
Non-Redundant Sequential Rules -Theory and

Algorithm

David Lo, Siau-Cheng Khoo, Limsoon Wonga,b,b

aSchool of Information Systems, Singapore Management University
bDepartment of Computer Science, National University of Singapore

Abstract

A sequential rule expresses a relationship between two series of events hap-

pening one after another. Sequential rules are potentially useful for analyzing

data in sequential format, ranging from purchase histories, network logs and

program execution traces.

In this work, we investigate and propose a syntactic characterization of a

non-redundant set of sequential rules built upon past work on compact set of

representative patterns. A rule is redundant if it can be inferred from another

rule having the same support and confidence. When using the set of mined

rules as a composite filter, replacing a full set of rules with a non-redundant

subset of the rules does not impact the accuracy of the filter.

We consider several rule sets based on composition of various types of

pattern sets – generators, projected-database generators, closed patterns and

projected-database closed patterns. We investigate the completeness and

tightness of these rule sets. We characterize a tight and complete set of non-

Email address:
davidlo@smu.edu.sg,khoosc@comp.nus.edu.sg,wongls@comp.nus.edu.sg (David Lo,
Siau-Cheng Khoo, Limsoon Wong)

Preprint submitted to Information Systems December 29, 2008

redundant rules by defining it based on the composition of two pattern sets.

Furthermore, we propose a compressed set of non-redundant rules in a spirit

similar to how closed patterns serve as a compressed representation of a full

set of patterns. Lastly, we propose an algorithm to mine this compressed

set of non-redundant rules. A performance study shows that the proposed

algorithm significantly improves both the runtime and compactness of mined

rules over mining a full set of sequential rules.

Key words: Pattern mining theory, Sequential pattern mining, Sequential

rules, Non-redundant rules, Efficient mining algorithm

1. Introduction

Sequential pattern mining first proposed by Agrawal and Srikant (1) has

been the subject of active research (2; 3; 4; 5; 6; 7). Given a database

containing sequences, sequential pattern mining identifies sequential patterns

appearing with enough support. It has potential application in many areas

such as analysis of market data, purchase histories, web logs, etc.

Sequential rules express temporal relationships among patterns (8). It can

be considered as a natural extension to sequential patterns, as association

rules are to frequent itemsets (9). A sequential rule expressed as pre → post,

specifies that there is sufficiently high confidence that the pattern post will

occur in sequences following an occurrence of pre. Compared to sequential

patterns, rules allow better understanding of temporal behaviors exhibited

in a sequence database. Consider a classic example of purchasing behavior

in a video shop (1): a customer who buys Star Wars episode IV will likely

buy episode V and VI in the future. The purchase pattern 〈IV, V, V I〉 is

2

the pattern showing the purchase behavior. However, imagine a standard

video shop with hundreds of buyers with various preferences. The pattern

〈IV, V, V I〉 will tend to occur with a low support. Mining with low support

will return the pattern, however, typically along with many irrelevant or spu-

rious patterns. Rules can throw away many spurious patterns by introducing

the notion of confidence to the set of patterns. Only rules satisfying both

support and confidence thresholds are mined.

Sequential rules extend the usability of patterns beyond the understand-

ing of sequential data. A mined rule represents the constraint that its premise

is followed by its consequent in sequences. Hence, rules are potentially useful

for detecting and filtering anomalies which violate the corresponding con-

straints. They have applications in detecting errors, intrusions, bugs, etc.

Mining rule-like sequencing constraints from sequential data has been shown

useful in medicine (e.g., (10)) and software engineering (e.g., (11; 12; 13))

domains. Some examples of useful rules include:

1. (Market Data) If a customer buys a car, he/she will eventually buy car

insurance. This is potentially useful in designing personalized market-

ing strategy.

2. (Medical Data) If a patient has a fever, which is followed by a drop in

thrombosite level and followed by appearance of red spots in the skin,

then it is likely that the passenger will need a treatment for dengue

fever. This is potentially useful in predicting a suitable type of treat-

ment needed for a patient.

3. (Software Data) If a Windows device driver calls KeAcquireSpinLock,

then it eventually needs to call KeReleaseSpinLock (14).

3

Spiliopoulou (8) proposes generating a full set of sequential rules (i.e.,

all frequent and confident rules) from a full set of sequential patterns (i.e.,

all frequent patterns). Generating a full set of sequential rules can be very

expensive. The number of frequent patterns is combinatorial to the maximum

pattern length: if a sequential pattern of length l is frequent, all its O(2l)

subsequences are frequent as well. Each frequent pattern of length l can

possibly generate l rules (depending on the minimum confidence threshold).

Hence, there is an exponential growth in the number of rules with respect to

the maximum pattern length.

To tame the the explosive growth of rules, we propose mining a non-

redundant set of sequential rules. Central to our method is the notion of rule

inference. This notion is used to define and remove redundancy among rules.

When using the set of mined rules as a composite filter, replacing a full set

of rules with the non-redundant subset of rules does not impact the accuracy

of the filter.

There have been many studies on mining frequent sequential patterns (1;

15; 16; 17; 2; 3; 4; 5). These studies include those mining a compact rep-

resentation of patterns, referred to as closed patterns (6; 7) and genera-

tors (18; 19). These compact representative patterns can be mined with

much more efficiency than the full set of frequent patterns. However, there

has not been any study relating these compact representative patterns with

a non-redundant set of sequential rules. In particular the following questions

need to be addressed: Can a non-redundant set of rules be obtained from

compact representative patterns? What types of compact representative pat-

terns need to be mined to form non-redundant rules? What do we mean by

4

a non-redundant set of rules? Can we characterize the non-redundant set of

rules? How to use representative patterns to form non-redundant rules? How

much effort is needed to obtain a non-redundant set of rules from compact

representative patterns? Can we design an efficient algorithm to obtain a

non-redundant set of rules from patterns?

In this paper, we address the above research questions. We focus on

performing an investigation and a characterization of a set of non-redundant

sequential rules built upon existing studies on compact sets of representative

sequential patterns. In addition, we propose an algorithm, develop a tool, and

perform a performance study on mining a non-redundant set of sequential

rules.

We investigate four different sets of patterns, namely generators, projected-

database generators, closed patterns and projected-database closed patterns.

For the projected-database generators and closed patterns, aside from the for-

mat and support values of patterns, we also consider their projected database

(c.f. (3; 6)).

A rule set can be formed by composing patterns. We investigate various

configurations of compositions of the above 4 sets of patterns. These sets

are then evaluated based on the two criteria of completeness and tightness.

A rule set is complete, if each frequent and confident rule can be inferred

by one of the rules in the rule set. A rule set is tight, if the set contains no

redundant rules. We characterize a tight and complete set of non-redundant

rules based on these configurations.

Additionally, to further reduce the number of mined rules, we propose a

rule compression strategy to compress the set of non-redundant rules. This

5

strategy is in the same spirit as how closed patterns are used as a compressed

representation of a full set of frequent patterns.

We propose an algorithm to mine this compressed set of non-redundant

rules. Our performance study shows much benefit in mining non-redundant

rules over a full set of rules. The study shows that the runtime and number of

rules mined can be reduced by up to 5598 times and 8583 times respectively!

The contributions of our work are as follows:

1. We propose a concept of non-redundant rules based on logical inference.

2. We investigate different sets of patterns and their various compositions

to form different sets of rules. We study the quality of these rule sets

with respect to completeness and tightness.

3. We characterize a tight and complete set of non-redundant rules based

on compositions of patterns.

4. We propose and characterize compression of the non-redundant set of

rules.

5. We develop an algorithm to mine the compressed set of non-redundant

rules and show that it performs much faster than mining a full set of

sequential rules.

The outline of this paper is as follows. Section 2 presents terminologies

and definitions used. Among other things this section defines the meaning

of closed pattern, generator, projected database, equivalence class, rule sat-

isfiability and support & confidence values of rules. Section 3 describes some

important properties of pattern-sets and also of rule inference. These proper-

ties are needed in later sections to show that a set of rules is a complete and

6

tight set of non-redundant rules. Section 4 describes various configuration of

rules by composing various pattern sets and characterizes them with respect

to completeness and tightness. This section also characterizes a tight and

non-redundant set of rules by composition of two different pattern-sets. Sec-

tion 5 describes the concept of compressed set of rules. Section 6 describes

our algorithm to mine a compressed set of non-redundant rules. Section 7 de-

scribes our performance study. Section 8 compares and contrasts our method

and contribution with related works. Section 9 discusses issues on uniqueness

of a tight and complete set of non-redundant rules and a more complex rule

inference strategy. Section 10 concludes this paper.

2. Definitions

Let I be a set of distinct items. Let a sequence S be an ordered list of

events. We denote S by 〈e1, e2, . . . , eend〉 where each ei is an item from I. A

pattern P1 = 〈e1, e2, . . . , en〉 is considered a subsequence of another pattern

P2 (〈f1, f2, . . . , fm〉), denoted by P1 v P2, if there exist integers 1 ≤ i1 < i2

< i3 < i4 . . . < in ≤ m such that e1 = fi1 , e2 = fi2 , · · · , en = fin . We also say

that P2 is a super-sequence of P1. The sequence database under consideration

is denoted by SeqDB. The length of P is denoted by |P |. A pattern P1++P2

denotes the concatenation of pattern P1 and pattern P2.

