
January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

CHAPTER 17

TECHNOLOGIES FOR BIOLOGICAL DATA INTEGRATION

Limsoon Wong

Institute for Infocomm Research
limsoon@i2r.a-star.edu.sg

The process of building a new database relevant to some field of study in
biomedicine involves transforming, integrating, and cleansing multiple data
sources, as well as adding new material and annotations. We review in this chap-
ter some of the requirements and technologies relevant to this data integration
problem.

ORGANIZATION.

Section 1. We begin with a detailed account of the motivations and requirements for a
general integration system for biological data. We also discuss the motivations and
requirements for locally warehousing such data.

Section 2. Then we review some representative technologies for data integration in biolog-
ical and medical research. The technologies surveyed include EnsEMBL, GenoMax,
SRS, DiscoveryLink, OPM, Kleisli, and XML.

Section 3. Following that, we highlight some of the features that distinguish the more
general data integration technologies from the more specialized ones. The features
considered include data model, data exchange format, query capability, warehousing
capability, and application programming interface.

Section 4. Lastly, we compare the surveyed technologies and comment on selecting such
technologies. We also briefly discuss TAMBIS and the semantics aspect of data inte-
gration.

1. Requirements of Integration Systems for Biological Data

In a dynamic heterogeneous environment such as that of bioinformatics, many
different databases and software systems are used. A large proportion of these
databases were designed and built by biologists. When these databases were first
created, the amount of data was small and it was important that the database en-
tries were human readable. Database entries were therefore often created as flat

375



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

376 L. Wong

files. As new types of data were captured, new databases were created using a va-
riety of flat file formats. We ended up with a large number of different databases
in different formats, typically using non-standard query softwares. �� Many ques-
tions that a biologist is interested in could not be answered using any single data
source. However, some of these queries can be satisfactorily solved by using in-
formation from several sources. Unfortunately, this has proved to be quite difficult
in practice.

These databases and systems often do not have anything that can be thought
of as an explicit database schema, which is a formalized queriable catalogue of all
the tables in the database, the attributes of each of these tables, and the meaning of
and indices on each of these attributes. Further compounding the problem is that
research biologists demand flexible access and queries in ad-hoc combinations.
Simple retrieval of data is not sufficient for modern bioinformatics. The challenge
is how to manipulate the retrieved data derived from various databases and re-
structure the data in such a way to investigate specific biomedical problems. �

As observed by Baker and Brass,�� many existing biology data retrieval sys-
tems are not fully up to the demand of painless and flexible data integration. These
systems rely on low-level direct manipulation by the user, where she uses a key-
word to extract summary records, then clicks on each resulting record to view its
contents or to perform operations. This works well for simple actions. However,
as the number of actions or records increases, such direct manipulations rapidly
becomes a repetitive drudgery. Also when the questions become more complex
and involve many databases, assembly of the data needed is likely to exceed the
skill and patience of the biologist. Merely providing a library package that inter-
faces to a large number of databases and analysis softwares is also not useful if it
requires long-winded and tedious programming to make use of and adding to the
package.

The systems provided by bioinformaticians in answer to the challenge above
can roughly be divided into “point” and “general” solutions. A point solution is a
highly specialized system: the data sources to be considered are small and fixed;
the biomedical research questions to be addressed are small and fixed; and the
point solution is a specific software that provides the expected answers and noth-
ing else.� Hence, there is little database design and consideration for extensibility
nor for flexibility. In contrast, a general solution is not designed with a specific set
of biomedical research questions in mind nor with a specific set of data sources
in mind. It must be designed with extensibility and flexibility in mind. A general
solution can serve as the platform upon which to shorten the time needed for con-
structing various point solutions, just as a relational database management system
can serve as the platform upon which to build specific accounting systems.
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A system that aims to be a general integration mechanism in the bioinformatics
environment described earlier must satisfy at least the following four conditions,
which were identified previously by Wong.���

(1) It must not count on the availability of schemas. It must be able to compile
any query submitted based solely on the structure of that query. If it needs a
schema before it can compile a query, then it would be hard to use for our
purpose because biomedical databases often do not have usable schemas.

(2) It must have a data model that the external database and software systems can
easily translate to, without doing a lot of type declarations. If it does not have
such a data model, then there would be a significant impedance in moving
external data into the system, in moving internal data into external databases,
and in manipulating the data when they are brought into the system.

(3) It must shield existing queries from evolution of the external sources as much
as possible. For example, an extra field appearing in an external database ta-
ble must not necessitate the recompilation or rewriting of existing queries over
that data source. The external data sources used by a bioinformatician are typ-
ically owned by different organizations who have autonomous right to evolve
their databases. It is therefore important for a general data integration solution
to be robust when the data sources evolve.

(4) It must have a data exchange format that is straightforward to use, so that it
does not demand too much programming effort or contortion to capture the
variety of structures of output from external databases and softwares. The data
exchange format is the standard by which the system exchange data with the
external data sources. If it is not straightforward to use, then great effort would
be needed for connecting the system to the external data sources.

Besides the ability to query, assemble, and transform data from remote hetero-
geneous sources, it is also important to be able to conveniently warehouse the data
locally. The reasons to create local warehouses are given below, some of which
were identified previously by Davidson et al.���

(1) It increases efficiency. It is clear that we do not want to be choked by the
slowest external data source nor by communication latency in the execution
of our queries, especially if we own a fast computer. Warehousing gives us as
much efficiency as we can afford to pay for.

(2) It increases availabilty. It is clear that we do not want to be unable to run
our queries at a time we wish because a needed external source is unavail-
able. Warehousing guarantees that the data we need for our queries are always
available whenever we need them.
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(3) It reduces risk of unintended “denial of service” attacks on the original
sources. Some data sources, such as the Entrez website at the National Center
for Bioinformatic Information, impose a strict limit on the number of times
or the amount of data that we can access within a single day. If we exceed
that limit, then we risk being banned from the site. Unfortunately, some of
our queries may require very intensive access to data held in such sites. Ware-
housing protects us from this risk by rendering it unnecessary for us to access
the remote site.

