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Abstract—A contact network is the well representation of 

heterogeneous contact behaviors within the population. 

Incorporating contact networks as well as community 

structures is important in realistic modeling and 

simulation for the spread of infectious diseases. We 

developed the “HPCgen”, a fast and generic generator of 

contact networks of large urban cities, with the capacity 

of automating network re-generations for intervention 

studies. The produced contact networks are applicable in 

both analytical modeling and agent-based simulations. In 

this paper, we presented the design and realization of 

HPCgen followed by the empirical results of building 

Singapore contact networks with six types of community 

structures in the common urban settings. The results 

showed our 8-node parallelized HPCgen could generated 

a contact network of 3.4 million populations within 62.17 

seconds, which is 90% reduction of runtime. 

I. INTRODUCTION 

Infectious diseases are the global health threats to 
human beings. In epidemiology, compartmental models 
[1-3] have been applied to study the spread of infectious 
diseases for decades. Those models well portray the 
transmission dynamics of infectious diseases by 
nonlinear differential equations, but they lack network 
topology of the population as a result of “fully mixed” 
assumption of the population, i.e. anyone of the infected 
has an equal probability to infect the susceptible. Such 
assumption is not generally valid because individuals 
only contact a small fraction of population and they 
interact with each other heterogeneously [4]. To address 
the heterogeneity in social interactions, the most 
expressive approach is to form a structure of “network” 
by taking all individuals as vertices (or nodes) and their 
social connections as edges. In the context of infectious 
diseases, we can further specify an individual’s social 
connections are the set of people with whom the 
individual may contact during the period when he or 
she is infective [5]. The resulted networks are called as 
contact networks or contact graphs [4-6]. 

The introduction of network topology gets rid of the 
assumption of “fully mixed” population and allows 
modeling the heterogeneous transmission patterns of 
infectious diseases. In the recent years, a number of 
researchers have pursued a mathematical theory of 
spreading dynamics of infectious diseases on contact 
networks [5,7-10]. In particular, Newman [5] 

formulated this problem by applying percolation theory 
from the domain of physics, providing a solid analytical 
framework to estimate the final state of the outbreaks of 
infectious diseases. Besides analytical modeling, 
network topology also provide the foundation for agent-
based simulation models of infectious diseases such as 
[11,12]. Agent-based simulations are the common tools 
for studying complex systems. By representing people 
(or places) as “agents”, the computer programs can 
simulate the transmission of infectious diseases by 
agent interactions along the edges within contact 
networks. Such methods are more intuitive than 
mathematical modeling and advantageous in visualizing 
the spreading dynamics of infectious diseases. 

No matter mathematical modeling or agent-based 
simulation, the underlying contact network forms the 
foundation of the studies. The generation of contact 
network could be challenging on account of large 
population size and hierarchical community structures. 
(1) Contact networks of large urban cities are of size up 
to 13 million nodes [13]. How to represent and generate 
such large networks efficiently could be a problem. (2) 
A number of community structures (such as 
households, schools, hospitals, etc) exist in the 
population. Those community structures represent the 
social groupings which have the substantial impact to 
the network topology. That leads to the necessary 
incorporation of community structures in the contact 
network. However, how to tackle the following growth 
on the complexity of network generation would be 
another issue. 

In the literature of network generation, there are two 
types of approaches. (1) Incremental generation models 
[14-17] start from an initial node or small graph, 
gradually adding each new node and edge based on 
some function of preferential attachment. (2) 
Configuration models [18-21] construct random graphs 
with the prescribed degree sequences. The probability 
of connecting an edge is proportional to the degree of 
end-node. FastGen model [22], a variant of 
configuration models, is a fast social network 
generation model used in EpiSim [12]. FastGen model 
produces bipartite networks that comprise both people 
and place nodes. By introducing place nodes, the 
average degree of the network decreases as people-to-
place degrees are generally smaller than people-to-
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people degrees. Moreover, as FastGen only allow 
people-to-place edges, the search space of end-nodes 
are restrained to place nodes. With fewer edges and 
smaller search space, FastGen model demonstrates 
near-linear time complexity, compared to the quadratic 
time in the standard configuration models such as CL-
model [22]. However, there are two drawbacks in 
FastGen model. (1) Place nodes in bipartite networks 
cannot represent the hierarchical community structures. 
For example, place nodes can represent individual 
schools or classes, but cannot reflect their hierarchical 
relationship in bipartite networks. (2) Bipartite 
networks cannot be directly used in the Newman’s 
analytical models [5] which require people-to-people 
networks. The conversion from bipartite network to 
single-type network is not trivial because connecting 
the individuals visiting the same place nodes based on 
some degree sequences is time-consuming – equivalent 
to run a configuration model at each place node. 

