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Abstract. Formal concept analysis has become an active field of study for data
analysis and knowledge discovery. A formal conceptC is determined by its ex-
tent (the set of objects that fall underC) and its intent (the set of properties or
attributes covered byC). The intent forC, also called a closed itemset, is the
maximum set of attributes that characterizeC. The minimal generators forC are
the minimal subsets ofC ’s intent which can similarly characterizeC. This pa-
per introduces thesuccinct system of minimal generators(SSMG) as a minimal
representation of the minimal generators of all concepts, and gives an efficient al-
gorithm for mining SSMGs. The SSMGs are useful for revealing the equivalence
relationship among the minimal generators, which may be important for medical
and other scientific discovery; and for revealing the extent-based semantic equiv-
alence among associations. The SSMGs are also useful for losslessly reducing
the size of the representation of all minimal generators, similar to the way that
closed itemsets are useful for losslessly reducing the size of the representation of
all frequent itemsets. The removal of redudancies will help human users to grasp
the structure and information in the concepts.
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1 Introduction
Formal concept analysis (FCA) [7] is an important tool for data analysis and knowl-
edge discovery. A formal conceptC is determined by its extent (the set of objects or
transactions that fall underC) and its intent (the set of properties, attributes, or items
covered byC). Take the transaction databaseTDB in Figure 1 as an example. Each
transaction has an identity Tid and a set of items; the set of items is written as a list of
items alphabetically and the set brackets are omitted. Itemsetbcghi and transaction set
{T1, T3, T5} form a formal concept, where itemsetbcghi is its intent and transaction
set{T1, T3, T5} is its extent. Intuitively,bcghi is the largest itemset that is contained in
transactionsT1, T3 andT5. No other transactions containsbcghi. The formal concepts
in the transaction database are listed in Figure 2.

In general, the intent of a formal conceptC is the closure of the properties, at-
tributes, or items that form a maximum characterization forC: Every object satisfying
the intent is inC. The closure (or a closed itemset1) serves as the upper bound of

1 Since formal concepts and closed itemsets are in one-to-one correspondence, we henceforth
treat a closed itemset and its corresponding formal concept as the same thing.



Tid Items

T1 abcdeghi

T2 acdg

T3 bcdghi

T4 abdhi

T5 bceghi

Fig. 1. A transaction
databaseTDB.

Closure Minimal generators SupSuccMinGen

ad a 3 a

bhi b, h, i 4 b, h, i

cg c, g 4 c, g

d d 4 d

bceghi e 2 e

abdhi ab, ah, ai 2 ab

acdg ac, ag 2 ac

abcdeghi ae, de, abc, abg, 1 ae, de, abc
ach, aci, agh, agi

bcghi bc, bg, ch, ci, gh, gi 3 bc

bdhi bd, dh, di 3 bd

cdg cd, dg 3 cd

bcdghi bcd, bdg, cdh, cdi, dgh, dgi 2 bcd

Fig. 2. The formal concepts and their closures, minimal generators
and succinct system of minimal generators inTDB of Figure 1.

the attributes covered by the formal concept. Mining the intents of concepts or closed
itemsets has attracted a lot of attention (e.g., [9, 10, 8, 12, 15, 14]) for their importance
in knowledge discovery, and for the significant reduction in the number of necessary
frequent itemsets achieved by removing redundant (recoverable) ones.

Each formal concept actually corresponds to a set of itemsets, which are all equiv-
alent since they capture the same intent. While the closures are the maximal sets of at-
tributes/items presenting the concept, it is often interesting to ask, “What are the critical
combinations of attributes that manifest the concept?” That is, for a concept, we want
to identify the minimal combinations of attributes—the so-called minimal generators—
that distinguish the objects in this concept from the others. Such minimal generators
can offer a complementary, perhaps simpler way to understand the concept, because
they may contain far fewer attributes than closed itemsets.

Technically, theminimal generatorsof a formal conceptC are the minimal subsets
of C ’s intent that can characterizeC, and are the lower bounds of the itemsets char-
acterizingC [10, 12]. For the running example, itemsetsbc, bg, ch, ci, gh, gi are the
minimal generators of formal conceptbcghi, since any transaction containing any of
those minimal generators must also contain the other items in the closure.

