
CEO: A Cloud Epistasis cOmputing model in GWAS

Zhengkui Wang, Yue Wang
NUS Graduate School for Integrative Sciences and Engineering

National University of Singapore, Singapore
{wangzhengkui,wangyue}@nus.edu.sg

Kian-Lee Tan, Limsoon Wong
School of Computing

National University of Singapore, Singapore
{tankl,wongls}@comp.nus.edu.sg

Divyakant Agrawal
Department of Computer Science

University of California, Santa Barbara, USA
agrawal@cs.ucsb.edu

1

Abstract—The 1000 Genome project has made available a
large number of single nucleotide polymorphisms (SNPs) for
genome-wide association studies (GWAS). However, the large
number of SNPs has also rendered the discovery of epistatic
interactions of SNPs computationally expensive. Parallelizing
the computation offers a promising solution. In this paper, we
propose a cloud-based epistasis computing (CEO) model that
examines all k-locus SNPs combinations to find statistically
significant epistatic interactions efficiently. Our CEO model
uses the MapReduce framework which can be executed both on
user’s own clusters or on a cloud environment. Our cloud-based
solution offers elastic computing resources to users, and more
importantly, makes our approach affordable and available to
all end-users. We evaluate our CEO model on a cluster of
more than 40 nodes. Our experiment results show that our
CEO model is computationally flexible, scalable and practical.

Keywords-GWAS; Cloud computing; MapReduce; Hadoop

I. INTRODUCTION

Discovering epistatic interactions of single nucleotide
polymorphisms (SNPs) is becoming increasingly important
and challenging. From the scientific viewpoint, such inter-
actions capture the effects of multiple genetic variations that
result in complex diseases (e.g, breast cancer, diabetes and
heart attacks). Thus, finding these interactions is a first step
towards understanding the cause of these diseases.

From a computational perspective, it incurs prohibitively
high computation overhead to determine the interactions of
SNPs. Given n SNPs, the number of k-locus is nCk =

n!
k!(n−k)! . Now, typical values for n is hundreds of thou-
sands. In fact, the dataset from the Hapmap project [1]
contains 3.1 million SNPs, and the 1000 Genome project [2]
provides about 9 million new SNPs. These render existing
statistical modeling techniques (which work well for small
number of SNPs) [3] [4] [5] [6] impractical. Likewise,
techniques that enumerate all possible interactions [7] [8]
are not scalable for large number of SNPs. To reduce the
computation overhead, heuristics [3] [4] [5] have also been

1This paper is published in IEEE International Conference on Bioinfor-
matics & Biomedicine,PP. 85-90, Dec 2010, HongKong

developed. These schemes add a filtering step to select
a fixed number of candidate epistatic interactions and fit
them to a statistical model. However, these approaches risk
missing potentially significant epistatic interactions, because
the selection criterion in the filtering step may be biased
towards certain epistatic interaction.

A promising solution to the computation challenge is to
exploit parallel processing. This is the approach we adopt
in this paper. [9] provided a tool for processing only single-
locus and two-locus SNPs analysis using supercomputer sys-
tem on selected types of processors and compilers. However,
it is not easy for researchers to rewrite their own programs
on specialized hardware. Instead, we aim to develop tools
for k-locus analysis with high scalability which can be
easily deployed on any affordable PC-based cluster. There
are already low-cost commercially available cloud platform
(e.g., Amazon EC2) where our techniques can be deployed
and made accessible to all. The pay-as-you-use model of
such commercial platforms also makes them attractive for
end-users.

In this paper, we propose a cloud-based epistasis com-
puting (CEO) model to find statistically significant epistatic
interactions. Our solution is based on Google’s MapReduce
framework [10], and implemented over Hadoop [11], an
open source equivalent implementation of the MapReduce
framework. We develop solutions for determining significant
interactions for two-locus and three-locus as well as comput-
ing the top-k most significant answers efficiently. As a first
cut, we have adopted a brute force approach that examines
all possible interactions among the SNPs. This ensures that
we will not miss any statistically significant interactions.
Our method can be easily extended to deal with heuristics
approaches. We validate our proposed CEO model on a local
cluster of more than 40 nodes. Our results show that our
CEO model is efficient, and that the MapReduce framework
can be effectively deployed for bioinformatics research such
as the GWAS.

