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Effective identification of disease-causing gene locations can have significant impact on
patient management decisions that will ultimately increase survival rates and improve
the overall quality of health care. Linkage disequilibrium mapping is the process of
finding disease gene locations through comparisons of haplotype frequencies between
disease chromosomes and normal chromosomes. This work presents a new method for
linkage disequilibrium mapping. The main advantage of the proposed algorithm, called
LinkageTracker, is its consistency in producing good predictive accuracy under different
conditions, including extreme conditions where the occurrence of disease samples with
the mutation of interest is very low and there is presence of error or noise. We compared
our method with some leading methods in linkage disequilibrium mapping such as Hap-
Miner, Blade, GeneRecon, and Haplotype Pattern Mining (HPM). Experimental results
show that for a substantial class of problems, our method has good predictive accuracy
while taking reasonably short processing time. Furthermore, LinkageTracker does not
require any population ancestry information about the disease and the genealogy of the
haplotypes. Therefore, it is useful for linkage disequilibrium mapping when the users do
not have such information about their datasets.
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1. Introduction

Linkage disequilibrium mapping is a process of inferring the disease gene loca-
tion from observed associations of marker allelesa in affected patients and
normal controls. The main idea of linkage disequilibrium mapping is to identify
chromosomal regions with common molecular marker alleles at a frequency signif-
icantly greater than chance. The task of linkage disequilibrium mapping becomes
increasingly challenging with the presence of rare variants that are not well tagged
by single markers, as well as when the percentage of occurrence of haplotypes with
the mutation of interest is very low and with inclusion of errors or noise.

Some existing methods for linkage disequilibrium mapping include Blade,1

GeneRecon,2 Haplotype Pattern Mining (HPM),3, 4 and HapMiner.5

Liu et al. proposed Blade which employs the Markov Chain Monte Carlo method
(MCMC) for parameter estimation within a Bayesian framework. The disease hap-
lotypes are grouped into k+1 clusters, corresponding to k founder chromosomes in
the disease population and a null cluster for all other disease chromosomes. Blade
assumes that the disease haplotypes within each cluster are mutually independent
given the ancestral haplotype. This alleviates the need for a complex model of
the underlying genealogy. However, Blade assumes that all mutations occur in the
same location of the disease gene, which means that locus heterogeneity is not
incorporated.

To address some of the shortcomings in the algorithm proposed by Liu et al.,
Mailund et al. proposed an algorithm known as GeneRecon. GeneRecon combines
the shattered coalescent method by Morris et al.6 and the idea by Liu et al. in sepa-
rating the affected individuals into mutation clusters. The idea of shattered coales-
cent is to consider genetic heterogeneity at the disease locus by allowing branches of
the genealogical tree to be removed. Thus, single leaves correspond to sporadic case
chromosomes, and disconnected subtrees correspond to distinct mutations at the
disease locus. GeneRecon combines the shattered coalescent method with the idea
by Liu et al. in separating affected individuals into mutation clusters with a null
cluster for individuals affected not due to genetic factors. Although GeneRecon is
highly efficient in locating the disease locus on case-control data, its main drawback
is that it is computationally intensive and requires several hours or even days for
a successful computation on a dataset with a few hundred cases and controls, and
with few tens of markers.

Tiovonen et al. introduced a linkage disequilibrium mapping algorithm known
as Haplotype Pattern Mining (HPM). HPM first uses an association rule mining
algorithm (Agrawal & Srikant7) to find all patterns that occur in at least a specified
percentage (called the support threshold) of the haplotype samples. Then HPM

aA molecular marker is an identifiable physical location on the genomic region. An allele is any
one of a series of two or more alternate forms of the marker. From the data mining aspect, we
could represent markers as attributes, and alleles as attribute values that each attribute could
take on.
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uses the signed chi-square test on these frequent haplotype patterns to identify
those patterns that are significant for discriminating disease association from the
control association. Finally, HPM adds up the frequency of each marker’s occurrence
across these significant haplotype patterns. The marker with the largest frequency
is predicted as closest to the disease gene. The main drawback of this algorithm is
that it suffers from combinatorial explosion in the number of patterns due to its
exhaustive search method. As highly associated patterns are rare in the problem
of linkage disequilibrium mapping, the support threshold will need to be set at a
very low value to discover those patterns; thus, many useless patterns will also be
discovered together with the highly associated patterns.

