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In this introduction, we summarize the papers included in the session on Literature
Data Mining for Biology. We then discuss the need for a challenge evaluation for
this field, and the steps to create such an evaluation. These include creating a
shared infrastructure, providing annotated data, and defining and implementing
common evaluation metrics. This would enable researchers to compare differing
methods, in order to accelerate progress in this field. In this context, we describe
two specific applications: extraction of biological pathways from the literature and
automated database curation. For each of these, we outline the task definition, the
creation of an annotated corpus, and evaluation metrics.

1 Session Summary

Even though the number and the size of sequence databases are growing
rapidly, most new information relevant to biology research is still recorded
as free text in journal articles and in comment fields of databases like the Gen-
Bank feature table annotations. As biomedical research enters the post-genome
era, new kinds of databases that contain information beyond simple sequences
are needed, for example, information on cellular localization, protein-protein
interactions, gene regulation and the context of these interactions. The fore-
runners of such databases include KEGG'!, DIP2, BIND 3, among others. Such
databases are still small in size and are largely hand curated. A factor that can
accelerate their growth is the development of reliable literature data mining
technologies.

This year is the third time the Pacific Symposium on Biocomputing has de-
voted an entire session to natural language processing and information extrac-
tion for biology. Compared to the last two years, the field has made tremendous



strides. Most of the early work on automated understanding of biomedical pa-
pers concentrated on analytical tasks such as identifying protein names* or
relied on simple techniques such as word co-occurrence® and pattern matching®.
Last year, we began to see work based on more general natural language parsers
that could handle considerably more complex sentences 8. This year, we see
the emergence of more sophisticated natural language technologies that can
handle anaphora, as well as extracting a broader range of information.

Six papers were accepted under peer-review out of a total of seventeen

submissions reviewed for this session. We briefly introduce them here:

e The paper by Ding et al. examines an issue that is fundamental to litera-
ture data mining based on term co-occurrence methods. It systematically
compares the impact on recall and precision of mining interaction infor-
mation when an abstract, a sentence, or a phrase is used as the unit in
which to check for term co-occurrence.

e The paper by Hahn et al. describes the MEDSYNDIKATE natural lan-
guage processor designed for acquiring knowledge from medical reports.
The system is capable of analysing co-referring sentences and is also ca-
pable of extracting new concepts given a set of grammatical constructs.

e The paper by Leroy et al. presents the medical parser of the GeneScene
system. An interesting aspect of this parser is that it uses prepositions
as entry points into phrases in the text, in contrast to earlier approaches
which used verbs as entry points. It then fills in a set of basic templates
of patterns of prepositions around verbs and nominalized verbs. Tt also
has a set of rules for combining these templates to extract information
from more complex sentences.

e The paper by Pustejovsky et al. gives us a robust parser for identify-
ing and extracting inhibition relations from biomedical literature. The
system is founded on corpus-based linguistics. A particularly interesting
feature of this system is its anaphora resolution module. The results re-
ported in this paper focus on inhibition relations and demonstrate that
it is possible to extract biologically important information from free text
with high reliability using a classical approach.

e The paper by Stapley et al. is an interesting combination of text pro-
cessing and machine learning technologies to predict the cellular location
of proteins. The performance of the classifier on a benchmark of proteins
with known cellular locations is better than a support vector machine
trained on amino acid composition and is comparable to an expertly
hand-crafted rule-based classifier. ?



e The paper by Wilbur formalizes the idea of a “theme” in a collection of
documents as a subset of the documents and a subset of the indexing
terms such that each element of the latter has a high probability of
occurring in all elements of the former. An algorithm is then given to
produce themes and to cluster documents according to these themes in
an optimal way. Results of applying this method to over fifty thousand
documents on AIDS are given as an illustration.

