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Abstract—Protein complexes are important for understand-
ing principles of cellular organization and functions. With
the availability of large amounts of high-throughput protein-
protein interactions (PPI), many algorithms have been pro-
posed to discover protein complexes from PPI networks.
However, none of existing algorithms takes into consideration
the fact that not all the interactions in a PPI network take
place at the same time. As a result, predicted complexes often
contain many spuriously included proteins, precluding them
from matching true complexes.

We propose two methods to tackle this problem: (1) We
utilize cellular component Gene Ontology (GO) terms to
decompose PPI networks into several smaller networks such
that the proteins in each decomposed network are annotated
with the same cellular component GO term. (2) Hub proteins
are more likely to fuse clusters that correspond to different
complexes. To avoid this, we remove hub proteins from PPI
networks, and then apply a complex discovery algorithm on the
remaining PPI network. The removed hub proteins are added
back to the generated clusters afterwards.

We tested the two methods on the yeast PPI network down-
loaded from BioGRID. Our results show that these methods
can improve the performance of several complex discovery
algorithms significantly. Further improvement in performance
is achieved when we apply them in tandem.
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I. I NTRODUCTION

High-throughput experimental techniques have produced
large amounts of protein interactions, which makes it pos-
sible to discover protein complexes from protein-protein
interaction (PPI) networks. A PPI network can be modeled
as an undirected graph, where vertices represent proteins and
edges represent interactions between proteins. Protein com-
plexes are groups of proteins that interact with one another,
so they are usually dense subgraphs in PPI networks. Many
algorithms have been developed to discover complexes from
PPI networks [1; 2; 3; 4; 5; 6; 7].

As a model organism,Saccharomyces cerevisiae (baker’s
yeast) has been extensively studied, and its PPI network
is now relatively complete. However, the performance of
existing complex discovery algorithms on the yeast PPI
network is not very satisfactory. One reason behind this
is that each protein do not necessarily participate in all
its known interactions simultaneously. Existing complex

discovery algorithms do not take this into consideration. As
a result, the clusters generated often contain extra proteins
that preclude them from matching true complexes. An ideal
solution would be to decompose the PPI network into several
smaller networks such that interactions within each smaller
network are contextually coherent. In reality, it is very
difficult to know which subset of interactions take place
together. Here we choose to use cellular component GO
terms to decompose PPI networks because a protein complex
can be formed only if its proteins are localized within the
same compartment of the cell. We use only localization GO
terms that are relatively general for decomposition.

The existence of hub proteins is another factor that makes
it difficult for complex discovery algorithms to decide the
boundary of clusters. Hub proteins are proteins that have a
lot of neighbors in the PPI network, and these neighbors
often belong to multiple complexes [8]. As a result, hub
proteins often fuse clusters that correspond to different
complexes. To avoid this, we remove hub proteins from PPI
networks prior to clustering, and then add them back to the
generated clusters after clustering.

We tested the above methods on the yeast PPI network
downloaded from BioGRID [9]. The results show that these
methods can improve the performance of existing complex
discovery algorithms significantly.

The rest of the paper is organized as follows. Section II
describes the two methods for decomposing PPI networks.
Section III reports and discusses experiment results. Section
IV concludes the paper.

II. D ECOMPOSINGPPI NETWORKS

A. The GO term decomposition method

A protein complex can only be formed if its proteins are
localized within the same compartment of the cell. Hence
we use cellular component GO terms to decompose a given
PPI network into several smaller PPI networks such that
all proteins in each smaller network are annotated with the
same localization GO term. We use only localization GO
terms that are relatively general for decomposition. There
are several reasons for this. First, it is relatively easy to
obtain the rough localization of proteins, compared with
obtaining the precise and specific localization of proteins.



Secondly, very specific GO terms are annotated to very few
proteins. Using them to decompose PPI networks produces
many small fragments, and lots of information may be lost
due to the decomposition. Finally, some very specific cellular
component GO terms correspond to complexes, and they are
just as hard to decide as complexes.

We use a thresholdNGO to select GO terms for decompo-
sition, whereNGO should be large. The selected GO terms
are annotated to at leastNGO proteins, and none of their
descendant terms is annotated to at leastNGO proteins. If
a GO term is selected, then none of its ancestor terms or
descendant terms will be selected.