In this paper, we propose HPCgen, a fast generator 
of contact networks for large urban cities. HPCgen is a 
generic model to construct contact networks based on 
real-world demographics, community structures and 
social contact behaviors. It is comprised of multiple 
components; each component represents a specific type 
of hierarchical community structures. The output of 
HPCgen is a single-type undirected contact network 
(with size of city population) that can facilitate both 
analytical model and agent-based simulation models. 
Our contributions are threefold. 

(a) Generic Model. HPCgen allow users 
incorporating new components as they desire. As long 
as providing the required parameters in the prescribed 
format (described in Section 4.1), adding new 
components in HPCgen is straightforward and 
transparent to the existing components.  

(b) Fast Generation. Both structural optimization 
and high performance computing techniques are applied 
to improve the efficiency of HPCgen. (1) We use 
adjacent matrix to represent contact networks. The 
advantage is able to encapsulate millions of pair-wise 
operations during contact (edge) generation into single 
matrix operation. The optimization of matrix operations 
is a mature technique in soft computing and many 
existing toolkits can be used to achieve efficient and 
scalable computations. (2) We use sparse representation 
of matrices in compressed column format [23] as many 
“0”s (no contact edge) exists in the giant matrix of 
contact network. Furthermore, since HPCgen generates 
undirected networks, the matrices are symmetric along 
the diagonals. It inspires us to only use the upper 
triangular matrices instead of the full matrices. Other 
than the benefit of lower resource consumption, sparse 
representation of “half-matrices” also reduces the 
search space of indexing and searching operations in 
network construction. (3) We employ MPI (Message 
Passing Interface) [24] parallelization technique to 

execute multiple computations simultaneously. Each 
component in HPCgen is comprised of a number of 
compartments. Those compartments could be 
distributed to multiple parallel processors and carry out 
the network generation concurrently. Therefore, the 
overall runtime is reduced.  

(c) Automation for Repeated Generations. 
HPCgen is able to automate repeated generations of 
contact networks, required by structural analysis 
especially intervention studies of infectious diseases. 
The common intervention strategies such as quarantine, 
school closure, and vaccination could effectively 
control the spread of infectious diseases by cutting off 
the contact edges between individuals. To simulate such 
interventions, we have to re-generate the contact 
networks to reflect the structural changes led by contact 
removal. An extensive study on interventions might 
require those re-generations by hundreds of times to 
simulate the impact of individual interventions. In this 
circumstance, an efficient contact network generator is 
far more important. HPCgen would be very helpful in 
such cases, as it is equipped with automation scripts to 
repeat the generation process as required. The 
accumulated gain of speedup would become even more 
significant than single-time generation. 

II. CONCEPTUAL DESIGN 

In the current presetting, HPCgen includes six types 
of common contacts in the urban settings: 1) contacts 
within households; 2) contacts within hospitals and 
wards; 3) contacts within schools and classes; 4) 
contacts within workplaces; 5) contacts within shopping 
malls; 6) contacts within public transport. The first four 
are the persistent contacts, which are repeated in the 
typical workdays; the last two are the transient contacts, 
but take place in the close settings with high population 
density. Therefore, we consider these six types of 
contacts are the dominant transmission channels of 
infectious diseases in the urban settings. Recall that in 
the HPCgen, “component” represents a particular type 
of community structures. Corresponding to the chosen 
contacts, we include six components in HPCgen 
presently: households, hospitals, schools, workplaces, 
shopping malls and public transports (illustrated in Fig 
1).  