The rest of the paper is organized as follows. Section II
provides the problem formulation and reviews some back-



ground knowledge. In Section III, we propose our CEO pro-
cessing model for both two-locus and three-locus analysis.
Section IV reports results of a performance study on our own
cluster. In Section V, we also present an efficient approach
to retrieve the top-k most significant answers, and finally,
we conclude this paper in Section VI.

II. BACKGROUND

In this section, we give the problem formulation, followed
by the MapReduce architecture and programming model.

Figure 1. Data Formats before and after Preprocessing

A. Problem Formulation

Typically a GWAS uses two types of data - genotype data
that codes the genetic information of each individual, and
phenotype data that measures the individual’s quantitative
traits. For simplicity, we use the genotype data which is bi-
allelic (i.e., a locus has allele A and T which can form three
types of genotypes, AA, AT and TT.) and is encoded as 0, 1
and 2 in the raw data. For phenotype data, we consider the
binary form (0 for control and 1 for case). Our model can
handle other types of genotype and phenotype data also. The
figure on the left of Figure 1 shows an example of the raw
data format for a dataset with m samples and 6 SNPs. Each
row contains the individual sample information of raw data.
The first and last columns are the sample id and phenotype.
The rest of the columns are the genotype of each SNP.

For our scheme to work, the raw data has to be pre-
processed to transform the SNP information into the follow-
ing new data format: < SNPi, PT, GT, list(sampleID) >
where SNPi, PT and GT are the ith SNP, phenotype value
and the SNP genotype respectively. list(sampleID) stores
all the sample ids in the data set whose phenotype and SNP
genotype on the SNPi are PT and GT respectively. The
figure on the right of Figure 1 depicts the transformed data.

The pre-processing can be performed in one MapReduce
job efficiently. For example, pre-processing 100,000 SNPs
only takes 76 seconds on a 43-node cluster. As this is not the
focus of our work, we shall not discuss this further. For the
rest of this paper, we assume that the input to our algorithm
is the pre-processed data.

The goal of our research is to identify a set of most
significant SNP pairs (epistatic interactions) that correlate to
the phenotype. To measure the association between differ-
ent orders epistatic interaction and phenotype in our CEO
model, we adopt the χ2-test [12], which is widely used.
Moreover, as our CEO framework assumes no statistical
model fitting and thus parameter free, the χ2-test is effective
in capturing interactions of arbitrary order.

Take two order epistatic interactions as an example. Let
n0(j,k) denote the number of samples in the control group
whose first locus’s genotype code is ‘j’ and second locus’s
genotype code is ‘k’, where j and k take on values 0, 1 or 2.
Likewise, we can denote n1(j,k) for the case group. For two-
locus, we have 18 combinations (2 ×3 × 3). Moreover, let
n =

∑1
i=0

∑2
j=0

∑2
k=0 ni(j,k), ni =

∑2
j=0

∑2
k=0 ni(j,k),

and nj,k =
∑1

i=0 ni(j,k). The null hypothesis behind the χ2-
test is that there is no association between two-locus epistatic
interaction and phenotype. We can calculate the χ2-test value
of this epistatic interaction using the following formula:

χ2 =
∑1

i=0

∑2
j=0

∑2
k=0

(ni(j,k)−nin(j,k)/n)2

nin(j,k)/n

As the χ2-test statistic follows the χ2 distribution, thus
corresponding significance level can be obtained after Bon-
ferroni correction. The lower the value is, the more confident
we are to reject the null hypothesis.

The resultant p-value for the two-locus epistatic interation
can be obtained as P (x>C) where C is the χ2-test value, and
P(x) is the probability at value x under the χ2 distribution.

The above expressions can be easily generalized for three-
locus interaction. We shall omit that due to space constraints.

B. The MapReduce Architecture and Programming Model

Under the MapReduce framework, the system architec-
ture of a cluster consists of two kinds of nodes, namely
the NameNode and DataNode. The Namenode works as a
master of the file system, and is responsible for splitting
data into blocks and distributing the blocks to the data
nodes (DataNodes) with replication for fault tolerance. A
JobTracker running on the NameNode keeps track of the
job information, job execution and fault tolerance of jobs
executing in the cluster. A job may be split into multiple
tasks, each of which is assigned to be processed at a
DataNode.

The DataNode is responsible for storing the data blocks
assigned by the NameNode. A TaskTracker running on
the DataNode is responsible for the task execution and
communicating with the JobTracker.

