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Abstract 

Hypothesis testing is a well-developed framework in data analysis. Conventionally, data is 

collected with a scientific question in mind, from which a formulated hypothesis is tested 

using statistical tests. In the current “Big Data” context, data is more often collected and 

stored without any scientific question a priori. Furthermore, having large number of attributes 

in a dataset renders hypothesis testing to be practically lacklustre and methodologically 

unsound, as it is not possible for an analyst to purposefully examine and scrutinise the entire 

dataset. Motivated as such, we developed Redhyte, an interactive platform for rapid 

exploration of data and hypothesis testing. We first assess the adequacy of statistical tests that 

the user is interested in. Next, we augment data mining techniques, specifically supervised 

and class-imbalance learning, to the hypothesis testing framework, in a bid for more 

wholesome and efficient hypothesis testing. We termed the chief objectives of Redhyte 

“hypothesis analysis” and “hypothesis mining” – the search for interesting hypotheses in a 

dataset. Hypothesis mining consists of three steps: “context mining”, mined hypothesis 

formulation, and mined hypothesis scoring on interestingness. To capture and evaluate 

specific aspects of interestingness, we developed and implemented various hypothesis mining 

metrics. Finally, we give an illustration how Redhyte can be used to enrich the arsenal of the 

scientist and the data analyst. Redhyte is an R shiny web application and can be found online 

at https://tohweizhong.shinyapps.io/redhyte/, with the source codes housed in a GitHub 

repository at https://github.com/tohweizhong/redhyte. 

 

 

Keywords: statistical hypothesis testing, hypothesis analysis, data mining, random forest, 

hypothesis mining 

https://tohweizhong.shinyapps.io/redhyte/
https://github.com/tohweizhong/redhyte
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Introduction 

1.1 Statistical hypothesis testing 

Data analysis has long been an integral part of any serious pursuit – from science to business, 

it is impossible to isolate oneself from the science and art of data analysis. Fundamentally, 

data analysis allows us to i) validate an idea or a hunch, ii) uncover new information and 

knowledge from data, and iii) disprove ostensible phenomena, all of which encapsulated in 

the formal framework of data analysis. 

 

Despite the mathematical and statistical underpinnings of data analysis, it is not wrong to 

claim that data analysis is in fact an art (Agresti and Franklin, 2012; Jarman, 2013). It is one 

thing to be learning mathematical statistics and data mining – understanding the asymptotic 

behaviour of parameter estimates, learning the formal and intricate details of statistical tests, 

and comprehending the subtleties of classification models, it is yet another thing to be able to 

look at empirical and raw data and from it, extract new information and knowledge. The art 

of data analysis has long been a domain-driven endeavour that combines statistical 

proficiency with domain-specific experience, intuition and subject matter, hence an art. 

 

One of the data analyst’s primary tools is that of comparison, or more formally known as 

hypothesis testing (Froehlich and Kent, 1995; Engle, 1984). Putting together a hypothesis 

with a statistical test allows the data analyst to make justifiable conclusions from the data, 

based on the results of the test. Moreover, the collection of data could be driven by the initial 

question or hypothesis in mind. Such a conventional, domain knowledge- and hypothesis-

driven approach has served us well thus far. 
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1.2 Data analysis in Big Data context 

However, with the advent of Big Data, analysing data in such a conventional manner may not 

be feasible or even possible. In a typical setting before Big Data, the data analyst starts with a 

domain knowledge-driven question in mind, collect the relevant data if it is not already 

available, formulate the hypothesis, test the hypothesis, and make a conclusion. The Big Data 

circumstance that we are currently in brings about two interesting scenarios, specifically the 

collection of data without a scientific question a priori, and the “large p small n” phenomenon 

(West, 2003). With centralized storage, high-quality curation, and convenient retrieval and 

dissemination of data, data has been routinely collected without a given set of questions in 

mind. In the biomedical and healthcare context for instance, modern high-throughput 

assaying technologies and better storage and curation of electronic medical and healthcare 

records are giving us more, cleaner data that may not be collected with a prior hypothesis in 

mind. These data contains plenty of useful knowledge, waiting to be unearthed. This is 

likewise for areas outside of the sciences, such as business and the social sciences. 

 

Moreover, having a large number of attributes in a dataset requires adequate treatment and 

analysis to properly account for these attributes. Consider this: formulating a hypothesis 

concerning a small number of attributes and testing it in a large dataset while ignoring the 

other attributes is not only wasteful but flawed (due to issues such as violation of statistical 

assumptions and confounding). For example, given a hypothesis concerning two attributes, 

say A and B, for a certain class of a third categorical attribute C, the initial hypothesis could 

be amplified, i.e. the trend observed between A and B is strengthened when we consider the 

certain class of C. The trend could also be reversed; this is commonly known as Simpson’s 

Reversal (Pavlides and Perlman, 2009). A conventional, domain knowledge-driven approach 

of analysing data gives no simple or systematic way to reveal such phenomena, leaving 
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discoveries of such to intuition and chance. An epitome of such a phenomenon is the UC 

Berkeley gender bias case (Bickel et al, 1975). 

 

1.3 Data mining 

Data mining is a well-established class of techniques commonly used to search for interesting 

and global relationships in the large datasets. For instance, supervised classification models 

such as decision trees allows for the classification of a target or response attribute based on 

other attributes (Mylers et al, 2004), while unsupervised clustering models such as k-means 

clustering construct empirical and observed “cliques” or clusters in the data (Steinley, 2006). 

Frequent pattern mining techniques mine for recurring patterns in the data, and thus reveal 

any form of associations present (Goethals, 2003). While these techniques mine for 

relationships between attributes based on how they confer to the classification or clustering of 

data, they do not contribute directly to the fundamental endeavour of making comparisons – 

knowing that an certain attribute A contributes greatly to the classification of a response 

attribute of interest B is not nearly as intuitive as putting both A and B in a contingency table, 

as in Table 1. This is especially so for those not trained in statistics or data mining. A 

concrete example would be in genomics, where microarray data can be used to identify the 

genes that, if up- or down-regulated, contribute to the classification of phenotype. After using 

a classification model to identify these genes, it is often apt to make use of hypothesis testing 

as downstream analysis step to understand exactly how these genes contribute to the observed 

phenotype (Smyth et al, 2003). 

Table 1: An example contingency table 

 

Gene A Diseased Control Total 

Up-regulated 43 27 70 

Not up-regulated 12 44 56 

Total 55 71 126 
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1.4 Motivation and results 

Therefore, in this piece of work we have developed a system named Redhyte, an interactive 

platform for “Rapid Exploration of Data and Hypotheses Testing”. Redhyte stands in the 

middle ground between domain knowledge-driven hypothesis testing and data-driven data 

mining on entire datasets: based on a rough domain knowledge-driven hypothesis that the 

user has in mind, Redhyte searches for related hypotheses that could enhance or negate the 

initial hypothesis (section 2.1.5). Redhyte utilizes data mining techniques for such a search. 

Moreover, Redhyte is able to assess the adequacy of statistical tests, and analyse hypotheses 

in order to pinpoint main significance contributors (section 2.1.4). Redhyte was designed and 

developed for datasets with large numbers of attributes, possibly collected without any 

scientific questions a priori. Redhyte requires the user to conjure an initial hypothesis 

consisting of a small number of attributes, based on intuition or experience, in a large and 

possibly unexplored dataset. Using this user-defined initial hypothesis, Redhyte generates 

hypotheses that are potentially interesting to the user. 

 

Redhyte consists of a core algorithm and a graphical user interface (GUI) for the user to 

utilise the algorithm. The primary objectives of Redhyte are to conduct “hypothesis analysis” 

and “hypothesis mining” – to mine for valid and interesting hypotheses based on the user’s 

initial hypothesis. Whether a hypothesis is interesting and hence sieved out is defined in 

Redhyte’s algorithm, and will be elaborated in a later section (section 4.5.1). 

 

1.5 Related work 

Fundamentally, Redhyte serves a tool to enhance data analysis, or more specifically, 

hypothesis testing and exploratory data analysis. Consider the typical analysis workflow of a 

data analyst: given a dataset, after some descriptive statistics, the analyst may start off with 
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the testing of some simple hypotheses that are naturally intuitive. Redhyte contributes to this 

endeavour by not only allowing the analyst to conduct such exploratory hypothesis testing, 

Redhyte also allows the analyst to seamlessly transit to hypothesis mining, based on the 

initial exploratory hypotheses. 

 

Moreover, while statistical software such as R (R Core Team, 2014) allow the user to easily 

utilise hypothesis testing, they are unable to do automated checks of whether the tests are 

applied correctly – if the assumptions of the test, such as equal variances or identical 

distributions (i.i.d.), are not met by the data, the test and any conclusions drawn from it are no 

longer valid. This is especially pertinent in the current Big Data setting, as opposed to a more 

conventional setting of a scientific study. For example, in a traditional cohort or cross-

sectional study, subjects are carefully selected such that assumptions of any statistical tests or 

models that are to be used are met in the collected data. On the other hand, if data is routinely 

collected without any major scientific question a priori, then it is easy for statistical 

assumptions to be dissatisfied. In Redhyte, such checking of assumptions is automated. We 

make a more in-depth comparison of Redhyte with other software systems in section 3.1.1. 

 

Hypothesis mining without the consideration of a user’s initial hypothesis has been done by 

Liu et al (2011). Liu et al’s hypothesis mining system employs frequent pattern mining 

techniques to search for significant and interesting hypotheses, by representing a hypothesis’ 

subpopulations as patterns in the data. In comparison to Redhyte, Liu et al’s system is 

entirely data-driven as the latter does not interact with the user’s domain expertise. There are 

pros and cons to such an approach, to be discussed in a later section (section 4.1). 
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Materials & Methods 

Prototyping of the system is done using the R programming language and the shiny package 

(Chang, 2015). In order to validate Redhyte’s algorithm and assess its performance, we used 

well-known datasets from the UCI Machine Learning Repository (Lichman, 2013), namely 

adult, mushroom, and arrhythmia, and the UC Berkeley admission dataset (Bickel et al, 

1975). 