The response to the call for papers and the quality of the submitted papers
mark this as an emerging field which combines bioinformatics and natural
language processing in innovative and productive ways. We find this very
encouraging, but we also feel that much research and development remains
to be carried out. In the rest of this session introduction, we present some
of the challenges and associated benchmarks that we feel are important to
the development of the field. We have also organized an additional special
session on literature data mining at this Pacific Symposium on Biocomputing
to specifically discuss these challenges and benchmarks.

2 Background: State of the Art for Literature Data Mining

We start from the observation that literature data mining and natural language
processing techniques have been demonstrated to work—at least in the domain
of newswire. Results from various evaluations show that information extraction
systems can identify and classify names (person, organization, location, times,
dates) at an accuracy of greater than 90%; and they can successfully extract
binary relations among these entities at over 80%, e.g, “ORGANIZATION
located_at LOCATION” or “PERSON works_at ORGANIZATION” 13, In ad-
dition, other information access and retrieval techniques have proved effective
in selecting documents relevant to a specific topic or to providing answers to
questions based on information located in document collections: The leading
systems can provide correct answers to factual queries at 75-85% accuracy **.

Much of the progress in the newswire domain has come about because
of systematic common evaluations conducted in natural language processing
and information retrieval. The major evaluations have been the series of Mes-
sage Understanding Conferences (MUC) and the Text REtrieval Conferences
(TREC). The MUC conferences were held from 1987-1998 and focused on iden-
tification of specific types of entities, relations and events from free text '4:12:13,
The TREC conferences have been held annually since 1991 %!, They focus on
retrieval of relevant information from large (multi-gigabyte) on-line collections,
given a statement of need. Over the last several years, TREC has also included



a question answering track, where systems have been evaluated based on their
ability to answer simple factual questions, such as “What do river otters eat?”

3 Challenges and Benchmarks

During one of the natural language sessions at PSB 2001, the question was
raised: Would the biology community benefit from having a “challenge eval-
uation” for literature data mining, in the way that the CASP evaluation® has
accelerated progress in developing computational models for protein folding.
The people present at that session expressed strong interest in having such an
evaluation. We view this year’s PSB sessions on literature data mining as a
direct follow-on to that discussion.

There is enormous potential for the application of natural language pro-
cessing and literature data mining techniques to biology. These techniques can
be applied to the extraction of biological pathways, to the curation of biomed-
ical databases, or to improved access to the on-line literature. By defining a
set of common evaluations, we can achieve several goals:

e Creation of sizable training and test corpora. Such corpora are neces-
sary for the construction of high performance components, such as name
taggers that identify and categorize names of relevant biological entities,
e.g., genes, proteins, small molecules, or cellular locations.

e Adoption of evaluation metrics. By defining a common challenge prob-
lem, different groups can tackle the same problem using different meth-
ods. This will allow an objective comparison of these methods and their
performance on a single task. Right now, it is very difficult to compare
the different approaches, such as those described in this session, because
they are tackling different problems, using different data sets and differ-
ent evaluation metrics.

e Sharing of promising techniques. When different groups work on a single
problem, it becomes much easier to exchange information, to identify the
unsolved problems and to understand where techniques work or don’t
work. This sharing of positive and negative results accelerates progress
in the field.

2(Critical Assessment of Techniques for Protein Structure Prediction; see
http://predictioncenter.llnl.gov/.



4 Organizing an Evaluation
We can identify seven ingredients for a successful evaluation:

e Challenge problem: this should be a problem of biological significance,
preferably one already being addressed, such as literature search to as-
semble biological pathways, or creation of specialized databases to orga-
nize information and make it accessible.

e Task definition: this defines the criteria for evaluation—what constitutes
a “correct” answer in the context of the challenge problem. This requires
a formal specification of the target output. For the biological pathway
task, this might be a formal relational language consisting of a set of
predicates (activate, inhibit,...), and classes of entities that can partici-
pate in that relationship (see section 5 for examples). For the database
curation task, it will consist of entries conforming to some specific ontol-
ogy or nomenclature as specified by the database curators (see section 6
for examples).

