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Finding regulatory components in genomic DNA by computational methods is
an attractive and complex research field. Currently, one of the important targets
is finding protein coding genes in uncharacterized DNA. One of the significant
aspects of gene recognition is the determination of locations of specific regula-
tory regions—promoters—that usually occupy the position at the beginning of a
gene. Promoters are responsible for the initiation of the DNA transcription pro-
cess. Current computer methods for promoter recognition are still either insuffi-
ciently accurate or insufficiently sensitive. We discuss in this chapter some of the
general frameworks and conceptual issues related to the use of artificial neural
networks (ANNs) for promoter recognition. The scenario discussed relates to the
case when the main promoter finding algorithms rely on the recognition of spe-
cific components contained in the promoter regions of eukaryotes. Some specific
technical solutions are also presented and their recognition performances on an
independent test set are compared with those of the non-ANN based promoter
recognition programs.

ORGANIZATION.

Section 1. We first discuss the motivation for finding promoters of genes in uncharacter-
ized DNA sequences. Then we provide some background material on the use of ANN
for this purpose.

Section 2. Next we describe some of the characteristic motifs of eukaryotic promoters, as
well as problems associated with them. This gives us an understanding of the chal-
lenges in arriving at a general model for eukaryotic promoter recognition.

Section 3. A few attempts have been made in eukaryotic promoter recognition that use in-
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formation based on the more common promoter region motifs—such as their position
weight matrices—and their relative distances. We mention some of them next. We also
review the study of Fickett and Hatzigeorgiou,��� which reveals the high level of false
positives in some of these programs. The role that enhancers may have played in false
positive recognition of promoters is then discussed.

Section 4. Some details of some of the principles used in designing ANNs for recognizing
eukaryotic promoters are presented in this and the next sections. In particular, we begin
with discussing representations of nucleotides for ANN processing.

Section 5. Then we describe the two main forms of structural decomposition of the pro-
moter recognition problem by ANN, viz. parallel vs. cascade composition of feature
detectors. The promoter recognition part of GRAIL��� and promoter 2.0��� are then
used to illustrate these two forms. We also discuss the construction of the underlying
feature detectors.

Section 6. After that, we introduce time-delay neural networks, which are used in the
NNPP program���� ���� ��� for promoter recognition. We also discuss the issue of
pruning ANN connections in this context.

Section 7. Finally, we close the chapter with a more extensive discussion and survey on
the performance of promoter recognition programs.

1. Motivation and Background

Advances in genetics, molecular biology, and computer science have opened up
possibilities for a different approach to research in biology—the computational
discovery of knowledge from biological sequence data. Numerous methods aimed
at different facets of this goal are synergized in a new scientific discipline named
“bioinformatics”. This new field has the potential to unveil new biological knowl-
edge on a scale and at a price unimaginable 2-3 decades ago. We present here an
overview of capabilities of the artificial neural network (ANN) paradigm to com-
putationally predict, in uncharacterised long stretches of DNA, special and impor-
tant regulatory regions of DNA called promoters. For references on ANNs, see for
example Bose and Liang,�� Caudill,	�� Chen,	�� Fausett,��	 Hercht-Nielsen,��


Hertz et al.,��� Kung,��� and Rumelhart and McClelland.���

This chapter focuses on some of the basic principles that can be used
in constructing promoter prediction tools relying on ANNs that make use
of information about specific short characteristic components—the so-called
“motifs”—of eukaryotic promoters’ micro-structure. These motifs include
subregions such as the TATA-box,���		�� 	��� ���� ��	 the CCAAT-box,��� ���

Inr,���� ���� ���� ���� ��	� ���� ���� 
�� the GC-box,		� and numerous other DNA
sites that bind a particular class of proteins known as transcription fac-
tors (TFs).���� 
�
 In this approach the ANN system attempts to recognize the
presence of some of these motifs and bases its final prediction on the evidence
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of such presences. This is conceptually different from the macro-structural ap-
proach, where the recognition of the promoter region is based primarily on
the recognition of features of larger sections of the promoter and neighboring
regions,������ �	� 	��� ��	� �
�� ���� ��� such as CpG-islands.
	� 	
�� 	
	� ��	� ���

Although the techniques to be presented here relate to the recognition of a
particular group of regulatory regions of DNA—the promoter regions—the tech-
niques discussed are far more general and are not limited to promoter recognition
only. They could well be used in the large-scale search for other important sections
of DNA and specific genomic signals, such as enhancers, exons, splice sites, etc.

1.1. Problem Framework

Probably the most fascinating aspects of bioinformatics is the computational in-
vestigation, discovery, and prediction of biological functions of different parts of
DNA/RNA and protein sequences. One of the important practical goals of bioin-
formatics is in reducing the need for laboratory experiments, as these are expen-
sive and time consuming.

The worldwide effort aimed at sequencing the human genome—the so-
called Human Genome Project	��� 	�	� ���� ���� 
��� 
��� 
��—is virtually finished,
although it was initially planned for finalization by the year 2004. ��� To illustrate
the quantity of information contained in the human genome, note that it contains
approximately 3 billion bp
�� and within it about 35,000–65,000 genes, while the
number of regulatory regions and other functional parts in the human genome still
remain to a large extent unclear.

An open question is our ability to computationally locate all important func-
tional parts of the human genome, as well as to computationally infer the biologi-
cal functions of such segments of genetic information. Recognition of constituent
functional components of DNA, and consequently annotation of genes within a
genome, depend on the availability of suitable models of such components. This
relies on our understanding of the functionality of DNA/RNA and related cell
products. This problem is very difficult and complex, as our current knowledge
and understanding of DNA/RNA functioning is not complete.

Hence, one of the general problems that has to be solved is the accurate com-
plete annotation of different genomes. This involves the identification and location
of genes, as well as their associated promoters. Currently, the dominant interest is
in finding genes that code for proteins, and the recognition of related promoters is
a part of the problem. There are many techniques aimed at recognizing genes or
some of their main features in long stretches of DNA—see Burge et al., 	�	�	��

Claverie,	�� Dong and Searls,�	� Eckman et al.,�	� Fickett et al.,���� ��
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94 V. B. Bajić & I. V. Bajić

Gelfand et al.,�
�� �
� Gish and States,��� Guigo et al.,���� ��� Hatzigeor-
giou et al.,���� ��� Hayes and Borodovsky,��� Henderson et al.,��	 Hutchinson
and Hayden,��
 Jiang and Jacob,��� Kleffe et al.,��� Krogh,������� Lukashin
and Borodovsky,��� Mathe et al.,��� Milanesi and Rogozin,��� Murakami and
Takagi,�
� Quandt et al.,��� Roytberg et al.,��� Salzberg et al.,��
� ���� ��	 Snyder
and Stormo,�
	 Solovyev et al.,�
�� �
� Sze et al.,
		� 
	� Tiwari et al.,
�	 Uber-
bacher and Mural,
�
 Ureta-Vidal et al.,
�	 Xu et al.,�	���	� and Zhang.���

Some of these techniques utilize ANNs as parts of the solution at different
levels of the problem and for different features and purposes—for example, see
Brunak et al.,		� Hatzigeorgiou et al.,���� ��	���� Hayes and Borodovsky,��� La-
pedes et al.,��� Rampone,��� Snyder and Stormo,�
	 and Uberbacher et al.
�
� �	�

However, numerous problems remain unsolved and, so far, the overall results of
different types of predictions are not yet satisfactory.	���	��� ���� ��� Within the
problems that still await successful solutions is an accurate recognition of pro-
moters, which remains one of the crucial components of the complete gene recog-
nition problem.

