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Abstract

Novel technologies have led to exponentially increasing amounts of genomic data.
However, while costs have been constantly reducing, modeling and analysis techniques
have only just started to catch up in effectiveness and efficiency.

Regulomics is a sub-field of genomics which studies the mechanics of gene ex-
pression regulation, i.e. how cells select and express different genes to respond to the
different situations. Among those, Transcription Factors (TFs) are proteins that attach
themselves the DNA of prokaryotic and eukaryotic organisms in highly specific Tran-
scription Factor Binding Sites (TFBS), and modulate how accessible the surrounding
DNA areas is by RNA transcription machinery. Such areas usually contain coding se-
quences of genes. For this reason, they are of great importance in regulomics. TF
activity has been studied in isolation by various means, such as wet-lab experiments
and computational methods, but the interplay of several TFs has not been studied as
much. TF co-regulation is significantly harder to analyse directly, requiring novel com-
putational methods.

This thesis discusses a novel model aimed at predicting and classifying TF-TF in-
teractions using a data-driven, model-based approach. The fundamental idea is that
TFBS and coding sequences can be represented as a set of oriented, linear coordi-
nates with features attached, and that the distance between binding sites in this coordi-
nate system is an informative feature which can be used to predict TF-TF interactions.
This approach relies on the properties of the distribution of genomic distances between
matched, closest binding sites of potential interactors. To further refine this model,
firstly protein-protein interaction (PPI) network data is mined to compute additional,
independent features used in classification of TF-TF interactions, under the assumption
that the more shared interactors two TFs have in the PPI network, the more likely it
is that they are co-operating as opposed to competing for another partner; secondly,
the number of detected copies of each TF at the relevant binding sites is used to infer
whether the TFBS itself it highly bound or instead disrupted.

The resulting classifiers are named TICA, NAUTICA and ESTETICA; the first two
show good performance with respect both to reference databases and existing literature.
Taken as a whole, they represent a powerful framework for inferring and classifying
TF-TF interaction phenomena.
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CHAPTER1
Gene transcription regulation foundamentals

Introduction

This chapter contains a brief introduction to gene regulation mechanisms, chief among
those the effect of proteins known as Transcription Factors. Most of the contents of this
chapter focus on eukaryote species (specifically Homo sapiens); for additional informa-
tion on prokaryote gene expression and its similarities and/or differences, the reader is
referred to additional texts, such as [1].

1.1 DNA, genes and cellular life regulation

Living organisms pass their characteristic traits to offspring by means of genetic in-
formation. This information is contained in deoxyribonucleic acid molecules, more
commonly known as DNA. Briefly, a DNA molecule is composed of two chains of
nucleotides that coil around each other to form the characteristic double helix shape
(Figure 1.1). Four types of nucleotides are found in DNA molecules: adenine (A),
cytosine (C), guanine (G) and thymine (T). Nucleotide bases found on mirrored points
of the double helix are biochemically paired: A matches T and G matches C [2] [3].
Therefore, the long double helix chain can be represented by a single sequence of A, T,
G, and C symbols.

In eukaryotes, DNA molecules are separated from the main body of the cell and kept
in a compartment known as the nucleus1. All higher animals are eukaryotes, including
Homo sapiens sapiens. Eukaryotic cells usually package their DNA molecules in con-
glomerates (known as chromosomes) for efficiency of storage and access (cf. Section
1.2).

1As opposed to prokaryotes, whose DNA material is interspersed in the cell itself.

1
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Chapter 1. Gene transcription regulation foundamentals

Figure 1.1: A fragment of DNA, with highlighted nucleotides. Note the typical double helix shape.
Image courtesy of U.S. National Library of Medicine (https://ghr.nlm.nih.gov/primer/
basics/dna).

Information stored in the DNA is used to guide the synthesizing of molecule func-
tion to cell life and growth. Each string of nucleotide bases corresponds to one of the
many thousands of proteins that the cell can construct from the raw materials in the en-
vironment. Information contained in nucleotide base chains is transcribed into another
ribonucleic acid, messenger RNA (mRNA for short). mRNA conveys this information
from the nucleus to another part of the cell known as the ribosome, where it is used in
the aforementioned building process. A DNA segment that codes for a specific protein
is called a gene; the entirety of genes contained in the DNA of an organism is called its
genome, and it is shared across most of its constituent cells2.

The process by which a cell reads its DNA, copies a particular gene’s information
content and constructs the relative product is called gene expression. Briefly, in re-
sponse to internal and/or external cues (such as changes in the environment, lack of
biochemical species required in the cell body, etc.) the cell initiates the formation of
the transcription pre-initiation complex (PIC, cf. Section 1.2). The PIC is a protein
complex composed of more than 100 proteins [4] that recruits and positions another
multiprotein complex called RNA polymerase II (RNApol2) close to the transcription
start site (TSS) of a gene of interest [5]. The TSS is the starting position of the nu-
cleotide base sequence that encodes for the product of that gene. RNApol2 binds the
DNA at the target spots and begins assembling a complimentary mRNA fragment; the
fragment then detaches from the DNA spot and is transported through other biochem-
ical processes to the ribosome, where the gene product is built following its encoded
specifications.

The human genome is estimated to contain circa 20,000 genes [6]. Different genes
are expressed in different quantities by every cell during its life cycle, according to
their need and function. The process with which a cell selects the genes to express in

2There are exceptions, such as gamete cells in animals that perform sexual reproduction.

2
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1.2. Gene expression regulation and the role of transcription factors

Figure 1.2: DNA packaging across multiple scales. The outmost structure, the chromosome, is composed
of tightly coiled double helices of dexorybonuchleic acid, wrapped around the histones. A block
composed by histone proteins and the DNA coiled around it is called a nucleosome. Image courtesy
of https://slideplayer.com/slide/4463102/.

every given situation is called gene expression regulation. Choosing whether or not
to express a particular gene (and produce the corresponding protein) deeply influences
cellular behaviour and resilience to external threats; it is therefore fundamental for
cellular survival, growth and adaptability.

1.2 Gene expression regulation and the role of transcription factors

Cells regulate the nature and quantity of the genes they express using several means,
such as chromatin domains accessibility, transcriptional, and post-transcriptional reg-
ulation. The most basic form of such regulation is DNA packaging.

The DNA of most eukaryotic organisms is too long to be contained in the relatively
small cell nucleus without some form of compression (Figure 1.2). In addition to this,
the basic phenomenon that drives RNA molecule interaction with the DNA is diffusive
motion, and thus the process of expressing a single gene could become very inefficient
in energetic terms if the DNA was not properly organised and compacted [7]. Organ-
isms have evolved several mechanisms to manipulate and store their DNA material:
among the most interesting is the effect of histone proteins (or histones). Histones are
alkaline proteins that package DNA helices into subunits called nucleosomes: they do
so by acting as spool around which DNA winds itself [8]. Histones have been subject to
intensive biological and biochemical studies: it is thought that chemical modifications
(acetylation, mono-, di- and tri-methylation, etc.) occurring on certain histone proteins
are correlated and affect the transcription process of surrounding genes [9].

The complex composed of DNA, RNA and proteins (including histones) is called
chromatin. Although still poorly understood, the organization of chromatin is thought
to have a strong influence on various aspects of DNA management and decoding: in
addition to DNA packaging, chromatin conformations may strengthen DNA macro-

3
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Chapter 1. Gene transcription regulation foundamentals

Figure 1.3: Example of the open chromatin and its effect of DNA accessibility. The DNA binding complex
can more easily access the area where the histones are less tightly packed, allowing for binding to
the DNA double helix. Image courtesy of [10].

molecules during mitosis (asexual cell reproduction), prevent DNA damage and, most
importantly for this work, enhance or inhibit the ratio with which one or more genes
are transcribed. The more the chromatin structure at a given point along a chromosome
is condensed (tightly packed), the less likely it is that the underlying DNA is acces-
sible to RNA molecules; conversely, loosened chromatin allows for exposure of DNA
sequence and transcription of the corresponding genes. These behaviours are referred
to as chromatin accessibility regulation.

Along with chromatin accessibility, another important mechanism that drives dif-
ferential gene expression between and within cells is the effect of transcription factors
(TFs). Transcription factors are proteins that function as activators or repressors to
the transcription of specific part of DNA into messenger RNA. Generally, transcription
factors are composed of two domains3 (substructures): a DNA-binding domain (DBD),
which is able to recognize and bind to specific sequences of nucleotides found on the
DNA, and a trans-activating domain (TAD), which allows for one or more matching
classes of other transcription factors to bind in specific spots of the protein itself and
act as transcriptional co-regulators [11]. Different DBDs separate transcription factors
into evolutionary-related families. Examples of transcription factors families are basic-
leucine zippers (bZIPs), such as AP-14, and CREB5 basic helix-loop-helix (bHLHs)
(C-MYC6, MAX7, etc.), and others.

3Certain TFs also possess signal-sensing domains (SSDs), used to discover and react to clues found in the environment. SSDs
have not been discussed in my research work and are therefore outside the scope of this document.

4The FOS / JUN heterodimer involved in many process such as differentiation or apoptosis.
5A TF that binds cAMP response elements (CRE) to increase or decrease the transcription of the genes.
6A TF often expressed in cance that upregulates genes involved in cell proliferation.
7A TF able to homo- or heterodimerize with other MAX proteins or h other transcription factors, including MAD, MXI1 and

MYC. The dimers compete for a common DNA target site, their rearrangement of dimers providing a system of transcriptional
regulation a diversity of gene targets.

4
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Figure 1.4: Schematic representation of the effect of one transcription factor on gene regulation.
The binding of each transcription factor to a matching binding site in the promoter enhances
or inhibits the production of the protein encoded in a gene. Image courtesy of http://www.
assignmentpoint.com/science/biology/transcription-factor.html.

Figure 1.5: Domain structure of nuclear receptors, a class of transcription factors. N and C represent
the amino and carboxyl termini, respectively. AF1 is a variable amino-terminal transactivation do-
main. The ligand-binding domain (LBD) also mediates dimerization, transcriptional activation, and
transcriptional repression functions. DBD, DNA-binding domain. Image courtesy of [12].
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Chapter 1. Gene transcription regulation foundamentals

Transcription factors have multiple effects on gene expression regulation. Some
of them, aptly called General Transcription Factors (or GTFs), do not bind the DNA
themselves but instead recruit the components and take part in the formation of the
PIC. Among those, the most important are TFIIA, TFIIB, TFIID, TFIIE, TFIIF and
TFIIH [13]. These TFs are present in every eukaryotic gene transcription and are not
cell or gene specific. Many other TFs, instead, act as differential transcription en-
hancers or repressors, modifying the rate at which certain genes are transcribed. They
do so by binding the DNA area neighboring the transcription start site and altering the
accessibility of the genetic code surrounding their Transcription Factor Binding Site
(or TFBS) (Figure 1.4). Once bound to a DNA binding site, a transcription factor can
enhance transcription by recruiting members of the PIC or RNA polymerase 2 itself to
its position; conversely, it can hinder the transcription of a gene by blocking access of
those protein complexes to the DNA. Those transcription factors that facilitate (resp.,
hinder) transcription are called gene activators, or simply activators (resp. gene re-
pressors, or repressors). Note that due to the aforementioned multitude of different
genes in the eukaryotic genomes, a single transcription factor can act as an activator or
repressor for different genes, and can be both an activator for a particular set of genes
and a repressor for others [14].

1.3 Transcription factor complexes and the effect of combinatorial reg-
ulation

Even considering the great variety of known transcription factors (scientists have iden-
tified almost 2000 transcription factor proteins in the human genome [15]) and the
multiplicity of regulatory processes controlled by a single TF, the effect of transcrip-
tion factors in isolation is not sufficient to explain every known differential expression
phenomena. In fact, transcription factors are known to work in group, forming regula-
tory complexes of two or more subunits that together may give rise to more extended
regulatory modules.

As mentioned in Section 1.2, many transcription factors contain trans-activating do-
mains (TADs). TADs can be described as “plug holes” that other proteins can recognize
and to which they can bind to form larger regulatory complexes (Figure 1.5). A pro-
tein that binds to a TF in order to form a regulatory complex is called a transcription
coregulator; however, in this thesis the term coregulator is used to refer only to tran-
scription factors acting as part of a regulatory complex (recall that transcription factors
are themselves proteins). Through these evolution-engineered combinations, transcrip-
tion factors control the expression of most if not all the genes in eukaryotic cells. The
phenomenon of binding and creation of regulatory complex is referred to as combina-
torial regulation.

The mapping of all TF regulatory interactions in an organisms is sometimes referred
to as its transcription regulatory network, a subset of the more general Protein-Protein
Interaction (PPI) network. It is important to note that, like many other biological phe-
nomena, gene expression regulation is in its nature a stochastic process based on a
diffusive component, hence the effects of combinatorial regulation are to be thought
as influencing the ratio of the expression itself rather than indicating absolute effect
(“on-off switches”). The two broad classes of co-regulatory phenomena, activation and

6
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Figure 1.6: Examples of coactivators binding to the DNA as a single complex. Note the recruitment
of RNAPol2 by the activating complex. Image courtesy of http://www.assignmentpoint.
com/science/biology/transcription-factor.html

repression, will be discussed in the following paragraphs.

1.3.1 Activation

A transcriptional coregulator is said to be a co-activator (Figure 1.6) of a certain TF if
the rate of expression of one or more target genes is enhanced by the presence of the
complex formed by the two proteins. This can be achieved by an increase in recruitment
of the basal transcription machinery to the target gene’s TSS, or in the openness in
chromatin states in the vicinity of the activator-coactivator’s binding site. Examples of
such complexes in human TFs are the activating protein 1 (AP-1) complex, involved in
cellular transformation, apoptosis, proliferation, and differentiation [16], and the SOX2-
OCT4 complex (two of the so-called Yamanaka factors [17]), involved in maintaining
the pluripotent status of undifferentiated stem cells.

1.3.2 Repression

Some transcription factors bind each other to augment their repressive effect on the
transcription of certain target genes, further reducing the amount of gene transcribed.
A coregulator that binds to a TF and enhances repression is called a co-repressor.
Repressor-corepressor complexes may achieve their objective by binding the DNA
on promoters and recruiting chromatin-stiffening molecules (such as histone deacety-
lases); in other case, the mere act of the creation of the complex constitutes a repressive
mechanisms by virtue of replacing a critical coactivator of the companion TF (more on
this in the next section). An example of the first kind of complex is given by the TR
(Thyroid hormone receptor) / RCOR1 (nuclear receptor co-repressor 1) complex [18],
while a second one is found in the MYC (avian myelocytomatosis viral oncogene ho-
molog) / MAX (MYC-associated factor X) / MXI1 (MAX Interactor 1) triad, where MXI1
competes to bind on MYC-accepting binding sites found on MAX [19].

1.3.3 Cooperation and competition

Whether activating or repressing target genes, coregulators are interacting to achieve a
common objective. This phenomenon is referred to as TF-TF cooperation and it is a
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Chapter 1. Gene transcription regulation foundamentals

common form of combinatorial regulation. The last example given, however, suggests
that TFs do not always cooperate.

It may happen that a certain TF’s transactivation domains are compatible with more
than a single interactor. However, intuition and basic chemistry suggest that no more
than one molecule may perform physical binding at a given position in a given moment.
In this scenario, it can happen that one or more interactors compete for binding to a
target TF species, each hoping to recruit it for its regulatory objective. This is referred
to as TF-TF competition.

A TF species can have multiple competitors for a single co-interactor, and some-
times it may also happen that two given species alternate between cooperating and
competing based on cellular state, environmental cue or the presence of additional,
shared interaction partners [20]. Finally, it has been observed that two different TF
species with similar enough DNA-binding domains may compete for the same bind-
ing spots on the DNA [21]. Although it is kinetics-wise a separate phenomenon , for
simplicity’s sake it shall also be referred to as a competition effect.

1.4 Clinical significance of TF studies

Protein dynamics drives most of the cell development and life cycle mechanisms; there-
fore, the study of gene expression and its regulation is of great interest, both from the
point of view of better understanding the biology of higher eukaryotes (including hu-
mans) and for the development of clinical methods and life-enhancing pharmaceuticals.

Firstly, the full extent of the transcriptional regulatory network is not yet fully un-
derstood for many of the most complex organisms. This is due in part to a more general
lack of completeness in the known PPI network for the same [22], and also to inherent
difficulties of designing, performing and analyzing the results of wet-lab experiments
targeted at discovering new TF interactions. Augmenting our understanding of the
intricacies of TF-TF interactions may allow research to explain previously unclear phe-
nomena such as abrupt cell decay and/or apoptosis, carcinogenesis or cell behavioral
breakdown during disease.

From a pharmaceutical point of view, it is very interesting to study novel TF-to-
target and TF-TF interaction since it allows to exert a degree of control over the internal
mechanisms of the cell. Techniques have been developed [23] that allow for systematic
in vitro knockdown (i.e., suppression of TF expression) and over-expression of tran-
scription factors in cells. While these methods are still in their early stages and require
more careful studies, the potential for rewiring faulty or damaged transcriptional net-
works (as can happen, for instance, in cancer cell lines [24]) is tantalizing. On the other
hand, it is also possible that increasing the expression of certain transcription factors
in cells may lead to beneficial and desirable effects: a good example of this is the fa-
mous study from Yamanaka and colleagues about the restoration of pluripotent status
in differentiated cells [25]. Experiments like these require precise understanding of the
inner workings of TF regulatory networks, which cannot always be achieved by wet-lab
experiments alone.

8
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CHAPTER2
Computational regulomics: data, models and

methods

Introduction

Regulomics1 is part of a wider family of emerging disciplines collectively known as
-omics: genomics, proteomics, transcriptomics, etc. In this chapter a number of com-
putational methods used in regulomics are described in terms of methods of acquisition
and processing of wet-lab data, to how this data is represented in machine-readable
format and the algorithms used for its analysis. In particular, the GenoMetric Query
Language (GMQL) [26], a framework developed by the Genomic Computing research
group at DEIB, that has been critical to the my research, is presented.

2.1 Experiment protocols

The first step for applying any machine learning or computational method to a problem
is to investigate which type of data is available. For regulomics, this means discussing
how wet-lab experiments are performed and which type of data is obtained as a result.
Different techniques may target different parts of the regulome, and describe different
aspects of the same phenomenon. Moreover, not all data can be effectively analysed
with the same techniques: statistical hypotheses on the underlying distributions have to
be verified in the sample data, and biases must be accounted for.

Current DNA sequencing technologies are based on so-called Next Generation Se-
quencing (NGS) protocols, also known as high-throughput sequencing. NGS [27] is an
umbrella term for a group of novel experimental protocols able to sequence substantial

1Defined as the study of gene expression regulatory phenomena - transcription factors, changes in chromatin state, post-
translational modifications, the ensemble of which is known as regulome.

9
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Chapter 2. Computational regulomics: data, models and methods

quantities of genetic material in parallel, in overall little time. While different protocols
produce different reads (i.e., lists of nucleotide bases at a given position in the sample
analysed) with different read length, most method share common features: each se-
quence is usually reproduced multiple times to increase accuracy of the resulting read
(called read depth), and the final result is determined by the consensus of all the repli-
cated reads. NGS algorithms are characterized by large volumes of reads aligned in
output (from 50000 to 1 billion or more) and an execution time of 30 minutes (single
molecule real-time sequencing) to one or two weeks for slower methods (sequencing
by ligation or SOLiD).

For the most part, three experiment types are used when discussing gene regulatory
phenomena: RNA sequencing (RNA-seq) [28], DNase I hypersensitive site sequenc-
ing (DNAse-seq) [29], and chromatin immunoprecipitation and sequencing (ChIP-Seq).
A summary of the experimental protocols for RNA-seq, DNAse-seq and ChIP-Seq is
given below, with more details given to ChIP-Seq (as it is most relevant to this disser-
tation).

RNA-seq

RNA sequencing is a recent technological protocol that is replacing microarrays as the
standard for quantification of gene expression. RNA contained in a cell sample is ex-
tracted and filtered to keep only a subclass of interest (such as mRNA, ribosomal RNA,
etc.). Then, the surviving RNA fragments are chopped into small pieces (typically 30
to 200 base pairs) and converted into complimentary strands of DNA (cDNA) as per
the rules described in Section 1.1. This is done in order to leverage on existing high-
throughput DNA sequencing techniques, which are more mature than their RNA coun-
terparts. Several purification and hybridization methods can be applied at this stage to
improve the quality of the resulting DNA fragments, based on the contents and size of
the transcript reads. Finally, the reads are aligned to deduce the gene to which they
refer to.

There are two primary ways to align the reads: with or without a reference genome
(the latter also known as de novo alignment). The resulting output is the total amount
of reads per gene found in the organism’s genome. RNA-seq is used in the context of
regulomics to analyse the different levels of gene expression across different conditions,
typically when a transcription factor has been knocked down (i.e., rendered inactive)
or artificially over-expressed, or when the chromatin state is altered due to epigenetic
causes or human intervention.

DNAse-seq

DNAse I hypersensitive site sequencing is based on a different premise: some loci on
the DNA are known to be expecially sensitive to the effect of deoxyribonuclease I
(DNAse I). DNAse is an enzyme which has the ability to cleave and sever DNA strands,
and it is thought to be involved into DNA waste management, DNA self-repair and
during the process of cell apoptosis (programmed death). Studies have suggested [30]
that regions where the chromatin is open and DNA is exposed are also more sensitive
to the effect of DNAse (as mentioned earlier, chromatin has a role in protecting the
integrity and accessibility of DNA). Moreover, these sites have been mapped to gene
regulatory regions such as promoters, enchancers and others. Thus, DNAse sequencing

10
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2.2. ChIP-Seq Peak calling

uses deoxyribonuclease I to digest DNA fragments in areas where the nucleosomes
are less compacted, then captures and sequences them according to high-throughput
sequencing protocols similar to those used by RNAseq.

ChIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) [31] is the standard
protocol used for investigating physical binding interactions between proteins and the
DNA. Datasets obtained from these experiments contain information on binding loci,
both in terms of position in the genome (chromosome and base pairs, cf. Section 2.4)
and in terms of statistical reliability / intensity of the binding peaks. ChIP-seq, as the
name suggests, combines two processes: chromatin immunoprecipitation and massive
parallel DNA sequencing.

Immunoprecipitation (IP) techniques are wet-lab protocols for the extraction of one
(or more) proteins from a solution, such as the cellular nucleus. Briefly, it is based on
the process of precipitation, by which a heavier component of the solution falls below
lighter parts and is brought together into a solid by force of gravity. In the case of bio-
logical proteins, this precipitation is induced by specific antibody which recognizes and
binds to the protein of interest, creating an antibody-protein complexes that is heavier
than the other proteins. Chromatin immunoprecipitation is a variant of this approach
specifically tailored to investigating DNA-protein complexes, such as the ones formed
by transcription factors bound to regulatory regions. This leverages another technique
known as cross-linking, the use of a biological probe to generate links in polymer
chains [32]. Using cross-linking probes, one can generate the required protein-DNA
complexes; after that, the cell is broken open and DNA is chunked into smaller seg-
ments, some of which are bound by the protein of interest. A protein-complimentary
antibody is injected in the solution, and the result is precipitated as per standard IP. The
final protein-DNA complexes are then separated again (for instance, by using heat to
break the polymer-chain bonds) and the protein is discarded, leaving the bound DNA
strand ready for massive parallel sequencing.

2.2 ChIP-Seq Peak calling

Once reads have been aligned to the reference genome (or de-novo aligned), peaks of
protein-DNA interactions are called. A peak is a region where an enrichment of aligned
reads is measured during and experiment, and is therefore a region (more) likely to be
an actual protein-DNA interaction site. For ChIP-seq data on transcription factors, they
represent TF binding site positions on the genome.

However, not all enriched regions represent actual interaction sites. The process of
reading and aligning reads is inherently noisy and error-prone, therefore some of the
enriched area will be false positives and must be discarded. Many algorithms have been
developed that perform peak calling, i.e. distinguish between actual interactions sites
and noisy areas based on the characteristics of the enrichment of reads in a sample.
Thomas et al [33] published a review of existing peak-calling algorithms; among those,
some well-known and used examples are MACS [34] (which is also widely used by
the ENCODE Project Consortium, see below), MUSIC [35], GEM [36]. A peculiar
kind of peak calling is differential peak calling, which aims at identifying significant

11
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Chapter 2. Computational regulomics: data, models and methods

Figure 2.1: A typical ChIP-seq experiment workflow. Image courtesy of https://www.illumina.
com/techniques/sequencing/dna-sequencing/chip-seq.html.
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2.3. Online data repositories and the ENCODE project

differences in two ChIP-seq signals. There are two main types of differential peak
callers: one-stage, such as DBChIP [37], and two-stage differential peak callers, such
as ChIPDiff [38]. Differential peak calling is out of the scope of this dissertation.

For the purposes of this thesis, a simplified definition of a peak is a high-confidence
protein-DNA regions discovered on the genome by means of a ChIP-seq experiment.

2.3 Online data repositories and the ENCODE project

As sequencing and analyzing protocols become cheaper and data becomes available
in larger quantities, scientists have begun sharing some of their experimental results
to contribute to the -omics research community. Refer to these publicly available data
pools as public data(sets) in the rest of this text. Public datasets are usually given to
and stored on online repositories curated by research groups, that take care of valida-
tion, cataloguing and management of the sample files and related metadata. There are
several major groups that are involved in the maintenance of such repositories, such as
The Cancer Genome Atlas (TCGA) 2, and Gene Expression Omnibus (GEO) 3. Each
repository has its own protocols and standards for data submission and acceptance, and
usually is maintained by group that also does research on its contents.

Of particular interest for this work is the ENCyclopedia Of DNA Elements (EN-
CODE) project [39] repository, which can be accessed and freely downloaded at http:
//www.encodeproject.org. The ENCODE Project Consortium4, which hosts
the repository, is an international collaboration of research groups funded by the NHGRI.
The goal of ENCODE is to build a comprehensive parts list of functional elements in the
human genome, including elements that act at the protein and RNA levels, and regula-
tory elements that control cells and circumstances in which a gene is active. ENCODE
maintains a database of more than 15000 experiments of different type, targeting differ-
ent cell lines from Homo sapiens, Mus musculus and other model organisms. ENCODE
provides both data assay (coming from RNAseq, ChIP-Seq or other experiments) and
a curated set of related metadata [40]. These metadata describe the contents of the
experiment and provide details such as the experimental protocols used, the owner of
the original work and whether any significant bias or audit mis-compliances have been
found.

Members of the ENCODE Project Consortium submit data from their experiments
to a central processing unit, where data is polished and analysed to provide accurate an-
notation of the context genome. ENCODE provides datasets regarding gene expression,
TF binding sites, histone mark enrichment and chromatin openness state; both raw data
and processed/aligned datasets are freely available for public use. ENCODE releases
datasets in chunks known as phases5; so far, there have been three phases: a pilot phase
(2008), a first production phase and the most recent, phase 3. In this research project(s),
the most used ENCODE data came from phase 2 and 3 Homo sapiens datasets, for both
healthy and diseased cell lines.

2A collaboration between the U.S. National Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI) that collects and manages experimental data on 33 different types of human cancer.

3A free public repository distributes microarray, next-generation sequencing, and other forms of high-throughput functional
genomics data.

4In the interest of brevity, unless otherwise noted, both the Consortium and the repository itself shall be referred to as ENCODE.
5Cf. https://www.encodeproject.org/about/contributors/).
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Data formats

ENCODE datasets are provided in a variety of different formats, each including more
or less information on the context regions and each reflecting different preprocessing
pipelines applied6. The two most important formats for this research are the following:

1. ENCODE broadPeak. Peaks refer to signal spikes measured during an experi-
ment (for instance a ChIP-seq) which are significantly stronger than the average
background noise. The broadPeak format defines regions where such peaks are
found. broadPeak regions are usually prenormalised and interpreted to remove
artifacts and other imprecise calls. Regions carry information on the pvalue and
qvalue output by the calling algorithm. BroadPeaks are most suitable for describ-
ing regions affected by histone modifications [41].