¢ Training data: to enable developers to build systems that solve the “chal-
lenge problem,” developers need annotated data. Another way to look at
this is that developers need “practice tests”—instances of right answers.
For a biological pathway, this might be a collection of documents and
the relations extracted from each of the articles. For a database curation
task, it would be the database entries and the collection of documents
referenced in the curation. In addition, the training data must specify the
linkage between the extracted information and the occurrences (phrases
or sentences) in the associated article that provide the evidence for the
extracted information. These linkages are the annotations that make it
possible to create rules (by hand or using machine learning or statistical
techniques) that map from the free text occurrence of information to the
required target output.

e Test data: once the system is built, it must be evaluated against blind test
data—data that neither the system nor the developers have previously
seen. This makes it possible to assess the generality of the solution.
Note that the test data may not need to have the linkages annotated: It
is sufficient to supply the input (free text) and target output.

e Evaluation methodology and implementation: the definition of a formal
evaluation methodology is a key part of creating a challenge problem.
There must be a reproducible method of evaluating system performance



on the defined problem. Ideally, there would be an automated evaluation
method and supporting software. This would allow participants to grade
themselves on the training data (the “practice tests”); automated evalu-
ation also supports system development techniques such as iterative hill
climbing and machine learning.

e Evaluator: there must be a neutral group who runs the evaluation. The
evaluator is responsible for providing the test data, for collecting the
system runs on the test data, and for evaluating those runs.

e Participants: any evaluation is only as good as the groups (and systems)
that participate in it. Therefore, it is critical to identify beforehand a
core set of groups who would be willing to perform such an evaluation,
if the rest of the infrastructure (as listed above) were provided.

e Funding: To create a successful challenge evaluation, there must be fund-
ing for the infrastructure. The evaluation itself must be funded (in partic-
ular, the designated evaluator group), and finally, participants are more
likely to participate if there is funding associated with the evaluation.
For the participants, the association with funding may be indirect, e.g.,
it may be sufficient that there are funded programs (government or pri-
vate) that might directly or indirectly reward good results in such an
evaluation.

In the remaining sections of the introduction, we look at two examples of
challenge problems: the extraction of biological pathways from the literature
and techniques for automating database curation.

5 Extraction of Biological Pathways

To a biologist, a biological pathway is generally a chain of events and decision
points that pertain to specific biological functions, such as the production of a
desaturated fatty acid. In contrast to the situation with genes, where a detailed
ontology for their classification and annotation has been established 17, there
is no widely accepted ontology for biological pathways.

Ideally, given an established ontology for annotating biological pathways,
a benchmark natural language-based extraction of biological pathways can also
be established. First, a database structured according to the ontology can be
adopted. Second, a set of scientific texts and abstracts can be chosen. Third,
the database can be populated from these texts and abstracts by domain ex-
perts. Then a set of tests and evaluation criteria with respect to this database



can be set up as a benchmark for evaluating technologies for extracting bio-
logical pathway information.

However, no such ontology has been widely accepted yet. Moreover, the
ideal ontology that most closely reflects biological pathways as a biologist sees
them may not be suitable for information extraction tasks. Here, we adopt
a more relaxed view instead and consider biological pathways as a network
of interactions and events between proteins, drugs, and other molecules. We
propose three layers of challenges with respect to this more relaxed view:

e At the first layer, the task is to recognize names of proteins, drugs, and
other molecules.

e At the second layer, the task is to recognize basic interaction events
between molecules.

e At the third layer, the task is to recognize the relationships between the
basic interaction events.

Before we describe the three tasks above in more detail, let us first set
up the framework for benchmarking these tasks. The framework is oriented
towards information extraction rather than deep natural language understand-
ing. That is, we see each task as filling in a set of prescribed templates for each
problem, as opposed to obtaining detailed parse trees and complete semantic
representations of each sentence. We have three primary reasons for this ori-
entation. First, we still do not have grammars that provide sufficiently broad
coverage for the language found in the biomedical literature. This is both be-
cause the language is complex and because the articles or abstracts may not
always be written in (or translated into) grammatical English. Second, filling
in a template is closer to the application scenario of filling in a database table.
Third, information extraction may not necessarily be natural language-based,
and hence the present choice allows us to assess a broader range of techniques.