1.2. Promoter Recognition

There are several main reasons why we are interested in searching for promoters
in genomic DNA.���� ���� �
	 For example:

� Promoters have a regulatory role for a gene. Thus, recognizing and locating
promoter regions in genomic DNA is an important part of DNA annotation.

� Finding the promoter determines more precisely where the transcription start
site (TSS) is located.

� We may have an interest in looking for specific types of genes and conse-
quently for locating specific promoters characteristic for such genes.

The problem of promoter recognition is not a simple one and it has many
facets, such as:

� Determination of the promoter region, without any attempt to find out what
such regions contain.

� Determination of the location of different binding sites for numerous TFs that
participate in the initiation of the transcription process.

� Determination of the TSS, which is an important reference point in the context
of transcription initiation.

� Determination of the functional classes of promoters, etc.
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Thus, many techniques exist for promoter recognition and location. More
details on such methods for prokaryotic organisms can be found in Alexan-
drov and Mironov,	� Demeler and Zhou,	�� Grob and Stuber,��� Hirst and
Sternberg,��� Horton and Kanehisa,��� Lukashin et al.,��
 Mulligan and
McClure,�
� Nakata et al.,��� O’Neil,��
 Reese,��� Rosenblueth et al.,�	�

Staden,��� etc.
The techniques for the recognition of eukaryotic promoters are much less

efficient. The eukaryotic promoters are far more complex and possess very in-
dividual micro-structures that are specialized for different conditions of gene
expression. It is thus much more difficult to devise a general promoter recog-
nition method for eukaryotes. As in the case of prokaryotic promoter recog-
nition, different techniques have been used to deal with the recognition of
eukaryotic promoters of different classes—see Audic and Claverie, �
 Ba-
jic et al.,��� ��� ������ �	 Bucher,		� Chen et al.,	�� Claverie and Sauvaget,	�


Davuluri et al.,	�� Down and Hubbard,�		, Fickett and Hatzigeorgiou,���

Frech and Werner,��� Hannenhali and Levy,��	 Hatzigeorgiou et al.,���

Hutchinson,��� Ioshikhes and Zhang,�
� Kondrakhin et al.,��� Mache and
Levi,��� Matis et al.,��� Milanesi et al.,��� Ohler et al.,������
� ��� Ponger
and Mouchiroud,��� Prestridge,�����
	 Quandt et al.,���� ��	 Reese et al.,���� ���

Scherf et al.,��� Solovyev and Salamov,�
� Staden,��� and Zhang.��	 Recent eval-
uation studies��� ��� of some publicly available computer programs have revealed
that computer tools for eukaryotic promoter recognition are not yet mature.

1.3. ANN-Based Promoter Recognition

Some of the techniques mentioned are based on the use of artificial neural net-
works. Results on the recognition of promoters by ANNs in prokaryotes can be
found in Demeler and Zhou,	�� Hirst and Sternberg,��� Horton and Kanehisa,���

Lukashin et al.,��
 Reese;��� and those for eukaryotic organisms in Bajic,�� Ba-
jic et al.,��� ��� ������ �	 Hatzigeorgiou et al.,��� Knudsen,��� Mache and Levi,���

Matis et al.,��� Milanesi et al.,��� Ohler et al.,��� and Reese et al.���� ���� ���

Results of several programs based on ANNs are available for comparison:
NNPP;���� ���� ��� Promoter2.0,��� which is an improved version of the pro-
gram built in GeneID package;��� SPANN;��� �� SPANN2;�� McPromoter;���

Dragon Promoter Finder;�
� ��� �	 and Dragon Gene Start Finder.��� �� The pro-
grams mentioned operate on different principles and use different input informa-
tion. For example, some of ANN-based programs are designed to recognize spe-
cific characteristic subregions of eukaryotic promoters, as in the case of NNPP, ���

Promoter2.0,��� the promoter finding part of the GRAIL program, ��� the pro-
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gram of Hatzigeorgiou et al.,��� and that of Wang et al. in Chapter 6 of this book.
On the other hand, SPANN,��� �� SPANN2,�� Dragon Promoter Finder,�
���� �	

Dragon Gene Start Finder,����� and McPromoter��� use primarily integral infor-
mation about the promoter region. The scores achieved by some of these programs
are shown later and indicate that ANN-based methods for eukaryotic promoter
recognition rate favorably with regard to non-ANN based programs.

2. Characteristic Motifs of Eukaryotic Promoters

Promoters are those parts of genomic DNA that are intimately related to the initia-
tion of the so-called transcription process. The starting point of transcription—i.e.,
the TSS—is generally contained within the promoter region and located close to,
or at, its 3’ end. A promoter in eukaryotes can be defined somewhat loosely as a
portion of the DNA sequence around the transcription initiation site. ��� Eukary-
otic promoters may contain different subregions—sometimes also called compo-
nents or elements—such as TATA-box, CCAAT-box, Inr, GC-box, DPE, together
with other different TF binding sites.

The problem with these subregions in eukaryotic promoters is that they vary
considerably from promoter to promoter. They may appear in different combina-
tions. Their relative locations with respect to the TSS are different for different
promoters. Furthermore, not all of these specific subregions need to exist in a par-
ticular promoter. The high complexity of eukaryotic organisms is a consequence
of high specialization of their genes, so that promoters in eukaryotes are adjusted
to different conditions of gene expression, for example, in different tissues or in
different cell types.

Thus, the variability of internal eukaryotic promoter structures can
be large. Consequently, the characteristics of the eukaryotic promoter are
rather individual for the promoter, than common for a larger promoter
group.�	������ ���� ���� ���� ��	� �
	� ���� ���� 
��� 
�
� 

� For this reason it is not easy
to precisely define a promoter structure in eukaryotic organisms. This is also one
of the reasons why at this moment there is no adequate computer tool to accurately
detect different types of promoters in a large-scale search through DNA databases.

The simplistic version of the process of the initiation of transcription implies
a possible model for eukaryotic promoters: It should have a number of binding
sites. However,

� there is a large number of TFs—see TRANSFAC database details in
Matys et al.;���

� TF binding sites—for one of their databases see Ghosh�
�—for different pro-
moters may be at different relative distances from the TSS;�	�� ���� ���� 

�
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� for functional promoters the order of TF binding sites may be important;
� for different promoters, not all of the TF binding sites need to be present; 

�

and
� the composition of TF binding sites for a particular promoter is essentially

specific and not shared by a majority of other promoters.

It is thus very difficult to make a general computer tool for promoter recognition
that uses information based on TF binding sites and their composition within the
eukaryotic promoters.������

There are three types of RNA polymerase molecules in eukaryotes that bind
to promoter regions. Our specific interest is in RNA Polymerase II and their cor-
responding promoters—viz. Pol II promoters—whose associated genes provide
codes for proteins. Many eukaryotic Pol II promoters have some specific subre-
gions that possess reasonably high consensus. A typical example is the TATA-box.
The TATA-box is a short region rich with thymine (T) and adenine (A) and located
about –25 bp to –30 bp upstream of the TSS. But there are also other frequently
present components like the CCAAT-box, Inr, DPE, etc.