Li and Jiang proposed an algorithm known as HapMiner for inferring disease
gene location. HapMiner is an adaptation of the DBSCAN8 algorithm, which is
a density-based clustering method that is robust to noise. Density-based cluster-
ing methods are characterized by a set of parameters that specify the clustering
process, input and output, including the density and size of the clusters. The
parameter values involved, however, are usually difficult to determine automat-
ically and require direct user input. The first two parameters of HapMiner are ε

which specifies the radius of the interested neighborhood, and the density threshold
MinPts. The advantages of HapMiner are: Firstly, it is a model-free algorithm which
does not rely on any prior information about the genealogy of haplotypes and the
inheritance patterns of the diseases. Secondly, the time complexity of HapMiner
is very low, which means that it can perform disease gene location inference at
a very high speed. HapMiner is shown to outperform algorithms such as HPM
and Blade. However, the main disadvantage of HapMiner is that it is very sensi-
tive to its parameter values, many of which the user needs to obtain by trial and
error.

To address some of the problems of these existing algorithms, we propose an
algorithm known as LinkageTracker; some preliminary results on LinkageTracker
were published in Lin et al.9 Comparing to our earlier work in Lin et al., this work
compared LinkageTracker with more linkage disequilibrium algorithms including
Blade, GeneRecon and HapMiner, and we have also included more experimental
results through applying the algorithms on two real datasets. Furthermore, we have
introduced a new mechanism for fast convergence of the candidate pattern sets to
small number of patterns to improve computational efficiency.

LinkageTracker is model free — it does not require any population ancestry
information about the disease and the genealogy of the haplotypes. Furthermore,
LinkageTracker does not require the setting of complex parameters prior to the
disease gene location inference process. Extensive performance studies show that
for a large class of practical problems, the predictive accuracy of LinkageTracker is
consistently good under different conditions — from the extremely difficult condi-
tion where the samples with the mutation of interest are as low as 10% and with
high noise level, to the easier condition where the samples with the mutation of
interest are as high as 50%.
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2. Methods

There are two main steps in the LinkageTracker algorithm. Step 1 identifies a
set of linkage disequilibrium patterns which can effectively discriminate between
the abnormal and the normal alleles. Step 2 infers the marker allele that is
closest to the disease gene based on the linkage disequilibrium patterns derived in
Step 1.

2.1. Step 1: Discover linkage disequilibrium patterns

The process of the discovery of linkage disequilibrium patterns begins with searching
for potential/candidate patterns using a level-wise neighborhood search method.
Then each potential/candidate pattern is scored using a statistical method.

2.1.1. Level-wise neighborhood search for candidate patterns

LinkageTracker mines patterns of the form 〈dxi, dxj , . . . , dxk〉 where dxi indicates
the allele value for marker i of a particular biological sample x. For example, (3,
5, 6, ∗, ∗, 4) is a marker pattern of length 4. The symbol “∗” represents missing or
erroneous marker allele, and will not be considered when testing for the significance
of the pattern. Also the symbol “∗” is ignored when computing the length of a
marker pattern.

The “∗” symbol also indicates a gap between two known marker alleles. For
instance, the marker patterns (1, ∗, ∗, ∗, 3) has three gaps, and (1, ∗, 3) has one
gap. The user is able to set the maximum number of gaps for the marker patterns.
However, we recommend that the maximum allowable gap be set to 6, which gives
the highest accuracy when the markers are spaced at 1 cMb or less. The basis for
this recommendation can be found in our earlier work Lin et al.; thus it will only
be described briefly here.

To find linkage disequilibrium patterns, one way is to enumerate all the possible
marker patterns of length one, two, and three, etc, and then compute the odds ratio
of each pattern and select those patterns that are significant. However, there are
some practical difficulties to this approach: for n markers each with m alleles, there
are nC kmk marker patterns of length k, which we need to test for significance.
Combinatorial explosion occurs as the length of marker patterns increases.

The enumeration of all possible marker patterns is in fact unnecessary. This is
because, based on studies by Long and Langley,10 allelic associations are detectable
within a genomic region of 20 cM. Allelic associations beyond 20 cM are weak and
are not easily detectable. Depending on the total region size of the markers under
study, the detectable genomic region may vary. Let us denote the genomic region
that is capable of detecting allelic associations to be β cM. LinkageTracker uses a

bcM stands for centimorgan. It is the unit of measurement for genomic distance. In human genome,
one centimorgan is approximately equivalent to 1 million base pairs.



