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Computational tools are essential components of modern biological research. For
example, BLAST searches can be used to identify related proteins based on sequence
homology, or when a new genome is sequenced, prediction models can be used to anno-
tate functional sites such as transcription start sites, translation initiation sites and
polyadenylation sites and to predict protein localization. Here we present Sirius Pre-
diction Systems Builder (PSB), a new computational tool for sequence analysis, clas-
sification and searching. Sirius PSB has four main operations: (1) Building a classifier,
(2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Prelimi-
nary and post-prediction analysis. Sirius PSB supports all these operations via a simple
and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has
also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to
identify interesting features in the feature space. Secondly, instead of the conventional
method of searching for similar proteins via sequence similarity, we introduced searching
via features’ similarity. To demonstrate the capabilities of Sirius PSB, we have built two
prediction models — one for the recognition of Arabidopsis polyadenylation sites and
another for the subcellular localization of proteins. Both systems are competitive against
current state-of-the-art models based on evaluation of public datasets. More notably, the
time and effort required to build each model is greatly reduced with the assistance of
Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable
to find related proteins, Sirius PSB can identify functionally related proteins based on
their biophysical similarities. Sirius PSB and its related supplements are available at:
http://compbio.ddns.comp.nus.edu.sg/~sirius

Keywords: Sequence analysis; subcellular localization prediction; polyadenylation site
recognition; reticulon search.
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1. Introduction

With the advancement of sequencing technologies and mass spectrometry, large
amounts of data in the form of genome sequences and protein sequences are pro-
duced routinely.' ® With so many bio-sequences widely and easily accessible, the
next challenge is to mine information from them, and computational prediction
models are often used for these tasks. In particular, to be able to determine from
a DNA sequence its functional sites such as transcription start sites, translation
initiation sites, and polyadenylation sites, has always been of interest to biologists
as functional sites influence virtually all aspects of the gene expression process. As
for protein sequences, the ability to determine the subcellular localization of the
protein from a protein sequence can give biologists clues to the functions of that
protein.

There exist numerous approaches in building computer models to carry out bio-
sequence analysis. Here, we focus on one particular approach that has been suc-
cessfully deployed in many high-quality computer models.*~® This approach con-
sists of the following sequential steps: (1) feature generation, (2) feature selection,
(3) feature integration, and (4) cascade classifier.

One popular machine learning package that is often used to carry out the fea-
ture selection and feature integration step is Waikato Environment for Knowledge
Analysis (WEKA).? The biggest strength of WEKA is that it has implemented a
wide variety of feature selection and machine learning algorithms. However, being
a general machine learning package, it does not support the feature generation and
cascade classifier step, which is often used in analyzing biological sequences. As
such, WEKA is less comprehensive when analyzing biological sequences.

BLAST! is another tool commonly used by biologists when they want to search
for sequences in protein databases similar to the sequence they input. It is commonly
accepted that sequence homology is indicative of similar structure and function.
However, proteins with similar function do not necessarily share sequence homology.
For example, a group of proteins that is known to shape the tubular endoplasmic
reticulum do not all share similar sequences,!! but rather share unusually long
transmembrane domains that form “hairpins” in the membrane bilayer. The Sirius
Prediction System Builder provides a tool for identifying related proteins based on
biophysical character.

Sirius Prediction System Builder (Sirius PSB) is a software package designed
to enable biologists with little or no computing knowledge to carry out sequence
analysis using computational methods with ease and speed via a graphical user
interface. They include building high-quality prediction models, visualization,
multi-dimensional protein search and more.

2. Results

In this paper, we used three examples to illustrate the capabilities and potential
of Sirius PSB. To prove that Sirius PSB is indeed capable of producing decent
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prediction and search for real-life applications, we have built two prediction models
using Sirius PSB and compared them against current state-of-the-art models. One
model is built to predict the subcellular localization of proteins while the other
model is designed to carry out recognition of Arabidopsis polyadenylation sites. We
also demonstrate how Sirius PSB can make up for certain shortcomings in BLAST
via the use of a group of proteins that are known to shape the tubular endoplasmic
reticulum.

