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Institute for Infocomm Research
bajicv@i2r.a-star.edu.sg

The TATA-box is one of the most important binding sites in eukaryotic Poly-
merase II promoters. It is also one of the most common motifs in these promoters.
The TATA-box is responsible mainly for the proper localization of the transcrip-
tion start site (TSS) by the biochemical mechanism of DNA transcription. It also
has very regular distances from the TSS. Accurate computational recognition of
the TATA-box can improve the accuracy of the determination of the TSS loca-
tion by computer algorithms. The conventional recognition model of the TATA-
box in DNA sequence analysis is based on the use of a position weight matrix
(PWM). The PWM model of the TATA-box is widely used in promoter recogni-
tion programs. This chapter presents a different, nonlinear, recognition model of
this motif, based on a combination of statistical and neural network modelling.
The resulting TATA-box model uses “statistical filtering” and two LVQ neural
networks. The model is derived for a sensitivity level that corresponds to approx-
imately ����� correct recognition of TATA motifs. The system is tested on an
independent data set used in the evaluation study by Fickett and Hatzigeorgiou,
and it performs better in promoter recognition than three other methods, includ-
ing the one based on the matching score of the TATA-box PWM of Bucher.

ORGANIZATION.

Section 1. We first give some background about promoter recognition via the recognition
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of the TATA-box.

Section 2. Then we provide a statistical analysis of TATA motifs and their surroundings.

Section 3. Next we describe the use of the LVQ ANNs in modelling TATA motifs.

Section 4. Finally, we present a new multistage LVQ ANN system that models the TATA
motifs. The results of application of this system to promoter recognition are also pre-
sented.

1. Promoter Recognition via Recognition of TATA-Box

Extracting new biological knowledge in a computational manner from recorded
biological sequence databases is one of the key issues of bioinformatics. �� One
of the currently most important general problems in bioinformatics is the anno-
tation of uncharacterized biological sequences. It presumes finding and locating
functionally active segments of biological sequences. Once these are found, their
positions, functions, and other relevant information are recorded and stored in
databases.

At present, the primary target of annotation of sequences originated from
eukaryotes is the location of protein coding genes.���� ���� ���� ���� ���� �	� How-
ever, correctly recognizing the starting and ending points of different genes is
not a simple task, and methods for this purpose are not sufficiently accurate
yet.���� ���� ���� ���� ���� ���� �	� The starting end of genes can be more precisely
determined through the location of promoters, since promoters are usually located
before the respective gene, so that recognizing a promoter allows for a more pre-
cise determination of the gene’s 5’ end.�	� ��
� ���

Computational promoter finding has received more attention in the last
decade.�	���� ��� ����	� ���� ���� ��	� �
�� ���� ��
� ���� ���� ���� ���� �	�� ��
� ���� ���� ��
�
���� ���� ���� ��
� ���� ���� ��
� �	�� �
�� �
�� ���� ���� �	�� �
�� 
��� 
�� Current knowl-
edge of promoter functionality relies on extensive experimental work. ��
� ��� In
simplified terms, the promoter region of protein coding genes of eukaryotes—
shortly called eukaryotic Pol II promoters—represents a section of DNA to which
RNA Polymerase II enzyme and different transcription factors (TFs) bind, form-
ing the so-called transcription preinitiation complex that makes the initiation of
the DNA transcription possible. Different transcription factors bind to different
subsections of the promoter region. These docking sites, called transcription fac-
tor binding sites, are recognized by transcription factors via the bio-chemical ma-
chinery of the cell. One of the most important transcription factor binding sites in
eukaryotes is the so-called TATA-box.������� ���� ���� ���� ���� ���� 		


The eukaryotic promoters are far more complex that the prokaryotic ones,
and possess very individual structures which are not common to large groups of
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promoters. It is thus difficult to design a general algorithm for recognition of eu-
karyotic promoters. There exists a number of computer programs to aid in pro-
moter identification; see recent overviews by Fickett and Hatzigeorgiou ��
 and
Prestridge.�	�

Although much progress has been achieved in recent years in developing such
general type promoter-recognition software, the general conclusion of the study
by Fickett and Hatzigeorgiou��
 is that the performances of the publicly available
promoter recognition programs are not very satisfactory. That study has demon-
strated that on the specific test set these programs recognize the existing promoters
in the range between 13% to 54%, producing false positives in the range of about
1/460bp down to 1/5520bp. The general tendency is an increased number of false
predictions as the number of correct predictions increases. A recently reported
result��� that aims at a low level of false recognition recognizes only 29% of the
true promoters on the same test set, although it makes only 1 false prediction per
2547bp.

Although there are a number of transcription factor binding sites in eukaryotic
Pol II promoters—such as Inr, CCAAT-box, and GC-box—that are shared among
larger promoter groups, the most common transcription factor binding site among
them seems to be the TATA-box. Some estimates are that it is present in 70%–80%
of eukaryotic Pol II promoters.�	� This motivates using the recognition of TATA-
box as a part of eukaryotic promoter prediction algorithms. ������� ��
� ��
� ��
� �	�

Recognition of this element is heavily dependent on finding good matches to
the TATA-like motif.���� ��� This is frequently done by using the position weight
matrix (PWM) description���� �
�� 	��� 	��� 	�� of the TATA-box.��� The very first
attempts of using the PWM models in biological sequence analysis are in model-
ing the transcription start site and translation initiation site in E. coli.���� 	�� How-
ever, the recognition performance based on PWM score only is not very good and
too many false recognitions are produced if a high sensitivity level of recogni-
tion is required. It thus makes sense to search for a better characterization of the
TATA motif, as it may improve recognition accuracy of both the TATA-box and
the promoter.

One such possible approach is presented in this chapter. It should be men-
tioned that it is a general opinion�	 that the recognition of eukaryotic promoters
cannot be made very accurate if it relies on the detection of the presence of only
one of the transcription factor binding sites—even if that is the TATA-box—and
that other promoter characteristics or binding sites should be used simultaneously
in promoter recognition algorithms. Although we are aware of this, we still test the
new neural-statistical model of the TATA motif in the recognition of eukaryotic
Pol II promoters. Our result outperforms three other previously tested programs,
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including the one based on the original TATA-box PWM from Bucher. ���

We develop in this chapter a statistical nonlinear characterization of TATA-
box motifs of eukaryotic Pol II promoters. Development of this model is based
on the representation of nucleotides by the electron-ion-interaction potential
(EIIP),	��� 	�	 the PWM of the TATA motif,��� domain characteristics of neigh-
boring segments of the TATA-like motifs, positional information of the motif, and
Artificial Neural Network (ANN) based modeling. The new model is obtained

� by finding regularities in the DNA segments around the TATA-box and in the
distribution of the TATA-box motifs based on the PWM matching score,

� by developing a new system for TATA motif recognition that combines the
LVQ ANNs���� ���� ��� augmented with statistical analysis, and

� by using a genetic algorithm (GA)��� to optimize the initial weights of the
LVQ ANNs in an attempt to improve the prediction accuracy of the model.

2. Position Weight Matrix and Statistical Analysis of the TATA-Box
and Its Neighborhood

In this section we develop some results based on the PWM of TATA motifs, and
combine these with the properties of local neighborhoods of TATA-boxes. These
are used together with information on motif position in subsequent sections to
support TATA motif modelling by ANNs. The model development in this section
is backed by the statistical and biological regularities of the TATA motif and local
surrounding regions.