2. ENCODE narrowPeak. Conceptually similar to ENCODE broadPeaks, narrow-
Peak regions assume a single binding site for the protein investigated, and the
additional information they include is derived from the estimation of fragment
size that is not possible for broad regions of enrichment with several consecutive
instances of the protein studied bound to DNA. NarrowPeaks are used in this re-
search to describe TF binding sites and other punctual annotation on the genome
- they carry additional information with respect to broadPeaks, in the form of the
signal strength value (i.e., the fold-increase of the quantity of genetic material
found during the experiment with respect to a control value - cf. Section 5.3).

The Genomic Computing (GeCo) group at Polytechnic of Milan7 has made most of
the ENCODE samples for human available for download and use, via the GenoMetric
Query Language (GMQL) portal (cf. Section 2.5). Since different experiments are
available for query and processing in the same environment, an effort has been made to
define a general framework for genomic data representation and processing.

2.4 The Genomic Data Model

The Genomic Data Model (GDM) [42] represents experimental datasets using two fun-
damental subunits: datasets and samples. Samples contain regions, which represent
linear, contiguous portions of the DNA with to a (common) set of features, and are as-
sociated with a set of metadata, which in turn describe general properties of the sample
itself (Figure 2.2). A dataset is a collection of samples and their metadata; samples in
the same dataset all share a schema, an ordered set of features that all regions in that
dataset must conform to.

2.4.1 Regions, features and the schema

A genomic region is a bounded, linearly contiguous portion of the genome identified
by a set of four coordinates (also called region coordinates): the chromosome on which
the region is found (chr), the leftmost and rightmost base pairs that make up the region
(left, right) and the strand of DNA where the region is found (strand). In particular,

6. For a comprehensive guide on ENCODE data file formats, the reader can refer to https://www.encodeproject.
org/help/file-formats/.

7http://www.bioinformatics.deib.polimi.it/geco/.
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2.4. The Genomic Data Model

Figure 2.2: Regions (top part) and metadata (central part) of a dataset consisting of two ChIP-seq
samples (bottom part), respectively having three and two regions, and four and three metadata. Image
courtesy of [42]

Figure 2.3: The four coordinates of a genomic region, overlayed to the corresponding base pairs). Note
that the DNA is the represented using only the 5’ to 3’ strand (conventionally denoted as +). Image
courtesy of http://www.bioinformatics.deib.polimi.it/genomic_computing/
GMQLsystem/doc/GMQL_introduction_to_the_language.pdf.

left and right are the positions of the two ends of the region according to a reference
genome: in mathematical terms, left and right are arc coordinates of the extremes of
the region for the relevant chromosome8 (Figure 2.3). Based on this definition, left and
right are given as integer numbers. As mentioned in Section 1.1, the DNA is shaped
like a double helix, so even after fixing an origin, there is no unique way to determine
which of the two strands a coordinate refers to by looking at the arc length alone; thus,
an additional coordinate called (with a stretch of imagination) the strand is used to
solve the ambiguity. Conventionally, the strand assumes the values ‘+’ (positive) and
‘-’ (negative); however, certain genomic region can refer to both strands at the same
time (e.g., transcription factors usually “pinch” the DNA helix as a whole and therefore
are found on both strands): in this case, a missing “*” value is used.

To represent additional information of interest, regions may have one or more fea-
8A set of arc coordinates on a curve can be roughly interpreted as the length of the rectified curve on a given point, i.e. the

length of the segment obtained by fixing an origin and “walking” along the curve until the desired location. All differentiable
curves have a set of arc coordinates; chromosomes can be assumed to have an intuitive set of arc coordinates defines as the number
of base pairs from one end of the chromosome itself.
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tures, typed attributes which are shared for all regions in all samples of the same
datasets. Acceptable features types in GDM datasets are boolean, char, string, int,
long, double. Examples of GDM region features are the region name (string), the p-
value with which the region has been called (double) or the region length (int). A
well-defined set of four genomic coordinates plus any additional features is called a
schema. To ensure interoperability and consistency of information across all its sam-
ples, a dataset is required to have a single, shared schema that all regions in the samples
must abide to. For datasets imported from public repositories, the schema usually cor-
responds to the schema defined by original provider (for instance, datasets imported
from ENCODE narrowPeak datasets have four genomic coordinates plus all features
required to build up the narrowPeak file format - cf. Section 2.4.3); if a dataset is
obtained by manipulation of another GDM dataset, it carries over all features and coor-
dinates of the input dataset, plus any others generated during computation.

2.4.2 Metadata

Each sample is associated with a metadata file, which a collection of string tuples in the
form <attribute, value>. Metadata describe the contents of the sample file by providing
context and information such as owner, clinical status of the sample, or data format.
Metadata can be multi-valued (i.e., the same attribute can appear multiple times for the
same sample) and can be used to store results from computations or to filter out samples
from a dataset using one or more boolean conditions.

2.4.3 An example of GDM dataset

Let S be a dataset containing all preprocessed samples in ENCODE repositories result-
ing from ChIP-seq experiments performed at Michael Snyder Lab, Stanford University
9, targeting transcription factor MAX (Myc-Associated factor X). All experiments are
given in ENCODE narrowPeak format, with the following schema ([C] denotes coor-
dinates, [F] denotes features):

1. chrom [C] - name of the chromosome;

2. chromStart [C] - starting position of the feature in the chromosome. The first
base in a chromosome is numbered 0. Equivalent to left;

3. chromEnd [C] - ending position of the feature in the chromosome. The chromEnd
base is not included in the display of the feature. Equivalent to right;

4. name [F] - name given to a region;

5. score [F] - Indicates how dark the peak will be displayed in the browser (0-1000);

6. strand [C] +/- to denote strand or orientation (whenever applicable). Use "." if no
orientation is assigned;

7. signalValue [F] - measurement of overall (usually, average) enrichment for the
region;

8. pValue [F] - measurement of statistical significance (-log10);
9http://snyderlab.stanford.edu/
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2.5. GenoMetric Query Language (GMQL)

Figure 2.4: First lines of sample 0 described in Section 2.4.3. Data extracted from GMQL repositories.

9. qValue [F] - measurement of statistical significance using false discovery rate
(-log10);

10. peak [F] - point-source summit called for this peak; 0-based offset from chrom-
Start. Use -1 if no summit is called.

With some column rearrangement, this can be interpreted as a GDM-formatted file
with 4 coordinates and 6 features. A quick extraction from ENCODE10 reveals that this
dataset contains 3 samples and 3 associated metadata files. Figure 2.4 shows a shapshot
of the first lines of sample 0, while Figure 2.5 showcases the contents of its metadata
file.

2.5 GenoMetric Query Language (GMQL)

A GMQL program (also called a query) is sequence of operations applied on one or
more datasets (sometimes called variables), which always results in the creation of new
datasets. GMQL operates on the basis of immutable variables, viz. datasets are never
edited in-place. An operation is declared with the following structure:
< o u t p u t v a r i a b l e > = OPERATOR( < p a r a m e t e r s >) < i n p u t v a r i a b l e 1 > < i n p u t v a r i a b l e 2 >

where the first input is required and the second can be optional, depending on the op-
erator. Operators always output one dataset. Several operators make use of predicates,
combination of boolean expression used to filter and join samples and/or regions. Pred-
icates on region data must use attributes in the region’s data schema (which is shared
across samples in the same dataset), while predicates on metadata may use arbitrary
attributes. The language supports a rich set of predicates describing distal properties
of regions (e.g. being among the regions at minimal distance, possibly above a given
threshold, from a given location). Stranded regions can be analysed using specific
predicates that deal with such orientation (e.g. upstream or downstream directions with
respect to the region’s ends).

10Data as of November 2017.
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Figure 2.5: Metadata of sample 0 described in Section 2.4.3. Data extracted from GMQL repositories.

2.5.1 Operators summary

GMQL operators usually work on both metadata and regions, and may accept or one
two operand datasets. The language recognizes substrings of metadata attribute names,
including attribute name derived from previous operands (for instance, ‘age’ in ‘LEFT.age’).
This is critical to ensure the seamlessness of operation chaining.

GMQL operators form a closed algebra [43]; operator results are expressed as new
datasets derived from their operands and from the operator specifications. The follow-
ing is a list of all operators in GMQL, with a brief of overview of their semantics and
usage.

Unary operators:

• SELECT. Creates a new dataset from an existing one by extracting a subset of
samples from the input dataset; each sample in the output dataset has the same
region attributes and metadata as in the input dataset. Has an optional parameter
that allows for an additional dataset to be used for metadata filtering. This oper-
ator has two (with optional third) kind of selection criteria, of which at least one
must be specified: on region, on metadata and on semi-joined dataset’s metadata.
Any number of conditions can be specified and combined using familiar boolean
operators.

• MATERIALIZE. Writes the content of a dataset to a file, whose name can be spec-
ified, and registers the saved dataset in the repository to make it usable in other
queries. All datasets defined in a query are, by default, temporary; to store and
access the content of any dataset generated, it must be materialized. Any dataset
can be materialized; however the operation is time expensive, so for better perfor-
mance only relevant datasets are materialized, such as the final output.

• PROJECT. Creates a new dataset from existing samples in the input, keeping for
each only those metadata and/or region attributes expressed in the operator pa-
rameter list. Region coordinates and values of the remaining metadata and region
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attributes are unchanged. In other words, PROJECT removes existing metadata
and/or region attributes from a dataset; it is also used to compute new metadata
and/or region attributes to be added to the result.

• EXTEND. Builds, for each sample in an input dataset, new metadata attributes,
assigning as their values the result of arithmetic and/or aggregate functions cal-
culated on sample region attributes. Existing metadata attribute-value pairs of
the sample are conserved; sample number and their genomic regions, with their
attributes and values, remain unchanged in the output dataset.

• ORDER. Used to order either samples or sample regions (or both) in a dataset
according to metadata, region attributes, and/or region coordinates. The number
of samples and their regions in the output dataset is unchanged, as well as their
metadata and region attributes and values, but a new ordering metadata and/or
region attribute is added with the sample or region ordering value, respectively.
Special clauses allow to extract the first N samples and regions with respect to the
final ordering, and to consider groupings in the ordered objects;

• GROUP. Groups both regions and/or metadata of input dataset samples accord-
ing to distinct values of certain grouping attributes; new attributes can be added
to samples in the output dataset, storing the results of aggregate function evalua-
tions over metadata and/or regions in each group. Samples having missing values
for any of the grouping attributes are discarded. Metadata of output samples are
constructed as the union of metadata of all the samples contributing to the corre-
sponding group; consequently, metadata include the attributes storing the group-
ing values, that are common to all samples in the group. When grouping is applied
to regions, by default it includes as grouping attributes the region coordinates chr,
left, right, strand. This choice corresponds to removing duplicate regions, i.e. re-
gions with the same coordinates. Aggregate functions can then be applied to each
group, and the resulting schema includes the attributes used for grouping and pos-
sibly new attributes used for the aggregate functions.

Binary operators:

• MERGE. Builds a new dataset consisting of a single sample having as regions
all the regions of all the input samples and as metadata the union of all the meta-
data attribute-values of the input samples. A groupby clause can be specified to
partition the samples in groups, according to distinct values of a set of grouping
metadata attributes: the MERGE operation is applied to each group separately.
Samples without the grouping metadata attributes are disregarded.

• UNION. Used to “collapse” homo- or heterogeneous samples of two datasets
within a single, new dataset; for each sample of either one of the input datasets, a
sample is created such that its metadata are the same as in the original sample, its
schema is the schema of the first (left) input dataset 11, its regions are the same (in
coordinates and attribute values) as in the original sample and new identifiers are
assigned to each output sample. Region attributes which are missing in an input

11More properly, it will be the merging of the schemas of the two input datasets. The merging is performed by projecting the
schema of the second dataset over the schema of the first one, adding to the schema of the first those region attributes of the second
which are not found in the first - two region attributes are considered identical if they have the same name and type.
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dataset sample (w.r.t. the merged schema) are set to null. Metadata attributes of
samples from the first (second) input dataset are prefixed with the strings LEFT
(RIGHT), to trace the dataset to which they originally belonged;

• DIFFERENCE. Produces one sample in the result for each sample of the first
operand, keeping the same metadata of the first operand sample and only those
regions (with their schema and values) of the first operand sample which do not
intersect with any region in the second operand sample. A joinby clause is used to
extract a subset of the cartesian product between samples of the input datasets on
which to apply the DIFFERENCE operator: only those samples that have the same
value for each attribute specified in the clause are considered when performing
DIFFERENCE.

• MAP. Applies to two datasets, respectively called reference and experiment. Com-
putes, for each sample in the experiment dataset, aggregates over the values of
the regions that intersect with at least one region in at least one reference sam-
ple. Computation are repeated for each region of each sample in the reference
dataset12. The number of generated output samples is the cartesian product of
the samples in the two input datasets; for each input reference sample, an output
sample is generated with the same regions, along with their attributes and values,
plus the attributes computed as aggregates over experiment region values. Out-
put sample metadata are the union of the related input sample metadata, whose
attribute names are prefixed with their input dataset name. In detail, the MAP op-
eration produces for each reference sample a matrix-like structure, called genomic
space, where each experiment sample is associated with a row, each reference re-
gion with a column, and each matrix row is a vector of numbers - the aggregates
computed during MAP execution. The COUNT() aggregate (counting the number
of experiment regions intersecting a certain reference region) is computed by de-
fault in every MAP. An optional joinby clause can be given, that restricts the MAP
to only those reference-experiment pairs of samples having a matching metadata
value for all attributes in the clause itself. MAP has been used extensively in the
preprocessing of samples for TICA (cf. Section 3.3.2);

• COVER. Takes as input a dataset (usually containing multiple samples) and returns
another dataset (with a single sample, barring any groupby option) by “packag-
ing” the input samples and their regions according to certain rules. Rules are
contained in the so-called minAcc and maxAcc parameters: each resulting region
of the output is the contiguous intersection of at least minAcc and at most maxAcc
contributing regions from the input sample(s). Keywords ANY and ALL can be
used instead of numbers for minAcc and maxAcc: ALL sets the minimum (and/or
maximum) to the number of samples in the input dataset, while ANY acts as a
wildcard but can only be used as a maxAcc value; in this case, the COVER extracts
all regions with any maximum accumulation value. When regions are stranded,
COVER is separately applied to positive and negative strands - unstranded regions
are accounted both as positive and negative.
The attributes of the output regions comprise the region coordinates plus, when
specified, new attributes with aggregate values over attribute values of the con-

12We say that experiment regions are mapped to the reference regions
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tributing input regions. Output metadata are the union of the input ones, plus the
metadata attributes JaccardIntersect and JaccardResult, representing global Jac-
card Indexes for the input dataset, computed as the correspondent region Jaccard
Indexes (see below) but on the whole sample regions. In general, COVER is used
to merge the regions of multiple samples in a single sample, deal with and/or com-
pute aggregates on overlapping regions, or manage experiment replicates. If no
groupby option is specified, the operation produces a single output sample. Jac-
card Indexes13 are added as default region attributes. When a groupby clause is
specified, the input samples are partitioned in groups, each with distinct values of
the grouping metadata attribute(s), and the COVER operation is separately applied
(as described above) to each group, returning to one sample in the result for each
group (input samples that do not satisfy the groupby condition are disregarded).

Three COVER variants are available in GMQL:

1. FLAT returns the union of all the regions which contribute to the COVER,
viz. the contiguous region that starts from the first end and stops at the last
end of the regions which would contribute to each region of a basic COVER;

2. SUMMIT returns only those portions of the COVER result where the maxi-
mum number of regions overlap;

3. HISTOGRAM returns all regions contributing to the COVER output divided
into distinct contiguous parts according to their accumulation index value
(one region for each different accumulation value), which is stored into the
new AccIndex region attribute.

The syntax for all variants is the same as for the COVER statement, only replacing
COVER with FLAT, HISTOGRAM, or SUMMIT, respectively, as required;

• JOIN. Takes in input two datasets, respectively called the anchor (first/left one)
and experiment (second/right one) and returns a dataset of samples consisting of
regions extracted from the operands according to certain input conditions (known
as genometric predicates). The number of generated output samples is the Carte-
sian product of the number of samples in the anchor and in the experiment dataset;
a joinby parameter (also called meta-join predicate) can be specified to filter the
output samples, similarly its MAP equivalent (see above). Attributes (and their
values) of the regions in the output dataset are the union of those in the input
datasets; homonymous attributes are disambiguated by prefixing their name with
their dataset name. The output metadata are the union of the input metadata, with
their attribute names prefixed with their input dataset name. An additional pa-
rameters called coordinate parameter (coord-param) must be specified to which

13There are two Jaccard indexes:

– the JaccardIntersect Index for two genomic regions r1 and r2 merged by a COVER is defined as the ratio between the size
of their intersection and the size of their union:

J1,2 =
|r1 ∩ r2|
|r1 ∪ r2|

;

– the JaccardResult index of the same is calculated as the ratio between the lengths of the result and of the union of the
contributing regions.
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region is given in output for each input pair of anchor and experiment regions
satisfying the genometric predicate. Possible values are:

– LEFT: outputs the anchor regions;

– RIGHT: outputs the experiment regions;

– INT: outputs the overlapping part of the anchor and experiment regions; if
empty, no output is produced;

– CAT (also CONTIG): outputs the concatenation between the anchor and ex-
periment regions defined as having left (right) coordinates equal to the min-
imum (maximum) of the corresponding coordinate values in the anchor and
experiment regions satisfying the genometric predicate.

It follows naturally from the definition that the JOIN complexity can grow quadrat-
ically both in the number of samples (anchor and experiment) and of regions;
skillful use of the joinby clause and the genometric predicate is usually required
to keep computational times manageable.

Genometric Predicates

Genometric predicates are critical for JOIN: they allow the expression of a variety of
distal conditions based on the concept of genomic distance. Recall that the genomic
distance is defined as the number of base pairs (i.e., nucleotides) between the closest
opposite ends of two regions if belonging to the same chromosome, measured from the
right-end of the region with left-end lower coordinate; if two regions do not belong to
the same chromosome, the distance is undefined / equal to infinity. GMQL uses the
convention that overlapping regions have negative distance while adjacent regions have
distance equal to 014.

A genometric predicate (or clause) is a sequence of distal conditions evaluated using
the genomic distance. The basic distal conditions are the following:

• MD(K) (or MINDIST(K), MINDISTANCE(K)) - minimum distance clause. Selects
the first K regions of an experiment sample at minimal distance from an anchor
region of an anchor dataset sample. In case of ties (i.e., regions at the same dis-
tance from the anchor region), all tied experiment regions are kept in the result,
even if they would exceed the limit of K;

• DLE(N) (also DIST <= N, DISTANCE <= N) - less-equal distance clause. Selects
all the regions of the experiment such that their distance from the anchor region is
less than or equal to N bases. There are two special less-equal distances clauses:
DLE(-1) searches for regions of the experiment which overlap with the anchor
region, while DLE(0) searches for experiment regions adjacent to or overlapping
the anchor region;

• DGE(N) (also DIST >= N, DISTANCE >= N) - greater-equal distance clause.
Selects all the regions of the experiment such that their distance from the anchor
region is greater than, or equal to, N bases;

14A sharp reader might point out that by strict definition this is not a distance, as it really only satisfies the symmetry property
of metrics. However, it is an accepted abuse of notation to call it a distance anyway, for ease of visualization.
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• UP/DOWN (or UPSTREAM/DOWNSTREAM) - upstream/downstream clause. Re-
quires that the rest of the predicate to hold only in the upstream (downstream)
direction of the genome with respect to the anchor region: in the positive strand
(or when the strand is unknown), UP is true for those regions of the experiment
whose right-end is lower than or equal to the left-end of the anchor, and DOWN
is true for those regions of the experiment whose left-end is higher than or equal
to the right-end of the anchor; in the negative strand disequations are exchanged.
When this clause is not present, distal conditions apply to both directions of the
genome indifferently.

A genometric clause is said to be well-formed if and only if it includes at least one
less-equal distance, or a minimum distance clause. Genometric predicates used in JOIN
statements must be well-formed.

2.5.2 Query structure

A typical GMQL query starts with a SELECT operation, which creates a new dataset
by filtering an input dataset (usually a public or private dataset in the repository, or the
result of a previous query) using a predicate on their metadata attributes. Then, the
query processes the selected samples in batch with operations applied on their region
data and/or metadata: at this stage, various combinations of COVER, MAP, and JOIN
are usually applied, depending on the biological question. Finally, a MATERIALIZE
operation is used to store the resulting dataset by saving the region data of each of
its samples in an individual text file in one of two standard formats (GDM or General
Transfer Format / GTF), and the related metadata in an associated tab delimited text file.
The operators are implemented using the so-called lazy framework: upon successfully
parsing a query, the compiler constructs a directed acyclical graph (or DAG) of the
operations and execute only those part of the graph required to construct the results.
Due to this, every query that does not contain at least one MATERIALIZE is rejected
by the compiler.

Another core paradigm of GMQL is called the meta-first optimization, viz. the
engine resolves the metadata part of the DAG before the region part, and use the results
of the former to pre-filter the data needed for the latter. Since metadata are usually
smaller in size and more optimised (they are always strings), the overall performance
of the query is greatly improved with respect to a naive parallel execution. Thus, this
paradigm optimises computation time on large datasets and allows queries to operate
on “big” genomic data in reasonable time. The meta-first paradigm is also consistent
with typical biological research protocols: it is unlikely that a particular question can be
answered by looking at data belonging to the entirety of samples from a given dataset,
as biological data usually presents a huge intrinsic variability and different conditions
must be properly separated for validation to have meaning.

2.5.3 A simple example

Consider the following biological problem:

“from all ENCODE published samples of Homo sapiens embryonic stem cells, extract
from ChiP-seq experiments all datasets containing binding site locations of

proto-oncogene c-Jun, a subprotein of transcription factor AP-1. Consider only
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Figure 2.6: Listing of the example query described in Section 2.5.3. Comments on the right side identify
input and output datasets.

datasets formatted in narrowPeak format. Extract all those that are found to be
overlapping a promoter. Replicates of the same regions are to be merged into a single

output.”

This is a question that may arise during a regulomics study aimed at discussing the
potential targets of the AP-1 complex: as mentioned in 1.3, transcription factors tend to
bind in promoter regions of their targets; moreover, if complex AP-1 is to be found in
a promoter, each of his subunits must be present and binding in the neighboring area.

A potential query that solves this problem is presented in Figure 2.6. Here is the
breakdown of the effect of each instruction and how it fits in the query flow15:

1. lines 1-4: a SELECT is used to extract and load raw binding site data contained in
ENCODE. The dataset HG19_ENCODE_NARROW_AUG_2017 should contain
all and only the experiments from ENCODE published libraries (i.e., experimental
data) in the required narrowPeak format. Using the metadata conditions, one can
easily obtain all samples belonging to the context of the problem (note: H1-hESC
is the nomenclature for a well-studied type of human embryonic stem cells. Also,
c-Jun is sometimes referred to simply as JUN);

2. lines 5-7: here the datasets for human promoters is prepared. It is assumed that
a dataset with annotated genome information is available in the repository (here
denoted as HG19_BED_ANNOTATION). There is no universally accepted stan-
dard of where a given gene promoters is located, so here the same convention
described in [44] is used: a promoter is extended from 2000bp upstream from the
gene’s transcription start site to 200bp downstream from the same. Assuming TSS
locations are contained in the annotation dataset, a PROJECT can easily transform
them into the required promoters;

3. line 8: a JOIN operator is best suited to solve the problem of searching for over-
lapping regions: the genometric predicate DLE(-1) extracts them and only them.
The UPSTREAM command ensure that any region found extends upstream of
the promoter and not downstream. Using output: right, the output is a copy of
all c-Jun binding sites satisfying the condition. The choice of the order between
datasets is not arbitrary: there are in general multiple samples containing TF bind-
ing site information (one per experiment replica), but only one sample contains the

15In the following, dataset names have been shortened for brevity.
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known annotated TSSes. Since JOIN replicates the anchor once for each experi-
ment sample, this ensure the least amount of memory is used by the executor;

4. lines 9-10: the biological question requires to collapse overlapping regions into
one: COVER is best suited for this. Using 1 as minAcc guarantees that every
base pair covered by relevant binding site information is preserved. ANY allows
to merge any number of overlapping replicas according to the rules of COVER
described in Section 2.5. Finally, a MATERIALIZE initiates the execution of
the operations and stores of the final output regions into a physical dataset called
output.

2.6 Statistical machine learning

GMQL is not designed to handle algorithms such as those commonly used in machine
learning and data analysis pipelines. Hence, the analysis work as been performed using
additional software environments that provide the tools required. In this section, the
reader will be introduced to some basic prediction and machine learning theory, to be
used as reference framework for the rest of the discussion.

2.6.1 Prediction tools and quality measures

Modeling is the practice of extracting the most relevant information from observations
pertaining one or more phenomena of interest, organizing them into computable struc-
tures (such as equations, algorithms, decision trees, et cetera). The goal of modeling is
two-fold: understanding and prediction. A model helps understanding the target phe-
nomenon by correlating it with simpler, well-known mathematical (or computational)
objects: for example, the famous gravitational model

F = G · m1m2

d2

creates a link between an observable phenomenon (gravity) and a mathematical rela-
tion (the inverse square law), the properties of which are easier to discuss and utilize
during computations. A model is generally also used to make predictions on the tar-
get phenomenon: given that most models are computable, it is possible to infer how
the system will evolve by feeding it with a different set of conditions, without needing
to observe the effect of the underlying phenomenon in real life (which can be costly,
dangerous or infeasible). A model is said to fit a phenomenon well if predictions made
using the model alone are identical or significantly close to observations made on the
phenomenon under the same set of conditions.

Consider the problem of binary classification: each member of a set of N samples
can belong to one of two mutually exclusive classes (for instance, expressed / unex-
pressed genes, or bound / unbound TFs); for simplicity, the two classes are denoted
as 0 and 1. It is of interest to develop a set of rules that, given a sample n ∈ N , can
accurately deduce its correct class, based on a series of features observed for the sam-
ple. Features can be of any kind (numerical, categorical, etc.) but for the purpose of
this work, it is assumed that all features are numerical or boolean (using the standard
conversion to integer format). The output labels for each sample are called predicted
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labels (or predictions), and the correct labels (if known) actual labels. Thus, the prob-
lem can be rephrased as: define a set of rules applied on sample features such that the
resulting predictions are as close as possible to actual labels. A multi-label classifica-
tion problem is conceptually similar, but each sample can belong to one of M classes
(0, 1, . . . ,M − 1), with binary classification being a special case where M = 2.

Prediction problems based on numerical features are often tackled using machine
learning algorithms. Generally speaking, machine learning methods for prediction
problem are divided into two classes based on how they search for features contain-
ing the greatest amount of useful information: supervised learning, which attempts to
discover such features by analyzing an existing training set of sample, whose labels are
given; and unsupervised learning, which instead attempts to discover the underlying
structure of samples without relying on preexisting labels - usually by measuring sim-
ilarity and detecting outliers. In this research, supervised learning methods based on
existing database sources are the preferred method, so they shall be discussed in detail.

2.6.2 Supervised learning: methods and metrics

As mentioned, supervised learning attempts to predict labels of a given test set by
analyzing and performing inference on a different, pre-labeled training set. The output
of a supervised learning algorithm is usually a function that maps the feature space to
the class label set, intended to be applied to the test set (and any other sample). The set
of all possible feature-label functions for a given algorithm and problem is sometimes
called hypothesis space. Supervised learning methods can be classified based on the
paradigm they use and the resulting prediction function. Some well-known methods
are the following:

• linear classifiers attempt to separate the members of each class in the test set by
means of a suitable hyperplane in the feature space, i.e. a surface with dimension-
ality one less than the space itself. This is the same as to say that the classifying
function is a linear combination of the features. Linear classifiers are computa-
tionally less expensive than most other methods and achieve good performance in
problems such as document classification.

• nonlinear classifiers are conceptually similar to the linear version but employ a
variety of nonlinear functions to combine features of the training sample. They
are identified by the type of function they use, e.g. quadratic classifiers, gaussian
classifiers, and so on. Nonlinear classifiers can achieve better performance than
their linear counterparts but are computationally more expensive and harder to
train, due to the enlarged hypothesis space.

