Increasing Confidence of
Protein-Protein Interactomes

Outline

Reliability of experimental PPI data
Identification of false positives

— Interaction generality

— Interaction generality 2

— Interaction pathway reliability

— FS Weight

— Meso-scale network motifs
Identification of false negatives
Uses of (cleansed) PPI data

— Protein function prediction w/o homology info
— Protein complex prediction
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How reliable are experimental
protein-protein interaction data?

Why Protein Interactions?

« Complete genomes * Proteins, not genes,  « Proteins function by

are now available are responsible for interacting w/ other
« Knowing the genes is ~ Many cellular activities p_rotems and
not enough to biomolecules

understand how
biology functions

“INTERACTOME”
GENOME PROTEOME
-
S
i a1
il ‘-11
=
-

Slide credit: See-Kiong Ng
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TINUS
High-Tech Expt PPI Detection Methsas™

Yeast two-hybrid assays

Mass spec of purified complexes (e.g., TAP)
Correlated mRNA expression

Genetic interactions (e.g., synthetic lethality)

FACT: Generating large amounts of
experimental data about protein-protein
interactions can be done with ease.

Slide credit: See-Kiong Ng
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EINUS
Key Bottleneck &=

* Many high-throughput expt detection methods for
protein-protein interactions have been devised
* But...

Slide credit: See-Kiong Ng
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ﬁ?. N
Some Protein Interaction Data Se:-:'.‘_"g'-

Sprinzak et al., IMB, 327:919-923, 2003

Experimental method category* MNumber of interacting pairs Co-localization® (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A: Small scale Y2H 1861 73 62
AQ: GY2H Uetz et al. (published results) 956 66 45
Al: GY2ZH Uetz et al. (unpublished results) 516 53 33
A2 GYZ2H Ito et al. (core) 798 64 40
A3 GY2H Ito et al. (all) 3655 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 77 75
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography A48 93 88
El: Immunological, direct 1025 a0 a0
E2: Immunological, indirect 34 100 a3
2M: Two different methods 3 87 85
3M: Three different methods 1212 92 94
4M: Four different methods 570 95 93

N
Large disagreement betw methods

e GY2H: genome-scale Y2H
o 2M, 3M, 4M: intersection of 2, 3, 4 methods

Copyright 2007 © Limsoon Wong

L : EBINUS
Quantitative Estimates NS
Sprinzak et al, JIMB, 327:919-923, 2003

Expected proportion of co-localized
pairs among true interacting pairs

Lt

D=TP+] +El——1‘m
where
e [} = fraction of pairs with en-localized pair mates in data saf studied
¢ B = fraction of pairs with en-logalised pair mates in random dada set
o [ = fraction af pairs with enlocalised pair mates in troe interacting pairs
¢ TP = fraction of troe interacting pairs in data set stadierd

Then

Ditto wrt co-cellular-role
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Reliability of Protein Interaction D
Sprinzak et al, JMB, 327:919-923, 2003
1007 A P
e S o
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E ey
o 20 % of TP based on shared cellular role (I = .95)
% of TP based on shared cellular role (I = 1)
1031 % of TP based on co-localization
0 7
A At Az [Ail | A0 ¢ [o1[2m[E1[am[D2 [aM ] B [E2
s %7TP by Localization, =1 /1.8 [26.7/43.0/43.7 |46.2/57.7)§3.9(79.5/80.2[84.0/87.1[89.0/82.1/87.2}100.
=% TP by Cellular Role, I=1 (5.5 [25.933.343.930.7(57.4/7}1.8,76.3/83.8/89.4/93.2/86.502.1/94.5.62.4
—a— % TP by Cellular Role, 1=0.95 |9 [27.4]35.3)46.6a2.0[60.8//s 0/80.8[88.7]04.7|e8.6]91.6]97.5 100,678
M@iﬂé‘ltal method category
TP = ~50%
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Are We There Yet?

Data quality

Coverage

99% of genome
sequence

99.9% correct

80-90% of transcripts
represented

90% of spots are good
data

10-30% of interactions
catalogued

50-70% of interactions
are spurious

Slide credit: See-Kiong Ng
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Objective

* Some high-throughput protein interaction expts
have as much as 50% false positives

» Can we find a way to rank candidate interaction
pairs according to their reliability?

* How do we do this?
— Would knowing their neighbours help?
— Would knowing their local topology help?
— Would knowing their global topology help?

Copyright 2007 © Limsoon Wong

Would knowing their neighbours help?

The story of interaction generality




|
TINUS
An Observation 9 e

KK

» It seems that configuration a is less likely than b in protein
interaction networks

e Can we exploit this?