2.1. TATA Motifs as One of the Targets in the Search for Eukaryotic
Promoters

Promoters perform a crucial role in the initiation of the DNA transcription pro-
cess. They indicate and contain the starting point of transcription near its 3’ end.
Eukaryotic Pol II promoters contain numerous different transcription factor bind-
ing sites that are not always present in each of the promoters, whose location
with respect to the transcription start site (TSS) may change in different promot-
ers, as may also their ordering. These facts result in a huge number of micro-
organizational combinations of these functional regions, and consequently in a
large number of possible eukaryotic promoter structures, which is also reflected
in the high complexity of eukaryotic organisms. Hence, it is difficult to create a
unique eukaryotic promoter model precisely.

The recognition of TATA-box is frequently used as a part of computer
algorithms������� ��
� ��
� ���� ��
� �	� that aim at recognizing eukaryotic Pol II
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promoters. Other binding sites are also used in many solutions. ���� ���� ��
� ���� ��
�
���� ��
� ��	��	�� �	�� �	
� ���� �	� This provides the motivation for improving the
quality of models of these different short DNA motifs, so that their recognition
becomes more accurate. Our interest in this study is focussed on the TATA motif
as it is a frequent binding site in eukaryotic Pol II promoters. The TATA-box is a
hexamer sequence with a consensus given by TATAAA, though it is more accurate
to describe it with a PWM.���

The TATA motif is found in a majority of protein coding genes, with the po-
sition of its first nucleotide generally falling in the range of –25 to –35 upstream
from the TSS and centered about position –30; see Figure 1. In the transcrip-
tion process, the TATA-box serves as the binding site to TFIID��� and, when it is
present in the promoter, it is responsible for the correct determination of the TSS
by the transcription machinery.���

2.2. Data Sources and Data Sets

The data used for building a model of the TATA motif is collected from some
public nucleotide databases. All extracted sequences were from vertebrate organ-
isms. For the core promoter regions the data source was the Eukaryotic Promoter
Database (EPD),���� ��� which contains an annotated collection of experimentally
mapped TSS and surrounding regions. We have extracted 878 vertebrate core pro-
moter sequences. All promoter sequences are of length 43bp from position –45
to –3 relative to the TSS. The location of the TSS is assumed to be between the
nucleotide at position –1 and the nucleotide at position +1. In this notation there
is no nucleotide in position 0 and the first transcribed nucleotide is the one at
position +1. The other two group of sequences—belonging to the exon and in-
tron regions—are extracted from the GenBank database, and they are also taken
from vertebrate organisms. All exon and intron sequences are divided into non-
overlapping segments of length 43bp.

From the extracted promoter sequences, we randomly select 640 which make
up the training set ��� for promoters, while the promoter test set ���� contains the
remaining 238 promoter sequences. From the set of exon sequences we randomly
select 8000 sequences and this set is denoted as ����. Analogously, from the set
of intron sequences, another 8000 sequences are randomly selected to form the set
����. We used the whole ���� set as the negative training set, and the ���� set as a
negative test set.
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2.3. Recognition Quality

Since we are developing a new model of TATA-box motifs, we also have to test
the quality of recognition of the TATA-like sequences based on this new model.
Thus we have to use proper measures to express the success of such recognition.

There are several measures that can be used to assess the quality of mo-
tif recognition. The four customary numbers �� , �� , �� , and �� , denoting
“true positive”, “true negative”, “false positive”, and “false negative” recognition
respectively, are generally used in different combinations to describe the basic
recognition quality. These four numbers are expressed as percentages in this chap-
ter. However, it is often more convenient to use measures expressed by a single
number that relate to the recognition quality. For a recent review on these, see
Bajic.��

Any way, during model development, we use the correlation coefficient (��)
to measure the success of prediction, although this measure does not sufficiently
penalize the large �� prediction. However, for the final assessment of the quality
of the developed model we use the average score measure (��� ) �� so as to be
able to make the relevant comparison of the promoter prediction results obtained
by the new TATA motif model and the results obtained by other algorithms.

2.4. Statistical Analysis of TATA Motifs

The DNA sequence is composed of 4 different nitrogenous bases denoted in the
customary way as “A”, “T”, “C”, and “G”, relating to adenine, thymine, cyto-
sine, and guanine respectively. Before any analysis of a DNA sequence is made,
we convert it to a numeric sequence by replacing each of the nucleotides by its
electron-ion-interaction potential (EIIP)	��� 	�	. After that, the values of EIIP for
A and T are increased by tenfold. The collection of the original values of EIIP for
C and G, and the modified EIIP values for A and T, are denoted as the modified
EIIP values (MEIIPVs).

Given an uncharacterized genomic DNA sequence, the goal is to recognize
the TATA-box motif by moving along the sequence. If accurate recognition of the
TATA-box can be made, then one can also make a recognition of the promoter. In
this study, promoter recognition is made only on the basis of the detected pres-
ence of TATA motifs. The TATA-box is modeled based on the PWM determined
in Bucher��� from a set of 502 unrelated eukaryotic Pol II promoters. In order
to better represent the core TATA motif, we also use some features of the short
regions 6bp before and 6bp after the core motif.

Thus, due to the overlapping of the PWM length and the three hexamer re-
gions, the data window analyzed in the search for the TATA motif is only 20bp
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wide. This information is finally combined with the position information of the
TATA motif relative to the TSS. All these data serve as input information to the
ANN system developed in the subsequent sections.

2.4.1. PWM

Computer models of specific biological signals normally form part of the tools
for nucleotide sequence analyses. Since a large amount of data is available in
databases, proper statistical analysis is possible in many cases and can help in
developing predictive models of specific biological signals. A very convenient
method for such modeling is based on the position weight matrix (PWM) of spe-
cific motifs.���� �
�� 	��� 	��� 	�� This has found broad and very successful applica-
tions in many motif search computer programs.

PWM is a statistical motif descriptor. It is derived from the base-frequency
matrices that represent the probabilities of a given nucleotide occurring at a given
position in a motif. Since it basically relates to probabilities, the PWM attempts
to describe in a statistical fashion some characteristics of the motif found in a
collection of sequences. For the proper determination of the PWM it is important
that enough data is available.

Bucher��� has enhanced the basic algorithm for the determination of the
PWM by introducing an optimization criterion based on a measure of local over-
representation. It is possible to estimate in this way the cut-off matching score
to the weight matrix, as well as its width and location of the preferred region of
occurrence. Due to the way that it is determined, the PWM for DNA motifs are
represented by a rectangular matrix that has 4 rows, where each row corresponds
to one of the 4 bases, and its number of columns is equal to the length of the motif.
The PWM of the TATA-box motif from Bucher��� is of size � � ��, giving the
motif length of �� nucleotides, with the start of the core motif at column � of the
PWM.

This PWM can be used to scan a sequence for the presence of the TATA motif.
A window of length �� nucleotides slides along the sequence. The matching score
for the motif is calculated based on the nucleotides found and the PWM. The
matching score for the window is given by

	 �

���
���


	��� (1)

where 
	��� is the weight of base �� at the �th position of the motif, and �� is the
�th base of the sequence in a window; �� relates to A, C, G, or T. To determine
which of the matching scores suggests the presence of the TATA-like motifs, we
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compare the matching score with the threshold  . If 	 �  , where the cut-off
value  is usually determined either experimentally or statistically, then the data
window suggests the presence of the TATA-box.