• decision tree classifiers attempt to model data using branching decision trees.
Each non-final node of the tree represents a decision point, generally in the form
“feature value LESS THAN threshold”: following all branching paths is done by
using feature values from an input sample in these checks, and eventually leads
to a leaf that assigns a class to sample itself. Decision trees are powerful tool for
data analysis because they are intuitive and fast to train. However, they can suffer
from overfitting on the test dataset, especially when they have high depth [45];
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Figure 2.7: Venn diagram representing some of the major measures commonly used to evalu-
ate supervised learning methods. Image courtesy of https://en.wikipedia.org/wiki/
Precision_and_recall.

• probabilistic classifiers attempt to construct a probability distribution that models
the underlying phenomenon and use it to deduce the probability of each sample
pertaining to a given class (usually by computing the conditional distribution of
a class given a set of features). Probabilistic classifiers can be applied to a wide
range of phenomena and are more flexible than deterministic classifiers, being
able to predict the probability of a sample belonging to a whole range of classes;
however, they can be computationally expensive and rely heavily on the correct-
ness of the underlying assumptions pertaining the probability distribution used.
An interesting subclass is statistical inference classifiers which use statistical in-
ference to predict whether a sample is significantly different from the members of
the null distribution (usually identified with the 0 class).

A supervised learning algorithm is evaluated by first training on a training (data)set,
the actual labels of which are known and used to learn and tune a model (which is also
called a classifier), and then evaluated by feeding the learned model/classifier a test set.
By comparing the predictions with the actual labels of the test set, the accuracy of a
learned model/classifier’s can be estimated (Figure 2.7). The following terms are used
when discussing a learned model/classifier’s accuracy:

• For binary classifiers, a positive is a sample that belongs to class 1, while a nega-
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tive is a sample that belongs to class 0. On the other hand, for multi-label classifi-
cation a positive for class ni is a sample that belongs to class ni, while a negative
for class ni is a sample that does not belong to that class, 0 ≤ ni < M ;

• A true positive (TP) is a positive sample in the training set that is predicted as
class 1;

• A true negative (TN) is a negative sample in the test set that is predicted as class
0;

• A false positive (FP) is a negative sample in the test set that is (mis)predicted as
class 1;

• A false negative (FN) is a positive sample in the test set that is (mis)predicted as
class 0;

• the above four definitions can be easily extended to the multi-label case: for in-
stance, a false negative for class ni is a sample in the test that is positive for class
ni and is mispredicted as nj , j 6= i.

The above definitions are useful to summarise the most common measures used to
evaluate a classifier’s performance (described for binary classification, the reader can
easily extend to the multi-label case):

• Recall (R). The measure of how many positives can be correctly identified as
such, R = TP

TP+FN
;

• Specificity (S). The measure of how many negatives can be correctly identified as
such, S = TN

TN+FP
;

• Precision (P). The measure of how many of the predicted positives are actually
correct, P = TP

TP+FP
;

• False Positive Rate (FPR). The empirical probability (“how often”) of predicted
positives to be actual negatives, sometimes interpreted as “false alarm rate”, par-
ticularly when discussing classifiers based on statistical tests (where positives are
interpreted as rejection of the underlying null hypothesis), FPR = FP

FP+TP
;

Different measures work better in different context. For example, if the test set
shows an imbalance (which is different from the universal population) between two or
more classes, then measures that mix the two (such as precision or false positive rate)
can be biased. To demonstrate this, consider the following simple problem: out of 100
possible test samples,N are known to be contaminated andM = 100−N are pure; it is
of interest to develop a classifier that predicts whether a sample is contaminated or not.
If N is significantly smaller than M (say, N = 10), then a simple coin flip predictor
(50% chance to be predicted as contaminated, irrespective of features) has circa 5 true
positive, 5 false negatives, 45 true negatives and 45 false positives. Thus, while recall
and specificity are each equal to 50% as expected, precision is 10% and false positive
rate is 90%. If, on the other hand, N = 50 (i.e. the classes are balanced), measures for
the same predictor are all roughly equal to 50%. Thus, during the discussion of each
method developed in this thesis, a brief explanation of which measures have been used
to evaluate it and why will be given.

28



i
i

“output” — 2019/2/15 — 17:53 — page 29 — #37 i
i

i
i

i
i

CHAPTER3
TICA: Transcriptional Interaction and Coregulation

Analyser

Introduction

This chapter introduces the first major research result of the thesis: the development
and validation of a method and related software suite called TICA (Transcription In-
teraction and Coregulation Analyser), which aims at predicting interactions between
transcription factors based on ChIP-seq data of their binding sites in human cell lines.
After explaining the motivations behind the project, the main concepts that lead to the
development of TICA are described, such as how it was implemented (in two versions -
local mode only and via a web application) and validated. TICA has been developed in
the context of an ongoing collaboration between Genomic Computing at Politecnico of
Milan and prof. Limsoon Wong’s research group at National University of Singapore
(NUS). Results of this chapter are published in [44] and [46].

3.1 Background

As discussed in Section 1.1, gene expression in prokaryotes and eukaryotes determines
almost all internal and external behaviours of the cell, from reaction to stimuli all the
way to cell development and death. Transcription Factors (TFs) possess highly spe-
cific DNA-binding domains that they use to latch onto specific parts of the DNA. Once
attached, TFs can enhance or repress RNA polymerase access to the DNA area encod-
ing for a particular gene, thereby reducing or enhancing the amount of its expression.
Also, transcription factors are known to implement their regulatory mechanisms in co-
ordination, acting as functional groups [47]. Ways to discover TF complexes include
in vivo experiments, observation of live cells and testing potential interactors in vitro.
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However, given the intrinsic combinatorial nature of the problem, these approaches are
unlikely to be complete or even feasible over the whole spectrum of TF-TF interactions.
Computational biology then becomes a powerful hypothesis generation tool, rooted in
mathematical analysis of experimental data: by screening unlikely interactions, investi-
gators can focus resources on verifying only the most interesting candidate interactors
using more traditional methods.

Many members of transcription factor gene families require some kind of interaction
with another member from the same or even a different family [48]. These interactions
can be of various nature, from protein dimerization and concurrent binding of DNA to
recruitment or suppression of other factors’ binding in the proximity of a DNA-binding
site. Depending on the choice of partner, the nature of the interaction and cellular con-
text, each interactor triggers a sequence of regulatory events that lead to a particular
cellular fate [49]. The binding of transcription factors to their specific binding sites in
genomic regulatory regions has been the focus of extensive study; nevertheless, only
some combinatorial regulatory effects are known. In this context, “interaction” in-
cludes direct binding, transcription factors bound in the same complex but not directly
touching each other, and situations in which one TF is blocking the other from binding
its cognate partners. All three cases above exhibit co-located peaks in the regulatory
region(s) of the cognate target genes of the TFs; thus, it is interesting to look for signifi-
cant co-located peaks in ChIP-seq datasets for the TFs studied (which represent binding
location of the TFs themselves). Spatial co-localization of peaks is measured using the
concept of genomic distance presented in Section 2.5, and it is motivated by biochem-
ical considerations: direct interactions such as the ones described above happen on a
molecular scale (order of 10 to 1000 base-pairs worth of length, factoring in experi-
mental precision) [50], as proteins need to be physically adjacent to each other in order
to bind and form transcriptional complex. By imposing chromosome-wide constraints
on the relative positioning of two potential interactors, screening of unlikely candidates
is mapped to statistical testing on the distribution of relative distances between “close”
binding sites.

The spatial location of TF binding sites is known to be relevant in TF-TF interac-
tion detection. Jankowski and colleagues [51] showed that dimerizing TF-TF pair bind
the DNA in highly compact and rigidly spaced patterns, suggesting that co-operative
TF dimerization can be predicted by pattern recognition on binding sites. They sub-
sequently developed a standalone software tool, TACO [52], to perform prediction on
sets of regulatory elements. However, TACO relies on motif databases to infer motif
complexes in the input dataset: such databases are incomplete and sometimes biased by
the length and the complexity of the Position-Weight Matrices (PWMs) used to mine
for the motif themselves [53, 54]. The ENCODE Project Consortium, in the supple-
mentary material of their seminal paper [39], investigated the overlap ratio of TF peaks
from ChIP-Seq experiment searching for co-association. Their method, however, is
limited to the actual overlap of binding peaks and does not consider the (genomic)
distance between them, limiting the potential for direct and competitive interaction dis-
covery. Ye and colleagues [55] published a method based on Bayesian CP factorization
(BCPF) to predict cell-lin specific interaction based on ENCODE hg19 ChIP-Seq data,
also based the overlap between binding peaks (and thus sharing similar limitation as
above). Additionally, their published method has limited output, demonstrating less
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then 100 predicted TF-TF interactions from over 650 ENCODE datasets. Finally, Jiang
and Mortazavi [56] published a review of the current advancements and challenges
in integrating ChIP-seq data. They report different methods that integrate ChIP-seq
datasets containing TF binding peaks with histone modification data to improve the un-
derstanding of gene regulatory mechanisms, but no method is reported that integrates
multiple ChIP-seq data and histone modification to investigates patterns of interaction.

3.2 Conceptual description

The idea behind TICA is to combine TF peak datasets from a list of ChIP-seq experi-
ments in a single cell line and generate interaction hypotheses, viz. TF pairs that exhibit
statistically significant co-localization based on experiment data. The main modelling
assumption is that interacting TFs must be enriched in co-locating peaks, and in the
promoters of their cognate target genes: if two binding sites from two different TFs are
in the promoter region of the same TSS then there is a chance that they regulate the
expression of the gene located downstream from that TSS. As physical interaction is a
phenomenon which is directly linked with coregulation, one can reasonably assume that
the more of such binding sites of two TFs are found to be co-locating in the promoter
region of target genes, the more likely it is that they are cooperating (or competing) for
the regulation of the same genes. Therefore, TFs are predicted to be interacting if the
distribution of the couples’ distance (cf. Section 2.5) is significantly skewed towards to
0 when compared to the same in random TF pairs.

TICA assumes the following two conditions for TF-TF interaction:

1. In two TFs that are physically interacting while binding to the genome, their bind-
ing sites should generally be found close to each other. If they are not phys-
ically interacting„ their binding sites should be spread widely from one another.
Therefore, after pairing the closest binding sites between two TFs, non-interacting
couples should have no significant tendency in the distribution of the distances be-
tween paired sites, whereas interactors should exhibit a distribution significantly
skewed towards zero.

2. Most of the TF couples in a cell line are expected to be non-interacting.

3.3 Prediction rules

3.3.1 Definitions and notations

Let T1 and T2 be two transcription factors in Homo sapiens cell lines, the (potential)
interactions of which is of interest. Let τi be the set of all binding sites available for
Ti, i = 1, 2, formatted according to the GDM schema described in Section 2.4. Let
d(x, y) be the genomic distance of two binding sites x and y, measured in base pairs.

3.3.2 Data pre-processing

Transcription factor binding sites

TICA requires genomic distances between binding sites to be computed at precision
levels close to single-digit base pair lengths, so the preferred format is ENCODE nar-
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rowPeak (cf. Section 2.3. In the case where multiple samples are given for a single
transcription factor in a cell line, any region which is found in at least one of the origi-
nal samples is considered as a binding site, merging overlaps.

Since TICA can in principle use any point-source binding information, it is assumed
that some peaks in our input datasets could be artefacts or otherwise not significant.
Thus, a filter is imposed based on the idea of binding clusters: experiments suggest [57]
that transcription factors exhibit multiple binding sites clustered around target genes,
so all binding events in the input dataset which do not have a minimum amount of
same-TF binding sites binding events in a scanning area of 1kbp up- and down-stream
of their boundary are screened out. During model tuning, a nominal value of 3 binding
sites was selected.

Transcription start sites

Transcriptomics studies [58] suggest that not all spliced versions of a given gene are
actively transcribed in every single cell line. Thus, TICA uses a two-step filter to select
only Transcription Start Sites (TSS) that are active in a given cell: first, since TSS that
have a high amount of TF binding in their promoter region are more likely to be tran-
scribed [59], a start site is considered to be part of an actively transcribed isoform when
the number of surrounding transcription factor binding sites (TFBS) is above a certain
threshold, which is a parameter of the model. during model tuning, a nominal value of
50 TFBS was considered to be sufficient. Promoter regions are standardized as span-
ning from −N bases upstream to +M bases downstream of the TSS (also parameters
of the model, cf. Table 3.1).

In addition to that, evidence for active transcription is given by the presence of
certain histone modifications upon or in the area surrounding a TSS. We use ChIP-
seq broadPeak sequencing data (for reasons discussed in [41]) of the following his-
tone marks: h3k36me3 (found on the gene body of actively transcribed genes [9]),
h3k4me1 (found in enhancer regions of actively transcribed genes [60]), and h3k9ac
and h3k4me3 (both found in promoter region of actively transcribed genes [61]). A
TSS is considered part of an actively transcribed isoform if at least one base for each of
these histone modifications is found in the relevant regulatory region. GMQL queries
for TFBS and TSS filtering are presented in File S1 of [44] (and reported in Appendix,
Listings 7.1 and 7.2).

3.3.3 Minimal distance couples

The elementary object of our algorithm is the minimal distance couple (mindist couple
for short): two binding sites x̄1 and x̄2 of two different transcription factors T1 and T2

are a mindist couple if the following two conditions are simultaneously met:

d(x̄1, x̄2) = min
xi∈τ1

d(xi, x̄2)

d(x̄1, x̄2) = min
xj∈τ2

d(x̄1, xj)
(3.1)

δ = d(x̄1, x̄2) as above is well defined for each mindist couple and is called the mindist
couple’s intracouple distance (or simply mindist couple distance). Note that in order
to account for the localized nature of genomic interactions, an upper bound on δ is
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3.3. Prediction rules

Figure 3.1: Example computation of mindistance couples, highlighting possible ambiguities. Two TF
track snippets are given (blue and orange). Proceeding as per the scanning direction, if blue is
chosen as anchor (and orange as experiment), the minimal distance couples are correctly identified
as (a,b) and (d,e) (note that d is closer to e than to c). However, if roles are inverted, three couples
will be found instead: (b,a), (c,d), (e,d). Intersecting results guarantees consistency with the model.

imposed, roughly equal the size of one standardised promoter plus one standardised
exon. To compute mindist couple distances, first the lists of binding sites (filtered as
described in Section 3.3.2) for the two TFs of interest are merged, keeping track of the
source. Binding sites are then grouped by chromosome and sorted within each group
by starting position, so that the resulting list consists of binding sites succeeding each to
the other according to the positive strand direction. Then for each of the sorted binding
sites, the following conditions are investigated:

• at least one of the two adjacent binding sites belongs to a different (i.e., the other)
TF; and

• the distance from the anchor to at least one of the differently labelled TFBS is less
than the aforementioned upper bound.

If both conditions are met, the two closest of the binding sites fitting the criteria are
paired and become a mindist couple, and their distance δ becomes the corresponding
couple distance. Note that if both the adjacent binding sites are valid and tied for
closest, this generates two distinct mindist couples and two (identical) distance values,
each counted separately; if on the other hand none of the two conditions is valid then
no couple is generated and the algorithm proceeds to the next binding site. Note that a
single binding site needs not belong to only one couple, but any couple formed by the
exact same binding sites (in any order) is only counted once. Figure 3.1 demonstrates
the algorithm on syntethic data, and Figure 3.2 shows how it applies to some borderline
cases.

3.3.4 Biological information thresholding

As mentioned in Section 3.2, the more couples are found to be co-locating in the pro-
moter region of multiple TSS (of different target genes), the more likely are they to be
actually interacting in order to regulate the same genes. Therefore, a preliminary filter-
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Figure 3.2: Example of mindist couple extraction on synthetic TFBS data in different scenarios. A. The
TF2 binding sites (yellow) can only be associated to the first TF1 sample (blue), as the next one in
the sorting has the same label. B and C. TF1 is associated to both TF2 sites. Couple B is found twice
but only counted once. D. One of the two TF2 sites is out of admissible range for this TF1 site, so
only one couple is found. E and F. Both TF1 sites are equidistant to the anchor TF2 sites, so both
generate a mindist couple.

ing level based on the amount of biological information available was imposed, based
on:

1. absolute number of mindist couples;

2. percentage of them which are found inside the promoter region of a shared TSS,
using only active TSS to define said promoter regions.

Candidates are only considered as valid predictions if they have a high enough amount
of mindist couples, and the percentage of said couples that co-locate in the same pro-
moter is sufficiently high; both these minimum levels are parameters of the algorithm
and can be modified by the end user. Searching for TFBS located in promoter can be
easily performed using a linear scan or with a GMQL query.

3.3.5 Prediction algorithm

The definition of mindist couples given above suits the first of the two points described
in Section 3.2: in particular, the mindist couples of binding sites belonging to two
interacting factors should be more tightly packed than those of factors that are not
interacting. The second requires an additional logical step: by computing suitable test
statistics on the distribution of mindist couple distances, one can expect the candidates
that lay on the extreme left-end of the overall distribution to be the most likely to be
actual interacting couples (for two visual examples of two distributions, see Figures 3.3
and 3.4).

Thus, a two-fold test was developed based on mindist couple distribution to predict
interactions according to these guidelines:

• a deterministic decision rule that excludes TF couples which do not present enough
biological information in the datasets (described above);
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3.3. Prediction rules

Figure 3.3: Histograms of distance distribution for TF couple MAX and Myc in HepG2 A. Distance
distribution of the TF couple for MAX and Myc, which are well-known interacting TFs. B. Zoomed
view of the distribution short and long tails. In both panels, blue columns denote the head of the
distribution (couples with distance ranging between 0 and 500 bp), red columns denote the right
short tail of the distributions (distance > 1000 bp), and orange columns denote the right long tail
of the distribution (distance > 500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the
distances > 1000 bp. MAX, Myc-associated factor X.

Figure 3.4: Histograms of distance distribution for TF couple CTCF and Myc in HepG2 A. Distance
distribution of the TF couple for CTCF and Myc, for which there is no evidence known to support
the interaction behaviour. B. Zoomed view of the distribution short and long tails. In both panels,
blue columns denote the head of the distribution (couples with distance ranging between 0 and 500
bp), red columns denote the right short tail of the distribution (distance > 1000 bp), and orange
columns denote the right long tail of the distribution (distance > 500 bp). Note that the 500-bp tail
and 1000-bp tail overlap for the distances > 1000 bp. CTCF: CCCTC-binding factor.
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• a combination of statistical tests that combine aggregate information from the
distributions and determines whether a couple has a significantly different spread
from the typical distribution in the same cell line.;

3.3.6 Statistical testing

Assuming a candidate couple presents enough biological information, TICA computes
a set of test statistics that describe the skewedness of the observed distribution towards
zero across different dimensions. Our choice of test statistics is the following:

• long (right) tail size, defined as the fraction of mindist couple which intra-couple
distance is greater or equal than N base-pairs, for a fixed value of N ;

• three additional centrality and dispersion measures: median, median absolute de-
viation (MAD) and average.

3.3.7 Right distribution tails

Median, MAD and average are known centrality measures, frequently used in disper-
sion analysis. The long tail size, however, is to the best of my knowledge a novel
contribution to the field.

The concept of distribution tail does not have a standard definition across all sci-
entific fields, but it can roughly be identified as the portion of a distribution that is
significantly distant from the mean. In the case of right tailed distribution, the tail can
be defined as the points in a distribution which are greater than or equal of a certain
threshold value (usually greater than the mean).

Note that one could think it sufficient to evaluate the difference in distribution skew-
ness and centrality in a suitable neighbourhood of the 0bp mark; however, the said
neighbourhood is where confounding effect due to measurement uncertainty of the
exact peak location are most prominent. The key observation is instead that if two
transcription factors frequently co-locate close to each another, the relative number of
mindist couple that have a large intracouple distance should be low. This is a com-
plement of the reasoning present by Jankowski and colleagues ( [51, 52]: physically
interacting transcription factors describe mindist couple distance distributions which
are tightly packed around low values (e.g. MAX and MYC in Figure 3.3), whereas ran-
domly picked TF couples give rise to distributions which are significantly more spread
out in the interval [0,+∞], e.g. CTCF and MYC in Figure 3.4). In this work, the
starting point for the right tail is the 1000bp mark; another notable value is the 500bp
mark, best suited to those cases where a lower number of couples is available and thus
the shorter tail (i.e. 1000bp mark) might be too sparse to be informative. An example
of the shape and size of the right tail for distance distributions is shown in Figure 3.5.

Each of the statistics listed above tests the likelihood that a candidate couple is
not significantly different from the null distribution (for that statistic). P values for
these tests are defined as the fraction of points in the null distribution generated by that
statistic which are closer to 0 (e.g. if a given candidate has average mindist couple
distance of 100bp, the P value is the number of points in the null distribution of average
distance which is less than or equal to 100bp). Thus, a singular null hypothesis H0 is
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3.3. Prediction rules

Figure 3.5: Mindist couple distance right tails using TFs ARID3A and ATF1 on cell line HepG2. Blue
columns denote the head of the distributions, red columns denote the right short tail of distribution
(distance > 1000 bp) and orange columns denote the right long tail of the distribution (distance >
500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the distances > 1000 bp.

rejected at P value p for test statistic θ with respect to T1 and T2 if and only if

P (θ0 ≤ θ(TF1, TF2)) ≤ p,

where P is the empirical frequency measure and θ0 is a generic point in the null distri-
bution generated by θ.

Null distributions are built in the following way:

1. For each cell line, a sampling pool (called background TF list) is defined by re-
moving from the list of TFs available for that cell those that have top 10% largest
and top 10% smallest TFBS count after filtering. Mindist distributions of couples
involving these TFs are quite different from the those of couples formed by ran-
dom pairing of other TFs, so they cannot be used in the creation of the general
null distribution; at the same time, there are too few TFs that have too many or too
few TFBS to generate appropriate null distributions of their own;

2. A random TF pair from the background list available in the target cell line is
sampled, and the mindist couples distance distribution for that particular pair is
extracted (disregarding promoter co-localization).

3. Each of the four test statistics is computed on this distribution, becoming a point
of the corresponding null distribution that will be used in the final test;

4. Steps 2 and 3 are repeated N times, as specified by the user (N = 10000 during
model fitting).

TICA tests the null hypothesis for a subset of the aforementioned test statistics defined
by the investigator, and calls a candidate pair of TFs as interacting if and only if a
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minimum number of such hypotheses (also defined by the investigator, default is 3) is
rejected in this way.

3.3.8 Parameter setting

Several computational experiments using TICA on human ChIP-seq data from various
immortalized cell lines were performed. The three reference cell lines are: HepG2
(a cell line derived from a male patient with liver carcinoma), K562 (an immortalized
blood cell line produced from a female patient with chronic myelogenous leukaemia),
and GM12878 (a lymphoblastoid cell line produced from the blood of a female donor
with northern and western European ancestry). Data was downloaded from the EN-
CODE phase 2 (ca. 12% of samples) and 3 (ca. 88%) repositories, using human genome
assembly version 19 (hg19) as reference alignment. Table 3.2 reports the dataset car-
dinality for each cell line. Parameters have been fitted using datasets from HepG2, a
cell line with abundance of ChIP-seq libraries available in ENCODE and of gene ex-
pression [62], suitable for building null distributions and tuning parameters. Table 3.1
reports values chosen for each parameter. The choice of parameters is driven by the
following biological considerations:

• standardised regulatory region length is a common assumption when working with
gene expression regulation;

• TFBS window of accumulation is chosen so that it covers most of a standard
promoter size without overextending;

• mindist couple max distance is one promoter length plus one exon (assumed size
of promoter area)

• the minimum number of TFBSes in active promoter is chosen as the first quartile
of the overall distribution of the counts of TFBSes in promoters in HepG2 (taken
as preferred modelling environment).

Minimal number of minimal distance couples and minimal percentage of TSS co-
localization have been chosen to be as low as possible to increase recall, as tuning
has shown that specificity does not take a significant hit.

P value choice

The P value threshold of 0.2 was used as default value for all statistical tests associated
with TICA (cf. Table 3.1). This choice is intentionally laxer than what is typically
used (0.05 or 0.01 in most cases). The reason is due to the nature of the statistical
tests. Recall that TICA performs four “basic tests” (viz. median, average, MAD, and
right tail) on the same candidate, and the overall “full test” is considered positive if (by
default) at least 3 of these basic tests are rejected. The P value threshold refers to each
individual basic tests. Under a naive assumption of independence of the four basic tests,
the P value threshold of the overall full test is (0.8·0.23)·4+(0.24) = 0.0272, where the
first term on the left side corresponds to the scenarios in which exactly one of the four
basic tests does not reject its null hypothesis, and the other term case the case where
all basic tests reject their null hypotheses. The more traditional P value of 0.05 can be
achieved for the full test by setting the basic tests’ P value to 0.25. However, since there
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Class Parameter Value

Genomic dimensions(*)
Exon length 200bp
Promoter length 2000bp
Enhancer length 100kbp

Data filters
Clustering value k 3
TFBS scanning window size 1000bp
Min. number of TFBS in active
promoters

50

Metric constraints Mindist couple max distance 2200bp

Tests and thresholds

Number of points in nulls ≥ 10000
Right-tail threshold 1000
Test p-value 0.2
Required number of rejected
null hypotheses

3

Minimum number of mindist
couples

1

Minimum fraction of mindist
couples colocating in a pro-
moter

0.01

Table 3.1: Parameter setting for TF-TF interaction prediction pipeline. (*): extending TSS according to
their strand.

Cell line Available TFs Totale size (after filtering) Active TSS
HepG2 103 2.95Gb 97,905
GM12878 102 6.40Gb 122,854
K562 214 1.97Gb 59,556

Table 3.2: Dataset cardinalities for all cell lines used in TICA computational experiments. Filtering
refers to TFBS data filtering described in Methods. Active TSSes are extracted according to methods
in the same section.

is some dependency between the basic tests that is hard to work out theoretically, a more
aggressive 0.20 threshold was used on the basic tests, resulting in a more conservative
theoretical 0.0272 P value threshold for the full test. Experimental evidence has been
produced to verify that this choice of P value threshold (0.20) delivers a 1.5 to 3 times
higher recall at a modest specificity deterioration (10% lower) than using the individual
basic tests at P value 0.05 threshold.

3.4 Results

3.4.1 TF-TF interaction predictions

Lists of both candidate and background TFs for each cell line have been compiled (see
Supplementary Table S2 of [44]). Candidate pairs are compiled using TFs for which
narrowPeak data in the corresponding cell line is available in ENCODE at the time of
writing. Due to how structural analysis is performed by TICA (see Section 3.3.3), it
cannot predict homotypic TF-TF interactions (viz. interaction of a TF with itself, for
example in homodimers). Thus, given N TFs for which experiment data is available
and assuming the symmetry of interaction phenomena, up to N ·(N−1)

2
possible tests are

possible. All statistics listed in Section 3.3.6, are computed, and at least three of the
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corresponding tests are required to be rejected for a positive prediction call. Detailed
listings of candidates and predicted interactions obtained by running TICA on all cell
lines using the default parameters are reported in Supplementary Table S3 of [44].

3.4.2 Validation

To the best of our knowledge, there is no single gold standard for physical interac-
tions and/or non-interactions evidence. In particular, it is not clear how one should de-
fine a pair of transcription factors as non-interacting, given that most databases report
only positive cases and are potentially incomplete. Nonetheless, two TFs that interact
and have binding sites close to each other are expected to be part of the same pro-
tein complex. Our reference database for (human) protein complexes is CORUM [63],
a catalogue of protein complexes in mammalian organisms derived from experiments
published in scientific literature. The version used is Homo sapiens Core complexes
database released on July 2nd, 20171. The predictions were also compared to a curated
list of human protein-protein interactions (BioGRID [64]) as secondary evidence; de-
tails are reported in Section 7.1.4). Another possible database to validate results against
is STRING [65], a database of known and predicted protein-protein interactions. These
include physical and functional associations. Interactions are predicted from compu-
tational prediction, from knowledge transfer between organisms, and from interactions
aggregated from other databases. Validation against STRING was not performed due
to time constrains.