The absolute support of a pattern wrt to a sequence database SeqDB is

the number of sequences in SeqDB that are super-sequences of the pattern.

The relative support of a pattern w.r.t. to SeqDB is the ratio of its absolute

support to the total number of sequences in SeqDB. The support (either

absolute or relative) of a pattern P is denoted by sup(P, SeqDB). We ignore

7

ID Sequence

S1 〈A,B,C, B, D,A, B, C,D〉
S2 〈A,B,E, C, F, D〉
S3 〈A,B, F, C,D, E〉

Table 1: Example Database - ExDB

the mentioning of the database when it is clear from the context.

Definition 2.1 (Projected Database). A sequence database SeqDB pro-

jected on a pattern P is defined as: SeqDBP = {sx| S ∈ SeqDB , S = px++sx,

px is the minimum prefix of S containing P} (c.f., (3)).

To illustrate the concept of projected database, consider the example

database ExDB shown in Table 1. As examples, projected databases wrt.

ExDB on patterns 〈A,B〉 and 〈A,B, C〉 are shown in Tables 2 & 3 respec-

tively.

〈C, B, D,A, B, C,D〉
〈E, C, F, D〉
〈F, C, D, E〉
Table 2: ExDB〈A,B〉

〈B, D, A,B, C, D〉
〈F, D〉
〈D, E〉

Table 3: ExDB〈A,B,C〉

Projected database provides the series of events occurring after pattern

instances. It provides the context where a pattern can be extended or grown

8

further. Two patterns p and q having the same projected database, have the

same context, ensuring that any event happening after an instance p will also

appear after the corresponding instance of q in the database.

Definition 2.2 (Frequent, CS-, LS-Closed). A pattern P is considered

frequent in SeqDB when its support, sup(P, SeqDB), exceeds a minimum

threshold min sup. A frequent pattern P is considered to be closed if there

exists no proper super-sequence of P having the same support as P (6; 7).

A frequent pattern P is considered to be projected-database closed if there

exists no proper super-sequence of P having the same support and projected

database as P (6). To avoid ambiguity we call the set of closed patterns CS-

Closed and the set of projected-database-closed patterns LS-Closed. Note that

CS-Closed ⊆ LS-Closed.

Definition 2.3 (CS-, LS-Key). A frequent pattern P is considered to be

a generator in SeqDB if there exists no proper sub-sequence of P having the

same support as P in SeqDB (18; 19). A frequent pattern P is considered to

be a projected-database generator if there exists no proper sub-sequence of P

having the same support and projected database as P . To avoid ambiguity we

call the set of generators CS-Key and the set of projected-database generators

LS-Key. Note that CS-Key ⊆ LS-Key.

Projected-database-closed pattern (LS-Closed) was first introduced in (6).

Both LS-Closed and LS-Key are interesting concepts, as subsumed patterns

(i.e., non-LS-Closed or non-LS-Key patterns) and the corresponding repre-

sentative pattern (i.e., corresponding LS-Closed or LS-Key pattern) have the

9

same context, ensuring that the series of events appearing after corresponding

pattern instances to be the same.

Let us also define two different concepts of equivalence classes of sequen-

tial patterns as follows:

Definition 2.4 (EQClass (P,CS,SeqDB)). Two patterns PX and PY

are in the same equivalence class w.r.t. SeqDB iff, for all s in SeqDB,

we have PX v s iff PY v s.

We denote the equivalence class of PX in SeqDB by EQClass(PX , CS, Seq-

DB) and EQClass(PX ,CS) when there is no ambiguity.

Definition 2.5 (EQClass (P,LS,SeqDB)). Two patterns PX and PY are

in the same project- ed-database equivalence class wrt SeqDB iff

1. For all s in SeqDB, we have PX v s iff PY v s; and

2. PX and PY have the same projected database in SeqDB.

We denote the projected-database equivalence class of PX in SeqDB by

EQClass (P, LS, SeqDB) and EQClass (P, LS) when there is no ambiguity.

Example To illustrate the concepts of equivalence class, generator (CS-Key),

projected-database generator (LS-Key), closed pattern (CS-Closed) and pro-

jected database closed pattern (LS-Closed) consider the following database

shown in the following table.

Seq ID. Sequence Seq ID. Sequence

S1 〈A, D, A〉 S2 〈B, A, D, A〉
S3 〈A, B, C, B〉 S4 〈A, B, B, C〉
S5 〈B, B, A, B〉 S6 〈D, X, Y〉

10

Considering min sup set at 2, the frequent pattern space corresponds to

the following lattice in Figure 1. There are 16 frequent patterns including

the empty pattern 〈〉 which is trivially frequent.

<B,A>:2

<>:6

<A>:5 :4 <C>:2

<A,A>:2 <A,D>:2 <D,A>:2 <A,B>:3 <B,B>:3 <A,C>:2 <B,C>:2

<A,D,A>:2 <A,B,B>:2 <A,B,C>:2

<D>:3

EQ5

EQ2 EQ3 EQ4

EQ8

EQ6 EQ7

EQ1

Figure 1: Frequent Pattern Space & Equivalence Classes

Among the 16 frequent patterns, there are 8 equivalence classes (i.e.,

EQClass(·,CS,·)) marked by the dotted lines and referred to as EQ1–EQ8 in

Figure 1. For projected-database equivalence classes, since we need to check

for equivalence of projected database as well, we need to split EQ5 and EQ8,

each into two projected-database equivalence classes (i.e., EQClass(·,LS,·)).
The newly introduced projected-database equivalence classes EQ5−2 and

EQ8−2 are shown by solid red circle. Let’s refer to the other corresponding

projected-databases as EQ5−1 and EQ8−1 respectively. Other equivalence

classes EQ1, EQ2, EQ3, EQ4, EQ6 and EQ7 are also projected-database

equivalence classes.

In each equivalence class, generally those patterns at the bottom are

the closed patterns while those at the top are the generators. For ex-

ample, consider the equivalence class EQ5 which is supported by S1 and

S2 in the database. The closed pattern of EQ5 is 〈A,D,A〉, while the

set of generators is {〈A,A〉, 〈A,D〉, 〈D, A〉}. Also consider EQ8 which is

supported by S3 and S4 in the database. The set of closed patterns of

11

EQ8 is {〈A,B,B〉, 〈A,B, C〉}. The set of generators of EQ8 is the set

{〈A,B, B〉,〈C〉}.
The case is similar with projected-database equivalence class. For exam-

ple, consider the equivalence class EQ5−1. The closed pattern of EQ5−1 is

〈A,D, A〉, while the set of generators is {〈A,A〉, 〈D
,A〉}. Also consider EQ8−1. The closed patterns of EQ8−1 is 〈A,B, C〉. The

generator of EQ8 is 〈C〉.
Note that an equivalence class can have more than one closed pattern and

more than one generator. Similarly, it can be easily seen that a projected-

database equivalence class can have more than one projected-database closed

pattern and more than one projected-database generator.

Similar to Wang and Han (7), we consider only single-item sequences.

This simplifies our presentation. Furthermore, single-item sequences also

represent many important types of sequences such as web click streams, pur-

chase histories, program API traces, etc.

From the definitions of “support” and “frequent pattern”, sequential pat-

terns possess ‘apriori’ property (20): If a sequential pattern is frequent then

all its subsequences are also frequent. In other words, support of a pattern

is greater or equal to support of its super-sequences.

Definition 2.6 (Pattern Matching). A sequence S is said to match a

pattern P iff P v S. This is denoted by P〈〈S〉〉. The inverse, that S does not

match P , is denoted by ¬P〈〈S〉〉.

As an example, consider a pattern P = 〈A,B〉 and two sequences S1 =

〈A,C,B〉 and S2 = 〈C,D〉. The first sequence S1 matches P since P v S1.

The second sequence S2 does not match P since P 6v S2.

12

Rules are different from patterns. Rules are composed of two parts: pre

and post-conditions. A rule asserts that if a series of events occurs, then

another series of events must occur later in the sequence. Formally,

Definition 2.7 (Rule Satisfiability). A sequence S is said to satisfy a se-

quential rule r of the form pre → post if either one of the following two cases

holds:

1. It matches the pre-condition and subsequently the post-condition of the

rule, i.e. ∃S1, S2. S = S1++S2 ∧ pre〈〈S1〉〉 ∧ post〈〈S2〉〉.
2. It does not match the pre-condition of the rule, i.e. 6 ∃S1, S2. S =

S1++S2 ∧ pre〈〈S1 〉〉.

A sequence S satisfying a rule r is denoted by r〈〈S〉〉; otherwise, it is denoted

by ¬r〈〈S〉〉.

Following from the pattern example above, consider a rule r = A → B

and two sequences S1 = 〈A, C, B〉 and S2 = 〈C, D〉. S1 satisfies r since B

occurs after the occurrence of A in S1. In contrast to the pattern example,

S2 satisfies r since we cannot find any A in S2.