2.4.2. Numerical Characterization of Segments Around TATA-Box

DNA is an organized high capacity biochemical structure—a macromolecule—
that stores information. It thus seems logical that the nucleotides in the DNA se-
quence are ordered following certain regularities. The mechanism of recognition
of binding sites in promoters by transcription factors is not completely known.
However, one may assume that a binding site and its immediate surrounding
regions—the region before the binding site and the region after the binding site—
have some properties that enable easy recognition of the site by the respective
transcription factors.

Based on this assumption, we expect certain regularities in the case of the
TATA-box, in the segments before and after the core TATA motif, which enable
easier recognition of the motif. We also expect that these regularities for the func-
tional TATA motifs are different from those relating to non-functional ones.

Consequently, we focus our attention on the distribution of the bases A, C,
G, and T around TATA motifs. To describe the potential features of the segments
around the TATA-box, we consider three hexamer segments of DNA associated
with this motif in the direction from the 5’ toward the 3’ end of the sequence: The
segment �� immediately before the TATA-box, the segment �� representing the
TATA-box hexamer, and the segment �� representing the hexamer immediately
after the core TATA-box. All three segments are 6bp in length each. However, in
addition to these three hexamer we also use the PWM of the TATA motif to cal-
culate the matching score. Since the core TATA motif is represented in the PWM
starting from position 2, we need to consider in the modeling process a subregion
of the total length 20bp relating to the TATA motif . We use certain characteristics
of these three segments in the development of our TATA-box model.

Consider a sequence � of length 43 nucleotide positions. Assume it contains
a TATA-box. Let ���, ���, and ��� denote the average of the MEIIPVs of the
nucleotides contained in the segments ��, ��, and �� respectively. Let �
 , � �

���,���, ...,��, represent the MEIIPV of each of the nucleotides in the sequence
�. Further assume that the 5’ end—the starting nucleotide—of the TATA-box is at
the position � relative to the TSS. Then ���, ���, and ��� are given by

��� �
�

�
�

��
���

����� ��� �
�

�
�

��
���

����� ��� �
�

�
�

���
���

���� (2)
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2.4.3. Position Analysis of TATA Motifs

In order to obtain initial information on the location of the TATA motif, we scan
each sequence from ��� using a window of �� nucleotides. The first window starts
at position –40 relative to the TSS, and the last one starts at position –17. We cal-
culate according to Equation 1 the matching scores for each of the windows with
the PWM for the TATA-box as determined by Bucher.��� Then we assume that
the position of the window with the maximum matching score for a sequence
corresponds to the window which contains a hypothetical TATA motif. This com-
putational determination of putative TATA motifs is not the best one since the
highest score does not imply biological relevance. But in the absence of experi-
mentally determined TATA motifs for all sequences in � �� , we adopt this unified
way of determining the putative motifs. It is also assumed that at most one of the
TATA motifs can exist in any of the sequences from � ��. With a selected threshold
of  � ����, a total of 475 sequences from ��� are extracted. This amounts to
about 75% of the sequences in ��� which can be regarded as those that contain the
TATA-box. The extracted sequences form the set ���.

The sequences from ��� are clustered into different groups � �, according
to the distance of the 5’ end of the TATA-box hexamer from the TSS. In the PWM
of Bucher��� the first nucleotide of the TATA-box hexamer is in position 2, so that
the detected TATA motifs by using the PWM begin from position –39 to –16, mak-
ing in total 24 possible positions for the distribution of the motif. Let � �, � � ��	,
��
, ..., ���, denote the group of promoter sequences containing the TATA-box
hexamers which all start at position �. Thus, ��� �

�
���
����
 ��. The number of

sequences ����� in different ��’s is not the same. The total number of the com-
putationally found TATA-box motifs in � �� with the threshold  � ����—i.e., the
number of sequences in the set ���—is ��� �

�
���
����
 ����� � ��.

The distribution of the putative TATA motifs according to the position of their
starting nucleotide with respect to the TSS is shown in Figure 1. This distribution
can be approximately modelled by

� � ���	�� �������������
�

where � is the probability that the TATA hexamer starts at position � � ��, ...,
���. This model distribution is also depicted in Figure 1 as the dotted curve. Note
that the model distribution is based on the ��� promoter set and, in principle, may
change if the set is changed. However, it resembles well the previously observed
positional distribution of TATA-like motifs in eukaryotic Pol II promoters.

Figure 1 indicates that the starting point of the TATA-box hexamer in the pro-
moter set ��� concentrates around the position –30. The middle point of the TATA-
box hexamer is by convention considered to be represented by the second T in the
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Fig. 1. Experimental and modelled distributions of TATA-box motifs found in ��� based on PWM
matching score greater than the threshold � � ����.

TATAAA consensus. This implies that the middle point of the motif is concen-
trated around position –28. This is close to experimental results, which suggests
the location of the TATA-box to be about –25bp to –30bp upstream of the TSS.
The distribution of the TATA-box can be regarded as one of the features of the
motif, as it expresses a very regular statistical property.

2.4.4. Characteristics of Segments ��, ��, and ��

We want to find some regularities that stem from the positional distributions of
the TATA motif. For this purpose we use the ��� set of promoter sequences,
and a part of the sequences from ���� that are selected as follows. For each of
the sequences from ���� the maximum matching score is obtained with the PWM
for TATA-box motifs. Then if such score is greater than  � ����, the sequence
passes the filter, otherwise it is rejected. We obtain 1040 filtered sequences from
���� in this way to make the set ��

���. Further, we find for each sequence from
��� � ��

���, based on the TATA PWM, the maximum matching score among
the scores that correspond to the positioning of the 5’ end of the TATA hexamer at
–39, ..., –16, relative to the TSS. Each such position is considered to determine a
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putative TATA motif. Then we calculate the respective ���, ���, and ��� values
of the segments ��, ��, and �� using MEIIPVs.

The following observations follow from the analysis of �� � values:

� there are ranges of ��� values produced only by sequences from ���;
� analogously, there are ranges of ��� values produced only by sequences from

��
���; and

� some ranges of ��� values contain a majority of data produced by either
��� or by sequences from � �

���.

These observations are used in analyzing the distributions of values of two addi-
tional parameters �� � ��� � ���, and �� � ��� � ���, that describe the
contrasts between the neighboring segments �� vs. ��, and �� vs. �� respectively.
The observations about the ranges of numerical parameters �� �, ���, ���, as
well as the derived parameters �� and ��, suggest that restricting the values of
these parameters can serve as a sort of filtering of TATA-containing sequences, and
thus could be used in possible recognition of the TATA motifs and consequently
the promoters.

In order to illustrate the possible effects of such filtering on TATA motif (and
promoter) recognition, we slide a window of 20 nucleotides in length along each
sequence in ���, ����, ����, and ����. For each position of the window, the ���,
���, and ���, as well as �� and ��, are calculated based on the content from
positions 1 to 18 within the window. The PWM matching score for TATA motif is
calculated based on content from position 6 to 20 of the window.

If the ���, ��, and �� values fall into pre-selected data ranges, and the
PWM score is higher than the selected threshold  , the sequence is considered
as a TATA-box containing sequence (and thus a promoter). The position of � �

for which this is observed relates to the position of the found TATA motif. Such
filtering possibilities, by restricting the values of ��, ��, and ���, are illustrated
in Figure 2, where the results of promoter recognition via the TATA motif recog-
nition are given by using some ranges of ��, ��, and ��� values, together with
the threshold  � ���� of the PWM matching score, as a filtering criteria.