Quality measures with respect to CORUM

A pair of TFs can be considered as actual positive and supported by CORUM if its
components are mentioned together in at least one CORUM complex. However, the
assumption is that if a certain TF is not mentioned at all in the database then it is not an
object of its study; therefore, all pairs containing that TF are discarded from the set of
predictions for that database. Finally, a pair of TF is defined as negative if it is not pos-
itive and both its TFs cannot be discarded. Interactions are restricted to complexes/in-
teractions which contain transcription factors only. Given the sets of actual positives
and negatives as above, recall/sensitivity and specificity measures are computed: these
two measures have the property of being invariant when the positive/negative propor-
tion changes in the test data. This is important since as mentioned this proportion is
very hard to estimate for the complete real population of TF pairs. A specific measure
is used to combine the two: the geometric mean performance

GMP =
√
R · S,

where R is recall and S is specificity. This aggregator has been shown to work better
when the positive:negative split is unbalanced [66].

Enrichment ratio

The enrichment ratio, defined as recall divided by 1 minus specificity, is an additional
measure used to evaluate the quality of prediction with respect to a particular database:
higher values of enrichment correspond to more accurate predictions to be. There are,

1Available at http://mips.helmholtz-muenchen.de/corum/#download.
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however, some caveats: first, CORUM is incomplete, so the observed recall may be
lower than actual when a predicted TF-TF interaction is co-operative or competitive in
nature (hence not reported). On the other hand, CORUM also includes complexes that
are not involved in the transcription of genes, so the observed specificity may be lower
than actual when a predicted non-interacting TF-TF pair is found as a co-complex pair.
At the same time, the observed recall may be higher than actual when some predicted
interacting pairs are actually non-interacting. However, since CORUM is restricted to
TF nodes, this latter situation is minimized.

Cell line Database Recall Specificity GMP* Enrichment ratio

HepG2 CORUM 0.322 0.786 0.503 1.505
BioGRID 0.265 0.794 0.459 1.286

GM12878 CORUM 0.267 0.873 0.483 2.102
BioGRID 0.221 0.849 0.433 1.464

K562 CORUM 0.345 0.886 0.553 3.026
BioGRID 0.236 0.902 0.461 2.408

HeLa-S3 CORUM 0.29 0.911 0.514 3.563
BioGRID 0.209 0.921 0.435 1.339

HepG2 ∩ GM12878 CORUM 0.167 0.962 0.401 4.395
BioGRID 0.083 0.964 0.283 2.306

HepG2 ∩ K562 CORUM 0.206 0.922 0.435 2.641
BioGRID 0.129 0.961 0.352 3.308

GM12878 ∩ K562 CORUM 0.185 0.958 0.421 4.405
BioGRID 0.105 0.957 0.317 2.442

HepG2 ∩ (GM12878 ∪ K562) CORUM 0.357 0.891 0.564 3.277
BioGRID 0.167 0.922 0.392 2.141

GM12878 ∩ (HepG2 ∪ K562) CORUM 0.286 0.937 0.518 4.560
BioGRID 0.111 0.948 0.324 2,135

K562 ∩ (GM12878 ∪ HepG2) CORUM 0.428 0.887 0.616 3.788
BioGRID 0.194 0.935 0.426 2.985

All cells CORUM 0.273 0.909 0.498 3.000
BioGRID 0.091 0.988 0.300 7.583

Table 3.3: Quality measures for TICA predictions with respect to reference databases. * Geometric
Mean Performance.

Observe that the enrichment ratio remains well above 1 for all test scenarios (mini-
mum at 1.505, and almost always above 2.000).

Literature investigation

Direct literature investigation can be much more specific about the nature and contents
of the evidence supporting a prediction. Manual investigation was performed by search-
ing published studies and literature for support to positive predictions, for instance on
public interfaces such as PubMed 2 for published studies pertaining to a selected subset
of interactors. A positive prediction is marked as "confirmed” when there is evidence
in the literature, regardless of cell lines, that the two TFs physically bind each other,
bind to the same complex, or there is a statement that they are co-factors or that they
compete for the same co-factors or target genes. As the process is time consuming,
manual checks were limited only to a small subset of predictions for each cell line.

2Found at http://www.ncbi.nlm.nih.gov/pubmed/.

41

http://www.ncbi.nlm.nih.gov/pubmed/


i
i

“output” — 2019/2/15 — 17:53 — page 42 — #50 i
i

i
i

i
i

Chapter 3. TICA: Transcriptional Interaction and Coregulation Analyser

Cell line 1 Cell line 2 Positive pre-
dictions on
shared TFs

Jaccard coef-
ficient

Cell 1 recall Cell 2 recall

HepG2 GM12878 46 0.146 0.177 0.426
HepG2 K562 89 0.163 0.256 0.309
GM12878 K562 110 0.186 0.460 0.237
HepG2 HepG2 ∪

K562
121 0.191 0.111 0.210

GM12878 HepG2 ∪
K562

142 0.186 0.181 0.276

K562 HepG2 ∪
GM12878

185 0.192 0.079 0.645

All cells (intersection) 14 0.186 0.089 / 0.206 / 0.130

Table 3.4: Cross-cell comparison of positive TICA predictions. For all three lines’ intersection, the
recall value is split among the original cell lines (i.e., recall w.r.t. HepG2, w.r.t. GM12878 and w.r.t.
K562, in order). Note that, for lines 4 through 7, TFs in a prediction must be shared between all cell
lines in order for it to be accepted as part of the union / intersection.

Manual literature investigation was performed for selected predictions in tumour cell
lines (HepG2 and K562). In Figure 3.6 a categorization of such predictions according
to whether they can be verified as positives or negatives with respect to literature is
reported.

Cross-cell validation

Finally, the amount of overlap between predicted positive interactions in different cell
lines was investigated using the Jaccard Coefficient, defined as the ratio between the
intersection and the union of two sets. A single cell line was compared with the union of
predictions in the other two; when merging or intersecting predictions in different cells,
only those where both TFs are shared between the target cell lines were considered.
Results are tabulated in Table 3.4.

3.5 Web application

A Web server (and related web application) has been developed for predicting TF-TF
interaction on ChIP-seq datasets. The web server can be accessed at: http://www.
gmql.eu/tica/. The web implementation investigates TF-TF interaction in three
alternative contexts:

1. users can compare pairs of TF using data from the most recent release of the
ENCODE narrowPeak data collection to search for evidence regarding interaction
hypotheses;

2. also, they can upload their own TF ChIP-seq datasets to the application database
in order to pair them with the aforementioned ENCODE datasets and search for
potential interactions; or

3. they can upload and search for potential interaction phenomena in their own datasets
from their own experiments (if in the correct format), without pairing them with
with ENCODE.
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3.5. Web application

Figure 3.6: Summary of positive predictions supported by the literature. A. Literature analysis of the
positive predictions for cell line HepG2. A positive prediction can be “ Verified as POS” if interaction
evidence is found in published literature (green); “ Verified as NEG” if evidence is found that there
is no interaction between members (red); or it can be “Unverified” if no evidence is found for either
case (blue). B. Database cross-check of verified positive predictions for cell line HepG2. “Not in any
database” (red) means that the predicted interactions are not found in either CORUM or BioGRID;
blue indicates the number of positive predictions not found in BioGRID, whereas orange indicate the
number of positive predictions not found in CORUM. Green slice indicates the number of predictions
found in at least one of the two databases. C. Positive predictions literature analysis for cell line
K562 (same color code as A). D. Database cross-check of verified positive predictions for cell line
K562 (same color code as B). pred.: predictions.
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Chapter 3. TICA: Transcriptional Interaction and Coregulation Analyser

Figure 3.7: Screenshot of TICA web application main page. Through the drop-down menu, the users
can decide the context cell line among those available; users can also select whether they want to
upload data or use ENCODE data.

3.5.1 Workflow

Users connecting to the server see the welcome page reported in Figure 3.5.1. They
are not required to create an account or authenticate in any way in order to use the web
server: data uploaded is stored in a temporary folder (with a session ID for tracking dur-
ing analysis), and subsequently discarded. In the welcome page, the user is prompted
to select the context cell line: this sets the null distributions for statistical tests and the
list of ENCODE TFs available for comparisons.

The workflow in the cases 1, 2 and 3 above is identical, except for the upload proce-
dure required to submit, transform and filter user-provided datasets (see Section 3.6.1).
Experimental data have to be uploaded via a single zip file containing one folder for
each TF, which must be named as the TF itself. Each sample will be assigned to the
TF inferred by its folder, regardless of the actual filename; single files should be in
ENCODE bed narrow-peak format3.

If users select "ENCODE" in the main page , they will be immediately redirected to
parameter selection.

3.5.2 Parameters

After uploading data (if required) users have to specify the parameters for the analysis
using the parameter input page (see Figure 7.1 in appendix for a screenshot of avail-
able parameters). A user can tune most of the TICA classifier parameters to suit their
own biological assumptions and experimental conditions (cf. Table 3.1): among other
choices, the user can restrict the analysis to a sublist of the TFs to be compared, de-
fine mindist couples maximum distance (from preselected values: 1100, 2200, 5500

3The schema for ENCODE narrowpeak data files is defined in https://genome.ucsc.edu/FAQ/FAQformat.html#
format12
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3.6. Implementation

bp), declare which test conditions have to be used (by ticking or unticking the corre-
sponding test names), and state minimum number of test conditions to be satisfied and
individual significance level required (for additional details on the TICA classification
algorithm, see Section 3.6.2). Default values are provided, matching specifications in
Table 3.1.

3.5.3 Output

Results are presented to the user through a table and a heatmap (see Figure 3.8): the
heatmap shows the number of test conditions satisfied, with -1 represents TF-TF pairs
that do not meet the biological information screening criteria (see Section 3.6.2). De-
tails on each feature extracted from observed mindistance couple distributions are given
in a separate table, on the same page. Results can be exported as a .csv file using the
"Export to CSV" link (also in Figure 3.8).

3.5.4 Deployment

All mindistance couples and related distances for the default cell lines in ENCODE data
are precomputed and stored in a PostgreSQL database. These tables are only refreshed
during major data updates; when user-provided data is uploaded to the system, only
minimal distance couple distance distributions between TFs provided are computed on
the fly. The server was developed using the Django v1.11.7 framework 4; queries are
implemented inside the Django framework using the Python API for GMQL, PyGMQL
[67].

3.6 Implementation

The back-end supporting TICA is made of two conceptual blocks:

• a data preprocessing module, which takes either ENCODE or user-provided nar-
rowpeaks and removes noisy binding sites and inactive transcription start sites,
according to the context cell line (described in Section 3.6.1) and is implemented
using GMQL;

• the prediction algorithm, a statistical procedure that compares candidate TF-TF
pairs against null distributions from random pairs in the same cell line, with re-
spect to a set of statistical aggregators (Section 3.6.2).

3.6.1 Data preprocessing

The preprocessing step of TICA was implemented by taking advantage of GMQL. Data
belongs to ChIP-seq datasets extracted from ENCODE. Integration of ENCODE broad-
Peak and Narrowpeak datasets is supported by the GDM data model [42].

The queries which are used for extracting TF binding sites (TFBSes) and transcrip-
tion start sites (TSSes), relative to a given cell line, from the repository are shown in

4Available at http://djangoproject.com.
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Figure 3.8: Screenshot of TICA results page, after submitting a query on cell line GM12878. Middle
table report all features from statistical tests and deterministic filters. Blue squares in the heatmap
denote higher number of tests passed.
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3.6. Implementation

Listing 3.1. The TFBS filtering query (lines 1 through 6, same Listing) is also per-
formed on user-provided narrowpeaks.

Listing 3.1: GMQL query used to filter TF binding sites and TSSes used by the method (summary).
# e x t r a c t s 1−base e x a c t TF peaks and p r o d u c e s one sample f o r each TF
TFS = SELECT( e x p e r i m e n t _ t y p e == ’ ChIP−seq ’ AND c e l l == ’ t a r g e t _ c e l l ’ )

ENCODE_NARROWPEAK;
TF_PEAKS = PROJECT ( r e g i o n _ u p d a t e : l e f t AS s t a r t + peak , r i g h t AS s t a r t + peak +1) TFS ;
TF_PEAK = COVER( 1 ,ANY; groupby : t f_name ) TF_PEAKS ;

# e x t r a c t s TFBSes by l o o k i n g a t e n c l o s i n g windows wi th enough TF s i g n a l , i . e . enough
peaks f a l l i n g i n a window of 1000 b a s e s

WINDOW = PROJECT ( r e g i o n _ u p d a t e : s t a r t AS s t a r t − 1000 , s t o p AS s t o p + 1000) TF_PEAK ;
MAPPED_WINDOW = MAP( j o i n b y : t f_name ) WINDOW TF_PEAK ;
TF_EXTRACTED = SELECT( r e g i o n : c o u n t >= w) MAPPED_WINDOW;

# e x t r a c t h i s t o n e marks −−− H3K9ac and H3K4me3 a r e found i n p r o m o t e r a r e a s o f a c t i v e l y
t r a n s c r i b e d TSSes . S i m i l a r q u e r i e s a r e w r i t t e n f o r h i s t o n e s H3K4me1 ( e n h a n c e r s )

and H3K36me3 ( exons ) − h e r e o m i t t e d
HMS = SELECT ( ( h i s t o n e _ n a m e == ’H3K9ac ’ OR h i s t o n e _ n a m e == ’H3K4me3 ’ ) AND c e l l == ’

t a r g e t _ c e l l ’ ) ENCODE_BROADPEAK;
HM = COVER( 1 ,ANY) HMS;

# f i l t e r TSS wi th enough o v e r l a p wi th h i s t o n e marks
TSS = SELECT( a n n o t a t i o n _ t y p e == ’TSS ’ ) ENCODE_BED_ANNOTATION;
PROMOTER = PROJECT ( r e g i o n _ u p d a t e : s t a r t a s s t a r t − 2000 , s t o p as s t o p + 200) TSS ;
MAPPED_PROM = MAP( ) PROMOTER HM;
TSS_FILTERED = SELECT( r e g i o n : c o u n t >= h ) MAPPED_PROM;

# f u r t h e r f i l t e r s TSS wi th enough o v e r l a p wi th TF−PEAKS − from a r b i t r a r y TF peaks
MERGED_PEAKS = MERGE( ) TF_PEAKS
MAPPED_TSS = MAP( ) TSS_FILTERED MERGED_PEAKS
TSS_EXTRACTED = SELECT( r e g i o n : c o u n t >= k ) MAPPED_TSS ;

• Lines 2-4: the TFS variable includes all the relevant TF samples extracted from
ENCODE narrowpeak datasets5. The PROJECT operation is used to reduce the
size of ChIP-seq regions to a single base pair. The COVER(1,ANY) operation
is used to combine replicates from different transcription factors, keeping all re-
gions from all samples and merging any two or more regions which overlap. The
groupby option limits the merging to samples that share the same tf_name meta-
data attribute, i.e. contain experiment data on the same transcription factor. The
result includes one sample for each distinct TF, with regions corresponding to a
single base pair where the peak is located.

• Lines 7-9: Candidate TFs for the method are selected. A window of 1000 base
pairs is constructed around each peak, and TFs associated with windows enclosing
a counter of peaks over a threshold (w) are extracted. The PROJECT operation
builds the WINDOW, the MAP operation counts the number of peaks included in
each window, and the final SELECTion extracts the TFs.

According to the method, TSSes are extracted based on three progressively applied
conditions: overlap with histone marks of promoters, of exons, and of enhancers; only
the method used to select TSSes by using histone marks of promoters is explained, as
the second and third extractions are very similar.

5ENCODE narrowpeaks are also given for ChIP-seqs targeting histone modifications. They are removed them from the dataset
by means of NOT clauses - omitted for brevity.
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• Lines 12-13: Histone marks are selected. Extraction is done by means of a SE-
LECTion; replicates are then combined using the COVER, keeping all regions
from all samples and merging any two or more regions which overlap. Eventually,
each HM sample includes all the regions of a given (set of) histone modifications
present in ENCODE.

• Lines 16-19: TSSes are filtered. Promoter regions are built, and overlapping hi-
stone modification regions are counted; a TSS is selected if it is supported by a
sufficient number of overlaps (one for each histone mark in the relevant regions).
Promoter regions are defined as extensions of transcription start sites; these are
built using a PROJECT, which takes TSSes and modifies their start and stop posi-
tions by extending them 2000 pairs upstream and 200 pairs downstream6. Then,
the MAP operation counts the number of overlapping regions and the final selec-
tion filters the TSSes.

• Lines 22-24: Finally, TSSes to be used in the method are extracted. In addition
to overlaps with histone modifications, TSSes are also required to be supported
by a sufficient number of TF peaks. The MERGE operation puts all the peaks
of different transcription factors into a single sample, then the MAP counts how
many peaks overlap with promoter regions for TSS as defined above; the final
SELECT extracts the TSSes.

3.6.2 Interaction prediction method

After TF binding site data has been filtered and reduced to 1bp length by means of
the GMQL queries, TICA investigates co-localization between the sets of transcription
binding sites in a statistically robust way, as described in Sections 3.3.3 and 3.3.6.
P values for null distributions and TFBS co-localization in promoters are calculated
using a Python script (v3.6). In particular, mindistance couples are computed first with
respect to one of the TF (meaning, for each of its binding sites, the algorithm find the
ones for the potential partner which are closest and not above the distance threshold),
then with respect to the other. The two results are then intersected, yielding the final
mindist couple list: this is done to avoid scenarios where one binding site is the closest
with respect to a target, but the reverse is not true.

3.6.3 Data format

TICA can in principle work with any kind of genomic regions, due to the fact that data is
managed by the flexible GDM model via GMQL. However, it is reasonable to assume
that the required maximum displacement between candidates will be small (in other
words, regions are expected to be very close to each other with respect to the linear
dimension of the universe set): this is due to the fact that physical interaction between
TFs happens at molecule scale, where distances are in the order of 1 to 10 nucleotide
base pairs [51] (compare with the average size of a human chromosome, 1.2 · 108 base
pairs).

6These are nominal values for promoter and exon length, chosen for our experiments. Different investigators can use their own
values for regulatory regions extension, depending on their biological assumptions.
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Figure 3.9: Distance distribution inferred from minimal distance couples of transcription factors CTCF
and JUN in cell link HepG2. Vertical lines denote statistical aggregators used in TICA tests (mean,
median and median absolute deviation). Two dimension for the right tail are given: long (distance
greater than 500bp, orange) and short (distance greater than 1000bp, red). Right tail size in this
case is approximately 15% of the total.

Data from ChIP-seq experiments is given in variable size, usually in the range of
101 (point-source information or TSS locations) to 103 base pairs (histone modifica-
tions, genes), making certain fine-grained analysis much more difficult. This is solved
by using ENCODE narrowpeak regions, which contain the position of the highest con-
fidence point-source “peak summit” for each region (as offset from the starting point):
each binding site is represented using only this high-confidence, 1 base pair-long peak
in order to make statistics on small values of distance meaningful.

3.7 Performance

3.7.1 Testing datasets

The model was tested and validated using data from ENCODE phase 2 and 3 ChIP-seq
experiments in narrowpeak format, currently available in GMQL public repositories.
Our chosen model organism was Homo sapiens.The following data was used in valida-
tion experiments:

• Context cell lines: three cell lines were selected due to data availability and qual-
ity: HepG2 (liver carcinoma), K562 (myelogenous leukemia) and GM12878 (healthy
lymphoblastoids);

• TF binding locations: data representing transcription factor binding points (TFB-
Ses) in narrowPeak format [68], due to higher peak precision and presence of peak
summit location information for each region;
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Cell line TF number File number Data size [Gb] Data size
[Millions
regions]

Actively tran-
scribed TSSes
number

HepG2 200 1085 13.16 181 25097
GM12878 148 794 8.66 121 31660
K562 288 2057 23.19 322 32356

Table 3.5: Data volume used in pipeline experiments, listed by cell. TSS numbers refer to sample size
after GMQL filtering.

• Histone marks: the following marks have been chosen for highlighting actively
transcribed TSS (see Section 3.6): h3k36me3 (exons), h3k9ac and h3k4me3 (pro-
moters), h3k4me1 (enhancers). Data was extracted from ENCODE phase 2 and 3
repository, limited to cell lines mentioned above. Data format chosen is ENCODE
broadPeak [68];

• Transcription start sites: data also from ENCODE phase 2 experiments, in stan-
dard bed format. TSS are described in terms of the first exon base only (regions
are 1bp in length).

Data quantities are listed in the Table 3.5.

3.7.2 Testing parameter and hardware

Parameter chosen for GMQL queries and TICA algorithm during performance evalua-
tion are the same as those reported in Table 3.1. Experiments and performance evalu-
ation have been performed on the GeCo server at DEweB, Politecnico of Milano. The
TICA web server is hosted on a Dell PowerEdge R730xd server with 2 Intel Xeon
E5-2660 v4 processors and 384 GB of RAM.

3.7.3 Performance assessment

Performance estimation for the web server can be divided in two blocks:

• computation time needed to (re)generate the database from ENCODE data and/or
to analyse novel data;

• accuracy of predictions.

In this section, the main focus is the evaluation of actual computation performance (i.e.,
time consumed).

Null distribution generation from ENCODE

Execution times for the full pipeline on ENCODE data are listed in Table 3.6. Cell lines
and data volumes correspond to those reported in Section 3.7.1. The pipeline has been
split in four major parts:

• TFBS query: corresponding to lines 2 through 9 of Listing 3.1;

• TSS query: corresponding to lines 12 through 24 of the same;
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Cell line TFBS query TSS query TSS map Mindist couples

HepG2 108 194 21 120
GM12878 77 138 15.5 60
K562 204 407 46 376.5

Table 3.6: Tabulation of execution times (in minutes) for TICA pipeline steps on the three context cell
lines. Input data is taken directly from ENCODE (see Table 3.5). Time measured in minutes.

• TSS map: the mapping of each binding site to all TSS in the promoter of which it
binds, used to determine whether a mindist couples binds to shared promoter;

• Mindist couples: where the mindistance couples are computed by TICA.

Computation times reported in Table 3.6 refer the full analysis of the entire ENCODE
cell line they refer to, which can involve millions of regions at a time (in the case
of K562, ca. 3 · 108 regions are analysed - cf. Table 3.5). In typical use cases, the
computation times are faster by two to three orders of magnitude (cf. next paragraph).

Analysis of novel data

As a simulation of typical levels of workload, synthetic data in narrowpeak format was
generated with variable levels of data volume. Two scaling factors were considered:

• number of transcription factors (each with a given number of regions): this influ-
ences the amount of candidates and therefore the number of times each step must
be executed;

• sample size (in number of regions per sample, for a fixed amount of TFs): in-
fluences the amount of data filtered by TFBS queries, the mapping times and the
number of comparisons during mindist couples’ distance distribution creation.

Note that each TF contains only one sample: giving more for each TF would not influ-
ence the computation times in a tangible manner (the COVER operation would collapse
them to a single one).

The execution of the full pipeline was timed on seven different scenarios, using
HepG2 as context cell line: results are reported in Table 3.7. The datasets are built as
follows:

• first a baseline scenario is considered where the user provides data for 20 TFs,
each containing 5000 regions of 100bp length - estimated to be a typical data size
for user-submitted datasets;

• moving on the TF number scale, one small (10 TFs), one medium (100 TFs) and
one large (1000 TFs) dataset are submitted. Each dataset contains one sample per
TF, and all samples contain 1000 regions (lines);

• on the other hand, moving on region-per-sample number scale three other datasets
are defined: small (103 regions), medium (104 regions) and large (105 regions).
Each dataset contains 50 TFs and one sample per TF as before.
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Cell line TFBS query TSS map Mindist couples Total

Baseline 34 12 3 0.8’

TF-small 11 5 0.5 0.5’
TF-medium 35 52 23 2’
TF-large 219 525 802 26’

SAMPLE-small 13 28 7 1’
SAMPLE-
medium

111 33 23 3’

SAMPLE-large 613 41 38 12’

Table 3.7: Tabulation of execution times for TICA pipeline steps on synthethic datasets. Context cell
line chosen is HepG2. Time measured in seconds except for total, which is converted to minutes for
clarity.

.

Note that each level (small, medium, large) increases the raw amount of data by a
factor of 10, hence the increase in time is linear rather than exponential. To visualize
this, loglog plot of the scaling curves for TF- and sample size-scaling are shown in
Figure 3.10. Note that TSS query filter time has not been timed in this scenario, as
TSSes are not recomputed when user data is uploaded.

Baseline scenario is successfully computed in approx. 1 minute, which is also the
expected time for a typical user-provided dataset.

Accuracy

Briefly, TICA predictions are compared to existing biological knowledge, represented
by two databases: CORUM [63], a collection of experimentally verified mammalian
protein complexes, and BioGRID [69], which reports functional interactions between
proteins based on both high-throughput datasets and individual focused studies. An
interaction is considered to be supported by evidence if its two components are men-
tioned in a complex (CORUM) or as a protein-protein interaction (PPI, in BioGRID).
The quality metrics that are used are recall (fraction of interactions correctly as posi-
tives out of all interaction supported by evidence), specificity (fraction of interactions
correctly not identified as positives out of all interactions which are not supported by
evidence) and geometric mean performance (square root of the product between recall
and specificity [66]). Results are tabulated in Table 3.8 for the largest cell line, K562.

A caveat is that not all TF-TF interactions correspond to complexes or PPIs (e.g.
antagonistic TF-TF interactions), and not all complexes and PPIs correspond to TF-TF
interactions. Nonetheless, co-operative TF-TF interactions are expected to be enriched
in complexes and PPIs. This enrichment can be computed as recall over 1 minus speci-
ficity, which evaluates to 1.95 in the specific example. That is, a TF-TF pair that is
predicted by TICA to interact is twice as likely to be found in a complex or as a PPI
than a pair that is predicted not to interact.

3.8 Discussion

TICA is a novel method for predicting interactions between transcription factors based
on structural and positional information of their binding sites. Its implementation ex-
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Figure 3.10: Loglog scale graph of execution time for TICA on ENCODE datasets. Each line corre-
sponds to one of the three algorithm steps timed as per Table 3.7. Upper: scaling with respect to the
number of TF in a datasets, with fixed number of regions per sample; lower: scaling with respect to
number of region in a sample, with fixed number of TFs (and hence samples).

Cell line Recall Specificity Geometric mean
performance

Enrichment

K562 0.297 0.848 0.502 1.95

Table 3.8: Tabulation of quality measures for TICA predictions, with respect to the union of CORUM
and BioGRID databases. Data from ENCODE cell line K562.
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ploits the expressive and distributed nature of the GMQL language together with simple
statistics to allow fast combinatorial analysis of interactions between TFs, detecting po-
tential physical interactions among them.

TICA’s main advantage lies in allowing researchers to do parallel pre-screening of
possible novel interactions: the method has very high specificity with respect to com-
monly used protein complexes (at least 80%), and thus can be exploited to weed out
unlikely interactions. Using FANTOM transcription factor list for humans [70], 535
transcription factors were identified out of 3601 proteins in CORUM complexes, re-
sulting in 5709 TF-TF interactions. Observing the confusion matrices with respect to
CORUM (not shown), it is notable that the number of true negatives (e.g., 1079 in
HepG2 data) is much higher than the number of false positives (293) and one to two
orders of magnitude higher than the count of false negatives (40); this is indicative of
very high levels of specificity across all test scenarios. In Table 3.3 the quality analysis
is also reported with respect to CORUM and for all cell lines and their intersections.
GM12878 shares almost 50% of its positive-predicted interactions with HepG2 and
with K562 (separately). This is consistent with the fact that GM12878 is a healthy cell
line, and hence its TF-TF complexes should be basal in nature, unlike aberrant versions
in tumour cell lines. TF-TF interactions shared across all three cell lines are 20% of
positive predictions in GM12878 (on common TFs), further validating this hypothesis.

About half of the predictions were confirmed in published literature; notably, more
than 50% of these also found confirmation in one of the two databases, suggesting a
strong biological support for TICA predictions irrespective of cell lines. For a com-
plete report of this investigation, see Supplementary Table S1 of [44]. On the other
hand, many of our predicted positives which could not be verified using CORUM/Bi-
oGRID (i.e. the presumed false positives) are expected to be real positives, waiting
for biological confirmation (Table 3.9). For instance, out of the 42 (109 - 67) sam-
pled positive predictions for HepG2 that were analysed for CORUM (i.e. both TFs in
each of these 42 couples were found in CORUM), 35 (32%) are not reported to be co-
complexed in CORUM (cf. Table 3.9). Notably, 21 of these 35 predicted interactions
have literature support. Thus, that 32% of the current presumed false positives with
respect to CORUM might turn out to be true positives. For K562, a similar calculation
suggests 45 (54.2% of the total) of the current presumed false positives might turn out
to be true positives.