Complementary to closures, minimal generators provide an important way to char-
acterize formal concepts. However, very little has been done on understanding and min-
ing the minimal generators. Some previous studies (e.g., [10, 15]) use minimal gener-
ators only as a means to achieve other goals such as mining closed itemsets. [12] con-
siders the mining ofall minimal generators, but its algorithm leaves considerable room
for improvement.

Interestingly, the minimal generators still may contain a lot of redundant informa-
tion. Consider the formal concepts in Figure 2. Closed itemsetbcghi has six minimal
generators:bc, bg, ch, hg, ic andig. From any one of them we can derive all the others,
sinceb, h andi always appear together in transactions and are thus equivalent, and sim-
ilarly for c andg. Those facts are indicated by formal conceptsbhi andcg, respectively.

Can we remove the redundant information and achieve a succinct representation of
the minimal generators?In this paper, we propose a novel concept ofsuccinct system of



minimal generators(SSMG for short). The idea is to remove the redundant information
by choosing one (e.g., the lexically smallest) minimal generator of a formal concept as
its representative minimal generator, and exclude non-representative minimal genera-
tors of the concept to occur as parts of minimal generators of any other concepts.

For example, we can chooseb as the representative minimal generator for the formal
conceptbhi, andc for cg. For the conceptbcghi only the minimal generatorbc will be
included in the SSMG; all the other five (i.e.bg, ch, hg, ic andig) are excluded and can
be derived. Using SSMG there are a total of 17 minimal generators (Figure 2), compared
with a total of 38 standard minimal generators. This big reduction in size causes no loss
of information, as all minimal generators can be inferred from the SSMG.

Using the SSMG, the same equivalence information between the minimal genera-
tors of a concept will not occur redundantly. This helps reduce the result of mining and
make it easier to browse, understand and manage, and reduce the need for the user to
digest the same information multiple times and hence helps the user to concentrate on
the new equivalence among minimal generators. Since the results on the equivalence
among the minimal generators also reveal the minimal equivalence relation among as-
sociations and itemsets, results on SSMG are also useful for association mining.

In this paper, we give an efficient algorithm for mining SSMGs. Our algorithm is
substantially more effective and efficient than the algorithm in [12], which mines all
minimal generators. While the problem of mining SSMGs is computationally expen-
sive, our experiments demonstrate that our algorithm can deal with high dimensional
and large real data sets. We will also illustrate the power of our method on real data sets
in terms of both effectiveness and efficiency. It should be noted that the SSMG mining
is significantly more involved than the closed itemset mining, since it provides infor-
mation on all the minimal generators in addition to the closed itemsets. We applied the
algorithm on some real data sets and obtained some some interesting findings. But the
details are omitted due to space limit.

Section 2 provides definitions of SSMG. Section 3 describes the algorithm. Sec-
tion 4 reports experimental results on effectiveness and efficiency. Section 5 discusses
related works and potential extensions.

2 Definition of SSMG

After revisiting the preliminaries of formal concepts, this section introduces the notion
of succinct system of minimal generators (SSMG).
2.1 Preliminaries.Let I = {i1, . . . , in} be a set ofitems. An itemsetis a subset ofI. A
transactionis a tuple〈tid,X〉, wheretid is a transaction identity andX is an itemset.
A transaction databaseTDB is a set of transactions. A transaction〈tid, X〉 is said to
containitemsetY if Y ⊆ X. LetTDB be a given transaction database. Thesupportof
an itemsetX, denoted assup(X), is the number of transactions inTDB that contain
X. Given aminimum support thresholdmin sup, X is frequentif sup(X) ≥ min sup.