For example, Figure 2 indicates that �� � ��
� is obtained on the set of � ���

and �� � ���� on the set of ����, when �� � �
��� on ��� and �� � �����

on ����. The results in Figure 2 are not all that good by themselves. Nevertheless,
they illustrate the positive effect of restricting the values of numerical parameters
��, ��, and ���. This is utilized in combination with the other information in
the construction of our TATA motif model.
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Case Value Intervals ������ ������� ������� �������

�� ��

� ����� ���� ����	� ���� �
�� ���� ��� ��


� ����� ���� ������ ���� ���� ���� � ���

� ����� ���� ����
� ���� ���� ���� ���� ����

� ���� ���� ����� ���� ���� ���� ��� ���	

� ���	�� ���� ������ ���� ���� �� ����� �

� ���	� ���� ������ ���� ���� ��
 � �

��� � ����� ���	�� ������ ���� for all cases

Fig. 2. Recognition of promoters based on attempted recognition of the TATA motif by constraining
numerical parameters that characterize ��, ��, and �� and using threshold � � ����

2.5. Concluding Remarks

Up to now we have described some statistical regularities of TATA-like motifs
in eukaryotic Pol II promoters. These properties are based on the PWM and are
associated with certain data ranges obtained by the analysis of numerical rep-
resentation of the TATA-box hexamer and its immediate neighboring hexamers.
Finally, strong regularities are also detected in the positional distribution of the
motif. These regularities reflect different aspects of the statistical, and partly bio-
logical, features of the TATA-containing eukaryotic Pol II promoter sequences.

Based on these regularities one can derive a set of information data for each
promoter sequence as follows. For a promoter sequence from � �� of length 43bp
spanning positions –45 to –3, we slide a window of length 15 nucleotides from
the 5’ end toward the 3’ end of the sequence. We calculate 24 matching scores � �

against the TATA-box PWM, associated with the starting positions of the window
� � ���, ��	, ..., ��, relative to the TSS. For the sequence, the window that
achieves the maximum score is considered to be most likely the one which con-
tains the TATA-box. If the position of the first nucleotide in the window with the
maximum matching score �� is �, then the position of the first nucleotide in the
TATA-box hexamer is � � �� �.

The following 8 data are then generated and associated with the detected
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TATA-box hexamer

	� � ���� �� 	� �
� � ��

��
	� � ���	�� ��������
����

�

	� � ���
	� � ��� 	� � ���
	� � ��� ���� 		 � ��� ����

������
�����

(3)

These data reflect the statistical and distributional information of the TATA-box
sequence and will be used in the training of ANNs for TATA motif and promoter
recognition.

3. LVQ ANN for TATA-Box Recognition

There are obviously many approaches that can be used to recognize the pres-
ence of a TATA-box in genomic uncharacterized sequences. These may be based
on the consensus sequence,	�� PWM, other statistical methods including Hidden
Markov Models, Factor Analysis, etc., or even simple feature extraction. However,
a well-known approach to pattern recognition based on multidimensional feature
space is the use of artificial neural networks (ANNs). ANNs often perform pattern
recognition with a high recognition rate. Moreover, the use of ANNs represents
a complementary approach to conventional methods based on explicitly defined
feature extraction, so that systems for pattern recognition based on ANNs can be
combined with other methods in a “mixture of experts” approach.

Many ANN structures and learning algorithms can be successfully employed
in TATA motif recognition. However, we concentrate here on using the so-called
Learning Vector Quantization (LVQ) ANNs,���� ���� ��� for this task. The LVQ
ANNs have shown to be very successful in pattern recognition. ������� Thus we
expect that them to perform well on this problem.

In this section we explain:

� how data preprocessing is done to enable easier training of LVQ ANNs,
� how LVQ ANNs can be used for the TATA motif recognition, and
� how initial parameters of the LVQ ANN can be optimized by a genetic algo-

rithm for more efficient subsequent network training.

These explanations provide the background for the design of the final model of
the TATA-box motif to be presented in the next section.

3.1. Data Preprocessing: Phase 1

For successful training of ANNs, a high quality training data set is extremely
important. The method of training data selection, data coding, as well as data
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information content, always play a significant role. Although training an ANN can
be relatively fast for moderate sized training data sets given current capabilities of
computers and learning algorithms, the training with a large number of training
data is still usually slow. This speed also depends on the size of the feature vectors
that represent input patterns. This is a typical situation when dealing with the
DNA sequences because, depending on the problem in question, these sequences
may have feature vectors of high dimension and the number of sequences in the
training set can be huge.

It is generally ineffective to feed a large amount of raw sequence data to an
ANN and to expect it to be able to capture accurately the essential transforma-
tion from the input feature space to the target output space. In order to make the
learning of the ANNs more efficient, as well as to enhance their generalization
capabilities, we normally perform a number of preprocessing transformations of
raw data to make it more suitable for ANN processing, as well as to emphasize
more important information contained in the raw data. However, the coding of the
raw DNA data may prevent proper data preprocessing, as is the case of binary
coding of DNA sequences.

The data we select for the training and test sets, as well as the numerical repre-
sentation of DNA sequences, have been described earlier. We have also explained,
based on the preliminary statistical analysis in the last section, how we generate a
set of 8 numerical data to represent a TATA-box motif. These are given in Equa-
tion 3. In principle, a vector � � �	�� 	�� ���� 		� may be used as an input to the
LVQ ANN. However, we proceed differently below.

Due to the statistical nature of the matching score for TATA-like motifs ob-
tained by the PWM, and the distribution range of �� and �� values, we first use
these to perform the primary filtering of the training feature vectors. This proce-
dure considerably reduces the quantity of negative data that represent non-TATA
motifs, although it sacrifices to an extent the positive data. Since our ultimate
goal is to obtain a system with high recognition accuracy of TATA-box motifs,
we change the level of filter threshold and examine its effect. The idea is to find
the most suitable threshold—one that makes the greatest difference between the
correct and false recognition—and to leave most of the further recognition task to
the ANN.

At first, we set a threshold  for the matching score ��. Only those feature
vectors whose first element 	� is greater than  are selected as potentially repre-
senting the TATA-box motif, and are used for further analysis. We also use the
distributions of 	� and 		 as constraining conditions for the initial filtering of in-
put data. These conditions are based on the statistical analysis of the last section.
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The set of sequences that satisfies these first filtering conditions is defined by

��� � �� 	 	� � � 	� � ����� ����� 		 � ����� ����
 (4)

The initial training set ��� is formed by taking the union of � �� and ���� and label-
ing the sequences with their class labels. The sequences from this initial training
set is then prefiltered based on the conditions in Equation 4.

The efficiency of such initial filtering is depicted in Figure 3, showing the
effects of different threshold values  combined with the value range filtering for
	� and 		. The recognition quality represented by �� and �� varies with the
change of the threshold, while the ranges for 	� and 		 are fixed as mentioned
above. The curve “TP” is given for the set � ��, while the curve “FP” is given for
����. The discrimination factor, �� � �� , is above 50% when  � ������ �����.
This filter is denoted as ���.

Another prefiltering that we use in the stage of training LVQ ANNs is, when
values ranges for 	� and 		 are changed, so that the sequences satisfying these
new filtering conditions are given by

��� � �� 	 	� � � 	� � ����� ����� 		 � ����� ����


This filter is denoted as ��� and its efficiency agains threshold  is presented in
Figure 4.

As can be seen, both filters have a maximum discrimination for  of around
0.42. However, the filter ��� allows for more feature vectors to pass the filtering
condition. Also, the maximum discrimination of ��� is about 63%, while that of
��� is 59.5%.