Arriving at a general model for an eukaryotic promoter is difficult. Neverthe-
less, suitable models can be derived for specific classes of promoters. For example,
the mammalian muscle-actin-specific promoters are modelled reasonably well for
extremely accurate prediction.��	 Such modelling of specific narrow groups of
promoters makes a lot of sense in a search for specific genes. The point is, how-
ever, that computer tools for the general annotation of DNA are aimed at the large-
scale scanning and searching of DNA databases so as to recognize and locate as
many different promoters as possible, and not to make large numbers of false
recognitions. Obviously, it is difficult to make such tools based on highly specific
structures of very narrow types of promoters.

3. Motif-Based Search for Promoters

The problems of initiation and control of transcription processes in eukary-
otes have a major importance in the biochemistry of cells��� and are the sub-
ject of intensive research.	��� 	�
� ���� ���� ��
� ��	� �
�� �	�� ���� ���� 
��� 
�
 The ac-
curate prediction of promoter location, including that of the TSS, can signif-
icantly help in locating genes. We have indicated previously that there are
a number of components within the eukaryotic promoter region that may
possibly serve as a basis for promoter recognition. Such methods have to
take into account the great variability of the internal eukaryotic promoter
structure,�	�� ���� ���� ���� ���� ��	� �
	� ���� ���� 
��� 

� which contributes to pro-
moter complexity,��� and to the complexity of the computational promoter recog-
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nition.
A reasonable approach in devising techniques for promoter recognition is to

identify those patterns that are common to very large groups of promoters, and
then to search for such patterns and their mutual distances. Such algorithms would
reflect the biochemical background of the transcription process, and, in principle,
should result in the least number of false recognition. Unfortunately, constructing
such algorithms depends crucially on the detailed knowledge of the biochemistry
of promoter’s activity which is not yet fully available. In prokaryotic promoters
very common patterns exist—for example, the –10 and –35 regions have reason-
ably high consensus and a very consistent distance between them. It is thus not
surprising that a number of techniques have been developed to deal with prokary-
otic promoter recognition.	��	��� ���� ���� ���� ��
� �
�� ���� ��
� ���� �	�� ��� Some of
these techniques are based on the use of ANNs.	��� ���� ���� ��
� ���

Due to the high structural complexity and the absence of a greater number
of strong common motifs in eukaryotic promoters, the existent techniques aimed
at computational recognition of eukaryotic promoters are much less accurate.
The previously mentioned very individual micro-structure of eukaryotic promot-
ers that are specialized for different conditions of gene expression complicates
enormously the development of adequate techniques for promoter recognition.
However, there are certain motifs within eukaryotic promoters that are present in
larger promoter groups. Many of the eukaryotic promoter recognition programs
base their algorithms on searching for some of these motifs, frequently by using
some additional information such as the relative distances between the motifs.

A number of attempts have been made in this promoter recognition task that
are aimed at utilizing information from some of these more common promoter
region components. About 30% of eukaryotic Pol II promoters contain TATA-like
motifs. About 50% of vertebrate promoters contain CCAAT-box motifs. Inr is also
a very common subregion in eukaryotic promoters. It is found that combination
of some of these specific subregions are crucial in the determination of the correct
TSS location—such as the combination of TATA-box and Inr. ��	 Also, the posi-
tion weight matrices (PWMs) for the TATA-box, the CCAAT-box, the GC-box,
and the cap site have been determined in Bucher.		� In spite of the fact that the
consensus of the TATA-box is not very strong, the PWM of the TATA-box from
Bucher		� appears to be a very useful tool for recognition of a larger group of
eukaryotic Pol II promoters. This weight matrix is normally used in combination
with the other methods��� due to the fact that when it is used alone it produces a
large number of false recognition of the order of � false recognition per 100–120
bp on non-promoter sequences.���� �
�

It is possible to use only one target motif in the attempt to recognize promot-
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ers that contain such a motif and to achieve relatively good success—see Chap-
ter 6. However, most methods that aim at recognizing eukaryotic promoters do
not base their algorithms on locating only one of many possible micro-structural
promoter components. They rather look for the existence of a suitable combi-
nation of such elements which is then assessed and used in the prediction task.
For example, in Prestridge,��� the prediction of eukaryotic Pol II promoters is
based on the prediction of the TF binding sites and then combined with an as-
sessment of the PWM score for the TATA-box. The TF binding sites that are used
are those corresponding to the TF database from Ghosh. �
� The method is based
on the assumption that the distributions of the TF binding sites in promoter and
non-promoter regions are different. The resulting program, Promoter Scan, can
predict both TATA-containing and TATA-less promoters and has shown a reduced
level of false recognition compared with the other promoter-finding programs. ���

The last version of Promoter Scan�
	 has an improved and extended functionality
compared with the original version.

A sort of an extension of the method used initially for developing Promoter
Scan has been made in TSSG and TSSW programs.�
� These programs are ex-
tended by the addition of a linear discriminant function that values (1) the TATA-
box score; (2) the sequence composition about the TSS—viz. triplet preferences
in the TSS region; (3) hexamer preferences in the three upstream regions—viz.
[–300, –201], [–200, –101], [–100, –1]; and (4) potential TF binding sites. The
programs use different TF databases.

Also, as in the case of Promoter Scan, a part of the AutoGene program—the
program FunSiteP, which is responsible for finding promoters ���—contains an
algorithm devised on the assumption of different distributions of TF binding sites
in the promoter regions and in non-promoter sequences. The database source for
FunSiteP is based on a collection of binding sites from Faisst and Meyer.���

The other group of methods that explicitly use eukaryotic promoter micro-
structure components—at least as a part of the algorithm—exploit the modelling
and generalization capabilities of ANNs.��� ������ �	� ���� ���� ���� ���� ���� ����
������� Some of them utilize, in one way or other, the fact that combinations
of some of the specific subregions—such as the combination of the TATA-box
and Inr—helps in the determination of the TSS location. Certain programs also
use explicit information on relative distances between such specific subregions. In
the next sections we see in more details some of the principles that may be used
in designing ANN systems for eukaryotic promoter recognition.
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3.1. Evaluation Study by Fickett and Hatzigeorgiou

A recent evaluation study��� of publicly available computer programs has indi-
cated different degrees of success of these programs and revealed that tools for
promoter recognitions do require a lot of additional development. On the specific
evaluation set used,��� where only the ability of programs to locate the TSS is
considered, the rate of success is in the range of 13%–54% of true positive predic-
tions (�� ), while false positive predictions (�� ) are in the range of ������ bp in
the best case and up to ����� bp in the worst case.

�� predictions are correct predictions of the TSS location within the prespec-
ified bounds arround the actual TSS location. �� predictions are those reported
as predicted TSS locations at positions out of the above mentioned bounds. The
interpretation of the �� score of, say, ����� bp means the promoter recognition
system produces on an average 1 �� prediction of promoters every ��� bp.

The general observation is that the level of �� predictions is directly cor-
related to the level of �� predictions. So, the best program in correct positive
predictions—NNPP, which is based on neural networks—produces 54% �� pre-
dictions, and �� at the level of ����� bp. On the other hand, the Promoter Scan
program,��� which is not neural network based, produces a score of 13% ��

predictions, but achieved the lowest proportion of �� at the level of ������ bp.
It should be indicated that �� and �� as measures of success in prediction

programs are not very convenient for comparison of prediction programs that pro-
duce different �� s and �� s. Thus, to be able to make a reasonable comparison
of different programs on a unified basis, a more convenient measure of success
scores from Bajic�� is used later. It shows a rational ranking of promoter predic-
tion programs and corroborates our statement that ANN-based programs for pro-
moter prediction exhibit comparable or better performance to non-ANN promoter
prediction programs.