The MapReduce computational paradigm divides the pro-
cessing job into small tasks, each of which runs on different
nodes to parallelize the processing in a large cluster. The
computation of MapReduce follows a fixed model with a
map phase followed by the reduce phase. The MapReduce
library is responsible for splitting the data into chunks
and distributing each chunk to the processing units (called



(a)SNP-pairs representation and
distribution to reducers

(b)Two-locus epistatic analysis example with 6 SNPs

Figure 2. Examples of data preprocessing and two-locus epistatic analysis using CEO model

mappers) on different nodes. The mappers process the
data read from the file system and produce a set of interme-
diate result which will be shuffled to the other processing
units (called reducers) for further processing. Users can
set their own computation logic by writing the map and
reduce functions in their applications.

Map phase : The map function is used to process
the (key, value) pairs (k1, v1) which are read from data
chunks. Through the map function, the input set of (k1, v1)
pairs are transformed into new set of intermediate (k2, v2)
pairs. The MapReduce library will sort and partition all the
intermediate pairs and pass them to the reducers.

Shuffling phase : The partitioning function is used
to partition the emitted pairs from the map phase into
M partitions on the local disks, where M is the total
number of reducers. The partitions are then shuffled to
the corresponding reducers by the MapReduce library.
Users can specify their own partitioning function or use the
default one.

Reduce phase : The intermediate (k2, v2) pairs with the
same key that are shuffled from different mappers are
sorted and merged together to form a values list. The key and
the values list are fed to the user-written reduce function
iteratively. The reduce function makes a further computa-
tion to the key and values and produces new (k3, v3) pairs.
The output (k3, v3) pairs are written back to the file system.

III. CEO PROCESSING MODEL

In this section, we introduce our CEO processing model
using MapReduce. In our system, we provide several compo-
nents including two-locus epistatic analysis and three-locus
epistatic analysis.

A. Two-locus epistatic Analysis
For two-locus epistatic analysis, we aim at finding sta-

tistically significant interaction among all SNP pairs. For
each pair of SNP combination, the p-value is computed (as
described in Section II) to determine its signficance. For N
SNPs in the data set, we need to calculate N(N−1)

2 two-
locus SNPs combinations, as depicted in Figure 2(a). Each
row represents a subset of SNP-pair computations where the
starred node has to be paired up with a circled node. Thus,
row 1 has (N-1) pairs, row 2 has (N-2) pairs and so on.

Our goal essentially is to split these N(N−1)
2 pairs of SNPs

across all nodes to be processed in parallel. We have two
issues to address here: (a) How do we split the SNP pairs
across all nodes? (b) How to perform two-locus analysis
under the MapReduce framework?

We shall first look at issue (a). Given N SNPs and M
reducers, we consider the following two simple strate-
gies:

Naive Model. The most straightforward approach is to
simply distribute approximately equal number of rows to
each reducer. This is depicted by the square brackets on
the LHS of Figure 2(a) where the first N

M rows are assigned
to the first reducer, the next N

M rows are assigned to the
second reducer and so on. Here, the number of SNP-pairs
can be easily determined without any additional meta-data,
e.g., for row 1, we know that we need to pair up SNP1

(starred node) with all other remaining SNPs (circled node),
resulting in (N-1) pairs.

Greedy Model. Under the naive model, some reducers
are more heavily loaded than others, e.g., reducer one is
likely to be a bottleneck. To achieve better load balancing,
we also examine a greedy solution. Ideally, each reducer
should process N(N−1)

2M SNP pairs. Therefore, starting from
the first row, we seek to allocate consecutive rows to a



reducer such that the total number of SNP pairs for
these rows is closest to N(N−1)

2M . In Figure 2(a), the square
brackets on the RHS show that, under the greedy scheme,
each reducer may be assigned different number of rows to
process. However, the computation task in each reducer
is about the same. Like the naive scheme, this method also
requires minimum meta-data to be transferred.

As we shall see in our experimental study, (see Sec-
tion IV), it turns out that these schemes are surprisingly
effective (in the sense that the processing cost is almost
proportional to the number of pairs/triples to be computed).

We are now ready to look at issue (b). WLOG, let
us assume we have M reducers. Under the MapRe-
duce framework, the mapper essentially determines the
reducer in which a SNP pair should be sent to, and
the reducer computes the statistical significance of each
SNP pair allocated. Figure 2 (b) shows how the CEO model
processes the data having 6 SNPs.