Efficient Mining of Haplotype Patterns for Linkage Disequilibrium Mapping 131

heuristic search method by controlling the maximum allowable gap size between
two marker alleles. The gap size setting Ψ helps to define the search space of
LinkageTracker as well as to ensure its robustness against noise. We propose a
scoring method to determine the optimal gap size setting as

Ψ = max
g

(Score (g)) (1)

where g is a gap size, and Score(g) can be computed as follows:

Score(g) =
∑g

i=0 Robustnessi∑g
i=0 Noisei

(2)

Robustnessi = pi ∗ i and Noisei = qi, where pi is the number of informative pat-
terns formed with exactly i gaps and qi is the number of confounding patterns
formed with exactly i gaps. An informative pattern is formed when a significant
marker pattern joins with its neighboring markers that are within the β cM region.
A confounding pattern is formed when a significant marker pattern joins with mark-
ers that are beyond the β cM region. An example of pattern joining is illustrated
below.

LinkageTracker adopts a heuristic level-wise search method which allows only
significant marker patterns (or linkage disequilibrium patterns) of length i − 1 at
level i to join with their neighbors (of length 1) whose join satisfies the maximum
gap constraint Ψ to form candidate/potential marker patterns of length i, where
1 ≤ i ≤ n and n is the number of markers. We call the procedure of joining linkage
disequilibrium patterns at each level to form longer patterns the neighborhood join.
Note that in neighborhood join, only the marker patterns of length i−1 need to be
significant, the neighbors that they join with need not be significant and may be
several markers apart.

A marker allele exhibits significant allelic association with the disease gene under
two conditions. Firstly, it is significant on its own when tested (i.e. at level 1).
Secondly, when joined with other marker alleles that exhibit allelic associations
with the disease gene, the joined pattern becomes significant when tested.

The former condition is trivial to detect. The latter condition involves a marker
allele which shows significant allelic association with the disease gene when joined
with other significant marker alleles, but is insignificant when assessed alone. Let
us denote this marker allele Mx. This problem can be further divided into two
cases.

The first case is that Mx is close to a neighbor Mi that is significant when
tested alone. The term “close” here means that Mx will be selected to join with
Mi directly to form marker patterns for the immediate next level. For example,
referring to Fig. 1, the two markers Mx and My are both not significant at level 1,
hence they will be discarded when forming marker patterns for level 2. Now, Mi is an
immediate neighbor of My showing significant allelic association at level 1. Hence,
at level 2, Mi will join with its neighbors to form marker patterns of length 2. Since
My is the immediate neighbor of Mi, My will be selected to form a pattern with
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Fig. 1. Illustration of markers before and after joining.

Fig. 2. Illustration of marker positions.

Mi. Although Mx is one marker away from Mi, Mx will also be selected, because
LinkageTracker allows joining with markers that are some gaps away. Hence, at
level 2, both My and Mx are included in the marker patterns.

The second case is that Mx is very far from a marker allele Mz that is significant
when tested alone. The term “far” here means that Mx is far enough from Mz such
that Mx will not be selected by Mz to form marker pattern for the immediate next
level. For example, from Fig. 2, Mx and Mz are eight markers apart. Assuming that
the maximum allowable gap size is set to 2, Mz will join with Ma, Mb, and Mc to
form patterns of length 2. Assuming that (Mz, Mc) is tested significant, then (Mz,
Mc) will join with Md, Me, and Mf to form patterns of length 3. Assuming that
(Mz, Mc, Mf) is tested significant, then (Mz, Mc, Mf) will join with Mg, Mh, and Mx
to form patterns of length 4. Hence, Mx will ultimately be detected to form marker
patterns under the condition that there are sufficient significant “intermediate”
allele markers such as Mc and Mf to facilitate the detection of allelic associative
marker alleles that are much further away (i.e. Mx). In accordance with the studies
by Long and Langley, marker alleles exhibiting allelic associations with the disease
gene are quite densely packed within the 20 cM region. Therefore, the chances of
LinkageTracker detecting significant marker alleles within the range of 20 cM are
relatively high.

2.1.2. Scoring of candidate patterns

LinkageTracker uses a statistical method known as odds ratio to score each poten-
tial/candidate pattern. Odds ratio provides a good measure of the magnitude
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of association between a pattern and the binary label L, where L =
{Diseased, Normal}.