2.1. Subcellular localization of proteins

Given a protein sequence, it is of interest to know the subcellular localization of
the protein because it helps us to better understand its functions. Many prediction
models have been constructed previously to predict a protein’s subcellular local-
ization based on its sequence — in particular, TargetP!?13
has achieved a high sensitivity (> 85%) and is still often used by biologists today.
Hence, we will use TargetP as a means of comparison against our protein localization
model. We call the model we generated Protein Localization model (PL model).

The results for TargetP were extracted from Emanuelsson et al. (2000).13 As the
authors of TargetP used 5-fold cross-validation, we also ran 5-fold cross-validation
on PL model in order to compare with TargetP on equal grounds (Table 1).

The dataset used here was downloaded from the TargetP website. All sequences
were extracted from Swiss-Prot and are redundancy reduced. Please refer to Ref. 13
for more details on the preparation of the dataset. The dataset has two versions,
plant and non-plant. For the plant version, it contains 141 ¢TP, 368 mTP, 269
SP and 162 “others” sequences. For the non-plant version, it contains 371 mTP,
715 SP and 1652 “others” sequences. The abbreviations used subsequently are as

is one such model. It

Table 1. Prediction performance based on 5-fold cross-validation of TargetP and PL model. Plant
sensitivity, Non-plant sensitivity and Overall sensitivity based on equal weightage of each category
(based on absolute numbers of each category). As usual, TP refers to the number of true-positive
predictions, FN the number of false-positive predictions, and SN the sensitivity level.

TargetP PL model
Set Category Size TP FN SN TP FN SN

Plant cTP 141 120 21 0.851 127 14 0.901
mTP 368 300 68 0.815 302 66 0.821
SP 269 245 15 0.911 247 22 0.918
Others 162 137 25 0.846 151 11 0.932

Plant Sensitivity 0.856 (0.853) 0.893 (0.880)
Non-plant mTP 371 330 41 0.889 337 34 0.908
SP 715 683 32 0.955 623 92 0.871
Others 1652 1451 201 0.878 1610 42 0.975

Non-plant Sensitivity 0.907 (0.900) 0.918 (0.939)

Overall Sensitivity 0.878 (0.888) 0.906 (0.924)
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follows: ¢TP stands for chloroplast transit peptides, mTP stands for mitochondrial
targeting peptides, SP stands for signal peptides and “others” stands for peptides
in other localizations apart from those mentioned above.

2.2. Recognition of polyadenylation sites from Arabidopsis
genomic sequences

Polyadenylation is a post-transcriptional process, which cleaves and adds approx-
imately 200-300 adenosine residues to the pre-mRNA 3’ end. This process is an
essential processing event and an integral part of gene expression.'* Having the
ability to accurately predict polyadenylation sites allows us to define gene bound-
aries, predict the number of genes as well as better understand the process.

Currently, the best prediction model for recognition of polyadenylation site for
Arabidopsis sequences is designed by us [Koh et al. (2007) model].> Here, we show
that with Sirius PSB, we can build a better model in considerably less time and
fewer steps. We call the new model Arabidopsis Polyadenylation Site model (APS
model) (Table 2).

The datasets used here were provided by Qingshun Quinn Li.'® For any two
sequences with more than 70% similarity using pair-wise global alignment, one is
removed. After redundancy is reduced, the dataset contains 6209 sequences with
EST-supported polyadenylation sites, 1501 coding region sequences, 864 5'UTR
region sequences and 1581 intronic region sequences. Each sequence is of length
400 and for the EST-supported sequences, the polyadenylation site is at position
301. The dataset split and used is similar to that in Ref. 5 in order to have better
comparison. Please refer to Ref. 5 for more details on the preparation of the dataset.

The performance measure used is equal-error-rate value (i.e. the points where
sensitivity = specificity).

Sensitivity(SN) = TP/(TP + FN), (1)

Specificity(SP) = TN/(TN + FP), (2)

Table 2. Equal-error-rate of Koh et al. (2007) model and APS model.