(4) It allows more careful data cleansing that cannot be done on the fly. It is widely
acknowledged that many of the biomedical sources contain a large number of
errors.��� For example, Schönbach et al.��	 reported that up to 30% of the
database records that they accessed when constructing their warehouse on
swine major histocompatibility complexes contained errors. Some of these
errors can be detected and corrected on the fly, some of these errors cannot.
It therefore makes sense that if our queries are sensitive to certain errors that
cannot be detected nor corrected on-the-fly, then we should warehouse the
data after careful cleansing.

Creating warehouses leads to other requirements on a general data integration
solution. Specifically the general data integration solution must provide for the
construction of warehouses that have the following properties.

(1) The warehouse should be efficient to query.
(2) The warehouse should be easy to update. There are two aspects to this issue

of ease of update. The first aspect is of making an individual change to the
warehouse, such as modifying an existing record, deleting an existing record,
or adding a new record. This aspect is a fundamental characteristic of the data
integration tools that are used for maintaining the warehouse. The second as-
pect is that of the number of such individual changes that need to be made
to bring the warehouse up to date. The second aspect is more a consideration
for the strategy for maintaining the warehouse and is dictated by the interval
between updates to the warehouse and the amount of changes that the under-
lying data sources can accummulate during the interval. A data integration
tool that offers greater ease on the first aspect obviously also allows a greater
range of strategies on the second aspect.

(3) Equally important in the biology arena is that the warehouse should model the
data in a conceptually natural form. Although a relational database system is
efficient for querying and easy to update, its native data model of flat tables
forces us to unnaturally and unnecessarily fragment our data in order to fit
our data into the third normal form.��� For example, a record in the popular
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SWISS-PROT database�� would be fragmented into almost 30 tables in order
to be stored in accordance to the third normal form. This unnatural fragmen-
tation brings forth two problems. Firstly, it increases the mental load of the
programmer and the possibility of programming errors in answering a queries
for several reasons: (i) the implementer of a query at a later date may not be
the same person who did the third normal form conversion and (ii) the imple-
menter of a query may not be the biologist who asks the query. Secondly, it
increases the cost of certain queries significantly. For example, if the query
needs to reconstruct a large portion of a SWISS-PROT record, we would be
required to perform 10-20 joins on the tables.

It is also important to realise that no single system is complete for all possible
uses. A data integration system is rightly focused on

(1) reading data from multiple sources for integration,
(2) simple database-style transformation of data to facilitate data being passed

from one application to the next, and
(3) writing data to warehouses.

There are certain types of analysis and manipulations of data that a data integration
system is not expected to perform but is merely expected to facilitate. These anal-
ysis and manipulations include bioinformatics specific operations such as multiple
alignment and visualization-specific operations such as display data in a graphi-
cal user interface. These operations are best implemented either in a specialized
scripting language designed for those purpose or in a full strength common pro-
gramming language. In order to facilitate the programming of these operations,
the general data integration system must provide a means for these scripting and
programming languages to interface to it, via a language embedding or via an
application programming interface for these languages.

Lastly, the semantics issue may also be important.��� This issue concerns the
equivalence and consistency between parts of records in different data sources,
as well as the mappings between these parts. A data integration technology that
understands which parts of two data sources have the same meanings and should
be consistent with each other is desirable. However, it must be recognized that
the same record in a database can sometimes be interpreted in different ways de-
pending upon the purpose and requirement of the user. Consequently, this issue
is sometimes considered as a part of building a specific application or integrated
database, as opposed to as a part of the tools used for building that integrated
database or application.
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2. Some Data Integration Solutions

We survey here a few alternative solutions to the data integration and warehous-
ing problem in biomedicine. The surveyed solutions include EnsEMBL, 
�� Geno-
Max, SRS,�
� DiscoveryLink,
�� OPM,��� Kleisli,��� and XML.�� � These exam-
ples are chosen to span specialized point solutions to increasingly general solu-
tions. For each of these systems, we provide an overview and a discussion of their
strong and weak points.

2.1. EnsEMBL

EnsEMBL is a software system jointly developed by the European Bioinformatics
Institute and the Sanger Institute.
�� It provides easy access to eukaryotic genomic
sequence data. It also performs automatic prediction of genes in these sequence
data and assembles supporting annotations for these predictions. It is not so much
an integration technology. However, it is an excellent example of a very successful
integration of data and tools for the highly specific purpose of genome browsing.

EnsEMBL organizes raw sequence data from public databases into its internal
database. It then assembles these sequences into their proper place in the genome.
After that, it runs GenScan��
 to predict the location of genes and applies various
analysis programs to annotate these predicted genes. Finally, the results of the
process described above are presented for public access.

The main “entry points” to these results on the EnsEMBL Genome Browser
are by

(1) searching by sequence similarity via the built-in BLAST component of the
EnsEMBL Genome Browser;

(2) browsing from the chromosome level all the way down to the DNA sequence
level;

(3) searching using special EnsEMBL identifiers; and
(4) free-text matching using annotation of databases linked to EnsEMBL, includ-

ing OMIM,
�� SWISS-PROT,�� and InterPro.��

It can also dump its data into Excel spreadsheets for use by external datamining
softwares. Alternatively, the EnsMart data retrieval tool can also be used to access
these results. EnsMart has a good query builder interface that allows a user to
conveniently specify certain types of genomic regions and filters on these results.
As a last resort, EnsEMBL provides a Perl-based programmatic interface for the
most flexible access to its stored results.

Its strengths lie in its highly tailored functionalities for genome browsing.
Once the sequences are imported into the system, assembly and annotation are
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automatically performed, the results are automatically prepared for browsing in a
nice graphical user interface.