The transaction setof an itemsetX, denoted asT (X), is the set of all transactions
in TDB that containX. For our running example (Figure 1),T (bc) = {T1, T3, T5}.
Two itemsetsX andY are calledequivalent, denoted asX ∼ Y , if T (X) = T (Y ).
Theequivalence classof an itemsetX is the set of all itemsets that are equivalent toX.
For Figure 1, itemsetsbc andgi are equivalent sinceT (bc) = {T1, T3, T5} = T (gi);



the equivalence class ofb is {b, h, i, bh, bi, hi, bhi}. Symmetrically, theitemsetof a
set of transactionsD ⊆ TDB, denoted asI(D), is the set of items that appear in every
transaction inD, i.e.,I(D) = ∩(tid,X)∈DX. In Figure 1,I({T1, T3, T5}) = bcghi.

An itemsetX is call closedif there exists no proper supersetX ′ ⊃ X such that
sup(X) = sup(X ′). Easily, we can show that an itemsetX is closed iffI(T (X)) = X.
Symmetrically, a set of transactionD is closedif and only if T (I(D)) = D.

Definition 1. A formal conceptis a pairC = (X,D) whereX andD are a closed
itemset and a closed transaction set, respectively, such thatD = T (X) andX = I(D).
Given two conceptsC = (X, D) andC ′ = (X ′, D′), C is said to bemore generalthan
C ′ if X ⊂ X ′.

Under the set containment order, the itemsets form a latticeL. Moreover, under the
same order on the closed itemsets, the formal concepts form a latticeLC , which is a
Galois lattice(see Figure 3). Apparently, the lattice of the formal concepts is a quotient
lattice with respect toL, i.e.,LC = L/ ∼.

bdhi bcghi

cg bhid

abcdeghi

{}

cdg

acdg abdhi bcdghi bceghi

ad

Fig. 3. Galois lattice for TDB of Figure 1.

Observe that each equivalence class of itemsets contains a unique closed itemset,
which serves as the upper bound for the equivalence class. Also, each class contains one
or more lower bounds, which are the minimal generators. For example in Figure 1,b, h
andi are the minimal generators of formal concept(bhi, {T1, T3, T4, T5}) (Figure 2).

Definition 2. An itemsetY is called aminimal generatorfor a formal concept(X, D)
if T (Y ) = D but for every proper subsetY ′ ⊂ Y , T (Y ′) 6= D.

2.2 Succinct System of Minimal Generators.As discussed earlier, the minimal gener-
ators may still contain a lot of redundant information. Consider again the formal concept
C = (bcghi, {T1, T3, T5}) in our running example. In the same database, there is an-
other conceptC1 = (cg, {T1, T2, T3, T5}). C1 is more general thanC, andC1 hasc
andg as minimal generators. We can observe the following: If itemsetcX is a minimal
generator forC such thatg 6∈ X, thengX is also be a minimal generator forC. This
can be verified from Figure 2. Since we havebc, ch andci as the minimal generators
containingc but nog, we also have minimal generatorsbg, gh andgi. So, we only need
to keep either the minimal generators containingc or those containingg, but not both;
the rest can be inferred.

Can we have anon-redundantrepresentation of the minimal generators? The answer
is yes. The idea is intuitive though not straightforward. To illustrate the general idea,



suppose a user wishes to browse the minimal generators of the formal concepts in the
coarse-to-fine (or general-to-specific) order2. For each new conceptC to be browsed,
we would like to present to the user a minimal but complete set of allnewminimal
generators that cannot be inferred from the others for this conceptC and from the
minimal generators of the more general formal concepts already browsed.

Formally, for each formal conceptC, we need to define a new equivalence relation:
Two itemsetsX andY areC-equivalent, denotedX ≈C Y if (i) both X andY are
minimal generators of formal conceptC ′ such thatC ′ is more general thanC, or (ii) X
can be obtained fromY by replacing a subsetZ ⊂ X with Z ′ ⊂ Y such thatZ ≈C Z ′.

In our running example, ifC is the formal concept whose closed itemset isbcghi,
thenb ≈C h, b ≈C i, c ≈C g, bc ≈C bg, bc ≈C hg, etc. (Note thatC has two more
general formal concepts.) IfC is the formal concept whose closed itemset isbhi, then
X ≈C Y if and only if X = Y since there are no concept more general thanC.