Given a selected GO term, we first remove all the proteins
that are not annotated to the term from the given PPI
network, and then apply a complex discovery algorithm on
the resultant network. This process is repeated for every
selected GO term. The final set of clusters is the union of the
clusters discovered from every filtered network. Duplicated
clusters are removed.

B. The hub removal method

Hub proteins are those proteins that have many neighbors
in the PPI network. We call a protein ahub protein if it
has at leastNhub neighbors, whereNhub is an integer. A
hub protein often connects proteins that belong to different
complexes, which makes it hard to decide the boundary of
the complexes and the membership of the hub proteins.

To alleviate the impact of the hub proteins, we first remove
hub proteins from a given PPI network, and then use an
existing complex discovery algorithm to find clusters from
the remaining network. Hub proteins are then added back
to the generated clusters. We add a hub proteinu back to a
clusterC based on the connectivity betweenu andC, which
is defined as follows:

Connectivity(u,C) =

∑
v∈C w(u, v)

|C|

wherew(u, v) is the weight of edge(u, v), and it is calcu-
lated from the original PPI network using iterative AdjustCD
[7] before removing hubs. If there is no edge betweenu and
v, thenw(u, v)=0. A hub proteinu is added to a clusterC
only if Connectivity(u,C) ≥ hub add thres.

C. Combining the two methods

We combine the two methods together by first removing
hub proteins from the given PPI network, and then decom-
posing the resultant PPI network using selected GO terms.
The whole process is described below:

1) Let C be the set of clusters generated. InitiallyC is
empty.

2) Remove hub proteins that have at leastNhub neighbors
from the given PPI networkG. Let G′ be the resultant
network.

3) Let g1, · · · , gm be the localization GO terms that are
selected using thresholdNGO. For eachgi, do the
following:

• Remove proteins that are not annotated withgi

from G′. Let G′

i be the resultant network.
• Apply a complex discovery algorithm onG′

i to
find the set of clustersCi.

• C=C ∪ Ci;

4) Remove duplicated clusters fromC.
5) Add hub proteins back to clusters inC.

III. R ESULTS

In this section, we first describe the datasets and the
evaluation method used in our experiments, and then study
the impact of the two decomposition methods on the perfor-
mance of several complex discovery algorithms.

A. Experiment settings

PPI data. We used the yeast PPI dataset downloaded from
BioGRID [9] (version 3.0.64) in our experiments. We kept
only physical interactions. Self-interactions are removed.
The dataset contains 5765 proteins and 52096 binary in-
teractions.
Evaluation methods. Let S be a cluster andC be a
reference complex. We define the matching score between
S andC as the Jaccard index betweenS andC.

match score(S,C) =
|S ∩ C|

|S ∪ C|

Given a thresholdmatch thres, if match score(S,C) ≥
match thres, then we sayS andC match each other.

Given a set of reference complexesC =
{C1, C2, · · · , Cn} and a set of predicted complexes
P = {S1, S2, · · · , Sm}, recall and precision are defined as
follows:

Recall =
|{Ci|Ci ∈ C ∧ ∃Sj ∈ P, Sj matches Ci}|

|C|

Precision =
|{Sj |Sj ∈ P ∧ ∃Ci ∈ C, Ci matches Sj}|

|P|

There is often an inverse relationship between precision and
recall. We use the harmonic mean of recall and precision,
called F1-measure, to assess the overall performance.

Two sets of reference complexes are used in our exper-
iments. One set of complexes are hand-curated complexes
from MIPS [10], and the other set is generated by Aloy et
al. [11]. We combine these two sets of complexes, and keep
only those complexes with size no less than 4. Duplicated
complexes are removed. Table I shows the number of
complexes, number of proteins, the maximal, average and
median size, and the average and median density of the
complexes in the combined reference complex set.
Complex discovery algorithms. We used four complex
discovery algorithms in our study. MCL [1] and RNSC



size density
#cmplx #proteins max avg median avg median

206 1318 95 13.60 8 0.631 0.700

Table I
STATISTICS OF REFERENCE COMPLEXES. ONLY COMPLEXES OF SIZE

≥4 ARE CONSIDERED.

algorithms parameter settings
MCL -I 1.8
RNSC -e10 -D50 -d10 -t20 -T3
IPCA -T0.4
CMC overlap thres=0.5, merge thres=0.4

Table II
PARAMETER SETTINGS OF COMPLEX DISCOVERY ALGORITHMS.

