity.	
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Figure	6.5	Comparison	of	in	silico	predicted	drug	response	(IC50)	and	the	in	vitro	observed	
drug	response	(inhibition	score)	 for	71	targeted	drugs	(top)	and	19	cytotoxic	drugs	(bottom).	
Numbers	of	 sensitive	drugs	detected	 in	 the	 top-5	predictions	based	on	 three	different	methods:	
Baseline	 prediction	 (left),	 CaDRReS	 prediction	 based	 on	 bulk	 gene	 expression	 (center),	 and	
CaDRReS-SC	based	on	scRNA-seq	data	(right).	

	

After	 combining	 single-cell	 data	 obtained	 from	 both	 primary	 and	

metastatic	 cell	 lines	 derived	 from	 each	 patient,	 we	 observed	 different	

heterogeneity	degrees	across	patients	(Figure	6.6A).	Next,	we	applied	CaDRReS-

SC	(without	the	aggregation	of	cell	type-specific	predictions)	to	predict	cell	type-

specific	 responses	 for	 five	 standard-of-care	 drugs	 of	 head	 and	 neck	 cancer	

including	Docetaxel,	Paclitaxel,	Cisplatin,	Lapatinib,	and	Gefitinib.	The	drugs	and	

cell	 types	projected	on	the	10-D	pharmocogenomic	spaces	of	 two	drug	groups,	

drugs	with	median	IC50	<	1uM	(cytotoxic)	and	those	with	IC50	≥	1uM	(targeted).	

We	observed	that	drugs	targeting	EGFR	(Lapatinib	and	Gefitinib)	were	clustered	

together,	while	Cisplatin	exhibited	distinct	responses	(Figure	6.6B).		
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Figure	6.6	 	Predicting	patient-specific	drug	 combination.	 (A)	The	proportion	of	 cell	
types	 in	 each	 head	 and	 neck	 cancer	 patient.	 (B)	 A	 heatmap	 visualizes	 the	 10-D	
pharmacogenomic	space	of	drugs	with	IC50	<	1uM	and	22	cell	types.	Drugs	and	cell	types	
were	clustered	based	on	cosine	similarity.	(C)	Identifying	a	combination	of	Docetaxel	and	
Paclitaxel	for	HN160	and	a	combination	of	Lapatinib	and	Docetaxel	for	HN148.	

	

We	obtained	drug-specific	Cmax	values	to	classify	the	predicted	IC50	into	

four	response	classes	and	solved	a	weighted	maximum	cover	problem	to	identify	

a	combination	of	drugs	that	can	inhibit	different	cell	types	within	a	patient	(See	

Methods).	 Based	 on	 the	 cell	 type-specific	 predictions,	 we	 identified	 drug	

combinations	(or	a	single	drug)	as	being	suitable	for	the	six	patients.	Among	these,	

we	 identified	 a	 combination	 of	 Docetaxel	 and	 Paclitaxel	 for	 HN160	 and	 a	

combination	of	Lapatinib	and	Docetaxel	for	HN148	(Figure	6.6C).	Docetaxel	and	

Paclitaxel	are	commonly	used	in	breast	cancer	treatment109	and	were	predicted	

for	HN160	to	inhibit	three	cell	types	identified	within	the	patient.	Both	Docetaxel-

Paclitaxel	and	Docetaxel-Lapatinib	were	able	to	inhibit	the	tree	cell	types	at	low	

dosage,	but	Paclitaxel	was	more	 selective	 to	 cell	 cluster	100	and	have	a	 lesser	
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effect	on	cluster	020	and	021.	A	combination	of	Lapatinib	and	Docetaxel	has	been	

extensively	studied	for	advanced	cancer	treatment110	and	was	predicted	to	inhibit	

four	cell	types	identified	within	HN148.	For	this	patient,	Lapatinib	could	be	the	

most	suitable	drug,	but	cell	type	031	(25%	of	the	tumors)	might	be	resistant	to	

the	drug	at	low	dosage.	Combining	with	a	low	dosage	of	Docetaxel,	it	is	possible	

to	apply	lower	drug	dosages,	which	could	lower	toxicity,	to	inhibit	most	cell	types	

in	the	patient.		