The≈C equivalence relation partitionsC ’s minimal generators into equivalence
classes. We can achieve the goal of deriving a minimal non-redundant subset of minimal
generators by presenting one minimal generator for each of the equivalence classes. For
example, ifC is the formal concept whose closed itemset isbcghi, then all of its six min-
imal generators, namelybc, bg, ch, ci, gh, gi, belong to one equivalence class; ifC is the
formal concept whose closed itemset isabcdeghi, then its minimal generators can be
partitioned into three equivalence classes:{ae}, {de}, {abc, abg, ach, aci, agh, agi}.
Then, we can choose one representative for each class of minimal generators.

Which member of an equivalence class should be shown to the user, in order to
minimize the overall overhead on the user?We choose one minimal generator of each
formal concept as itsrepresentativeminimal generator. This can be done freely for
most basic formal concepts such asbhi, cg andd in Figure 3. To be succinct, for other
concepts, we should choose one of thosecanonicalminimal generatorsX such that
X does not contain any non-representative minimal generators of more general formal
concepts. For example, ifC is the formal concept whose closed itemset isbcghi, if b
andc are respectively the representative minimal generators for the concepts forbhi
andcg, thenbc should be the representative ofC.

Definition 3. A succinct system of minimal generators, or SSMG for short, consists of,
for each formal conceptC = (X,D), a representative minimal generator and a set of
canonical minimal generators.

An SSMG will remove the redundancy of minimal generators, give the users a con-
sistent handle on each class using the representative minimal generators, and also can be
used to derive all the minimal generators. The last column of Figure 2 gives an SSMG
for our running exampleTDB, where the first minimal generators are the represen-
tatives for the concepts of the corresponding rows. Given an SSMG, clearly we can
reconstruct all of the minimal generators. Also, the SSMG is not unique, even though
different SSMGs have the same number of minimal generators.
Problem definition. Given a transaction databaseTDB and a support thresholdmin sup,
the problem ofmining the succinct system of minimal generatorsis to find a succinct
system of minimal generators for all formal conceptsC = (X,D) that sup(X) ≥
min sup.

2 In fact, our definitions can deal with any order of browsing.



3 The SSMG-Miner Algorithm
This section introduces our algorithm for mining SSMGs. It includes several novel
techniques for computing local minimal generators and closed itemsets in a depth-first
manner, and for using them to derive the SSMGs. While the high-level structure of the
algorithm is similar to many existing DFS based algorithms, the new algorithmic contri-
butions lie with the efficient techniques for producing representative minimal generators
and removing the non-representative ones.
3.1 Depth-First Search Framework.The SSMG-Miner algorithm follows the gen-
eral depth-first search framework that can be described using a depth-first search tree
(e.g.set-enumeration tree(or SE-tree) [13]). The SE-tree enumerates all possible item-
sets for a given set of items, with a global order on the items. For each nodev in the
tree we have a headH (consisting of items considered so far), and a tailT (consisting
of items to be considered among descendant nodes). The search space associated with
v consists of all itemsets of the formZ = H ∪T ′, whereT ′ is a nonempty subset ofT .
For the node labelled byab in the SE-tree for{a, b, c, d}, we haveH = ab andT = cd,
and its search space consists ofabc, abd, andabcd. The algorithm will remove useless
branches of the SE-tree, as discussed later.
3.2 Computing Local Minimals/Closures.The SSMG-Miner will efficiently compute
“local minimal generators and closed itemsets” for each visited node in the depth-first
search. Later we will show that some local minimal generators and closed itemsets may
not be true minimal generators and closed itemsets for formal concepts, and consider
efficient techniques to remove such itemsets.

In our DFS computation, for each nodev with headH and tailT , those itemsx in
T such thatT (Hx) = T (H) (or equivalently,sup(Hx) = sup(H), in other words,
item x appears in every transaction that containsH) are in the local closed itemsets,
and are removed fromT . Let the local closureof H be LC(H) = {x ∈ H ∪ T |
T (H) = T (Hx)}. The removal of items fromT as described above will ensure that,
for all ancestor nodesv′ of v with headH ′ and tailT ′, LC(H ′) is a proper subset of
LC(H). HenceH is considered as thelocal minimal generatorfor LC(H).