Map Phase: Each mapper reads a chunk of the input
(pre-processed) data. For each SNP, it then determines the
reducers which this SNP should be shuffled to. We
shall discuss how the reducers are determined later. It
suffices now to assume that this information is available
to the mapper. We note that one SNP information may
be shuffled to multiple different reducers. For exam-
ple, in Figure 2(a), SNPN needs to be shuffled to all
the reducers. This, unfortunately, is not supported by
the MapReduce framework which allows only one output
(key, value) pair emitted from a mapper to be shuffled to
one reducer.

We resolve this problem by replicating and emitting
as many copies of a SNP as required. In addition, each
such pair is “tagged” with the corresponding reducer
identifier to distinguish the reducer that the pair should
be shuffled to. In other words, for each reducer for
which an SNP, SNPi, should be shuffled to, we gener-
ate and emit a (key, value) pair where key is set as
SNPi.reducer marker (reducer marker is the identifier
of the reducer that this SNPi should be shuffled to), as
shown in the Figure 2(b) subgraph (2), and value contains
the rest of the SNP information including the genotype,
phenotype and the sample id list. In this way, all the
output (key, value) pairs with the same reducer marker
are shuffled to the same reducer.

Shuffling Phase: We write our own partitioning function
to parse the reducer marker in the key and partition the
emitted pairs to multiple reducers.

Reduce Phase: The MapReduce library sorts and
merges the intermediate result based on the key. The
(key, value) pairs with the same key, are grouped together
as (key, set(values)) pair where set(values) is a set of
values for that key, as shown in Figure 2(b) subgraph
(3). The (key, set(values)) pairs are supplied to user’s
reduce function in sorted order. Because all the keys at

the reducer have the same reducer_marker, the keys
will be sorted only based on the SNPi. Thus, the data for
SNPi are sent to the reduce function before those for
SNPj where i < j. This means that the starred nodes are
supplied earlier than the circled nodes. Therefore, in each
reducer, only the starred nodes need to be cached in the
main memory. As the circled nodes are received, they can
be immediately paired up with the starred nodes to compute
its p-value, after which the circled nodes can be discarded.
As such, our CEO model significantly reduces the memory
utilization.

In our processing model, the two-locus analysis finishes
in one MapReduce job.

Figure 3. All the Three-locus SNPs having SNP1

B. Three-locus epistatic Analysis

Three-locus epistatic analysis aims at finding statistically
significant interaction between three SNPs. Here we propose
one way of doing three-locus epistatic analysis using the
output of two-locus epistatic analysis. Note that the output
data of two-locus analysis are written to the file system.

As what we have discussed before, from each row in
Figure 2(a), we can get all the needed two-locus SNPs
combinations involving the starred node SNP. Further, if
we combine any two two-locus SNPs from one row, we
can get all possible three-locus SNPs involving the starred
node SNP. Figure 3 shows an example of finding all the
three-locus SNPs with SNP1 using the two-locus SNPs
information from the first row in 6 SNPs example. In
the same way, all the possible three-locus SNPs involving
SNPm can be generated from the combinations of two-locus
SNPs of the row whose starred node is SNPm. For three-
locus epistatic analysis, the same processing model can be
adopted here. All the two-locus SNPs information which are
derived from the same row need to be processed in the same
reducer to get all the three-locus SNPs.

Map phase: The two-locus SNPs data is split into small
chunks and each chunk is assigned to each mapper by the
MapReduce library. As what has been mentioned above, the
two-locus SNPs derived from the same row must be shuffled
to the same reducer. To achieve this, the key in the output
(key, value) pair from Map phase is set as SNPi.SNPj ,
where SNPi and SNPj are the starred node and the circled
node respectively.

The advantage of setting the output key in this format
is that, after sorting the intermediate result according to



 0

 5

 10

 15

 20

 25

 30

80 120 240 360 480

R
un

ni
ng

 T
im

e(
M

in
s)

Number of Reducers

Naive Model
Greedy Model

(a) Effect of number of
reducers on completion time

 0

 10

 20

 30

 40

 50

 60

10 20 30 40

R
un

ni
ng

 T
im

e(
M

in
s)

Cluster Size

(b) CEO Scalability on
different clusters

 0

 5

 10

 15

 20

 25

10000 20000 50000 100000

R
un

ni
ng

 T
im

e(
H

rs
)

Number of SNPs

(c) Two-locus epistatic
analysis on 43-node cluster

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

500 800 1000 2000

R
un

ni
ng

 T
im

e(
H

rs
)

Number of SNPs

(d) Three-locus epistatic
analysis on 43-node cluster

Figure 4. (a), (b) and (c) are the evaluation results for two-locus epistatic analysis. (d) is the performance evaluation result for three-locus epistatic analysis

the keys by MapReduce library, all the two-locus SNPs
from one row can be grouped closely and fed into the
reduce function continuously. In the reduce phase, after
processing all the two-locus SNPs from one row, the data
can be discarded from the memory to minimize the memory
utilization.