3.2. Enhancers May Contribute to False Recognition

Closely associated with promoter regions in eukaryotes is another class of tran-
scriptional regulatory domains in DNA—the enhancers. Enhancers cooperate with
promoters in the initiation of transcription. They are located at various distances
from the TSS and sometimes may be several thousands nucleotides away. They
can also be located either upstream or downstream of the TSS.

As in promoters, enhancers also contain different TF binding sites. Thus, as
pointed out in Fickett and Hatzigeorgiou,��� one of the reasons for having a high
level of �� s produced by programs for finding eukaryotic promoters can be that
most of these techniques are mainly based on finding specific TF binding sites
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within the promoter region, or in the assessment of the density of TF binding
sites in the promoter and non-promoter sequences. On this basis it seems that en-
hancers could frequently be recognized as promoters. Thus, it would be of interest
to develop methods to discriminate between the promoter and enhancer regions
in uncharacterized DNA, and in this way to contribute to the reduction of the ��
scores of some of promoter recognition programs.

4. ANNs and Promoter Components

4.1. Description of Promoter Recognition Problem

The best way to understand a possible role of neural networks in promoter pre-
diction in eukaryotes is to examine the essence of the problem that needs to be
solved by neural networks. Let us assume that there may exist � specific subre-
gions �� � � � �� �� 			� �� some of which we may use for promoter recognition.
Let ��

� denote the region �� in the 
-th promoter. We use the superscript to in-
dicate that the form—the actual composition, length, and relative position with
respect to the TSS—of the subregion�� in the 
-th promoter may be, and usually
is, different from the form of the same region in another, say, �-th promoter. Let � ��
and 
�� denote the starting position and the ending position of the region� �

� in the

-th promoter. These positions are counted from the 5’ end of the DNA string and
represent relative distances from an adopted reference position. Thus, � �� � 
�� .

Let us also assume that the starting points of these subregions are at distances
��� � � � �� �� 			� �, from the TSS. The values of ��� are taken from the set

�� � �� ���

where� is the set of integers. Note that, due to the possible absence of a subregion
��
� from the 
-th promoter, it may be that ��� cannot be defined. This is the reason

for having the special symbol � in the definition of ��. Note also that we use
negative values of ��� for the locations of��

� upstream of the TSS, we use positive
values of ��� for the downstream locations. Thus the sign of ��� determines only
the direction from the TSS.

In an uncharacterized genomic sequence we do not know the location of the
TSS—it has yet to be determined. Thus, we cannot use the information of dis-
tances ��� in the search process, even though we can do this during the training
process as it may be assumed that in the training set the TSS and subregions of
interest are known. In fact, it makes sense to develop specialized ANN systems
aimed at searching for specific promoter components, where these systems use
information on distances ��� directly. This may be the case in tasks when the lo-
cation of the TSS is known, but when there is not enough information about the
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promoter structure.�
	 However, we mainly consider here the problem of unchar-
acterized genomic sequences.

The direct use of distances ��� can be circumvented if we use relative dis-
tances between the subregions. We assume that in one promoter two functional
subregions��

� and ��
� do not overlap. Thus

��
�� �

��
�
��� � 


�
� � �� if ��� � 
��

��� � 

�
� � �� if ��� � 
��

denotes the mutual distance of subregions ��
� and ��

� in the 
-th promoter. This
distance does not include the ending point 
�� (respectively, 
�� ) of the first subre-
gion��

� (respectively,��
� )—counted in the direction from 5’ toward the 3’ end—

nor the starting point ��� (respectively, ��� ) of the subsequent subregion��
� (respec-

tively, ��
� ). Alternatively, one can express these distances by means of subregion

length ��� as

��
�� �

��
�
��� � �

�
� � �

�
� � if ��� �

�
��� � ���

�

��� � �
�
� � �

�
� � if ��� �

�
��� � ���

�

Further, the characteristics of the subregion�� that we are trying to identify—
and by which we attempt to recognize its presence in the 
-th promoter—may be
varied. So, let us assume that we are interested in identifying a feature � � of the
subregion �� in all promoters under investigation. That is, we try to identify the
feature �� for all ��

� , 
 � �� �� 			� ��, where �� is the number of promoters in
the group we analyze. The feature �� may be expressed, say, as a set of probabil-
ities of specific motifs appearing at appropriate positions relative to the reference
indicator, or it may be given in the form of a suitably defined discrepancy func-
tion �����
�	��

� � �
���
� 
—for example, the distance of��

� from����
� in a suitable

space—where ����
� may represent a prespecified motif, consensus sequence, etc.

Although we can consider several features associated with a subregion, for sim-
plicity we restrict our consideration to only one such feature. We need to highlight
the fact that for virtually any of the specific subregions there is no unique subre-
gion description. As an example, many different compositions of nucleotides may
represent the same subregion although the subregion is characterized by a strong
consensus signature.

The order of subregions �� in a specific promoter may be of importance for
the functionality of the promoter. Thus the ordering of subregions � �

� is also a
candidate as an input parameter for assessment.
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nucleotide code

A ����

C ����

G ����

T ����

Fig. 1. Binary code that can be used to represent four nucleotides in DNA.

An additional problem that is encountered in dealing with the locations of sub-
regions is related to the fact that domains of location for two functional subregions
�� and �� in a set of sequences may overlap, although in a particular promoter
they are separate. The overlapping of possible locations comes from considering
a group of promoters containing the same subregions. A typical example is in the
case of the Inr and TATA-box in eukaryotic Pol II promoters, where Inr can be lo-
cated within the –14 bp to +11 bp region relative to the TSS, while the TATA-box
can be located in the –40 bp to –11 bp domain. Thus, a number of constraints of
this type may be of importance when formulating input information to the neural
network system.

So, we can summarize the problems that appear:

� generally, the model describing a subregion and its selected feature(s) does
describe a set of more or less similar sequences, but does not determine them
uniquely;

� not all subregions need to exist in a particular promoter;
� relative distances of subregions from the TSS are variable—which implies

that the relative mutual distances of subregions are variable too;
� order of subregions may be of importance; and
� possible overlapping of subregion domains can occur.

4.2. Representation of Nucleotides for Network Processing

The DNA sequence is a sequence of 4 different nucleotides denoted in the cus-
tomary way as “A”, “T”, “C”, and “G”. If no biological or physical properties of
these nucleotides are taken into account, then a suitable representation of these
nucleotides may be by the code given in Figure 1.

This code has the same Hamming distance between any two coding vec-
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tors for the A, C, G, and T nucleotides, which is considered desirable so as
not to contribute to biased learning. This code representation has been used in
a number of ANN applications to DNA and protein analysis—for example, see
Brunak et al.,		� Demeler and Zhou,	�� Farber,��� Knudsen,��� O’Neill,��� Qian
and Sejnowski,�
� and Reese and Eeckman.���

However, it should be mentioned at this point that this is not the only pos-
sible numerical representation of nucleotides. If we want to incorporate some of
the physical properties that characterize nucleotides and base our further analy-
sis on such a representation, then, for example, the electron-ion interaction po-
tential (EIIP),
���
�
 may also be used with success in promoter recognition
algorithms.������ �	

It is difficult to determine at this stage of computational genomics research
which coding system is more effective. One can argue that the A, T, C, and G
nucleotides generally form two groups with specific chemical characteristics—
purines (A, G) and pyrimidines (C, T)���—so that their numerical representation
for the purpose of computer analysis should reflect such similarities in order to
more adequately mimic the real-world situation. Consequently, it seems that it is
not the right approach to use the binary coding as mentioned above. Also, the
ordering of nucleotides is crucial in determining the function of a particular sec-
tion of DNA. Since the biochemical functions of DNA segments depend on that
order—for example, in a particular context several successive purine nucleotides
can have different biochemical properties than if their positions are occupied by
pyrimidine nucleotides—it seems more logical to use a coding system that reflects
physical or biological properties of the nucleotides. Thus we favor numerical cod-
ing of nucleotides via physical characteristics that they may have, over the essen-
tially artificial allocation of binary numerical representation, such as the binary
coding presented above.