We now illustrate the local minimal generators and closures computed for 6 nodes,
using our running example (Figure 1). (1) At the root node,H = ∅, T = abcdeghi,
LC(H) = ∅. (2) For the first child of the root,H = a and T = bcdeghi; since
T (a) = T (ad), we removed from T (so T becomesbceghi; this node now has6
children instead of the original7); LC(H) = ad; a is the local minimal generator
for ad andad is the local closure fora. (3) For the node with(H, T ) = (ab, ceghi),
LC(ab) = abdhi with sup(ab) = 2. (4) For(H, T ) = (abc, eg), LC(abc) = abcdeghi
with sup(abc) = 1. (5) For(H,T ) = (abe, g), LC(abe) = abdeghi with sup(abe) =
1. (6) For(H, T ) = (ae, ∅), LC(ae) = aeghi with sup(ae) = 1.

The SSMG-Miner algorithm keeps a tuple of the form(MinList : Max, Count)
for each formal concept, whereMinList is the list of minimal generators,Max is the
closed itemset, andCount is the support count. The first minimal generator inMinList
is the representative minimal generator. For Figures 1 and 2, the tuple(b, h, i : bhi, 4)
is for the formal concept(bhi, {T1, T3, T4, T5}).
3.2 Determining Equivalence.The local minimal generators and closures computed at
different nodes may belong to the same formal concept. The SSMG-Miner will check
on this and remove any redundancy.



Lemma 1. Letv be a node with headH and tailT . ThenLC(H) belongs to an existing
formal concept at the timev is visited if and only if there is a nodev′ visited before,
with headH ′ and tailT ′, such thatLC(H) ⊂ LC(H ′) andsup(H) = sup(H ′).

If one does the equivalence check based on the above lemma, the check will be
inefficient. The reason is that, for each new nodev with headH and tailT , we will need
to go through all existing formal concepts and conduct the subset checking based on
the support equivalence. In general, checking whether an itemset is a subset of another
itemset in collection of itemset is very expensive.

Lemma 2. Letv be a node with headH and tailT . ThenLC(H) belongs to an existing
formal concept at the timev is visited if and only if there is a nodev′ with headH ′ and
tail T ′ such thatv′ is visited beforev and v′ satisfies the following three conditions:
(1) sup(LC(H)) = sup(LC(H ′)); (2) LC(H) and LC(H ′) share a common suffix
starting fromx, wherex is the last item ofH; (3) the prefix ofLC(H)) beforex is a
subset of the prefix ofLC(H ′) beforex, wherex is as above. Here, the values ofT and
T ′ are those when the nodes are created.
Rationale.Clearly the “if” holds, since conditions (1–3) imply thatLC(H) ⊂ LC(H ′)
andsup(H) = sup(H ′), which in turn imply thatLC(H) andLC(H ′) are subsets of
some common closed itemset. “Only if”: SupposeLC(H) belongs to an existing formal
concept at the timev is visited. Letv′ be the node whenLC(H)’s formal concept is
first inserted; letH ′ be its head andT ′ its tail. SinceLC(H) andLC(H ′) belong to
the same concept, condition (1) holds. Sincev′ is the first node whenLC(H)’s formal
concept is inserted, by the nature of DFS computation, we have{y | y ∈ H andy is
beforex} ⊆ {y | y ∈ H ′ andy is beforex}, and so (3) holds. This implies (2) holds.

This lemma allows us to efficiently implement the check using some comparison on
the support counts, and certain suffixes and prefixes of itemsets and the local closure.

Example 1. We illustrate by considering these three formal concepts for example in
Figures 1 and 2:(a : ad, 3), (ab : abdhi, 2) and(abc : abcdeghi, 1). For the node with
H = abe andT = g, LC(abe) = abdeghi and sup(abe) = 1. We need to decide if
this is a new formal concept and, if not new, which existing concept is that ofabe. We
do this as follows: We look for (1) concepts with the same support count asabe, and
we compare their closed itemsets againstLC(abe) = abdeghi. The conceptC of abc
is the only such concept. We note the following: (2) The closed itemset ofC, namely
abcdeghi, andLC(abe) = abdeghi share the common suffix ofeghi, starting at the
iteme (the last item ofabe). (3) The prefix ofLC(abe) = abdeghi beforee, namelyabd,
is a subset of the prefix ofabcdeghi beforee. Lemma 2 ensures that, when this happens,
abe is not generating a new formal concept, butabe is another potential generator for
the concept ofC.