As a component refers to a collection of community 
structures of the same type, we call an individual 
community structure as “compartment”. A 
compartment might have the hierarchical groupings 
internally, which is referred as “multi-layers” in the 
context. For an instance, schools component is a set of 
two-layer compartments which includes top-layer 
school and sub-layer class. For schools component, 
HPCgen firstly selects all the students from the entire 
population, and distributes them to the individual 
schools. In each school, the students are further 
distributed to the individual classes. According to social 



groupings, we can classify the contacts between 
students to be cross-school, cross-class (equivalent to 
within-school) and within-class. HPCgen allows 
specifying the different contact rates for individual type 
of contacts. 

 

 
Figure 1.  Conceptual design of HPCgen: six types of community 

structures with hierarchical groupings 

III. DESIGN REALIZATION 

A. Input Data 

The input data of HPCgen are comprised of three 
types: demographic data, structure descriptors, and 
contact behavior profiles. Demographic data such as 
population size and age distribution are used in 
population initialization, people selection and 
distribution to the respective compartments. Structure 
descriptors carry the realistic information about 
community type, hierarchical layers, compartment 
count and size, and eligibility criteria about the people 
involved. Contact behavior profiles describe both cross-
compartment and within-compartment contacts in the 
individual layers of each compartments. The profiles 
can be represented in form of arbitrary degree 
distributions. In the current presetting, we selected 
Poisson distribution as a representative, using the 
distinct mean values (average numbers of contacts) to 
reflect different types of contacts included in HPCgen. 

B. Generation Procedure 

Recall that one of our contributions is the generic 
design, – generation procedure is generalizable to every 
component in HPCgen. By taking in the specific input 
data from individual components, the same piece of 
codes will generate “sub” contact networks 
respectively. Integrating all these “sub” contact 
networks will finally form a complete contact network 
of our interest. We call this piece of codes as “generic 
engine”, meaning a central engine driving the 
generations in all the components. 

Recall that the compartments in HPCgen have 
multi-layer groupings. As there are some dependencies 

between the layers (e.g. compartment size in the top-
layer determines the total population size in the sub-
layer), we use a recursive approach to implement them.   
At each layer, there are three stages in the generic 
engine: structure construction, contact generation, and 
population mapping. Fig.2 shows the pseudo codes of 
contact network generation. 

 
Figure 2.  Pseudo Codes of Contact Network Generation 

Structure construction (lines 5-6) parses the 
parameters from structure descriptors and construct a 
set of compartments unit[] conforming to the 
prescribed statistics. We have not taken the actual 
indices of people (indices of individual persons in the 
entire population or in the complete contact network) 
into account yet at this stage. Instead, we assume that 
there are sufficient people filling up all the 
compartments in component m, with the “local indices” 
from 1 to total population within m. The advantage is 
twofold: (a) a compartment can be represented by two 
numbers (starting index and compartment size) instead 
of a rectangular matrix of size equal to population in the 
compartment. It is not only resource-efficient, but also 
reduces the communication cost in the parallelized 
HPCgen. (b) The local indices are in fact the 
row/column indices of matrix. Using the native matrix 
indices could simplify the operations of connecting 
edges between individual elements of matrix. 

After constructing the compartments, the next stage 
is contact generation (lines 11-19). In this stage, 
HPCgen generates the contact edges between the 
individual nodes based on some degree sequences. 
Given the degree sequences computed from Poisson 
distribution (or any distribution else), HPCgen connects 
the edges stochastically with the probability based on 
the degree of end-nodes. For within-compartment 



contacts, such implementation is straightforward. For 
cross-compartment contacts, an additional procedure is 
taken to ensure start-nodes and end-nodes of any 
contact edges are from the distinct compartments. 

Once contact generation is over, HPCgen steps to 
the final stage of population mapping (lines 21-28). 
Recall that we do not consider the actual indices of 
people during the stage of structure construction. 
Without the indices in the entire population, there is no 
way to integrate those “sub” contact networks together. 
Population mapping is to complement the lack of 
uniform indices by mapping the local indices in the 
“sub” contact networks to the global indices in the 
“complete” contact network. 