 

2.1 Framework 

 

Figure 2: Overview of the inner workings of Redhyte 

Figure 2 depicts a high-level view of how Redhyte conducts hypothesis mining. The 

shorthand notations used in the figure are as follows: Atgt for target attribute, Acmp for 

comparing attribute, vtgt for target attribute value, Cinitial for initial context, H for hypothesis, 
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T for test, and finally, the SW, MW, and CMH test for the Shapiro-Wilk, Mann-Whitney, and 

the Cochran-Mantel-Haenszel test respectively. These terms and statistical tests will be 

further expounded later in the section. We first describe the well-understood framework of 

hypothesis testing, and later augment it with Redhyte’s hypothesis mining framework. 

 

2.1.1 Hypothesis testing 

A statistical hypothesis, in lay terms, is a comparison of difference between n subsets of a 

dataset, where n is positive.  We call these subsets subpopulations of a hypothesis. If the 

differences between the subpopulations are likely to be real and did not occur by chance, the 

difference is said to be statistically significant. Statistical significance is attained by 

subjecting the hypothesis to a statistical test, such as the t-test or χ2 test. 

 

For n = 1, the hypothesis concerns the comparison between a subpopulation of the data and 

the actual population from which the data is sampled from. In reality such true population 

parameters are often unknown. On the other hand, for n > 2, the comparison is across 

multiple subpopulations. It is often hard to utilise and interpret the results of such a 

comparison. Ultimately, users may still need to consider pairwise comparisons. Due to these 

reasons, Redhyte only considers hypotheses where n = 2. 

 

Typically, the process of hypothesis testing consists of several steps: 

1. Based on available data, state the null and alternative hypothesis, H0 and H1. H0 

typically asserts that there is no difference in the subpopulations, while H1 asserts its 

negation. 

2. Based on the type and distribution of the attribute that the subpopulations are being 

compared on, select an appropriate test. For instance, if the subpopulations are being 
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compared on body mass index (BMI) and the distributions of BMI is approximately 

Normal, the Student’s t-test can be used. On the other hand, if the subpopulations are 

being compared on a dichotomous attribute of overweight versus not overweight, a χ2 

test would be appropriate. 

3. Using the selected test, compute a p-value. The p-value is the probability of observing 

the sample data, or a more extreme sample, given that the H0 is true. In other words, if 

the probability of observing the collected data is very low given that H0 is true, then 

there is some evidence to reject H0 and hence accept H1. Typically the decision to 

accept or reject H0 is dependent on an arbitrary threshold known as the significance 

level, which is usually 0.05 or 0.01. 

4. Accept or reject H0 based on the computed p-value and the significance level. 

 

2.1.2 Initial hypothesis 

The first step in Redhyte’s hypothesis mining system is for the user to set up an initial 

hypothesis. In this section we describe the terminologies in hypothesis testing, as used in 

Redhyte. Several of the following terms come from Liu et al, with an extension of 

terminologies unique to Redhyte, to be introduced later. We use the following toy dataset as a 

running example to illustrate the terminologies in Redhyte: 

Table 3: Toy dataset to illustrate Redhyte’s hypothesis mining framework 

ID Gender Native 

country  

Income Family 

history for 

cardiac 

disease 

Smoking 

status 

Resting Heart 

Rate 

(numerical) 

Resting Heart 

rate 

(categorical) 

1 M S’pore Low False Smoker 75 High 

2 F S’pore Low False Never 65 Low 

3 F M’sia High False Smoker 81 High 

4 M S’pore High True Quitter 72 High 

… … … … … … … … 

N M China High True Quitter 73 High 
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Consider the following hypotheses: 

Table 4: Example hypotheses 

Hypothesis A Do smokers have a higher resting heart rate than the never-smokers and 

quitters? 

Hypothesis B Out of all the men, do smokers have a higher resting heart rate than the 

never-smokers and quitters? 

 

In a hypothesis, we define the target attribute as the attribute that represents the result, 

response, or outcome. In both hypotheses A and B, the target attribute is resting heart rate. 

The target attribute may be numerical or categorical, of which influences the type of 

statistical tests used to assess the hypothesis. In our examples, resting heart rate may be 

numerical (e.g. 75 beats per minute) or categorical (e.g. high versus low). Furthermore, for a 

categorical target attribute, we define a target attribute value as a group within the 

categorical target attribute that is the most meaningful or interesting; this often pertains to an 

affirmative (e.g. diseased being more interesting than not diseased, exposed being more 

interesting than control), though it is context-dependent. On the other hand, the comparing 

attribute is the attribute that represents the act of comparison and/or intervention. In our 

examples, the comparing attribute is smoking status. Comparing attributes must be 

categorical. 

 

Hypothesis B considers a smaller subpopulation, by restricting the samples of the dataset to 

those that satisfies the condition of gender being male. In Hypothesis B, we call gender a 

context attribute, and the condition of {Gender = M} as a context item. In general, more 

context items, such as {Family history for cardiac disease = True} or {Native country = 

S’pore}, can be added into the hypothesis. The set of context items that are added into the 

initial hypothesis is known as the initial context. The more context attributes there are in the 

initial context, the more specific the hypothesis becomes, and the smaller its subpopulations. 
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2.1.3 Statistical tests and contingency tables 

After the initial hypothesis is set up, a statistical test is used to assess the hypothesis. 

Choosing the correct test is largely dependent on the type and distribution of the target 

attribute. Motulsky (2014) gave a concise overview of the different variants of statistical 

tests. Of the different statistical tests, Redhyte only uses the t-test (Student, 1908) and the χ2 

test (Pearson, 1900) to assess the initial hypothesis. The exact variants of t-test and χ2 test 

used in Redhyte are the Welch 2-sample t-test (Welch, 1974), which assumes unequal 

variances for the subpopulations, and the Pearson’s χ2 test with Yate’s continuity correction 

(Yates, 1934). The Yate’s continuity correction is often used in the computation of the χ2 test 

statistic to compensate for the fact that the χ2 distribution, being a continuous distribution, is 

used to approximate probabilities in discrete data. 

 

A simple way to represent hypothesis is to use tables. To illustrate, Hypothesis A can be 

represented in the following contingency table: 

Table 5: Contingency table of Hypothesis A 

 High resting heart rate Low resting heart rate Total 

Smokers c11 = 43 (61.4%) c12 = 27 (38.6%) 70 

Never-smokers and quitters c21 = 12 (21.4%) c22 = 44 (78.6%) 56 

Total 55 71 126 

 

In this hypothetical example, each cij represents the number of samples in the data that are in 

the i
th

 and j
th

 group. In the contingency table, the columns are used to represent the target 

attribute, while rows for the comparing attribute. The percentages in the each cell of the table 

represent the proportions of samples in a group of the comparing attribute that belongs to a 

group of the target attribute. Note that a target or comparing attribute group may consist of 

multiple classes from that attribute. For instance, the never-smokers and quitters form a 

single group in the hypothesis. 
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Alternatively, Hypothesis A can also be represented in a table to compare means: 

Table 6: Comparison table of Hypothesis A 

 Means of resting 

heart rate 

Standard deviation of 

resting heart rate 

Support Proportions 

Smokers 75 20 70 56% 

Never-smokers 

and quitters 

65 18 56 44% 

 

We call the above table a comparison table, where the means of the target attribute are being 

compared across the groups of the comparing attribute. The supports for each group of the 

comparing attribute are simply the number of samples that belong to the respective groups. 

For a given hypothesis, depending on how the target attribute is being represented in the 

dataset (numerical or categorical), Redhyte generates the appropriate table. 

 

In addition, Redhyte discretizes numerical target attributes by its mean, to give a binary target 

attribute of above or below mean. This binary target attribute will be used later in hypothesis 

mining, as well as to generate a contingency table for the initial hypothesis. Therefore, for 

both numerical and categorical target attributes, contingency tables are generated, in addition 

to the comparison table for numerical target attributes. Redhyte proceeds subsequently to 

perform the initial test(s) on the given hypothesis, which are the t-test and/or the χ2 test. 

 

2.1.4 Test diagnostics and hypothesis analysis 

After the initial hypothesis and test is set up, Redhyte proceeds to do test diagnostics and 

hypothesis analysis. For numerical target attributes, the Student’s t-test, or simply t-test, is 

used to assess the initial hypothesis. The t-test is a parametric test that requires certain 

assumptions to hold true, such as normality and equal variances (Havlicek and Peterson, 

1974). In order to assess whether these assumptions are met, Redhyte uses the Shapiro-Wilk 

test (Shapiro and Wilk, 1965) and the F-test (Box, 1953). For the Shapiro-Wilk test, the null 
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hypothesis states that the target attribute is normally distributed in both subpopulations of the 

initial hypothesis, while that of the F-test states that the two subpopulations under comparison 

have the same variance. If any of these tests are significant, Redhyte uses the non-parametric 

Mann-Whitney test (Mann and Whitney, 1947), also known as the Wilcoxon rank sum test, to 

assess the initial hypothesis. Both the normality and equal variances assumptions form part of 

the general independent and identically distributed (i.i.d.) assumption, an assumption found 

in many, if not all, statistical tests. We use the Cochran-Mantel-Haenszel test (to be 

elaborated later in the section) in an attempt to address the independence assumption, though 

this assumption is generally not assessable. 