Shuffling phase: Our specified partitioning function is
used to partition the pairs according to SNPi value in the
integer part of the key. The intermediate result from the
mappers with the same SNPi will be shuffled to the same
reducer.

Reduce phase: After sorting and merging the intermediate
result, the two-locus SNPs information with smaller starred
node, will be supplied to reduce function earlier than
the others. Combining any two two-locus SNPs at the
reducer, we get the three-locus SNPs and calculate its
statistical significance. The result is then output to the file
system.

The load balancing algorithm can also be used here for
optimization. Three-locus analysis can be performed using
one MapReduce job using the two-locus SNPs data.

IV. EXPERIMENTS AND RESULTS

Apache Hadoop is an open source equivalent implemen-
tation of the MapReduce framework, running on HDFS
(Hadoop distributed file system). We run a series of experi-
ments on our local cluster of more than 40 nodes to evaluate
our model in Hadoop. Each node consists of aX3430 4(4)
@ 2.4GHZ CPU running Centos 5.4 with 8GB memory and
2x 500G SATA disks. Moreover, since our tasks at hand are
computationally intensive, we set the number of reducers
per node to be equal to the number of cores at the node,
which is 4. This guarantees that each reducer can get
one core. Therefore, there are a total of 4*N reducers
which can be run simultaneously on a N-node cluster.

Effect of number of reducers: For Hadoop application, a
user can specify the number of reducers to be used in
one job. Because we have preconfigured the total number
of reducers to be 4*N for a N-node cluster, this may
require multiple phases to complete a job. For example, if

N=30, then by specifying 120 reducers in one job, we
can complete it in 1 phase; with 360 reducers, it will
then take 3 phases to complete the job. Our first experiment
is to investigate the optimal number of reducers that
should be set for one job based on a given cluster size. This
experiment is conducted with a 10,000 SNPs dataset on a
30-node cluster. Note that all the datasets we used include
2000 samples. Figure 4(a) presents the running time for both
the Naive and Greedy models. As shown, there is a certain
optimal number of reducers that should be used. When
the number of reducers is too small, the computation
resources are not fully utilized. On the other hand, when
the number of reducers is too large, the processing may
require multiple phases which increases the communication
overhead. We note that while the Greedy model is optimal
when the number of reducers corresponds to the actual
configured value (i.e., 120), the Naive model is optimal when
a larger number of reducers is used (i.e., 240). This is
because for the Naive model, a larger number of reducers
means that the reducer with the most skewed load will be
allocated smaller load. In fact, as the number of reducers
increases, the Naive scheme performs as well as the Greedy
model.

Based on the above results, for the following experiments,
we only use the Greedy model.

Scalability: In this experiment, we study the scalability
of the CEO model as the system resources increase. Figure
4(b) shows the completion time analyzing 10,000 SNPs
as the cluster sizes increases from 10 to 40 nodes. The
reducer numbers in each job are set as 40, 80, 120 and
160 respectively. From the result, we can see that when more
nodes are added for processing, the completion time reduces.
In fact, we observe a linear speedup in performance. When
we double the resources, the execution time reduces to half,
such as the execution time on 10/20/40-node clusters.

Two-locus analysis: In this experiment, we study the
performance of the CEO model for two-locus analysis as we
vary the number of SNPs processed. Figure 4(c) shows the
processing time for the data sets with 10,000, 20,000, 50,000
and 100,000 SNPs on a 43-node cluster. As expected, the



processing time is essentially proportional to the number of
interacting SNP-pairs to be evaluated. We observe that even
for 100,000 SNPs, the CEO model only takes 25 hours to
complete the processing. This shows that our CEO model is
effective.

Three-locus analysis: We also evaluated the performance
of three-locus analysis on the 43-node cluster. The result is
presented in Figure 4(d) for SNP size of 500, 800, 1,000 and
2,000. We observe that the running time is also proportional
to the number of SNP-triples. This confirms that the CEO
scheme can effectively balance the load across all nodes.