The framework is as follows. A number of test databases are constructed.
Each test database is organized as a set of records. Each record should have a
piece of text to be tested and a list of expected facts. The text can be at the
sentence level, the abstract level, or the entire article level. The list of expected
facts should contain everything that a “perfect” information extractor for the
task on hand can extract and nothing else. For convenience, each fact can
be thought of as a short sentence in a highly standardized form such as “P;
activate P,”. More abstractly, we see a test database db as a set {(t1, F}1),
wey (tm, Fm)}, where t; are the texts and F; = {f;1, ..., fin;} are expected
facts. There are two primary levels of evaluation. The first is at the level of
individual records. The second is at the level of the entire test database.



The traditional performance evaluation of information retrieval systems
calls for the following. At either level, we evaluate the sensitivity (or recall)
and specificity (or precision) of an information extractor E against the list of
expected facts, where

_ TP(E)
" TP(E) + FN(E)

_ TP(E)
~ TP(E) + FP(E)

recall(E) precision(E)
The definitions for TP(E) (ie. true positives), FN(E) (ie. false negatives), and
FP(E) (ie. false positives) depend on whether we are evaluating at the record
level or at the database level. Note that it is not possible to define the usual
notion of true negatives in our context because there is no theoretical bound
on the number of “facts” that can be generated from a sentence and because it
is not reasonable to use the closed world assumption in biology. At the record
level, each expected fact in a separate record is counted as a separate instance.
If E(t) is the set of facts that E extracts from a text ¢, then

TP(E)= Y |E(t)n F| FN(E)= Y  |F|- TP(E)
(t,F)edb (t,F)edb

FP(E)= Y. |E@)| - TP(E)
(t,F)edb

At the database level, all different instances of an expected fact are counted
as one. Then we have instead

TP(E)=| |J EM®n F| FN(E)=| |J F| - TP(E)
(t,F)edb (t,F)edb

FP(E)=| |J E@®)|- TP(E)
(t,F)edb

However, it is not straightforward to compare two information extractors each
characterized by a pair of numbers. The usual mechanism in diagnostic sys-
tems is to generate a range of precision numbers over a range of recall numbers
to derive a single number called the area under the relative operating charac-
teristic curve (the aROC number) ¥ and compare the aROC numbers of two
systems. Unfortunately, it is not always possible to obtain aROC numbers of
the information extractors we are considering because they are typically not
based on a continuous decision threshold. In order to choose an alternative,
two conditions should be imposed!?. The first condition is that it must be able



to distinguish the ideal information extractor from the worst information ex-
tractor. The second condition is that it shows a gradual and strictly monotonic
change in value when the information extractor is changed from the worst to
the best one. Note that neither recall nor precision alone satisfies these two
conditions.

Many choices that satisfy these two conditions are possible!%29. However,
many of them depend on the definition for “true negatives”, which is not
available in our context. So we propose a variation of the simple matching
coefficient (SMC) which simply measures the probability of the information
extractor correctly extracting a fact? It is defined as follows and is easily
verified to satisfy the two conditions above:

B TP(E)
~ TP(E)+ FP(E) + FN(E)

SMC(E) , 0< SMC(E) <1

Now we return to our three information extraction tasks. The first task
is obvious. We want to recognize proper names of proteins, drugs, and other
molecules mentioned in texts. We do not want to recognize names of authors,
processes, and any other entities mentioned in these texts.