Copyright 2007 © Limsoon Wong

e
EANUS
l-nn-mnl-v-

o B

Interaction Generality
Saito et al., NAR, 30:1163-1168, 2002

Given an edge X + Y connecting two proteins, X and Y, the “interaction
generality” measure ig¥ (X « Y) of this edge as defined as

(X eV)=1€[{X' 6V G| X e{X,Y}, deg?(V') =1}

where deg?(U) = |{V| U & V € G}| is the degree
undirected graph G.

of the node U7 in the

The number of proteins
THROZZC cIT2 - BUDI4  SCDS that “interact” with just
cEs1 ! FINl . X orY, and nobody else
= YT I— cp:'T L ]
s o 7 ig(YDR412W<>GLC7)
— N =1+ # of yellow nodes
renl \ .
TRROISW GIFl REFZ  YORMLSW
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Assessing Reliability Using ,N____l,LS.
Interaction Generality

KK

» Recall configuration a is less likely than b in protein
interaction networks

* The smaller the “ig” value of a candidate interaction pair is,
the more likely that interaction is

Copyright 2007 © Limsoon Wong

EE &

Evaluation wrt _.,.N_:EE
Intersection of Ito et al. & Uetz et al.

LG |Ito ol. ev@ ] [uetz oljovlap .
1| 228] 66| 3| sos} | 236 58 There are 229 pairs
2] 137 34| 54%| 5% 226 37 in lto ha\/ing ig =1.
k] 57 16| 63% 87% 113 16 Of these, 66 (OI’ 34%)
; ;i ﬁ g:: :i: gg g are also reported by Uetz
6] 18] 1| 75%| 95%) 37 2
7l 27] of es| ess} [ _20[ 3
8| 23 1] gas| o6l 16 2 . . y
oo sal o o ¢ Interacting pairs ¢’'mon to
lof 21 O e on] L 44 0 Ito et al. & Uetz et al. are
11 o] o] sas| oy o 2 .
] I I T 4o more reliable
13|  13]  of ses| o7 0 1
14f 15| o] sos ory 11 ¢ Also have smaller “ig”
15] 16| o] o1s] o o] 0
16]__ 30 3| osu| ooy 1 0 [Pt
T — i = “ig” seems to work
el 20| o] sox] 1oos] o0
19 2 0] 100%| 100%) 0 0
20 0] 100%| 100%) 0 0
21 0] 100%| 100% 4] 0
22 0} 100%| 100% 0 0
23] o] of 1008|1004 [
24] o] ol oos] 100x| o o
25, 0| 0| 100%| 1004 0 0
26-] 0| 0f 100%| 100%) 0 0
Total |_673] 133 815 133
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Evaluation wrt Co-localization

2 NUS

o Diegagom

~60% of pairs in
in Ito having ig=1
are known to have

g

2

s pl-phys
= [=@=ito
=i Untz

g

g

Ratel% of pairs with common cellular robals)
-
-]

common localization

Interaction pairs
having common
cellular localization
are more likely

* Also have lower “ig”

§.—

Default 25 20 ] 0 5
Interaction ganerality threshald

= “ig” seems to work

Copyright 2007 © Limsoon Wong

Cross 37%

Protein synthesis 2%|
Cell cycla control 3%!

< Vasicular transport 8%
Pal Il ranscription

reduced
x-talk

Cross 20%

8%
RNA processing modification
6%

Other comman 27%,/

|
ssicular ire A 125
Prolein synthesis 2% Vesicular waneport 12%
Cell cycle control 3%
Protein degradation 4%, 3
Mitosis 4% ~ Polll transcription 11%

RNA processing modification 9%

Nuclear cyloplasmic transport 4%

Chromatin chromosoma structure 4%,

STINUS

Evaluation wrt Co-cellular Role &=

* Interaction pairs having
common cellular role are
more likely

Also have lower “ig”
= “ig” seems to work

A: before restrict to pairs with “ig = 1”
B: after restrict to pairs with “ig = 1”
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Would knowing their local topology help?