[3] generate a partition of the PPI network, and they do
not allow overlap among clusters. IPCA [6] and CMC [7]
allow overlap among clusters. Unless stated explicitly, the
parameters of the four algorithms are set as in Table II.
Parameters not shown are set to their default values.

B. The GO term decomposition method

The first experiment studies the impact of the GO term
decomposition method on the performance of the four algo-
rithms. We use annotations in Gene Ontology [12] (dated 4
June, 2010) to select GO terms for decomposition.

Figure 1 shows the F1-measure of the four complex
discovery algorithms when differentNGO thresholds are
used for selecting localization GO terms. Overall, the per-
formance of all the four algorithms improves. The precision
of all the four algorithms is improved considerably under
all the differentNGO values. The recall is improved as well
when NGO ≥ 300. When NGO=30 or 100, recall of the
four algorithms decreases. This is mainly because the GO
terms selected are too specific in these two cases and too
much information is lost. Hence we should use GO terms
that are relatively general to decompose PPI networks to
avoid breaking the whole network into tiny fragments. We
have also tested other parameter settings of the four complex
discovery algorithms besides that shown in Table II. The
improvements achieved are all very similar to Figure 1.

We also compared the above improvement with that of
using random protein groups for decomposition. Random
protein groups are generated by replacing proteins of the
selected GO terms with randomly picked proteins. We
generated 100 sets of random protein groups and use their
mean F1-measure as the result. Figure 2 shows that using
random protein groups to decompose the PPI network de-
crease the performance of the four algorithms greatly, where
the random protein groups were generated from GO terms
selected at a threshold of 500.

C. The hub removal method

The second experiment studies the impact of the hub
removal method on the performance of the four algo-
rithms. Figure 3 shows the F1-measure of the four com-
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Figure 1. F1-measure of the four complex discovery algorithms when
different sets of GO terms are used for decomposition. The X-axis is
match thres. “GOn” means that the GO terms are selected using a
threshold ofn. For example, “GO1000” means that the GO terms are
selected using a threshold of 1000. “original” means that complex discovery
is performed on the original network without decomposition.
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Figure 2. F1-measure of the four complex discovery algorithms when
random protein groups are used for decomposition.

plex discovery algorithms when differentNhub thresholds
are used for removing hub proteins. We use parameter
hub add thres to control when to add a hub back to
a cluster. In our experiments, we found that the proper
range forhub add thres is [0.2, 0.9]. In the rest of the
experiments, we sethub add thres to 0.3. The hub removal
strategy is not helpful for RNSC and MCL, but is very
helpful for IPCA and CMC. The main improvement of IPCA
and CMC is on precision. The recall of the four algorithms
decreases greatly whenNhub ≤ 30, which indicates that too
many hub proteins are removed whenNhub is too small.

D. Combining the two methods

The last experiment is to examine the combined impact of
the two decomposition methods. Figure 4 shows the results.
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Figure 3. F1-measure of the four complex discovery algorithms when
different Nhub values are used for removing hubs. The X-axis is
match thres. “h=n” means that a value ofn is used to define hub
proteins. For example, “h=100” means proteins with at least 100 neighbors
are regarded as hubs. “original” means that complex discoveryis performed
on the original network without hub removal.
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Figure 4. F1-measure of the four complex discovery algorithms when
the two methods are performed in tandem. The X-axis ismatch thres.
“original” means the original network with neither hub removal nor GO
term decomposition. “GO500” means that the network is decomposed using
GO terms selected at a threshold of 500. “Hub50” means that hub proteins
with at least 50 neighbors are removed. “Hub50+GO500” means that first
hub proteins with at least 50 neighbors are removed, and the network is
then decomposed using GO terms selected at a threshold of 500.

RNSC and MCL do not benefit much from the hub removal
method, so for these two algorithms, combining the two
decomposition methods yields little improvement compared
with using GO decomposition alone. The performance of
IPCA and CMC improve when both methods are used.

IV. D ISCUSSION

In this paper, we proposed two methods to decompose
PPI networks for complex discovery. We used four complex
discovery algorithms to experimentally study the effective-

ness of the two methods. The results show that the two
decomposition methods help improve the performance of the
four algorithms significantly. For the GO term decomposi-
tion method, we recommend using localization GO terms
that are relative general because their annotations are easier
to obtain and they also preserve more information than GO
terms that are very specific.
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