 

For categorical target attributes, the χ2 test was used to assess the initial hypothesis. Unlike 

the t-test, the χ2 test is non-parametric, with a null hypothesis stating that there is no 

association found between the categorical target and comparing attributes in the contingency 

table. In Redhyte, we define a collapsed χ2 test as a χ2 test whereby one or both of the groups 

of the comparing attribute comprises of more than one comparing attribute class – a χ2 test on 

Table 5 would be a collapsed χ2 test. In contrast, a χ2 test on the following contingency table 

would be a flat χ2 test: 

Table 7: Flat contingency table of Hypothesis A 

 High resting heart rate Low resting heart rate Total 

Smokers c11 = 43 (61.4%) c12 = 27 (38.6%) 70 

Never-smokers c21 = 6 (20.7%) c23 = 23 (79.3%) 29 

Quitters c31 = 6 (22.2%) c32 = 21 (77.8%) 27 

Total 55 71 126 

 

The comparing attribute group of the never-smokers and quitters are separated into their 

individual classes in a flat contingency table. The rationale behind a flat χ2 test in hypothesis 

analysis is to find the χ2 top contributor – the class within the comparing attribute that 
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contributes most to the χ2 test statistic, and hence the test’s significance. The χ2 test statistic 

is given by 

   ∑∑
         

 

   
  

  

 

where               and      is the expected or theoretical count, asserted by the null 

hypothesis of independence. For example, the χ2 test statistic for Table 7 is 20.25 with p < 

0.05, varyingly contributed by classes of the comparing attribute as follows: 

Table 8: Computation for χ2 contributions in Hypothesis A 

High resting heart rate Observed  Expected          
 

   
 

χ2 contribution 

Smokers O11 = 43  E11 = 30.6 5.02 24.8% 

Never-smokers O12 = 6  E12 = 12.7 3.53 17.5% 

Quitters O13 = 6  E13 = 11.8 2.85 14.1% 

 

The χ2 contributions are only evaluated for the target attribute value, which in this case is 

high resting heart rate. Here, the top contributor is the smoker class, i.e. the smokers are the 

main reason why the χ2 test on Table 7 is significant. 

 

To further motivate the identification of the χ2 top contributor, consider the following flat 

contingency table on various vaccines (example courtesy of Wong, 2014): 

Table 9: Flat contingency table on vaccine effectiveness 

Vaccine Type Had flu Avoided flu Total 

A Attenuated 43 (15.4%) 237 (84.6%) 280 

B Attenuated 52 (20.8%) 198 (79.2%) 250 

C Attenuated 25 (9.3%) 245 (90.7%) 270 

D Protein subunit 48 (18.5%) 212 (81.5%) 260 

E Protein subunit 57 (19.7%) 233 (80.3%) 290 

Total  225 1125 1350 

 

In the example above, a flat χ2 test would return a p-value of less than 0.05, thereby 

suggesting that the vaccines are effective against flu incidence. Searching for the top χ2 
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contributor amongst the five vaccines (using “Avoided flu” as the target attribute value), we 

have the following Table 10. 

Table 10: Computation for χ2 contributors of Table 9 

Avoided flu Observed Expected          
 

   
 

Contribution 

A 237 233.3 0.059 0.36% 

B 198 208.3 0.509 3.07% 

C 245 225 1.778 10.74% 

D 212 216.7 0.102 0.62% 

E 233 241.7 0.313 1.89% 

 

Vaccine C contributes 10.74% of the χ2 test statistic, possibly suggesting that vaccine C 

could be the main reason why the flat χ2 test is significant. More importantly, it is possible 

that vaccine C is the most effective vaccine of the five. Indeed, we can make the following 

comparison, and with the χ2 test on Table 11 being significant, it is suggested that vaccine C 

is the most effective vaccine of all. 

Table 11: Contingency table comparing vaccine C with the others 

Vaccine Had flu Avoided flu Total 

C 25 (9.3%) 245 (90.7%) 270 

A, B, D, E 200 (18.5%) 880 (81.5%) 1080 

Total 225 1125 1350 

 

Finally, Redhyte uses the Cochran–Mantel–Haenszel (CMH) test to point out attributes in the 

dataset that potentially confounds the initial hypothesis (Mantel, 1963). Given the binary 

target and comparing attributes and a third stratifying categorical attribute in the data, the 

CMH test first constructs k 2x2 contingency tables, where k is the number of classes or strata 

in the third attribute. Using the k 2x2 tables, CMH test asserts in its null hypothesis that the 

target and comparing attribute are conditionally independent, i.e. in all of the 2x2 tables, the 

target and comparing attribute are independent of each other. Therefore, for a given third 

attribute in the dataset, if the null hypothesis is rejected, then the third attribute is said to be a 

potential confounder and warrants investigation. In addition, we may say that the 
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independence assumption in the initial test is violated. Redhyte generates a list of such 

attributes only for the user’s consideration – these attributes are not involved in hypothesis 

mining, the next step in Redhyte’s workflow. 

 

2.1.5 Hypothesis mining 

In the preceding sections, Redhyte is engaging the user with only the initial hypothesis. The 

next procedure in the Redhyte is known as hypothesis mining, and this is where Redhyte 

takes the entire dataset into consideration. Hypothesis mining consists of three steps: context 

mining, mined hypothesis formulation, and mined hypothesis scoring and ranking.  

 

2.1.5.1 Context mining 

Context mining is concerned with the search for attributes in the dataset that may be included 

in the initial hypothesis as context items. The intuition of context mining is as follows: the 

initial user-input hypothesis is considered to be domain knowledge-driven, intuitive, and 

general. We discussed how having additional context attributes in a hypothesis shrinks the 

subpopulations in a hypothesis, and renders the hypothesis more specific. 

 

The primary objective of Redhyte and hypothesis mining is to be able to automate the search 

for valid and interesting hypotheses, based on the initial hypothesis. This translates directly to 

the search for interesting context items in the dataset that can be added into the initial 

hypothesis. In order to search for such context items, Redhyte first uses classification models 

to search for attributes in the dataset that contributes to the classification of the target and 

comparing attribute – if a given attribute, say income, contributes to the classification of the 

target attribute groups, say high or low resting heart rate, then we say that income is 

somehow associated with the target attribute. Specifically, adding a particular class in the 
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income attribute, say {Income = high}, may result in a hypothesis in which either the 

observed trend in the initial hypothesis is amplified or reversed (Simpson’s Reversal). 

Moreover, for a given categorical attribute A, if all classes of A form Simpson’s Reversals 

with the initial hypothesis, we say that A forms Simpson’s Paradox with the initial 

hypothesis. 

 

In this example we call income and all other attributes sieved out by the classification models 

as mined context attributes (as opposed to the context attributes in the initial context), and 

these attributes are shortlisted based on variable importance measures in the model. These 

variables importance measures will be discussed in a later section (section 4.4.2). We note 

that at this point, it is not possible to tell, for instance, that {Income = high} reverses trend 

observed in the initial hypothesis, or {Income = low} amplifies the said trend. Prior to 

context mining, Redhyte discretizes all numerical attributes, including the target attribute if 

applicable, by the mean. Context mining will be discussed in greater detail in a later section 

(section 4.4). 

 

2.1.5.2 Formulation, scoring and ranking of mined hypotheses 

Using the mined context attributes, Redhyte considers all possible classes within these mined 

context attributes, and use them as context items to add into the initial hypothesis to form 

mined hypotheses. Redhyte then uses the χ2 test to evaluate the mined hypotheses. In 

principle, the information of whether the trend observed in the initial hypothesis has been 

amplified or weakened in the mined hypotheses is contained in the differences in p-values 

between the initial test and the test on the mined hypotheses. However, the p-values merely 

convey the statistical significance of each test – the trend could be reversed from the initial to 

the mined hypothesis, while retaining the same amount of statistical significance. p-values 
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alone are unable to sieve out such information, and thus Redhyte relies on four additional 

hypothesis mining metrics, in addition to χ2 test statistics and p-values, to evaluate the mined 

hypotheses. These metrics will be discussed in depth in a later section (section 4.5.1). 

 

Since there are multiple hypotheses to be tested at once after the mined hypotheses are 

formulated, a problem known as multiple testing arises. Multiple testing occurs when there 

are multiple hypotheses to be tested at one instance, using multiple statistical tests and hence 

generating multiple p-values. This is leads to an increase of the probability of making one or 

more false discoveries among the numerous hypotheses, otherwise known as the family-wise 

error rate (FWER). In Redhyte, the p-values are corrected for multiple testing using the 

Bonferroni correction (Bonferroni, 1936). The Bonferroni correction is a commonly used 

technique to correct for FWER, and is as follows: if there are n different hypotheses to be 

tested at one instance, then the FWER can be suppressed by testing each individual 

hypothesis at a statistical level 
 

 
 of what it would be if only one hypothesis was to be tested. 

Therefore, in all, the mined hypotheses are assessed based on χ2 test statistics, p-values, 

adjusted p-values, and four hypothesis mining metrics, a total of seven different metrics. 
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Results 

3.1 Overall design and functionalities 

Table 12: A comparison of functionalities Redhyte offers, with other data analysis systems 

Functionalities Redhyte Liu et al R/SAS/etc 

User-friendly interface ✓   
Simple data visualizations ✓  

#
 

Testing of initial hypothesis    

- t-test ✓  
# 

- χ2 test ✓  
# 

Test diagnostics and hypothesis analysis    
- t-test: automated assumption checks ✓  

# 

- χ2 test: automated computing of χ2 contributions ✓  * 

- Automated CMH test ✓  
# 

Hypothesis mining     

- Automated discovery of Simpson’s Paradoxes, etc. ✓ ✓ *^ 

- Hypothesis mining metrics 4 metrics 2 metrics * 

Session log documentation ✓   
 #: requires programming/scripting 

*: novel, not considered by users of these systems 

^: difficult, no simple or systematic way to do so in conventional data analysis 

Table 12 illustrates a qualitative comparison between Redhyte, Liu et al’s hypothesis mining 

system, and various conventional data analysis systems, with regards to hypothesis testing. 

One key advantage that Redhyte confers to the endeavour of data analysis is the automation 

of test diagnostics and hypothesis analysis. For instance, the checking of the normality 

assumption in the t-test or the identification of the χ2 top contributor in the χ2 test requires 

careful scripting from a data analyst in R. In Redhyte, these diagnostics and analyses are 

generated automatically. 