Control Koh et al. (2007) model® APS model
sequences sensitivity & specificity sensitivity & specificity
5 UTR SN_0 0.849 0.871

SN_10 0.892 0.917

SN_30 0.915 0.940
Coding SN_0 0.943 0.967

SN_10 0.965 0.977

SN_30 0.975 0.984
Intronic SN_0 0.711 0.755

SN_10 0.788 0.871

SN_30 0.830 0.921
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where TP (True Positive) is the total number of EST-supported polyadenylation
sites that are correctly predicted. FN (False Negative) is the total number of EST-
supported polyadenylation sites that are not identified. TN (True Negative) is the
total number of sites with prediction score < threshold in the (—ve) sequences.
FP (False Positive) is the total number of sites with score > threshold in the
(—ve) sequences. SN_0 means that the predicted polyadenylation site is exactly the
same as the EST-supported polyadenylation site. SN_10 means the EST-supported
polyadenylation site is within 10 nt of the predicted polyadenylation site. SN_30
means the EST-supported polyadenylation site is within 30 nt of the predicted
polyadenylation site.

2.3. Shaping the tubular endoplasmic reticulum (ER)
in Saccharomyces cerevisiae

Voeltz et al.'! have shown that a group of three proteins, RTN1, RTN2 and YOP1
are critical in stabilizing the ER membrane tubules. These three proteins have simi-
lar functions, but YOP1 does not share primary sequence homology with RTN1 and
RTN2. That is, if RTN1 or RTN2 were input as a query into BLAST, YOP1 would
not show up as a hit. However, by using the Nearest Neighbor Search (NNSearch)
application in Sirius PSB, with RTN1 and RTN2 as query and setting some con-
straints (Table 3), YOP1 is returned within the top five hits (Table 4).

Voeltz et al.'! initially only knew that RTN1 and RTN2 were involved and dis-
covered YOP1 through time-consuming biochemical experiments. This could have
been avoided or reduced to a large extent if Sirius PSB was used. Furthermore,
Voeltz et al.'! believed that there are more proteins needed in stabilizing membrane
tubules especially during stress conditions. In this instance, the top hits returned
by Sirius PSB could be used as potential candidates.

NNSearch finds YOP1 because it does not simply look for sequence similarities.
Instead, it carries out the search based on features like amino acid composition
and physiochemical properties such as hydrophobicity, charge, and mass. Looking
at the hydrophobicity of the three proteins using Sequence Visualizer provided by
Sirius PSB (Fig. 1), it is obvious that all three proteins share two unusually long
hydrophobic regions. It is believed that these two hydrophobic regions are critical
in stabilizing the tubular ER membrane.'! Another interesting property of RTN1,
RTN2 and YOP1 can be discovered by looking at the hydrophilicity plot using the
Sequence Visualizer in Sirius PSB (Fig. 2). In this plot, it can be observed that
these proteins have three hydrophilic regions with both of the protein ends being

Table 3. Constraints identified using Sequence Visualizer on RTN1 and RTN2.

No. Constraints

1 Having three or more hydrophilic regions with value > 10 and size > 10
Most, hydrophobic region has value > 90
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Table 4. Top 10 hits of NNSearch with RTN1 & RTN2 as query and constraints listed in Table 3.

No. Sequence header

1 sp|Q04947|RTN1_YEAST Reticulon-like protein 1 OS=Saccharomyces cerevisiae
GN=RTN1

2 sp|Q12443|RTN2_YEAST Reticulon-like protein 2 OS=Saccharomyces cerevisiae
GN=RTN2

3 sp|P23641|MPCP_YEAST Mitochondrial phosphate carrier protein OS=Saccharomyces

cerevisiae GN=MIR1
4 sp|Q12402|YOP1_-YEAST Protein YOP1 OS=Saccharomyces cerevisiae GN=YOP1

5 sp|P53633|PRA1_YEAST Prenylated Rab acceptor 1 OS=Saccharomyces cerevisiae
GN=YIP3

6 sp|P00410|COX2_YEAST Cytochrome c oxidase subunit 2 OS=Saccharomyces cerevisiae
GN=COX2