Forming sequential rules from frequent sequential patterns under the

support-confidence framework is analogous to forming association rules from

frequent itemsets. A sequential rule is denoted by r = X → Y (s, c), where

X and Y are sequential patterns and s and c are the support and confidence

values (8; 20). We omit the support and confidence values if it is clear or

irrelevant to the context. A rule r = X → Y is constructed from two se-

quential patterns: X and X++Y . The confidence of r, denoted by conf (r),

13

is defined as the ratio of sup(X++Y) to sup(X). On the other hand, the sup-

port of r, denoted by sup(r), is defined to be equal to sup(X++Y). Formally,

we define support and confidence in Definition 2.8.

Definition 2.8 (Support & Confidence). A rule rX has support equal to

the number of sequences in SeqDB that matches the pre-condition, and sub-

sequently the post-condition of the rule. Also, its confidence is equal to the

likelihood of sequences matching the pre-condition of rX to also subsequently

match the post-condition of rX .

Note that from the above definition, for a rule rX , it can be seen that

only two sets of sequences in the input sequence database SeqDB affect the

significance values of rX . The first set is sequences in SeqDB that satisfies

rX by matching the pre-condition and subsequently the post-condition of

rX . The second set is sequences in SeqDB that violates rX by matching the

pre-condition but not subsequently the post-condition.

A sequential rule consists of four components: An identifier, a description,

a support value and a confidence value. This is denoted by “identifier =

description (support, confidence)”, e.g. R = a → b(0.2, 0.8). Some of these

components may be omitted if they are irrelevant or clear from the context.

Given a rule r = X → Y (s, c), we denote the pre-/post-condition of r (i.e.

X/Y) by r.Pre/r.Post.

Formally, we also define significant rules, i.e., frequent and confident rules

in Definition 2.9.

Definition 2.9 (Rule Significance). A rule with support higher than a

threshold min sup is considered frequent. A rule with confidence higher than

14

a threshold min conf is considered confident.

3. Inference, Redundancy and Pattern Properties

Our approach to mining a non-redundant set of rules lies in a construction

based on rule inference. In this section we define rule inference and mention

properties relating to pattern-sets and rule inference.

3.1. Definitions of Inference and Redundancy

Definition 3.1 (Rule Inference). Given a sequence database SeqDB and

two rules r1, r2. r1 is said to infer r2 if and only if:

1. r2〈〈S〉〉 whenever r1〈〈S〉〉, for every sequence S regardless of S’s presence

in SeqDB.

2. sup(r1, SeqDB) = sup(r2, SeqDB) and conf (r1, SeqDB) = conf (r2,

SeqDB).

Definition 3.2 (Redundant Rules). A rule is said to be redundant in a

set of rules R iff it can be inferred by another rule in R.

Consider the following two rules: r1 = 〈A〉 → 〈B,C,D〉 and r2 = 〈A〉 → 〈B〉
having the same support and confidence. r2 is redundant since it can be

inferred by r1.

3.2. Properties of Pattern Sets and Inference

We now identify some properties associated with patterns. We then lever-

age on these properties to highlight the properties of rule inference and rule

coverage.

15

Property 1. Let PX be a pattern of a sequence database SeqDB. If PX is

frequent, then: sup(PX)= MaxCP∈CS−Closed∧PXvCP . (sup(CP)).

Property 2. Consider two patterns PX and PY appearing in a sequence

database SeqDB. If PX v PY and sup(PX) = sup(PY), then PX and PY

are supported by the same set of sequences.

Property 3 (Transitivity). If rX infers rY and rY infers rZ then rX infers

rZ.

Before stating the necessary and sufficient condition of rule inference, we

state 2 lemmas.

Lemma 1. Suppose for every sequence s, we have s w b whenever s w a,

then it must be the case that a w b.

Lemma 2. Suppose for every sequence s, we have s 6w b whenever s 6w a,

then it must be the case that a v b.

The sufficient and necessary condition of rule inference is as follows.

Property 4 (Sufficient and Necessary Inf.). Given rX = preX → postX

and rY = preY → postY generated from SeqDB. rY infers rX if and only

if the following four conditions hold, (1) preY v preX (2) preY ++postY w
preX++postX (3) sup(rY) = sup(rX) and (4) conf (rY) = conf (rX).

Proof: The right-to-left direction. Suppose the 4 conditions holds. Con-

dition 1 ensures that whenever preY doesn’t hold, preX will also not hold.

This implies that whenever rY holds (vacuously), rX also holds (vacuously).

16

Condition 2 ensures that whenever preY ++postY holds, preX++postX also

hold. This implies whenever rY holds (not vacuously), rX also holds. Condi-

tions (3) and (4) ensure that rY has the same support and confidence as rX .

Hence, the above are sufficient condition for inference (c.f., Definition 3.1).

The left-to-right direction. Suppose rY infers rX . Then rY and rX have

equal support and confidence. Hence, conditions 3 and 4 hold. We only need

to prove that conditions 1 and 2 hold. For any sequence s, we have ¬rY〈〈s〉〉 iff

preY v s and preY ++postY 6v s, and ¬rX〈〈s〉〉 iff preX v s and preX++postX

6v s. Taking the contra positive of rY infers rX , we have ¬rY〈〈s〉〉 whenever

¬rX〈〈s〉〉. Thus preY v s whenever preX v s, and preY ++postY 6v s whenever

preX++postX 6v s. As s is arbitrary, by Lemma 1, we conclude preY v
preX , proving condition 1. Also, by Lemma 2, we conclude preX++postX v
preY ++postY , proving condition 2. ut

As an example, let SeqDB be a database of two sequences: 〈A,B〉 and

〈A,B,D〉. Let r1 be 〈A〉 → 〈B〉, r2 be 〈A〉 → 〈B,D〉 and r3 be 〈A,B〉 → 〈D〉.
Then r2 and r3 satisfy the sufficient inference property. Hence, r2 infers r3.

However, r1 does not infer r2 and r2 does not infer r1, as r1 and r2 have

different support and confidence.

4. Theory of Non-Redundant Rules

Generating sequential rules from a full set of sequential patterns can be

exorbitant. Yan et al. (6) have shown that the size of a full set of sequential

patterns is exponential to the maximum length of patterns in the closed

pattern set.

We therefore advocate using generator and closed pattern sets (either

17

regular or projected-database) to generate sequential rules. Furthermore,

instead of generating all frequent and confident sequential rules, we strive to

generate a non-redundant set of sequential rules from which all other rules can

be derived. There are three technical challenges pertaining to this research

direction: (1) The assurance that all interesting rules can be logically inferred

from this non-redundant set (i.e., the non-redundant set is complete), (2) the

assurance that the set of non-redundant rules is tight, and (3) the need to

compute the support and confidence of all rules efficiently.

The following sub-sections analyze various configurations of rule sets in

terms of completeness and tightness by composing different pattern sets. A

configuration that results in a tight and complete set of non-redundant rules

is then identified.

4.1. Characterization of Non-Redundant Rules

Based on the 4 pattern sets defined in Section 2 — LS-Key, LS-Closed,

CS-Key and CS-Closed — we can form different sets of rules by composing

these patterns to infer all other frequent and confident rules. The purpose

of this section is to characterize these rules with respect to two properties

namely:

1. Completeness: All frequent and confident rules can be inferred from

the generated set of rules.

2. Tightness: There exists no two different rules r and r′ in the final set

of rules where r infers r′.

Definition 4.1 (Configuration (X,Y)). Based on the above 4 pattern sets,

18

we define Configuration (X, Y), where both X and Y can be any of the 4 pat-

tern sets above, as the following set of rules:

{pre → post | pre ∈ X, there is sh++post ∈ Y , sup(sh++post) =

sup(pre++post), pre v sh and sh is as short as possible}

Each of the above configurations forms a set of rules. There are in to-

tal 16 different configurations. Abstracting away LS- and CS-, we have 4

meta configurations: (Key, Key), (Key, Closed), (Closed, Key) and (Closed,

Closed). Each meta configuration corresponds to 4 configurations. We in-

vestigate only (Key, Closed) and (Closed, Closed) as they shed light on the

non-redundant set of rules and the compressed set of non-redundant rules.

In particular we investigate the following configurations:

1 Configuration (LS-Key, LS-Closed)

2 Configuration (LS-Key, CS-Closed)

3 Configuration (CS-Key, LS-Closed)

4 Configuration (CS-Key, CS-Closed)

5 Configuration (LS-Closed, LS-Closed)

6 Configuration (LS-Closed, CS-Closed)

7 Configuration (CS-Closed, LS-Closed)

8 Configuration (CS-Closed, CS-Closed)

Lemma 3. Configuration (CS-Key, CS-Closed) is not tight.

Proof: Consider the following database.