The story of interaction generality 2
°

Existence of Network Motifs
Milo et al., Science, 298:824-827, 2002

* A network motif is just a

local topological
configuration of the
network

* “Detected” in gene

regulation networks, WWW

moli: @ links, etc.
i ‘5
Network Nodes  Edges | Npe Neand=SD  Zscore | Neeal Mand=SD  Z score
Gene regulation X Feed- .4 Y Bi-fan
(transeription) \'s forward M
Y loop
W Z W
z
E. coli 424 519 J40 T£3 10 203 47+£12 13
S. cerevisiae® 683 1.052 R70 11 +4 14 1812 300+40 41

Observed 70 times in S. cerevisiae

\
Observed ~11 times in random data

Copyright 2007 © Limsoon Wong
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FINUS

5 Possible Network Motifs

J!I

e Classify a protein C that

directly interacts with the

pair A&B according to

these 5 topological
o o ° configurations

Copyright 2007 © Limsoon Wong

: : EANUS
A New Interaction Generality 95/ s
Saito et al., Bioinformatics, 19:756--763, 2003

The improved inferaction generality measure égg (X + ¥} is defined as a
weighter sum of the 5 loeal topological eonfigurations 7, ..., 7 as

&
X e Y)=3 M XX 4+ ¥ g, Y e{X, ¥}, T(X X + ¥)}|
f=1

where A; is the weight for configuration 7, and rf(X’,X + V) means X' is in
confignration 7 in graph G wrt X & V.

Copyright 2007 © Limsoon Wong
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Evaluation wrt
Reproducible Interactions

~60% of pairs not in intersection
~90% of pairs in intersection of Ito & Uetz have ig, <0
of Ito & Uetz have ig, < 0.

ﬁ@.
(o=

* “ig,” correlates to

“reproducible”
0.25 interactions
= “ig,” seems to
02
work
5 015 . Rop
§ I non-Rep
2 |=Rep
04 ——nan-Rep
005

0
N T T T A

152 valua
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- EANUS
Evaluation wrt 85 s
Common Cellular Role, etc.
~95% of pairs-having /\ 100 — i
S S )0 g correlates well to
cellular roles o - common cellular roles,
4 & 3 localization, & expression
3 § [——ia| ..
e :;’ g “ig,” seems to work better
&7 2 b4 1T Pl
- w § than “ig
;f 65
‘ &0 3
100 a0 60 40 20 0 E
Number (%) of interactions left in a given threshold 0
7100 .
% % E 3 oas_
4 -+ * E v — .—- 02 3
- +8 E - 2 1 E
— ":J' . =81 50 E ”iﬁé
i‘”“".‘ = 0.1 g
70 v
65 005
60 L n L " n 0
100 80 60 40 20 0 100 80 60 40 20 0
Number (%) of interactions left in a given threshold Number (%) of interactions left in a given G2 threshold

Copyright 2007 © Limsoon Wong

12



Would knowing their global topology help?
The story of interaction pathway reliability

Some “Reasonable” Speculation Z

» A true interacting pair is often connected by at
least one alternative path (reason: a biological
function is performed by a highly interconnected
network of interactions)

* The shorter the alternative path, the more likely
the interaction (reason: evolution of life is
through “add-on” interactions of other or newer
folds onto existing ones)

Copyright 2007 © Limsoon Wong
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TINUS
Therefore... Y=
Conjecture: Idea:
“An interaction that is Use aIt.ernative
associated with an interaction paths
alternate path of asameasure to
reliable interactions indicate functional
is likely to be linkage between
reliable.” the two proteins
Slide credit: See-Kiong Ng

Copyright 2007 © Limsoon Wong

.|
. . ... EENU
Interaction Pathway Reliability 95/
Chen et al., Proc. ICTAI 2004

The “interaction pathway reliability” measure ipr?(X + ¥} is defined as

ipf X e ¥)= max I (1 - W—“V})

igd
PERPXY e Eg

where igl, = max{ig(X <+ ¥} | (X ++ Y} € G} is the maxinnm interaction
generality value in G; and #(X,¥) is the set of all possible non-reducible
paths between X and ¥, but exeluding the direet path X + V. Here, a path ¢
eonnerting X and ¥ is non-redueible if there is no shorter path ¢' eonneeting
X and ¥V thet shares samoe eommon intermediate nodes with the path ¢.

IPR is also called IRAP, “Interaction Reliability by Alternate Pathways”

Copyright 2007 © Limsoon Wong



Non-reducible Paths 9 ez

* Non-reducible paths are
— A——F«—>E
— A——B«->E
* Reducible paths are
- A«—B C D E
- A B C E

o e

Copyright 2007 © Limsoon Wong

EE &

Evaluation wrt NUS
. . N
Reproducible Interactions

The number of pairs not in the
intersection of Ito & Uetz is not

changed much wrt the ipr value The number of pairs in the

intersection of Ito & Uetz

of the pairs
\ increases wrt the ipr value
- 0.06 of the pairs
3
Y
g 004
z * “ipr” correlates well
g 06 to “reproducible”
= - -
= om interactions
g = “ipr’ seems to work
o0 .
=
P4 o 1 1 1 1
0 02 0.4 0.6 i
IPR value