The significance of the patterns is determined through comparing the pattern
p-values to a threshold value α that is dynamically computed at different search
levels. In general, if we have k independent significance tests at the α level, the
probability p that we get no significant differences in all these tests is simply
the product of the individual probabilities: (1 − α)k. In order to guarantee that
the overall significance test is still at the α level, Bonferroni Correction11 is usu-
ally applied, that is, through dividing α by k to obtain the significance level for
the individual tests. Bonferroni Correction requires the knowledge of the exact
value of k which can be difficult to determine. LinkageTracker is an iterative pro-
cess. At each iteration, the haplotypes may be tested for a different number of
times which makes tracking k even more difficult. Furthermore, fast convergence
of the candidate pattern set to a small number of patterns as the process iterates
is desirable for computational efficiency and to filter out noisy patterns at early
stages. As such, we devise a new mechanism to compute the p-value threshold to
be used at each iteration or pattern length. We control the number of significant
patterns at each iteration by setting the cut-off at the p-value of the tth most
significant patterns. The p-value threshold t decreases exponentially by dividing
the number of patterns by a factor of 2 raise to the power of iteration i + 1, as
defined below:

t =
⌊

number of patterns at iteration i

2(iteration i +1)

⌋
(3)

2.2. Step 2: Marker inference

We infer the marker closest to the disease gene by combining the p-values of the
highly significant patterns. Fisher’s12 method specifies that one should transform
each p-value into c = −2 ∗ LN (P ), where LN(P ) represents the natural logarithm
of the p-value. The resulting n c-values are added together, and their sum,

∑
(c),

represents a chi-square variable with 2n degree of freedom. For example, to find
the marker closest to the disease gene, we compute the combined p-value and the
frequency for each marker allele. In Fig. 3(a), Marker 2 has allele 4 occurring four
times, its combined p-value is 1.4 ∗ 10−6, for the chi-square distribution of

∑
(c) =

9.4211+10.0719+11.6183+10.8074 = 41.9186 with 8 degrees of freedom. Figure 3(b)
depicts the combined p-value for each of the marker alleles from Fig. 3(a). Marker 2
allele 4 has the lowest combined p-value, and hence we infer that Marker 2 is closest
to the disease gene. If more than one marker alleles have the same lowest p-value,
the marker with the highest frequency is selected as the marker closest to the disease
gene.
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Marker 1  2  3  4  5  6 P-Value c = -2 * ln(P)

Pattern01 *  4  3  *  *  * 0.0090 9.4211
Pattern02 2  4  *  *  6  1 0.0065 10.0719
Pattern03 2  4  3  5  *  * 0.0030 11.6183
Pattern04 *  *  3  5  *  1 0.0100 9.2103
Pattern05 2  4  *  5  6  * 0.0045 10.8074

(a)

Frequency ∑(c) Combine P-Value

Marker 1 allele 2 3 32.4975 1.3098E-05
Marker 2 allele 4 4 41.9186 1.4027E-06
Marker 3 allele 3 3 30.2497 3.5236E-05
Marker 4 allele 5 3 31.6390 1.9160E-05
Marker 5 allele 6 2 10.0719 0.0392
Marker 6 allele 1 2 19.2822 0.007

(b)

Fig. 3. (a) Example of 5 linkage disequilibrium patterns. (b) Combine p-value of each marker allele
from (a).

3. Results on Real Datasets

We compared LinkageTracker with some leading methods in linkage disequilibrium
mapping such as Blade, GeneRecon, and Hap-Miner on two real datasets, and
100 generated datasets. The unit used for the distance measure is cM for all the
datasets. In this section we present a comparative analysis of the methods based
on the real datasets. The experimental results on generated datasets are discussed
in the next section.

Due to the slow processing speed of GeneRecon, this algorithm was
assessed based on only five datasets for all the three experimental settings in
this section. Whereas the rest of the algorithms were assessed based on 50
datasets for each percentage of founder mutation. However, the bias in the
comparison of GeneRecon with other algorithms is very low because GeneRe-
con is very consistent in its predictions on similar datasets with low standard
deviations.