 

Furthermore, we introduced novel concepts in Redhyte, such as the notion of a χ2 top 

contributor, and the use of classification models in the hypothesis testing framework. χ2 

contributions are generally not considered by users of conventional data analysis systems, 

unless the user has some intuition on the subject matter, while the use of classification models 
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facilitates the quick discovery of Simpson’s Paradoxes. Finally, the “point-and-click” nature 

of user interfaces often invokes criticisms of lack of reproducibility. To address this, Redhyte 

documents and profiles analysis sessions in the session log documentation. The session log 

can be saved and shared amongst collaborators for reproducibility of results. 

 

3.2 User interface 

Redhyte is a fundamentally a web application that renders in a web browser, such as Google 

Chrome or Mozilla Firefox. Redhyte’s user-facing interface is organized into tabs, with each 

tab housing a specific functionality that Redhyte provides. These tabs contain the settings 

control, data preview, data visualization, initial test module, test diagnostics module, context 

mining module, mined hypothesis formulation and scoring module, and finally, log 

documentation. 

 

3.2.1 Settings and Data preview 

The first two tabs in the interface are the Settings and the Data Preview tabs. In the Settings 

tab, users can have specific control over how Redhyte treats the input data. Options such as 

file types and transposing allow certain degree of flexibility in the data format. Also housed 

in the Settings tab are settings used in test diagnostics, context mining and hypothesis mining, 

to give the user more control over the hypothesis mining process. These settings include the 

maximum number of classes in the categorical attributes of the dataset, the p-value threshold 

for switching to non-parametric tests in the Test diagnostics module, minimum classification 

accuracy for context mining models, number of context attributes to mine for, and class-ratio 

threshold for class-imbalance learning in context mining (refer to section 4.4.3), and 

minimum cell support for mined hypotheses. The Data preview serves as a simple 

functionality for users to have a quick peek at the input dataset. 
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Figure 13: Screenshot of the Settings tab in Redhyte 

 

Figure 14: Screenshot of the Data preview tab in Redhyte 
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3.2.2 Data visualization 

The next tab in the interface houses the Data visualization tab. Here, users can select two 

attributes from the input data, using which Redhyte renders the appropriate statistical 

graphics for visualisations, such as histograms, barplots, scatterplots, boxplots, and 

spineplots. The type of statistical graphic rendered depends solely on the type of selected 

attributes. For example, if the selected attributes are both numerical, a scatterplot is rendered. 

If the selected attributes are each numerical and categorical, boxplots are rendered, as in 

Figure 15. 

Figure 15: Screenshot of the Data visualization tab in Redhyte 
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3.2.3 Initial test and Test diagnostics, Contexted data 

Following the Data visualization tab is the Initial test module, where users set up their initial 

hypothesis. After the initial hypothesis is set up, the relevant table(s) and test(s) are rendered 

and conducted. The following module is the Test diagnostics module, within which 

diagnostic tests such as the F-test and/or hypothesis analysis is done. Using Redhyte up till 

this point in the framework may already be sufficient for some users, as the hypothesis and 

test that they were interested in would be sufficiently addressed by the Initial test and the Test 

diagnostics module. 

Figure 16: Screenshot of the Initial test module in Redhyte 
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The Contexted data tab allows users to have a quick look at the subset of the original input 

data that is relevant to the initial hypothesis (“contexted” simply means the addition of 

context items into a hypothesis, which makes the hypothesis more specific and the underlying 

dataset relevant to the hypothesis smaller). Furthermore, the less programming-savvy data 

analyst may make use of the Initial test module to do some simple subsetting of the original 

data, and download the data subset from the Contexted data tab for analysis in another 

platform or software. 

 

Figure 17: Screenshot of the Contexted data tab in Redhyte 
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3.2.4 Context mining 

The Context mining module first allows users to remove attributes that should not be 

included in the context mining procedure, e.g. duplicated, redundant, or irrelevant attributes.  

After context mining is completed, the confusion matrices of the classification models, a list 

of mined context attributes, and variable importance plots (to be elaborated later) of the 

models are rendered. Redhyte also allows users to get a quick glance of the class distributions 

of the mined context attributes, with respect to the initial hypothesis. 

 

Figure 18: Screenshot of the Context mining module in Redhyte 
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3.2.5 Hypothesis mining 

Using the mined context attributes, Redhyte generates a list of mined hypotheses, suitably 

scored by the hypothesis mining metrics. In the Hypothesis mining module, users can rank 

the mined hypotheses according to the hypothesis mining metrics, such as the difference lift 

and the independence lift. Users can also quickly identify the mined hypotheses in which 

Simpson’s Reversals occurred; this cannot be easily done without the use of statistical 

programming in data analysis. 

 

Figure 19: Screenshot of the Hypothesis mining module in Redhyte 

Based on the hypothesis mining metrics, users can select mined hypotheses that are deemed 

interesting for analysis. A comparison between the initial and the selected mined hypotheses 

(Figure 20) allows the user to quickly identify the rationale behind the (lack of) 

interestingness of the selected mined hypothesis, be it directed shrinkage (refer to section 

4.5.1) or insufficient support. Finally, advanced users may wish to investigate the behaviour 

of the hypothesis mining metrics, using scatterplots of the various metrics. 
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Figure 20: Screenshot of the Hypothesis analysis functionality in the Hypothesis mining 

module 

3.2.6 Log 

Finally, the Log documents all settings used in a particular analysis session, and allows users 

to quickly profile the analysis session. The log can be downloaded as a .csv file, and shared 

amongst collaborators for reproducibility of hypothesis mining and analysis results. 

 

Figure 21: Screenshot of the Log tab in Redhyte 
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3.3 Interestingness of mined hypotheses 

In this section, we give an illustration on how Redhyte can be used to lead the user to 

interesting mined hypotheses, using the UC Berkeley admission and the adult dataset. We use 

the following hypotheses as illustrations: 

Table 22: Hypotheses from the UC Berkeley admission and the adult dataset 

Hypothesis A In the context of {}, is there a difference in ADMIT between {Admitted} vs. 

{Rejected} when comparing the samples on GENDER between {Male} vs. 

{Female}? 

Hypothesis B In the context of {race= White}, is there a difference in INCOME between { 

>50K} vs. { <=50K} when comparing the samples on OCCUPATION 

between { Adm-clerical} vs. { Craft-repair}? 

 

UC Berkeley admission Based on hypothesis A, the initial test suggests the relationship 

between admission numbers and gender is significant (p < 0.05), with the males being more 

likely to be admitted into the university than females: 

Table 23: Contingency table of Hypothesis I 

 Admitted Rejected Total 

Males 1198 (44.5%) 1493 (55.5%) 2691 

Females 557 (30.4%) 1278 (69.6%) 1835 

Total 1755 2771 4526 

 

However, stratifying by various departments (departments A to F) gives different 

conclusions. In particular, inserting the context item {Dept = A} gives the following 

contingency table, with a p-value less than 0.05: 

Table 24: Contingency table of mined hypothesis with {Dept = A} 

{Dept = A} Admitted Rejected Total 

Males 512 (62.1%) 313 (37.9%) 825 

Females 89 (82.4%) 19 (17.6%) 108 

Total 601 332 933 

 

Clearly, a Simpson’s Reversal has taken place. When considering the admission rate of a 

particular department A, females are favoured for admission than males. This is contrary to 

the conclusion given by the initial test. Setting up the above hypothesis in Redhyte will allow 

the user to easily arrive at Table 24 in a matter of seconds. 
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Adult Based on hypothesis B in Table 22, the initial test suggests that the relationship 

between income and occupation is significant (p < 0.05), with white administrative clerks 

earning more than white craft repairers, as shown in Table 25. 

Table 25: Contingency table of Hypothesis III 

 Income > 50K Income <= 50K Total 

Administrative clerks 439 (14.2%) 2645 (85.8%) 3084 

Craft repairers 844 (22.8%) 2850 (77.2%) 3694 

Total 1283 5495 6778 

 

Using the default settings, Redhyte identifies five mined context attributes after context 

mining, namely sex, relationship, workclass, education, and education.num. In particular, 

considering the context items {Sex = Male}, {Sex = Female} and {Workclass = Self-emp-

not-inc} leaves us with the following contingency tables: 

Table 26: Contingency table of mined hypothesis with {Sex = Male} 

{Sex = Male} Income > 50K Income <= 50K Total 

Administrative clerks 251 (24.2%) 787 (75.8%) 1038 

Craft repairers 829 (23.5%) 2695 (76.5%) 3524 

Total 1080 3482 4562 

 

Table 27: Contingency table of mined hypothesis with {Sex = Female} 

 

{Sex = Female} Income > 50K Income <= 50K Total 

Administrative clerks 188 (9.2%) 1858 (90.8%) 2046 

Craft repairers 15 (8.8%) 155 (91.2%) 170 

Total 203 2013 2216 

 

The above illustrates an exact instance of a Simpson’s Paradox, with both genders resulting 

in reversals of trends. This is also an example hypothesis mined by Liu et al’s hypothesis 

mining system, used as a case study in Liu et al. 

Table 28: Contingency table of mined hypothesis with {Workclass = Self-emp-not-inc} 

{Workclass = Self-emp-not-inc} Income > 50K Income <= 50K Total 

Administrative clerks 16 (34.8%) 30 (65.2%) 46 

Craft repairers 90 (18%) 409 (82%) 499 

Total 106 439 545 
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The hypothesis mining metrics (each hypothesis mining metric is designed to capture a 

specific aspect of hypothesis interestingness, to be discussed in section 4.5.1) evaluated on 

these three items are as follows: 

Table 29: Hypothesis mining metrics evaluated for the selected context items 

Context items Difference 

lift 

Contribution Independence 

lift 

Adjusted 

independence 

lift 

p-value 

{Sex = Male} -0.08 -0.31 -0.06 -0.02 0.69 

{Sex = 

Female} 

-0.04 0.31 -0.09 -0.05 0.98 

{Workclass = 

Self-emp-not-

inc} 

-1.94 -0.11 -1.89 -0.05 0.01 

 

Based on Hypothesis B, the default settings in Redhyte is used to illustrate the above, and to 

generate 27 other mined hypotheses, suitably scored and ranked using the hypothesis mining 

metrics, for the user to inspect. The user is also able to alter the settings in Redhyte – for 

instance, increasing the number of context attributes to mine for, to suit analysis purposes. 