Copyright 2007 © Limsoon Wong
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Evaluation wrt
Common Cellular Role, etc

*  “jpr” correlates well to

ﬁ@.
(o=

- 0.9 T T T T

Bt Ve common cellular
2l At the ipr threshold roles, localization, &
z that ¢liminated 80% :

% wrs = % OF pgirs, ~85% of the expression

g Ll p ool of the remaining pairs = “ipr” seems to work
h IHul :

:Sj 0.65 %)ﬁ@zﬁx‘x r;\éescommon cefluiar better than “lgz’,

; 0.6 1 1 1 1

1 0.8 06 0.4 0.2 ]
Proportion of interactions left in a given threshold

T T T T 0.35 T T T T
R PR —t—
e Se= + 1G2 --% *

Proportion of pairs with common cellular localiz
=) o
w w0
3 B
T T
+
X\glx
g
pd
1 1
Expressional correlation
o o
i i 9
=S g
T T
*
X
X
X,
3
*:
X
1 1

5 1
1 08 06 04 0.2 0 T 08 0.6 0.4 02 []

Proportion of mteractions left in 2 given threshold Proportion of interactions Ieft in a given threshold
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e ) TN
Stability in Protein Networks ::::-.L..’":-§

Maslov & Sneppen, Science, 296:910-913, 2002

102

o
S o ":‘\‘} 5 =
Part of the network of / >/ > %
physical interactions // \\ E
reported by 7 5
Ito et al., PNAS, 2oof1 11 £,
I
]] 5
o
I/ %
A
109
100 10 102 102

Connectivity of a node
e According to Maslov & Sneppen

— Links betw high-connected proteins are suppressed

— Links betw high- & low-connected proteins are favoured

* This decreases cross talks & increases robustness

Copyright 2007 © Limsoon Wong
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Evaluation wrtg **
uMany_feWn g
Interactions 3 ™
; 500
) (o] \ l 1 |
o 0.2 0.4 0.6 .8 1

IPR. value

¢ Number of “Many-few” interactions increases when more
“reliable” IPR threshold is used to filter interactions

» Consistent with the Maslov-Sneppen prediction

Copyright 2007 © Limsoon Wong

SINUS
Evaluation wrt “Cross-Talkers” ~"==—

* A MIPS functional cat:

- |02 | ENERGY

— |02.01 | glycolysis and gluconeogenesis

— | 02.01.01 | glycolysis methylglyoxal bypass

— | 02.01.03 | regulation of glycolysis & gluconeogenesis

* First 2 digits is top cat

» Other digits add more granularity to the cat

= Compare high- & low- IPR pairs that are not co-
localised to determine number of pairs that fall

into same cat. If more high-IPR pairs are in same
cat, then IPR works

Copyright 2007 © Limsoon Wong
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e
(P
Evaluation wrt “Cross-Talkers” ~"===

* For top cat
— 148/257 high-IPR pairs are in same cat
— 65/260 low-IPR pairs are in same cat

* For fine-granularity cat

— 135/257 high-IPR pairs are in same cat.
37/260 low-IPR pairs are in same cat

= IPR works

= IPR pairs that are not co-localized are real cross-
talkers!

Copyright 2007 © Limsoon Wong

e
EANUS
l-nn-mnl-v-

o B

Example Cross Talkers

ProteinA Cellular Localization ProteinB Cellular Localization Functional Pathway
YDR29%w nucleolus-protein YLR208w cytoplasm-release of Vesicular transport
transport transport vesicles from ER (Golgl network)
YOLD18c endosome, ER- YMR117c spindle pole body- Cellular import
syntaxin SNARE spindle pole component
YDL154w nucleus-recombination YBRI133c cytoplasm- neg, Meiosis
regulator of kinase and budding
YGL192w nucleus-put. Adenosine YBRO5TC cytoplasm-meiosis Development of
methyltransferase potentially in premeiosis asco-basido
for sporulation DNA synth -ZY g0 Spore
YDR29%w nucleolous- protein YPL085w cytoplasm,ER-veiscle coat both in vesicular
transport protein interacts cytoplasm, transport
with sec23p
YELO13w vacuole-phosphorylated YFLO30c cytoskeleton-actin Protein targeting
protein which interacts with and budding
Atgl3p for cyto to vacuole
targeting vacuole targeting

rauie &
Examples of interactions with high IRAP values (= 0.95) between non-co-localized
proteins (“cross-talkers”) involved in the same cellular pathway
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Can local topology do better?