5. Structural Decomposition

The problem of eukaryotic promoter recognition allows several possible structural
decomposition forms. We comment on two of such decomposition structures. The
first one basically uses parallel composition of feature detectors (PCFD), while
the other uses cascade composition of feature detectors (CCFD). Both structures
comprise hierarchical systems.

5.1. Parallel Composition of Feature Detectors

It is possible to build a neural network system so that, on the first hierarchical
level, ANNs attempt to recognize the individual features � � either as independent
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Fig. 2. Conceptual structure of the first hierarchical level of an ANN system aimed at feature recog-
nition of promoter subregions.

features, or in specific combinations—see Figure 2. Naturally, the independent
recognition of individual features is far simpler and more practical.

One possible way to realize this first hierarchical level of ANNs is depicted
in Figure 3. Let us assume that there are � subregions that we intend to identify,
�� � � � ��	� ��� 			� �	�; that each subregion �� is characterized by a feature
�� ; and that we have � ANNs, ���� , � � ��	� ��� 			� �	�, for the independent
recognition of features�� , � � ��	� ��� 			� �	�. We assume that the neural network
���� for the recognition of feature �� requires information gathered by reading
data through a data window �� that slides along the DNA strand from its 5’ end
towards its 3’ end. Then the process of supplying the ANN system with input
information is equivalent to independently sliding � required windows � � along
the DNA sequence and feeding each feature-sensing ANN with information from
the appropriate window. The network ���� then produces output signal �� .

Depending on the choice of neural networks, these output signals may be con-
tinuous or discrete. If they are continuous, then usually their amplitudes are re-
lated to the sensing accuracy—the larger the amplitude, the higher the certainty
that the subregion is identified, i.e., the greater the chance that the searched-for
feature is detected. If the networks for feature sensing are designed to function
like classifiers,��� 	��� 	��� ��	� ���� ���� �	�� ��� then they perform the classification
of input patterns into appropriate output categories. For example, they may have
outputs at � to correspond to the “identified” subregion or feature, vs. � to cor-
respond to the case when the subregion or feature is not identified at the given
position. Depending on the problem, the classifier networks may have to learn
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Fig. 3. Input signals for networks on the first hierarchical level are obtained from the appropriate
reading windows ��� � ��� � ..., ��� .

very complicated multidimensional decision boundaries so as to be able to con-
duct classification properly. Generally, ANN classifiers are capable of learning
such complicated decision surfaces, but these capabilities and final success de-
pend on the type of network, as well as the training procedure and the training
set.���

In our case it is convenient to deal with � output categories for each feature-
sensing networks, but this need not always be the case. Some of the typical types
of ANNs that produce discrete output signals convenient for this category are
probabilistic neural networks (PNNs).�

� �
�� ��	 These networks perform input
pattern classification with a decision boundary that approaches asymptotically the
Bayesian optimal decision surface. That is, they asymptotically converge to the
Bayesian classifier. Another useful type of networks, whose decision boundary
also approximates the theoretical Bayesian decision surface, contains the learning
vector quantization (LVQ) networks,���� ��� which may be considered as a vari-
ant of self-organizing-map (SOM) networks���� ���� ��� adjusted for supervised
learning. Also useful are the radial basis function based classifiers,��	� ��� or the
multilayered perceptrons (MLPs).

� MLPs are capable of approximating arbi-
trary discrimination surfaces,�	� although their approximations of these surfaces
have some topological constraints.�
� This only means that one may need a very
large MLP with a sufficient number of hidden layers in order to sufficiently well
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approximate the smooth decision boundary. The size of such an MLP may lead to
problems of training. The situation can be relaxed somewhat if a nonlinear pre-
processing of MLP inputs is made.

�

For practical purposes it is more convenient to have networks with
continuous outputs at this level, such as the radial basis function net-
works (RBFNs),��� 	��� 	��� �	�� ���� ���� ���� ���� ��� the generalized regression net-
works (GRNN),���� ��	 or some of the many other forms of ANNs that produce
continuous output signals.��� 	��� 	��� ��	� ���� ���� ��� As an example, MLPs can be
associated with the probabilities of detecting a time-evolving feature �� so as to
produce continuous output signals and can be used in the context of promoter
subregion sensing.

It is important to note that the networks used on this level can produce a large
number of�� s. This is intimately related to the problem discussed in Trifonov, 
��

where it has been shown on some “hard-to-believe” examples—to use the ter-
minology from Trifonov
��—that sequences quite different from consensus se-
quences functionally perform better than those consensus sequences themselves.
This is one of the general problems related to what consensus sequences represent
and how “characteristic” they are for the pattern that is searched for. The same
difficulty appears with the usage of the PWM that characterizes a specific subre-
gion. This highlights the real problem of what is a suitable definition of similarity
between the signature of the pattern ����

� (the template pattern) we look for and
the potential candidate sequence ��

� that is tested in the search process. In other
words, the problem is how to express mathematically the discrepancy function
�����
�	��

� � �
���
� 
 in the most effective way.

On the higher hierarchical level, a neural network system can be built to assess
the identified combination of features in association with their mutual distances
and their ordering, as depicted in Figure 4. This problem belongs to the class of
the so-called multi-sensor fusion/integration problems,�	��
	�� ��� but their imple-
mentation is complicated by the necessity to cater at this level for spatial/temporal
patterns and their translation invariance. If the information on the relative mutual
distance between the sensed feature at the lower hierarchical level is not presented
to the higher hierarchical level network, then the network on the higher hierar-
chical level has to have the capability to learn and recognize the spatial/temporal
events so as to be able to assess simultaneously the feature signals �� obtained
from the networks at the lower level and their spatial/temporal differences, so that
it can estimate the overall combination and produce the system output signal � �.
Different classes of ANNs can be used for this purpose, but dynamic (recurrent)
networks seem to be best suited for this task.���� 
��� 
��� 
�� If, however, informa-
tion about mutual relative distances of the sensed features is contained in the input
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Fig. 4. One possible general ANN structure for eukaryotic promoter recognition.

signals to the ANN on the coordination level, then such coordination ANN need
not be recurrent.

In principle, suitable and sufficiently complex structure of neural network sys-
tems can allow a non-hierarchical approach. However, the problems of training
such networks may be considerable, either from the viewpoint of the time required
for the training, or from the viewpoint of network parameter convergence to rea-
sonably good values, or both. For these reasons, in the case of recognition based
on sensing different promoter subregion features, it is pragmatic to apply a hier-
archical approach in designing neural network systems. ���� �
�� �

� �	� With this
basic idea in mind, one can build several different hierarchical structures of ANNs
to suit eukaryotic promoter recognition. The structures presented in Figure 4 and
Figure 5 show two of many possibilities.
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Fig. 5. Another structure of ANN-based system which uses also distances between the signals for
promoter recognition.