All of these analysis results are entirely reproducible, with the help of the session log 

documentation. 
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3.4 Computational performance 

There are two main ways Redhyte can be put to use: the user may choose to install R on a 

personal computer, and import Redhyte’s GitHub repository to use Redhyte for analysis 

locally. Alternatively, Redhyte has been deployed as an R shiny application at shinyapps.io, 

for free, and can be accessed easily via the web browser. There is a limit to the upload size of 

the input data, which is at 20MB. Computations are significantly quicker on the server. We 

made comparisons on computation speeds on the server, versus a personal computer with 

AMD 2.2GHz Quad-Core processor with 64-bit operating system and 3.74GB usable RAM. 

The computational bottleneck of Redhyte comes from the construction of the context mining 

models (specifically, random forest models; refer to section 4.4.1) during context mining: as 

an example, for an initial hypothesis with about 7,800 samples, context mining takes 

approximately 45 seconds on the said personal computer, and 16 seconds on the server. Other 

than context mining, the reminder of the background computations and data manipulations in 

Redhyte is relatively lightweight and do not pose any problems, as long as they do not require 

excessive amounts of computational resources that the backend server at shinyapps.io has 

allocated to Redhyte for free. The following tabulates the performance comparison on various 

datasets, hypotheses, and hardware. 

  



Redhyte 

© 2015 TOH Wei Zhong Page 31 

Table 30: Initial hypotheses used to evaluate Redhyte’s computational performance 

 Dataset Initial hypothesis 

I UC 

Berkeley 

In the context of {}, is there a difference in ADMIT between {Admitted} 

vs. {Rejected} when comparing the samples on GENDER between 

{Male} vs. {Female}? 

II Adult In the context of {}, is there a difference in INCOME between { >50K} 

vs. { <=50K} when comparing the samples on OCCUPATION between { 

Adm-clerical} vs. { Craft-repair}? 

III Adult In the context of {race= White}, is there a difference in INCOME 

between { >50K} vs. { <=50K} when comparing the samples on 

OCCUPATION between { Adm-clerical} vs. { Craft-repair}? 

IV Adult In the context of {}, is there a difference in AGE when comparing the 

samples on WORKCLASS between { Federal-gov &  State-gov} vs. { 

Private}? 

V Adult In the context of {sex= Male}, is there a difference in AGE when 

comparing the samples on WORKCLASS between { Federal-gov &  

State-gov} vs. { Private}? 

VI Mushroom In the context of {}, is there a difference in CLASS between 

{POISONOUS} vs. {EDIBLE} when comparing the samples on 

BRUISES between {BRUISES} vs. {NO}? 

VII Arrhythmia In the context of {}, is there is a difference in CLASS between 

{NORMAL} VS. {DISEASED} when comparing the samples on 

GENDER between {MALE} vs. {FEMALE}? 

 

Table 31: Comparison of Redhyte’s computational performance across datasets, initial 

hypotheses, and hardware 

 

Initial 

Hypothesis 

Dataset Number of 

samples in 

initial 

hypothesis 

Number of 

attributes 

Context mining 

runtime on 

shinyapps.io 

server 

Context 

mining 

runtime on 

personal 

computer 

I UC 

Berkeley 

4526 3 2.364secs 4.48secs 

II Adult 7,869 15 16.442secs 44.91secs 

III Adult 6,778 15 13.078secs 34.29secs 

IV Adult 24,954 15 Exceeded server 

limits 

199.89secs 

V Adult 16,398 15 Exceeded server 

limits 

110.64secs 

VI Mushroom 8,416 23 9.578secs 32.67secs 

VII Arrhythmia 452 280 4.193secs 10.72secs 
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Discussion 

4.1 Hypothesis mining 

Redhyte is a hypothesis mining system that utilises the user’s initial, domain knowledge-

driven hypothesis to search for relevant and interesting hypothesis. Redhyte was motivated 

by the lacklustre practicality of hypothesis testing in the current Big Data context. In 

circumstances where the number of attributes in the dataset is too large for the data analyst to 

purposefully examine and scrutinize, hypothesis testing is often entirely replaced by more 

wholesome approaches, such as data mining. This is for good measure, as not only is 

formulating and testing a small hypothesis in a large dataset wasteful, it is also flawed. Data 

mining techniques are able to accommodate large number of attributes and use them towards 

some meaningful statistical task or objective, such as classifying or clustering. This use of 

data in aggregation, while wholesome, is not nearly as intuitive as making direct comparisons 

between subpopulations of interest, as in hypothesis testing. Motivated as such, Redhyte was 

designed to be able make full use of entire datasets while remaining within the hypothesis 

testing framework. Based on the user’s initial hypothesis of interest, Redhyte searches for 

interesting hypotheses for the user to consider and inspect. Redhyte also conducts diagnostics 

and analyses to sufficiently address the initial hypothesis. 

 

The actions required from the user are to upload the dataset and set up the initial hypothesis. 

This is in contrast to Liu et al’s hypothesis mining system, whereby the mined hypotheses are 

not driven by initial domain knowledge input. In other words, the mined hypotheses 

generated by Liu et al’s system are definitive and entirely data-driven – for a given dataset 

and a set of mining parameters, the system generates a specific list of mined hypotheses. In 

contrast, Redhyte is both domain knowledge- and data-driven – Redhyte first takes into 

consideration the user’s initial hypothesis, and mines for hypotheses that are relevant to it. 
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There are several distinctions between both approaches. For example, Redhyte can never 

mine for a hypothesis that is not related to the initial hypothesis. If the user’s initial 

hypothesis is one that is well-formulated, then Redhyte’s mined hypotheses would be of 

value to the user. On the contrary, Liu et al’s system does not allow the user to stipulate any 

initial hypothesis. Hence, the hypotheses mined by Liu et al’s system could possibly contain 

spurious ones – one example of such a hypothesis could be the comparison of the number of 

males and females who are husbands or wives. Without any domain knowledge input from 

the user, the system is unable to discard such hypotheses. 

 

Inevitably, Redhyte presumes that the user is sufficiently knowledgeable to formulate an 

initial hypothesis that is meaningful and relevant in subject matter in the first place. Without 

an initial hypothesis that is relevant in subject matter, Redhyte would be unable to mine for 

any interesting hypothesis. On the other hand, even without a knowledgeable user, Liu et al’s 

hypothesis mining system would function just as well, with the mined hypotheses allowing 

the user to get a good understanding of the input dataset. 

 

4.2 Initial test 

Redhyte is divided into mainly four modules, namely the initial test, test diagnostics, context 

mining, and the mined hypothesis formulation and scoring modules. The initial hypothesis is 

assessed by either the t-test or the χ2 test in Redhyte, depending on whether the target 

attribute is numerical or categorical. The t-test is used to make comparison between two 

subpopulations. Amongst the various variants and uses of the t-test, the most typical and 

familiar use of the t-test is to compare the means of the target attribute across two 

subpopulations, and that is how Redhyte uses the t-test in the initial test set-up. The t-test 

asserts in its null hypothesis that the means of the target attribute in the subpopulations are 
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not different from each other. As a parametric test, the t-test requires certain assumptions to 

hold true. These assumptions include i) the distributions of the numerical target attribute in 

the subpopulations under comparison are approximately normal, ii) the target attribute has 

roughly equal variances in the subpopulations, and iii) data of target attribute is 

independently and identically sampled in the subpopulations (i.i.d.). Typically, of these three 

assumptions, only the first two can be assessed rigorously using other statistical tests, while a 

conclusive statistical test is not available to assess the third. These assumptions are assessed 

in the test diagnostics module in Redhyte. 

 

For categorical target attributes, the initial hypothesis is assessed by the χ2 test. The χ2 test 

can be considered to be a non-parametric test, and asserts that the target and comparing 

attributes are not associated to each other in its null hypothesis. The χ2 test is often 

accompanied by contingency tables, such as the one shown in Table 5. Redhyte also uses the 

χ2 test to assess relationship between a numerical target attribute and the comparing attribute, 

with a binary attribute corresponding to a mean discretization on the target attribute. 

 

4.3 Test diagnostics 

Subsequently, Redhyte proceeds to the test diagnostic module, whereby a check of test 

assumptions and/or hypothesis analysis is done. For the t-test, Redhyte uses the Shapiro-Wilk 

test and the F-test to test for normality and homoscedasticity. If either of these tests fails, 

Redhyte then uses the Mann-Whitney test to assess the hypothesis. These tests are 

implemented in the system backend as R functions, and for computational reasons, the 

Shapiro-Wilk test implementation in R is unable to accommodate subpopulation sizes of 

more than 5,000 samples. If need be, the Shapiro-Wilk test in Redhyte could be re-

implemented. For the collapsed χ2 test, the initial hypothesis is analysed, to identify the χ2 
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top contributor. We refer the reader to section 2.1.4 to understand the utility of identifying the 

χ2 top contributor. 