The story of FS Weight

Guilt by Association of
Common Interaction Partners

» Two proteins that have a large proportion of their
interaction partners in common are likely to
directly interact also

* In fact, this is a special case of the “alternative
paths” used in the IPR index, because length-1
alternative paths = shared interaction partners

Copyright 2007 © Limsoon Wong
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I
BE& N
92 NUS

o Diegagom

Czekanowski-Dice Distance

* Functional distance between two proteins eun a2

D(u,v)= IN,AN,|
"INy UN[+[N, n va'.

* N, is the set of interacting partners of k .
* X A Y is symmetric diff betw two sets Xand Y
» Greater weight given to similarity

— Similarity can be defined as

2X

S(u,v)=1-D(u,v) =

2X+(Y+2)

Copyright 2007 © Limsoon Wong

e
Functional Similarity Estimate: _.,.N_._.E_E
FS-Weighted Measure

* FS-weighted measure

2N, NN,| 2N, NN,|
S(u,v)= X
\NU—NV\+2\NumNV\ \NV—NU\+21NumNV\

* N, is the set of interacting partners of k
» Greater weight given to similarity

= Rewriting this as

S(u,v) 2X 2X

= X
2X+Y 2X+Z

Copyright 2007 © Limsoon Wong
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Comelation with Functional Similarity Correlation with Expression Profile
1 0A
——G 0g ——G
—#— PR “ —H— PR 0w 5
08 ¢ " i
e COuDist % —— (D-Digt T
o FSMeicht CEA 1S —a— FEweght 0% 8
06 § 5 .
= ]
={[Evaluat
os £ i Evaluation
0z g
5 E
03 &
o ! wrt
= 013 %
01
: - | Common
1 0g 08 04 0z o 1 08 i) 04 02 0
— — Cellular
Correlation with Multiple Observations Correlation with Subcellular Localization
014 1 | t
=5 : == Role,etc
IR 012 ¢ —— IR SR
g . g ., §/Chen etal, Proc.
—a— FS\Veight ’ g —B— Feiaght oes g GIW 2006
o o o
3 3
] 08 %
om E =
g 07s g
oM 5 g
- -
il il
[iYu-re 0gs =
a 06
1 08 0g 04 0z 0 1 03 0g 04 0z 0
Coverage COvErage
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Another way to improve using local topology information

The story of meso-scale network motifs




v NS
Motivation for “Meso Scale” =

» These motifs are very local
and very small

5 Possible Network Motifs 7B
OssIbIE etworc MotTs « Many processes in

biological network are

,.«@\ ; I?’ “meso-scale” (5-25
o— ® proteins)

Classify a protein C that

o ' dirgctlyimemctswith the
Ihese & topological” — Maybe we should also use
O O confguatons meso-scale motifs?
) 5

Copyright 2007 © Limsoon Wong

What is a network motif?

* A network motif g in a PPl network G is a
connected unlabelled undirected topological
pattern of inter-connections that is repeated and
“unique” in G

* Repeated: fg, the number of occurrences of g in
G, is more than threshold F

* Unique: sy, the number of times f; exceeds f .4
over total number of randomized networks
considered, is more than threshold S

Copyright 2007 © Limsoon Wong



Example | ¥ Q¥°>@

F—0
Figure 1: Example graph &. G
(2
;"
Q 4
VAN S -
L J & . - ta_zl | @@J/@\@\L 3
/ /
Y N W N s
40 oo Q . 7
t5_1 ts_z ts_a !
& @ —0

Figure 2: Size 2 to size 5 trees.
Figure 4: Occurrences of ty 3 in G.
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NeMoFinder: EANUS

Discovery of Meso-Scale Motifs ~ ™
Chen et al, Proc. KDD 2006

—— T
10 — 12000
o NeWoFindsr o — ‘1
—— FFF g -
10°L | — Sampling ] .
—— Enumeration ; o - e 10000 2
5 0% 3 e T 2
a . . o o o - ~ . k=1
o ol et . £
g s — E
E — E
2 f H
£ :
£ o I 2
& - :
1 H
- o 2
= z
w0'E £
o
! D3 4 5 ] 7 8 2 10 1 12 13

A

MeMoFinder |

Metwork Motif Size

FRFY

Samplng ',
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SINUS
Motif Strength and PPI Reliability~ ===