TICA’s database enrichment ratio is above 1 in all scenarios, which indicates that it
can effectively separate true TF-TF interactions and non-interactions. Of note is the fact
that TICA reports fewer TF-TF interaction predictions on control cell line GM12878
as opposed to disease lines HepG2 and K562: healthy cells are generally reported to
have less transcriptional activity than cancer cells [62], providing indirect evidence for
the correctness of the prediction ratio.

As mentioned in Section 3.3.6, TICA’s right tail size feature is a novel introduction
to the field. To investigate the relative impact of this feature, all measures have been re-
computed under three alternative conditions: using all four features (baseline scenario),
using only the 1000bp right tail size, and using all other three measures (i.e. without
the right tail size). Results are reported in Appendix, Table 7.2). Incorporating the right
tail size test consistently leads to improved geometric mean performance, irrespective
of database and/or cell line considered. Using right tail size (with the baseline param-
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Chapter 3. TICA: Transcriptional Interaction and Coregulation Analyser

eters) alone beats all other three measures in terms of geometric mean performance by
a large margin in two out of three cell lines. However, lower database enrichment ratio
was detected when using the right tail size test alone compared to the baseline scenario.
This might be due to a bias in the comparison: using the same baseline P value (0.2)
for all three scenarios results in laxer conditions when using the right tail size test only,
leading to better recall but lower class separation power.

3.8.1 Paramater robustness

The parameters fitted on HepG2 have been tested to confirm whether or not they pro-
vide good results on other cell lines as well. To do this, TICA was run on two additional
cell lines (HEK293 and HeLa-S3) using the HepG2 parameters and ENCODE phase
3 datasets. Performance on HeLa-S3 is very good with respect to both databases, on
par with other cell lines (cf. Appendix, Table 7.1). For HEK293, only 13 of the tran-
scription factors available in our ENCODE datasets are found in CORUM; on the other
hand, while more than 150 of the ENCODE TFs are found in BioGRID, only 67 out of
ca. 13000 possible pairs are reported as PPIs (0.5%); thus, the reference datasets are not
adequate enough to be used in validation with respect to this cell line (in contrast to the
aforementioned HeLa-S3, where 3% of possible interactors is reported as a complex in
CORUM and 8% as a PPI in BioGRID).

3.8.2 Novel interactions

A list of novel interactions predicted using TICA on the three available cell lines was
extracted. An interaction is defined as novel if evidence for it can be found in CORUM
but not in PubMed. The combined support by TICA structural predictions and protein
complexes / functional interactions databases is a strong indicator that these interac-
tions are real. Full results are listed in Supplementary Table S8 of [44]; here are some
interesting examples.

• SIN3A / TFAP4 in HepG2 is supported by the fact that efficient TFAP4 DNA
binding is known to require another bHLH proteins7: SIN3A contains paired am-
phipathic helix (PAH) domains, many of which contain basic regions close to the
HLH motif8.

• The interaction CEBPB / NR2F2 in K562 is notable because evidence of a con-
nection with respect to the regulation of gonadotropin-releasing hormone (GnRH)
has been reported in literature [71].

• Another interesting prediction is JUN / STAT1 in K562: although no other up-to-
date evidence of their interaction in vitro could be found, JUN / STAT3 interaction
is known [72] and STAT1 binds the same or very close to the regulatory regions of
STAT3 [73], suggesting a potential interference scenario where tumour suppres-
sor STAT1 binds STAT3’s binding sites and prevents the formation of JUN/STAT3
complexes in tumour cells. This conclusion is supported by evidence of upregula-
tion of c-JUN in mice with knocked-down STAT1 [74].

7http://www.genecards.org/cgi-bin/carddisp.pl?gene=TFAP4
8http://atlasgeneticsoncology.org/Educ/TFactorsEng.html
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3.8. Discussion

• Finally, evidence has been found that cells transduced with a C-terminally trun-
cated Runx1, which lacks important cofactor interaction sites, showed increased
transcription of c-Myc [75], supporting the prediction of MYC / RUNX1 in K562.

3.8.3 Other methods

TICA has been compared against three other methods for TF interaction prediction:
TACO [52], that predicts cell-specific TF dimers based on enrichment of motif com-
plexes; CENTDIST [76], a co-motif scanning algorithm which ranks co-TF motifs
based on their distribution around ChIP-seq peaks; lastly, the computational method
described by Giannopoulou in [77], based on nonnegative matrix factorization (NMF).
Results are tabulated in Table 3.10.

• TACO: The authors of [52] report the top 10 best ranking predicted motif dimers
using ChIP-seq data on cell line K562 (ibidem, figure 4, page 6); note that it is
assumed a prediction to be negative for TACO if not reported in the list above.
The list of relevant TFs was intersected with data available in ENCODE, the re-
sulting 378 candidates were fed to TICA. A 3-fold higher recall was observed,
with only 13% less specificity, resulting in a 1.6-fold increase in geometric mean
performance.

• CENTDIST: although CENTDIST it is a motif enrichment tool, designed along
different principles, its results were nonetheless compared to TICA as follows.
10 highly conserved factors from the list of data available in HepG2 were se-
lected and submitted to CENTDIST. Then TICA was fed this list of TFs and their
CENTDIST-predicted partners, resulting in 406 candidate predictions: note that
due to the assumptions and target heterotypic interactions, homotypic predictions
are not considered in CENTDIST positive counts. TICA has a much better en-
richment ratio than CENTDIST with respect to CORUM/BioGRID, with better
specificity but lower recall. However, this latter comparison (viz. the lower recall)
is biased in favour of CENTDIST, as CENTDIST predictions were used to select
the TFs to be considered. Moreover, CORUM complexes and CENTDIST’s co-
motifs are not cell-line specific; hence some verified CENTDIST-only predictions
may be false positives in the cell lines tested.

• NMF method: To compare our results with the work of Giannoupoulou et al., a list
of complexes on cell lines GM12878 and K562 reported in Figure 3 of [77] was
compiled and compared with TICA predictions on shared transcription factors.
This list was validated using GeneMANIA [78], a gene network builder based on
functional annotations and used in [77]. On GM12878, TICA shows improved
recall but reduced specificity, resulting in greater geometric mean performance,
but lower enrichment ratio with respect to the databases (cf. Table 3.10 again); on
K562, performance between the two methods with respect to proposed complexes
is similar. However, the authors of [77] do not report their full list of predicted
complexes; so the comparison is expected to be skewed.
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Predictor Recall Specificity GMP Enrichment
TICA (K562) 0.421 0.807 0.583 2.181

TACO 0.140 0.938 0.362 2.258
TICA ∪ TACO 0.526 0.760 0.632 2.192
TICA (HepG2) 0.278 0.857 0.488 1.944

CENTDIST 0.390 0.720 0.530 1.393
TICA ∪ CENTDIST 0.585 0.643 0.613 1.639
TICA (GM12878) 0.424 0.611 0.509 NA*

NMF-Giannopoulou2013 0.238 0.911 0.468 NA*
TICA (K562) 0.202 0.792 0.400 NA*

NMF-Giannopoulou2013 0.214 0.835 0.423 NA*

Table 3.10: Comparison between TICA, TACO, CENTDIST and NMF predictions. Union of predictors
is defined as predicting a positive interaction if and only if it is predicted positive by at least one of
either TICA or TACO/CENTIDIST (respectively); an interaction is predicted negative if and only if
it is predicted negative by both the methods. Comparison performed only on the relevant cell line
(K562 for TACO, HepG2 for CENTDIST, GM12878 and K562 for NMF-Giannopolou2013). *: no
software available for database-wide comparison.

3.8.4 Combined predictors

Based on the comparison discussed above, it can be speculated that taking the union
of TICA and TACO or CENTDIST in a given cell might produce an overall improved
performance. To validate this intuition, quality measures on the predictor resulting
from taking the union of positive predictions from TICA and TACO/CENTDIST (re-
spectively) were computed; cf. Table 3.10. There is a moderate drop in specificity
(expected due to taking the union of two predictors) which is balanced by a sizeable
increase in recall, leading to an overall increase in geometric mean performance and
enrichment ratio, validating the hypothesis.
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CHAPTER4
NAUTICA: Classifying TF-TF interaction

4.1 Introduction

The second major research work developed in this thesis is directly related to the pre-
vious one. As mentioned in Section 3, one of the main limitations of TICA is that it
cannot distinguish the nature of the interactions it predicts - viz., whether they are co-
operative or competitive. The ability to further classify TF-TF interaction predictions
as co-operations or competitions has tantalizing medical and theoretical implications.
In particular, it could allow scientists to refine existing protein-protein interaction (PPI)
interaction networks to the point where pathways can be disrupted or augmented as re-
quired. In this chapter, NAUTICA is presented - a model that uses the TICA framework
and PPI network information to make such categorisation.

4.2 Motivation

The classification of interactions between transcription factors (TFs) is foundational
to the study of regulatory modules, i.e. groups of TFs implicated in the regulation of
the same genes / transcriptional pathways. Classification based on localized binding-
site information alone presents significant challenges, due to the confounding effect of
intervening factors and the fact that some interactions happen only in the regulatory
regions specific to certain genes or in noncoding area.

One way of studying the putative target genes of a single transcription factor is by
using wet lab experiments targeted at discovering the differential effect of TF binding
in the regulatory regions of these genes. Morever, knockout experiment datasets [79]
are used to analyse the differential effect of multiple transcription factors on the same
gene.
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Chapter 4. NAUTICA: Classifying TF-TF interaction

Nevertheless, it is challenging to infer the precise nature of the interactions between
two or more TFs, as they are dependent on their target, the cellular context in which
the study is performed and so on [80]. Transcription factors can compete to bind to a
shared partner [81], compete for the same binding spots [82] or cooperate to coregulate
some genes (and not others) [83]. Also, carpet investigation of all possible interac-
tions between transcription factors (even for small genomes) is combinatorial in nature,
therefore the cost of said experiments grows with the number of potential candidates.

As discussed in the previous chapter, one of the challenges of TICA is that it cannot
discern the nature of the interaction itself. The positional nature of a TICA prediction
only ensures the presence of physical interaction at a molecular level without inferring
the functional nature of the interaction itself. In particular, it is possible that frequently
co-located TFs do so either to cooperate and bind together to the DNA, or to compete
for the same binding spots, or again to compete against each for cooperative binding
to a co-located shared partner. Other TF-TF interaction prediction tools (TACO [52],
CENTDIST [76], etc.) based purely on binding site information derived from e.g.
ChIP-Seq peaks and/or TF binding motifs share this same limitation.

Intuition suggests that a high number of shared protein-protein interactors is in-
dicative of cooperative behaviour, while the reverse indicates competition for shared
partners or no interaction at all [84]. To quantify this, one could use the number of
shared interactors in a reference protein-protein interaction (PPI) network, such as Bi-
oGRID [64], as a measure of co-operation between transcription factors. However, it is
not straightforward to classify interactions as cooperative or competitive based on this
measure. Consider for example the following cases:

• HDAC1 and E2F1. Evidence presented by Doetzlhofer et al. [85] indicates that
HDAC1 and E2F1 compete for binding to the C terminus of transcription factor
SP1, but there are 16 shared interactors between the two in BioGRID.

• OCT4 and SOX2. These two are ubiquitous transcription factors of the basic helix-
loop-helix leucine zipper family that form homo- and heterodimers and recognize
a CACGTG motif termed E box [86]. Nevertheless, they have no shared interactor
in BioGRID.

• c-JUN and c-MYC. To the best of our knowledge, no evidence is available between
these two transcription factors in human cell specimen. Yet they share 15 common
interactors in BioGRID.

These examples indicate that such a model is too simplistic to describe the complexity
of TF-TF interactions; it also suggests that while the number of shared interactors might
be an informative feature, it is cannot be used on its own to correctly separately these
three classes.

This chapter presents the Network-Augmented Transcriptional Interaction and Coreg-
ulation Analyser (NAUTICA). NAUTICA classifies TF-TF interaction predictions pro-
duced by a prediction tool like TICA, which considers positional information of bind-
ing sites alone, by using the number of shared interactors between the candidate TFs
in a PPI network. NAUTICA’s performance is shown to be superior to two simpler
approaches, viz. using only TICA (or other similar TF-TF interaction prediction tool,
e.g. CENTDIST), and using only the information in the PPI network. Addiotionally,
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4.3. Methods

some interesting predictions obtained by applying NAUTICA on available human TF
datasets have been investigated for relevance.

4.3 Methods

4.3.1 Concept description

It is possible to use information contained in PPI interaction networks to augment the
already significant discerning power of TICA (and other TF interaction prediction tools
based on binding site information). NAUTICA is based on the following considera-
tions:

• TF-TF co-operation usually [87] (although not always) entails one of the two in-
teractors recruiting its cognate partners to the same binding location, whether be-
cause the binding of the first is a catalyst of the second or because they bind the
DNA as a single macromolecule. Therefore, if two transcription factors are coop-
erating, they tend to be a part of the same transcriptional complex; also, these com-
plexes tend to be large and composed of several subunits working together [88].
Therefore, two co-operating TFs are likely to share quite a few common interac-
tions in a PPI network and are likely observed to have direct interaction in a PPI
network.

• TFs that compete for a shared partner generally attempt and bind a transactivation
domain on the target partner, most often to the exclusion of each other. Similarly,
two TFs that compete for the same site on the promoter of a target gene also
exclude each other [89]. This means that they are unlikely to directly bind each
other. Furthermore, as a consequence of the previous point, factors that compete
for the same partner or site tend not to share many common interactors in a PPI
network (since they are unlikely to belong to the same complexes). On the other
hand, if two TFs share a high number of common interactions in a PPI network
and yet are not observed to have a direct interaction in the PPI network, a possible
explanation is that they are competing for these shared interactions.

• Finally, the number of shared interactors in a PPI network is a not a clear predictor
of the nature of the interaction. This due to two reasons: first, human PPI networks
are incomplete [22]; second, the more interactors one of the two TFs has, the more
likely it is to share some partners with any other TF due to sheer concidence.
Moreover, it is also difficult to distinguish competitive TF-TF interactions from
non-interacting pairs of TFs based on the number of shared interactors in a PPI
network alone, since both kinds of TF pairs are likely to have a low number of
shared interactors.

While the first and second considerations above can be tackled using PPI network
information alone, the third one by definition requires external input to compensate for
the former’s deficiencies.

4.3.2 Protein-protein interaction network

Our reference PPI network for this work is BioGRID [64], a resource which organizes
and archives genetic and protein interaction data from several model organisms (includ-
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ing humans). The database (version 3.4.1621) is filtered to contain only physical and
multi-validated2 interactions found in Homo sapiens. The resulting network contains
8590 human proteins connected by 34907 edges. Of these proteins, 763 are known
human transcription factors. Moreover, only nodes that are TFs and have degree at
least equal to 3 in the full network are considered. This is done is order to filter out
all those TFs that are isolated due to the incompleteness of the network, and to remove
any disconnected 2-node islands that are likely to be 1-to-1 binding without relation to
the other proteins, or mispredictions from the database; also, TFs with too few edges
cannot have a significant number of shared edges with their neighbours, limiting the
effectiveness of this feature (see below). After filtering, one is left with 375 human
transcription factors, having an average degree of 4.5. Figure 4.1 shows the distribution
of the number of TF-TF interactions in the network, viz. the number of TF-TF only
edges in the filtered network consisting entirely of these TFs and their interactions.
The degree distribution exhibits a power law-like shape, which is typical of scale-free
networks [90].

Figure 4.1: Degree distribution for the TF-TF sub-network S of BioGRID. Note the power law-like
distribution shape. The distribution demonstrates a power law-like shape. Note that we eliminate
from the complete network (viz., including non-TF proteins) those nodes with less than 3 interactions;
however, in this graph restricted to TF-TF edges only, fewer (1,2) interactions are possible.

Let N12 be the number of shared interactions between two proteins in the PPI net-
work. To visualise the nature of this measure, imagine that two proteins are two col-
leagues in the same work network and an edge exists between them if they collaborated
in at least one project. ThenN12 can be thought of as the number of co-workers that two
colleagues have. The higher this number, the more likely is that the two are working
on the same project and/or they share common interests. This approach is reminis-
cent of co-citations used in link analysis [91]. In Figure 4.2 we compare the shared
neighbours of two prominent TF pairs: MAX/MYC (left), a known dimerising pair,
and FOS/NRF1, a competing one.

1Available at http://thebiogrid.org/download.php.
2https://wiki.thebiogrid.org/doku.php/biogrid_mv
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4.3. Methods

Figure 4.2: Comparison of the neighbourhood of MAX and MYC with that of FOS and NRF1 in Bi-
oGRID. Blue line denotes direct connection in BioGRID between MAX and MYC. Note the batch of
shared interactions between MAX and MYC (left) as opposed to the single CSNK2A1 being shared
by FOS and NRF1 (right).

Figure 4.3 shows the distribution ofN12 across TFs in the filtered BioGRID network;
it also exhibits a power law-like shape. Note that N12 is computed considering edges
connecting TFs to both TF and non-TF proteins in the general network, since TFs can
sometimes interact with non-TF proteins such as modifying enzymes [92].

The tail of the distribution (viz., the portion of the distribution which is signifi-
cantly different from the rest) is fixed to start at N12 = 10. Thus, one can collapse the
tail and split the PPI shared-interactor distribution into eleven bins: N12 = 0, N12 =
1, . . . N12 = 9, and n12 = 10 or more.

4.3.3 TF-TF interaction prediction

As presented earlier in Chapter 3, TICA [44] is a statistical algorithm for predicting
whether two transcription factors interact based on positional information from ChIP-
Seq experiments. TICA is used here as a source of TF-TF interaction candidates for
NAUTICA; any other TF-TF interaction prediction tool could in principle be used for
this purpose. In this Chapter, TICA predicts interactions using the following parame-
ters: P value 0.3 on four tests, of which at least 3 are required to call a prediction, based
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Figure 4.3: Distribution of shared interactors between TFs in the PPI sub-network used by the algo-
rithm. The number of shared interactions between two TFs is denoted N12. The red line denotes
N12 = 10, which is considered to be the beginning of the distribution tail.

on distributions that must have at least 1% mindist couples located in promoters. The
p value threshold for statistical texting has been reduced in order to increase the pool
of potential interactors: it is expected that the additional PPI network-based screening
rules will compensate for any loss in specificity (see following Sections).

4.3.4 NAUTICA classification rules

Neither a pure PPI network analysis nor the TICA framework (or other binding-site
position-based frameworks) provide enough evidence for a clean-cut classification of
TF-TF interactions. Here the NAUTICA set of decision rules to tackle this task is
presented.

Nomenclature

A pair of TFs which is submitted for classification is called an interaction candidate
pair, and the two TFs in the pair are called interaction candidates. An interaction
candidate pair can be predicted as one of three classes:

• Co-operation (COOP). This label identifies TFs that bind the DNA as a single
macromolecule, or those where one interactor binds the DNA first and then re-
cruits the other for binding.

• Competition (COMP). This label identifies TFs that compete for the same binding
spots in the DNA, or that attempt to bind in a mutually exclusive way to the same
partner and subsequently bind the DNA in the same (or close) spots.
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• Noninteractors (NINT). TFs in this label do not interact with each other in any
physical way - they neither compete nor attempt to bind with each other to form
complexes.

An interaction candidate pair which is either predicted as COOP or COMP is referred
more in general as an interaction prediction. This is useful when comparing NAU-
TICA with TICA (or other tools that predict the existence but not the nature of TF-TF
interactions) on the same testing set(s).

Decision rules

The NAUTICA’s set of decision rules is summarized by the decision tree in Figure
4.4. NAUTICA’s decision tree is the result of several attempts at feature definition and
quality measure estimation. Among others, different functions of the number of shared
interactions N12 have been studied, such as the CD distance [93], the Jaccard Index of
shared interactions (which we define as the number of shared interactions between two
candidate TFs divided by the union of all interactors of the same); the separation power
of the features was evaluated by using the reference training dataset (cf. Section 4.3.5).
However, the current decision tree proved to be the best so far, with the additional
benefit of simplicity, as shown in the following.

The three main components of these decision rules are:

• TICA prediction value. A Boolean value equal to 1 if and only if TICA predicts
an interactions in any of the available cell lines - for this study, HepG2, GM12878
and K562 have been used (multiple cell lines do not offer additional support)
(multiple cell lines do not offer additional support).

• BioGRID direct edge. A Boolean value equal to 1 if and only if a direct edge is
found in the BioGRID sub-network S (cf. Section 4.3.2) between the two interac-
tion candidates.

• BioGRID shared interactors (N12). A numerical value, representing the number
of shared interactors based on the BioGRID database. Recall that an interacting
protein is shared between two TFs if there is a direct edge between said protein
and both members of the candidate pair.

These features are proposed based on the following reasoning: TICA predicts phys-
ically interacting factors with high reliability. The number of shared interactors in the
PPI network parameterizes the size and number of putative common regulatory mod-
ules they belong to; a large number of shared interactors suggests being in the same
complex and thus co-operation, whereas a small number of shared interactors suggests
the opposite. Adding in BioGRID direct edges augments the recall of the model, ac-
counting for any interactions which evade detection by binding-site location analysis
by TICA (due to lack of ChIP-Seq data, for instance); it also provides evidence of being
in the same complex, a sign of co-operation.

Each potential candidate is assigned one label out of the four described above. For
each of the first three, the assignment is straightforward; if a pair is assigned to “Others
/ Unknown", the evidence available is not sufficient to make any definite claim. Note
that this is different from a claim that there is no interaction between the two TFs; it
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Figure 4.4: Schematic representation of the decision rules for TF-TF interaction classification. Input
data consists of TICA prediction label, BioGRID edge extraction and number of shared interactors
for a give TF interaction candidate. τL is the threshold on n12 that separates DUNNO from COOP
predictions for interactions supported by BioGRID only, and similarly separates COOP and COMP
predictions in BioGRID interactions supported by TICA only. τH is a different n12 threshold that
separates NINT from COMP in the event that no direct interaction evidence is found.

means instead that each case needs to be further analysed as the evidence available is
weak but non-negligible.

4.3.5 Model training

As shown in Figure 4.4, NAUTICA considers three decision points: TICA prediction,
direct edge in BioGRID, plus a fitted two-tiered thresholding (τH and τL) on the number
of shared interactors in BioGRID. Two different values are fitted: one (τL) to distinguish
between co-operation and competition in the case of interaction evidence and the other
(τH) for the case where no interaction is predicted by TICA and/or BioGRID.

To fit the two thresholds (τH and τL) in NAUTICA, an initial training set (denoted
TR) of 110 TF interactions was curated by sampling the list of possible TF pairs for
which data is available (viz, respecting the filter of Section 4.3.2). The sampling was
done by randomly choosing groups of 10 TF pairs, each having a number of shared in-
teractions N12 belonging to a different bin shown in Figure 4.3. Each sampled pair was
labeled (as COOP, COMP, or NINT) by manually checking current literature. Too few
of these turned out to be competition interactions, so the list was fleshed out with addi-
tional TF pairs mentioned in the papers that we read while doing the manual checking
above, and curated the nature of their interaction as well. The set of TF pairs sam-
pled from each bin has equal representation of pairs having direct PPI edge and pairs
having no direct PPI edge. The complete training set consists of 175 labeled TF-TF in-
teractions (full list provided in Supplementary material SM1.1 of the submitted paper,
omitted her for brevity). Out of these 175, 28 were found to be competitions, 112 as
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co-operations and 32 as non-interactions. 3 interactions (c-JUN / JUND, EGR1 / SP1
and RELA / SP1) could be classified into multiple categories based on available evi-
dence, and thus were excluded from the threshold-fitting process. This proportion of
co-operations to competitions to non-interactions is not representative of the expected
distribution of such interactions and non-interactions in vivo; thus, we implemented a
calibration system to better estimate the quality of our predictions in light of the relative
density of shared interactions (cf. below).

Of the two different values are fitted, τL is used to distinguish between co-operation
and competition in the case of interaction evidence while τH is instead used in the case
where no interaction is predicted by TICA and/or BioGRID. Some leeway has been
given to the thresholds in order to avoid overfitting to TR.

4.3.6 Relative risk and odds ratio analysis

It is natural to consider the output of TICA (or other tools that predict TF-TF interac-
tions) and the existence of a direct edge in BioGRID as features for NAUTICA. On
the other hand, the number of shared interactors is a less-known feature, the power
of which as a measure of the co-operation level requires a deeper analysis. Two in-
dicators (relative risk, RR; and odds ratio, OR) are computed for each bin of the PPI
shared-interactor distribution (cf. Section 4.3.2).

The relative risk of two labels L1 and L2 in bin i is defined as

RRi(L1, L2) =
P(L1 ∈ i)
P(L2 ∈ i)

,

where the numerator is the ratio between the number of pairs predicted as L1 in bin
i and the total number of L1 pairs, and the denominator is computed similarly with
respect to L2. On the other hand, the odds ratio of two labels in a bin is instead defined
as between the ratio of L1 pairs to L2 pairs in bin i and the ratio of L1 to L2 pairs not
in bin i, for any given i:

ORi(L1, L2) =

#(L1∈i)
#(L2∈i)
#(L1 /∈i)
#(L2 /∈i)

.

RR and OR have each been computed in three cases: co-operation vs non-interaction,
co-operation vs competition and competition vs non-interactions.

For example, the following rules can be derived from RR and OR:

• if RRi(COOP,NINT ) > 1, then COOP TF pairs have higher preference for bin
i (compared to other bins) than NINT TF pairs;

• if ORi(COOP,NINT ) > 1, then it is more likely to see COOP TF pairs in bin i
(compared to other bins) than NINT TF pairs;

and similarly for all combination of labels Lj .

4.3.7 Testing datasets

To test the set of NAUTICA decision rules, two additional sets (denoted TS1 and TS2)
of TF interactions are curated. Each of these is used to evaluate different quality mea-
sures, as described below.
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Figure 4.5: Distribution of the number of shared interactors in BioGRID between TFs for which TICA
has information for analysis. On each bar, the relative bin weight computed with respect to bin 9 (the
smallest).

Recall calibration and evaluation

To test the set of NAUTICA decision rules, a different set of TF interactions is curated,
denoted TS. TS is used to evaluate the recall of NAUTICA. A separate list of 119 test
cases was also curated by sampling uniformly across the different values of N12 (using
the same procedure described in Section 4.3.5; full list provided in Supplementary
Materials of the submitted paper, omitted for brevity). No member of this test set is
shared with TR. For each test case in TS, existing literature was searched for evidence
of interaction and the nature of it; this resulted in 13 competitions, 95 co-operations,
and 55 non-interactions. However, ChIP-Seq data is not available for some of these
curated examples (which are required for TICA predictions in NAUTICA). Thus, TS
contains 51 non-interactions, 8 competitions and 64 co-operations - those for which
data is available.

NINT (non-interactions) cases are expected to be the majority of predictions (25),
but they are also the most difficult to validate due to lack of experimental reports on
them. As such, a face-value evaluation of the recall on the NINT (as well all other
classes) would be strongly misleading; to solve this problem, a calibration system was
designed to estimate the number of correct/incorrect prediction based on an expected
distribution of each class, details as follows.

Figure 4.5 shows the distribution of N12 in BioGRID for each TF pair for which
TICA has data available for analysis and satifying the filters in Section 4.3.2: this is
done in order to not confound the distribution with interaction groups where many
pairs are not available for predictions. This distribution is denoted the NINT null dis-
tribution, because most of the TF pairs spanned by this distribution are expected to be
non-interacting pairs.

One can use this distribution to derive the relative weight of TF pairs curated as
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Figure 4.6: Distribution of shared interactors between cooperating TFs from the training set, restricted
to TFs studied by TICA. On each bar, the relative bin weight computed with respect to bin 6/7 (tied
for smallest).