Its weaknesses lie also in its highly tailored point solution nature. It is not
possible to ask EnsEMBL to perform an ad hoc query in general, unless that par-
ticular type of query has been anticipated by the designer of the EnsEMBL and
its associated access tools. For example, while it is possible to ask a query such as
“extract 500 bases flanking the translation initiation site of each confirmed gene
in the database” using EnsMart, it does not seem possible to ask a query such as
“extract the first exon of each confirmed gene in the database” using EnsMart at
this moment. For the latter query, the user can resort to accessing EnsEMBL and
extracting the required information by Perl programming. EnsEMBL also does
not have a flexible data model nor exchange format, other than the structure of
its highly specialized internal database. Thus, it is not straightforward to add new
kinds of data sources, and it is also not straightforward to output or export data
from EnsEMBL other than in the fixed export formats.

The weaknesses mentioned above are viewed from the perspective of the re-
quirements of a general data integration system. However, one has to remember
that EnsEMBL is intended as a point solution for the specific purpose of genome
browsing. Within the context of this specific purpose, EnsEMBL works much bet-
ter than virtually any other alternatives, as its design has anticipated the common
queries a biologist may want to ask and makes it possible for her to ask them
without requiring the help of a programmer.

2.2. GenoMax

GenoMax is an enterprise-level integration of bioinformatics tools and data
sources developed by InforMax; see http://www.informaxinc.com/
solutions/genomax. It is a good illustration of an almagamation of a few
point-solutions, including a sequence analysis module and a gene expression mod-
ule, developed on top of a data warehouse of fixed design. � The warehouse is
an ORACLE database designed to hold sequence data, gene expression data, 3D
protein structures, and protein-protein interaction information. Load routines are
built in for standard data sources such as GenBank and SWISS-PROT. The spe-
cialized point-solution modules provide capabilities such as performing BLAST ��

and GenScan��
 runs on sequences and computing differentially expressed genes
from microarray experiments. A special scripting language of limited expressive
power is also supported for building analytical pipelines.

Its strengths are twofold. Firstly, each of GenoMax’s component point-
solution modules is a very well designed application for a specific purpose. For
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example, its gene expression module provides self-organizing map clustering,
principal component analysis, and so forth on microarray data via simple-to-use
graphical user interfaces. Secondly, these components are integrated in a tight way
via the specially designed data warehouse.

Its weakness is its tight point-solution-like application integration. While
GenoMax has a broader scope than EnsEMBL, it does cover less data types and
products than products such as SRS, DiscoveryLink, and Kleisli. For example,
these latter systems can easily incorporate chemical assay data which are beyond
the current data warehouse design of GenoMax. In addition, GenoMax’s scripting
language is not designed for large-scale database style manipulations and hence
this type of ad hoc queries are not always straightfoward nor optimized in Geno-
Max. There are also difficulties in adding new kinds of data sources and analysis
tools. For example, it is probably impossible to express in the GenoMax scripting
language the “rosetta stone” method for extracting protein interactions. ���

2.3. SRS

SRS�
� is marketed by LION Bioscience and is arguably the most widely used
database query and navigation system for the Life Science community. It provides
easy-to-use graphical user interface access to a broad range of scientific databases,
including biological sequences, metabolic pathways, and literature abstracts. SRS
provides some functionalities to search across public, in-house and in- licensed
databases.

In order to add a new data source into SRS, this data source is generally re-
quired to be available as a flat file and a description of the schema or structure of
the data source must be available as an Icarus script, which is the special built-
in wrapper programming language of SRS. The notable exception to this flat file
requirement on the data source is when the data source is a relational database.
SRS then indexes this data source on various fields parsed and described by the
Icarus script. A biologist then accesses the data by supplying some keywords and
constraints on them in the SRS Query Language. Then all records matching those
keywords and constraints are returned.

The SRS Query language is primarily a navigational language. This query lan-
guage has limited data joining capabilities based on indexed fields and has limited
data restructuring capabilities. The results are returned as a simple aggregation of
records that matched the search constraints. In short, in terms of querying power,
SRS is essentially an information retrieval system. It brings back records match-
ing specified keywords and constraints. These records can contain embedded links
that a user can follow individually to obtain deeper information. However, it does
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not offer much help in organizing or transforming the retrieved results in a way
that might be needed for setting up an analytical pipeline.

There is also a browser-based interface for formulating SRS queries and view-
ing results. In fact, this interface of SRS is often used by biologists as a unified
front end to independently access multiple data sources, rather than learning the
idiosyncrasies of the original search interfaces of these data sources. For this rea-
son, SRS is sometimes considered� to serve “more of a user interface integration
role rather than as a true data integration tool.”

In summary, SRS has two main strengths. Firstly, it is very straightforward
to add new data sources into the system, due to the use of the Icarus scripting
language and due to the simplicity of flat file indexing. In fact, several hundred
data sources have been incorporated into SRS to date. Secondly, it has a nice user
interface that greatly simplifies query formulation, making the system usable by a
biologist without the assistance of a programmer. In addition, SRS has an exten-
sion known as PRISMA that is designed for automating the process of maintaining
a SRS warehouse. PRISMA integrates the tasks of monitoring remote data sources
for new data sets, and downloading and indexing such data sets.

On the other hand, SRS also has some weaknesses. Firstly, it is basically a
retrieval system that simply returns entries in a simple aggregation. If the biol-
ogist wishes to perform further operations or transformations on the results, she
has to do that by hand or writes a separate postprocessing program using some
external scripting languages like C or Perl, which is cumbersome. Secondly, its
principally flat-file based indexing mechanism rules out the use of certain remote
data sources—in particular, those that are not relational databases—and does not
provide for straightforward integration with dynamic analysis tools. However, this
latter shortcoming is mitigated by the SCOUT suite of applications marketed by
LION Bioscience that are specifically designed to interact with SRS.

2.4. DiscoveryLink

DiscoveryLink
�� is an IBM product and, in principle, it goes one step be-
yond SRS as a general data integration system for biomedical data. The first
thing that stands out—when DiscoveryLink is compared to SRS, EnsEMBL, and
GenoMax—is the presence of an explicit data model. This data model dictates the
way a DiscoveryLink user views the underlying data, the way she views results,
as well as the way she queries the data.

The data model is the relational data model.��� The relational data model is the
de facto data model of most commercial database management systems, including
the IBM’s DB2 database management system upon which DiscoveryLink is based.
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As a result, DiscoveryLink comes with a high-level query language, SQL, that is
a standard feature of all such database management systems.