» Strength of a size k motifg + Motif-strength PPI

is reliability index is a pair of
possibly interacting
protein X &Y is

MS*(g) = s, x f,
max, (X «>Y) =" MS*(g;)xk

k=2 i=0

where g; are motifs
involving the edge X &Y,
and k is size of g;

where max, is max value
of s, x f, over all size-k
motifs

Copyright 2007 © Limsoon Wong

ES &
- NUS
valuation wrt 8 ey
i peu——
Common Cellular Role, etc
N T ety T ] .
D8 NaMePmder -2 F . ¢ Motif-strength PPI
0ss L G2 - % i . e
- G0 reliability index correlates
2 + #
A S well to common cellular
s onp o roles, localization, &
z A * .
ER e < a 7 expression
sl LA wipE _ .
s ° = works as well as “ipr”
1 Il 1 Il
08 1 08 0.6 04 02
Provortion of interactions left in a eiven threshold
095 0.35 T T T
NeMoFlder=12 - + ‘ + NebloFinder =12+
NeMoFmdar_=§ b / _ o NeMoFinder IZE : +
. 0Ef o I 2 MBr e A
B 4+t g g
2 st / X e o B
< L+t " £ £ o XKy
S 7 oy
I omr P Eee * o £ oomp PR
3 J * ] f*f%*
LR <5 * Toomf EAnoTC00 go0a0,
i :'_:? 7 Dsaw'ju Bo o ] S aﬁﬁ&ﬁ -
i E¢m¥+ om o ] ! ] !
Bl ! 1 0.25
083 08 06 0 2 1 08 06 04 0z
Preportion of interactions left in a given threshold Proportion of interactions left i a given threshold
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Some Observations

* Meso-scale motifs are more reliable than small
local motifs (c.f. “ig,”)

» Similar performance to “ipr”, but may have
advantages if network is sparse (i.e., where few
alternate paths are present)

* Btw, this is the first time size-12 network motifs
are known to be extracted from yeast PPl network

Copyright 2007 © Limsoon Wong

How about discovering false negatives?

The story of IRAP*

25



EINUS
False Negatives &=

» A “false negative” is a failure to detect a real
protein-protein interaction

Copyright 2007 © Limsoon Wong

IPR Detects False Negatives ._'_N:_L_l“:_§

* To find out if there is a “missing” interaction
between X and Y, we do:

— compute ipr value of XY in GU{X-Y}
— predict if X<>Y as false negative if “ipr” is high

Copyright 2007 © Limsoon Wong
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B &

But needs an adjustment ... _5_._._';_!.5.
We call the adjusted index IRAP*

Chen et al., Bioinformatics, 22:1998—2004, 2006

" g F
X s Y)= me ][ (1 - w)
$ERF (X Y} (er¥ beg Erax

\replace
“ig” is too generous,

it always gives the red e
“missing” link the best 1 ComNbr”(U & V)

score, ComNbr®

Where ComNbré(U «<»V) is number of
common neighbours of U and V in G

Because proteins with a large number of
shared partners tend interact themselves

Copyright 2007 © Limsoon Wong

ZBIINUS

ol Lindntetiy

How do we test if this works? & =m

* To test this, we mimic false negatives by random
removal of 50% of high-quality known
interactions. Then we check:

— how many removed interactions are rediscovered?

— is there diff in rediscovery rates of false negative
vs random links?

— Is there support in terms of gene expression
correlation, common cellular roles, & common
cellular locations?

Copyright 2007 © Limsoon Wong
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ERNUS

IRAP* Persistence & Rediscovery R

05
nz',,sgx +I ' * IRAP*: we iterate “ipr” and
IGI+ComNbr — -~ “jrap*” 10 times to remove
04 b Rand --#-- | 0 f o e
worst 5% of “false positives
o * and add best 5% of “false
B 5 ”
5;. 03 b i negatives
E * IG1+ComNbr: we use “ig”
g g2l - to remove “false positives”
k) and “ComNbr” to add “false
negatives”, iterated 10 times
01+ ISR SR ¢ ]
g « Rand: randomly add and
0 T P S . S 3 remove
1 0% 0.3 07 0.6 0.5

Permstent Rate

About 40% of the high-quality “missing”
interactions are rediscovered

Copyright 2007 © Limsoon Wong

=12 NL“LS"

IRAP* Functional Coherence ==

O S FI = T T e e e e
IEAP* —+
0ss L 161+Com¥br - i

"Gold standard" PPL: ------

yeast

Sttt

Degree of functional bome geneity

No. of Iterations

The “false negatives”
detected are functionally
coherent.

l.e., IRAP* works

Degree of functional bomogeneity

Degree of functional homogeneity

__161—(;05’296]: x ﬂy i

il /*++-+—+H+ ]

T T T T T T T T T T T
+

No. of Lerations

T
IG1+ComMNbr —-¥-- C. elegans .