 

The final part of the test diagnostics module is the CMH test, or the Cochran–Mantel–

Haenszel test. For a given categorical attribute that is not the target or the comparing 

attribute, the test considers all of its classes and stratifies the contexted data accordingly, to 

form k 2x2 tables. With a null hypothesis that the target and comparing attributes are 

conditionally independent across the k tables, rejection of the null hypothesis implies that the 

stratifying categorical attribute could potentially confound the initial hypothesis. In Redhyte, 

if any of the k tables have any cell support of zero after stratification, the attribute is flagged 

to be inadequate for the CMH test to be conducted.  The goal of this test is to search for 

potential confounders to the initial hypothesis, and in some sense, is aligned with the goal of 

context mining. We make a comparison of the CMH test with context mining later in the 

section. 

 

4.4 Context mining 

After the initial test and test diagnostics, Redhyte proceeds to mine for potentially relevant 

context attributes. This is done using classification techniques from data mining. Given a 

categorical response attribute to predict, classification models make use of other attributes in 

the dataset to sieve out some form of empirical structure to facilitate prediction and 

classification. For example, in a decision tree classifier predicting resting heart rate, the 

classifier may learn empirically from the data that smokers generally have a resting heart rate 

being above the mean of the dataset, and use that rule as a basis of classification. 
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In Redhyte, two separate classification models are used to predict, using all other attributes, 

the target and the comparing attribute. We call these models, for simplicity, the target and 

comparing model respectively. The rationale stems from the fact that if some attribute A in 

the dataset is related with the target or the comparing attribute, then the mined hypothesis 

formed by using A should be interesting to consider. One way to identify such relationships in 

the data, without using an iterative approach, is to use a classification model. The 

classification model used in Redhyte is the random forest model (Breiman, 1996a, b, 2001). 

The selection of a model suitable for context mining is largely guided by two requirements: 

attribute selection and accuracy, though there are other points of consideration. We return to 

these points later. 

 

Context attributes are mined in Redhyte in the following manner: the classification accuracies 

of the target and the comparing model are computed. If neither model has accuracy above the 

user-defined classification accuracy threshold, then context mining stops – we say that there 

are no context attributes to be mined. If either model has an accuracy above the threshold, 

then Redhyte takes the top k attributes from that model (k is defined by the user; ranking of 

the attributes is done within the model, to be elaborated further), and call them the mined 

context attributes. If both models are accurate, Redhyte considers the top k attributes from the 

intersection set of the top attributes from both models as the mined context attributes. 

Therefore, a mined context attribute in Redhyte, by definition, contributes significantly to the 

classification of either the target or comparing attribute, or both. 

 

4.4.1 Random forest 

As the name suggests, random forest models basically contain an ensemble of decision tree 

models, with each decision tree predicting the same categorical response attribute (Breiman, 
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1996a, b, 2001). A simple ramification of such an ensemble learning technique is that it is 

possible to get a majority vote on the predicted classification over the numerous decision 

trees, thereby increasing the classification accuracy of the “forest” as a whole. To construct 

individual decision trees in the ensemble, random forest models use a sampling procedure 

known as bootstrap aggregating, otherwise known as bagging. Each decision tree is 

constructed using a “bag” of samples randomly drawn from the dataset with replacement. 

Such a sampling procedure allows random forest models to be robust to noise: if the dataset 

contains some noise or mistakes, especially in the response attribute, it can be shown that 

bagging ensures that the number of bags with more noise will be less than that of bags with 

less noise (Breiman, 1996a, b). In this way, random forest models attain a certain degree of 

robustness to noise. In addition, to de-correlate the individual trees in the random forest 

model, the model uses a technique known as random subspace sampling (Bryll, 2003) – each 

split on each tree is only decided based on a subset of, typically,    attributes, where   is the 

total number of attributes in the dataset. This is to ensure that the individual trees are less 

similar to each other, since they are splitting at each node using possibly different attributes. 

Having less similar and more independent trees in the forest increases classification 

performance, due to a phenomenon known as the wisdom of crowds (Rokach, 2010). For 

more technical details on random forest models, refer to Breiman (1996a, b, 2001). 

 

4.4.2 Attribute selection 

Redhyte’s use of classification models demands some form of scoring of attributes within the 

model, in order to rank the attributes based on how well an attribute contributes to the 

classification. The better an attribute can classify the target or the comparing attribute, the 

more interesting it might be to be considered as a context attribute. This is essentially 

equivalent to a means for attribute selection in general data mining tasks (Saeys et al, 2007), 
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and random forest models are able to do exactly that. Inherent in random forest models are 

two ways using which attributes can be ranked: the mean decrease in Gini (MDG) impurity 

and the mean decrease in accuracy (MDA). In Redhyte, the MDA is used as the criterion, or 

variable importance measure, for attribute selection. MDA works in the following way: to 

assess the importance of a given attribute A, the values of A are first randomly permutated in 

the dataset. If a model constructed on the original dataset has roughly the same accuracy as 

one constructed on the dataset with A randomly permutated, then we say that A is not an 

important attribute. This is likewise for the converse.  Random forest models compute MDA 

measures for all attributes in the dataset. Both MDA and MDG, while numerically different, 

are known to produce variable importance in which the ranking of the attributes are very 

similar (Hastie et al, 2009; Kawakubo and Yoshida, 2012). Classification models such as the 

naïve Bayesian classifiers (Russell and Norvig, 1995) and artificial neural networks (Wang, 

2003), either do not generate such scoring of attributes, or generate scoring based on 

statistically transformed attributes (e.g. linear combinations of attributes in principal 

components analysis), and therefore are not suited to be context mining models in Redhyte. 

Redhyte renders variable importance dotplots for both measures in the context mining 

module. 

 

4.4.3 Classification accuracy and class-imbalance learning 

To evaluate and visualise the accuracy of a classification model, one may use a confusion 

matrix, as such: 

Table 32: An example confusion matrix 

 

 Predicted as positive Predicted as negative 

Actual positive True positives, TP False negatives, FN 

Actual negative False positives, FP True negatives, TN 
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In the confusion matrix above, the classifier is trying to predict a binary response attribute 

that can either be positive or negative. The accuracy of this classifier model is evaluated as 

         
     

           
 

                             

                                
 

Numerous empirical investigations conducted across various domains suggest that the 

random forest is amongst the top classification models (Svetnik et al, 2003; Caruana and 

Niculescu-Mizil, 2006; Caruana et al, 2008; Brown and Mues, 2012; Gupta et al, 2012). In 

particular, Fernandez-Delgado et al (2014) showed that random forest models outperform 

many different classification models such as linear discriminant analysis, naïve Bayesian 

classifiers, and decision trees in terms of classification accuracy. 

 

Mining for interesting context attributes requires high classification accuracy. A well-known 

issue in classification problems is learning with empirical class-imbalance in the data (He and 

Garcia, 2009; Kotsiantis et al, 2006). Consider the following classifier performances: 

Table 33: Example confusion matrices and their associated accuracies 

Classifier TP TN FP FN Accuracy 

A 30 100 50 20 65% 

B 0 150 0 50 75% 

 

The data used in classifier B is clearly unbalanced – there are 3 times as many actual 

negatives than there are positives in B. Yet, by using a naïve prediction rule of always 

predicting negatives, the accuracy of B triumphs that of A, simply because of class-

imbalance. This simple example shows that accuracy, as a performance measure for 

classification models, is unreliable when the data is imbalanced. There have been many 

proposals that serve to address class-imbalance, such as the geometric mean (He and Garcia, 

2009; Weiss, 2004) and the F-measure (Kubat and Matwin, 1997; Akbani et al, 2004) as 

alternative performance metrics for classification models. Chawla et al suggested the 

synthetic minority over-sampling technique (SMOTE) to synthetically generate samples of 
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the minority class to correct for class-imbalance. In Redhyte, correction for class-imbalance 

learning is done by using the adjusted geometric mean (AGm) (Batuwita and Palade, 2011): 

    
        

    
  

where     refers to the geometric mean accuracy of the model,    the specificity of the 

model, and    the proportion of samples that belong to the majority class. 

 

One reason why class-imbalance could exist, other than the data being inherently imbalanced, 

is the use of mean discretization in Redhyte to discretize the target attribute. Using the mean 

as a discretization threshold often results in class-imbalance whenever the data has a skewed 

distribution that deviates far from the Gaussian Normal. This is because the mean, as a 

measure of central tendency, is not as robust against outliers, as compared to other measures 

of central tendency, such as the median. While we could have implemented other measures of 

central tendency or a data-driven discretization algorithm (e.g. entropy-based discretization 

algorithms (Fayyad and Irani, 1993)), Redhyte uses mean discretization mainly because i) 

Redhyte uses the t-test on means as one of its two initial tests, and ii) mean discretization is 

intuitive and easily understood.  Also, we note that random forest models are known to 

tolerate levels of class-imbalance better than most classification models (Brown and Mues, 

2012; Chen et al, 2004). 

 

4.4.4 Context mining versus CMH test 

Context mining seeks out attributes that could potentially confound the initial hypothesis. At 

first glance, it may seem that the CMH test is able to serve as a model from which context 

attributes can be mined. However, there are several limitations that are inherent to the CMH 

test. Firstly, if the trends observed are in opposite directions across some of the k tables, then 

the CMH test is not an appropriate test – the test works well only if the trends across all of the 
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tables are in the same direction, and are comparable in size (Agresti, 1996). Furthermore, the 

null hypothesis of the CMH test is that of conditional independence, i.e. all conditional odds 

ratio in the k tables are equal to 1. Therefore, for an initial hypothesis that is not marginally 

independent; that is, ignoring any third attribute stratification, the trend observed between the 

target and the comparing attributes is significant, the CMH test could be significant for 

attributes that do not cofound the initial hypothesis. 

 

Moreover, the CMH test requires the use of k contingency tables. Loosely speaking, as k 

increases, the support for each table decreases, hence limiting the statistical significance of 

the test. In addition, with large number of attributes in the dataset, using the CMH test for 

each and every attribute is subjected to multiple testing problems. These problems are also 

applicable to other statistical tests similar to the CMH test, such as the Breslow-Day test 

(Breslow and Day, 1980) or the DerSimonian-Laird test (DerSimonian and Laird, 1986), but 

are not relevant for classification models. 