NINT when used for recall evaluation as follows. Let the bin that contains the least
amount of candidates be the “base bin”, and assign it a weight of 1. Each of the other
bins is assigned a weight which is its population size divided by the population size of
the base bin, rounded down to the closest integer. Based on the complete distribution
in Figure 4.5, the base bin is bin 9. Then each TF pair curated as NINT is weighted
according to the weight of the bin it is in. For example, a TF pair curated as NINT that
has 0 shared interactor in BioGRID (and thus is in bin 0) is given the weight of 358.
Consequently, if this TF pair is correctly predicted as NINT, this counts as 358 correct
predictions; on the other hand, if it is incorrectly predicted as anything else, this counts
as 358 wrong predictions.

There are too few COMP cases to form a null distribution of their own. However,
this distribution is expected to be close to the NINT null distribution, so one can also
use the NINT null distribution to weight TF pairs curated as COMP interactions. As for
the COOP null distribution, 86 out of 112 co-operation cases in our training set have
TICA datasets available; this is good enough for a representative COOP null distribu-
tion (presented in Figure 4.6). Bins 6 and 7 are the smallest bins for the purpose of
weights. As suspected, there is a large difference from the NINT null distribution with
regards to both distribution shape and weights for all bins, which confirms the necessity
of a different null distribution for calibrating the weight of TF pairs curated as COOP
interactions.

The COOP and NINT null distributions are then used for evaluating the recall of
NAUTICA in a calibrated manner. The weight of a TF pair (in the dataset TS1) that has
n12 = n̄ shared interactors is calibrated as follows: if its curated label is COOP, then its
weight is the weight of bin n̄ in the COOP null distribution; analogously, if its curated
label is COMP or NINT, then its weight is the weight of bin n̄ in the NINT null dis-
tribution. Say the assigned weight of a TF pair is m. Then NAUTICA’s prediction on
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this TF pair is counted as m predictions. Thus, if this prediction is correct, it is counted
as m correct predictions; and if it is wrong, it is counted as m wrong predictions. For
example, let’s assume that a curated non-interaction is in fact predicted as cooperation
and has 0 shared interactor in BioGRID. Based on the NINT null distribution distribu-
tion shown in Figure 4.5, 358 predictions would be added to the confusion matrix entry
matching “actual NINT, predicted COOP” (which, incidentally, is a false negative for
the NINT class and a false positive for the COOP class).

Precision evaluation

There are some subtleties that have to be considered when comparing precision values
between different predictors. The weights calibration derived from the binning on the
number of shared interactors in BioGRID (cf. Section 4.3.7) are class specific, i.e. they
say nothing about how many more times COOP or COMP pairs there are in any given
bin with respect to NINT pairs. Since precision is a measure based on two classes (e.g.
COOP vs non-COOP), it cannot be directly applied if the two classes have different
weight calibration.

To tackle this issue, a theoretical estimate of precision from TS2 using the cali-
brated recall detailed in Section 4.3.7 was performed, based on some additional as-
sumptions. LetM be the total number of test candidates to be analysed (in our case, this
means those TF-TF pairs that have ChIP-Seq data for TICA analysis and where both
members have at least 3 interactors in BioGRID). Suppose a 80/20 split between non-
interacting and interacting TF-TF pairs, and a further 50/50 split of interacting pairs
in co-operations and competitions, for a final 80/10/10 split. This means that there are
0.8 ·M non-interacting pairs, 0.1 ·M cooperating pairs and 0.1 ·M competing pairs.
Given calibrated recallRi (i being any of the three classes, NINT, COOP or COMP), the
total number of non-interactions correctly predicted can be estimated as 0.8·M ·RNINT ,
and thus the number of mispredicted non-interactions is 0.8·M ·(1−RNINT ). Likewise,
0.1 ·M · RCOOP co-operations and 0.1 ·M · RCOMP competitions are correctly pre-
dicted as such. Thus the precision (defined as the number of true positive per predicted
positive, TP

TP+FP
) of interaction (either co-operations or competitions) can be estimated

as

PINT =
0.1 ·M ·RCOOP + 0.1 ·M ·RCOMP

0.1 ·M ·RCOOP + 0.1 ·M ·RCOMP + 0.8 ·M · (1−RNINT )
.

Precision under other splits of NINT:COMP:COOP can be calculated analogously.

4.3.8 Enrichment in CORUM complexes

Finally, one can use protein complex information to further validate NAUTICA’s pre-
dictions. Transcription factors that cooperate to bind the DNA as a single unit should
have a higher likelihood to be found in protein complex databases. Conversely, compe-
titions and non-interactions should have a low likelihood to be reported as co-complexes
(in the first case, the competitors bind mutual exclusively to a shared partner to form
different complexes; they are thus unlikely—but not completely impossible—to bind
each other in a third complex). Thus, the list of predicted TF-TF interactions was cross-
checked with CORUM [63], a curated database of protein complexes, using the Homo
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sapiens complex database released on September 3rd, 20183. To estimate the represen-
tation of each class in CORUM, for each predicted member of the class (COOP, COMP,
or NINT) one can check whether there is at least one CORUM complex that contains
both constituent TFs. The ratio between this list and the total number of predicted in-
teractions in that class is used to compute the enrichment of that class in CORUM. Note
that this is done across the spectrum of predictions available, as opposed to using only
test datasets TS1 and TS2.

4.4 Results

NAUTICA was trained on the training set TR (cf. Section 4.3.4). The thresholds were
fitted by maximising recall of each class with respect to TR. A parameter sensitivity
analysis was performed to evaluate stability of the measures: optimal values were found
at τH = 8 and τL = 5 (details in Supplementary Material SM2.1 of the submitted paper,
omitted for brevity). NAUTICA was then applied to each TF pair for which there is a
TICA prediction (whether interaction or not) and each TF in the pair has degree at least
3 in BioGRID. There are 32796 such pairs (and thus 32796 NAUTICA predictions);
they are composed of 300 TFs. Predictions are tabulated in Table 4.1.

Class Count Percentage
COOP 806 2.46%
COMP 2807 8.56%
NINT 28961 88%

DUNNO 222 0.68%
TOTAL 327963 100%

Table 4.1: Breakdown of predictions based on class. Percentages indicate the relative proportion of
classes in the output set.

4.4.1 Relative risk and odds ratio analysis

The OR and RR graphs for co-operation (COOP) versus non-interactions (NINT) were
computed for all interactions in our training dataset TR, shown in Figure 4.7.

A χ2 significance test on the counts used to compute the odds ratio and relative risk
was also evaluated, to assess whether the results are significant. Results in Table 4.2.

4.4.2 Calibrated confusion matrix and recall

Dataset TS was used to evaluate the recall and specificity of NAUTICA, subject to the
calibrations described in Section 4.3.7. The confusion matrices for the fitted param-
eters both without and with calibrations are reported in Table 4.3 (upper and lower,
respectively).

By comparing the two, one can observe that after calibration, the method displays
very good recall in predicting co-operations. In particular, the table shows that the
calibrated recalls for co-operations (COOPs) and competitions (COMPs) are in a very
respectable range while the recall of noninteractions (NINT) more than doubles; since

3Available at http://mips.helmholtz-muenchen.de/corum/#download.
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Figure 4.7: A. Relative risk distribution of COOP vs NINT TF pairs in TR with respect to bin sizes. Each
histograms reports the absolute value. B. Similar chart for odds ratio.

Bin χ2value P value
0 50.35 1.28E-12
1 1.65 0.20
2 0.26 0.61
3 3.78 0.05
4 3.29 0.07
5 0.86 0.35
6 0.01 0.95
7 0.10 0.74
8 5.81 0.01
9 111.17 5.41E-26

10+ 439.04 1.74E-97

Table 4.2: χ2 and P values according to bins for the co-operation versus non-interactions relative risk
and odds ration analysis. Highlighted are the bins which are significant at P value threshold 0.05.

NINT are expected to be the most numerous class in the universe set, this results in a
significant increase in the method’s accuracy.

4.4.3 Precision estimation

At the same time, a theoretical estimate was run as described in Section 4.3.7. Here are
the results: a total of M = 32823 pairs were analysed. Under the assumption that the
proportions of actual NINT:COMP:COOP is 8:1:1, and assuming recalls as in Table
4.3 (RNINT = 0.80, RCOMP = 0.46, RCOOP = 0.82), there is an estimated precision
of interaction prediction of

PINT =
0.046M + 0.082M

0.046M + 0.082M + 0.16M
= 0.43.

This estimate of precision is very respectable, given the assumption that there are
eight times more NINT than each of COMP and COOP cases in the population; it is
circa two folds better than random guessing.
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Actual class P_NINT P_COMP P_COOP Recall
A_NINT 10 7 9 38%
A_COMP 1 2 2 40%
A_COOP 8 2 41 80%
A_NINT* 2175 400 132 80%
A_COMP* 33 34 6 46%
A_COOP* 83 16 443 82%

Table 4.3: Recall estimates on test set TS1. Upper: no calibration. Lower: with calibration for recall
(also marked with *). The calibration is described in 4.3.7 and is performed by substituting to each
prediction (whether correct or not) its weight. The weight is defined as the ratio between the number
of interactions that have the same N12 as that prediction and the same count done for the N12 value
that has the least interactions. Note that specificity cannot be calibrated without some additional
assumptions.

Label TICA (p=0.2) NAUTICA
NINT INT Recall* NINT INT Recall

A_NINT 18 33 35% 21 30 41%
A_COMP 4 4 50% 3 5 63%
A_COOP 25 38 60% 15 48 76%
A_NINT 3868 2467 61% 5259 1106 83%
A_COMP 69 54 44% 68 55 44%
A_COOP 248 443 64% 154 537 77%

Table 4.4: COOP and COMP predictions from NAUTICA were collapsed into the general “interaction”
(INT) category for the comparison. Upper: no calibration. Lower: with calibration (also marked
with *). Calibration is done with the same procedure as the general NAUTICA recall analysis (Table
4.3).

4.4.4 Comparison with TICA and a PPI-based tree

A simple way to further gauge the goodness of NAUTICA is to compare with its consti-
tutive components: TICA and a predictor based on BioGRID information alone. This
was done in order to investigate whether or not the novel method is more effective than
its constituents.

TICA was evaulated on TS, comparing the results with NAUTICA: since TICA
alone does not distinguish between co-operations and competitions, the two classes
were combined into a more general "interaction" class. Also note that in NAUTICA,
the TICA statistical threshold was relaxed to 0.3 to increase recall (since NAUTICA is
able to filter the corresponding increase in false positives from TICA): the comparison
here is done against TICA alone with its default threshold (viz., 0.2 on all four tests).
Results are shown in Table 4.4.

NAUTICA has double the specificity of TICA (viz., it has double the recall of TICA
when used to predict noninteractions on dataset TS), while having the same or better re-
call on interactions, with the added capability of being able to distinguish them between
co-operations and competitions.

This makes NAUTICA a superior tool for predicting TF-TF interactions, with the
added benefit of the possibility of distinguishing them in co-operations and competi-
tions, a capability that, as mentioned, TICA does not have.

On the other hand, the comparison with BioGRID is more nuanced, as there is no
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Actual label BioGRID d.t. NauTICA
NINT COMP COOP Recall* NINT COMP COOP Recall

A_NINT 5 16 5 19% 10 7 9 39%
A_COMP 0 3 2 60% 1 2 2 40%
A_COOP 2 7 42 82% 8 2 41 80%
A_NINT 1785 437 485 65% 2175 400 132 80%
A_COMP 0 67 6 91% 33 34 6 46%
A_COOP 52 45 450 82% 83 16 443 80%

Table 4.5: Recall estimation comparison between NAUTICA and a simpler decision tree based on the
number of shared interactorsN12 in BioGRID. Upper: without calibration. Lower: with calibration.
# If DUNNO cases are conservatively taken as NINT.

direct way to predict classes. To do this, a simplified decision tree based on n12 only
was designed, using the following rules: consider two thresholds L andH distinct from
(θL and θH). Then

• if a candidate TF pair has a number of shared interactors between 0 and L (L
exclusive), predict non-interaction;

• else, if a candidate has a number of shared interactors between L and H (L inclu-
sive, H exclusive), predict competition;

• otherwise, predict co-operation.

L and H were estimated based on the same training set TR as in NAUTICA, for con-
sistency. The calibration of parameters is shown in Appendix, Figure 7.2); the final
thresholds are L = 1 and H = 10.

This simple BioGRID decision tree was evaluated on TS. The resulting calibrated
recall values are RNINT = 0.79, RCOMP = 0.96, andRCOOP = 0.40; the correspond-
ing theoretical precision is PINT = 0.45. NAUTICA has better performance with
respect to dataset TS (recall estimation in Table 4.5) when predicting non-interactions
and co-operations. While the BioGRID decision tree’s performance on competition
looks superior on the surface, it is important to note that it predicts every TF pair that
has 1 ≤ N12 ≤ 10 as a competition. In other words, the BioGRID decision tree —if we
ran it on all candidates, as opposed to just TS—would predict 10016 out of 32,796 can-
didates as competitions, i.e. 30.5%, which is an unrealistic amount. In contrast, among
these 10016 candidates, NAUTICA would predict 6674 as non-interactions, 2760 as
competitions and 582 as co-operation. NAUTICA’s categorizations seem more rea-
sonable than the simple BioGRID decision tree. It should also be noted that the 5%
reduced recall on NINT results in a significant number of mispredictions, as NINTs
vastly outnumber the other classes.

The NAUTICA decision tree can use any predictor of TF-TF interaction instead of
TICA. Candidates are, for instance, CENDIST and TACO. Every predictor has its own
limitations; for instance, by using TACO we would selectively focus on co-operations
(as TACO predicts dimerization, viz. physical binding, which is most compatible with
cooperation) and CENDIST requires both ChIP-seq and a motif database.
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Label Percentage
in CORUM

Fold-increase
w.r.t. COOP

Fold-increase
w.r.t. COMP

Fold-increase
w.r.t. NINT

COOP 26.1% - 10.88 52.20
COMP 2.4% 0.09 - 4.80
NINT 0.5% 0.02 0.19 -

Table 4.6: Enrichment of NAUTICA predictions in CORUM. Breakdown by class. Fold-increase is the
ratio between the two percentages. In line with the fact that CORUM privileges co-operations, only
2.9% of predicted non-cooperations (COMP+NINT) are supported by CORUM evidence, whereas
26.1% of predicted co-operations (COOP) are supported.

4.4.5 Enrichment in CORUM complexes

Finally, one can use protein complex information to further validate NAUTICA’s pre-
dictions. Transcription factors that cooperate to bind the DNA as a single unit should
have a higher likelihood to be found in protein complex databases. Conversely, compe-
titions and non-interactions should have a low likelihood to be reported as co-complexes
(in the first case, the competitors bind mutual exclusively to a shared partner to form
different complexes; they are thus unlikely—but not completely impossible—to bind
each other in a third complex).

Thus, the list of predicted TF-TF interactions was compared to CORUM [63], a
curated database of protein complexes. In particular, the human complex database
released on September 3rd, 2018 4 was used. To estimate the representation of each
class in CORUM, one can check for each predicted member of the class (COOP, COMP,
or NINT) whether there is at least one CORUM complex that contains both constituent
TFs. The ratio between this list and the total number of predicted interactions in that
class is used to compute the enrichment of that class in CORUM. Note that this is done
across the spectrum of predictions available, as opposed to using only the test dataset
TS. Table 4.6 reports the percentage of COOP, COMP and NINT that are found in
CORUM complexes.

The over-representation of COOP cases in CORUM is consistent with and validates
our hypothesis. In particular, only 2.9% of the COMP+NINT predictions are supported
by CORUM analysis, while 26.1% of COOP are confirmed by the database. The slight
enrichment in CORUM of competitions over non-interactions is also consistent with
the expectation that some competing TFs can be members of the same complex while
being mutually exclusive in other complexes. The somewhat low figure of 26.1% of
predicted co-operations being found in CORUM is also not unexpected, due to the
incompleteness of CORUM and the fact that not all co-operations imply the formation
of a protein-protein complex.

4.4.6 Investigation of significant cases

The strongest predictions achieved with NAUTICA have been manually investigated
for biological interpretation. In this context, the top 40 predictions of co-operations
(respectively, competitions) are those with higher N12 extracted along the (1,1) (re-
spectively, (0,0)) branch of Figure 4.4. These predictions have been searched within
PubMed articles. Results are the following: out of 40 predicted co-operations, 19 were

4Available at http://mips.helmholtz-muenchen.de/corum/#download.
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mentioned in articles, and 12 of them (63%) were mentioned as co-operating or co-
binding; out of 40 predicted competitions, 17 were mentioned in articles, and 5 of
them (29%) were mentioned as competitions, whereas for many of them a classifica-
tion based on literature review was not possible. Respectively 21 and 23 pairs out of
the above sets were not mentioned in PubMed, they represent original predictions of
TF-TF co-operation or competition. The full list is provided in Appendix, Table 7.3.

Three groups of TFs with known biological interactions have also been investigated,
to evaluate the quality of NAUTICA predictions. First, the triplet comprised of MAX,
MYC and MNT is known to engage in competitive behaviour. Specifically, MYC is
competing with MNT to bind to MAX and form a heterodimer. NAUTICA correctly
predicts both the MAX/MYC and MAX/MNT (BioGRID and TICA predict interaction)
co-operative behaviour, while the MNT/MYC pair is predicted as competitive due to the
lack of shared BioGRID edges. This behaviour is confirmed by several experimental
studies. Similar results can be obtained by substituting SIN3A to MNT [94] [95].

Consider now the cohesin subcomplex RAD21 / SMC1 / SMC3. Cohesin is involved
in DNA looping [96]. NAUTICA correctly predicts the co-operation of SMC3 and
RAD21, while predicting the competition of HDAC2 with SMC3. Since HDAC2 is
involved in the chromatin compacting processes causes by DNA deacetylation, it is
reasonable that it competes for the same binding spots as cohesin; RAD21 and HDAC2
are predicted to have no interaction, which makes sense because RAD21 acts as a bridge
between the SMC subunits of cohesin and bears little direct effect on the DNA binding
of that complex [97].

Finally, evidence has been found of a competitive behaviour between Early Growth
Response 1 (EGR1) and the TATA Box-binding Protein TBP [98]. Although NAUTICA
predicts no interactions between the two (due to lack of predicted TF interaction), it
does predict a competition between EGR1 and the TBP-Associated Factor 1 (TAF1),
which is required for the formation of the TFIID complex containing TBP [99]. Thus, it
is possible to hypothesize that EGR1 is in fact competing for the binding spots of TAF1,
and preventing the recruitment of the same for the formation of the TFIID complex,
resulting in an apparent competition between the two.

4.5 Discussion

NAUTICA is a novel methodology that improves upon TICA’s framework (and other
similar framework based on TF binding-position information), and aims at enrich-
ing the previous model by classifying predicted interactions as co-operations or com-
petitions. It also corrects previous examples of false positives, by eliminating non-
interacting TF pairs which were reported by ChIP-Seq to bind in the same promot-
ers; this might be due to the ChIP-Seq experiments were conducted on individual TFs
separately and hence peaks located on the same positions might not be on the same
instances.

To the best of our knowledge there is no method that performs wide-ranging TF in-
teraction classification, so NAUTICA is a new contribution to the field. Several meth-
ods perform predictions on TF-TF cooperation, such as [79], but these methods require
TF binding motif predictions and/or knockdown experiments, making comparison dif-
ficult.
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4.5. Discussion

NAUTICA shows very good levels of recall with respect to all different interaction
classes, especially after calibration with respect to the density of each N12 bin, mak-
ing it a powerful tool for TF-TF interaction classification. It works well in separating
co-operating from competing TFs (cf. Table 4.3), which is of interest since (to the
best of current knowledge) there is no other computational method that makes the same
distinction. Moreover, the enrichment of co-operation predictions with respect to CO-
RUM complexes is consistent with biological intuition, further supporting our claim
that NAUTICA can correctly distinguish between co-operations and competitions. The
estimation of precision, while penalized by the scarcity of known TF-TF competition
cases in the literature, is still significant, sitting at 45%. This is about two-folds better
than random guessing.

The choice of parameters used for NAUTICA is supported by the relative distribu-
tion of the number of shared interactors n12 across the various bins that were defined,
which marks an over-representation of co-operating TF-TF pairs for high values of n12

and conversely an under-representation at smaller n12. The relatively high count of
co-operating TF-TF pairs at n12 = 0 (and other very small n12 values) is likely due
to incompleteness of the PPI network. These results are consistent with our model
assumptions and indicate that NAUTICA is using sensible parameters in its decision
points. Bins 0, 8, 9 and 10+ are highly significant, providing further evidence to our
claims. It should be noted that bins 1, 2, 3, 4 and 5 are not significant according to the
χ2 test, indicating that the co-operation claim in those bins is harder to support (though
the existence of direct PPI edges in BioGRID or positive TICA predictions help resolve
cases in these bins).

Validation for NAUTICA classification is easily done with respect to the co-operation
class, for which literature is readily available, but trickier for the competition cases. It
is indeed harder to find direct competition evidence in the literature. However, by us-
ing indirect evidence such as CORUM, we show that NAUTICA has solid biological
premises and distinguishes the competitive and co-operative cases.

There is an interaction type that can be classified as between COMP and NINT, and
is worth discussing in further detail. Let X, Y be two competing TFs and let Z be a
third TF such that X recruits Z and Y does not recruit Z. Assume that Z is unlikely to
bind certain promoters without recruitment by X . When X binds those promoters, Z
also binds; and when Y binds those promoters, Z does not bind. In this case, strictly
speaking, (Y, Z) is not a COMP interaction by our definition of COMP; yet (Y, Z) may
have characteristics similar to genuine COMP pairs. In particular, (Y, Z) is likely to
bind to the same (or close-by) spots in a mutually exclusive manner. Yet experimentally,
Z cannot be shown to block Y (i.e., over-expressing Z doesn’t prevent Y from binding
promoters.) An example of this dynamics is (HDAC1, TBP) where AP4 competes with
TBP and AP4 recruits HDAC1 [100]. Based on this, one can divide the COMP class into
two mutually exclusive subclasses: COMP+, which are supported by base TICA and
like compete for the same binding spots; and COMP-, TFs that are members of different
complexes that in turn compete for the binding spots in the DNA, though the two TFs
do not compete directly for the same binding spots. It is tantalizing to hypothesize that
this last group can be found in the bottom left branch of Figure 4.4, with HDAC1/TBP
corroborating this idea, but further investigation will be required.

77



i
i

“output” — 2019/2/15 — 17:53 — page 78 — #86 i
i

i
i

i
i



i
i

“output” — 2019/2/15 — 17:53 — page 79 — #87 i
i

i
i

i
i

CHAPTER5
ESTETICA: Enrichment Signal TEster for

Transcriptional Interaction and Coregulation
Analysis

5.1 Introduction

NAUTICA is based on BioGRID (or any other PPI network), and therefore indirectly
on biological literature mining. In this chapter, the problem of TF-TF interaction clas-
sification is tackled from a different perspective. ChIP-seq experiments in narrowPeak
format report the intensity of the biological signal detected at statistically significant
binding sites (cf. Section 2.3). One might wonder if this signal value, with some
hypotheses, could be used used to discern localized co-regulation phenomena. This
hypothesis was tested by developing several different algorithms, each attempting to
extract co-operation and competition predictions based on the combined signal of each
potential TF-TF interaction pair at shared binding locations.

5.2 Background

As discussed in Chapter 4, classification of TF-TF interactions is a difficult problem due
to significant confounding effects, such as conflicting cognate partners and epigenetic
conditions influencing transcription, and difficulties in designing wet-lab experiments
to validate or refute interaction hypotheses [101].

Current prediction approaches share a common hypothesis—viz. binding motifs,
ChIP-seq peaks, etc. of interacting TFs are co-located in the promoter/enhancer regions
of their target genes—deriving from the fact that interacting TFs need to bind close to
binding positions of each other. While this common hypothesis is most likely correct, it
is insufficient to completely classify TF-TF interactions. This is because many TFs that
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Chapter 5. ESTETICA: Enrichment Signal TEster for Transcriptional Interaction and
Coregulation Analysis

do not interact to activate their cognate target genes also have co-located peaks, and
both co-operative and competitive TF-TF interactions exhibit this same phenomenon.

There is another angle from which to attack this problem - an additional feature
called the signal enrichment (sometimes, signal enrichment value, henceforth denoted
as σ). The signal enrichment at a called binding peak is the (usually average) tag
read count measured in that region with respect to control. An interesting aspect of
this feature is the possibility to quantify the enrichment of a TF at a given location by
measuring the amount of said tag reads in the experiment output: this value is a measure
of the amount of a TF bound to the location, which in turn indicates the strength of the
TF’s influence in that area.

ENCODE narrowPeak datasets (cf. Section 2.3) provide, for each binding site re-
gion of the target TF, the average signal enrichment value. The higher this value, the
higher the quantity of that TF is found in the specific location with respect to the con-
trol. However, the signal on a given binding site carries no information on the epige-
netic conditions of the cell at the time of measurement, nor it says anything about the
behaviour of co-locating transcription factors. Thus, additional modeling hypotheses
are required.

5.3 Definitions and notation

ChIP-Seq experiments in narrowPeak format contain a feature called signal enrichment
value at the binding site (or signal enrichment, for short). The signal enrichment is
defined as the ratio between the amount of protein found at the binding location and
the amount detected in the same spot during control experiments, viz. by running the
sequencing procedure with an antibody that does not match the current target. This
value measures the (relative) intensity of the binding site: the more protein is found at
the target site, the stronger the affinity of the TF for that particular binding spot. This
value is denoted here as σTi , where i refers to an indexing of all available binding sites
for a certain transcription factor T . This signal value is usually given in floating point
format. In ENCODE narrowpeak datasets, it is averaged by the length of the detected
binding site1.

For a given transcription factor T , the set all of signal values associated to its binding
sites is called the signal distribution of T , and denoted ΣT . An example of a signal
distribution for the TF MYC in cell line K562 is given in Figure 5.1, considering only
binding sites found on promoters.

Note that if one denotes the set of all binding sites of T (in number of N ) as

BT = {bT0 , bT1 , ..., bTN},

then it is possible to define a function that associates to a binding site its signal value.
For instance,

S : BT → ΣT , S(bTi ) = σTbTi
=: σTi .

While the signal distribution of a transcription factor might be interesting per se, it is
more interesting to study what happens when the signal is observed over a set of paired
binding sites, belonging to two TFs of interest. Consider two TFs, T1 and T2, that

1Reference: https://genome.ucsc.edu/FAQ/FAQformat.html#format12.
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5.4. Data exploration and modeling

Figure 5.1: Distribution of MYC signal in cell line K562. Data from ENCODE narrowPeak, November
2017 release. Only transcription factor binding sites found in the promoter of an actively transcribed
gene are considered (see Section 3.3.2). Black line: σ = 1, viz. beginning of the area where signal is
higher than control.

bind in locations of the genome indexed as, respectively, BT1 and BT2 . Assume that
there is a tool that extracts all co-located couples from the set BT1 × BT2 (such as the
couple extraction algorithm of TICA). It follows that it is possible to extract a joint
signal distribution ΣT1×T2

J (subset of the Cartesian product ΣT1 × ΣT2) of all paired
signal values found in co-located couples. The signal distributions of each TF at paired
binding sites, which can be extracted from this joint distribution, are called marginal
signal distributions and denoted ΣTi

m , i = 1, 2.
The research challenge considered in this work is using the properties of the joint

and marginal signal distributions of two TFs in order to predict whether their interac-
tion is co-operative or competitive in nature. This approach is complimentary to the
one developed in NAUTICA (Chapter 4) and potentially more interesting, because it
relies on observable physical and chemical properties of the binding sites themselves,
whereas NAUTICA leverages knowledge mining of PPI networks. As discussed below,
however, using the signal enrichment values in this way is tricky and requires careful
tuning of the hypotheses and algorithms employed. The different modes of interac-
tion between two TFs will be denoted in the same way as in NAUTICA: COOP for
co-operation, COMP for competition and NINT for no-interaction (negative case).