Population mapping can be further divided into 
four steps. 1) Population selection is to select the 
eligible persons for a particular component. The 
selection criteria are a set of conditional rules in the 
structure descriptors, which define the eligibility. For 
example, age-based criteria can be used to define the 
enrollment to schools. 2) Exclusion filtering is to filter 
out the exempted persons from the above selection. For 
example, if a person is selected to be a patient, he/she 
will be assumed to stay in the hospital ward and not to 
participate in any of schools, workplaces, shopping 
malls and public transport components. However, 
his/her contacts within household are retained because 
the visits from family members are expected. 3) 
Mapping is to map the index of every node in the 
“sub” contact network to the global population. Such 
mapping could be one-to-one (e.g. a student can enroll 
to only one school) or many-to-one (e.g. a shopper can 
visit multiple shopping malls during his/her infective 
period). To ensure the mapping is stochastic, index 
shuffling is implemented. 4) Multi-edge rewiring is an 
“optional” step to rewire the extra edges connecting to 
the same pair of nodes. A pair of nodes might be 
connected by multiple edges, which are accumulated in 
the contact generation of different components. 
However, percolation-based analytical modeling, one of 
the major applications of contact networks, cannot 
handle those multiple edges in its formulation [4]. Thus, 
we have to rewire the extra edges to other nodes before 
applying the analytical models. The rewiring is done by 
iterative re-mapping between the network nodes and the 
global populations until all multiple edges are 
eliminated. During the process, the original degree 
distribution of contact network remains constant. 

C. Parallelization 

Recall the goal of our HPCgen is to automate the 
repeated generations of contact networks of large urban 
cities. As it is a time-consuming task, building an 
efficient contact network generator is far more 
important. In the particular work, we leverage on MPI 
techniques to speed up the generation process. 

In HPCgen, contact generation in any compartment 
is peer-independent and parent-dependent. For 

example, contact generation in a class compartment is 
independent of other class compartments, and 
dependent of its upper-layer school compartment which 
determines the size of individual class compartments. 
Therefore, we can distribute the top-layer compartments 
to the parallel processor nodes and compute 
concurrently. At the end of operations, we collect back 
all “sub” contact networks from all the processor nodes 
and form the complete contact networks by integration. 
This design can scale the parallelization up to the 
number of top-layer compartments, meaning if we have 
k schools in the model, maximally we can assign every 
school to a distinct processor node; so totally we can 
use up to k processor nodes for parallelization.  

However, using more processor nodes does not 
necessarily lead to higher speedup. Parallelization could 
introduce the extra overheads in coordination and 
communication, which offset some fraction of speedup. 
In order to reduce the communication overheads, 
besides local indexing technique introduced in the 
previous section, we design a relay-like mechanism to 
achieve faster collection of network matrices from 
individual processor nodes. Instead all child processor 
nodes (child-nodes) send their matrices to the master 
processor node (master-nodes) at the same time 
(causing the bottleneck at the master-node), half of 
active processor nodes are nominated as sub-master-
nodes. Each of sub-master-nodes manages one distinct 
child-node. During the collection process, every sub-
master-node collects the network matrix from its child-
node and integrates the matrix with its own. Then all 
child-nodes are deactivated. The above process is 
repeated until only master-node is active. By such 
relay-like collection, we reduce the time complexity to 

O(
2log n ), where n is the number of parallel processor 

nodes. 

IV. EMPIRICAL RESULTS 

We implemented the HPCgen in Octave [25] with 
support of MPITB [26] library. For efficiency purpose, 
some of non-matrix-related modules were coded in C++ 
and dynamically linked to Octave. Our experimental 
platform is an Intel 3GHz 2x quad-core machine with 
total 32 GB memory. 

A. Contact Network of Singapore 

The experiments were to build contact networks for 
Singapore city of 3.4-million population (residential 
population in Singapore, year 2000). We obtained the 
demographic data from the Singapore census of year 
2000 [27], acquired the structure descriptors about 
schools, hospitals, workplaces, public transport and 
shopping malls from either government authorities or 
private organizations. Additionally, we conducted 1040 
pieces of public surveys to collect the contact behavior 
profiles of Singapore residents. 