This gives DiscoveryLink several advantages over SRS. Firstly, not only can
a user easily express SQL queries that go across multiple data sources—which
a SRS user is able to do, but she can also perform further manipulations on the
results—which a SRS user is unable to do. Secondly, not only are the SQL queries
more powerful and expressive than those of SRS, the SQL queries are also au-
tomatically optimized by DB2. The use of query optimization allows a user to
concentrate on getting her query right without worrying about getting it fast.

However, DiscoveryLink still has a some way to go in practice. The reason is
twofold. The first reason is that DiscoveryLink is tied to the relational data model.
This implies every piece of data that it handles must be a table of atomic objects
like strings and numbers. Unfortunately, most of the data sources in biology are
not that simple and are deeply nested. Therefore, there is severe impedance mis-
match between these sources and DiscoveryLink. Consequently, it is not straight-
forward to add new data sources or analysis tools into the system. For example, to
put the SWISS-PROT database into a relational database in the third normal form
would require us to break every SWISS-PROT record into nearly 30 pieces in a
normalization process! Such a normalization process requires a certain amount
of skill. Similarly, to query the normalized data in DiscoveryLink requires some
mental and performance overhead, as we need to figure out which part of SWISS-
PROT has gone to which of the 30 pieces and we need to join some of the pieces
back again.

The second reason is that DiscoveryLink supports only wrappers written in
C++, which is not the most suitable programming language for writing wrappers.
In short, it is difficult to extend DiscoveryLink with new sources. In addition,
DiscoveryLink does not store nested objects in a natural way and is limited in
its capability for handling long documents. It also has limitations as a tool for
creating and managing data warehouses for biology.

In spite of these weaknesses, in theory, DiscoveryLink has greater generality
than point solutions like EnsEMBL, specialized application integration like Geno-
Max, and user interface integration solutions like SRS. Unfortunately, this greater
generality is achieved at the price of requiring that SQL be used for expressing
queries. While writing queries in SQL is generally simpler than writing in Perl, it
is probably still beyond the skill of an average biologist. This is a disadvantage in
comparison to EnsEMBL, GenoMax, and SRS, which have good user interfaces
for a biologist to build the simpler queries.
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2.5. OPM

OPM��� was developed at Lawrence-Berkeley National Labs. OPM is a general
data integration system. OPM was marketed by Gene Logic, but it sales was dis-
continued some time ago. It goes one step beyond DiscoveryLink in the sense
that it has a more powerful data model, which is an enriched form of the entity-
relationship data model.���

This data model can deal with the deeply nested structure of biomedical data
in a natural way. Thus it removes the impedance mismatch. This data model is also
supported by a SQL-like query language that allows data to be seen in terms of
entities and relationships. Queries across multiple data sources, as well as trans-
formation of results, can be easily and naturally expressed in this query language.
Queries are also optimized. Furthermore, OPM comes with a number of data man-
agement tools that are useful for designing an integrated data warehouse on top of
OPM.

However, OPM has several weaknesses. Firstly, OPM requires the use of a
global integrated schema. It requires significant skill and effort to design a global
integrated schema well. If a new data source needs to be added, the effort needed
to re-design the global integrated schema potentially goes up quadratically with
respect to the number of data sources already integrated. If an underlying source
evolves, the global integrated schema tends to be affected and significant re-design
effort is potentially needed. Therefore, it may be costly to extend OPM with new
sources.

Secondly, OPM stores entities and relationships internally using a relational
database management system. It achieves this by automatically converting the en-
tities and relationships into a set of relational tables in the third normal form.
This conversion process leads to an entity being broken up into many pieces when
stored. This process is transparent to the OPM user. So she can continue to think
and query in terms of entities and relationships. Nevertheless, the underlying frag-
mentation often causes performance problems, as many queries that required no
join—when viewed at the conceptual level of entities and relations—are mapped
to queries that required many joins on the physical pieces that entities are broken
into.

Thirdly, OPM does not have a simple format to exchange data with external
systems. At one stage, it interfaces to external sources using CORBA. The effort
required for developing CORBA-compliance wrappers is generally significant. �	�

Furthermore, CORBA is not designed for data intensive applications.
Although OPM’s query language is at a higher level and is simpler to use

than the SQL of DiscoveryLink, it shares the same disadvantage as DiscoveryLink
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from the perspective of an average biologist. The programming of queries other
than the simplest kind is probably still beyond her expertise.

2.6. Kleisli

Fig. 1. Kleisli, positioned as a mediator

Kleisli�	�� ���� ��� is marketed by geneticXchange Inc of Menlo Park. It is one
of the earliest systems that have been successfully applied to some of the earliest
data integration problem in the human genome project, including the so-called US
Department of Energy’s “impossible” queries in early 1994.

The approach taken by the Kleisli system is illustrated by the diagram in Fig-
ure 1. It is positioned as a mediator system encompassing a nested relational data
model, a high-level query language, and a powerful query optimizer. It runs on
top of a large number of light-weight wrappers for accessing various data sources.
There are also a number of application programming interfaces that allow Kleisli
to be accessed in a ODBC- or JDBC-like fashion in various programming lan-
guages for a various applications.
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The Kleisli system is highly extensible. It can be used to support several dif-
ferent high-level query languages by replacing its high-level query language mod-
ule. Currently, Kleisli supports a “comprehension syntax”-based language called
CPL��� and a “nested relationalized” version of SQL called sSQL. The Kleisli
system can also be used to support many different types of external data sources
by adding new wrappers, which forward Kleisli’s requests to these sources and
translate their replies into Kleisli’s exchange format. These wrappers are light
weight and new wrappers are generally easy to develop and insert into the Kleisli
system. The optimizer of the Kleisli system can also be customized by different
rules and strategies.���

Besides the ability to query, assemble, and transform data from remote hetero-
geneous sources, it is also important to be able to conveniently warehouse the data
locally. Kleisli does not have its own native database management system. Instead,
Kleisli has the ability to turn many kinds of database systems into an updatable
store conforming to its nested relational data model. In particular, Kleisli can use
flat relational database management systems such as Sybase, Oracle, MySQL, etc.
to be its updatable store. It can even use all of these systems simultaneously. It is
also worth noting that Kleisli stores nested relations into flat relational database
management systems using an encoding scheme that does not require these nested
relations to be fragmented over several tables.