The second task is slightly more complicated. We want to recognize in-
teraction events between proteins, drugs, or other molecules. These events
should include events at transcription, translation, post translational modifi-
cation, complexing, dissociation, and other interactions. As we are viewing
each fact as a highly standardized short sentence, we propose here a grammar
for them.

bA related metric has been proposed in the spoken language processing community for
both transcribing audio input and for identifying entities and relations among entities. This is
the slot error rate, which is the ratio of insertions, deletions and substitution errors divided by
the true positives. In our context, we can interpret insertions as false positives and deletions
as false negatives; substitutions are not directly relevant 2!. Another related measure is
the F-measure, defined as the harmonic mean of recall and precision. That is, F(E) =
(2 X recall(E) x precision(E))/(recall(E) + precision(E)). After substituting the definitions
for recall and precision, this reduces to F(E) = (2xTP(E))/(2x TP(E)+FN(E)+FP(E)).
There is no intuitive statistical reason for having the multiplicative factor of 2 on TP(E).
However, if we drop this multiplicative factor, the result is precisely SMC(E).



PositiveEvent := P phosphorylate P [on T] [at L]
P dephosphorylate P [on T] [at L]
P ubiquinate P
P acetylate P

|

|

|

| P interact-with P [to-produce P]
| P [at L] bind-to P [at L] [to-produce P]
| P dissociate [to-produce P+]
| P degrade P

| P activate-transcription P [to-produce P)]
| P inhibit-transcription P

| P activate [F activity-of] P

| P inhibit [F activity-of] P

| P transport P [from C] [to C]

Event == DPositiveEvent [mediated-by P+] [independent-of P+]
|  not PositiveEvent [mediated-by P+] [independent-of P+]

In the grammar above, P denotes proteins, drugs, or other molecules; T
denotes amino acids; L denotes positions; F' denotes biological function; and
C denotes cellular locations. In evaluating an information extractor for this
task, we can further consider its performance with or without extracting the
optional components in the grammar. In the few clauses where a plurality of
P’s are expected (ie. the P+’s), we can consider the situation of a complete
or an incomplete match.

It is important to understand that this grammar is not intended as a gram-
mar for parsing scientific texts. Rather, it is more appropriately treated as a
standardized grammar to convert pertinent parts of scientific texts into. As
such, an information extractor should convert or normalize different expres-
sions of the same fact into the semantically closest standard form in the gram-
mar. It should not make fine distinctions between different sentence forms.
For example, it should convert “camptothecin, an inhibitor of human TOP1”
to “camptothecin inhibit TOP1”. It should also not make fine distinctions
between shades of meanings. For example, “caspase-8 was also stimulated by
NB-506” to “NB-506 activate caspase-8”.

The third task is to recognize relationships between the basic events al-
ready outlined above. In contrast to the basic events which focus on inter-
actions between molecules, this task is focused on the causal and temporal
relationships between two such events. The grammar we propose for them is
given below.



Relationship ::= Event [is-caused-by Event+] [provided Event+]
|  Event [is-independent-of Event+] [provided Event+]
|

Event [is-inhibited-by Event+] [provided Event+]

The intention of a relationship such as “FEj is-caused-by E, provided E3”
is as follows. The event Fj3 is assumed to have taken place some time in the
past and its resultant conditions have remained true. This allows event Es to
take place and as a result the event E; will also take place at the completion of
E5. Again, an information extractor should convert or normalize different ex-
pressions of the same event relationships into the semantically closest standard
form in the grammar.

Having now described the three tasks, we would also like to propose some
candidates for forming the benchmark databases for these tasks. We would
like to suggest that the appendix of the paper by Kohn?? as one of the candi-
dates. This appendix lists about 200 statements of interaction events and has
sentences of a fairly complex form. Another candidate is the set of MEDLINE
abstracts matching the term “Topoisomerase inhibitors.” Presently this set in-
cludes just over 200 abstracts. A preliminary analysis shows that they contain
less than 1000 names and less than 200 interaction events. These numbers are
small enough for a small team of experts to construct a benchmark database
manually.

6 Automated Database Curation

Automated database curation represents a second challenge application. It is
important because the rate of published experiments is outstripping the ability
of database curators to keep up with the relevant literature. In addition,
automated curation techniques could allow curators of databases to check the
consistency and completeness of their databases.