 

4.4.5 Equivalent models/methods in context mining 

In principle, context mining can be done using any form of classification model, such as the 

regression-based logistic regression, or even using correlation measures – if an attribute is 

correlated with the target or the comparing attribute, then it might be worthwhile to consider 

the attribute as a mined context attribute. To rationalize the use of classification models in 

context mining, we assume that the input dataset given to Redhyte is entirely generic and 

arbitrary; that is, we may have various issues such as i) multicollinearity, or correlation 

between attributes, ii) nonlinearity between the target and comparing attribute, and the other 

attributes in the dataset, and iii) class-imbalance. Given these unforeseen but plausible 

characteristics of the input dataset, generalized linear models and correlation measures may 
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not be the best option. Furthermore, correlation measures consider each attribute separately 

and are hardly feasible when the number of attributes is too large. That leaves us with the use 

of classification models for context mining. We chose to implement the random forest model 

as our context mining model of choice in Redhyte, as its empirical performance has been 

documented and well-received by many (Svetnik et al, 2003; Caruana and Niculescu-Mizil, 

2006; Caruana et al, 2008; Brown and Mues, 2012; Gupta et al, 2012; Fernandez-Delgado et 

al, 2014). In addition, the random forest model allows for easy attribute selection due to the 

nature of the model (Svetnik et al, 2003; Genuer et al, 2010). In particular, using the 

permutation-based MDA as a variable importance measure exactly accords to the intuition of 

context mining: recall that to compute the MDA of an attribute A, the values of A is randomly 

permutated in the dataset. If such a permutation affects the accuracy of the model, then A is 

an important attribute and is related to either the target and/or comparing attribute. Finally, 

random forest models do not require any prior data transformation or normalization, nor do 

they require disparate training and testing datasets for cross-validation – classification 

accuracies can be computed using “out-of-bag” estimates (Breiman, 1996a, b, 2001). These 

properties allow random forest models to be ideal models for context mining in Redhyte. 

 

4.5 Mined hypothesis formulation, scoring and ranking 

After context mining, Redhyte uses the list of mined context attributes and construct mined 

hypotheses, by considering every possible context item in the mined context attributes: for 

example, if gender is a mined context attribute, then the mined context items that Redhyte 

considers are {Gender = M} and {Gender = F}. Each of these context items are then added 

into the initial hypothesis, which shrinks the subpopulations of the hypothesis. We call the 

resultant hypotheses mined hypotheses. Only mined hypotheses with cell supports exceeding 



Redhyte 

© 2015 TOH Wei Zhong Page 43 

the minimum cell support stipulated in the settings (default at 10) are considered to be worthy 

for inspection and analysis. 

 

4.5.1 Hypothesis mining metrics 

To evaluate the mined hypotheses and divert the user’s attention to the most interesting 

collection of mined hypotheses, Redhyte uses four different hypothesis mining metrics to 

rank the mined hypotheses. Two of these metrics, the difference lift and the contribution, 

have been previously published in Liu et al. We developed and implemented two additional 

metrics in Redhyte, namely the independence lift and the adjusted independence lift, to 

improve the scoring and ranking of the mined hypotheses. The Appendix outlines the 

intuition, basis, and derivation of the various metrics. Each metric was designed to capture 

specific aspects of interestingness of the mined hypotheses: trend changes, relative support of 

mined hypotheses, and manner of shrinkage. The following summarizes the metrics and the 

aspects of interestingness that each metric captures. 

Table 34: Summary of the various hypothesis mining metrics used in Redhyte 

Metrics Trend 

changes 

Relative 

support 

Shrinkage 

manner 

Remarks 

Difference lift ✓   Captures changes in trends and 

proportions after addition of 

mined context item 

Contribution  ✓  Allow mined hypotheses to be 

scored according to the relative 

support of the mined hypotheses 

Independence 

lift 
✓ ✓  Evaluate mined hypotheses 

based on the above two aspects 

of interestingness simultaneously 

Adjusted 

independence 

lift 

✓  ✓ To capture changes in trends and 

proportions, and the manner of 

shrinkage (directed or 

undirected) 

 

Trend changes Trend changes refer to changes in proportions or trends, be it amplifications, 

weakening, or reversals, when a mined context item is added into the initial hypothesis. 
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Trend changes are captured by the difference lift, the independence lift, and the adjusted 

independence lift. Specifically, each of these metrics is proportional to change in trend, and 

has a property that if a Simpson’s Reversal occurs, these metrics are numerically negative. 

This property gives us a simple and quick way to detect Simpson’s Reversals. 

 

Relative support If the mined hypothesis, after the addition of a mined context item, still 

retains a large support relative to that of the initial hypothesis, then intuitively the mined 

hypothesis could be more interesting to consider, as it still retains some form of generality. In 

contrast, if the subpopulations of the mined hypothesis shrink to a very small number of 

samples, then this mined hypothesis could be too specific, less useful, and hence less 

interesting. The contribution and independence lift of a context item is proportional to the 

relative support of the mined hypothesis formed by it. 

 

Shrinkage manner When a mined context item is added into the initial hypothesis, the 

subpopulations of the resultant hypothesis shrink. Consider the following: the context item 

could, for example, shrink each cell count of the contingency table of the initial hypothesis, in 

a more or less uniform manner; perhaps subtracting very similar numbers of samples from 

each cell count. We call this undirected shrinkage. On the other hand, the context item may 

also shrink each count cell of the initial hypothesis in a more “directed” manner – if we 

consider the following contingency table, one example of directed shrinkage could be having 

c11 reduced by a much larger extent, say halved, than c12, c21, and c22, when a context item is 

added. 

Table 35: Example contingency table 

 High resting heart rate Low resting heart rate Total 

Smokers c11 = 43 (61.4%) c12 = 27 (38.6%) 70 

Never-smokers and quitters c21 = 12 (21.4%) c22 = 44 (78.6%) 56 

Total 55 71 126 
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Intuitively, it is arguable that directed shrinkage may be more interesting, as directed 

shrinkage suggests an association of the context item with the initial hypothesis (we make a 

case for both directed and undirected shrinkage later in the section). The adjusted 

independence lift was designed to capture directed shrinkage – specifically, the adjusted 

independence lift of a context item is proportional to the extent of directed shrinkage that it 

induces. In the following section, we describe a scenario whereby directed shrinkage can be 

observed in reality. 

 

4.6 What makes a hypothesis interesting? 

While Redhyte aims to search for statistically significant and practically interesting 

hypotheses, throughout the development of Redhyte we note that it is not possible to 

objectively quantify the interestingness of a mined hypothesis. In addition to the trivial fact 

that interestingness itself is a subjective measure, in the following sections we give formal 

explanations as to why it is not possible to do so. First, we describe a concrete scenario that 

depicts directed shrinkage, and use it as a quick example in the following sections. 
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4.6.1 The Rhesus gene 

Consider the following hypotheses on infant deaths and birth order: 

Table 36: Contingency table of initial hypothesis on infant deaths 

         Infant died within 6 months of 

birth,    

Lived more than 6 months, 

   

First child,                 

Not first child,                 

 

Table 37: Contingency table of mined hypothesis with              

  
              Infant died within 6 months of 

birth,    

Lived more than 6 months, 

   

First child,                    

Not first child,                    

 

Table 38: Contingency table of mined hypothesis with               

  
               Infant died within 6 months of 

birth,    

Lived more than 6 months, 

   

First child,                       

Not first child,                       

 

The initial hypothesis concerns the association between infant deaths and birth order, while 

the mined context attribute is the presence of the Rhesus gene allele, Rh
+
, in the biological 

parents. The Rhesus gene comes in two alleles, Rh
+
, meaning the presence of the Rh antigen 

and Rh
-
, the absence thereof. When an Rh

-
 mother is impregnated by an Rh

+
 father, proteins 

from the potentially Rh
+
 fetus may enter the mother’s bloodstream. This results in the 

sensitization of the mother’s immune system to produce antibodies to attack Rh
+
 blood cells. 

Therefore, in subsequent pregnancies these antibodies attack the fetal blood cells, resulting in 

hemolytic anemia of the fetus and, if no miscarriage occurs, high chance of death for the 

infant. 
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Assume in this hypothetical example that, given the rarity of the Rh
+ 

allele (Flegel, 2007), 

         displays no association between infant death and birth order. Understanding the 

mechanism of the Rh gene allows us reasonably state the following: 

1. Adding              into           results in directed shrinkage of the 

subpopulations – specifically, the difference between     and      should be 

disproportionately large. 

2.      should be disproportionately larger than the other cell counts in   
 . 

3. Given the rarity of the Rh
+
 allele, the conclusion drawn from   

  will be very similar 

to that of         . 

Using these intuitions, we can describe qualitatively the behavior of the difference lift and 

adjusted independence lift, with respect to the context item             : 

Table 39: Qualitative description of the difference lift and adjusted independence lift 

                                Large (trend amplification) 

                                        Large (trend amplification and directed 

shrinkage) 

 

Extent of domain knowledge The interestingness of a hypothesis can never be objectively 

quantified as it is directly related to the current extents of domain knowledge. For instance, 

while both the difference lift and adjusted independence lift flag    
  as an interesting 

hypothesis (Table 39), whether the above set of hypotheses is interesting solely depends on 

domain knowledge – if knowledge of the Rh gene is yet to be discovered, then the shrinkage 

of subpopulations directed by              will be a very groundbreaking finding. On 

the other hand, if the mechanism of Rh gene is well-understood, then the above set of 

hypotheses is essentially trivial. 

 

Undirected shrinkage versus directed shrinkage When a context item   is added into 

         to form   , the subpopulations of the hypothesis shrinks, as the resultant hypothesis 
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becomes more specific. In derivation of the adjusted independence lift (refer to Appendix C), 

we define the independence factor of a context item      where    measures the extent of 

association/independence    has on the target attribute value    . Using the intuition that 

undirected shrinkage of subpopulations is less interesting than a directed shrinkage, the 

adjusted independence lift is corrected by |  
 

  
| instead of 

 

  
, as in independence lift. With 

this correction, the adjusted independence lift is able to capture directed shrinkages, such as 

the one illustrated by the Rh
+
 allele. 