ID Sequence

S1 〈X,A, M, Y, A,M, D〉
S2 〈Y,A, M, D, X, A,M〉

19

Let min sup = 1 and min conf = 0.5. Then the CS-Key set contains

the following patterns: 〈A〉:2, etc. The CS-Closed set contains the following

patterns: 〈X, A,M〉: 2, 〈Y, A,M, D〉:2, etc. The set of rules in Configuration

(CS-Key, CS-Closed) includes the following: 〈A〉 → 〈M〉 (2,1.0), 〈A〉 →
〈M,D〉(2,1.0), etc. Using Property 4, the second rule listed above infers the

first rule, hence the configuration is not tight. ut

Lemma 4. Configuration (LS-Key,LS-Closed) is not complete.

Proof: Consider the following database.

ID Sequence

S1 〈A,B, C〉
S2 〈A〉

Let min sup = 1 and min conf = 0.5. Then the LS-Key set contains

the following patterns: 〈A〉:2,〈B〉:1 and 〈C〉:1. The LS-Closed set contains

the following patterns: 〈A〉:2, 〈A,B〉:1, 〈A,B,C〉:1. The set of rules in the

configuration are: 〈A〉 → 〈B〉 (1,0.5), 〈A〉 → 〈B,C〉 (1,0.5) and 〈B〉 → 〈C〉
(1,1). Using Property 4, we do not have any rule in the mined set that infers

the rule 〈A,B〉 → 〈C〉 (1,1) which is frequent and confident. Hence, the

configuration is not complete. ut

Proposition 5. Configuration (CS-Key, CS-Closed), Configuration (CS-Key,

LS-Closed), Configuration (LS-Key, CS-Closed) and Configuration (LS-Key,

LS-Closed) are neither complete nor tight.

Proof: Note that LS-Key ⊇ CS-Key. Also, LS-Closed ⊇ CS-Closed. Hence,

from the definition of configuration, we have Configuration (LS-Key, LS-

20

Closed) ⊇ Configuration (LS-Key, CS-Closed) ⊇ Configuration (CS-Key, CS-

Closed). Also, Configuration (LS-Key, LS-Closed) ⊇ Configuration (CS-Key,

LS-Closed) ⊇ Configuration (CS-Key, CS-Closed).

According to Lemma 3, Configuration (CS-Key, CS-Closed) is not tight.

Hence, so are the other 3 configurations which are super-sets of Configuration

(CS-Key, CS-Closed). Also, according to Lemma 4, Configuration (LS-Key,

LS-Closed) is not complete. Hence, so are the other 3 configurations which

are sub-sets of Configuration (LS-key, LS-Closed). ut

Lemma 6. Configuration (CS-Closed, CS-Closed) is not tight.

Proof: Consider the following database.

ID Sequence

S1 〈A,C, B, C, A, Z,B, C, D〉
S2 〈A,Z, B, C, D, A,C,B,C〉
S3 〈A,B〉

Let min sup = 2 and min conf = 0.5. Then the CS-Closed set contains

the following patterns: 〈A,B〉: 3, 〈A,C,B,C〉: 2, 〈A,Z,B, C, D〉 :2, etc. The

set of rules in Configuration (CS-Closed, CS-Closed) includes: 〈A,B〉 → 〈C〉
(2,0.67), 〈A,B〉 → 〈C, D〉 (2,0.67), etc. Using Property 4, the second rule

listed above infers the first rule, hence the configuration is not tight. ut

Lemma 7. Configuration (LS-Closed, LS-Closed) is not complete.

Proof: Consider the following database.

21

ID Sequence

S1 〈A,B, C〉
S2 〈A,B〉

Let min sup = 1 and min conf = 0.5. Then the LS-Closed set contains

the following patterns: 〈A〉: 2, 〈A,B〉: 2, and 〈A,B, C〉:1. The set of rules in

Configuration (LS-Closed, LS-Closed) are the following: 〈A〉 → 〈B〉 (2,1.0),

〈A〉 → 〈B, C〉 (1,0.5), and 〈A,B〉 → 〈C〉 (1,0.5). Using Property 4, we do

not have any rule in the mined set that infers the rule 〈B〉 → 〈C〉(1,0.5)

which is frequent and confident. Hence, the configuration is not complete. ut

Proposition 8. Configuration (CS-Closed, CS-Closed), Configuration (CS-

Closed, LS-Closed), Configuration (LS-Closed, CS-Closed) and Configuration

(LS-Closed, LS-Closed) are neither complete nor tight.

Proof: Note that LS-Closed ⊇ CS-Closed. Hence, from the definition of

configuration, we have: Configuration (LS-Closed, LS-Closed) ⊇ Config-

uration (LS-Closed, CS-Closed) ⊇ Configuration (CS-Closed, CS-Closed).

Also, Configuration (LS-Closed, LS-Closed) ⊇ Configuration (CS-Closed,

LS-Closed) ⊇ Configuration (CS-Closed, CS-Closed).

According to Lemma 7, Configuration (CS-Closed, CS-Closed) is not

tight. Hence, so are the other 3 configurations which are super-sets of Config-

uration (CS-Closed, CS-Closed). Also, according to Lemma 6, Configuration

(LS-Closed, LS-Closed) is not complete. Hence, so are the other 3 configu-

rations which are sub-sets of Configuration (LS-Closed, LS-Closed). ut

22

4.2. Tight and Complete Set of Non-Redundant Rules

Intuitively, the meta rule (Key, Closed) matches closely the sufficient

and necessary condition of rule inference described by Property 4. We want

the mined rules to have shortest pre-conditions and longest post-conditions.

However, no configuration in the (Key, Closed) family is complete and tight.

We need to relax some constraints so that the set of rules become complete.

We then need to tighten some other constraints so that the set of rules

becomes tight.

We first relax the first input to the configuration to be a new pattern set

defined below.

Definition 4.2. (Prefix-Key) A frequent pattern p is in Prefix-Key, iff

there is no pattern p′ where p′ is a prefix of p and has the same support as p.

From Definitions 2.3 & 4.2, it can be noted that CS-Key is a sub-set of

Prefix-Key, however, LS-Key and Prefix-Key are incomparable. We can then

prove the following proposition.

Proposition 9. Configuration (Prefix-Key, CS-Closed) is complete but not

tight.

Proof: We first prove that the configuration is complete. For every rule r

that is frequent and confident, we would like to show that there exists r′ ∈
Configuration (Prefix-Key, CS-Closed), where r′ infers r.

First, consider an arbitrary rule r of the form pre → post, composed

from two frequent patterns pre and pre++post. It can be inferred by another

rule r1 composed from pre1 ∈ Prefix-Key and pre++post. This is the case

23

since there must be a prefix pre1 of pre that belongs to Prefix-Key with the

same support as pre. Composing pre1 with pre++post, will form a rule r1 =

pre1 → post1 where pre1++post1 = pre++post. From Property 4, r1 infers r.

Second, r1 = pre1 → post1 can be inferred by another rule r2, composed

from pre1 and prepost2 ∈ CS-Closed. This is the case since there must be a

super-sequence of pre1++post1 which is in CS-Closed with the same support

as pre1++post1. Let prepost2 ∈ CS-Closed = pre2++post2 such that pre1

v pre2, post1 v post2, pre2 is as short as possible, and post2 is as long as

possible. Composing pre1 with prepost2 forms a rule r2 = pre1 → post2.

From Property 4, r2 infers r1. Note that pre1 is in Prefix-Key and prepost2

is in CS-Closed.

Completeness now follows by transitivity of rule inference.

We next show that the configuration is not tight by means of a counter

example. Consider the following database.

ID Sequence

S1 〈A, Z, B, C, A, B, C, D, E, F 〉
S2 〈A, C, B, Z, A, B, C, D, E, F 〉
S3 〈A, B〉
S4 〈A, Z〉

Let min sup = 1 and min conf = 0.5. Then the Prefix-Key set con-

tains the following patterns: 〈A,B,C〉: 2, 〈A,C〉:2, 〈A,Z,C〉:2, etc. The

CS-Closed set contains the following patterns: 〈A,C, A , B,C,D, E, F 〉: 2,

〈A,Z, B,C, D,E, F 〉:2, etc. The set of rules in the configuration w.r.t. the

above database includes: 〈A,B,C〉 → 〈D,E, F 〉 (2,1.0), 〈A,C〉 → 〈A,B,

C, D, E, F 〉 (2,1.0), 〈A,C〉 → 〈D,E, F 〉 (2,1.0), etc. Using Property 4, the

24

second rule listed above infers the first rule, hence the configuration is not

tight. ut
The set of redundant rules in Configuration (Prefix-Key,CS-Closed) is

characterized by Lemma 10 below.

Lemma 10. Let Configuration (Prefix-Key,CS-Closed) be denoted as CFG.

The set of redundant rules in CFG denoted as REDUNDANT is the union

of the following two sets:

{r = pre → post ∈ CFG | there is r′ = pre′ → post′ ∈ CFG having the

same support and confidence, pre = pre′ and post′ A post}

and,

{r = pre → post ∈ CFG | there is r′ = pre′ → post′ in CFG having the

same support and confidence, pre′ is a sub-sequence but not a prefix of

pre and pre′++post′ w pre++post}.