We	also	 identified	 for	HN120	a	 combination	of	Lapatinib	and	Gefitinib,	

which	are	EGFR	inhibitors.		Although	further	experimental	validation	is	needed,	a	

combination	 of	 drugs	 that	 target	 the	 same	 pathway	 could	 be	more	 effectively	

inhibit	 the	 tumor	 due	 to	 a	 synergistic	 effect	 111.	 Taken	 together,	 these	 results	

suggested	that	the	ability	to	predict	drug	response	for	multiple	cell	types	within	a	

patient	is	essential	for	identifying	drug	combinations	to	inhibit	the	tumors,	as	well	

as	provides	a	promising	step	 toward	developing	a	decision-support	system	for	

precision	oncology.	

6.3 Discussion	

We	investigated	intra-tumor	drug	response	heterogeneity	by	analyzing	a	

large	tumor	dataset	(TCGA),	as	well	as	modifying	and	applying	CaDRReS	to	predict	

cell	 type-specific	prediction.	Firstly,	we  applied	a	deconvolution	algorithm	 to	a	

large	 tumor	dataset	 (TCGA)	 to	 evaluate	 the	 relationships	between	 intra-tumor	

heterogeneity	and	survivorship	across	cancer	types	in	the	TCGA	dataset.	We	also	

observed	 a	 pancan	 association	 between	 the	 heterogeneity	 degree	 and	 drug	

response,	although	it	could	be	more	informative	to	study	the	association	between	

the	heterogeneity	and	drug	response	for	a	specific	cancer	type.	Due	to	the	limited	

number	of	samples	that	have	clinical	drug	response	information,	applying	a	model	
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for	predicting	drug	response	on	the	TCGA	dataset	might	allow	us	to	study	roles	of	

intra-tumor	heterogeneity	in	drug	response	in	different	cancer	types.	

We	 note	 that	 there	 are	 studies	 which	 have	 analyzed	 the	 relationships	

between	infiltrating	immune	cells	and	drug	response	behaviors100,112.	However,	

those	studies	focus	on	infiltrating	immune	cells,	while	we	aim	to	identify	different	

cancer	cell	types	in	order	to	calculate	a	degree	of	heterogeneity	for	each	tumor.	

Therefore,	we	use	GDSC	histological	subtypes	as	proxies	of	different	cancer	cell	

types	 with	 the	 assumption	 that	 the	 public	 cell	 line	 panel	 can	 represent	 the	

diversity	of	cancer	cells.	

	To	 study	 intra-tumor	 heterogeneity,	 we	 obtained	 single-cell	 RNA-seq	

data	of	head	and	neck	patient-derived	cell	lines	constructed	from	both	primary	

and	metastatic	sites.	Based	on	the	assumption	that	the	public	cell	line	panel	can	

capture	 the	diversity	of	 cancer	 cell	 types,	we	applied	CaDRReS	 to	predict	drug	

response	specifically	for	different	clusters	of	single	cells.	Although	it	is	not	clear	if	

the	cell	clusters	represent	different	cell	types	or	different	cell	states	of	the	same	

cell	type,	each	cell	cluster	has	a	unique	transcriptomic	profile	that	could	lead	to	

different	drug	response	behaviors.	A	patient-derived	cell	line	serves	us	a	snapshot	

of	a	tumor,	and	understanding	of	drug	response	behavior	of	this	snapshot	can	be	

useful	 for	 future	studies	of	 intra-tumor	heterogeneity	as	well	as	drug-resistant	

mechanism.	

In	 the	 single-cell	 analysis,	 the	 dropout	 issue	 could	 lead	 to	 missing	

information	of	some	genes113,	so	we	alleviated	this	problem	by	clustering	the	cells	

based	on	gene	expression	and	carefully	combined	the	gene	expression	of	cells	in	

each	 cluster	 to	 obtain	 the	 profile	 that	 represents	 each	 cell	 type.	 For	 applying	

CaDRReS	to	single-cell	data,	we	proposed	a	new	objective	function	of	CaDRReS	

that	suits	better	 for	predicting	drug	response	of	unseen	samples.	However,	we	
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acknowledged	that	improving	the	accuracy	of	sample	bias	prediction	could	be	a	

better	solution	to	improve	the	performance	of	the	model	for	unseen	samples.		