 

Suppose           and    are as follows: 

Table 40: Example initial hypothesis 

         Target attribute class    Target attribute class    

Comparing attribute class                 

Comparing attribute class                 

 

Table 41: Mined hypothesis with undirected shrinkage 

              Target attribute class     Target attribute class     

Comparing attribute class                  

Comparing attribute class                  

 

In the example above, the context item             } shrinks each cell of          by 5 

samples. Given such a hypothesis, the adjusted independence lift interprets that   and    are 

independent, and hence be weighted down in interestingness, with                    

                            . On the other hand       ,       , and            

                            , i.e. the trend observed has been amplified by         

     . In this case the difference lift and the adjusted independence lift give contradictory 

conclusions, and without any domain knowledge input, it is not possible to ascertain the 

interestingness of the mined hypothesis. 
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Nonetheless, it is easy to give justification for both metrics, such as the following: if we were 

to make a discovery of a gene, say the Rh gene in the previous example, directed shrinkage 

would provide a clear indication on the relationship between   and   . In this case, the 

adjusted independence lift would be facilitating the discovery of the gene. On the other hand, 

a marketing department’s decision on whether to place an advertisement in the morning 

papers versus the evening papers (the context attribute) can solely be based on the difference 

lift on some target attribute associated with response or outreach, even with undirected 

shrinkage. 

 

Relative support of mined hypotheses Both the contribution and the independence lift were 

designed to take into consideration the relative support of          and    . In particular, 

contribution and independence lift favours    with larger relative support, using, for instance, 

the 
  

 
 coefficient in independence lift (refer to Appendix B), where   is the support for the 

mined hypothesis while   is that of the initial. However, the relationship between relative 

support and interestingness of mined hypotheses is hardly that straightforward. For instance, 

if  
  

 
 is close to 1, then adding the context item does not shrink the subpopulation of          

by much – this could possibly be an uninteresting mined hypothesis. In contrast, if  
  

 
 is close 

to 0, then the mined hypothesis may too small and specific for it to have any statistical or 

practical significance. 

 

In light of the above explanations to why a hypothesis cannot be objectively concluded to be 

(un)interesting, the various hypothesis mining metrics that Redhyte computes serves as a 

reference for the user to rank and compare the mined hypotheses based on different aspects of 

interestingness: trend changes, relative support, and manner of shrinkage. Ultimately, the user 
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would wish to rely on the domain knowledge, assisted by the metrics, to assess whether a 

given mined hypothesis is worthy of further investigations. 

 

4.7 Future work 

There is a multitude of ways towards which Redhyte can be improved. We list some possible 

aspects Redhyte could be improved upon in the following: 

1. Scalability: Redhyte is currently hosted at shinyapps.io, for free. Better hardware is 

required for Redhyte to scale up to larger datasets, to truly address Big Data. 

Furthermore, R is not a language known for scalability and computing performance. 

Using the same concepts and algorithm, Redhyte can be rebuilt in a much faster 

language, such as Java or C++. 

2. Use of other types of supervised learning models as context mining models: Random 

forest model is one of many types of supervised learning models. We chose to 

implement the random forest model in Redhyte for its accuracy and interpretability, 

amongst many of its advantages (see section 4.4.5 in Discussion), though more 

models could potentially be explored. It is also possible to conceptualize context 

mining in an ensemble learning manner, where multiple models are used to mine for 

context attributes, and a majority vote on the attributes is subsequently considered. 

3. Pairwise or multiple context items for mined hypotheses: Using the mined context 

attributes, Redhyte constructs mined hypotheses by considering every possible 

context item, and insert each of them into the initial hypothesis. It is possible to insert 

more than one context item into the initial hypothesis; we could for instance, consider 

every possible pairwise combinations of context items. This leads to even more 

specific mined hypotheses, which could potentially be more interesting. In the current 

iteration of Redhyte, we only consider single context items for mined hypotheses, 
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mainly due to scalability issues: for smaller datasets, considering more than one 

context items leads to mined hypotheses with low supports and thus low statistical 

significance. 

4. Improved hypothesis mining metrics: We note that the hypothesis mining metrics we 

have implemented in Redhyte are each concerned with specific aspects of 

interestingness: the difference lift, independence lift, and adjusted independence lift 

are meant to capture trend changes, the contribution and independence lift to capture 

relative support of mined hypotheses, and the adjusted independence lift to capture 

directed shrinkage. More work could be done to further develop such metrics. 

5. Visualization of mined hypotheses: Mined hypotheses are scored and ranked using the 

hypothesis mining metrics in Redhyte. More work could be done to better visualize 

the mined hypotheses. For instance, Armstrong and Wattenberg (2014) introduced the 

comet chart for the visualization of Simpson’s Reversals.  Lehe and Powell at the 

Visualizing Urban Data Idealab (2014) gave a visually appealing representation of 

Simpson’s Reversals. In Redhyte, the Simpson’s Reversal is simply one of multiple 

possible types of mined hypotheses, and these visualizations can be used for mined 

hypotheses that do not display Simpson’s Reversal as well. 
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Conclusion 

We have developed Redhyte, an interactive platform for rapid exploration of data and 

hypothesis testing, and presented a novel method using which data mining techniques can be 

used to complement statistical hypothesis testing. Redhyte allows the scientist and the data 

analyst to remain in the well-established framework of hypothesis testing, even when there is 

a large number of attributes in the dataset. The GUI was designed to allow non-users of 

statistical computing languages, such as R, to harness the power of R and modern statistical 

techniques. Owing to the modular structure of the system, it is possible to further expand 

Redhyte in different directions. 

 

Redhyte was not designed to replace the conventional hypothesis testing framework – rather, 

the former should be used in conjunction with the latter. For instance, Redhyte may be used 

in a way such that the analyst can take selected mined hypotheses and put them under further 

statistical rigor, for evaluation or even confirmation. We believe Redhyte is a good addition 

to the arsenal of the scientist and the data analyst, by giving them an additional tool for the 

rapid exploration of data. 

 

Redhyte can be found at https://tohweizhong.shinyapps.io/redhyte/, with the source codes 

housed in a GitHub repository at https://github.com/tohweizhong/redhyte. 

https://tohweizhong.shinyapps.io/redhyte/
https://github.com/tohweizhong/redhyte
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Appendix 

A. Difference lift and contribution 

Given the initial hypothesis          in a 2x2 contingency table, 

 Target attribute class    Target attribute class    

Comparing attribute class                 

Comparing attribute class                 

 

where 

   
   

       
    

   
       

         

Adding a context item             }, 

              Target attribute class     Target attribute class     

Comparing attribute class                     

Comparing attribute class                     

 

where     
           and     and     as similarly defined: 

    
    

         
     

    
         

         

The first hypothesis mining metric, defined in Liu et al, is the difference lift, as follows: 

                                    
  

 
    

 

      
        

The difference lift takes into account the change in trend in the mined hypothesis   , when a 

context item is added into the initial hypothesis         . In particular, if 

                   

then a Simpson’s Reversal occurs. Intuitively, for a mined hypothesis   , we would like to 

evaluate its interestingness at least by three different measures: i) whether the trend has been 
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reversed, ii) whether the change in trend (trend amplification or reversal) is substantial, and 

iii) whether the subpopulations of     are still large enough. The difference lift is able to 

account for the first two measures, but not the third. 

Liu et al defines the second hypothesis mining metric, contribution, as follows: 
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Contribution, while considering the subpopulation sizes in    , loses the property that 

difference lift has in    . For example, given 
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which may be negative, depending on 
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B. Derivation of independence lift 

Consider   : 
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Likewise, 

                                                      

By Bayes Theorem, 

                  
        

     
           where     

        

     
         

    
        

     
   

        

          
         

By the definition of independence,    and    are independent if 

                          

Therefore,    is a measure of association/independence between    and   . We would like to 

call    as the independence factor of    on    .    can be easily computed from the 

contingency table of         : 
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Likewise,     the independence factor of    on    , and is a measure of 

association/independence between    and   : 

   
        

          
 

   
 

 
       

   
       

  
 

   
 

                  
  

   
   

                  
          

The difference       can be considered to be a form of measure of the differential extent of 

association/independence that   has on    and   . In the same manner,         and         

are defined accordingly. 

We next define the independence lift to be 
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)         

The term 
  

 
 allows for    to be evaluated on relative subpopulation sizes in comparison 

to         . In addition, by    , 
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     and      implies that the independence lift acquires the property of the difference lift 

shown in    , while being able to account for changes in subpopulation sizes. 
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C. Derivation of adjusted independence lift 

Consider the following:    is the independence factor of the context item   on   . If     ,    

and   are independent. This implies that the removal of subjects from the subpopulations 

of         , by adding the context item              , to form    is more “haphazard”, as 

compared to if     . We call the case when      or when     is close to 1, undirected 

shrinkage of subpopulations. When    is far from 1, we call that directed shrinkage.  Under 

undirected shrinkage, the removal of subjects from          was not influenced by the context 

item              , and hence we might say that if          was (in)significant in the first 

place, then    is likely to be (in)significant as well. Therefore, a mined hypothesis would be 

more interesting if   , or equivalently, 
 

  
, deviates as far away from   as possible, i.e. direct 

shrinkage. Based on this intuition, we define the adjusted independence lift: 

                                         

                                    |  
 

  
|         

In all, Redhyte uses the above 4 hypothesis mining metrics, which are the difference lift, 

contribution, independence lift, and adjusted independence lift, in addition to the χ2 test 

statistic and the (adjusted) p-values, to evaluate the interestingness of mined hypotheses. 

 