Proof: Suppose a rule r = pre → post in CFG is redundant and is inferred

by another rule r′ = pre′ → post′ also in CFG. From Property 4, we have:

(1) pre′ v pre; (2) pre′++post′ w pre++post; (3) sup(r)=sup(r′); and (4)

conf(r) = conf(r′). From 3 and 4, we have sup(pre)=sup(pre′).

Since pre′ v pre, sup(pre′) = sup(pre), and both pre and pre′ are in

Prefix-Key, there are two possible cases: (1) pre′ = pre, and (2) pre′ is

a subsequence but not a prefix of pre. If pre′ = pre, since r and r′ are

different, post′ must be a proper super-sequence of post. If the second case

holds, condition (2) of Property 4 restated in the previous paragraph still

holds, pre′++post′ must be a super-sequence of pre++post. ut

25

From the example described in the proof of Proposition 9, the rule 〈A,C〉 →
〈D,E, F 〉, which is inferred by 〈A, C〉 → 〈A,B,C,D,E, F 〉, belongs to the

first redundant rule set described in Lemma 10. Also, the rule 〈A,B, C〉 →
〈D,E, F 〉 (2,1.0), which is inferred by 〈A,C〉 →〈A,B,C, D, E, F 〉 (2,1.0),

belongs to the second redundant rule set described in Lemma 10. From

Proposition 9 and Lemma 10, we have the following theorem.

Theorem 11. Configuration(Prefix-Key, CS-Closed) – REDUNDANT is

complete and tight.

5. Compressed Set of Rules

Configuration(Prefix-Key,CS-Closed) - REDUNDANT is the tight and

complete set of non-redundant rules. Note that a pattern Xk is ∈ Prefix-Key

is a frequent pattern. For every Xk in Prefix-Key, there is a closed pattern

cp in LS-Closed where Xk ∈ EQClass(cp,LS).

An equivalence class can be represented by either closed patterns or gen-

erators. The former set usually contains fewer members than the latter set.

So we propose a mechanism to “compress” a non-redundant rule set by re-

placing the set of Prefix-Key generator premises with their corresponding set

of LS-Closed closed patterns through a definition of a compression operation

as follows.

Definition 5.1 (Compressed Rules). We allow rules of the form key(X) →
Y where X ∈ LS-Closed. We call these the compressed rules. The mean-

ing of a compressed rule denoted as [key(X) → Y] is {Xk → Y | Xk ∈
EQClass (X,LS,SeqDB) ∧ Xk ∈ Prefix-Key}. Thus a sequence s satisfies

26

[key(X) → Y] if for each Xk → Y ∈ [key(X) → Y], we have Xk → Y 〈〈s〉〉.
Note that s need not be ∈ SeqDB.

Then we can define the notion of a compressed rule set being sound and

complete.

Definition 5.2 (Sound and Complete). Consider a rule set R mined from

SeqDB wrt min sup and min conf thresholds. A compressed rule set Rc

is sound and complete for R iff the following hold: R =
⋃

(key(Xk)→Yc)∈Rc

[key(Xk) → Yc] and ∀r ∈ [key(Xk) → Yc]. r has the same support and

confidence as key(Xk) → Yc.

The compressed set of Configuration(Prefix-Key,CS-Closed) can be de-

fined as:

Configuration-Key (LS-Closed, CS-Closed) = {key(pre) → post| pre ∈
LS-Closed, prepost′ ∈ CS-Closed, prepost′ = sh++post where sh is the short-

est prefix of prepost′ which is a super-sequence of pre.}
The configuration is a sound and complete compression as stated in the

following theorem.

Theorem 12. Configuration-Key (LS-Closed,CS-Closed) is a sound and com-

plete compression of Configuration (Prefix-Key, CS-Closed).

Proof: Let us refer to Configuration (Prefix-Key,CS-Closed) and Configuration-

Key (LS-Closed, CS-Closed) as CNF and CNFKey.

We first show that for an arbitrary rule r = pre → post in CNF, there

exists a compressed rule r′ = key(cp) → post having the same support and

confidence in CNFKey, where cp is an LS-Closed pattern having the same

27

projected database as pre. The above is the case since cp and pre has the

same projected database, if we can extend pre to a pattern Y = pre++evs

(where evs is an arbitrary series of events), we can also extend cp to a pattern

Z = cp++evs, where sup(Y) = sup (Z). For both configurations CNF and

CNFKey, the maximal extension is mined. Hence there should be a rule r′

= key(cp) → post in CNFKey having the same support and confidence as r.

We next show that for all rules r in an arbitrary rule-set [key(cp) → post]

in CNFKey, r is in CNF. key(cp) gives a set of generators G in Prefix-Key

with the same projected database as cp. Since cp has the same projected

database as each member in G, if we can extend cp to a pattern Y = cp++evs

(where evs is an arbitrary series of events), we can also extend g ∈ G to a

pattern Z = g++evs, where sup(Y) = sup (Z). Note that [key(cp) → post]

can be empty. For both configurations CNF and CNFKey, the maximal

extension is mined. Hence r should be in CNF and has the same support

and confidence as cp → post. ut
Configuration-Key (LS-Closed,CS-Closed) can serve as a compression of

the complete and tight set of non-redundant rules. To get back the com-

plete and tight set of non-redundant rules from the compressed set one can

compute the key() operation and subtract the set REDUNDANT from the

resultant set. The compression hence is lossless. In this sense, we refer

Configuration-Key (LS-Closed,CS-Closed) as the compressed non-redundant

rule set.

We would also like to mention the upper bound on the size of the com-

pressed rule set. This is described in Corollary 13.

Corollary 13. Given a non-redundant rule set R w.r.t. SeqDB, min sup,

28

and min conf. The size of the compressed rule set Rc that is sound and

complete for R is at most O(|LS − Closed| × |CS − Closed|).

Proof: Given a rule Xk → Yc in R. Let Xc be an LS-closed pattern of

EqClass(Xk, LS). Then Xk → Yc ∈ [key(Xc) → Yc]. Thus the number

of distinct Xc is limited by the number of LS-Closed patterns. Also, by

construction of R, the number of distinct Yc is limited by the number of

CS-Closed patterns. Consequently, Rc is at most equal to |LS − Closed| ×
|CS − Closed|. ut

6. Mining Algorithm

To generate the compressed non-redundant set of rules, i.e. Configuration-

Key (LS-Closed, CS-Closed), one must first mine the patterns. There are

existing algorithms to mine CS-Closed set, e.g. BIDE (7). However, there is

no algorithm in existing literature to mine LS-Closed.

Fortunately, BIDE, in effect employs a search space pruning strategy that

prune all search sub-spaces that contain patterns not in LS-Closed set. A

pattern that is not pruned is subjected to an online tests (i.e., while closed

patterns are being generated) to check whether it is in CS-Closed. With

modification, rather than discarding patterns that are in LS-Closed but not in

CS-Closed, we also print these patterns out while flagging them as belonging

to LS-Closed exclusively. Hence, we have an implementation of an algorithm

that can concurrently mine both LS- and CS-Closed patterns. The details

and proofs that this modification does indeed produce LS- and CS-Closed

patterns are available in the appendix.

29

Our proposed algorithm (CNR - Compressed Non-Redundant rule mining

algorithm) is shown in Figure 2. The algorithm is based on the definition of

Configuration-Key (LS-Closed,CS-Closed). The algorithm starts (line 1-4)

by mining the LS- and CS-Closed sets concurrently. For each pattern p in

LS-Closed, it then tries to find related patterns p′ in CS-Closed which are

its super-sequences (line 5-6). Next, for each related pattern p′, we try to

form a rule rn = p → post where p′=sh++post and sh is the shortest prefix

of p′ containing p (line 9-10). Note that following Property 1, the support

of p++post is equal to the maximum support of a closed pattern that is a

super-sequence of it. Hence to get the support of p → post, we perform such

checks and update our temporary rule set Rules′ in lines 11-24. When we

detect that a support of a generated rule is not correct, we either update it

or throw it away. From Definition 4.1, a rule in a configuration must have

correct support. If the same rule with correct support is found, we update

the support value of the original rule (line 15), otherwise we discard the old

rule (line 19). At the end of each iteration (line 26), the temporary rule set

Rules′ contains the set of compressed rules having p as premise with correct

support and confidence. At lines 26, we add the rules in Rules′ to the output

rule set Rules. After iterating for all possible patterns in LS-Closed, Rules

will correspond to the set Configuration-Key (LS-Closed,CS-Closed) which

is then output.