5.4 Data exploration and modeling

In this Section, several models based on paired signal values are described are referred
to under the general name of ESTETICA (Enrichment Signal TEster for Trascriptional
Interaction and Coregulation Analysis). They all rely on the enrichment signal to clas-
sify TF-TF interaction, albeit in different ways.
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5.4.1 Data selection

As mentioned, signal enrichment values are provided in ENCODE narrowPeak datasets.
Data from cancer cell line K562 was extracted: cancer cell lines are usually well stud-
ied and have abundance of transcriptional activities [62], making signal values more
easy to exploit. Unlike TICA / NAUTICA, an additional filtering parameter was con-
sidered: the quality of output peaks in terms of IDR (Irreproducible Discovery Rate), a
measure of consistency between replicates in high-throughput experiments [102]. This
is reflected in the ENCODE narrowPeak metadata “output_type”. Thus, datasets were
filtered to maintain only samples with “conservative” or “optimal” IDR-thresholded
peaks.

5.4.2 Signal extraction and building its distribution

For simplicity, let the first (left) candidate TF be called the anchor (A), and the second
(right) candidate TF the experiment (E). Thus the joint signal distribution is ΣA×E

J .
The couple extraction algorithm used in ESTETICA is a simplified version of TICA
(cf. Section 3): let ∆ be an upper distance limit for co-localizing couples (say, 250bp).
Then for each binding site ah0 = bAh0 ∈ BA of the anchor, one can scan the genome
looking for every binding point ek = bEk ∈ BE of the experiment which is found at
most ∆

2
base pairs away. If a single point is found (say eh0 = bEh0 ∈ B

E), the resulting
(ah0 , ek0) couple defines a point of the joint signal distribution ΣA×E

J by the intuitive
mapping

(ah0 , ek0)→ (S(ah0), S(ek0)) = (σAh0 , σ
E
k0

).

If multiple points {ek0 , . . . , ekN1
} ⊆ BE are found to be eligible, all of them define

couples in a similar way, with the caveat that the signal σAh0 must be divided in some
way as to signal avoid duplication2. There are several ways to do this: the simplest is
to equally divide the signal of σAh0 among all eligible couples, thus having the mapping

(ah0 , ekt)→
(
σAh0
N
, σEkt

)
,

and the left signal redefined to σAh0 for brevity. Additional ways to do this is to have a
set of non-uniform weights which are a function of intra-couple distance, or to consider
only the closest couple with full signal (viz, the tightest couple has weight 1 and all
others have weight 0). The percentage of couples that requires signal duplication for
different values of ∆ has been analysed, results in Figure 5.2. The value ∆ = 200bp is
the largest window that negates the duplication effect. For this selection, the duplication
effect is negligible and can be ignored.

By looking for co-located couples in this way on all chromosomes, one can build
the signal distribution ΣA×E

J , which has length L equal to the number of couples. An
example of this distribution for TFs MAX and MYC in the cell line K562 is given in
Figure 5.3. Each dot represents the joint (σAh , σ

E
k ) of a particular co-located couple.

The distribution of the joint signal is not straightforward to analyse, even for the
human eye. Several approaches have been tested to extract meaningful features from
these distributions, detailed in the following Sections.

2This will become important later, when the value of the signal in each couple is used to predict the interaction class.

82



i
i

“output” — 2019/2/15 — 17:53 — page 83 — #91 i
i

i
i

i
i

5.4. Data exploration and modeling

Figure 5.2: Fraction of couples with duplicate signals as a function of the parameter ∆ for representative
cases of different classes. Data from ENCODE narrowPeak, November 2017 release.

83



i
i

“output” — 2019/2/15 — 17:53 — page 84 — #92 i
i

i
i

i
i
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Figure 5.3: Joint signal distribution scatterplot of TFs MAX and MYC in cell line K562. Data from
ENCODE narrowPeak, November 2017 release.
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5.4. Data exploration and modeling

Figure 5.4: Distribution of the fraction of all possible couples found by the algorithm for TF-TF pairs.
Data from ENCODE narrowPeak, November 2017 release; breakdown by class.

5.4.3 Preliminary analysis: fraction of matched binding sites

Co-operating and co-operating transcription factors are expected to bind closer to each
other than non-interacting pairs. In Figure 5.4 the distribution of the fraction of po-
tential couples which are actually found is reported - more specifically, the number of
couples found by the method is divided by all potential chromosome-wise combination
of anchor and experiment binding sites. A greater number of higher values can be ob-
served for COOP with respect to COMP and NINT. Also, NINT is observed to have
higher and more spread values than COMP, which is to be expected as competing TFs
might be impeded from binding bind close to each other (e.g., by the shared partner or
by intervining factors). It should be noted that more cases of each label are needed to
truly assess whether the distinction is relevant, but the prospects are so far promising.

5.4.4 ESTETICA take 1: angle approach

Consider the joint and rank joint distributions, plotted on a plane using signals as the x
and y coordinates. Let for simplicity σA = σ1 and σE = σ2, such that the xy plane can
be denoted as the σ1σ2 plane. Consider also two straight lines (called separator lines)
originating from the origin (0,0) that split the distribution(s) in three sets (denoted HL,
LH and HH) such that each of these contains exactly one third of theM couples (Figure
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Figure 5.5: Marking of sets HH, HL and LH on normalised joint distribution of TFs MAX and MYC.
Data from ENCODE narrowPeak, November 2017 release. Normalisation in the blue plot is done by
sorting the joint distribution once by σ1 and then by σ2, and substituting in each couple the rank of
the corresponding signal, viz. the number of elements in the marginal distribution which are small
than or equal to that signal value.

5.5). The set HH is the set of all couples where both the anchor and the experiment are
highly expressed, and analogously for HL and LH. The separator line beteween HL and
HH is called the lower separator line, while the other is called the upper separator line.

A possible modelling assumption is: the tighter the two separator lines are, the more
likely two TFs are to co-operate, as the HL and LH sets are more sparse in the plane
(in other words, less space is needed for the HH set to contain one third of the joint
distribution, and so its values are closer to each other); conversely, if the separator lines
are very far apart then the HH is the sparse set, and thus it contains values that are much
more spread. Tighter HL and LH spaces are indicators of a potential competition.

It is desirable to have a quantifiable measure of the tightness of the regions defined
by the separator lines. One possibility is to use simple planar geometry to compute the
angle γ between the two separator lines. To do so, let λi =

σi
2

σ1
for (σi1, σ

i
2) a point of

the joint distribution ΣA×E
J . This defines a mapping

(σi1, σ
i
2)→ λi

between the joint distribution and the vectors λi of the σ1σ2 plane. One can observe that
low values of λi correspond to points where σ1 is greater than σ2, i.e. points that are
likely to fall in the HL area of Figure 5.5. Conversely, high values of λi correspond to
points with σ2 > σ1, and thus the LH area. By sorting the λu distribution by magnitude
and observing that λis are the slopes of the lines that connect (0, 0) to each point of
the joint distribution, it follows that the lower separator line has slope equal the ratio
λl such that exactly 33% of the λi are lower than λl. In other words, λl is the 33rd
percentile of the λi distribution. Analogously, λu the slope of the upper separator is the
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5.4. Data exploration and modeling

Figure 5.6: Collection of joint normalised distribution plots for TF pairs of different labels. Top row.
Co-operation cases. Middle row. Competition cases. Bottom row. Non-interacting cases.

66th percentile of that distribution. Given the slopes of the lines, it follows that

αl = arctan(λl)

αu = arctan(λu)
(5.1)

and the angle α between the distributions can be computed as

α = αu − αl.

To test the goodness of this model, the following 9 cases were selected, 3 for each
label (COMP,COOP,NINT) from the curated training and test datasets for NAUTICA
(cf. Sections 4.3.5 and 4.3.7):

1. COOP: BRCA1 / RB1, MAX / MYC, CEBPB / SPI1.

2. COMP: HSF1 / SPI1, HDAC2 / EP300, FOS / NRF1.

3. NINT: FOS / MAX, MYC / STAT1, STAT1 / MAX.

The distribution plots for the 9 cases are shown in Figure 5.6, together with the separa-
tion lines.

A polar structure can be observed in COOP and COMP plots, with two or more poles
aligning on the major diagonal (i.e., from top left to bottom right) for COMP and on
the minor diagonal (from top right to bottom left) for COOP cases. While three cases
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Figure 5.7: Distribution of angles α distances between separator lines (cf. Figure 5.5) of TF-TF pairs in
GM12878. Breakdown by class. Upper. Raw signal. Lower. Rank-normalised signal, as described
in Figure 5.5.

is not enough to extract a definite conclusion, they indicate that there is an underlying
structure that can be used by a predictor to call each class. To quantify this effect over
a large number of cases, the distribution of angular size of the sets HH, HL and LH for
each class is computed. ENCODE data from cell line GM12878 was used to assess the
quality of the model. Results in Figure 5.7.

There is significant overlap between the distribution of angles between the three
classes, but the COOP distribution appears to be skewed towards lower values with
respect to the COMP distribution. Moreover, the NINT distribution can be observed to
have higher values than the COOP distribution. The tighter the angle between the two
separators, the more points one can find in the HH area of the plots, so the observation
that non-interacting pairs have less signal pairs in that area strengthen the intuition that
the angles are an informative feature to consider. However, the carpet investigation
of cell line GM12878 data is still inconclusive in demonstrating the effectiveness of
a predictor based on α. Thus, a different approach was attempted to cope with the
apparent lack of separation between classes.

5.4.5 ESTETICA take 2: bisectors on the signal square

A similar approach for highlighting the different behaviour of two paired TFs is the
following. Consider the [0,M1]× [0,M2] square (where Mi = max

(
ΣTi
m

)
, i = 1, 2 is

the maximum values that σi can have in the marginal distribution of Ti). Denote this
space as the signal square. As it has been shown with the previous method, the signal
square contains information on paired binding sites and their relative signal value that
is informative of the underlying biological phenomenon.
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Signal square information can be aggregated by splitting the signal square into areas
of interest. This has the effect of summarising the information contained in the signal
distribution itself into quantities that can be fed to a numerical predictor. One way
of doing this is the following: consider the abstract case where M1 = M2 = 1 (i.e.,
the signal space is [0, 1] × [0, 1]. The first and third quadrant bisector line σ1 = σ2

divides this square in two areas: one where σ2 > σ1 (upper) and the other where
σ1 > σ2 (lower). Points that fall on the bisector itself are those where the two signals
are perfectly identical. However, biological signals are rarely so well aligned to each
other, so one can allow a range of values to be considered as “matching”; in other
words, given ε ∈ [0, 1], one can consider all paired couples satisfying |σ2 − σ1| ≤ ε as
approximately matching, and the rest to be different in intensity.

Consider also the line σ2 = 1 − σ1, parallel to the second and fourth quadrant
bisector. This divides the square in two parts as well. The upper part (σ2 > 1 − σ1)
can be thought of as the couples where the two signals are high “together”, while the
lower part comprises couples where the two signals are low “together”. Experiments
have suggested that signal couples tend to cluster close to (0, 0) (cf. Figure 5.3), so a
penalty should be imposed to this division by means of another parameter δ ∈ [0, 1],
thus using the straight line σ2 + σ1 = 1 − δ as the separator of the two regions (i.e.,
penalising the lower part in favor of the upper).

Using again simple planar geometry, one can see that in the more general case where
Mi are not both 1 the reasoning can be extended using the correction factor

Λ =
M2

M1

,

deriving the matching area |σ2 − Λσ1| <= εM2 and the high-to-low separator line
σ2 + Λσ1 = (1− δ)M2 (cf. Figure 5.8 for a drawing in the MAX / MYC case).

Consider thus the following two sets:

A = {(σ1, σ2) : |σ2 − Λσ1| > εM2, σ2 + Λ < (1− δ)M2} ,
B = {(σ1, σ2) : |σ2 − Λσ1| > εM2, σ2 + Λ >= (1− δ)M2} .

(5.2)

These correspond intuitively to the area of the square where the two TF have unevenly
distributed / non-matching signals (viz., one is high and the other one is low). A is the
area where both TFs have inferior binding strength, while in B both signals are found
to be in the higher part of their binding spectrum. Conversely, the following regions C
and D represent areas of paired TFBS with similar binding strength:

C = {(σ1, σ2) : |σ2 − Λσ1| <= εM2, σ2 + Λ < (1− δ)M2} ,
D = {(σ1, σ2) : |σ2 − Λσ1| <= εM2, σ2 + Λ >= (1− δ)M2} .

(5.3)

C and D are distinguished again by the general intensity binding level, as above.
If the majority of the paired binding sites of two TFs fall in the D area of the signal

square, one can postulate that their relative level of binding is high at equilibrium,
suggesting a form of reciprocal recruitment and co-operation. On the other hand, if the
levels of paired binding sites found in the A and B areas of the signal square is higher,
than it is possible that one of the TFs is suppressed when the other one is enhanced, a
sign of competitive behaviour. The analysis of the C area of the signal square is more
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Figure 5.8: Joint signal distribution scatterplot of TFs MAX and MYC in cell line K562, with separator
line overlay. Values used are ε = 0.2 and δ = 0.1. Data from ENCODE narrowPeaks.
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intricated, as many binding found in this section have faint signal that may be caused
by spurious binding and/or random association.

By virtue of these considerations, the following predictor was defined: first, com-
pute the paired signal couples are described in Section 5.3 and extract the joint signal
distribution ΣA×E

J . Let the number of couples found this way be N . Compute the frac-
tion of couples falling into each of the four sets A, B. C and D3. Then the following rule
applies:

IF(A+B > h ·D) COMP
ELSE COOP.

(5.4)

In other words, if more couples are found in the side areas A and B than in the top
area D, a competition between two TFs is assumed. h ∈ [0, 1] is a damping factor that
accounts for the tendency of transcription factors to bind in clusters (and thus they tend
to be higher even in competing cases due to intervening factors) [57].

This simple predictor does not account for the case where no interaction between
two candidate transcription factors if found (NINT). Thus, it is necessary to pre-screen
interaction candidates using an interaction prediction method; TICA (cf. Section 3)
is used for the pre-screening. In a sense, ESTETICA becomes an extension of TICA
that only predicts COOPeration or COMPetition, exploiting an additional feature of its
couples to further refine the predictions as cooperation or competitions.

Parameter estimation

The majority of the parameters to be estimated for the rule in Equation 5.4 is in fact
related to the signal couple extraction and signal square division, rather than in the rule
itself. Indeed, the following parameter need to be estimated based on the model itself:

• ∆: maximum distance allowed for paired binding sites (base pairs).

• ε: width of the C and D regions (fraction of max(σ1).

• δ: dislocation of the A / B separator line (as fraction of max(σ1).

• K: outlier limit, viz. the top percentage of each TF’s signal (by intensity) that
is removed to avoid inconsistent results. For instance, if the median signal for a
TF is of the order of 102, then binding sites with σ higher then 10000 are widly
inconsistent with other observations and should not be considered (percentage in
[0, 100]).

• h: co-operation damping factor (numerical coefficient in [0, 1]).

To estimate parameters, 30 cases of cooperation and competition for which ChIP-
seq data is available were selected using literature investigation. The reference cell line
used was K562, for additional data availability. The list of training cases is reported in
Appendix, Table 7.4. The fitness function used to estimate the best parameter model
is accuracy, viz. the number of correct predictions with respect to both classes. The
estimated parameter based on biological consierations and accuracy levels is given in
Table 5.1.

3With a minor abuse of notation, they shall be referred to as A, B. C and D themselves.
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Parameter Best fit
∆ 250
ε 0.5
δ 0.1
K 10
h 0.25

Accuracy 53.33%

Table 5.1: COOP and COMP predictions from NAUTICA were collapsed into the general “interaction”
(INT) category for the comparison. Upper: no calibration. Lower: with calibration (also marked
with *). Calibration is done with the same procedure as the general NAUTICA recall analysis (Table
4.3).

ESTETICA_COOP ESTETICA_COMP
NAUTICA_COOP 0.098 0.117
NAUTICA_COMP 0.277 0.508

Table 5.2: Level of concordance between NAUTICA and ESTETICA con TICA-predicted interacting
TF-TF pairs of K562 for estimated paramters values (cf. Table 5.1).

5.5 Discussion

5.5.1 Concordance with NAUTICA

The first thing to evaluate is whether ESTETICA and NAUTICA have an accord on
interaction predictions. Since the underlying phenomenon is the same, it is reasonable
that the two methods would return similar predictions, factoring in precision and the
different data available.

ESTETICA and NAUTICA were compared on the set of TFs for which ChIP-seq
narrowpeaks are available in the cell line K562. Of these, only those were TICA’s
prediction is positive are retained. A total of 7460 potential candidates was extracted
this way. Since ESTETICA does not predict noninteractions, all cases where NAU-
TICA predicts no interaction were excluded since they have no counterpart. TICA’s
and NAUTICA’s specificity (i.e. NINT recall) is very high (cf. Section 4.3.7), thus the
removed negatives are very likely to be noninteracting pairs. The resulting test dataset
is comprised of 1239 cases, of which none are shared with the training set. ESTETICA
was run on the whole set and its predictions were compared with NAUTICA using the
parameters in Table 5.2. Results are shown in Table 5.2.

The two algorithms good accord (around 60%), especially on competitions. The
proportion of classes is also respected, with circa 10% of ESTETICA’s prediction being
COOPs and 90% COMPs, in line with NAUTICA’s estimations (cf. Table 4.1). This
strengthens the claim that the signal enrichment is an informative feature for TF-TF
interaction classification.

5.5.2 Enrichment in CORUM complexes

As was done with NAUTICA, one can use protein complex information to further vali-
date ESTETICA’s predictions. Transcription factors that cooperate to bind the DNA as
a single unit should have a higher likelihood to be found in protein complex databases,

92



i
i

“output” — 2019/2/15 — 17:53 — page 93 — #101 i
i

i
i

i
i

5.5. Discussion

while competiting TFs have a much lower chance to do so.
The list of ESTETICA predictions from K562 (see above) was compared to CO-

RUM [63], human complex database released on September 3rd, 2018 4. Each COOP
and COMP predictions have been checked for presence in at least one CORUM com-
plex, and the ratio between this list and the total number of predicted interactions in that
class is used to compute the enrichment of that class in CORUM. With the estimated
parameters of Table 5.1, a total of 10.8% of COOPs were found in CORUM, while
6.3% of the COMPs were found, giving a ratio of circa 1.70. While this number is
decisively greater than one, and the result is acceptable, it is not as good as NAUTICA.

5.5.3 Investigation of significant cases

ESTETICA does not make use of the N12 shared interactor count from NAUTICA (cf.
Section 4.3.2) but it is nonetheless still usable for the purposes of investigating the most
interesting cases predicted by the former. In a similar fashion, the 40 predictions pre-
viously discussed during NAUTICA validation have been compared with ESTETICA’s
own evaluation, results as follow. The full list is provided in Appendix, Table 7.3.

Among the top 40 co-operation predictions analysed, 23 had enough data available
for analysis (both enough binding sites for the two candidates, and enough couples)
and 18 were recalled by ESTETICA. Of these, 11 were mentioned in articles (61%) as
co-operating or co-binding. Interstingly, out of the top 40 competitions analysed, only
1 had enough data to be analysed using the ESTETICA methodology (specifically,
HDAC1 / JUND) and it was correctly recalled as a competition. The corresponding
article also mentions it as a competition.

5.5.4 Key takeaways

While positional information of TF binding sites is informative, the role of the signal
enrichment at the binding sites themselves is less clear. On the one hand, ESTETICA
has so far provided partial evidence that the signal enrichment carries important infor-
mation. For instance, given the signal square or two transcription factors, the positions
of the joint signal distributions can be grouped into "areas" (such as the HH, HL and LH
polygons in Section 5.4.4 or the A, B, C and D regions of Section 5.4.5) that summarise
and compare the behaviour of two TFs when found in similar locations.

The driving biological idea behind the use of the signal enrichment values is the one
exposed in Section 5.2 and summarised as follows: at equilibrium, two TFs that are ac-
tively recruiting each other should similar if not consistently the same levels of expres-
sion measured at the binding sites (due to requiring each other or dragging each other to
the binding sites), while competing or mutually antagonising TFs should have opposite
levels of signal at the binding sites - one high and one low. Indeed, co-operating TFs
seem to exhibit a polarised behaviour around the top-right (and sometimes bottom-left)
areas, while competing TFs demonstrate the opposite behavior. A simple rule based
on a geometrical subdivision of the signal square demonstrate good levels of consis-
tency with a different one based on the mining of existing biological literature, and thus
indirectly on biological experiments.

4Available at http://mips.helmholtz-muenchen.de/corum/#download.
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Chapter 5. ESTETICA: Enrichment Signal TEster for Transcriptional Interaction and
Coregulation Analysis

Figure 5.9: Simulation of confounding case done using synthetic data. TEST1 dataset has uniformly
distributed signal between 0 and 10000 (200 data points), while TEST2 has 50% points at σ = 50
and 50% at σ2. Prediction is COMP (B = 56 > 0.25 ·D).

However, experiments highlighted some methodological constraints. Firstly, it is not
clear whether or not the difference in relative magnitude of the signal values is critical
in perfomance for the signal-based predictor, ESTETICA. While it is possible to build
the geometry of the problem in such a way that this difference is kept into account,
examples can be constructed in such a way that false positive are detected. For instance,
consider a case where one TF has 50% of its binding sites with a high signal value (say,
500) and 50% on a lower value (say, half of that). Now, assume a test is performed for
classification against another TF, whose TF binding site signal is equally distribution
across a range. The signal square of these TFs would look something like what is shown
in Figure 5.9, where an artifact case is represented. In this scenario, the prediction is
decisively COMPetitive, although it is much more likely that the association is spurious
(TF2 is randomly distributed in its signal interval).

On the other hand, it has been mentioned in Section 2.3 that the ENCODE narrow-
Peak signal enrichment value is normalised with respect to a control value (i.e., the
same experiment performed without an antibody matching its target). While one could
argue that the basal transcription value of a given cell should be more or less consis-
tent in time, not only can epigenetic conditions modify this basal rate, but exploratory
investigation of the informative power of λ = max2

max1
(which, under the assumption of

equal control levels, should not depend on the control itself) provided no evidence of
separation power on the 30 training cases.

In conclusion, the overall performance of ESTETICA is inferior to the performance
NAUTICA. There are many possible causes: the high level of noise in the signal values
(many paired binding sites are located in the C area of the signal square, i.e. they are
both in the low of their spectrum and thus more likely to be random noise), the effect
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5.5. Discussion

of the basal rate and the presence of intervening factor confounding the shared signal
distribution.
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CHAPTER6
Summary

This thesis is focused on developing, testing and validating novel methods for transcrip-
tion factor-transcription factor (TF-TF) interaction and coregulation prediction using
predominatly data-driven models. It is difficult to construct a “gold truth” of classified
and verified TF-TF interaction cases. It is even more difficult to build one that dis-
tinguishes between co-operation and competitions, or between competitions and non-
interacting (a.k.a., negative control) TF-TF pairs. While co-operations can be covered
by the CORUM repository, to the best of the authors’ knowledge there is no dedi-
cated and recognized repository for competing and non-interacting TFs exists. Defin-
ing training and test datasets for classification is therefore rather hard, as one has to rely
on manual investigation and pre-existing biological knowledge to construct validated
sets. Indeed, there is a strong need for validated and biologically sound TF-TF interac-
tion and classification methods, and the methods discussed hereafter represent a strong
attempt at developing novel methodologies to deal with this issue.

The main result of this thesis is the so-called TICA suite, which is composed of three
algorithms:

• TICA (Transcriptional Interactions and Coregulation Analyser), a novel algorithm
that leverages genometric and positional information from ChIP-seq experiments
targeting TF binding sites to infer interactions between two such TFs in human
healthy and cancer cell lines;

• NAUTICA (Network Augmented Transcriptional Interaction and Coregulation
Analyser), the first refinement of the TICA framework that can classify interacting
TFs as either co-operating or competing based on PPI network analysis of shared
interactors;

• and finally ESTETICA (Enrichment Signal TEster for Transcriptional Interaction
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Chapter 6. Summary

and Coregulation Analysis), a complimentary approach to TF-TF interaction clas-
sification that instead leverages on the signal enrichment values also provided by
certain ChIP-seq experiments.

6.1 TICA

The first model, TICA, is a novel methodology that employs genomic positional in-
formation of TF binding sites to predict physical interactions between TFs. The main
advantages of TICA are three-fold: it leverages novel, parallel computing techniques to
efficiently scan ChIP-seq point-sized binding site datasets and extract high-confidence
binding sites and active transcription start sites; it does not require motif information
for TF binding sites, bypassing incompleteness of selected motif databases and related
accuracy issues; and it sports very high level of specificity even at the laxest levels of
parameters, allowing investigators to screen out non-interacting TF-TF pairs with high
levels of confidence before proceeding to wet lab confirmation experiments.

TICA leverages on GMQL, a novel language for the management, integration and
querying of genomic information developed by the Genomic Computing (GeCo) re-
search group at Politecnico of Milan. This language, which was created by pooling
traditional distributed database techniques with computational genomics methods, sup-
ports a rich set of predicates describing distal properties of regions (e.g. being among
the regions at minimal distance, possibly above a given threshold, from a given loca-
tion). The development and testing process of TICA led to consequent modification
and improvements of the GMQL language itself.

The principle behind TF-TF interaction prediction by TICA is the following: first,
given a set of many TFs in the same cell line, the null distribution is composed of TF
pairs that do not interact; second, interacting TFs are distinguishable from the null case
based on the relative positioning of their binding sites, i.e. the closer they are to the
putative interactor’s binding locations, the more likely is the interaction to be true. This
translates into the use of the distance distribution tail size, a novel contribution to the
field, together with more usual aggregators such as average, median, etc., to build null
distributions for statistical inference.

TICA has shown very good performance when validated with respect to curated pro-
tein complex and protein-protein interaction (PPI) network databases and outperforms
competitors that require motif prediction in addition to binding site positions. TICA has
shown to be as reliable if not better than similar interaction prediction algorithms that
rely on motif information, while allowing for significantly higher output rates (ranging
between 5000 to 22000 predictions on available cell lines). Moreover, TICA appears
complementary to alternative TF-TF interaction prediction approaches (viz. TACO and
CENTDIST), and combining their predictions greatly improves sensitivity at moder-
ately reduced specificity.

A web service for TICA has developed and deployed using the Python’s Django
framework and GMQL interface (pygmql). The web service allows user to submit their
own TF binding sites data and compare it with either themselves or ENCODE published
datasets to infer TF-TF interaction phenomena. TICA’s web server allows for an easy
exploration of TF-TF binding site pairing while keeping execution times short using
pre-computation of the null distributions on ENCODE datasets. The web service is
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available at http://www.gmql.eu/tica.

6.2 NAUTICA

NAUTICA builds on the TICA framework by answering the following question: is it
possible to distinguish the interacting TF pairs in co-operating and competing? One
of the main limitations of TICA is that it cannot easily perform such distinction, as
it can be shown that both co-operating and competing TF pairs have a tendency to
bind in close proximity to each other. One way to solve this problem is adding in an
independent feature to the classifier, which is given by the number of shared interac-
tors in a curated physical PPI network, such as the physical BioGRID subset. While
co-operating TFs generally belong to the same regulatory module and thus are more
likely to share many coregulators, competing TFs generally do not perform the same
regulatory action when bound to the shared cognate partner and might not belong to
the same module: the likelihood of them sharing many interaction partners should be
much reduced.

NAUTICA classifications are confirmed by both literature investigation and protein
complex databases, and the additional information extracted from BioGRID has been
shown to improve TICA’s predictions as well, allowing to relax its statistical threshold-
ing on distance distribution tests and increase recall (the other main limitation of the
framework). NAUTICA improves the TICA framework by leveraging protein-protein
interaction network information (specifically, the number of shared interactors between
two TFs in the network) for further classifying current TF-TF interaction predictions
into co-operations and competitions. This classification is supported by both existing
protein-complex databases and literature validation and improves the performance of
TICA.

