SNP Data Integration and Analysis for Drug-Response Biomarker Discovery

By Chen Jieqi Pauline

Contents

- Introduction
- Motivation
- System Overview
- Discovery of SNPs as biomarkers
- Drug-enzyme association discovery
- Conclusion
- Future Improvements
- Q & A

Introduction

- Single Nucleotide Polymorphisms
 - Point mutations occurring >1% in general population
 - Biallelic, triallelic SNPs
 - Alter enzyme properties and drug response

Introduction

- Pharmacogenomics
 - Genetic factors contributing to variation in drug response
 - "Personalized drugs"
- Problem Statement
 - Methods for SNP biomarker analysis require genotyping
 - Incompleteness of drug-enzyme association databases

Motivation

- Discovery of SNPs as drug-response biomarkers
 - Response to drugs and drug marketability
 - · Ethnicity differences
 - Individual differences
- Incompleteness of drug-enzyme database
 - Existing databases (e.g. PharmGKB) do not capture information for all drugs
 - Important for determining regions of genome to study

System Overview

- Browser-based tool
- PHP, MySQL
- Main input sources: PharmGKB, International HapMap, DrugBank
- Components
 - Drug-response SNP biomarker discovery
 - SNPs with allelic dissimilarities that affect marketability
 - Single SNP biomarkers
 - Multiple SNP biomarkers
 - Drug-enzyme association discovery

- SNPs with allelic dissimilarity
 - Aim: Find the better between 2 drugs to market
 - Motivation: Drug response differs with allelic dissimilarities between ethnicities
 - Methodology: F_{ST} index

SNP drug-response biomarker discovery - I

- About F_{ST} index
 - Measure of population divergence based on polymorphism data
 - 4 categories of values:
 - < 0.05 = little genetic differentiation
 - 0.05 0.15 = moderate genetic differentiation
 - 0.15 0.25 = great genetic differentiation
 - > 0.25 = very great genetic differentiation

$$H_{\text{exp, i}} = 1 - (F_{\text{A,i}}^2 + F_{\text{B,i}}^2)$$

$$H_S = (\Sigma_i \; H_{exp,i} \; x \; n_i \;) / \; \Sigma_i \; n_i$$

$$H_T = 1 - (p^2 + q^2)$$

 $F_{ST} = (H_T - H_S) / H_T$

scovery -	ı									
scovery -										
, ,										
	•									
Please select the range of FST value	s for viewing:									
Choose a Range • Go Current view range: Greater than 0.2										
Current view range: Greater than 0.2	RSID	Gene	Allele 1	Allele 2	Fst	Race	A	Т	C	G
						African	0	0	0.74	0.26
						Chinese(Denver)	0	0	0.171	0.829
·					0.3138	Gujarati	0	0	Service Contract	0.824
						Han(Beijing)	0	0	0.083	0.917
		СУРІВІ				Japanese	0	0	0.095	0.905
	rs1056836		C	G		Luhya	0	0	0.767	0.233
	POR A PERCENCIA					Maasai	0	0	0.671	0.329
iii <mark>l</mark>						Mexican	0	0	0.31	0.69
						Toscans	0	0	0.403	0.597
iii <mark>l</mark>						Utah	0	0	0.447	0.553
						Yoruban	0	0	0.876	0.124
						African	0.736	0	0	0.264
iii <mark>l</mark>						Chinese(Denver)	0.171	0	0	0.829
						Gujarati	0.176	0	0	0.824
·		СУРІВІ				Han(Beijing)	0.089	0	0	0.911
						Japanese	0.11	0	0	0.89
iii <mark>l</mark>				G	0.2848					
	rs1056837	CYPIBI	A	G	0.2848	Luhva	0.728	0	0	0.272

- SNPs affecting drug response
 - Aim: Find SNPs as biomarkers for drug response
 - Motivation: SNPs affect drug response
 - Methodology: Chi-square goodness-of-fit test

SNP drug-response biomarker discovery - II

- More about chi-square goodness-of-fit
 - Correlation between distribution of allele and drug response
 - 10% allele A, 90% allele a
 - => 10% non-responsive, 90% responsive OR
 - => 10% responsive, 90% non-responsive
 - Chi-square test at 90% significance level
 - Apply in individual populations
 - Apply over all populations

SNP drug-response biomarker discovery - II

Results for Search

Your search for 'exemestane' has returned 1 result(s).