Kleisli possesses the following strengths.��� It does not require data schemas
to be available. It has a nested relational data model and a data exchange format
that external databases and software systems can easily translate into. It shields
existing queries, via a type inference mechanism, from certain kinds of structural
changes in the external data sources. Kleisli also has the ability to store, update,
and manage complex nested data. It has a good query optimizer. Finally, Kleisli
is also equiped with two application programming interfaces so that it can be
accessed in a JDBC-like manner from Perl and Java.���

However, Kleisli shares a common weakness with DiscoveryLink and OPM.
Even though CPL and sSQL are both high-level query languages and protect the
user from many low level details—such as communication protocols, memory
management, thread scheduling, and so on—the programming of queries using
CPL or sSQL other than the simplest kind is probably still beyond the expertise of
an average biologist.

2.7. XML

XML is a standard for formatting document. As such, XML is not a data integra-
tion system by itself. However, there is a growing suite of tools based on XML
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that, taken as a whole, can be used as a data integration system. We therefore be-
lieve it is pertinent to include a discussion on XML and its associated tools in the
context of this paper.

XML allows for a hierarchical nesting of tags and the set of tags can be defined
flexibly. Thus XML can be viewed as a powerful data model � and a useful data
exchange format, providing directly for two of the important ingredients of a gen-
eral data integration solution for biomedicine. As a result, an increasing number of
tools and sources in biomedicine such as PIR,��
 Entrez, and so on are becoming
XML compatible.�

The intense interest in the development of query languages for semi-structured
data� in the database community has also resulted in a number of powerful XML
query languages such as XQL��	 and XQuery,��� which provide the means for
querying across multiple data sources and for transforming the results into more
suitable form for subsequent analysis steps. Research and development works are
also in progress on XML query optimization��	 and on XML data stores.���

A robust and stable XML-based general data integrating and warehousing sys-
tem does not yet exist for biomedicine. However, once high-performance XML
data stores become available, we can also expect the database research commu-
nity to begin more research and development on data warehousing using these
stores.

Consequently, we believe that given sufficient time, XML and the growing
suite of XML-based tools can mature into an alternative data integration system
in biomedicine that is comparable to Kleisli in generality and sophistication.

3. Highlight of Selected Features

This section highlights some features that distinguish the more general data inte-
gration technologies from the more specialized data integration solutions surveyed
earlier.

3.1. Data Model and Data Exchange Format

A key feature that separates the more general data integration technologies—
DiscoveryLink, OPM, Kleisli—from the more specialized technologies—
EnsEMBL, GenoMax, SRS—is the explicit presence of a data model. From the
point of view of the traditional database world,
 a data model provides the means
for specifying particular data structures, for constraining the data associated with
these structures, and for manipulating the data within a database system. In order
to handle data outside of the database system, this traditional concept of a data
model is extended to include a data exchange format, which is a means for bring-
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ing data outside the database system into it and also for bringing data inside the
database system outside. We use Kleisli’s data model to illustrate this concept.

The data model underlying the Kleisli system is a complex object type sys-
tem that goes beyond the “sets of records” or “flat relations” type system of re-
lational databases.��� It allows arbitrarily nested records, sets, and a few other
data types.��� Having such a “nested relational” data model is useful and matches
the structure of biomedical data sources well. For example, if we are restricted to
the flat relational data model, the GenPept report in Example 1 must necessarily
be split into many separate tables in order to be losslessly stored in a relational
database. The resulting multi-table representation of the GenPept report is con-
ceptually unnatural and operationally inefficient.

Example 1: The GenPept report is the format chosen by the US National Cen-
ter for Biotechnology Information to present amino acid sequence information.
The feature table is the part of the GenPept report that documents the positions
and annotations of regions of special biological interest. The following type rep-
resents the feature table of a GenPept report from Entrez. ��� Here we use �� and
��brackets for sets, �� and ��brackets for records, �� and ��brackets for lists,
and �� � to label the field � of a record. In fact, the same bracketing scheme is used
as the data exchange format of Kleisli.���

(#uid:num, #title:string, #accession:string, #feature:{(
#name:string, #start:num, #end:num, #anno:[(

#anno_name:string, #descr:string)])})

The feature table of GenPept report 131470, a tyrosine phosphatase 1C se-
quence, is shown partially below. The particular feature displayed goes from
amino acid 0 to amino acid 594, which is actually the entire sequence, and has
two annotations: The first annotation indicates that this amino acid sequence is
derived from mouse DNA sequence. The second is a cross reference to the US
National Center for Biotechnology Information taxonomy database.

(#uid:131470, #accession:"131470", #title:"... (PTP-1C)...",
#feature:{(

#name:"source", #start:0, #end:594, #anno:[
(#anno_name:"organism", #descr:"Mus musculus"),
(#anno_name:"db_xref", #descr:"taxon:10090")]),
...})

�

It is generally easy to develop a wrapper for a new data source, or modify-
ing an existing one, and insert it into Kleisli. The main reason is that there is no
impedance mismatch between the data model supported by Kleisli and the data
model that is necessary to capture the data source. The wrapper is often a very
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light-weight parser that simply parses records in the data source and prints it out
in Kleisli’s very simple data exchange format.