Since these filters operate only at the initial stage of the process of the TATA-
box recognition, we select  � ���, which is a bit smaller than the  with the best
discrimination ability for any of the filters, to allow more promoter sequences to
pass the filter and to make further “filtering” by the ANN system. The value of
 � ��� allows about 67% of �� and 8% �� for ���, as well as 77% of ��

and 17% of �� for ���. Note that the filter ��� is used in the final TATA motif
model, while the filter ��� is used in the process of training LVQ ANNs. So, these
two “statistical filters” are never used simultaneously.

Feature vectors � that pass such initial filtering are subjected to further pro-
cessing, as explained in the next subsection on Phase 2 of data preprocessing.
This converts vectors � into the transformed feature vectors � that are input to
the LVQ ANN. The overall structure of the preprocessing phases and the LVQ
ANN that makes use of these data is presented in Figure 5 for both the training
phase and the testing phase.
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Fig. 3. The efficiency of the combined threshold and data range restriction filtering—i.e., “statiscal
filter”—with �� � � , �� � ����� ����, and �� � ����� ��	�. This filter is named ����

3.2. Data Preprocessing: Phase 2 — Principal Component Analysis

After sequences are initially filtered by the statistical filter ���, we are faced with
the question of whether the filtered data perform efficiently as input data to the
LVQ ANN. We need only the relevant information to be fed to the LVQ ANN
and that non-crucial information be neglected. One of the well-known statistical
techniques that ranks the information contained in a data set according to their
information content is the so-called Principal Component Analysis (PCA). ���� ���

This technique is very useful for the preprocessing of the raw data. It helps
eliminate components with insignificant information content, and in this way it
performs dimension reduction of the data. This can significantly enhance the abil-
ity of ANNs to learn only the most significant features from the data set. PCA has
been widely used in data analysis, signal processing, etc.���� ��� PCA is a method
based on linear analysis aimed at finding the direction in the input space where
most of the energy of the input lies. In other words, PCA performs specific feature
extraction. The training data set ��� that we use for the LVQ ANN is obtained
by first filtering the sequences from ��� � ���� by the statistical filter ���, after
which normalization and PCA are applied as follows. Let us assume that after sta-
tistical filtering the promoter sequences that pass the filter is the set �� . Then the
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Fig. 5. Statistical filtering, preprocessing, and LVQ ANN.

following steps are made:

� Step 1: Normalization. We generate for each sequence in �� a feature vector
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� as explained before. All these vectors constitute the set ��� . This set is
normalized to have zero mean and a standard deviation of one, resulting in
the set ���� .

� Step 2: PCA. Application of the PCA method to ���� transforms the nor-
malized feature data so that the transformed feature vectors represent points
in the space spanned by the eigenvectors of the covariance matrix of the input
data. In addition, the size of the feature vectors may be reduced by retaining
only those components that contribute more than a specified fraction of the
total variation in the data set. The PCA transformation matrix ��� is gen-
erated to transform ���� to the new set ��. We set the required minimum
contribution of components in the transformed data to be 0.01, which means
that after the PCA transformation only components which contribute more
than 1% to the total variation of the data set are retained. This also result in
the reduction of the size of the transformed input feature vectors � in � � to 6
elements instead of the original 8.

� Step 3: Training set. By applying statistical filtering ��� on the set ����
we obtain filtered non-promoter sequences which make the set � � . Then, for
each sequence in �� we calculate the feature vector � . All feature vectors
for sequences in �� make the set ��� . Using the mean of ��� , the standard
deviation of ��� , and ��� obtained in Steps 1 and 2 for the promoter
sequences, we transform feature vectors in ��� to new feature vectors that
make the set �� . Thus, the training set for the LVQ ANN is represented by the
set ���, formed by taking the union of �� and �� labelled with their associated
class labels. For the testing set we proceed analogously and obtain the set � ���

of transformed feature vectors and their labels.

3.3. Learning Vector Quantization ANN

The input-output transformation performed by ANN in classification problems is
discrete. The solution of a classification problem by an ANN is normally achieved
in two phases. In a supervised ANN, there is initially the training stage during
which the network attempts to learn the relationship between the input patterns
and the desired output class by means of adjusting its parameters, and possibly its
structure. Such learning procedures are in most cases iterative and attempt to tune
the network parameters and structure until the discrepancy measure between the
responses produced by the network and the desired responses is sufficiently small.
After that phase, one considers the network training completed, and the values of
network parameters remain fixed after that. In the testing phase, a test set of new
examples, which are not contained in the training set, are presented to the network
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and compared to the desired network responses. In this way the test of the quality
of the trained ANN can be evaluated and its generalization ability assessed.

An ANN system for TATA-box recognition can be considered as a classifier
system. For classification problems, many types of ANN can be selected, such
as feedforward ANNs, radial basis ANNs, decision based ANNs, etc. We use a
Learning Vector Quantization (LVQ) ANN for this purpose. LVQ-competitive net-
works are used for supervised classification problems.�������� ��� Each codebook
vector—i.e., input vector—is assigned to one of several target classes. Each class
may have many codebook vectors. A pattern is classified by finding the code-
book vector nearest to it and assigning the pattern to the class corresponding to
that codebook vector. Thus, the LVQ ANN performs a type of nearest-neighbor
classification. The standard vector quantization can be used for supervised classi-
fication and such methods can provide universally consistent classifiers ��� even in
the cases when the codebook vectors are obtained by unsupervised methods. The
LVQ ANNs attempt to improve this approach using the adaptation of the code-
book vectors in a supervised way.

3.4. The Structure of an LVQ Classifier

An LVQ network has two layers. The first one is a competitive layer, while the
second one is a linear layer. The role of the competitive layer is to learn to classify
input feature vectors � into ������� clusters in the ������� space. After the pat-
terns are clustered into ������� clusters by the competitive layer, the linear layer
transforms the competitive layers’ clusters into final target classes � ��� in the ����

space. One neuron per class/cluster is used in both layers. For this reason the com-
petitive layer can learn to classify up to ������� clusters. In conjunction with the
linear layer, this results in ���� target classes. The role of the linear layer is to
convert the competitive layer intermediate classification into target classes. Thus,
since the outputs of the competitive layer are vectors with only one element equal
to 1, while all others are equal to 0, the weights of the linear layer can be fixed
to appropriate 1s and 0s after the ANN initialization and need not be adaptively
changed during the training process.

Let us assume that the input patterns are represented by � -dimensional feature
vectors that have to be classified into � target classes, by using � intermediate
classes at the output of the hidden layer. Then the LVQ ANN has � nodes in
the input layer, � nodes in the hidden layer, and � nodes in the output layer.
Let the weight matrix ���� describe the connection from the input layer to the
hidden layer, while the matrix ���� describes the connection from the hidden
layer to the output layer. For any input pattern, all the nodes in the hidden layer
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output 0s, except one node that outputs 1. Thus the output vectors of the hidden
layer are composed of all 0s and only one element which is equal to 1. Also, only
one node in the output layer produces 1 at its output, while all other nodes in the
output layer produce 0s. The output vector ��� �� ����� represents the first class,
��� �� ������ represents the second class, and so on. A structure of a trained LVQ
ANN with two output classes is shown in Figure 6.