3.1. Cystic fibrosis

Cystic fibrosis is a well-known real dataset reported in Kerem et al.,13 used in a
study based on SNP markers. The total region size for the dataset is 1.7298 cM,
The dataset contains haplotypes on 23 bi-allelic markers around the cystic fibrosis
trans-membrane conductance regulator gene. The control group has 92 haplotypes
and the diseased group has 94. The founder mutation is located between markers
17 and 18, approximately 0.88 cM away from the leftmost marker. Only 67% of the
disease haplotypes carry the founder mutation of interest. Furthermore, the disease
haplotypes have about 39% of missing observations at certain markers.
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In this dataset, we know exactly which are the disease haplotypes carrying
the founder mutation of interest, and which are the disease haplotypes without
the founder mutation. Therefore the dataset provides us with the opportunity to
perform various rigorous experiments. For ease of reference, we divided the cystic
fibrosis dataset into three subsets. Set-A consists of disease haplotypes carrying
the founder mutation of interest, Set-B consists of disease haplotypes without
the founder mutation of interest, and Set-C consists of haplotypes from the nor-
mal control group. There are in total 63, 31 and 92 samples in Set-A, Set-B and
Set-C respectively.

3.1.1. Experimental setting 1: Detection accuracies

In this experiment we assessed the algorithms’ capability in detecting the disease
gene location when only a small portion of the disease haplotypes actually carries
the founder mutation of interest, and others are genetically no different from the
control population at the locus of interest. Therefore the datasets with different
percentages of founder mutation carrying the disease haplotypes were generated
(at 10%, 20%, 30%, 40% and 50%). For each percentage value we generated 50
different datasets each with 50 disease haplotypes and 50 controls.

For instance, to generate the disease haplotypes with 20% founder mutations,
we randomly selected 10 founder mutation carrying disease haplotypes from Set-A,
and mixed with 40 haplotypes randomly selected from control set Set-C (thus only
20% of the haplotypes actually carry the founder mutation). From the remain-
ing 52 samples from Set-C, we randomly selected 50 samples to form the control
haplotypes. This process was repeated 50 times to generate 50 datasets with 20%
founder mutation. The datasets for other percentages of founder mutations were
generated similarly.

For the algorithm HapMiner, we assessed its predictive accuracies based on
the original parameter list provided by the authors (Li & Jiang) (they have used
the same dataset in their work), and also based on the parameter list with the
first two parameter values modified. The HapMiner algorithm is an adaptation of
the density-based clustering method. As mentioned, the density-based clustering
method is very sensitive to the values of the parameters, especially those that
specify the radius of the neighborhood of interest, ε and the density threshold of
the clusters, MinPts; the user also needs to guess the optimal parameter values.
We tested HapMiner over a range of parameter values by varying 10% to 500% of
the values as recommended in Li & Jiang, the experimental results are shown in
Table 1. The resulting SSE fluctuated over a large range, showing the sensitivity of
HapMiner to the choice of parameter values and the difficulty of selecting optimal
values.

For illustration, we modified the relevant parameter values by multiplying
each of the original values of ε and MinPts by 3 and showed the results in the
respective tables.
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Table 1. Experiment on HapMiner varying ε and
MinPts: The average SSEs were obtained from
running the first five datasets in Section 3.1.3.

Average SSE

ε and MinPts * 0.1 0.000408
ε and MinPts * 0.5 0.000408
ε and MinPts * 2 0.000283
ε and MinPts * 3 0.04376
ε and MinPts * 4 0.5622
ε and MinPts * 5 0.5622

Table 2. Predictive accuracy based on experimental setting 1.

Average SSE 10% 20% 30% 40% 50%

Standard
deviation of
SSE over five
different %

Average SSE
over five

different %

Blade 0.2808 0.3395 0.1850 0.0678 0.0455 0.1287 0.1837
HapMiner 0.1391 0.0760 0.0437 0.0127 0.0058 0.0544 0.0555
HapMiner (modified ) 0.2170 0.2013 0.2081 0.1770 0.1393 0.0313 0.1886
LinkageTracker 0.1056 0.0447 0.0184 0.0177 0.0130 0.0388 0.0399
GeneRecon (assessed

on five datasets)
0.0339 0.0170 0.0181 0.0225 0.0125 0.0081 0.0208

Table 2 shows the average sum-squared error (SSE) of each algorithm at various
percentages of disease haplotypes carrying the founder mutation. The SSE is the
sum of squared differences between the predicted marker location and the actual
disease gene location across the simulations.

Generally, the predictive accuracies of the algorithms improve as the percentage
of disease haplotypes carrying the founder mutation increases. However, Linkage-
Tracker and GeneRecon showed consistent predictive accuracies at different per-
centage values.

At 10%, 20% and 30% of disease haplotypes carrying the founder mutation,
GeneRecon had the lowest SSE followed by LinkageTracker. At 40%, LinkageTracker
came in second after HapMiner, and was in third placing at 50%.