Example 2: Suppose we want to implement a function webomim-get-
-detail that uses an OMIM
�� identifier to access the OMIM database and
returns a set of objects matching the identifier. Suppose the output is of type

{(#uid: num, #title: string, #gene_map_locus: {string},
#alternative_titles:{string}, #allelic_variants:{string})}

Note that is this a nested relation: it is a set of records, and each
record has three fields that are also of set types, viz. #gene_map_locus,
alternative_titles, and allelic_variants. This type of output
would definitely present a problem if we had to give it to a system based on the
flat relational model, as we would need to arrange for the information in these
three fields to be sent into separate tables. Fortunately, such a nested structure can
be mapped directly into Kleisli’s exchange format. So the wrapper implementor
would only need to parse each matching OMIM records and to write it out in a
format like this:

{(#uid: 189965,
#title: "CCAAT/ENHANCER-BINDING PROTEIN, BETA; CEBPB",
#gene_map_locus: "20q13.1",
#alternative_titles: {

"C/EBP-BETA",
"INTERLEUKIN 6-DEPENDENT DNA-BINDING PROTEIN; IL6DBP",
"LIVER ACTIVATOR PROTEIN; LAP",
"LIVER-ENRICHED TRANSCRIPTIONAL ACTIVATOR PROTEIN",
"TRANSCRIPTION FACTOR 5; TCF5"},

#allelic_variants: {})}

Here, instead of needing to create separate tables to keep the sets nested inside
each record, the wrapper would simply print the appropriate set brackets � and
� to enclose these sets. Kleisli would automatically deal with them as they were
handed over by the wrapper. This kind of parsing and printing is extremely easy
to implement. �

OPM shares with Kleisli a nested relational data model, except that the former
lacks a data exchange format. Hence the mapping of the examples to OPM’s data
model is conceptually just as straightforward, but the practical implementation in
OPM demands considerably more effort. It is worth pointing out that while SRS
does not have an explicit data model, it does have an implicit one supported by its
Icarus language for scripting parsers. In the case of SRS, this implicit data model
in Icarus also greatly facilitates the rapid scripting of wrappers.
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3.2. Query Capability

Another feature that separates the more general data integration technologies from
the more specialized ones is the presence of a flexible high level query language
for manipulating data conforming to the data model. We use sSQL, the primary
query language of Kleisli to illustrate this feature. sSQL is based on the de facto
commercial database query language SQL, except for extensions made to cater
for the nested relational model and for the federated heterogeneous data sources.

Example 3: The feature table of a GenBank report has the type below. The field
#position of a feature entry is a list indicating the start and stop positions of
that feature. If the feature entry is a CDS, this list corresponds to the list of exons
of the CDS. The field #anno is a list of annotations associated with the feature
entry.

(#uid: num, #title: string, #accession: string, #seq: string,
#feature: {(

#name: string,
#position: [(#start:num,#end:num,#negative:bool, ...)],
#anno: [(#anno_name:string,#descr:string)], ...)}, ...)

Given a set DB of feature tables of GenBank chromosome sequences, we can
extract the 500 bases up stream of the translation initiation sites of all disease
genes—in the sense that these genes have a cross reference to OMIM—on the
positive strand in DB as below. Here, l2s is a function that converts a list into a
set.

select
uid: x.uid,
protein: r.descr,
flank: string-span(x.seq, p.start - 500, p.start)

from
DB x, x.feature f,
{f.position.list-head} p,
f.anno.l2s a, f.anno.l2s r

where not (p.#negative)
and a.descr like "MIM:%" and a.anno_name = "db_xref"
and r.anno_name = "protein_id"

Similarly, we can extract the first exons of these same genes as follows:

select
uid: x.uid,
protein: r.descr,
exon1: string-span(x.seq, p.start, p.end)

from
DB x, x.feature f,
{f.position.list-head} p,
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f.anno.l2s a, f.anno.l2s r
where not (p.#negative)
and a.descr like "MIM:%" and a.anno_name = "db_xref"
and r.anno_name = "protein_id"

These two example queries illustrate the how a high level query language
makes it possible to extract very specific output in a relatively straightforward
manner. �

We illustrate how to combine multiple sources using high level query lan-
guages. An in silico discovery kit (ISDK) prescribes experimental steps carried
out in computers very much like the experimental protocol carried out in wet lab-
oratories for specific scientific investigation. From the perspective of Kleisli, an
in silico discovery kit is just a script written in sSQL and performs a defined in-
formation integration task. It takes an input data set and parameters from the user,
executes and integrates the necessary computational steps of database queries and
applications of analysis programs or algorithms, and outputs a set of results for
specific scientific inquiry.

Example 4: The simple in silico discovery kit in Figure 2 demonstrates how to
use an available ontology data source to get around the problem of inconsistent
naming in genes and proteins, and to integrate information across multiple data
sources. It is implemented in the sSQL script below.

create function get-info-by-genename (G) as
Select

hugo: w, omim: y, pmid1-abstract: z,
num-medline-entries: list-sum(

lselect ml-get-count-general(n)
from x.Aliases.s2l n)

from
hugo-get-by-symbol(G) w,
webomim-get-id(

searchtime:0, maxhits:0,
searchfields:{}, searchterms:G) x,

webomim-get-detail(x.uid) y,
ml-get-abstract-by-uid(w.PMID1) z

where
x.title like ("%" ˆ G ˆ "%");

With the user input of a gene name G, the ISDK performs the following task:
First, it retrieves a list of aliases for G from the Gene Nomenclature database pro-
vided by the Human Genome Organization (HUGO). Then it retrieves information
for diseases associated with this particular protein in the Online Mendelian Inher-
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Fig. 2. An “in silico discovery kit” that uses an available ontology data source to get around the
problem of inconsistent naming in genes and proteins, and integrates information across multiple data
sources.

itance of Man Database (OMIM),
�� and finally it retrieves all relevant references
from MEDLINE.

Here, s2l is a function that converts a set into a list; list-sum is a function
to sum a list of numbers; ml-get-count-general is a function that accesses
the MEDLINE database in Bethesda and computes the number of MEDLINE re-
ports matching a given keyword; ml-get-abstract-by-uid is a function
that accesses MEDLINE for report given a unique identifier; webomim-get-id
is a function that accesses the OMIM database in Bethesda to obtain unique
identifiers of OMIM reports matching a keyword; webomim-get-detail
is a function that accesses OMIM for report given a unique identifier; and
hugo-get-by-symbol is a function that accesses the HUGO database and
return HUGO reports matching a given gene name.

For instance, this query get-info-by-genename can be invoked with the
transcription factor CEBPB as input to obtain the following result.