7 sp|P39692|MET10_-YEAST Sulfite reductase [NADPH] flavoprotein component
OS=Saccharomyces cerevisiae GN = MET10

8 sp|Q06142|IMB1_YEAST Importin subunit beta-1 OS=Saccharomyces cerevisiae
GN=KAP95

9 sp|P40069|IMB4_YEAST Importin subunit beta-4 OS=Saccharomyces cerevisiae
GN=KAP123

10 sp|P38329|YB85_YEAST Uncharacterized membrane protein YBR235W
OS=Saccharomyces cerevisiae GN=YBR235W

hydrophilic. Also, it can be seen that one end of the hydrophilic region is relatively
longer than the other end.

With these two plots (Figs. 1 and 2), one can easily hypothesize how these
proteins might interact with the membrane (Fig. 3). This is in good agreement
with experimental evidence of the topologies of reticulon proteins.'®

3. Discussion

From Table 1, it is clear that using the PL model generated by Sirius PSB produces
better results in the prediction of subcellular localization of proteins compared to
TargetP. Although the results of the PL model are only 1-4% higher than TargetP,
it should be noted that the PL model is built using Sirius PSB effortlessly in
a greatly minimized time span. This was accomplished simply by using features
found in Sirius PSB such as 1-, 2- and 3-gram (A k-gram feature is simply a string
of k consecutive characters).

From Table 2, APS model has shown improved performance over our previ-
ous model.> What we would like to stress here is that even though both methods
followed the same computational approach, our previous model® was designed by
writing several programs and having to change the codes in the programs whenever
we wanted to try out different settings or deploy different features. In contrast,
Sirius PSB encompasses settings that can be changed instantly via a few mouse
clicks.

Another important difference is that the 261 candidate features used for our
previous model® were decided upon after spending a lot of time and effort searching
and reading literature about the Arabidopsis polyadenylation process. Compare
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Hydrophillic
membrane core

Il Hydrophabic TM domain

Hydrophillic domain

Fig. 3. Possible representation of how RTN1, RTN2 and YOP1 would interact with the membrane.
Two unusually long hydrophobic regions slot in between the three hydrophilic regions with one
end relatively longer than the other.

this with the APS model which auto-generated 144 features simply by running the
genetic algorithm (provided by Sirius PSB) on the training dataset. Furthermore,
since the only difference between the two models is the set of candidate features
used, we can conclude that the 144 auto-generated features are more concise and
meaningful biologically than the 261 candidate features. Looking carefully at the
set of 144 features, we notice that it does reflect some of the knowledge found in the
literature. Significantly, no prior knowledge was fed into the running of the Sirius
genetic algorithm. Due to these differences, our previous model® took us about
several months to complete whereas APS model took us only a few days to build
from scratch.

Usually, in order to build a good classifier, users need to have a good under-
standing of the problem to select a “good” set of features. The automated feature
generation of Sirius PSB provides two advantages. Firstly, users no longer need to
provide the set of features. Secondly, the auto-generated set of features could in fact
give us some knowledge about the problem. As demonstrated, Sirius PSB prediction
models not only outperformed current state-of-the-art models in terms of accuracy,
but the time and effort required to build them is also significantly reduced. With
Sirius PSB, building of classifiers and bio-sequence analysis would be a less tedious
process.

Yet another powerful ability of Sirius PSB is the ability to search for similar
proteins using user-specified features where BLAST fails. Biologists usually have
some inkling as to the important features to look for, and this proves to be very
useful in the search. For instance, in the abovementioned example, Voeltz et al.'!
know that hydrophobicity is certainly an important component in the proteins.
They can then simply input and search for proteins that “look alike” to the query
proteins in terms of their hydrophobicity signatures. Even in the case where biolo-
gists do not have much information about the query, they can still use visualizing
tools provided by Sirius PSB to decide on the type of features that are likely to be
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important. Although the relationship between RTN1, RTN2 and YOP1 has been
previously published, our paper is the first to show that these proteins can be iden-
tified as relatives based purely on their biophysical properties. We believe that this
provides a clear example of the utility of Sirius PSB.