NAUTICA is a novel, effective tool for interaction classification that does not require
motif prediction. To the best of our knowledge there is no method that performs wide-
ranging TF interaction classification, so NAUTICA is a new contribution to the field.
Several methods perform predictions on TF-TF cooperation, such as [79], but those
methods require TF binding motif predictions and/or knockdown experiments, making
comparison difficult. Notably, the NAUTICA framework can take as input any TF-TF
interaction prediction: it has been developed as an overlay for TICA, but it can easily
be adapted to the usage in any pipeline which predicts and classifies TF interactions.
As an example, one could use the results of CENTDIST [76] or TACO [52].

6.3 ESTETICA

Finally, ESTETICA attempts to tackle the same problem as NAUTICA by mining the
informative power of the signal enrichment found at each TF’s binding sites. The higher
the signal enrichment, the more copies of the protein are found at the site during the
experiment and thus the stronger the binding at the target location. Co-operating TFs
in general perform shared regulatory activity by recruiting each other to shared binding
locations, and thus are expected to have higher joint value of signal enrichment when
found in tight pairs. On the other hand, competing TFs fight for the same binding spots
on the genome and/or on the trans-activating domains of the shared partners, generally
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Chapter 6. Summary

in a mutually exclusive way. When one competitor is strongly binding a spot, it prevents
the other from doing so.

ESTETICA leverages on both the joint signal distribution and on this last postulate
by separating the distribution in either three equally sized sets (dubbed HH, HL and LH)
and checking the spread of each set for significant difference, or by defining four signal
areas (dubbed A, B, C and D) that captures the relative intensities of two TFs when
paired to each other, and running a simple linear predictor to classify predicted interac-
tions. Data exploration of ENCODE narrowPeak datasets using these models provides
a new understanding of the relationship between the joint signal enrichment of two
TFs at shared binding points and their regulatory relationship. Indeed, it is possible to
separate co-operations from competitions in some key cases using the aforementioned
predictor, thus advancing along the possibility of developing a complete understanding
of the mechanisms underlying TF-TF interactions.

6.4 Future works

In Section 5.5, some limitations of the current iteration of ESTETICA have been high-
lighted, including the need to better compare signals from different TFs and the effect
of the basal control signal used during experiment. Several alternatives remain to be
explained, among them the following:

• a cross-TF signal normalisation technique might be developed to minimise the
effect of different signal scales;

• different kind of data could be used in alternative or in addition to ENCODE
narrowPeaks, providing orthogonal measurements of TF binding signals;

• expanding the current methodology to triplets of TFs, as some regulation effect
involve by nature more than two interactors (such as the formation of a regulatory
complex); by considering three or more units of signal per binding points, the
accuracy of COOP/COMP separation could be improved.

Once the current COOP/COMP separation techniques are consolidated, it will be pos-
sible to expand the current implementation of the TICA web service to include both
NAUTICA and ESTETICA. The resulting suite will support users through all the steps
of the TF-TF interaction and classification prediction, from data exploration to pre-
diction validation, by first predicting interactions through TICA and then predicting
co-operations and competitions for interacting pairs.
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Appendix

List of abbreviations

bHLH Basic helix-loop-helix (protein)

ChIP-Seq Chromatin Immunoprecipitation followed by sequencing

COOP Co-operation (type of TF-TF interaction)

COMP Competition (type of TF-TF interaction)

GMP Geometric Mean Performance

mRNA messenger RNA

NINT Non-interaction (type of TF-TF interaction)

PIC (Transcription) Pre-Initiation Complex

PPI Protein-Orotein Interaction

TF Trasscription Factor

TFBS Transcription Factor Binding Site(s)

TSS Transcription Start Site(s)

List of gene symbols and names

ARID3A AT-rich interactive domain-containing protein 3A

AP4, TFAP4 Transcription factor AP-4 (activating enhancer binding protein 4)

101



i
i

“output” — 2019/2/15 — 17:53 — page 102 — #110 i
i

i
i

i
i

Chapter 7. Appendix

ATF1 Cyclic AMP-dependent transcription factor ATF-1

BRCA1 BRCA1, DNA Repair Associated

CEBPB CCAAT/enhancer-binding protein beta

CTCF CCCTC-binding factor (also, 11-zinc finger protein)

EP300 E1A Binding Protein P300

FOS Fos Proto-Oncogene, AP-1 Transcription Factor Subunit

HDAC2 Histone deacetylase 2

HSF1 Heat Shock Transcription Factor 1

JUN Jun proto-oncogene, AP-1 transcription factor subunit

MAX MYC-Associated factor X

MYC V-myc avian myelocytomatosis viral oncogene homolog

NRF1 Nuclear Respiratory Factor 1

NR2F2 Nuclear receptor subfamily 2, group F, member 2

RUNX1 Runt-related transcription factor 1

SIN3A Paired amphipathic helix protein Sin3a

STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3

SPI1 Spi-1 Proto-Oncogene

RB1 RB Transcriptional Corepressor 1

TBP TATA-box Binding Protein

7.1 Chapter 3

7.1.1 TICA algorithm: pseudocode

7.1.2 TICA predictor quality measures
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Algorithm 2 Pseudocode for the TICA mindist couple extraction algorithm. This simplified version
shows the general workflow of TICA, as described in 3.3.3. * CHAIN(l1, l2) return a list that is the
concatenation of two lists, l1 and l2. † FILTER(l, p) return all elements in list l that satisfy condition
p. + MATCH_TSSES(tfbs1, tfbs2) returns TRUE if the two input tfbs are found to be colocating in at
least one promoter, else returns FALSE. The list of tss_to_tfbs maps for each cell is assumed to be given.

Require: tf1_tfbs 6= [ ] , tf2_tfbs 6= [ ] , active_tss 6= [ ] , d_max > 0, functions CHAIN*,
FILTER†, MATCH_TSSES +

1: dists← [ ]
2: num_w_tss← 0
3: all_tfbs← CHAIN(tf1_tfbs, tf2_tfbs)
4: for c← chr1 to chrM do
5: this_chr_tfbs← FILTER(all_tfbs, CHR == c)
6: sorted_tfbs← SORTED(this_chr_tfbs,KEY = tfbs_position)
7: for t in sorted_tfbs do
8: if |t.pos−NEXT (t).pos)| < d_max and t.tf 6= NEXT (t).tf then
9: dists[end]← |t.pos−NEXT (t).pos)|

10: if MATCH_TSSES(t,NEXT(t)) then
11: num_w_tss+ = 1
12: end if
13: end if
14: end for
15: end for
16: return dists, num_w_tss

Cell line Database Recall Specificity GMP* Enrichment ratio
HepG2 CORUM 0.322 0.786 0.503 1.505

BioGRID 0.265 0.794 0.459 1.286
GM12878 CORUM 0.267 0.873 0.483 2.102

BioGRID 0.221 0.849 0.433 1.464
K562 CORUM 0.345 0.886 0.553 3.026

BioGRID 0.236 0.902 0.461 2.408
HeLa-S3 CORUM 0.29 0.911 0.514 3.563

BioGRID 0.209 0.921 0.435 1.339
HepG2 ∩ GM12878 CORUM 0.167 0.962 0.401 4.395

BioGRID 0.083 0.964 0.283 2.306
HepG2 ∩ K562 CORUM 0.206 0.922 0.435 2.641

BioGRID 0.129 0.961 0.352 3.308
GM12878 ∩ K562 CORUM 0.185 0.958 0.421 4.405

BioGRID 0.105 0.957 0.317 2.442
HepG2 ∩ (GM12878 ∪ K562) CORUM 0.357 0.891 0.564 3.275

BioGRID 0.167 0.922 0.392 2.141
GM12878 ∩ (HepG2 ∪ K562) CORUM 0.286 0.937 0.518 4.560

BioGRID 0.111 0.948 0.324 2,135
K562 ∩ (GM12878 ∪ HepG2) CORUM 0.428 0.887 0.616 3.788

BioGRID 0.194 0.935 0.426 2.985
All cell lines CORUM 0.273 0.909 0.498 3.000

BioGRID 0.091 0.988 0.300 7.583

Table 7.1: Quality measures for TICA predictions with respect to reference databases. * Geometric
Mean Performance.
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7.1.3 TICA preprocessing queries

Listing 7.1: GMQL queries for TICA data extraction and preprocessing of transcription factor binding
sites (TFBS). Note: placeholders are used in place of actual metadata values and dataset names.
Scanning window size: 1 kb.

# TFBS f i l t e r i n g
# E x t r a c t b i n d i n g s i t e nar rowPeak d a t a and s h r i n k them t o t h e h i g h e s t peak
RAW_DATA = SELECT( d a t a t y p e == ’ ChIP−seq ’ AND c e l l == ’CELL_LINE ’ AND ( p r o t e i n == ’TF1 ’

OR p r o t e i n == ’ TF2 _v a r i an t1 ’ OR p r o t e i n == ’ TF 2_v a r i a n t 2 ’ OR p r o t e i n == ’TF3 ’ OR
[ . . . ] ) HG19_ENCODE_NARROWPEAKS;

# S h r i n k i n g down t o h i g h e s t c o n f i d e n c e peak (1 bp−s i z e d r e g i o n s )
NARROW_PEAKS = PROJECT ( r e g i o n _ u p d a t e : l e f t AS s t a r t + peak , r i g h t AS s t a r t + peak + 1)

RAW_DATA;
# S e l e c t i n g a s p e c i a l c a s e where m u l t i p l e v a r i a n t s a r e a v a i l a b l e .
TF2_NPKS = SELECT( p r o t e i n == ’ T F2_ va r i an t 1 ’ OR p r o t e i n == ’ T F2 _va r i an t2 ’ ) NARROW_PEAKS

;

# Cover TFBS i n f o r m a t i o n : one r e p l i c a i s enough , keep t r a c k of TF p r o v e n a n c e .
COV = COVER( 1 ,ANY; groupby : p r o t e i n ) NARROW_PEAKS;
# Open a window of s i z e 200 ( p a r a m e t e r t o be f i t t e d ) a round each TFBS .
WINDOWS = PROJECT ( r e g i o n _ u p d a t e : l e f t AS l e f t − 1000 , r i g h t AS r i g h t + 1000) COV;
# Map windows a g a i n s t s i g n a l s , g r o u p i n g by TF
MAPPED_WINDOWS = MAP( j o i n b y : p r o t e i n ) WINDOWS COV;

# S h r i n k back t o 1bp s i z e and m a t e r i a l i z e
MAPPED_WINDOWS_1bp = PROJECT ( r e g i o n _ u p d a t e : l e f t AS l e f t + 1000 , r i g h t AS r i g h t −

1000) MAPPED_WINDOWS;
MATERIALIZE MAPPED_WINDOWS_1bp i n t o m_windows_1000 ;

# S p e c i a l c a s e f o r TF wi th m u l t i p l e v a r i a n t − same workflow .
# Cover TFBS i n f o r m a t i o n : one r e p l i c a i s enough , keep t r a c k of TF p r o v e n a n c e .
ATF1_COV = COVER( 1 ,ANY) ATF1_NPKS ;
# Open a window of s i z e 200 ( p a r a m e t e r t o be f i t t e d ) a round each TFBS .
ATF1_WINDOWS = PROJECT ( r e g i o n _ u p d a t e : l e f t AS l e f t − 1000 , r i g h t AS r i g h t + 1000)

ATF1_ COV;
# Map windows a g a i n s t s i g n a l s , g r o u p i n g by TF
ATF1_MAPPED_WINDOWS = MAP( ) ATF1_WINDOWS ATF1_ COV;

# S h r i n k back t o 1−bp s i z e and m a t e r i a l i z e
ATF1_MAPPED_WINDOWS_1BP = PROJECT ( r e g i o n _ u p d a t e : l e f t AS l e f t + 1000 , r i g h t AS r i g h t −

1000) ATF1_MAPPED_WINDOWS;
MATERIALIZE ATF1_MAPPED_WINDOWS_1BP i n t o atf1_m_windows_1000 ;
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Listing 7.2: GMQL queries for TICA data extraction and preprocessing of transcription start sites (TSS).
Note: placeholders are used in place of actual metadata values and dataset names. Scanning window
size: 1 kb.

# TSS f i l t e r i n g
# Note : p l a c e h o l d e r s a r e used i n p l a c e o f a c t u a l m e t a d a t a v a l u e s and d a t a s e t names .

Scann ing window s i z e : 1 kb .
# P a r a m e t e r s :
# e x o n _ l e n g t h : 200 bp .
# p r o m o t e r _ l e n g t h : 2000 bp .
# e n h a n c e r _ l e n g t h : 100 ,000 bp .

# Found on a c t i v e l y t r a n s c r i b e d genes
HM_4_EXONS_0 = SELECT( a s s a y == ’ ChIP−seq ’ AND c e l l == ’CELL_LINE ’ AND p r o t e i n == ’

H3K36me3 ’ ) HG19_ENCODE_BROADPEAKS;
HM_4_EXONS = COVER( 1 ,ANY) HM_4_EXONS_0 ;

# Found on p r o m o t e r s o f a c t i v e l y t r a n s c r i b e d genes
HM_4_PROMS_0 = SELECT( c e l l == ’CELL_LINE ’ AND a s s a y == ’ ChIP−seq ’ AND ( p r o t e i n == ’

H3K4me3 ’ OR p r o t e i n == ’H3K9ac ’ ) ) HG19_ENCODE_BROADPEAKS;
HM_4_PROMS = COVER( 1 ,ANY) HM_4_PROMS_0 ;

# Found on a c t i v e e n h a n c e r s , − < 100 ,000 kb bp from t a r g e t genes
HM_4_ENHCRS_0 = SELECT( p r o t e i n == ’H3K4me1 ’ AND c e l l == ’CELL_LINE ’ AND a s s a y == ’ ChIP

−seq ’ ) HG19_ENCODE_BROADPEAKS;
HM_4_ENHCRS = COVER( 1 ,ANY) HM_4_ENHCRS_0 ;

# E x t r a c t TSS d a t a
RAW_TSS = SELECT( a n n o t a t i o n _ t y p e == ’TSS ’ ) HG19_ANNOTATIONS ;
# Extend t o exons :
# e x o n _ l e n g t h = 200
EXONS = PROJECT ( r e g i o n _ u p d a t e : s t o p as s t o p + 200) RAW_TSS;
# Map t o H3K36me3 d a t a
EXONS_ON_HMS = MAP( ) EXONS HM_4_EXONS;
# S e l e c t on ly exons t h a t a r e mapped t o H3K36me3
FIL_EXONS = SELECT( r e g i o n : count_EXONS_HM_4_EXONS > 0) EXONS_ON_HMS;

# Extend t o p r o m o t e r s :
# p r o m o t e r _ l e n g t h = 2000 (+ an exon l e n g t h a f t e r TSS )
PROMS = PROJECT ( r e g i o n _ u p d a t e : s t a r t a s s t a r t − 2000) FIL_EXONS ;
# Map t o H3K4me3 / H3K9ac d a t a
PROMS_ON_HMS = MAP( ) PROMS HM_4_PROMS;
# S e l e c t on ly exons t h a t a r e mapped t o H3K4me3 / H3K9ac
FIL_PROMS = SELECT( r e g i o n : count_PROMS_HM_4_PROMS > 0) PROMS_ON_HMS;

# Extend t o e n h a n c e r s :
# e n h a n c e r _ l e n g t h = 100 ,000 (+ an exon l e n g t h a f t e r TSS )
ENHCRS = PROJECT ( r e g i o n _ u p d a t e : s t a r t a s s t a r t − 100000) FIL_PROMS ;
# Map t o H3K4me1 d a t a
ENHCRS_ON_HMS = MAP( ) ENHCRS HM_4_ENHCRS;
# S e l e c t on ly exons t h a t a r e mapped t o H3K4me1
FIL_ENHCRS = SELECT( r e g i o n : count_ENHCRS_HM_4_ENHCRS > 0) ENHCRS_ON_HMS;

# R e t u r n t o p r o m o t e r s :
PROMOTERS = PROJECT ( r e g i o n _ u p d a t e : s t a r t a s s t a r t + 100000 − 2000) FIL_ENHCRS ;
# E x t r a c t b i n d i n g s i t e nar rowPeak d a t a and s h r i n k them t o h i g h e s t peak−
RAW_TFBS = SELECT( a s s a y == ’ ChIP−seq ’ AND c e l l == ’CELL_LINE ’ ) HG19_ENCODE_NARROWPEAKS

;
NARROW_PEAKS = PROJECT ( r e g i o n _ u p d a t e : l e f t AS s t a r t + peak , r i g h t AS s t a r t + peak + 1)

RAW_TFBS;
# Merge TFBS i n f o r m a t i o n : we don ’ t c a r e much a b o u t o r i g i n a l TF p r o v e n a n c e i n t h i s

v e r s i o n .
MERGED = MERGE( ) NARROW_PEAKS;
# Map p r o m o t e r s on b i n d i n g s i t e s
MAPPED_PROMOTER = MAP( ) PROMOTERS MERGED;
# S h r i n k back t o 1−bp TSS s i z e
MAPPED_TSS = PROJECT ( r e g i o n _ u p d a t e : s t a r t a s s t a r t + 2000 , s t o p as s t o p − 200)

MAPPED_PROMOTER;
MATERIALIZE MAPPED_TSS i n t o m a p p e d _ t s s e s ;

106



i
i

“output” — 2019/2/15 — 17:53 — page 107 — #115 i
i

i
i

i
i

7.1. Chapter 3

7.1.4 Additional discussion on validation and P value threshold selection

This section compliments the main text by discussing the choice of P value thresholds,
explaining the use of BioGRID as an alternative to CORUM during validation and
describing in details some novel and cross-cell predicted interactions.

BioGRID validation

As mentioned in Chapter 3, two TFs that interact and have binding sites close to each
other are expected to or have some kind of functional protein-protein interaction (PPI).
For functional PPIs, the reference is BioGRID [69], a resource that organizes and
archives genetic and protein interaction data from several model organisms (includ-
ing humans), which in turn are derived from literature. In this case, the human all-
interaction database version 3.4.150 is used1. A pair, in this case, is considered positive
(i.e., supported) if it is mentioned as a BioGRID PPI. Conversely, a pair of TFs is con-
sidered negative if both TFs in the pair are found in BioGRID but not in the same PPI.
This is a weaker kind of evidence with respect to CORUM, but nonetheless it is worth
investigating. Note that BioGRID, like CORUM, can be considered incomplete and
involves PPIs that are not related to TFs, so similar considerations apply.

In BioGRID, 1638 TFs out of 18,224 proteins were found, and 26,733 TF-TF in-
teractions. Observing the confusion matrix of all cell lines with respect to BioGRID,
similar conclusion as for CORUM can be drawn, viz., all test scenarios report high
levels of specificity. Enrichment is also above 1 for all scenarios for BioGRID, albeit
slightly lower than that for CORUM (minimum at 1.286, Table S4), possibly because
BioGRID contains many more PPIs, thus leading to a greater number of false positives.

In a similar fashion to CORUM, unverified BioGRID predictions that have literature
support were investigated. In HepG2, out of the 88 (109 - 21) sampled positive predic-
tions that were analyzed for BioGRID, 65 are not reported to be PPIs; 21 of these 65
( 32%) have literature support. For K562, 64% of the current presumed false positives
have literature support.

Novel interactions

Among all predicted TF-TF interactions without literature support (see the complete
list in Table S7), the following are the most interesting: EP300 and HDAC2, part of a
regulatory complex with, among others, MYC (c-MYB) and the TBP-YY1 interactors
(conserved across HepG2 and K562); MYC-RNF2, which also connect with HDAC2
as well as TAF1 and YY1 (also conserved); and a large emergent regulatory complex
comprising SIN3A-YY1 and TAF1 - YY1 (K562), SIN3B - TAF1, and SIN3B - TBP
(HepG2, with SIN3A confirmed as a co-interactor of TBP and SIN3B).

Cross-cell predictions

TICA reports 14 different interactions conserved across all cell lines (Supplementary
Table S8 of [44]). Three groups are notable, including (1) interactions with known
house-keeping TF CTCF. (2) components of basal TF TFIID (TBP and TAF1) together

1Available at http://thebiogrid.org/download.php.
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with POLR2A (the largest subunit of RNA polymerase II, responsible for mRNA syn-
thesis), and (3) the transcriptional regulation dimer USF1/USF2. All of these are well-
known basal (second, third) or housekeeping TF (first) complexes, giving confidence in
the reliability of conserved TICA predictions. Interestingly, the TF interaction complex
formed by SIN3A, TAF1, and YY1 is conserved between cancer cell lines HepG2 and
K562 but not found in cross-analysis of either HepG2 with GM12878 or GM12878
with K562, due to a lack of interactions SIN3A-TAF1 and SIN3A-YY1 in the latter
couple (TAF1-YY1 is conserved across cell lines). This suggests a mutated behaviour
of SIN3A in two cancer cell lines from what is found in the cell line GM12878 de-
rived from a healthy control. This differential regulation of TF SIN3A is known for
mammalian breast cancer [103], suggesting that this interpretation is reasonable.

7.1.5 TICA screenshots

7.2 Chapter 4

7.2.1 BioGRID decision tree calibration

7.2.2 NAUTICA significant cases

TF1 TF2 PREDICTION N12 PID_NUM MANUAL
VALIDATION

HDAC1 HDAC2 COOP 108 38 OK
EP300 HDAC1 COOP 57 2 KO
EP300 KAT2B COOP 44 0 NOVEL

HDAC1 SIN3A COOP 43 12 OK
BRCA1 EP300 COOP 41 0 NOVEL
EP300 SP1 COOP 39 3 OK

BRCA1 HDAC1 COOP 37 0 NOVEL
EP300 HDAC2 COOP 36 0 NOVEL

HDAC1 RB1 COOP 34 0 NOVEL
HDAC1 SP1 COOP 32 20 OK
EP300 JUN COOP 31 17 OK
EP300 RB1 COOP 30 0 NOVEL

HDAC1 KDM1A COOP 30 2 OK
HDAC1 SMARCA4 COOP 30 3 OK
HDAC2 KDM1A COOP 29 0 NOVEL
HDAC2 SIN3A COOP 29 5 OK
EP300 PML COOP 28 0 NOVEL

BRCA1 MYC COOP 27 5 KO
DNMT1 HDAC1 COOP 27 11 OK
EP300 SMARCA4 COOP 26 1 KO
EP300 NCOA1 COOP 26 2 OK

HDAC1 RELA COOP 26 4 KO
HDAC1 MTA2 COOP 24 3 OK
HDAC2 MTA2 COOP 24 1 OK
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RING1 RNF2 COOP 24 3 OK
ASH2L RBBP5 COOP 23 10 NOVEL
BMI1 RNF2 COOP 23 3 OK

HDAC1 PML COOP 23 1 KO
HDAC2 MTA1 COOP 23 5 OK
HDAC2 SP1 COOP 23 3 OK

SMARCA4 SMARCB1 COOP 23 1 OK
BRCA1 RB1 COOP 22 2 OK
EP300 RELA COOP 22 5 OK

HDAC1 NCOR1 COOP 22 6 KO
HDAC1 MTA1 COOP 22 4 OK
BRCA1 HDAC2 COOP 21 0 NOVEL
CTBP1 HDAC1 COOP 21 2 OK
EZH2 HDAC1 COOP 21 2 KO
FOS JUN COOP 21 365 OK

MTA1 MTA2 COOP 21 2 KO
HDAC1 KAT2B COMP 26 0 NOVEL
HDAC1 JUN COMP 22 16 OK
BRCA1 KAT2B COMP 20 0 NOVEL

RB1 RELA COMP 18 0 NOVEL
BRCA1 SMAD2 COMP 16 0 NOVEL
BRCA1 E2F1 COMP 15 2 OK
BRCA1 TRIM25 COMP 15 0 NOVEL
CBX5 HDAC1 COMP 15 0 NOVEL
EP300 EZH2 COMP 15 0 NOVEL
KAT2B SP1 COMP 15 0 NOVEL
RELA SMARCA4 COMP 15 1 KO

HDAC1 RARA COMP 14 0 NOVEL
NCOA1 SP1 COMP 14 0 NOVEL
NR3C1 SP1 COMP 14 0 NOVEL
BRCA1 NR3C1 COMP 13 0 NOVEL
BRCA1 STAT3 COMP 13 2 OK
EP300 WDR5 COMP 13 0 NOVEL

HDAC2 KAT2B COMP 13 0 NOVEL
JUN RELA COMP 13 31 KO

KDM1A RB1 COMP 13 0 NOVEL
NCOA6 NCOR1 COMP 13 0 NOVEL

ATF2 EP300 COMP 12 2 KO
BRCA1 TRIM28 COMP 12 1 OK
BRCA1 YY1 COMP 12 2 OK
CHD4 KDM1A COMP 12 0 NOVEL

HDAC1 SMARCB1 COMP 12 1 KO
NCOA1 RELA COMP 12 1 KO
NCOA1 RB1 COMP 12 0 NOVEL

ATM EP300 COMP 11 0 NOVEL
BRCA1 FOS COMP 11 3 OK
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BRCA1 HDAC6 COMP 11 0 NOVEL
BRCA1 DNMT1 COMP 11 2 OK
BRCA1 MTA1 COMP 11 0 NOVEL
CEBPB HDAC2 COMP 11 0 NOVEL

E2F1 HDAC2 COMP 11 2 OK
E2F1 PML COMP 11 0 NOVEL

HDAC1 TRIM25 COMP 11 0 NOVEL
HDAC1 HDAC6 COMP 11 2 OK

JUN NCOR1 COMP 11 6 OK
KAT2B MYC COMP 11 0 NOVEL

Table 7.3: List of manually validated and novel NAUTICA prediction with highest N12, with validation
results

7.3 Chapter 5

7.3.1 ESTETICA take 2: bisectors on the signal square
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Figure 7.1: Screenshot of TICA parameter input page.
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Figure 7.2: Recall of the BioGRID decision tree based for different values of L and H . Green cell
denote better values (close to 1), red cell denote worse values (closer to 0).
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TF1 TF2 LABEL COUPLENUM LAMBDA A + B C D
MXI1 MYC COMP 9158 1.58 0.09 0.59 0.32
CEBPB NFIC COMP 2203 2.21 0.13 0.81 0.07
FOSL1 NRF1 COMP 1351 14.23 0.27 0.70 0.03
E2F1 HDAC1 COMP 16607 0.44 0.19 0.70 0.12
MAX YY1 COMP 20577 1.07 0.14 0.75 0.12
MNT MYC COMP 37793 0.29 0.08 0.72 0.20
MYC TBP COMP 17404 1.40 0.10 0.69 0.20
REST SP1 COMP 2679 3.17 0.08 0.81 0.12
CEBPB SP1 COMP 2158 1.32 0.13 0.79 0.08
EP300 HDAC1 COMP 9813 1.83 0.09 0.60 0.31
SP1 ZBTB2 COMP 4461 0.69 0.11 0.77 0.12
EGR1 TBP COMP 13351 0.46 0.15 0.72 0.14
JUN MYC COMP 14498 1.77 0.09 0.58 0.34
ELK1 GABPA COMP 2097 6.42 0.09 0.60 0.31
ELK1 GABPB1 COMP 2177 50.89 0.09 0.74 0.16
ATF3 JUN COOP 7043 0.09 0.17 0.64 0.19
JUN SP1 COOP 6039 5.60 0.12 0.67 0.21
EP300 MYC COOP 9683 0.95 0.09 0.66 0.25
FOSL1 JUN COOP 1822 0.45 0.10 0.47 0.43
HDAC1 SP1 COOP 13841 1.65 0.15 0.68 0.17
MAX MYC COOP 38835 0.59 0.07 0.68 0.24
MYC YY1 COOP 23239 1.82 0.12 0.76 0.12
HDAC1 SIN3A COOP 2133 0.70 0.11 0.33 0.57
MYC SP1 COOP 14128 3.17 0.13 0.73 0.15
HDAC1 SP1 COOP 13841 1.65 0.15 0.68 0.17
MAX MNT COOP 30258 1.99 0.09 0.71 0.20
MAX MXI1 COOP 7595 0.37 0.10 0.57 0.34
JUN MAFF COOP 1615 2.63 0.12 0.63 0.25
EP300 YY1 COOP 6292 1.73 0.09 0.77 0.13
SP1 YY1 COOP 9787 0.57 0.12 0.79 0.08

Table 7.4: Training dataset and features for ESTETICA bisector method. Data from cell line K562,
ENCODE narrowPeak November 2017.
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