Next, we looked at the average execution time of the algorithms (refer to
Table 3). HapMiner was the fastest algorithm, given the original parameter list

Table 3. Run time for experimental setting 1.

Average time Average time with
over five LinkageTracker as

different % base unit

Blade 1m 1.06 s 6.76
HapMiner 2.01 s 0.22
LinkageTracker 9.03 s 1
GeneRecon 102 m 24.16 s 680.35
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HapMiner took about two seconds to execute. The execution time for HapMiner
with modified parameter values is not shown as the execution time is similar to the
one with original parameter list. Blade took over a minute to execute on the average,
GeneRecon took over one hour and LinkageTracker took about nine seconds on
average to execute.

In terms of predictive accuracy, GeneRecon is comparable with LinkageTracker.
However, the execution time of GeneRecon is much longer than LinkageTracker.
If we consider only algorithms that take less than five minutes to execute,
LinkageTracker had the lowest SSE at 10%, 20% and 30%. Furthermore, Linkage-
Tracker also had the lowest average SSE over the five different percentage values.
A major design objective of LinkageTracker is to have an algorithm with good
consistency in finding disease gene location even when the occurrence of disease
haplotypes carrying the founder mutation is very small. The experimental results
in Table 2 show that our objective for LinkageTracker is met. The results indicated
low standard deviation and good predictive accuracy for LinkageTracker, with SSE
below 0.05 for four out of five percentages of disease haplotypes carrying the founder
mutation.

3.1.2. Experimental setting 2: Noisy data

Next, we assessed the algorithms’ performance with noises in the data. We assessed
the algorithms’ capability in detecting the disease gene location when only a small
portion of the disease haplotypes actually carry the founder mutation of interest,
while others are disease haplotypes without the founder mutation of interest. The
disease haplotypes without the founder mutation are confounding factors that could
influence the predictive accuracy of an algorithm.

Similar to experimental setting 1, datasets with different percentages of founder
mutation carrying disease haplotypes were generated (at 10%, 20%, 30%, 40%
and 50%). However, the data generation procedure is more elaborate. A dataset
is generated as given in Table 4. For example, there are two main steps for gen-
erating datasets for the 10% mutation test. First we generated the disease set by

Table 4. Data generation for experimental setting 2.

Mutation level Data type Set-A Set-B Set-C Total

10% Disease set 5/63 All 31 14/92 50
Control set — — 50/(92–14) 50

20% Disease set 10/63 All 31 9/92 50
Control set — — 50/(92–9) 50

30% Disease set 15/63 All 31 4/92 50
Control set — — 50/(92–4) 50

40% Disease set 20/63 30/31 — 50
Control set — — 50/92 50

50% Disease set 25/63 25/31 — 50
Control set — — 50/92 50
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Table 5. Predictive accuracy based on experimental setting 2.

Average SSE 10% 20% 30% 40% 50%

Standard
deviation of
SSE over five
different %

Average SSE
over five

different %

Blade 0.2810 0.2528 0.1332 0.0412 0.0503 0.1115 0.1517
HapMiner 0.0467 0.0038 0.0024 0.0012 0.0015 0.0199 0.0111
HapMiner (modified ) 0.2864 0.3012 0.1299 0.1081 0.0562 0.1106 0.1764
LinkageTracker 0.0047 0.0034 0.0052 0.0056 0.0037 0.0009 0.0045
GeneRecon (assessed

on five datasets)
0.0249 0.0132 0.0171 0.0231 0.0252 0.0053 0.0207

randomly selecting 5 out of 63 samples from Set-A, all 31 samples from Set-B,
and randomly selecting 14 out of 92 samples from Set-C. Next we generated
the control set, by randomly selecting 50 samples out of the remaining 78
samples from Set-C (as 14 samples have already been taken out for the dis-
ease set). There are 50 samples in both the disease and control sets. The data
generation was repeatedly performed for 50 test datasets at the same mutation
level.

Table 5 shows the average sum-squared error in the predictions of each algo-
rithm at various percentages of disease haplotypes carrying the founder mutation.
LinkageTracker had the lowest SSE at 10% and 20% whereas HapMiner had the
lowest SSE at 30%, 40% and 50%. At 20% to 50%, the predictive accuracies of
LinkageTracker and HapMiner were comparable since the differences in SSE were
less than 0.005. LinkageTracker showed good consistency in its prediction with the
lowest average SSE and standard deviation over the five different percentages of
the founder mutation.