We would like to measure the performance benefit of mining a set of non-

redundant rules over mining a full-set of significant rules. For comparison

purpose, Figure 3 describes an algorithm mining a full-set of significant rules

based on the description in (8). The algorithm first computes the set of all

30

Procedure Mine Compressed Non-Redundant Rules

Inputs: SeqDB: Sequence Database ;

min sup, min conf : Minimum support and confidence thresholds

Outputs: Rules: Compressed set of non-redundant rules

Method:

1: Let LS = {}, CS = {}, Rules = {}
2: Concurrently mine LS- and CS-Closed with support ≥ min sup

3: Initialize LS and CS to LS- and CS-Closed accordingly

4: For each pattern p ∈ LS

5: Let Related = {p′ ∈ CS, where p @ p′ and

(min conf ≤ sup(p′)/sup(p) ≤ 1)}
6: Let Rules′ = {}
7: For each pattern p′ ∈ Related

8: Let post = px, where sx++px = p′, sx w p, and

sx is as short as possible

9: Let rn = p → post, nsup = sup(p′) and nconf = sup(p′)/sup(p)

10: If ∃ r(s, c) ∈ Rules′. r.Post = rn.Post

11: If (nsup > s) Replace r(s, c) in Rules′ with r(nsup,nconf)

12: Else If ∃ r(s, c) ∈ Rules′. r.Post @ rn.Post

13: If (nsup > s) Remove r(s, c) from Rules′

14: Add rn(nsup,nconf) to Rules′

15: Else Add rn(nsup,nconf) to Rules′

16: Rules = Rules ∪ Rules′

Output Rules

Figure 2: CNR Algorithm

31

frequent patterns. We use PrefixSpan (3)1 to mine for all frequent patterns2.

For each frequent pattern f of length n, we can form n− 1 rules. Each rule

is of the form pre → post, where pre is a prefix of f and pre++post = f .

Procedure Mine All Significant Rules

Inputs: SeqDB: Sequence Database ;

min sup, min conf : Minimum support and confidence thresholds

Outputs: All significant rules

Method:

1: Let Freq = All patterns with support ≥ min sup.

2: For each pattern f ∈ Freq

3: For each prefix pre of f

4: Let post = px, where pre++px = f

5: Let rn = pre → post, nsup = sup(f) and nconf = sup(f)/sup(pre)

6: If (nconf ≥ min conf)

7: Output rn(nsup,nconf)

Figure 3: Algorithm Mining All Significant Rules

7. Performance Study

We perform a performance study using the synthetic data generator pro-

vided by IBM which was also used in (6; 1). We modify the data generator to

ensure generation of sequences of events (i.e., all transactions are of size 1).

1PrefixSpan has a similar depth-first mining architecture as BIDE (7) used by our

non-redundant rule mining algorithm.
2In case too much memory is needed to load all frequent patterns at line 1, we load the

patterns in batches and process them accordingly.

32

We also consider a real sequence dataset from commonly used benchmark in

software engineering field.

Experiments were performed on a Fujitsu E4010 laptop with Intel Mobile

1.6GHz and 512MB main memory, running Windows XP Professional. Al-

gorithms were written using Visual C#.Net running under .Net Framework

1.1 compiled with release mode using Visual Studio.Net 2003.

The experiment results for dataset D5C20N10S20 are shown in Figures 4

& 5. The parameters D, C, N and S correspond to the number of sequences

(in 1000s), the average number of events per sequence, the number of different

events (in 1000s) and the average number of events in the maximal sequences.

‘Full’ corresponds to mining a full set of frequent and confident sequential

rules, while ‘CNR’ corresponds to mining a compressed set of non-redundant

rules. Similar to other study in mining from sequences (6; 7) we use a

low support threshold to test for scalability. Also, mining for rules with

significant confidence at low support thresholds are particularly valuable for

diverse dataset like the video shop example given in the Section 1. The

experiment results with the real dataset shows that performance speed up

can be obtained in both high and low support thresholds and is necessary to

analyze real data.

The study shows large improvements in both runtime and compactness of

mined rules over mining a full set of sequential rules. Runtime was improved

up to 5598 times! The number of rules was reduced up to 8583 times!

Recently, there have been active interests in analyzing program traces (21).

We generate traces from a simple Traffic alert and Collision Avoidance Sys-

tem (TCAS) from Siemens Test Suite (22) used as one of benchmarks for

33

0.1

1

10

102

103

104

105

8 9 10 11 12

R
u

n
ti

m
e

(s
)

-
(l

o
g

)

min_sup (absolute)

Full

CNR

103

104

105

106

107

108

8 9 10 11 12

|R
u

le
s|

 -
(l

o
g

)

min_sup (absolute)

Full

CNR

Figure 4: Varying min sup at min conf = 50% for D5C20N10S20 dataset

0.1

1

10

102

103

104

105

50 60 70 80 90

R
u

n
ti

m
e

(s
)

-
(l

o
g

)

min_conf (%)

Full

CNR

102

103

104

105

106

107

50 60 70 80 90

|R
u

le
s|

 -
(l

o
g

)

min_conf (%)

Full

CNR

Figure 5: Varying min conf at min sup (absolute) = 12 for D5C20N10S20 dataset

research in error localization (e.g., (23)). The test suite comes with 1578

correct test cases. We run the test cases and obtain 1578 traces. Each trace

is treated as a sequence. The sequences are of average length of 61 and max-

imum length of 97. It contains 106 different events – the events are the line

numbers of the statements being executed. We call this dataset as TCAS

dataset.

Mining rules from program execution traces can shed light on implicit

rules that govern the behavior of program or which are made by programmers.

Since the analysis is based on traces rather than code, one will not face the

problem of infeasible paths (24), also dynamic inputs and environment will

34

be taken into consideration and the analysis is not restricted to cases where

source code is available (i.e., third-party binary code, network events, etc.).

These rules can potentially be used for detection of abnormal behavior either

corresponding to software bugs, anomalies or intrusion (c.f., (25)). We leave

these potential case studies for future work and focus more on performance

issues.

0.1

1

10

102

103

20 40 60 80 100

R
u

n
ti

m
e

(s
)

-
(l

o
g

)

min_sup (%)

CNR

Full-set not minable

101

102

103

104

105

20 40 60 80 100

|R
u

le
s|

 -
(l

o
g

)

min_sup (%)

CNR

Full-set not minable

Figure 6: Varying min sup (in %) at min conf = 50%

for TCAS dataset

In the experiments with TCAS dataset, we did not mine the full set of

rules as the number of rules are huge and not minable even at support level

of 100%. The traces share many similarities (the longest rule of support

100% is of length 28). The result for mining compressed non-redundant

rule set is shown in Figure 6. It shows that the non-redundant rule mining

algorithm can work in a real application setting where the full-set rule mining

algorithm fails due to scalability issues. This shows a major benefit of mining

compressed non-redundant rules.

8. Related Work

We discuss three areas of research related to our work.

35

Non-Redundant Association Rule Mining & Non-Derivable Itemset

Mining. Zaki and Hsiao mined a non-redundant set of association rules (26)

(see also (27)). Different from the usual association rules, sequential order-

ing is important in a sequential-rule setting. Sequential rules and association

rules are formed from different types of patterns: sequential patterns vs item-

sets. 〈A,B〉 and 〈B, A〉 are regarded as different sequential patterns but the

same itemset. Consequently, their mining processes differ significantly.

The association-rule generation technique of Zaki and Hsiao hinges on the

following equivalence property : Two rules r1 = X1 → X2 and r2 = Y1 → Y2

are considered equivalent iff cit(X1) = cit(Y1) and cit(X2) = cit(Y2), where

cit(X) denotes X’s representative closed itemset. X’s representative closed

itemset is a maximal superset of X supported by the same sequences in the

database. Given a set of equivalent rules, only its representative rules need

to be reported; the rest are considered redundant. This equivalence property

no longer holds in a sequential-rule setting , as illustrated below.

Consider a sequence database consisting of: S1 : 〈A, C,B〉 and S2 : 〈C〉.
Consider two rules r1 = 〈A〉 → 〈C〉 and r2 = 〈A,B〉 → 〈C〉. These two rules

are considered equivalent in an association-rule setting. However, they are

not when sequential ordering is taken into consideration: As sequential rules,

r1 has 100% confidence and 50% support, whereas r2 is not even exhibited

in the database.

Hence, the approaches to mine a non-redundant set of sequential rules and

association rules are different from each other, much as sequential-pattern

mining is different from frequent-itemset mining.

A related study by Calders et al. in (28) discuss non-derivable frequent

36

itemsets. A frequent itemset is non-derivable if its support value can not

be inferred from the support of one or more of its sub-sets. In this study,

different from the study by Calders we focus on both rules and sequential

data. Also, we do not consider inference of support value rather inference of

the rule itself.

Mining Closed Sequential Pattern & Generators. The pioneer work

in closed-pattern mining was CloSpan by Yan et al. in (6). It was further

extended by Wang and Han in (7). Gao et al and Lo et al. mines sequen-

tial generators (19; 18). Compared to mining a full set of frequent patterns

proposed in (1), closed sequential-pattern mining and sequential generator

mining run much faster and potentially reduces the number of mined pat-

terns.

Sequential rules extend the usability and expressiveness of patterns be-

yond the understanding of sequential data. A mined rule represents a con-

straint that its premise is followed by its consequent in sequences. Fur-

thermore, the interestingness of a rule is measured by both support and

confidence. The notion of confidence is useful especially when the support

threshold specified is low. Hence, rules are potentially useful for detecting

and filtering anomalies which violate the corresponding constraints. They

have potential application in detecting errors, intrusions, bugs, etc. Mining

rule-like sequencing constraints from sequential data has also been shown

useful in medicine (e.g., (10)) and software engineering (e.g., (11; 12; 13))

domains.