Because ���� is constant in LVQ ANN, we need only to tune ���� based
on the training data. The purpose of the learning process is to place the code-
book vectors in the input space in a way to describe the boundaries of the classes
by taking into account data from the training set. Thus the LVQ algorithm at-
tempts an optimal placement of the codebook vectors in the input space in order
to optimally describe class boundaries. This is achieved via the adaptive iteration
process. Class boundaries are segments of hyperplanes placed at the mid-distance
of two neighboring codebook vectors that belong to different classes.

We know that for a classification problem the number of input and output
nodes are determined by the nature of data and the problem setting. However,
there are no clear and precise methods for determining the number of hidden
nodes and learning rates, especially in the absence of prior knowledge about the
class probability densities. Too few hidden nodes may not be enough for good
class separation. Too many lead to a very long training phase and does not always
produce good generalization. Thus, a compromise has to be achieved through ex-
perimentation so as to achieve the best result.

3.5. LVQ ANN Training

The training data are obtained as before, using statistical filtering, normalization,
and PCA preprocessing. Each of the input vectors is obtained so as to correspond
to the hypothetical TATA-like motif found in the original promoter sequence.

At the beginning of LVQ ANN training the weights should be initialized to
small values either randomly or by some heuristic procedure. A proportion of
neurons in the hidden layer, corresponding to the classes of feature vectors rep-
resenting the TATA motif and those not representing this motif, is given as ���,
so that 40% of the neurons in the competitive layer relate to subclusters of Class
1 (TATA motif class) and 60% of the neurons in the competitive layer relate to
subclusters for Class 2 (non-TATA motif class). Thus, the weight matrix � from
the hidden subclasses layer to the output target classes is also defined. The number
of nodes in the hidden layer is set to 100, and the number of learning epochs is set
to 1000. The LVQ ANN is trained by the ���� learning method. ���

The structure of the trained LVQ ANN is depicted in Figure 6. The input vec-
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Fig. 6. A structure of a trained LVQ ANN.

tors are classified into two categories in the output target class layer, and the out-
puts are finally produced by the “logic judge.” When the network is initialized, the
neurons which relate to the different classes in the competitive layer are randomly
distributed. However, through the process of learning they become properly orga-
nized to reflect the distribution of the classes in the input data, possibly forming
clusters that relate to data subclasses within each of the output classes.

3.6. Initial Values for Network Parameters

An LVQ ANN usually performs efficiently if the initial weight vectors are close
to their optimized final values. If the initialization of weights of the LVQ ANN is
random, then the initial weights are far from the optimized values. When different
initial values of the weights are attempted, and the ANN trained produce very
different results in the recognition quality of the TATA motif. Thus it is decided to
make a systematic search for the good initial weights that can ultimately produce
an accurate recognition system. In the ANN field some heuristic procedures are
frequently used for weight initialization, such as k-means for Kohonen’s SOM
ANN, etc. A good approach to the problem of optimizing initial weights in an
LVQ ANN is to attempt to optimize these globally. This leads to a solution that
employs a genetic algorithm for the determination of the optimized initial weights.
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After the weights are reasonably well tuned, we apply the ���� training algorithm
to fine tune the decision boundaries in the LVQ ANN.

3.6.1. Genetic Algorithm

A genetic algorithm (GA) generally comprises a search and optimization method
developed by mimicking evolutionary principles and chromosomal processing in
natural genetics.��� GAs are a part of evolutionary computing, and become a
promising field associated with AI and global optimization problems. GAs are
iterative optimization procedures that may succeed where other optimization ap-
proaches fail. They use a collection—a population—of possible solutions to the
problem in each iteration. Normally, in the absence of knowledge from the prob-
lem domain, a GA begins its search with a randomly assigned initial population.
Then, different “genetic” operators, such as  !"��"��!, #$%&%�"', etc., are ap-
plied to update the population and thus complete one iteration. The iteration cycles
are repeated until a sufficiently good solution, expressed by the fitness criterion,
is achieved.

For determination of the initial weights in an LVQ ANN we define a
chromosome—i.e., an individual—as the whole set of the weights in the LVQ
ANN. The mutation operator is defined as in the conventional GA. From genera-
tion to generation the population evolves, improving slowly the fitness criterion.
The best solution in each iteration is copied without changes to the next gener-
ation in order to preserve the best chromosome. Consequently, the best solution
can survive to the end of the process.

3.6.2. Searching for Good Initial Weights

To find the good initial weights of the LVQ ANN we proceed as follows. From
each sequence in the set ��� � ����, we determine a vector of 8 parameters re-
lated to a hypothetical TATA-box motif. These vectors are filtered by �� �—i.e.,
the threshold  � ���, and bounds for data regions for � � and �� selected as
�� � ����� ����, �� � ����� ����. Then these vectors are normalized and PCA
transformed, resulting in the set ��� that contains feature vectors of size 6 and
their labels. In total 492 data vectors that originate from � �� pass the filter ���,
while 1359 data vectors that originate from ���� pass the filter ���.

Then an LVQ ANN is constructed with 6 nodes in the input layer and 100
neurons in the competitive layer. Of these 100 neurons, 40 are related to Class 1
(TATA motif class) and 60 are related to Class 2 (non-TATA motif class). The ratio
��� of the hidden layer neurons does not reflect properly the input data distribu-
tion �	�����	. However, if the �	�����	 proportion is used, then the network
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 ��� ���� ���������� ���� ���� ������

����� ����� ����� �����

0.4 67.5 2.4 0.6586 58.8235 2.875 0.4525

Fig. 7. Recognition using LVQ ANN1 after the initial weights are determined by GA

performance appears to be very poor for the reason that there is an insufficient
number of neurons in the competitive layer associated with the TATA related fea-
ture vectors. On the other hand, if we want to increase sufficiently the number of
neurons for Class 1 to achieve a good �� level, and at the same time keep the
proportion of neurons relating to Class 1 and Class 2 correct, the total number of
neurons in the competitive layer becomes very big and the training time for GA
appears to be extremely long. Thus we decide to retain the ratio of dedicated neu-
rons in the competitive layer as indicated. After the LVQ ANN is specified, we
use GA to search for the good initial weights for the LVQ ANN. The GA is run
for 21 epochs. After 21 epochs, the fitness has already reached about 87%. Thus
it can be regarded as corresponding to relatively good initial weights.

Note that we filter feature vectors by ��� before the GA is applied to search
for the optimized initial weights of the LVQ ANN. However, in order to test how
good the determined initial weights are, we are not going to apply the complete
��� filtering, but only filtering by the threshold value of  � ���, and no restric-
tion to the values of numerical parameters 	� and 		 is applied. This allows more
feature vectors—in both the training and test sets—to be processed by the LVQ
ANN than if the ��� filtering is applied. We apply the normalization and PCA
transformation of feature vectors for all sequences from � ������� and ���������,
that pass the threshold filtering, using the preprocessing parameters as determined
previously. Then such transformed feature vectors are presented to the LVQ ANN
and their ability to recognize the TATA motif (and promoters) is evaluated. The
results of recognition are presented in Figure 7. Then, the LVQ ANN is further
trained with the ���� algorithm to provide fine tuning of the decision boundaries
for the network. The learning rate () � ���� and ���� epochs are used for train-
ing. The recognition quality has improved as can be seen from results presented
in Figure 8. However, the results are not sufficiently good for constructing a sys-
tem for the recognition of TATA-like sequences in long stretches of DNA. Such a
system is generated in what follows.
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 ��� ���� ���������� ���� ���� ������

����� ����� ����� �����

0.4 66.8750 1.2125 0.7198 58.8235 2.55 0.4712

Fig. 8. Recognition results with LVQ ANN1, whose initial weights are determined by GA and then
fine-tuned by the 	
�	 algorithm.