Besides	the	new	objective	 function,	we	trained	two	separated	CaDRReS	

models	for	targeted	and	cytotoxic	drugs	as	we	found	that	the	performance	was	

improved	comparing	 to	a	 single	model	 for	all	drugs,	 suggesting	 that	 training	a	

model	 for	each	drug	class	could	 improve	 the	predictive	performance	while	 the	

number	 of	 samples	 is	 not	 too	 small	 to	 train	 a	 robust	models.	 Systematic	 pre-

clustering	of	drugs	could	allow	us	to	further	improve	the	performance	and	obtain	

pharmacogenomic	 spaces	 that	 capture	 specific	 behaviors	 of	 each	 drug	 type.	

Moreover,	drug	properties	information	can	be	incorporated	into	the	model,	 i.e.,	

instead	 of	 directly	 calculating	 a	 vector	 𝒒B 	to	 represent	 drug	 𝑖 	in	 the	

pharmacogenomic	 space	 (Equation	 1),	 we	 calculate	 𝒒B = 𝒚B𝑾y ,	 where	 𝒚B 	

represents	drug	features	and	𝑾y	is	a	matrix	to	project	the	drug	features	onto	the	

pharmacogenomic	space.	This	modification	will	allow	the	models	to	predict	the	

dose	 responses	 for	 an	 unseen	 drug	 as	 well	 as	 learn	 new	 parameters	 that	 are	

specific	for	different	drug	classes	or	chemical	groups.	

We	combined	single-cell	data	of	the	cell	lines	derived	from	both	metastatic	

and	primary	tumors	to	predict	drug	response	at	a	patient	level.	Using	single	drug	

treatment	might	not	be	able	to	kill	some	existing	cancer	cell	types,	which	could	

transform	into	aggressive	resistant	cells	and	activate	metastasis.	We	proposed	a	

method	to	predict	an	upfront	combination	of	drugs	to	inhibit	multiple	detected	

cell	types,	and	several	known	drug	combinations	were	predicted.	However,	due	

to	 the	 lake	of	data,	 in	 this	analysis,	we	did	not	consider	drug-drug	 interactions	

such	 as	 antagonistic	 and	 synergistic	 interactions.	 Also,	 interactions	 between	

drugs	could	depend	on	drug	dosages,	and	we	still	need	to	examine	this	aspect	to	

improve	patient-specific	drug	combination	predictions.	
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Using	 the	 patient-derived	 cell	 line	 data	 allowed	 us	 to	 validate	 our	

predictions	with	the	existing	drug-screening	data.	The	patient-derived	cell	lines	

are	also	more	proximal	to	the	patients	than	the	standard	cancer	cell	lines,	suiting	

for	future	experimental	validation	and	follow	up.	To	compare	our	predictions	with	

the	 in	 vitro	 drug	 response,	 we	 systematically	 aggregated	 cell-type	 specific	

predictions.	We	observed	that	a	simple	weighted	average	of	the	cell	type-specific	

IC50s	was	not	accurate	due	to	the	sigmoid	shape	of	the	dose-response	curves,	so	

we	proposed	a	Newton-like	method	to	estimate	the	IC50	of	the	aggregated	dose-

response	 curve	 for	 heterogeneous	 cell	 lines.	 We	 found	 that	 the	 systematic	

aggregation	 of	 the	 predicted	 cell	 type-specific	 IC50s	were	more	 accurate	when	

compared	 to	 predictions	 based	 on	 the	 bulk	 gene	 expression.	 These	 results	

suggested	that,	ideally,	we	need	a	recommender	system	that	can	predict	patient-

specific	drug	 response	behavior	need	 to	 consider	both	 intra-	 and	 inter-patient	

heterogeneities	for	serving	as	a	decision-support	system	in	cancer	treatment.	