In this paper, the question how a set of non-redundant rules can be gen-

erated from compact representative patterns, is comprehensively addressed.

37

Issues pertaining to generating a non-redundant set of rules are orthogonal

to that pertaining to generating a closed set of patterns or a set of sequen-

tial generators. We introduce the concept of rule inference to generate a

non-redundant rule set in which all frequent and confident rules are either

reported or inferred by some reported rules.

Generation of Sequential Rules. Spiliopoulou has proposed generating

a full set of sequential rules from a full set of sequential patterns (8). Gen-

eration of a full set of rules is often not scalable. The number of frequent

patterns is exponential to the maximum pattern length, and for every fre-

quent sequential pattern of length l, possibly O(2l) rules can be generated.

Spiliopoulou added a post-mining filtering step to remove some redundant

rules. Unfortunately, the number of intermediate patterns and rules can be

very large.

Recently, studies in (11; 12; 29; 10; 13) mine temporal rules, outlier de-

tection rules, sequential classification rules, progressive confident rules and

recurrent rules respectively. These rules can be considered as variants of se-

quential rules; they add or remove some constraint or information from the

sequential rules. In this study, we focus on the classical sequential rules. More

importantly, different from our study, none of the above studies consider re-

dundancy based on rule inference. Aside from these more general differences,

other specific differences are described in the following paragraphs.

The study in (11) only mines temporal rules of length 2; rules of longer

length are formed by a simple concatenation of length-2 rules. Some length-

>2 rules might be missed or introduced although not having enough signifi-

cance. The study in (12) mines outlier detection rules, however the confidence

38

and support values are only approximated. Also, there is no guarantee that

a complete set of rules are mined. Different from the above studies, we guar-

antee completeness, correctness of reported support and confidence values

and also tightness.

The studies in (29) and (10) mine two different variants of classifica-

tion rules. A mined rule pre-condition is a series of events, while the post-

condition is a classification decision or state. Different from the above, we

consider a different and more general problem where a rule can have a post-

condition composed of multiple events.

Among these 5 studies, nearest to our study is the study in (13) which

mines long recurrent rules by actively removing those shorter rules which are

sub-sequences of the longer rules. In (13), the resultant set of rules will be

more compact, but there will be no semantic, but only syntactic relationship

between the smaller set of rules and the original set of rules. Using the set

of mined rules as a composite filter, replacing a full-set of rules with the

non-redundant set of rules may potentially impact the accuracy of the filter.

Since these studies mined different rules and consider different scenarios,

we focus our comparative study on the classical sequential rules originally

proposed by Spiliopoulou in (8). In the future, we are looking into extending

the study further to address non-redundant rule mining based on classical

rule inference to the above studies.

9. Discussion

In this section, we discuss: (1) Uniqueness of a tight and complete set of

non-redundant rules, (2) More complex rule inference strategy.

39

Uniqueness of a tight & complete set of rules. An interesting question

is given a sequence database and a minimum support threshold, is there only

one unique or are there multiple tight and complete sets of non-redundant

rules ? The following theorem and lemma shows that given a sequence

database and a minimum support threshold, there is only one unique tight

and complete set of non-redundant rules.

Theorem 14. Given a sequence database and a minimum support threshold,

there is only one unique tight and complete set of non-redundant rules.

Proof: Assume for contradiction that ∃ RSet′ 6= RSet and RSet and RSet′

are tight and complete sets of non-redundant rules mined from SeqDB at

min sup. There must exists a rule r1 where r1 ∈ RSet’ and r1 6∈ RSet. Since

RSet is complete ∃ r2 ∈ Rset. r2 → r1. Since RSet′ is tight, 6 ∃r2 ∈ RSet′.

Also since RSet’ is complete ∃ r3 ∈ RSet′. r3 → r2. However, due to

transitivity property of rule inference, r3 → r1. This is a contradiction since

we assume that RSet′ is tight. ut
More complex rule inference strategy. In this study, we consider a

rule to be redundant if there exists another mined rule that infers it. We

guarantee that the resultant non-redundant rule set to be tight and complete.

Another interesting study is to consider more complex rule inference strategy

involving inference by a set of rules: multiple mined rules can infer another

mined rule which can then be rendered removed. The issue of potentially

multiple solution sets (i.e, non-uniqueness of resultant non-redundant rule

set) need to be addressed accordingly.

We leave this interesting direction of study for future work. In this work,

we see that even with the current redundancy inference strategy, there is a

40

huge reduction in the size of mined rules and improvement in the mining

speed at both high-and-low support thresholds.

10. Conclusion & Future Work

In this paper, we propose and characterize a non-redundant set of se-

quential rules. A mined rule is redundant if it can be inferred by another

mined rule. We base our investigation and characterization on past stud-

ies on compact representative sets of sequential patterns. In particular we

address the following questions not studied before in the literature: Can a

non-redundant set of sequential rules be obtained from compact represen-

tative sequential patterns? What types of compact representative patterns

need to be mined to form non-redundant rules? What do we mean by a

non-redundant set of rules? Can we characterize the non-redundant set of

rules? How to use representative patterns to form non-redundant rules? How

much effort is needed to obtain a non-redundant set of rules from compact

representative patterns? Can we design an efficient algorithm to obtain a

non-redundant set of rules from patterns?

To answer the above questions, we investigate various configuration of rule

sets based on composition of 4 different pattern sets. We analyze these rule-

sets based on the properties of completeness (i.e., all rules can be inferred)

and tightness (i.e., no mined rules are redundant). We find that Configura-

tion (Prefix-Key,CS-Closed) – REDUNDANT is the tight and complete set

of non-redundant sequential rules. Additionally, we propose and character-

ize a compressed set of non-redundant rules. A mining algorithm has been

proposed and developed to mine this compressed set of rules. A performance

41

study has been performed to evaluate the benefit of mining compressed non-

redundant rule set. The study shows large improvements in both runtime

and compactness of mined rules over mining a full set of sequential rules.

Runtime was improved up to 5598 times! The number of rules was reduced

up to 8583 times!

As a future work, we plan to investigate the following areas. First, we

would like to try to improve further the efficiency of the mining algorithm.

Also, it is the case that if some events A and B occur frequently in the

background, then rules A → B and/or B → A will both have high support

and high confidence. Yet these rules are coincidental and do not indicate any

meaningful sequential relationship between A and B. We plan to consider

generating non-redundant set of rules while avoiding producing such purely

coincidental rule. For example, by performing a hypergeometric test (Fisher’s

exact test) on the co-occurrence of A and B. We believe the incorporation

of such a test may be an interesting direction for future work.

Furthermore, investigation of application of non-redundant set of sequen-

tial rules to tasks such as web-log analysis, software engineering, etc. will

also be an interesting direction we plan to explore. We believe the efficiency

of non-redundant sequential rule mining and the compactness of mined rules

will facilitate applications of sequential rules to more application domains.

A. Concurrently mining CS- and LS-Closed

To understand how BIDE (7) can be modified to concurrently mine both

CS- and LS-Closed sets, in this section, we first describe some terminologies

mentioned in BIDE’s paper (7), present some lemmas and relate these to

42

how BIDE’s algorithm can be modified.

Definition A.1 (First instance). Given a sequence S which contains a

single event pattern 〈e1〉, the prefix of S to the first appearance of the event

e1 in S is called the first instance of pattern 〈e1〉 in S. Recursively, we can

define the first instance of a (i + 1)-event pattern 〈e1, e2, . . . , ei, ei+1〉 from

the first instance of the i-event pattern 〈e1, e2, . . . , ei〉 (where i ≥ 1) as the

prefix of S to the first appearance of event ei+1 which also occurs after the first

instance of the i-event pattern 〈e1, e2, . . . , ei〉. For example, the first instance

of the prefix sequence 〈A,B〉 in sequence 〈C, A,A, B, C〉 is 〈C, A,A, B〉.

Definition A.2 (I-th last-in-first appear.). For an input sequence S con-

taining a pattern Sp = 〈e1, e2, . . . , en〉, the i-th last-in-first appearance w.r.t.

the pattern Sp in S is denoted as LFi and defined recursively as: (1) if i = n,

it is the last appearance of ei in the first instance of pattern Sp in S; (2) if 1

≤ i < n, it is the last appearance of ei in the first instance of the pattern Sp

in S while LFi must appear before LFi+1. For example, if S=〈C,A, A, B, C〉
and Sp = 〈C, A, C〉, the 2nd last-in-first appearance w.r.t. pattern Sp in S is

the second A in S.

Definition A.3 (I-th semi-max. period). For an input sequence S con-

taining a pattern Sp= 〈e1, e2, . . . , en〉, the i-th semi-maximum period of the

pattern Sp in S is defined as: (1) if 1 < i ≤ n, it is the piece of sequence

between the end of the first instance of pattern 〈e1, e2, . . . , ei−1〉 in S (exclu-

sive) and the i-th last-in-first appearance w.r.t. pattern Sp (exclusive); (2)

if i = 1, it is the piece of sequence in S locating before the 1st last-in-first

43

appearance w.r.t. pattern Sp. For example, if S=〈A,B, C, B〉 and the pat-

tern Sp = 〈A, C〉, the 2nd semi-maximum period of prefix 〈A,C〉 in S is 〈B〉,
while the 1st semi-maximum period of pattern 〈A,C〉 in S is an empty string.