Mo. of Ttarations
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Conclusions

There are latent local &
global network “motifs”
that indicate likelihood of
protein interactions

These network “motifs”
can be exploited in
computational elimination
of false positives & false
negatives from high-
throughput Y2H expt &
possibly other highly
erroneous interaction data

IPR & meso-scale motifs
are the most effective
topologically-based
computational measure for
assessing the reliability
(false positives) of protein-
protein interactions
detected by high-
throughput methods

IPR/IRAP* can discover
new interactions (false
negatives) not detected in
the expt PPI network

Copyright 2007 © Limsoon Wong

Now that we have more reliable PPI networks, what can we do with them?

Protein function prediction w/o sequence
homology information
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NUS
Protein Interaction Based Approaches~ =

* Neighbour countin :
(Schwig)wski et al, 2000) 9 ® C I USte rin g (Brun et al,
« Rank function based on freq 2003; Samanta et al, 2003)
in interaction partners « Functional distance
4 Chi-square (Hishigaki et al, 2001) derived from shared
« Chi square statistics using interaction partners
expected freq of functions in P
interaction partners ¢ Clusters based on
» Markov Random Fields (eng functional distance
et al, 2003; Letovsky et al, 2003) .
« Belief propagation exploit re_pres_en.t proteln_s
unannotated proteins for with similar functions
prediction .
° Simulated Annealing (Vazquez et ° FunCtlonaI Flow
al, 2003) (Nabieva et al, 2004)

« Global optimization by
simulated annealing

» Assign reliability to

« Exploit unannotated proteins various expt sources
for prediction « Function “flows” to

reliability of

Cop)./ri‘ght 2007 © Limsoon Wong

SINUS
Functional Association Thru Interactiogs™

» Direct functional association: Level-\l neighbour

— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same :>r\.

pathways are likely to interact )
* Indirect functional association

— Proteins that share interaction
partners with a protein may also
likely to share functions w/ it

Level-2 ?eighbour

— Proteins that have common > P
. . . . @
biochemical, physical properties 5
and/or subcellular localization ./?\.
are likely to bind to the same )
proteins

Copyright 2007 © Limsoon Wong

30



An lllustrative Case of ,N____l,LS.
Indirect Functional Association?

SH3 Proteins SH3-Binding
Proteins

Yvs167

Yir024c q\
N

* Is indirect tunctional association plausible?
* Is it found often in real interaction data?

e Can it be used to improve protein function
prediction from protein interaction data?

Copyright 2007 © Limsoon Wong

ERANUS
Materials N

* Protein interaction data from General Repository
for Interaction Datasets (GRID)

— Data from published large-scale interaction
datasets and curated interactions from literature

— 13,830 unique and 21,839 total interactions

— Includes most interactions from the Biomolecular
Interaction Network (BIND) and the Munich
Information Center for Protein Sequences (MIPS)

* Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS

— 473 Functional Classes in hierarchical order

Copyright 2007 © Limsoon Wong
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SINUS
Validation Methods ——

+ Informative Functional Classes METAEOLISH
— Adopted from Zhou et al, 1999 STETTio0] ~or020120)
. amino acid metabolsm nirogen and sulfur metabolism
— Select functional classes w/ )
« atleast 30 members rleily Stiakpcf N
R ) of the ghutamate group creatine and polyamines
* no child functional class w/
at least 30 members 01.01.03.01 (12) 01.01.03.02 15
matab. ol ghutamine metabolism of ghtamate
01.01.03.01.01 (6 01.01.03.01.01 (3)
biosynthesis of degradafic
ghnamine | ghtamine

» Leave-One-Out Cross Validation
— Each protein with annotated
function is predicted using all
other proteins in the dataset

Copyright 2007 © Limsoon Wong

Freq of Indirect Functional Associatiol

YALO12W
11.1.6.5
11.1.9
I
I T I I ]
YJR091C YMR300C YPL149W YBRO55C YMR101C
11.3.16.1 11.3.1 114.4 111.4.3.1 142.1
116.3.3 120.9.13
142.25
— 114.7.11
YPLO8SW YBR293W ' [Shared Functions with Fraction
12.16 116.19.3
]1.1.9 142.25

s Level-1 neighbours exclusively 0.016338
[Level-2 neighbours exclusively 0.226574

[ T I = [Level-1 and Level-2 neighbours 0.463960
YBR023C YLR330W YBLO61C YLR14C [Level-1 or Level-2 neighbours 0.706872
110.3.3 11.5.4 11.5.4
132.1.3 134.11.3.7 110.3.3
134.11.3.7 Ja1.1.1 118.2.1.1 116.7
142.1 143.1.3.5 132.1.3 120.1.10
143.1.3.5 143.1.3.9 142.1 120.1.21
143.1.3.9 143.1.3.5 120.0.1
11.5.1.3.2 I 11.5.1.3.2