5.2. First- and Second-Level ANNs

At the first level we have the “feature sensing” networks, viz. those that are
trained to sense the presence of specific subregions of promoters on the ba-
sis of selected subregion features. These networks can be any static neural
networks.��� 	��� 	��� ��	� ���� ���� ��� Although some solutions���� ������� utilize
time-delay neural networks (TDNN) proposed in Waibel et al., 
�� it is not nec-
essary to have dynamic networks on this level. Moreover, dynamic ANNs may
not be more accurate as feature sensors. Anyway, whatever choice of static neural
networks is made for dealing with information processing at this level, the general
problem to be further handled is explained by an example of two feature-sensing
networks in what follows.

Let us assume that the system is based on the recognition of subregions � 	

and ��, whose identified features are �	 and ��, respectively. Let the first layer
neural networks ���	 and ����, serve the purpose of identifying features �	
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and ��, respectively, and produce continuous output signals � 	 and ��. These out-
put signals are assumed to be confined to the interval ��� ��, where values close to
1 denote a strong signal—a high certainty that at the given position of the read-
ing window the feature is detected. For lower values of the signal, this certainty
reduces; with values close to 0 the chances that at the given window position the
feature exists are slim.

In many simpler cases the system has to make the choice regarding the levels
of output signals at which, and above which, the features are considered detected.
These are frequently determined by the cut-off (threshold) value for each output
signal. Note that there may be different cut-off values for each of the output sig-
nals, although this is not always necessary. In our case depicted in Figure 6 we
consider two different cut-off values, one for each output signal.

Note also that the concept of cut-off values is not necessary, although it simpli-
fies the problem to an extent. One can essentially use output values of the first layer
networks and leave decisions about whether the features are detected or not to the
higher-level coordination ANN. In this case the input signals of the coordination
ANN may have a large number of components corresponding to signals sensed at
different positions of the data window. Another possibility to avoid cut-off values
is to use only the maximum value of a signal from the output of one sensor within
the examined data window, and then to consider the maximum value of the output
signal of another sensor, and the relative distance between them. This however is
constrained by a serious conceptual problem, to be shown later.

Figure 6 shows a possible situation with the measured signals. According to
Figure 6, any position from �	 up to ��, including these two positions, determines
a valid candidate for the predicted existence of �	. Analogously, the existence
of �� is predicted on positions starting with �� and ending at ��. One can raise
the legitimate question: Why are there so many predicted possible locations for
a “detected” feature? The answer is that in the feature domain the overlapping of
characteristics of the correct and wrong subregions is huge which leads to a great
number of wrong guesses of the ANNs.

The relevant combinations of positions from ��	� ��� and from ���� ��� are
subject to some constraints on distance ����	�	� ��
 between the subregions �	

and��. Generally, for many subregions in a group of promoters we know some of
the constraints regarding their locations. These constraints on ����	� 	� ��
 can be
used to define the logic to handle signals �	 and �� in the context of their mutual
distance. Obviously, the minimal and the maximal spatial distances between � 	

and �� for the used cut-off values, as determined by the ANNs, are given by


�� �����	�	� ��
� � �� � �� � ��
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Fig. 6. Presentation of possible output signals �� and �� from sensor networks at the lower hierar-
chical level, their cut-off values, and reference positions ��� ��� �� , and �� on the basis of which the
spatial range (or time interval) for occurring features is to be determined.


�� �����	�	� ��
� � �� � �	 � �	

If the general constraint on ����	�	� ��
 is given by ����	�	� ��
 � ��	� ���,
then for an arbitrary pair of points � and �, where � belongs to the candidate
region ��	� ��� and � to the candidate region ���� ���, only some combination
of signal value pairs 	�
	�

� ��	��

 are allowed. Those that are allowed are
determined by the condition

	�� � �

 � ��	� ���

Notice the ordering of features �	 and �� contained in the condition above. The
logic block operating at the input of the ANN at the higher hierarchical level
should handle this problem, or the solution can be implemented via the ANN
design.

In addition, it is not always the case that the strongest signals in the detected
intervals ��	� ��� and ���� ��� are the correct or the best candidates that character-
izes the correct detection of features �	 and ��. This is a consequence of the same
reasons highlighted in the discussion in Trifonov
�� and mentioned in the preced-
ing sections. This is one of the most serious criticisms of solutions that use the
maximum output values of the feature sensing ANNs to “recognize” the presence
of the sensed feature. The decision of what are the best or successful combinations
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of the obtained values of output signals and their mutual distance in space or time
has to be determined by training ANN on the coordination level. It is suitable that
the coordination network be dynamic in order to be capable of learning the most
successful combinations of points � and �—i.e., to learn their mutual distance—
in combination with the values �
	�

 and ��	��
, and possibly their ordering.
The training of the coordination network and feature-sensing networks is to be
done in a supervised manner.

5.3. Cascade Composition of Feature Detectors

To explain this scenario, denote by �� the input signal for each of the feature
detection networks ���� , � � ��	, ��, ..., �	�. These input signals are assumed
to be composite signal vectors containing information on:

� the output �� of the feature detection networks from lower hierarchical levels;
� information  � on the basic raw DNA sequence level; and
� possibly other information—represented by vector ! �—acquired either dur-

ing the training process, or from the biological constraints related to the data
used.

Output �� of ���� is obtained by postprocessing the raw output �� of
���� . This structure is depicted in Figure 7. Note that at each of the hierarchical
levels a particular information can be used or not. Thus,

�� � 	"��	 
 ���	� "��� 
 ����� 	 	 	 � "	 
 �	� "��� 
  � � "��
 
!��

Switches "�, � � �� 			� � � �� and "��� � "��
 , have value of 1, if the respective
information they are associated with is used at the �th hierarchical level, or they
have value of � otherwise. Training of feature detector networks is done succes-
sively in a partial hierarchy, where the network at the level � is trained by having
all lower level networks included in the structure. The training process can take
many forms. Such cascade hierarchical structures are expected to have good fil-
tering characteristics, but it cannot be concluded that they are advantageous over
the PCFD structures.

5.4. Structures Based on Multilayer Perceptrons

MLPs can be used to detect individual promoter components, as well as to com-
bine accurately such evidence into higher hierarchical ANNs so as to provide the
final prediction of promoter existence. We present two such solutions that are parts
of larger packages aimed at gene recognition. The first one a part of the GRAIL
package.��� The other one named Promoter2.0��� is an improved version of the
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Fig. 7. The cascade structure of feature detectors.

promoter prediction part of the GeneID package. ��� Both of these solutions rely
on the sensors for different promoter components and relative distances between
them.