Next we examined the average execution time of the algorithms (refer to
Table 6). HapMiner is the fastest algorithm, followed by LinkageTracker. HapMiner
took about 2.3 seconds to execute, and LinkageTracker took about 15 seconds to
execute. GeneRecon is the slowest compared to all the algorithms.

3.1.3. Experimental setting 3

In this experiment, we assessed the algorithms’ performance when applied to the
cystic fibrosis dataset without any modification to the ratios of the original disease

Table 6. Run time for experimental setting 2.

Average time Average time with
over five LinkageTracker as

different % base unit

Blade 1m 4.02 s 4.1652
HapMiner 2.33 s 0.1516
LinkageTracker 15.37 s 1
GeneRecon 103 m 47.10 s 405.1461
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haplotypes. Fifty datasets were generated for this experimental setting. The steps
for generating the 50 datasets are: First, samples from Set-A and Set-B were
combined to form a new set, Set-X, which consists of 94 disease samples. Next,
50 samples were randomly picked from Set-X to form the disease set. Lastly, 50
samples were randomly picked from the 92 control samples (i.e. Set-C) to form the
control set. The last two steps were repeated 50 times to form 50 datasets.

Table 7 shows the average sum-squared error of each of the algorithm for the 50
datasets. LinkageTracker came in second, behind HapMiner which had the lowest
average SSE for experimental setting 3. The standard deviation of HapMiner is also
the lowest followed by LinkageTracker. The average execution time of HapMiner
is the shortest followed by LinkageTracker. GeneRecon is the slowest algorithm,
requiring more than one hour to execute one dataset on average.

3.2. Friedreich ataxia

Friedreich ataxia is an autosomal recessive degenerative disease that involves the
central and peripheral nervous system and the heart. The friedreich ataxia dataset
was first reported by Liu et al. for linkage disequilibrium mapping. This dataset
contains 58 disease haplotypes and 69 control haplotypes with 12 microsatellite
markers. The gene is located between the fifth and sixth markers, approximately
9.8125 cM away from the leftmost marker. The total region size in this study
is 15 cM.

The experiments performed using the friedreich ataxia dataset is similar to the
experimental setting 3 in the previous section. The procedure of the data generation
is as follows: First, pick 50 samples randomly from the 58 disease samples. Next, pick
50 samples randomly from the 69 control samples. The procedure was performed
50 times to form 50 datasets.

Table 8 shows the average sum-squared error of each of the algorithm for the
50 friedreich ataxia datasets. HapMiner had the lowest SSE, Blade was second and
LinkageTracker was third in predictive accuracy. However, the predictive accura-
cies of the three algorithms are comparable since the differences in SSEs were at
most 0.05. No results were produced by GeneRecon for the friedreich ataxia dataset
because GeneRecon accepts only binary valued attributes, whereas markers in the
friedreich ataxia dataset are microsatellite markers each with more than 10 possible

Table 7. Predictive accuracy and run time for experimental setting 3.

Standard deviation of SSE Average SSE Average time (s)

Blade 0.2045 0.0615 75.1905
HapMiner 0.0041 0.0007 2.0336
HapMiner (modified ) 0.1715 0.0977 2.0336
LinkageTracker 0.0146 0.0085 9.7635
GeneRecon (assessed on

five datasets)
0.025 0.0266 6046.967
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Table 8. Predictive accuracy and run time for friedreich ataxia dataset.

Standard deviation Average SSE Average time (s)

Blade 0.0640 0.0572 258.4912
HapMiner 0.0142 0.0264 2.0138
HapMiner (modified ) 42.4966 61.3714 1.2095
LinkageTracker 0.0326 0.0770 4.6310
GeneRecon − − −

alleles. HapMiner had the shortest execution time for the friedreich ataxia dataset
followed by LinkageTracker.

4. Results on Generated Datasets

We compared the performance of LinkageTracker with HapMiner (given the original
parameter list) on 100 generated datasets. HapMiner with the original parameter
list has shown to be efficient based on the results from real datasets in the previous
section. Furthermore, HapMiner also made use of the same 100 generated datasets
in the original paper by Li & Jiang. The datasets used in this experiment were
generated by Toivonen et al. Unfortunately, the program HPM by Toivonen et al.
is not available to us. Nevertheless, we report the results of HPM in their original
paper3 and compare the performance with LinkageTracker and HapMiner.