On the other hand, if there is no conceptC satisfying the conditions, then the new
local minimal generator and closure form a new formal concept. Consider the formal
concept(bd : bdhi, 3) and we computeLC(cd) = cdg andsup(cd) = 3 at the node
with H = cd. We conclude thatcd andbd do not belong to any previously found formal
concept, sinceLC(cd) is not a subset of any closed itemsets of existing concepts with
the same support.



More specifically, Lemma 2 implies that equivalence checking can be accomplished
efficiently by using a search tree structure. In such a tree, the items are ordered under
the reverse of the original orderon the items. We have one such tree for each support
count. The trees will be built in a lazy manner. For each formal conceptC, we use
the closed itemset forC to search and insert. This is done similarly for local closures
computed at nodes. For example, if the original order of items is the alphabetical order,
for the closed itemsetabcdeghi, we have a branch ofi → h → g → e → ... For the
search involvingLC(abe) = abdeghi, we follow the branchi → h → g → e. Then
we go through the formal concepts stored below this branch to check for containment
of the prefixes. Since the search of the suffix only needs to continue if exact match is
found and can be terminated as soon as a mismatch is found, it is very efficient.
3.3 Removing Non-Minimal Generators and Clutters.Some local minimal genera-
tors computed in the DFS process may turn out to be not minimal generators for their
formal concepts. Also, the clutters caused by redundant minimal generators need to be
removed. We now discuss how SSMG-Miner handles these issues.

To show the removal of non-minimal generators, let us examine the running exam-
ple again (Figures 1 and 2). For nodeH = ae, we have four formal concepts computed:
(a : ad, 3), (ab : abdhi, 2), (abc, abe, abg, ace, ach, aci : abcdeghi, 1), (ac : acdg, 2).
We find thatae is a new minimal generator for the concept ofabcdeghi. Sinceabe
andace are supersets ofae, they are not true minimal generators for their formal con-
cept, and should be removed. So the third formal concept becomes(abc, abg, ach, aci :
abcdeghi, 1), beforeae is inserted. Sinceae is earlier thanabc in the “cognitive-order”,
we selectae to replaceabc as the representative minimal generator.

To exemplify the removal of clutters, let us consider the running example (Figures 1
and 2). Suppose our current set of formal concepts are as given above, and we next
consider the nodeH = ag. We find thatLC(ag) = adg. We see thatadg andacdg
are equivalent, henceag is the second minimal generator ofacdg. We then remove
all minimal generators of other concepts which containag (the redundant generators).
For example,abg is removed from the set of minimal generators ofabcdeghi. So we
get the following formal concepts:(a : ad, 3), (ab : abdhi, 2), (ae, ach, aci, abc :
abcdeghi, 1), (ac, ag : acdg, 2).

Regarding implementation, for each formal concept we have a concept identifier
CID. For each itemx, we have an inverted list consisting of all those formal concepts
that have one or more minimal generators containingx. These inverted lists will be used
to locate formal concepts that may contain a given itemset (minimal generator).
3.4 The Pseudo-Code of SSMG-Miner.The SSMG-Miner (Figure 4) calls the DFS
function for the root node, with these three arguments:H = ∅, T = I − LC, and
LC = ∅, whereI is the set of all items.

The DFS function first determines ifH meets the minimal support threshold. If
the answer is yes, it will move all those itemsx such thatsup(H) = sup(H ∪ {x})
from T to LC. At this time, (H,LC, sup(H)) becomes a candidate new concept. If
LC is not equivalent to any current concept, then it inserts(H, LC, sup(H)) as a new
concept. Otherwise it insertsH as a new minimal generator of its concept, and removes
the clutters. The check regarding equivalence, the insertion of new minimal generators
and the removal of clutters are discussed in the previous subsections. Limited by space,
their pseudo-code is omitted. DFS calls itself for each child node of the current node.