4. Methods

Sirius PSB has four main operations (applications): (1) Building a classifier
(Trainer), (2) Deploying a classifier (Predictor), (3) Searching for proteins similar
to query proteins (NNSearcher), and (4) Preliminary and post-prediction analysis
(Misc). Sirius PSB supports both protein and DNA sequences. The current ver-
sion of Sirius PSB is 2.33. Sirius PSB is written in Java and hence should have
no problems running on any platform with JVM. To obtain the results mentioned
in this paper, users can simply follow the user guide given in the link below. The
program (Sirius PSB), datasets used and user guide can be downloaded from Sirius
PSB website: (http://compbio.ddns.comp.nus.edu.sg/~sirius/). The two prediction
models (subcellular localization and polyadenylation sites) are also available for use
on the website.

4.1. Subcellular localization of proteins

For our protein localization model (PL model), we employed the first three steps
of the approach — feature generation, feature selection, and feature integration.

For the feature generation step, we used straightforward features of 1-, 2- and
3-gram with window (0,100). Note that there are 20 different amino acids. This
means there are 20 + 202 + 203 = 8420 features. We then calculated the occurrence
of the 8420 features for the first 101 characters of each sequence. In the feature
selection step, we filtered away those with chi-square value < 0.

During the feature integration step, we used Support Vector Machine!” with
polynomial kernel of degree two and buildLogisticModels (set to True) for all the
sequences except for non-plant SP presequence, where Naive Bayes algorithm was
used instead. Like TargetP, we have seven different classifiers for each type of
presequence. All of them used SVM except for the non-plant SP preseqeuence.
Naive Bayes was used for non-plant SP presequence because poor performance was
observed when SVM was used for this particular presequence. This shows the flex-
ibility of Sirius PSB in that the choice of the machine learning method can be
changed easily without fuss.

4.2. Recognition of polyadenylation sites from Arabidopsis
genomic

Feature generation, feature selection, feature integration and cascade classification
is the methodology used by both our previous model® and APS model. The settings
for feature selection (chi-square with threshold 0), feature integration [support vec-
tor machine (SMO) with buildLogisticsModel set to True| and cascade classification
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(—40, 41) for both models are the same. The only difference between the two models
is in the feature generation step.

Our previous model® generated 261 candidate features based on biological
knowledge from literature. APS model used 144 candidate features auto-generated
by running genetic algorithm on training Dataset A.

4.2.1. Genetic algorithm

In most classification problems, having a “correct” set of features would ensure high
accuracy. However, finding such a set of features can be a daunting task. In Sirius
PSB, we have incorporated a genetic algorithm approach to help users find such
features. We have also demonstrated the usefulness of this approach by using the
polyadenylation example.

To be more specific, the algorithm employed here is a slight variant of the origi-
nal genetic algorithm. Unlike the original genetic algorithm where each population
contains a set of candidate solutions, in our approach, each population is a single
solution where each member in the population is a feature.

There are typically two properties to be defined before the running of genetic
algorithm can commence — genetic representation and fitness function. Variable
length value encoding is chosen to be the genetic representation. Such a represen-
tation will cause implementation for crossovers to be more complex, but this is a
fair trade-off when taking the diversity of feature types involved into consideration.

As for the fitness function, chi-square was chosen for two main reasons. Firstly,
it is efficient to compute. Being computationally efficient is important as it would
make the algorithm impractical otherwise. The other reason is that chi-square holds
a property whereby in the case that chi-square value of feature A is greater than
chi-square value of feature B, we can be sure that feature A is “better” than feature
B with respect to the training dataset. This is an important property that must
hold true for fitness functions.

Finally, as the diversity of the population is another important factor for the
success of genetic algorithm, measures are taken to prevent the convergence of the
population. High default mutation rate is set, at 70% (editable by users). Also, an
additional step has been added — the elimination of similar features. In this step, if
two features are too similar (> 80%), one would be discarded. New randomly gener-
ated features will replenish the discarded features. With these strategies deployed,
the likelihood of the convergence of the population is significantly reduced.