Database curation is interesting for another reason: curated databases
represent a repository of “gold standard” data. A database entry is typically
associated with the literature reference(s) from which it is derived — this means
that the human curator has already done the extraction from the literature.
Craven and Kumlier?® report an experiment in which they were able to use the
subcellular localization field of the Yeast Protein Database . They collected
instances of this relation from the database, traced the references associated
with each database entry back to the PubMed abstract, and then within each
abstract, identified, where possible, the sentence within the abstract that gave
rise to the annotation. This gave them a set of extracted relations (from
the database) and the underlying text sources (sentences from the abstracts).



They were then able to train and compare several classifiers that extracted the
desired localization information.

This experiment is suggestive of the ways in which curated databases can
be exploited to create “cheap” annotated corpora. It is relatively straightfor-
ward to associate the entry in a database field with the underlying article from
which it is derived. The harder part is to provide an explicit linkage from the
database entry to the phrases and sentences from which it is derived. When
the database uses a controlled vocabulary or an ontology to define legal entries
for each field, the phrases appearing in the journal article or abstract may not
correspond to the actual entry in the database.

In the examples below, we see some of the possible relations between the
mention in the literature and its representation in the fields of the database.
The example is from the Flybase gene expression databasef the first list shows
three fields from the polypeptide Appl+P130kD entry. Note that for each
of these entries, the first field is the article from which this information was
derived* (in Flybase, this is a hotlink to the abstract).

1  Protein size (kD): Luo et al, 1990 130
Cell location: Luo et al, 1990 axon
3. Expression pattern

Luo et al, 1990

N

Stage Tissue/Position
Embryo Embryonic Central Nervous System
Embryo Peripheral Nervous System

The next list contains sentences from the abstract of the Luo article® cited
above; the phrases in boldface show the specific source of information within
each sentence.

1. APPL is synthesized as a 145-kDa membrane-associated precursor that
is converted to a 130-kDa secreted for ...

2. APPL proteins are first detected in developing neurons concomitant with
axonogenesis ...

3. In the embryo, APPL proteins are expressed exclusively in the CNS
and PNS neurons ...

Even in this very small sample, we see that simple pattern matching suf-
fices in example 1 to find 130-kDa, complex morphology is needed in example

¢Available at http://flybase.bio.indiana.edu.



2 to associate azonogenesis with “cell location: axon”, and we must decode
abbreviations (CNS = central nervous system, PNS = peripheral nervous sys-
tem) as well as using information derived from multiple parts of the sentence in
example 3. A larger sample would contain many more complex mappings be-
tween database fields and the underlying literature reference, including entries
that require resolution of coreference across sentences or entries that require
an analysis of the underlying syntactic relations among entities.

To create an annotated corpus from a curated database, we need to map
from entries in database fields back to the text. To do automated database
curation, we need the inverse mapping from free text to database entry. We
believe that we can create a reversible set of tools that can be used in either
direction: mapping from database field to literature or mapping from literature
to database. By providing collections of linked pairs of database entry and
associated text for use as training and evaluation sets, we would enable many
researchers to participate in building tools to automate the database curation
process. Although the database curation application is different in its structure
from the biological pathway detection experiment outlined in section 5, it is
amenable to the same kinds of automated evaluation techniques outlined there.

7 Conclusion

We have outlined how we might go about creating a challenge evaluation for
literature data mining in biology. The papers in this session illustrate both
the promise of literature data mining and the need for challenge evaluations.
They show how current language processing approaches can be successfully
used to extract and organize information from the literature. They also illus-
trate the diversity of applications and evaluation metrics. By defining several
biologically important challenge problems and by providing the associated in-
frastructure (annotated data and a common evaluation framework), we can
accelerate progress in this field. This will allow us to compare approaches, to
scale up the technology to tackle important problems, and to learn what works
and what areas still need work.
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