	

	

Chapter	7	

Conclusion	

The	field	of	machine	learning	for	drug	response	prediction	is	challenging	

and	various	types	of	models	have	been	proposed.	We	discussed	several	existing	

drug	 response	 prediction	 methods	 as	 well	 as	 their	 strengths	 and	 limitations	

(Chapter	3).	With	the	goals	of	improving	predictive	performance	and	enhancing	

interpretability	of	the	existing	models,	we	developed	CaDRReS,	a	recommender	

system	 for	 patient-specific	 drug	 response	 prediction	 based	 on	 transcriptomic	

information	(Chapter	4).	CaDRReS	 is	based	on	a	matrix	 factorization	technique	

that	simultaneously	 learns	across	multiple	drugs	and	samples	(patients,	cancer	

cell	lines,	and	cancer	cells)	to	obtain	a	hidden	space	that	captures	relationships	

among	drugs	and	samples.	This	technique	can	increase	the	number	of	samples	to	

learn	 a	 more	 robust	 model.	 We	 also	 introduced	 bias	 terms	 to	 remove	 the	

normalization	step	of	drug	response	values,	which	lead	to	the	loss	of	drug	ranking	

information	within	a	sample.	Moreover,	we	created	the	kernel	feature	(based	on	

transcriptomic	 information	 of	 essential	 genes)	 that	 is	 more	 robust	 than	 gene	

expression	values	and	enables	us	 to	apply	CaDRReS	 to	datasets	obtained	 from	

different	transcriptomic	platforms.	
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We	 note	 that	 predicting	 the	 response	 of	 a	 given	 drug	 in	 a	 patient	 via	

responses	 observed	 in	 cancer	 cell	 lines	 is	 performed	 based	 on	 the	 following	

assumptions.	Firstly,	the	model	learns	from	standard	cancer	cell	lines	which	might	

not	maintain	intra-tumor	heterogeneity.	Secondly,	we	assume	that	each	cell	line	

represents	 a	 cancer	 cell	 type	 and	 that	 the	 cell	 line	 panel	 can	 represent	 the	

diversity	of	cancer	cell	types.	Also,	in	vitro	cell	line	models	have	their	limitations:	

they	 could	 not	 capture	 effects	 of	 tumor	 microenvironments;	 they	 might	 only	

represent	a	specific	 tumor	sector	 in	a	patient;	clonal	selection	can	occur	 in	 the	

model	generating	process114.	However,	it	has	been	observed	that	patient-derived	

cell	lines	can	capture	drug	response	phenotypes	and	biomarkers	that	present	in	

the	corresponding	patients74.	Using	in	vitro	model	allows	high-throughput	screen	

for	hundreds	of	drugs	across	multiple	cell	lines,	which	is	currently	not	possible	in	

vivo	due	to	cost	limitation.	Therefore,	as	the	first	step	toward	applying	the	model	

for	a	patient,	we	use	 the	standard	cell	 lines	as	proxies	of	cancer	cell	 types	and	

develop	a	model	to	predict	drug	response	based	on	their	transcriptomic	profiles.	

Besides	 the	 predictive	 performance,	 interpretability	 of	 the	 models	 is	

another	 aspect	 that	 has	 been	 ignored	 in	many	 studies.	 The	 pharmacogenomic	

spaces	 learned	 in	CaDRReS	captured	and	visualized	drug-sample	relationships,	

enabling	us	to	study	drug	response	mechanisms	(Chapter	5).	We	showed	that	they	

could	 be	 used	 for	 identifying	 groups	 of	 drugs	 having	 similar	 mechanisms,	

subtypes	 of	 cell	 lines	 based	 on	 drug-response	 behaviors,	 and	 known	 drug-

pathway	 associations.	 However,	 the	 biological	 interpretability	 of	 the	

pharmacogenomic	spaces	has	not	yet	been	fully	explored.	For	example,	the	span	

of	 the	 space	 and	 biological	 interpretation	 of	 each	 dimension	 can	 be	 further	

analyzed.	 In	 addition,	with	 a	 larger	 amount	 of	 drug	 response	data	 (or	with	 an	

ability	to	combine	drug	response	data	from	various	sources),	a	more	complicated	
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pharmacogenomic	 space	 can	 be	 learned.	 For	 examples,	 a	 deep	 collaborative	

filtering	 model	 can	 be	 constructed	 to	 learn	 complicated	 patterns	 of	 gene	

expression	to	explain	inter-patient	or	intratumoral	drug	response	heterogeneities	