The solution presented in Matis et al.��� for the GRAIL package is an ex-
ample of a parallel composition of feature dectectors (PCFD) structure—i.e., a
conventional feedforward structure—which is in principle a two-level hierarchi-
cal structure. The MLP at the second hierarchical level receives information from
different sensors related to promoter components, such as the Inr, TATA-box, GC-
box, CCAAT-box, as well as from the translation start site, and the constraints on
the relative distances between them. Such information is nonlinearly processed
and the final prediction is produced. The sensors for different components can be
based on ANNs, but this need not necessarily be the case. It is emphasized that this
solution uses information about the presence of the translation start site, which is
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not part of promoter region.
The Promoter2.0 program��� is an example of a cascade composition of

feature detectors (CCFD) structure—i.e., a cascade feedforward structure—and
presents a different hierarchical solution that uses essentially four hierarchical
levels for the final prediction of promoter presence. Based on the explanation pro-
vided in Knudsen,��� the functioning of the system is roughly as follows. ANNs at
each of the four levels consist of only one hidden neuron and one output neuron. In
each of the ANNs, both neurons receive, as part of the input signals, information
about the DNA composition in a binary form from a window of � nucleotides. In
addition, they also receive in a floating point form the input signals representing
the maximum outputs of the other networks on lower hierarchical levels multi-
plied by a separation function that relates to the normalized distances between
the sensed components. The four promoter components that the ANNs are trained
for are TATA-box, cap-site, CCAAT-box, and GC-box. Training of this network
structure is done by a simplified genetic algorithm. The scanning of the DNA se-
quences is done in larger data windows of 200–300 nucleotides, within which a
smaller window of 6 nucleotides slides, and the results are recorded for each of the
four ANNs. After the recording of the maximum output values and the respective
positions of the smaller window within the larger data window is finished for all
four ANNs, the hierarchical structure produces the prediction of the presence of a
promoter in the examined larger data window.

6. Time-Delay Neural Networks

A popular choice of dynamic networks that can inherently comprise the structure
presented in Figure 4 is the time-delay neural networks (TDNN). Due to their
special architecture, TDNNs are capable of learning to classify features that are
invariant regarding their spatial (or temporal) translation. The basic unit (neu-
ron) of a TDNN is a time-delay (TD) neuron, illustrated in Figure 8. These net-
works are initially used in the problem of phoneme recognition 
���
�� and in word
recognition.��� There are some similarities in the problems of phoneme recogni-
tion and in the recognition of promoters, where the latter is based on detection of
the micro-promoter components. The features that need to be detected, if they are
found in a promoter, may be on different mutual spatial locations. TDNN provides
a convenient mechanism to make the neural network system insensitive to mutual
distances of relevant events.

A TD neuron, depicted in Figure 8, has � inputs # �, � � �� �� 			� �, and each
of these inputs is also delayed by a maximum of � time units. Each of the inputs
and its delayed version has its own weight ���� , � � �� �� 			� �, � � �� �� 			� � .
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Fig. 8. The TD neuron in this figure has � inputs and each of these inputs is delayed a number of
time (position) units (in our case � units). The weighted sum of all delayed inputs and the non-delayed
inputs is passed through the nonlinear transfer element � .

This means that there are � 
 	� � �
 weighted signals that are summed so as
to make the input to the nonlinear transfer element characterized by function � .
This transfer element is sigmoid or threshold. Thus, using the notations # �	

 to
mean the value of input #� at instance 
 and �	

 to mean the value of output � at
instance 
, the value of the TD neuron output � at instant 
 is given by

�	

 � �

�
�

��
��	

��
���

���� 
 #�	
 � �


	



Without aiming to be rigorous, we explain in what follows some of the main
aspects of information processing in TD neurons and TDNNs. Particular applica-
tions may have many variations of these basic ideas. Let us assume that the input
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data are of the form of 1-D signals, either scalar or vector. The inputs that the
TDNN receives are collections of frames of this data, and these frame collections
are supplied to the TDNN in a sequential manner. However, due to a TD neuron
input-delaying functionality, this process is equivalent to a sort of inherent rear-
ranging of the 1-D input signals to the 2-D events; see Figure 9. Let us assume
that a feature �� that we are looking for is contained in a subsequence contained
in a data frame of length � which may be located at different relative positions
with regard to some reference point, and that the variation of this position is lim-
ited to the data window of length �. In other words, the data window of length
� contains the subsequence characterized by �� and comprises all of its possible
positions relative to the reference point. We mention here that the reference point
may be a position of another feature �	 detected by a feature-sensing ANN.

The data window slides along the DNA string and the data it contains at each
position of the window can be considered rearranged, so that all window data
make—after the rearrangement—a 2-D form. The maximum number of� delays
of individual inputs to the TD neuron determines the size of the so-called receptive
field of the TD neuron. This size is���. The way that receptive fields are formed
is explained in Figure 9. Data from � consecutive positions in a DNA string serve
as inputs to the TD neurons. The consecutive � � � frames correspond to the
TD neuron receptive field—i.e., at moment 
, the TD neuron reads data from a
collection of � � � data frames that belong to its receptive field. As depicted in
Figure 9, the 2-D form of the window data has $ � � � � � � frames of data,
where data in the first frame corresponds to %	

 � 	#	� #�� 			� #��, in the second
frame to %	
��
 � 	#�� #�� 			� #��	�, and so on. Here, the counting of positions
starts at the rightmost position of a frame on the DNA string. In order to be able
to capture a feature irrespective of its relative position within the window, a layer
of TD neurons should have at least $ �� � � TD neurons. This however can be
altered and the task of grasping spatial or temporal invariance can be transferred
to a higher-level layer of TD neurons.

One of the most crucial ingredients of the translation-invariance of TDNNs is
that weights related to different frame positions are copies of the set of weights
that correspond to the first set of the receptive field frames. The learning proce-
dure for the TDNN can be based on back-propagation. ��
���� Different learning
procedures can be found in Waibel et al..
�� The TDNN is exposed to a sequence
of learning patterns so as to be able to learn invariance in the space or time trans-
lation of the relevant patterns. In the training process, all the weights are treated as
independent—i.e., they can change individually for one learning iteration step—
but after that the related weights are averaged and these values are allocated to
the relevant connections.
���
�� The process is repeated through a great number
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Fig. 9. An equivalent conversion of a 1-D form of input signal to a 2-D form for processing by
TDNN. A window of length � positions slides along the input signal. The extracted window part of
the signal is rearranged so that it becomes a collection of � � � � � � � data frames of length �,
where � is the number of input signals to the TD neuron.

of learning iteration steps until the network performance function achieves the
desired value.

The training phase of the TDNNs can be long and tedious even for shorter time
patterns.
��� 
�� However, it may achieve a very good classification performance.
Owing to the great number of training parameters of TDNNs it is not possible to
use many of the efficient training procedures based on second-order methods, such
as Levenberg-Marquardt, etc. In addition, the backpropagation learning suffers
the problem of determination of the proper learning rate. This problem can be
circumvented by using adaptive optimized learning rates. ������
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6.1. Multistate TDNN

TDNNs may be expanded into the so-called multistate (MS) TDNN. MS-TDNN
have additional hierarchical layers that use dynamic time warping ��� to enhance
the recognition capability of the network and to enable recognition of specific
ordered sequences of features independently of their relative locations. These net-
works are used for promoter recognition tasks in Mache et al. ���

6.2. Pruning ANN Connections

A TDNN may have a very large number of weights that need to be adjusted during
the training process. This may imply a prohibitively long training time. Another
problem with the large number of weights is that, in principle, not all of them con-
tribute significantly to the final network output. Thus, some kind of rationalization
is advisable. The third aspect that leads to the desirability for network connection
pruning is that, in general, the simplest network that fits the training data should
have good generalization ability. These three aspects of ANNs with large num-
bers of internal connections lead to the requirement of ANN pruning. ��	�
��� ���

The network pruning is intimately related to the problem of overfitting and to the
determination of the optimal network size for the intended task.