4. Final Model of TATA-Box Motif

4.1. Structure of Final System for TATA-Box Recognition

The system to be used for the recognition of the TATA-box is depicted in Fig-
ure 9. It consists of a statistical filter ���, a block for data normalization and PCA
transformation, and a block with two LVQ ANNs (LVQB). The whole system is
denoted as a multi-stage LVQ ANN (MLVQ) system. The feature vectors � that
contain 8 numerical components are fed to the input of the statistical filter �� �.

The feature vectors that pass the filter enter the normalization and PCA trans-
formation block, at the output of which we get transformed feature vectors � that
contain only 6 numerical components. These transformed feature vectors enter
the LVQB. At the output of the MLVQ system the input feature vectors � are
classified into those that represent a TATA motif or those which do not.

The LVQB depicted in Figure 10 consists of two LVQ ANNs that process data
sequentially. The input of the LVQ ANN1 are transformed feature vectors � . If the
feature vector � is classified as the one representing the TATA motif, it is passed
as input to the LVQ ANN2 that makes the final assessment whether � represents
the TATA motif or not.

4.2. Training of the ANN Part of the Model

The training of the LVQ ANNs within the MLVQ system is as follows.

� The first stage LVQ ANN1. This ANN is selected with 100 neurons in the
hidden layer, and with the 50% of the neurons in the hidden subclasses layer
corresponding to Class 1 (TATA motif class) and 50% of the neurons to relate
to Class 2 (non-TATA motif class). The training set for this ANN includes
feature vectors � of all sequences from ���, those of 640 sequences from
����, and the respective class labels. First we apply GA to search for the op-
timized initial weights of the network as explained in the last section. The
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Fig. 9. The system for the TATA motif recognition.

Fig. 10. The structure of LVQB. The transformed input feature vectors � are classified at the output
of the LVQ ANN as representing the TATA motif or not.

only reason for the restriction of the of the number of sequences from � ���

to 640 is the speed of GA search. After 51 generations, the fitness reaches
85.03%. In order to see its performance in attempted recognition of promoter
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Fig. 11. Recognition of promoters by means of LVQ ANN1 using initial weights obtained by GA.
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Fig. 12. Recognition of promoters by the completely trained LVQ ANN1

sequences, based on recognition of the TATA motif, we use LVQ ANN1 with
the weights obtained by GA to test directly both the set � �� � ���� and the
set ���� �����. The results are captured in Figure 11. Also, we apply the ����

algorithm to further train LVQ ANN1 to fine tune the class boundaries. The
learning rate is () � ���� and the number of epochs is ���. This trains the
LVQ ANN1 network. We test its ability to recognize promoter sequences by
recognizing hypothetical TATA motifs. The results are given in Figure 12. It
should be noted that no statistical filtering is applied. Thus, only the ability of
LVQ ANN1 to recognize the class of feature vectors is evaluated. One can no-
tice that the recognition performance has improved after ���� is applied. This
is what we expected. However, the overall performance is not good enough.
It will be improved after the second stage filtering by LVQ ANN2.

� The second stage LVQ ANN2. After filtering of feature vectors that corre-
spond to ��� � ���� by the LVQ ANN1, 489 feature vectors corresponding to
sequences from ��� (�� � �������) and 460 feature vectors correspond-
ing to sequences from ���� (�� � ����) remain. These, together with the
associated class labels serve as the training set for LVQ ANN2. The number
of neurons in the hidden layer for LVQ ANN2 is also 100, and the distribu-
tion of neurons in the hidden layer is 50% for Class 1 and 50% for Class 2, as
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Fig. 13. Promoter recognition results with LVQB, where LVQ ANN2 was tuned only by GA.
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Fig. 14. Promoter recognition results with the completely tuned LVQB.

the positive and negative data for training are approximately of the same size.
GA is used to search for the initial weights for LVQ ANN2. After 101 gener-
ations, the set of optimized initial weights is obtained, producing the fitness
of 79.66%. The ability of LVQB (LVQ ANN1 and LVQ ANN2 together) to
recognize promoters by recognizing the presence of the TATA motif is now
tested. The results are given in Figure 13. After the optimized initial weights
for LVQ ANN2 are obtained, the LVQ ANN2 is further fine tuned using the
���� algorithm with the same parameters as for LVQ ANN1. Then, the LVQB
is considered trained, and the results of its recognition accuracy testing are
given in Figure 14. Compared with recognition results of LVQ ANN1, ��

for ���� has reduced 7.5 times, �� for ���� reduced 11.7 times, while ��

for the training set falls about 31% and for the test set about 35%. Thus, the
obtained improvement in accuracy is rather significant, which is also reflected
through the increase in the �� values for training and for the test set results.

4.3. Performance of Complete System

The complete system for TATA motif recognition includes the statistical filter
���, preprocessing block (normalization and PCA transformation of feature vec-
tors), and the tuned LVQB. The only global parameter that can influence the recog-
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Fig. 15. Recognition results of the complete tuned system.

nition accuracy and that is also simple for evaluation is the threshold level  . From
previous experimental results we expect the best recognition accuracy of the sys-
tem for  at around 0.42. The results of promoter recognition by means of hypo-
thetical TATA motif recognition for the complete system with the threshold of the
statistical filter variable, are presented in Figure 15.

It can be observed that a rather good recognition quality appears at the thresh-
old  � ���� for the test set, providing �� � ������. Also, the best recognition
quality for the training set is achieved for  � ����, producing �� � ���	��.
Both of these threshold values are close to the expected best values of around
 � ����. Note that the recognition level of �� � ���
�� on the test set corre-
sponds to the correctly recognized promoter sequences based on the recognition
of the hypothetical TATA-box. Since it was estimated in Section 2 that about 75%
of promoter sequences used in this study contain a hypothetical TATA-box, the
level of correct recognition of TATA motifs is �� � ��	�.



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Neural-Statistical Model of TATA-Box Motifs in Eukaryotes 151

0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.51 0.53 0.55
10

15

20

25

30

35

40

45

50

55

60

Threshold

T
P

%

LVQ for training set      
MGLVQ for training set    
LVQ for test set          
MGLVQ for test set        

Fig. 16. Comparison of �
, as a function of � , between the single LVQ system and the MLVQ
system.

4.3.1. Comparison of MLVQ and System with Single LVQ ANN

It is interesting to compare the performance of the complete MLVQ system and
the one consisting of the statistical filter ���, preprocessing unit, and a single
LVQ ANN. The comparison results are depicted in Figure 16, Figure 17, and
Figure 18. Figure 16 shows that the �� level of both systems are roughly similar
as  changes. However, a noticeable difference appears in the level of �� as
indicated in Figure 17. For most of the  values the �� for the test set of the
MLVQ system is considerably lower than for the single LVQ system, implying a
much better generalization ability of the MLVQ system. On the other hand, the
single LVQ system performs better on the training set, indicating that it has been
overtrained. These observations are also visible from the curves of �� changes
as given in Figure 18. Although compared to the MLVQ system, the single LVQ
system performs better on the training set, its performance is much weaker on the
test set.
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Fig. 17. Comparison of ��
, as a function of � , between the single LVQ system and the MLVQ
system.