{(#hugo: (#HGNC: "1834",
#Symbol: "CEBPB", #PMID1: "1535333", ...
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#Name: "CCAAT/enhancer binding protein (C/EBP), beta",
#Aliases: {"LAP", "CRP2", "NFIL6", "IL6DBP", "TCF5"}),

#omim: (#uid: 189965, #gene_map_locus: "20q13.1",
#allelic_variants: {}, ...),

#pmid1-abstract: (#muid: 1535333,
#authors:"Szpirer C...", #address:"Departement ...",
#title: "Chromosomal localization in man and rat ...",
#abstract: "By means of somatic cell hybrids ...",
#journal: "Genomics 1992 Jun; 13(2):292-300"),
#num-medline-entries: 1936)}

Such queries fulfill many of the requirements for efficient in silico discovery
processes:

(1) their modular nature gives scientists the flexibility to select and combine spe-
cific queries for specific research project;

(2) they can be executed automatically by Kleisli in batch mode and can handle
large data volume;

(3) their scripts are reusable to perform repetitive tasks and can be shared among
scientific collaborators;

(4) they form a base set of templates that can be readily modified and refined to
meet different specifications and to make new queries; and

(5) new databases and new computational tools can be readily incorporated to
existing scripts. �

The flexiblity and power shown in these sSQL examples can also be experi-
enced in OPM, and to a lesser extent in DiscoveryLink. With good planning, a
specialised data integration system can also achieve great flexibility and power
within a narrower context. For example, the EnsMart tool of EnsEMBL is a very
well designed interface that helps a non-programmer build complex queries in a
simple way. In fact, an equivalent query to the first sSQL query in Example 3 can
be also be specified using EnsMart with a few clicks of the mouse. Nevertheless,
there are some unanticipated cases that cannot be expressed, such as the second
sSQL query in Example 3.

3.3. Warehousing Capability

Besides the ability to query, assemble, and transform data from remote heteroge-
neous sources, a general data integration technology is also expected to be able to
conveniently store data locally. Kleisli does not have its own native database man-
agement system. Instead, Kleisli has the ability to turn many kinds of database
systems into an updatable store conforming to its complex object data model. In
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particular, Kleisli can use flat relational database management systems such as
Sybase, Oracle, MySQL, etc. to be its updatable complex object store. It can even
use all of these systems simultaneously. We illustrate this feature using the exam-
ple of GenPept reports.

Example 5: Create a warehouse of GenPept reports. Initialize it to reports on
protein tyrosine phosphatases. Note that Kleisli provides several functions to
access GenPept reports remotely from Entrez.��� One of them is the function
aa-get-seqfeat-general used below, which retrieves GenPept reports
matching a search string.

! connect to our Oracle database system
oracle-cplobj-add (name: "db", ...);
! create a table to store GenPept reports
create table genpept(uid:"NUMBER", detail: "LONG") using db;
! initialize it with PTP data
select (uid: x.uid, detail: x) into genpept
from aa-get-seqfeat-general("PTP") x using db;
! index the uid field for fast access
db-mkindex(table:"genpept",index:"genpeptindex",schema:"uid");
! let’s use it now to see the title of report 131470
create view GenPept from genpept using db;
select x.detail.title from GenPept x where x.uid = 131470;

In this example, a table genpept is created in our Oracle database system.
This table has two columns, uid for recording the unique identifier and detail
for recording the GenPept report. A LONG data type is used for the detail col-
umn of this table. However, recall from Example 1 that each GenPept report is a
highly nested complex objects. There is therefore a “mismatch” between LONG
and the complex structure of a GenPept report. This mismatch is resolved by the
Kleisli system which automatically performs the appropriate encoding and decod-
ing.

Thus, as far as the Kleisli user is concerned, x.detail has the type of Gen-
Pept report as given in Example 1. So he can ask for the title of a report as
straightforwardly as x.detail.title. Note that encoding and decoding are
performed to map the complex object transparently into the space provided in the
detail column; that is, the Kleisli system does not fragment the complex object
to force it into the third normal form. �

What distinguishes the ability to store or warehouse data in a system like
Kleisli is the ease with which the store or warehouse can be specified and popu-
lated in theory. However, in practice, one does need to anticipate failures in a large
update and to provide recovery mechanisms. OPM also enjoys this capability if
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one is not concerned with how the store or warehouse is supposed to be related
to the other existing stores or warehouses already in the system. DiscoveryLink
enjoys this capability to a lesser extent, as its data model does not permit nesting
of data. The more specialized systems can also have warehousing capability, but
with greater limitations on what can be warehoused by them.

3.4. Application Programming Interfaces

The high-level query languages of the more general data integration systems sur-
veyed are all SQL-like and are thus designed to express traditional (nested re-
lational) database-style queries. Not every query in bioinformatics falls into this
class. For these non-database-style queries, some other programming languages
can some time be a more convenient or more efficient means of implementa-
tion. Therefore, it is useful to develop some application programming interfaces
to these more general data integration systems for various popular programming
languages.

In the case of Kleisli, there is the Pizzkell suite��� of interfaces to the Kleisli
Exchange Format for various popular programming languages. Each of these in-
terfaces in the Pizzkell suite is a library package for parsing data in Kleisli’s ex-
change format into an internal object of the corresponding programming language.
It also serves as a means for embedding the Kleisli system into that programming
language, so that the full power of Kleisli is available within that programming
language in a manner similar to that achieved by JDBC and ODBC for relational
databases. The Pizzkell suite currently include CPL2Perl and CPL2Java, for Perl
and Java.

The presence of such application programming interfaces may be even more
crucial for the more specialized integration solutions. While a point solution like
EnsEMBL is typically designed with a specific aim in mind, it is not unusual to
subsequently discover that a user wants to use the integrated data in an unan-
ticipated way. In such a situation, it would be convenient if an application pro-
gramming interface is available on the integrated data. For example, in the case
of EnsEMBL, as EnsEMBL is implemented in Perl using Bioperl��� as the back-
bone, the same library of routines that have been accumulated in the course of
implementing EnsEMBL would be the perfect application programming interface
to EnsEMBL.