Fig 3 plots the degree distribution of a Singapore 
contact network generated by HPCgen (recall that six 
components are included in the current setting: 
households, schools, hospitals, workplaces, shopping 
malls and public transport). The average degree of 
contacts is 24.1875. The two peaks occurs at degree 14 
and 55, representing the typical degrees of general 
public and students (students are the most densely 
connected group of people in the Singapore contact 
network of current settings) respectively. 

 
Figure 3.  Degree distribution of contact network of Singapore 

(semi-log) 

As contact generation is a stochastic process, we 
repeated the generations by 100 times with the same 
input data. Fig 4 plots the degree distributions of five 
contact networks out of 100 generations. We observed 
the curves of degree distributions remained stable from 
degrees 4 to 92 among the five generations. The 
fluctuations happened in less than degree 4 or greater 
than degree 92, especially for the degrees greater than 
100. That matches with the intuition that both extremely 
small and large degrees are the mostly affected by 
stochastic events. The rest of generations confirm such 
observations too. We also observed that the degree 
distribution remained stable when compartment size 
varied by small fraction, showing the structural 
robustness. 

 
Figure 4.  Degree distributions of multiple generations of contact 

networks 

B.  Time Efficiency 

With the current settings, it requires around ten 
minutes to generate a Singapore contact network. That 
might not seem substantial if the generation is once 
only. However, when repeating the generations by 
hundreds of times (as the previous section did), it could 
cost nearly a day to complete. Such considerations 
motivated us to parallelize HPCgen for speedup. 

With the same inputs, we measured the runtime of 
the parallelized HPCgen for 1, 2, 4, 6 and 8 processor 
nodes; and at each setting, 20 generations were repeated 
to take the average runtime. As shown in Fig 5, we 
observed the average runtime of HPCgen fell in a 
power function from 10.22 minutes to 62.17 seconds 
(~9.87 time speedup) as the number of processor nodes 
increases.  

Our results outperformed the theoretical limit of 
linear speedup (Amdahl's law [28]), suggesting the 
performance gain might not be gained from the 
parallelization only. One possible explanation is the 
impact of runtime memory management. During the 
contact network generation in HPCgen, the frequent 
operations of matrix expansion and concatenation 
trigger the intensive memory reallocation in size of 
gigabytes. It might lead to a significant overhead by 
triggering swapping during the heavy usage of memory. 
By distributing top-layers compartments to different 
processor nodes, the reduction of resource consumption 
in individual processor nodes lower the memory usage. 
As a result, the chance of swapping and the overhead 
reduce accordingly. 
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Figure 5.  Average runtime decreases in a power function  

when number of processor nodes increases 

V. CONCLUSION 

Modeling and simulation allow us to have 
quantitative understanding about spreading dynamics of 
infectious diseases. The recent emerging contact 
network based modeling addresses the lack of network 
topology in the traditional mathematical modeling, 
leading to a better representation of our heterogeneous 
population. Moreover, the inclusion of community 



structures in contact networks approximates the 
hierarchical social groupings in the real world, which 
might exert direct impact to clustering property of 
network structure. 

In the literature, there are relevant works about 
generate social networks such as random networks and 
bipartite networks. However, there is no particular work 
about how to efficiently generate large people-to-people 
contact networks with hierarchical community 
structures for epidemiological studies. Our HPCgen fills 
this blank as a fast and generic contact network 
generator for large urban cities. By introducing 
parallelization techniques, we are able to reduce the 
generation time by 90%. To maximize the benefit 
brought by speedup, HPCgen is further equipped with 
automation scripts to repeat network generations as 
users command. This feature is especially useful in 
intervention studies, which require hundreds of contact 
networks in order to reflect the respective structural 
changes as a result of individual interventions. The 
overall saving of computation time could be far more 
substantial. 

The contact networks generated from HPCgen can 
be used in both analytical models and agent-based 
simulations. The analytical models could extract the 
topological properties of networks and produce the 
statistical risk assessments to the epidemics in an 
instant manner; and the agent-based simulations could 
run on top of contact networks to simulate the time 
evolution of disease spreading with easy-interpretable 
visualization and easiness of manipulation. The 
versatile applications of contact networks ensure our 
HPCgen to be a valuable tool in the epidemiological 
studies of infectious disease outbreaks in large urban 
cities. 
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