There are in total 100 datasets, each consisting of 400 biological sequences where
200 sequences are labeled “abnormal” and the rest of the 200 sequences are labeled
“normal”. Each biological sequence consists of 101 microsatellite markers, and the
total region size is 101 cM. The datasets were generated such that each dataset has
a different disease gene location. The main task is to predict the marker that is
nearest to the disease gene for each dataset.
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Table 9. Predictive accuracies on generated datasets.

Average SSE over 99 datasets
Average SSE over (after removing the dataset

100 datasets causing the outlier)

HPM 80.71 15.47
HapMiner 76.91 13.85
LinkageTracker 34.30 9.90

Figure 4 shows the performance of HapMiner, HPM and LinkageTracker
when applied to the 100 generated datasets. The points on the graph depict
the predicted disease gene location by each of the algorithms. The straight line
depicts that the predicted location is the same as the actual location, there-
fore the closer the points to the straight line, the more accurate is the predic-
tion. Among the three algorithms, LinkageTracker had the lowest average SSE
for the 100 datasets (refer to Table 9). All the three algorithms did not per-
form well on one of the dataset (refer to the outliers below the straight line in
Fig. 4); hence, we excluded that dataset in the performance assessment. Link-
ageTracker continued to be the algorithm with the lowest SSE, even after the
exclusion of the outlier causing dataset from performance assessment as shown in
Table 9.

5. Experiment with Large Datasets

HapMiner is generally the fastest algorithm; we compared the processing time
of LinkageTracker with HapMiner in larger datasets with different percentages
of disease haplotypes carrying the founder mutation of interest. The datasets
were generated using the Cystic Fibrosis dataset. For each sample size of 200,
400, 600, 800, and 1000, 300 datasets were generated varying the percentage of
disease haplotypes carrying the founder mutation of interest from 10% to 30%.
Hence, for each sample size (i.e. 200, 400, 600, 800, 1000) we performed 300
simulations altogether — 100 simulations for each percentage. The processing
speed and predictive accuracy of LinkageTracker and HapMiner are as shown in
Table 10.

It could be observed that the average processing speed of LinkageTracker is
faster than HapMiner in some of the cases. This is because the computational speed
of LinkageTracker is highly dependent on the number of candidate patterns consid-
ered. When the percentage of haplotypes carrying the founder mutation is low, there
is less number of candidate patterns to consider, and hence the processing speed of
LinkageTracker is faster. It could also be observed that the predictive accuracy of
LinkageTracker is better than HapMiner when the percentage of disease haplotypes
carrying the founder mutation is low. Through this experiment, the strength and
weakness of the two algorithms become apparent; LinkageTracker performs well in
terms of speed and predictive accuracy when the percentage of haplotypes carrying
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the founder mutation is low, whereas HapMiner performs well when the percent-
age of founder mutation carrying disease haplotypes is high. However, such good
performance from HapMiner can only be achieved with correct parameter settings.

6. Discussion

We have introduced a new method for linkage disequilibrium mapping known as
LinkageTracker. We have compared LinkageTracker with some leading methods
in linkage disequilibrium mapping. Extensive performance studies show that the
predictive accuracy of LinkageTracker is consistently good under different condi-
tions from the extremely difficult condition where the samples with the mutation
of interest are as low as 10% and with high noise level, to the easier condition
where the samples with the mutation of interest are as high as 50%. Linkage-
Tracker and HapMiner have the best predictive accuracy in general. However, the
predictive accuracy of HapMiner with the modified parameters was generally not
as good when compared to all the other algorithms, which means that HapMiner’s
performance is very sensitive to its parameter setting. GeneRecon is comparable
with LinkageTracker in terms of predictive accuracy; however, the execution time
of GeneRecon is much longer than LinkageTracker. Furthermore, GeneRecon only
works on bi-allelic markers.

The overall performance of LinkageTracker is promising as it provides consis-
tently good predictive accuracy while taking reasonably short processing times, and
it is also easy to use since it does not require the setting of complex parameters.
The main weakness of LinkageTracker is that it is not able to make use of addi-
tional information such as genealogy of the haplotypes to improve performance,
even when the additional information is available. Furthermore, due to the scoring
method used by LinkageTracker to find significant patterns, LinkageTracker will
not perform well in mixed populations where the haplotype frequency difference
between disease and normal samples are due to sampling from different subpopu-
lations. These problems will be addressed in our future work.
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