Lemma 15. P is in LS-Closed if and only if there does not exist an e and

i, where event e appears in the i-th semi-maximum periods of P for every S

∈ SeqDB.

Proof: The left to right direction. We first show that if P is in LS-Closed,

then there is no e and i, where event e is in the i-th semi-maximum periods

of P for every S ∈ SeqDB. Taking the contrapositive of the above statement

we have if there is an e and i, where event e is in the i-th semi-maximum

periods of P for every S ∈ SeqDB, then P is not in LS-Closed.

Suppose there is an event e which is in the i-th semi-maximum period of

P for every S ∈ SeqDB, we can then form a longer pattern P ′ by inserting

e between event (i-1) and (i) of P (if i > 1) or by pre-pending e before P

(if i = 1) which will have the same support as P . From the definition of

semi-maximum period, first instances of P ′ and P in SeqDB will be the

same. Hence, P and P ′ have the same projected database. Since there exists

a P ′ which is a super-sequence of P having the same projected database, P

is not in LS-Closed. This is a contradiction. We have proven the left to right

direction of the lemma.

The right to left direction. We next need to show that if there is no e

and i, where event e is in the i-th semi-maximum period of P for every S

∈ SeqDB, P will be in LS-Closed. Again, taking the contrapositive, the

above statement is equivalent to: if P is not in LS-Closed then there exists

44

an e and i, where event e is in the i-th semi-maximum period of P for every

S ∈ SeqDB.

Suppose P is not in LS-Closed, this means that there exists a longer

pattern P ′, where P ′ is a super-sequence of P , the length of P ′ is one event

longer than P and they have the same projected database. It must be the

case then that there exists two shorter patterns X and Y (with X possibly

empty), where:

P = X++e2++Y

P ′ = X++e++e2++Y

Since P and P ′ have the same projected database, for every sequence

S in SeqDB, the first instance of P ′ in each sequence S which is a super-

sequence of P ′ in SeqDB will also be the first instance of P . Let i = the

length of pattern X. From the above, event e must occur between the first

instance of X (exclusive) and the (i + 1)-st last-in-first appearance w.r.t. to

P (exclusive) for every sequence S in SeqDB. From the definition of semi-

maximum period, e must be in the (i + 1)-st semi-maximum period of P for

every S ∈ SeqDB. We have proven the right to left direction of the lemma.

ut

Lemma 16. If P and P ′ have the same projected database and P ′ is a super-

sequence of P , then for an arbitrary series of events evs, P++evs will not be

in LS-Closed.

BIDE employs the search space pruning strategy called backscan prun-

ing: Let evs be an arbitrary series of events, if a pattern P has an event

e appearing in each of its i-th semi-maximum period for all sequence S in

45

SeqDB than P as well as P++ evs are not in CS-Closed. Lemma 15 guar-

antees that any pattern not pruned by the backscan pruning strategy must

be in LS-Closed. Lemma 16 guarantees that there is no point in extending

pattern P if it has been pruned by the backscan pruning strategy.

Using the above two lemmas, one can continue to cut the search space by

using the backscan pruning of BIDE. BIDE employs an online check to see

whether a pattern which is not pruned is in CS-Closed which is called the

BIDE closure checking scheme. We can distinguish members of LS-Closed

that is not a member of CS-Closed by the result of this check. The runtime of

modified BIDE is similar to the original BIDE since we cut the same search

space as BIDE, i.e., search space containing those patterns which are not in

LS-Closed.

References

[1] R. Agrawal, R. Srikant, Mining sequential patterns., in: Proceedings of

IEEE International Conference on Data Engineering, 1995, pp. 3–14.

[2] M. Zaki, SPADE: An efficient algorithm for mining frequent sequences.,

Machine Learning 42 (2001) 31–60.

[3] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu, PrefixS-

pan: Mining sequential patterns efficiently by prefix-projected pattern

growth., in: Proceedings of IEEE International Conference on Data En-

gineering, 2001, pp. 215–226.

[4] J. Han, J. Wang, Y. Lu, P. Tzvetkov, Mining top-k frequent closed pat-

46

terns without minimum support., in: Proceedings of IEEE International

Conference on Data Mining, 2002.

[5] J. Ayres, J. Gehrke, T. Yiu, J. Flannick., Sequential pattern mining

using a bitmap representation., in: Proceedings of SIGKDD Conference

on Knowledge Discovery and Data Mining, 2002, pp. 429–435.

[6] X. Yan, J. Han, R. Afshar, Clospan: Mining closed sequential patterns

in large datasets., in: Proceedings of SIAM International Conference on

Data Mining, 2003.

[7] J. Wang, J. Han, BIDE: Efficient mining of frequent closed sequences.,

in: Proceedings of IEEE International Conference on Data Engineering,

2004, pp. 79–90.

[8] M. Spiliopoulou, Managing interesting rules in sequence mining., in:

Proceedings of European Conference on Principles of Data Mining and

Knowledge Discovery, 1999, pp. 554–560.

[9] R. Agrawal, R. Srikant, Fast algorithms for mining association rules.,

in: Proceedings of International Conference on Very Large Data Bases,

1994, pp. 487–499.

[10] M. Zhang, W. Hsu, M.-L. Lee, Mining progressive confident rules, in:

Proceedings of SIGKDD Conference on Knowledge Discovery and Data

Mining, 2006, pp. 803–808.

[11] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, M.Das, Perracotta: Mining

temporal API rules from imperfect traces., in: Proceedings of Interna-

tional Conference on Software Engineering, 2006, pp. 282–291.

47

[12] D. Lo, S.-C. Khoo, SMArTIC: Toward building an accurate, robust and

scalable specification miner., in: Proceedings of SIGSOFT Symposium

on the Foundations of Software Engineering, 2006, pp. 265–275.

[13] D. Lo, S.-C. Khoo, C. Liu, Efficient mining of recurrent rules from

a sequence database., in: Proceedings of International Conference on

Database Systems for Advanced Applications, 2008, pp. 67–83.

[14] Windows Driver Kit: Driver Development Tools – SpinLock,

http://msdn.microsoft.com/en-us/library/aa469109.aspx.

[15] F. Masseglia, F. Cathala, P. Poncelet, The PSP approach for mining

sequential patterns., in: Proceedings of European Conference on Prin-

ciples of Data Mining and Knowledge Discovery, 1998, pp. 176–184.

[16] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and

performance improvements., in: Proceedings of International Conference

on Extending Database Technology, 1996, pp. 25–29.

[17] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu, FreeSpan:

Frequent pattern-projected sequential pattern mining., in: Proceedings

of SIGKDD Conference on Knowledge Discovery and Data Mining, 2000,

pp. 355–359.

[18] D. Lo, S.-C. Khoo, J. Li, Mining and ranking generators of sequential

patterns, in: Proceedings of SIAM International Conference on Data

Mining, 2008, pp. 553–564.

[19] C. Gao, J. Wang, Y. He, L. Zhou, Efficient mining of frequent sequence

48

generators, in: Proceedings of International Conference on World Wide

Web (poster), 2008, pp. 1051–1052.

[20] J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan

Kaufmann, 2001.

[21] Workshop on Dynamic Analysis, Proceedings of International Confer-

ence on Software Engineering.

[22] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the

effectiveness of dataflow- and controlflow-based test adequacy criteria,

in: Proceedings of International Conference on Software Engineering,

1994.

[23] H. Cleve, A. Zeller, Fault localization: Locating causes of program fail-

ures, in: Proceedings of International Conference on Software Engineer-

ing, 2005.

[24] B. N, S. M, M.-C. Gaudel, S.-D. Gouraud, A machine learning approach

for statistical software testing., in: Proceedings of International Joint

Conferences on Artificial Intelligence, 2007, pp. 2274–2279.

[25] Z.Li, Y. Zhou, PR-Miner: automatically extracting implicit program-

ming rules and detecting violations in large software code., in: Pro-

ceedings of Joint Meeting of European Software Engineering Conference

and SIGSOFT Symposium on the Foundations of Software Engineering,

2005, pp. 306–315.

[26] M. Zaki, C. Hsiao, CHARM: An efficient algorithm for closed itemset

49

mining., in: Proceedings of SIAM International Conference on Data

Mining, 2002.

[27] M. Zaki, Mining non-redundant association rules., Data Mining and

Knowledge Discovery 9 (3) (2004) 223–248.

[28] T. Calders, B. Goethals, Mining all non-derivable frequent itemsets, in:

Proceedings of European Conference on Principles of Data Mining and

Knowledge Discovery, 2002, pp. 74–85.

[29] E. Baralis, S. Chiusano, R. Dutto, Applying sequential rules to protein

localization prediction, Computer and Mathematics with Applications

55 (5) (2008) 867–878.

50