ALGORITHM SSMG M INER:
INPUT: A transaction databaseTDB, support thresholdmin sup.
OUTPUT: Succinct system of minimal generators for formal concepts inTDB.
METHOD:
let SSMG = ∅; // SSMG is a global variable;
let LC = {items occurring in all transactions};
call DFS(H = ∅, T = I − LC, LC);
return SSMG;

Function DFS(H,T,LC) //H: head,T : tail
// LC: local closure, with value of parent node initially

if sup(H) < min sup return;
for eachx ∈ T

if sup(H ∪ {x}) = sup(H)
let T = T − {x}, LC = LC ∪ {x};

if (H : LC, sup(H)) is a new concept
add(H : LC, sup(H)) to SSMG;

else addH as minimal generator forLC and remove clutter
for eachx in T

let Hx = H ∪ {x} andTx = {y ∈ T | y > x};
call DFS(Hx, Tx, LC);

Fig. 4. Algorithm SSMG-Miner.

4 Performance Study

We now report experiments on the performance of the SSMG-Miner algorithm and its
effect in reducing the amount of redundant information. Experiments show that the al-
gorithm can deal with fairly high dimensional data sets within a short time. We also pro-
vide comparison with previous work as much as we could, and with a post-processing
approach. All experiments (unless indicated otherwise) were performed on a PC with
P4 2.4G CPU and 512M main memory, running on Windows XP.

We used two data sets in our efficiency experiments. (1) The Mushroom data set
has been frequently used for evaluating data mining algorithms and is obtained from the
UCI Machine Learning Repository. It includes22 attributes and8, 124 tuples. There are
a total of121 attribute-value pairs (items). (2) The Colon tumor gene expression data set
is from [2]. It consists of micro-array gene expression data for62 sample tissues, with
22 being normal tissues and40 colon tumor tissues. Microarrays are a technology for
simultaneously profiling the expression levels of tens of thousands of genes in a patient
sample. It is increasingly clear that better diagnosis methods and better understanding of
disease mechanisms can be derived from a careful analysis of microarray measurements
of gene expression profiles. As with most association-type data mining, we discretized
each gene into two intervals: low and high. We also used the entropy method to select
the top45 most “relevant” genes from total of 2000 genes. These data sets are typical
examples of data that might be used in scientific discovery process by data mining
techniques. Please also note that these two data sets are quite dense and thus challenging
to mine, as indicated by many previous studies.
4.1 Redundant Information Reduction.Figure 5 shows the succinct minimal genera-
tor concept leads to a huge reduction in the number of minimal generators in the result
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Fig. 7. Scalability on num-
ber of items: Mushroom data
set (support threshold=1%).

of mining. The Colon data set is used. For the case of 40 items, 76% of the minimal gen-
erators are redundant, and for 45 items 93% of the minimal generators are redundant.
The reduction on Mushroom is similar (the details are omitted due to space).
4.2 Comparison with Postprocessing Approach.Post processing seems to be much
worse than the SSMG-Miner, even though we do not ask the postprocessing algo-
rithm to remove the reduntant minimal generators. For example, we compared with the
postprocessing approach which combines the Charm algorithm [15] for closed item-
set mining, and the Border-Diff algorithm [6] for mining the minimal generators from
the closed itemsets. First, the Charm algorithm is used to compute the closed itemsets
satisfying given support threshold. (We used our own implementation of the Charm al-
gorithm.) Then, for each closed itemsetX, let SX = {Y | Y ⊂ X andY is a closed
itemset}; then the Border-Diff algorithm is called to mine the minimal itemsets which
occur inX but not in any itemset inSX . Let M1, ...,Mk be the result of this operation.
It can be verified thatM1, ..., Mk are the minimal generators for the class represented
byX. It turns out that this algorithm is very expensive: On the Colon data, on20, 25 and
30 projected columns of the data, SSMG-Miner used 1, 1 and 2 seconds respectively,
whereas post-processing used 305, 964, and 4090 seconds respectively. The main cost
of the Charm+Border-Diff algorithm is due to the large number of calls fo Border-Diff.
4.3 Comparison with a Previous Algorithm. No previous work has considered the
mining of succinct minimal generators. Some prior work considered the mining of all
minimal generators [12]. (Several papers considered the mining of closed itemsets, and
perhaps with one minimal generator for each closed itemset.) We contacted the authors
of [12], but we cannot obtain either executable or source code. We are able to provide a
rough comparison as follows: For the Mushroom data when all attributes are considered
and the minimal support is set at1 (so that all itemsets are frequent), our algorithm
finished in about 2 hours on our machine. On the other hand, the algorithm of [12] used
about one day and a half. Although the configuration of the test platform is not given
in [12], we believe that our method is substantially faster. We should also note that the
algorithm of [12] does not remove clutters.
4.4 Scalability.Figures 6 and 7 show the computation time of SSMGas the number of
items varies. The minimum support is set at1% and the different number of items is ob-
tained by projecting the original data set over the first k items. Although the processing
time increases exponentially with the number of items, it is encouraging to know that
our algorithm finishes in a reasonable amount of time. We use random subsets of the
Mushroom data to test thescalability on size of database. Figure 8 shows the compu-
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Mushroom data set.