Bioperl��� itself can also be thought of as a low level integration toolkit for
biological data. Such a toolkit typically contains a set of library routines, for
accessing some commonly used bioinformatics data sources and tools, that can
be invoked as procedure or function calls from the underlying programming lan-



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Technologies for Biological Data Integration 397

guage. No high-level query support and no optimization are provided. There are
also similar toolkits in other popular “open source” programming languages, such
as BioPython and Biojava.�
�

Fig. 3. A screenshot of the Discovery Builder, a graphical interface to Kleisli.

There is also a graphical interface to the Kleisli system that is designed for
non-programmers. It is called the Discovery Builder and is developed by folks at
geneticXchange Inc. This graphical interface makes it far easier to visualize the
source data required to formulate the queries and generates the necessary sSQL
codes. It allows a user to see all available data sources and their associated meta-
data and assists the user to navigate and to specify his query on these sources.
A screenshot of Discovery Builder is presented in Figure 3. It provides all of the
following key functions:

(1) a graphical interface that can “see” all of the relevant biological data sources,
including metadata—tables, columns, descriptions, etc.—and then construct
a query “as if” the data were local;

(2) add new wrappers for any public or proprietary data sources, typically within
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hours, and then have them enjoined in any series of ad-hoc queries that can be
created;

(3) execute the queries, which may join many data sources that can be scattered
all over the globe, and get fresh result data quickly.

4. Concluding Remarks

Let us first summarize our opinion on how well each of the surveyed systems
satisfy the requirements of a general data integration system for biomedicine. En-
sEMBL and GenoMax are point solutions and thus naturally do not satisfy the
requirements of a general data integration system well.

SRS and DiscoveryLink are claimed by their inventors as general data integra-
tion systems for biomedicine. However, in reality, SRS is a form of user interface
integration and hence it does not satisfy the requirements well. On the other hand,
while DiscoveryLink has most of the components required, these components are
probably in the wrong flavour—the adoption of the flat relational model causes it
to be less potent in the biomedical data integration arena.

OPM is a well designed system for the purpose of biomedical data integration,
except for (i) a problem in performance due to data fragmentation as it unwisely
maps all data to the third normal form, and (ii) the lack of a simple data exchange
format, and (iii) the need of a global schema.

XML and Kleisli have all the qualities required for a good general data in-
tegration. However, compared to Kleisli, XML still need more time to mature
especially in terms of query optimization and data warehousing capabilities.

Let us next look at these surveyed systems from the perspective of an average
biologist. While general data integration systems such as DiscoveryLink, OPM,
and Kleisli simplify the programming of ad hoc queries, it must also be acknowl-
edged that the programming skills required are still significant. In contrast, data
integration systems that are nearer to the point-solution end of the spectrum—such
as EnsEMBL, GenoMax, and SRS—have considerably better user interfaces that
help a biologist to build the simpler type of queries.

Of course, a biologist may find it frustrating that the graphical user inter-
faces of EnsEMBL, GenoMax, and SRS cannot let her express a particular ad
hoc query such as the one that asks for the sequence of the first exon of all genes
in a database. However, it is very likely that the same biologist may also find it
equally frustrating that she does not know how to express that query in Discov-
eryLink, OPM, and Kleisli, even though she knows that that query is expressible
in these systems. In other words, the more general data integration systems can di-
rectly increase the productivity of a bioinformatics programmer, but they probably
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cannot directly increase the productivity of an average biologist.
Drawing from the remarks above, we see a dichotomy between expressive-

ness and simplicity. Therefore, which type of data integration system is preferred
necessarily depends on the trade-off between these two factors. Many problems
in biomedical research on drug targets and candidates require access to many
data sources that are voluminous, heterogeneous, complex, and geographically
dispersed. If these data sources are successfully integrated into a new database,
researchers can then uncover relationships that enable them to make better de-
cisions on understanding and selecting targets and leads. Therefore, a successful
integration of data is crucial to improving productivity in this research.

It is important to stress that a successful data integration must be in support
of a specific research problem, and different research problems are likely to need
different ways of integrating and analysing data. Even though point solutions such
as EnsEMBL does not fair well as a general data integration system, it works much
better than any general data integration system in the specific context of genome
browsing.

If one’s data integration needs are of a more ad hoc nature, a general data in-
tegration system can often ease the implementation significantly as such a system
provides greater adaptability. It is also worth remarking that the more specialized
solutions may themselves be implemented on top of a more general data integra-
tion solution. One such example is TAMBIS,��� which is built on top of Kleisli.

The systems surveyed so far generally do not consider the semantics aspect
of the underlying data sources. Let us end this chapter with a brief mention of
TAMBIS. TAMBIS��� is a data integration solution that specifically addresses the
semantics aspect. The central distinguishing feature of TAMBIS is the presence
of an ontology and a reasoning system over this ontology. The TAMBIS ontology
contains nearly 2000 concepts that describe both molecular biology and bioinfor-
matics tasks. TAMBIS provides a user interface for browsing the ontology and for
constructing queries.

A TAMBIS query is formulated by starting from one concept, browsing the
connected concepts and applicable bioinformatics operations in the ontology, se-
lecting one such connected concepts or applicable bioinformatics operation, and
browing and selecting for further connected concepts and applicable bioinformat-
ics operations. The ontology and the associated reasoning component thereby
guide the formulation of the query, ensuring that only a query that is logically
meaningful can be formulated. The query is then translated by TAMBIS and
passed to an underlying Kleisli system for execution.

From the point of view of TAMBIS, Kleisli significantly simplifies the task
of implementing TAMBIS, as the TAMBIS implementors can concentrate on the
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ontology and reasoning components and leave the details of handling the under-
lying data sources to Kleisli. From the point of view of Kleisli, TAMBIS makes
it possible for a biologist to ask more complicated ad hoc queries on the data
sources integrated by Kleisli without the assistance of a programmer. The ontol-
ogy of TAMBIS is currently being enriched by its inventors in the University of
Manchester to allow an even larger range of complicated queries to be expressed.