115.	A	multi-layer	network	might	also	help	us	to	learn	interactions	among	genes	

and	embedding	representations	of	samples	through	multi-omics	data,	as	well	as	

protein	 interaction	 networks	 can	 be	 integrated	 into	 the	 model	 through	

convolutional	or	manifold	techniques	116.	

Last	 but	 not	 least,	 we	 investigated	 intratumoral	 drug	 response	

heterogeneity,	 the	 other	 important	 aspect	 needed	 for	 identifying	 resistant	 cell	

types	 and	 addressing	 drug-resistant	 complication	 and	 metastasis	 in	 precision	

oncology	 (Chapter	 6).	 We  evaluated	 the	 relationships	 between	 intratumoral	

heterogeneity	 and	 clinical	 outcomes	 across	 cancer	 types	 by	 applying	 a	

deconvolution	algorithm	to	a	large	tumor	dataset	(TCGA).	Although	the	algorithm	

can	decompose	tumor	bulk,	the	accuracy	relies	on	the	input	cell	type	panel,	and	

the	tools	might	not	be	able	to	differentiate	microenvironment	effects.	Recently,	

the	availability	of	scRNA-seq	data	has	allowed	us	to	measure	the	gene	expression	

of	 individual	 cells	 in	 tumor	 bulk,	 enabling	 us	 to	 study	 the	 complexity	 within	

tumors.	Taken	together	with	the	ability	of	CaDRReS	to	predict	drug	response	for	

unseen	samples,	we	used	single-cell	data	from	head	and	neck	cancer	patients	as	a	

case	study	for	CaDRReS	to	study	intratumoral	drug	response	heterogeneity.		

We	proposed	CaDRReS-SC,	a	 framework	 to	apply	a	modified	version	of	

CaDRReS	to	scRNA-seq	dataset:	(1)	to	increase	the	sensitivity	in	detecting	genes,	

we	systematically	aggregated	transcriptomic	profiles	of	the	cells	within	the	same	

cluster;	 (2)	 we	 modified	 the	 objective	 function	 of	 CaDRReS	 to	 improve	 the	

performance	of	predicting	drug	response	for	unseen	samples;	(3)	we	trained	two	

separated	CaDRReS	models	for	cytotoxic	and	targeted	drugs,	allowing	the	models	
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to	 learn	 more	 specific	 drug	 response	 mechanisms	 of	 each	 drug	 class	 while	

retaining	 a	 large	 number	 of	 samples	 for	 robustness;	 and	 (4)	we	 proposed	 the	

algorithm	 for	 aggregating	 cell	 type-specific	 predictions	 to	 predict	 overall	

response	of	a	given	tumor	or	patient.	

Single	drug	treatment	might	not	be	able	to	 inhibit	some	existing	cancer	

cell	 types	 that	 could	 transform	 into	 aggressive	 resistant	 cells	 and	 lead	 to	

metastasis.	Therefore,	we	combined	single-cell	data	of	the	cell	lines	derived	from	

both	 metastatic	 and	 primary	 tumors	 to	 predict	 patient-specific	 drug	

combinations,	 i.e.,	 a	 combination	 of	 drugs	 that	 inhibits	 multiple	 cell	 types	

identified	within	a	patient.	Using	scRNA-seq	of	cell	lines	derived	from	head	and	

neck	 patients,	 we	 showed	 that	 the	 pharmacogenomic	 space	 could	 capture	 the	

interactions	 between	 the	 standard	 of	 care	 drugs	 and	 different	 cell	 types.	 We	

incorporated	clinical	dosages	information	to	identify	a	combination	of	drugs	that	

could	 inhibit	multiple	 cell	 types	 in	 a	 given	patient	 and	 that	 the	dosages	 are	 in	

clinical	ranges.	It	could	be	more	useful	to	add	clinical	dosages	information	into	the	

model	training	step,	allowing	the	pharmacogenomic	space	to	capture	the	clinical	

aspect.		