Detailed description of our genetic algorithm is in Sirius2.33_GeneticAlgorithm.
txt which is available from Sirius website. A brief outline of the algorithm is as
follows:

Initial population

e Will be randomly generated unless user provides (thus possible to continue from
previous runs)
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Evaluation

e Fitness score used is the chi-square value
e Chi-square value is calculated based on the dataset used for GA

Selection

e Features are selected with a probability directly proportionate to its chi-square
value

Crossover

e Again, features with the higher score have a higher probability to be selected
as a parent
e Two offspring will be generated by taking parts from each parent

Mutation
e Features will be randomly selected to undergo mutation
Eliminate similar features

e Eliminate features that are highly similar (>80%) within the population.
e This is to prevent the population from being dominated by similar features

Replenish

o Generate new features randomly to replenish the population due to elimination
in the “Eliminate similar features” step

Return to the “Evaluation” step unless termination generation is reached

e It is possible to terminate prematurely if the user requests so

4.3. Shaping the tubular endoplasmic reticulum in Saccharomyces
cerevisiae

In this instance, we used NNSearcher with RTN1 and RTN2 as the input query,
and searched against the Swiss-Prot (Saccharomyces cerevisiae) database. For the
features, we used 1-gram, 2-gram and a series of physiochemical properties. We
also listed down a few constraints derived from Voeltz et al.'' paper and as well
as information from the visualizer (provided by Sirius PSB) through the study of
RTNI1 and RTN2.

4.3.1. NNSearcher

NNSearcher is a tool provided in Sirius PSB meant to carry out the searching of
similar proteins based on their features. The standard approach in searching for
similar proteins would be via BLAST. However, this approach may not always
work as it is known that some proteins which are related functionally may not
share sequence similarities. This is where NNSearcher could help in filling up the
gap. NNSearcher attempts to find features that are unique and well conserved in the
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query proteins. Then using these features, search for other proteins in the database
that are similar to the query proteins.
The algorithm employed by NNSearcher is as follows:

Generate

e Features to generate can be decided by the user
e Default is 1-gram, 2-gram and a series of physiochemical properties

Normalize
e Features’ values are normalized to [0,1]
Filter

e queryDBDifference; = (queryMean; — DBMean;)/DBStdDev;
e Filter away feature; with queryDBDifference; < 0.5
e Filter away feature; with queryStdDev; > 0.5
Assign
o weight; = 0.5 * (1/queryStdDev;) + 0.5 * (queryDBDifference;)
Score
* weight;|
e (Calculate the distance of a particular protein from query proteins

Rank

o Score; =1 — X, |(feature Value; ; — queryMean,;)

e Sort by descending order of score
e Higher score would mean greater similarity to query proteins

Notations:

queryMean; — Mean value of query for feature;
queryStdDev; — Standard deviation of query for feature;
DBMean; — Mean value of database for feature;
DBStdDev; — Standard deviation of database for feature;
featureValue; ; — Value of protein; for feature;

In the filtering step, NNSearcher filters away features where the query is similar
to the majority in the database (queryDBDifference; < 0.5) because this would
mean that those features are not unique to the query proteins. Also, it filters away
features that are not well conserved (queryStdDev; > 0.5) in the query proteins.

In assigning weights to features, there are two factors to consider. Firstly, fea-
tures that are well conserved (1/queryStdDev;) in the query proteins are given
heavier weights. Also, heavier weights are given to features that are unique
(queryDBDifference;) to the query proteins in comparison to the database proteins.

In the scoring step, NNSearcher attempts to find proteins that are similar to the
query proteins based on those features identified to be unique and well conserved
to the query proteins (1 — X;|(feature Value; j — queryMean;) * weight;|).
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5. Sirius PSB Overview

As mentioned, Sirius PSB has four main operations facilitated by four applications:
(1) Trainer — Enable the building of classifiers, (2) Predictor — Allows the usage
of classifiers built using Trainer, (3) NNSearcher — Searching for proteins similar
to query proteins based on features’ similarity, and (4) Misc — Includes a vari-
ety of tools for preliminary and post-prediction such as redundancy reduction and
visualization. All these applications are integrated seamlessly into one environment
(Sirius PSB) to allow users to carry out sequence analysis with ease and convenience
(Fig. 4).