4.4. The Final Test

The final test of the neural-statistical model of the TATA-box implemented in the
MLVQ system is made in an attempt to evaluate how well the system performs
on longer DNA sequences. As the test set, we use a collection of 18 mammalian
promoter sequences selected and used for the evaluation of promoter recognition
programs in Fickett and Hatzigeorgiou.��
 The total length of these sequences is
33120bp, and the set contained 24 TSS. By applying the MLVQ system to this set
we can assess the ability of the system to recognize TSS locations by means of
recognizing potential TATA-box motifs.

The threshold is used with the values of  � ���� and  � ����� The former
one corresponds to the highest �� value obtained previously on the training set,
while the latter corresponds to the highest �� value obtained on the test set.
We slide along each sequence from its 5’ end toward the 3’ end a window of 43
nucleotides in length. For 24 successive positions within the window we find the
hypothetical TATA-like motif and calculate the 8 parameters associated with them
as described previously. This data is fed to the MLVQ system and predictions
of the location of the TATA-box are made. The predictied location of the TSS is
counted as being 30bp downstream of the predicted TATA-box location. The same
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Fig. 18. Comparison of the correlation coefficient �� , as a function of � , between the single LVQ
system and the MLVQ system.

is done with the reverse complement of each of the sequences.
The same criterion, as used in Fickett and Hatzigeorgiou,��
 is applied to de-

termine if a predicted TSS is correct: It is counted as correct if it falls within 200bp
upstream or up to 100bp downstream of the actual TSS. Figure 19 shows the test
result, where the “+” after a position indicates the correct prediction. The position
indicated in bold is the one that counts as correct according to the adopted criteria.
Positions with ! in front are made on the reverse complement strand.

As can be observed with the threshold  � ����, the MLVQ system iden-
tifies 8 (33%) of the known promoters and makes 47 false positives (1/705bp).
When the threshold is  � ����, the system finds 7 TSS (29%), whilst making
41 false positive predictions (1/808bp). Figure 20 shows the recognition quality
of some other programs tested in Fickett and Hatzigeorgiou. ��
 On this test set
the MGLVQ system performs better than Audic, Autogene, and the PWM of the
TATA-box. The results for comparison are given in Figure 20, where the last col-
umn shows the ranking results of different programs based on the average score
measure from Bajic.�� The average score measure is obtained based on 9 differ-
ent measures of prediction quality and thus can be considered a balanced overall
measure of prediction success for different programs. The ranking is in ascend-
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No. Seq. name + (number) + � � ���� � � ���	

Length(bp) [TSS location]

1 L47615(3321) (1)[2078,2108] 2510, r2456,
r1304

2510, r2456,
r1304

2 U54701(5663) (2)[935], [2002] 119, 228, 3118,
5369, r5619,
r4272

119, 228, 3118,
5369, r5619

3 Chu(2003) (2)[1483,1554],
[1756,1783]

246, 1487(+) 246, 1487(+)

4 U10577(1649) (2)[1169,1171],
[r1040,r1045]

354 354

5 U30245(1093) (1)[850,961] 194, 446,
690(+), r818,
r709

446, 690(+),
r818, r709

6 U69634(1515) (1)[1450] 299, 934, r645 299, 934, r645
7 U29912(565) (1)[143,166] None None
8 U29927(2562) (2)[738,803],

[1553,1717]
332, 1532(+),
2114, r1658

332, 1532(+),
2114

9 Y10100(1066) (1)[1018,1033] 159, 781, r666,
r349, r181

159, 781, r349,
r181

10 Nomoto(2191) (1)[1793,1812] 486, 867, 1191,
1375, 1643(+)

486, 867, 1191,
1375, 1643(+)

11 U75286(1984) (1)[1416,1480] r863 None
12 U52432(1604) (1)[1512,1523] 217, 1380(+),

r1451, r138
217, r1451,
r138

13 U80601(632) (1)[317,400] 94 94
14 X94563(2693) (1)[1163,1200] 489, 2527,

r2176, r227
489, 2527, r227

15 Z49978(1352) (3)[855], [1020],
[1150]

1011(+),
1024(+), r1160,
r1122, r405

1011(+), r1160,
r1122, r405

16 U49855(682) (1)[28,51] r162 r162
17 X75410(918) (1)[815,835,836] 473, 685(+),

732(+), 786(+),
r521

473, 685(+),
732(+), 786(+),
r521

18 U24240(1728) (1)[1480] r1529, r1071 r1529, r1071

Fig. 19. Results obtained by MLVQ system on the Fickett and Hatzigeorgiou data set.

ing order with the best performed program on position 1. One can observe that
the MLVQ system performs much better than if the recognition is based on the
PWM of the TATA-box from Bucher.��� Since the goal is to develop a more accu-



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Neural-Statistical Model of TATA-Box Motifs in Eukaryotes 155

# Prog. name ��� ��� ��� �� per bp Rank

1 Audic�	 5 24% 33 1/1004bp 9
2 Autogene��� 7 29% 51 1/649bp 10
3 Promoter2.0 10 42% 43 1/770bp 4
4 NNPP 13 54% 72 1/460bp 6
5 PromoterFind��� 7 29% 29 1/1142bp 5
6 PromoterScan 3 13% 6 1/5520bp 2
7 PWM of TATA-box��� 6 25% 47 1/705bp 11
8 TSSG�	� 7 29% 25 1/1325bp 1
9 TSSW�	� 10 42% 42 1/789bp 3
10 MGLVQ ( � ����) 8 33% 47 1/705bp 8
11 MGLVQ ( � ����) 7 29% 41 1/808bp 7

Fig. 20. Results of other promoter finding programs tested on the Ficket and Hatizigoergiou data set.

rate model of the TATA motif, this improved accuracy is indirectly demonstrated
through the better performance in promoter recognition.

One should note that the Audic program uses Markov chains to characterize
the promoter region, while the part of the Autogene system that recognizes pro-
moters (the FunSiteP program) bases its logic on the different densities of the tran-
scription factor binding sites in the promoter and non-promoter regions. It it thus
surprising in a way, that the MLVQ system that uses only one transcription factor
binding site, the TATA-box motif, performs better than these programs. However,
it would be interesting to evaluate the performance of MLVQ on a larger promoter
set, since the one from Fickett and Hatzigeorgiou��
 is not very big and is not
statistically structured to properly represent the eukaryotic Pol II promoters.

5. Summary

The chapter presents an application of ANN to the recognition of TATA-like mo-
tifs in eukaryotic Pol II promoters and, based on that, the recognition of promoter
sequences. A short region of DNA of 20bp containing the hypothetical TATA-like
motif is represented by 8 numerical parameters obtained as a combination of the
TATA-box PWM matching score and a statistical analysis. Five of these numer-
ical parameters are derived from the modified EIIP values of nucleotides in the
TATA-box hexamer and the neighboring hexamers. These parameters show some
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regularities that were used in the design of the recognition system. The MLVQ
system for TATA motif recognition contains a statistical filter, a normalization and
PCA transformation block, and two LVQ ANNs. The initial weights of the ANNs
in MGLVQ have been obtained by GA. These helped to obtain finally trained sys-
tem with improved recognition quality. It is demonstrated on an independent data
set of Fickett and Hatzigeorgiou��
 that the new neural-statistical model of the
TATA-box (contained in the MLVQ system) achieves improved recognition ac-
curacy as compared with the recognition based only on the use of the matching
score of the TATA PWM. Moreover, the MLVQ system performed better than the
other two promoter-finding programs that use other promoter characteristics in
the search for promoters. Since our system is aimed at improved modeling of the
TATA-like motifs and not for promoter recognition, we can conclude that a much
better model of the TATA-box has been developed by the combined statistical
filtering and ANN system.