Several	challenges	still	exist	in	predicting	patient-specific	drug	response.	

Firstly,	an	adverse	effect	of	drugs	has	been	ignored	in	most	of	the	study	due	to	the	

lack	 of	 drug	 response	 data	 of	 a	 healthy	 cell	 line.	 Nevertheless,	 by	 using	 a	

computational	model	that	accurately	predicts	drug	response	in	unseen	samples,	

multi-omics	profiles	of	adjacent	normal	tissues	might	allow	studying	drug	adverse	

effect	 in	 patients.	 Secondly,	 tissue	 information	 could	 be	 useful,	 although	

constructing	a	model	separately	 for	each	tissue	type	could	dramatically	reduce	

the	number	of	samples.	It	has	been	shown	that	cancer	type-level	analysis	showed	

a	 stronger	 predictive	 power	 of	mutation	 information	 9,	 and	 regressing	 out	 the	
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effect	of	tissue-specific	genes	might	allow	the	model	to	focus	on	genes	that	explain	

drug	response	behavior.	

Integrating	other	 types	of	omics	data,	 such	as	genomic	and	epigenomic	

data,	 in	a	meaningful	manner	can	enrich	 information	 to	explain	drug	 response	

heterogeneity.	Although	CaDRReS	was	among	the	top	performing	models,	it	still	

considered	 only	 expression	 of	 essential	 genes.	 We	 previously	 tested	 whether	

integrating	mutational	 status	of	 genes	 could	 improve	 the	performance,	 but	we	

found	 that	 the	 performance	 was	 not	 significantly	 improved.	 This	 is	 probably	

because	 of	 the	 lower	 predictive	 performance	 of	 genomic	 data	 due	 to	 the	 low	

occurrence	 of	 mutations.	 Beside	 individual	 mutated	 genes,	 a	 combination	 of	

mutations	 and	 relationships	 between	 genomic	 and	 transcriptomic	 information	

could	also	explain	drug	response	mechanisms.	However,	the	299	cancer	genes	or	

the	comprehensive	list	of	genes	predicted	by	ConsensusDriver	could	help	us	to	

identify	actionable	driver	genes	(targets	of	anticancer	drugs)	in	the	patients,	and	

these	 driver	 genes	 could	 be	 added	 into	 a	 model	 to	 further	 improve	 the	

performance	and	interpretability	of	drug	response	prediction.	

In	 this	 thesis,	 we	 proposed	 CaDRReS,	 a	 recommender	 system	 that	 can	

predict	patient-specific	drug	response	based	on	the	 transcriptomic	profile.	The	

pharmacogenomic	 space	 of	 CaDRReS	 allows	 us	 to	 interpret	 and	 visualize	 the	

results	and	understand	drug	response	mechanism.	A	modified	version,	CaDRReS-

SC,	 can	 be	 applied	 to	 single-cell	 data	 to	 capture	 intratumoral	 drug	 response	

heterogeneity	and	to	suggest	a	combination	of	drugs	to	inhibit	multiple	cell	types	

identified	within	a	tumor.		

Constructing	computational	models	to	directly	predict	the	best	drug	for	a	

specific	patient	might	not	be	able	to	accomplish	in	the	near	future	due	to	multiple	

complex	factors	that	alter	drug	response	behaviors.	Still,	such	the	models	can	be	
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served	as	a	decision	support	system	for	suggesting	a	small	number	of	drugs	to	be	

extensively	 studied	 using	 in	 vitro	 cell	 lines	 or	 in	 vivo	 models.	 Also,	 the	

interpretability	 of	 the	 model	 can	 help	 us	 to	 understand	 drug	 response	

mechanisms	and	could	enable	drug	discovery	and	repositioning.	
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