To view all genes associated with the selected drug and do statistical analysis, choose a drug and click 'Select this drug'.

	PharmGKB ID	Name of Drug	Alternate Names for Drug
0	PA449563	exemestane	"Aromasin",

Select this drug

Search for a different drug

Go back to main

SULT1A3	HERE	sulfotransferase family, cytosolic, 1A, phenol- preferring, member 3	preferring sulfotransferase , monoamine-sulfating phenosulfotransferase , placental estrogen sulfotransferase , sulfotransferase family 1A, phenol- preferring, member 3 , thermolabile (monoamine, M form) phenol sulfotransferase , thermolabile phenol sulfotransferase ,
SULT2A1	HERE	sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone (DHEA)-preferring, member 1	DHEA-ST, alcohol sulfotransferase, alcohol/hydroxysteroid sulfotransferase, dehydroepiandrosterone sulfotransferase, hydroxysteroid sulfotransferase, sulfotransferase family 2A, dehydroepiandrosterone (DHEA) -preferring, member 1, sulfotransferase family 2A, dehydroepiandrosterone (DHEA)-preferring, member 1, sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone (DHEA) -preferring, member 1, sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone (DHEA) -preferring, member 1,

SNP drug-response biomarker discovery - II

Input statistics directly for determining significant SNPs in affecting drug response.

Only input the values for the races you have information for. For the other races, please leave them blank.

	React to drug	Does not react to drug
African		
Chinese(Denver)		
Gujarati		
Han(Beijing)		
Japanese		
Luhya		
Maasai		
Mexican		
Toscans		
Utah		
Yoruban		

Significant SNPs

Please refer to this link for more information on the calculations.

Enzymes related to drug to be used for calculation: CYP1A1 CYP1A2 CYP1B1 CYP3A CYP19A1 HSD17B1 STS SULT1E1 SULT1A1 SULT1A3 SULT2A1

Response and Non Response input values:

	React to drug	Does not react to drug
African	964	36
Luhya	900	100
Maasai	970	30
Yoruban	960	40

SNP drug-response biomarker discovery - II

Probability threshold

You are currently using a threshold probability of 0.1. This probability corresponds to having at most the calculated chi-value assuming that the observed values correspond to the expected values which have been calculated using the MAF of each SNP. An SNP will be considered significant if it has a probability smaller than the threshold.

Use this threshold!

The following are the results for individual races:

RSID	Gene	Allele 1	Allele 2	Probability	Chi-square Value	Race	A	T	C	G
rs4545755	CYP19A1	G	A	0.0000	0.0000	Yoruban	0.04	0	0	0.96
rs4775933	CYP19A1	T	C	0.0000	0.0000	Yoruban	0	0.04	0.96	0
rs6493487	CYP19A1	G	A	0.0000	0.0000	Yoruban	0.96	0	0	0.04
rs6493493	CYP19A1	A	G	0.0000	0.0000	Yoruban	0.04	0	0	0.96
rs4986879	CYP1A1	T	C	0.0000	0.0000	Yoruban	0	0.96	0.04	0
rs7891417	STS	G	A	0.0836	0.0110	Luhya	0.101	0	0	0.899
rs1220716	SULTIEI	T	C	0.0836	0.0110	Luhya	0	0.101	0.899	0
rs2547231	SULT2A1	C	A	0.0000	0.0000	Luhva	0.9	0	0.1	0

Drug-enzyme association discovery

- Results
 - 14 overlaps with known associations found
 - 8 with accurate supporting literature
- Results can be subjective
- Curation function for user feedback

Drug-enzyme association discovery

- Drawbacks:
 - False hits from Google
 - Drug name same as enzyme name

Conclusion

- SNPs and their importance in drug response
- Need for supplementing drug-enzyme association databases
- Development of methods to approach them

Future Improvements

• Linkage disequilibrium studies

Acknowledgements

I would like to thank Professor Wong Limsoon for his constant support, comments and patience throughout the development of this project.

THANK YOU!