tation time vs. the number of instances for the Mushroom data. The computation time
is roughly linear as the number of instances (tuples) increases. Figure 9 shows how
computation time variesas the support threshold varieson the Mushroom data. As
the support threshold decreases, the number of minimal generators increases, leading to
increased computation time.
Summary. From the extensive experiments on the two real data sets, the effectiveness
and efficiency of SSMG-Miner are verified. Our results show that SSMG-Miner is fea-
sible for mining real data sets.

5 Related Work and Discussion
5.1 Related Work. Formal Concept Analysis (FCA) was first pioneered by Wille in
1982 [7], and has grown into an active field for data analysis and knowledge discovery.
Other previous research most related to our work can be divided into two categories:
mining closed itemsets and mining minimal generators.

Closed itemset miningis one of the major classes of research addressing the fre-
quent itemset mining problem [1]. This class of research aims at mining a concise subset
of the frequent itemsets that can be used to derive all other frequent itemsets and their
support counts. A major approach considers the closed itemset mining problem, ini-
tially proposed in [10], where one mines only those frequent itemsets having no proper
superset with the same support. Mining closed itemsets can lead to orders of magnitude
smaller result set [16] (than mining all frequent itemsets) while retaining the complete-
ness, i.e., the concise result set can be used to generate all the frequent itemsets with
correct support counts in a straightforward manner. In the last several years, exten-
sive studies have proposed fast algorithms for mining frequent closed itemsets, such as
Aclose [10], CLOSET [11], MAFIA [4], CHARM [15], andCLOSET+ [14].

While prior research considered closed itemsets, they paid little or no attention to
mining minimal generators. Minimal generators were only used as a means to achieve
other goals if they were considered. The algorithm of [10] focused on the mining of
closed itemsets, but in the computation process it produces one minimal generator as a
by-product. The non-derivable and free itemsets [5, 3] are related to minimal generators.

Reference [12] gave an algorithm to compute the closed itemsets and their mini-
mal generators incrementally (by inserting tuples one at a time). However, it does not
consider the removal of the redundant minimal generators.
5.2 Further Extensions.Our method can be extended in several aspects, including
these three: (1) We can analyze the SSMGs and their relationship with their correspond-



ing closed itemsets. We can also analyze the SSMGs for data with multiple classes,
such as normal tissues and cancer tissues for colon cancer discussed above. (2) We can
consider SSMGs for approximate formal concepts, as a generalization of “exact” equiv-
alent classes. We can view itemsets as approximately equivalent if their transaction sets
are approximately equal. This will help reduce the number of formal concepts signif-
icantly. We can also analyze the SSMGs of approximately identical formal concepts.
(3) We conjecture that the following numbers can be used as indicators of the structure
of the data set under consideration: the number of formal concepts, the number of for-
mal concepts with multiple minimal generators, and the reduction ratio from number of
minimal generators to succinct minimal generators.
Acknolwedgement: We thank Ravi Janga who helped with the coding of the Charm-
BDiff algorithm, and the reviewers of a previous version of this paper.
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