5.1. Trainer

For sequence prediction problems, there are generally three different categories. One
is where prediction is made only once for each sequence (e.g. subcellular localization
of proteins). Another is where there is a known anchor motif and prediction is only
made when the anchor motif is encountered (e.g. translation start site — ATG).
The last type is where no anchor motif exists and every position of the sequence is
a candidate site and prediction has to be made on every position of the sequence.

Redundancy Reduction Sequence Visualizer

Training Sequences

Feature Generation

Genetic Algorithm

| Features ‘

Database ‘

Generate
Normalize

Feature Selection

Feature Integration

Cascade Classification

Trainer

NNSearcher

Trained Classfier

Predict

adictor

Fig. 4. Sirius PSB software architecture.
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Trainer is capable of building classifiers for any of these categories by using a
general approach — feature generation, feature selection, feature integration, and
cascade classification.?~8

Feature generation is the most critical step in this four-step approach. When
given a “correct” set of candidate features, one can easily build a high-accuracy
classifier from them. However, the task of finding the “correct” set of candidate
features is hard. Therefore, Trainer provides an option for the auto-generation of
features using Genetic Algorithm. We have shown in this paper that high-quality
prediction models can be built with features auto-generated by Genetic Algorithm.
The details of Trainer’s Genetic Algorithm are stated in Sec. 4.2.1.

As mentioned earlier, WEKA? is a popular and constantly updated machine
learning package with a wide variety of feature selection and machine learning
algorithms. WEKA is also an open-source software issued under the GNU Gen-
eral Public License. The ability to utilize this rich resource would certainly be an
advantage. Hence, Trainer accesses WEKA via direct Java function calls whenever
feature selection algorithm or machine learning algorithm is needed.

5.2. Predictor

The Predictor application allows the use of classifiers built using Trainer to make
prediction on bio-sequences that have unknown properties. In addition, it contains
user-friendly options like sorting sequences based on prediction scores, graphical
display of prediction scores and can also limit the predictions to user-defined motifs
if the user has a specific list of motifs that he/she is interested in.

5.3. NNSearcher

The NNSearcher application is built specifically for finding proteins that are sim-
ilar to input proteins based on the similarity of features. Its algorithm is listed
under Sec. 4.3.1. Although prior knowledge is not required to run NNSearcher, but
if present, more refined searches can be obtained. To this end, users can utilize
Sequence Visualizer tool in the Misc application.

5.4. Mzisc

The Misc application encompasses a variety of tools to assist users in pre- and
post-bio-sequences analysis. For example, Sequence Visualizer tool is used to obtain
understanding of RTN1 and RTN2 which leads to the definition of two constraints
(Table 3). Another useful tool is Redundancy Reduction, as this tool allows users
to reduce sequence similarity in the dataset to prevent biased validation results.

6. Conclusion

In this paper, we used three real-life problems to demonstrate some of the capabil-
ities of Sirius PSB. We have also shown that Sirius PSB can assist in solving these
problems in a seamless and hassle-free manner.
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As demonstrated, two prediction models were built using Sirius PSB, and not
only did these prediction models outperform current state-of-the-art models in
terms of accuracy, but the time and effort required to build them is also signif-
icantly reduced. With Sirius PSB, development of high-quality prediction models
is no longer limited to skilled programmers.

We have also developed a novel way to perform searches for similar proteins.
This new approach of searching for similar proteins based on features is particularly
useful when the proteins do not exhibit similarities in their sequences. In situations
like this, the standard approach like using BLAST would not yield satisfactory
results. This is where Sirius PSB can fill the gap and produce plausible suggestions
to the query.

It is not possible to expound the full capabilities of Sirius PSB in this short
paper. Readers are encouraged to download Sirius PSB at the given link to better
understand Sirius PSB and explore its other abilities — Sirius PSB can run on any
operating system with JVM and has a friendly graphical user interface to guide the
user along.
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