V. TOP K RETRIEVAL

In our system, we store the result of the two-locus and
three-locus analysis in HDFS to allow users to do further
analysis. One important function that we can further provide
is to allow users to retrieve only the top-k most significant
results with the lowest p-value. We have also provided such
a capability in our system under the MapReduce framework.
The basic idea is to split the output of the two/three-locus
analysis into chunks. Each chunk is then assigned to one
mapper. Next, each mapper will select the top-k most
significant pairs/triples and shuffled these results to one
reducer. Finally, the reducer can determine the global
top-k answers based on all local top-k ones it receives. Our
top-k scheme is very efficient. For example, retrieving the
top 10 most significant SNPs information from the two-locus
output in the size of 54GB only takes 132 seconds in the
43-node cluster.

VI. CONCLUSION

According to [9], it would require 1.2 years to do the
pairwise epistasis testing of 500,000 SNPs using the serial
program on a 2.66 GHz single processor without parallel
processing. In this paper, we have provided a cloud epistatic
computing model (CEO) for large scale epistatic interactions
using the MapReduce framework. Our experimental results
demonstrated the practical advantage of using the CEO
model to exhaustively search two-locus epistatic interaction.
We also provided a three-locus analysis approach as an
example of k-locus analysis using our model.

More importantly, by using the MapReduce framework,
we have shown that large scale data analysis in GWAS can
be easily performed over commodity computers or cloud
resources. The scalability of the MapReduce framework to
thousands of machines with good fault tolerance will make
such compute-intensive computations acceptable.

Currently, we have used the popular χ2-test to measure the
interaction effect. Our CEO model can be easily adapted to
handle other methods that utilize contingency table informa-
tion to obtain interaction effect (eg,. likelihood ratio, normal-
ized mutual information, uncertainty coefficient). Also, for
the existing methods involving a filtering step and statistical
model fitting step, our work can be used as a filtering step to

retrieve the top-k most significant interactions for follow-up
analysis.

As future work, we plan to look at other strategies to
allocate SNPs to nodes. For example, a Best-fit Model may
assign the next available row to the reducer with the
least number of SNP pairs. Alternatively, an Ideal Model
may assign the SNP pairs in a round robin fashion to the
reducers so that every reducer will end up with the
same number of SNP-pairs. We will explore such methods
to study their effectiveness.

The CEO source code can be downloaded at http :
//www.comp.nus.edu.sg/ ∼ wangzk.

ACKNOWLEDGMENT

Zhengkui Wang and Yue Wang are supported by the NUS
NGS scholarships.

REFERENCES

[1] Hapmap Project: http://hapmap.ncbi.nlm.nih.gov/

[2] 1000 genome Project: http://www.1000genomes.org/page.php

[3] T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange.
Genome-wide association analysis by lasso penalized logistic
regression. Bioinformatics, 25(6):714–721, mar 2009.

[4] M. Y. Park and T. Hastie. Penalized logistic regression for
detecting gene interactions. Biostat, 9(1):30–50, jan 2008.

[5] J. Wu, B. Devlin, S. Ringquist, M. Trucco, and K. Roeder.
Screen and clean: a tool for identifying interactions in genome-
wide association studies. Genetic Epidemiology, 34(3):275–
285, apr 2010. PMID: 20088021.

[6] C. Yang, X. Wan, Q. Yang, H. Xue, and W. Yu. Identifying
main effects and epistatic interactions from large-scale SNP
data via adaptive group lasso. BMC Bioinformatics, 11(Suppl
1):S18, 2010.

[7] X. Zhang, S. Huang, F. Zou, and W. Wang. TEAM: efficient
two-locus epistasis tests in human genome-wide association
study. Bioinformatics, 26(12):i217–227, Jun 2010.

[8] X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. L. S. Tang,
and W. Yu. BOOST: a fast approach to detecting gene-gene
interactions in genome-wide case-control studies. 1001.5130,
Jan 2010.

[9] L. Ma, H. B. Runesha, D. Dvorkin, J. Garbe, and Y. Da.
Parallel and serial computing tools for testing single-locus
and epistatic SNP effects of quantitative traits in genome-wide
association studies. BMC Bioinformatics, 9(1):315, 2008.

[10] J. Dean, S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Proceedings of the 6th symposium
on operating systems design and implementation (OSDI), 137-
150, December 2004

[11] Apache Hadoop Project: http://hadoop.apache.org/

[12] D.J. Balding. A tutorial on statistical methods for popula-
tion association studies. Nature Reviews Genetics 7,781-791,
October 2006