There are many algorithms that may be used in pruning the networks. Proba-
bly the best known are the so-called optimal brain damage (OBD) ��� and optimal
brain surgeon (OBS)��� algorithms. Some of the pruning methods are based on
the determination of elements of the network that are not crucial for the network’s
successful operation by calculating the sensitivity of the error function with re-
gards to the change of these elements.�	�� ���� �
	� ��� There are other approaches,
such as the penalty-term methods that result in weight decays, where the error
function is modified so that the training algorithm drives to zero the nonessen-
tial weights;	��� �
�� ���� ���� ���� 
��� 
�� interactive methods;��	� ��� local and dis-
tributed bottleneck methods;���� ��� genetic algorithm based pruning;

� etc.

The problem to be solved by network pruning is how to simplify the net-
work structure by eliminating a number of internal connections so that the pruned
network remains good and achieves, after retraining, improved performance. Es-
sentially, the large initial network size is gradually reduced during the training by
eliminating parts that do not contribute significantly to the overall network perfor-
mance. After elimination of the parts with insignificant contributions, the network
is retrained; and the process is repeated until a sufficiently good network perfor-
mance is achieved. The pruning of the TDNN in the NNPP program for promoter
recognition during the training process appears to be crucial for the performance
of NNPP.�������
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7. Comments on Performance of ANN-Based Programs for
Eukaryotic Promoter Prediction

In this section we comment on the reported results of some ANN-based programs
for eukaryotic promoter recognition that use recognition of individual promoter
components as a part of the solution, viz. the NNPP program, ��� the Promoter2.0
program,��� and the SPANN2 program.��

The NNPP program is based on the TDNN architecture that belongs to
PCFD structures, similar to that presented in Figure 9. It contains two feature-
sensing TDNNs that are used to react in the presence of two promoter subregions:
TATA-box and Inr. There is also a coordination TDNN that processes outputs of
the feature-sensing networks and produces the final output. The feature-sensing
TDNNs are trained independently, and all three networks are pruned during the
training process.��� Promoter2.0 is based on a CCFD hierarchical structure as
commented on before. The SPANN2 program is based on preprocessing transfor-
mation and clustering of input data. The data in each cluster are processed by a
structure similar to PCFD one. In total, 11 ANNs are used in the SPANN2 system.
Note that SPANN2 system combines the assessment of promoter region and the
signal of the presence of the TATA motif.

In order to obtain some reasonable assessment of the capabilities of ANN-
based systems for eukaryotic promoter recognition, we use the results obtained
in an evaluation study of nine programs for the prediction of eukaryotic promot-
ers, as presented in Fickett and Hatzigeorgiou.��� These programs are listed in
Figure 10 and denoted by program numbers 1 to 9. In addition, we use the re-
sults of three other programs that make strand-specific searches and whose results
are reported after the study��� on the same data set. These three programs are
indicated in Figure 10 as IMC��� (program 10), SPANN��� �� (program 11), and
SPANN2�� (program 12). The original result achieved by program 3 is replaced by
a new result reported in Knudsen,��� as it scores better. For details on programs
1 to 9 see Fickett and Hatzigeorgiou��� and references therein. Since different
measures of prediction accuracy are available, which produce different rankings
of the achieved scores of prediction, we use the average score measure (�&' )
as proposed in Bajic�� to obtain a balanced overall ranking of different promoter
prediction programs.

Without entering into the details of the evaluation test, we mention only that
the data set from Fickett and Hatzigeorgiou��� contains �� sequences of a total
length of 33120 bp and 24 TSS locations. A prediction is counted as correct if it is
within –200 nucleotides upstream of the real TSS location and +100 nucleotides
downstream of the TSS location. For obtaining relative ranking of the above men-
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120 V. B. Bajić & I. V. Bajić

Program program No. �� ��

Audic�
 � � ��

Autogene��� � � ��

Promoter2.0 � �� ��

NNPP � �� ��

PromoterFind��� � � ��

PromoterScan � � �

TATA		� � � ��

TSSG�
� � � ��

TSSW�
� � �� ��

IMC �� �� ��

SPANN �� �� ��

SPANN2 �� � ��

Fig. 10. List of programs whose performance is compared.

tioned 12 programs, we use the�&' as a balanced method for reconciling differ-
ent ranking results produced by different measures of prediction success. Eleven
different measures of prediction success have been used in Bajic�� to produce the
final �&' based ranking and the results are given in Figure 11. The ranking of
performances is given in ascending order, so that the best overall performance got
the rank position �.

The �&'� which is a balanced measure, ranks the NNPP program��� which
has best absolute �� score, only at position 9 in the total ranking due to a
very large number of �� s. On the other hand, the Promoter Scan program of
Prestridge���—this program is not based on ANNs—although achieving the least
absolute �� score, is ranked much better at 4th overall position. Another eval-
uated ANN-based program, Promoter2.0,��� ranks overall at 5th position. For
illustration purpose only we observe that the other two ANN-based programs,
SPANN��� �� and SPANN2,�� which use very different mechanism of promoter
recognition, rank well in the overall system at positions 3 and 1, respectively.

This comparison indicates that ANN-based systems exhibit prediction perfor-
mances comparable to other non-ANN based algorithms. However, since the con-
tent of the data set from Fickett and Hatzigeorgiou��� is not very representative of
eukaryotic promoter sequences, no conclusions about the absolute values of the
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Rank Position Program No.

� ��

� ��

� ��

� �

� �

� �

� �

� �

� �

�� �

�� �

�� �

Fig. 11. Ranking prediction performances of different programs based on 	
� which uses ��
different performance measures.

compared programs should be made based on the comparison results in Figure 11.
The comparison analysis of Fickett and Hatzigeorgiou��� is by now a bit out-

dated. A new generation of ANN-based programs������ �	� ��� has been developed
and evaluated on the complete human chromosomes 21 and 22. The results are
presented in Figure 12 together with the results of two other non-ANN based sys-
tems, Eponine�		 and FirstEF.	�� Figure 12 gives ranking based on the �&' ,
as well as on the correlation coefficient (((). Again, we find that some of the
ANN-based promoter prediction programs have superior preformance compared
to other non-ANN based systems. On the other hand, we also find that some of
the ANN-based programs are considerably inferior to the non-ANN based solu-
tions. This suggests that the real problem is not in the selection of the technology
on which promoter predictions are based, but rather on the information used to
account for the presence of promoters.

In summary, we have presented in this chapter some of the basic ideas that
may be used, or which are already being used, in building ANN systems for the
recognition of eukaryotic promoters in the uncharacterized DNA strings. These
ANNs are trained to recognize individual micro-structural components—i.e., spe-
cific motifs—of the promoter region. The results achieved by ANN-based pro-
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Program �� �� Rank by Rank by
�&' ((

Dragon Gene Start Finder�� ��� �� � �

Dragon Promoter Finder�
 ��� ��� � �

Eponine�		 ��� �� � �

FirstEF	�� ��� ��� � �

McPromoter��� ��� �� � �

NNPP2��� ��� ���� � �

Promoter2.0��� ��� ���� � �

Fig. 12. Comparison of several promoter prediction programs on human chromosomes 21 and 22.
The total length of sequences is 68,666,480 bp and there are in total 272 experimentally determined
TSS.

grams are comparable with those of programs that do not use ANNs. However,
the performance of promoter recognition programs are not satisfactory yet. The
problem of eukaryotic promoter recognition represents, and remains, a great chal-
lenge in the general field of pattern recognition.