YKLOOBW [ I 1
112.1.1 l
YOR312C 116.3.3 YPL193W YDLO81C YDRO91C YPLO13C
112.1.1 112.1.1 112.1.1 11.4.1 112,11
12,11 14216
112.4.1
116.19.3

Source: Kenny Chua

Copyright 2007 © Limsoon Wong
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. . - ENUS
Prediction Power By Majority Voting -

Precision VS Recall

* Remove overlaps in level-1

and level-2 neighbours to "1 i
study predictive power of 04 ° oSt-S2
“level-1 only” and “level-2 _ &
only” neighbours 2 7 2y

» Sensitivity vs Precision £ 02) p

analysis o0

o &
-K " K K 014 Pogg, %o,
ZIL - SN= Z:I—K ] + M !
Zi m; Zi n; 0 0.2 0.4 0.6 0.8 1

Recall

PR =

* n;is no. of fn of protein i o » .
* m;is no. of fn predicted for = “level-2 onIy nelghbours

protein i performs better
* k; is no. of fn predicted .
correctly for protein i =LnL2 nelgh_bqurs has
greatest prediction power

Copyright 2007 © Limsoon Wong
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-!_-

Functional Similarity Estimate:
Czekanowski-Dice Distance
* Functional distance between two proteins euneta, 20

D(uv) = IN,AN, |
N, uNV\+\NumNVy°.

* N, is the set of interacting partners of k .
* X A Y is symmetric diff betw two sets Xand Y,
» Greater weight given to similarity

— Similarity can be defined as

2X

S(u,v)=1-D(u,v) =

2X+(Y+2)

Copyright 2007 © Limsoon Wong
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Functional Similarity Estimate: ,.N_,_';LS.
FS-Weighted Measure
* FS-weighted measure

2N, NN,| 2N, NN,|

RN AN AN 2NN

* N, is the set of interacting partners of k
» Greater weight given to similarity

= Rewriting this as

S( ,V) 2X 2X

= X
2X+Y 2X+Z

Copyright 2007 © Limsoon Wong

e
ZANUS
95 s

Mol
o B

Correlation w/ Functional Similarity

» Correlation betw functional similarity & estimates

MNeighbours |[CD-Distance [F5-Weight
= 0471810 0498743
52 0.224705 0.208843
51w 52 0.224581 0.20629

* Equiv measure slightly better in correlation w/
similarity for L1 & L2 neighbours

Source: Kenny Chua
Copyright 2007 © Limsoon Wong
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- INUS
Reliability of Expt Sources e

» Diff Expt Sources have diff | source Reliability
re|labl|ftIeS o Affinity Chromatography 0.823077
— Assign reliability to an — B
interaction based on its Affinity Precipitation 0.455904
expt SOUICES (Nabieva et al, 2004) Biochemical Assay 0.666667
* Reliability betw u and v Dosage Lethality 05
computed by:
Purified Complex 0.891473
r v 1_ I | (l_ r; ) Reconstituted Complex 0.5
lek, Synthetic Lethality 0.37386
* 1;is reliability of expt -
. Synthetic Rescue 1
source i,
* E,, is the set of expt Two Hybrid 0.265407
sources in which

interaction betw u and v is
observed

Copyright 2007 © Limsoon Wong

. . . . . BE &
Functional Similarity Estimate: '_.,.N_:._L_E
FS-Weighted Measure with Reliability
» Take reliability into consideration when

computing FS-weighted measure:

2 z uw vw 2 (szu,)wrv,w
we(NyNN,

(N, NN,

[Z S, )j+2 Dl [Z Sr ru,w)]+2 3yl
weN (N, AN, ) we(N, NN, ) weN WE(NHF\NV) we(N, N, )

SR(U’V):

* N, is the set of interacting partners of k
* 1, is reliability weight of interaction betw u and v

= Rewriting

S( ,V) 2X 2X

= X
2X+Y 2X+Z

Copyright 2007 © Limsoon Wong
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Integrating Reliability

Meighbours [CD-Distance [FS-Weight [FS-Weight B
1 0471810 0.408743 .532506
=5 0.224705 1.208843 0373317
51w 5; 0224581 029629 0363023

B &

SRS

* Equiv measure shows improved correlation w/
functional similarity when reliability of
interactions is considered:

Copyright 2007 © Limsoon Wong

EANUS
Improvement to N
Prediction Power by Majority Voting
05
+ Neighbour Counting Aw weight Z L2} Considering only
043 I & Neighbour Counting fw weights neighbours w/ FS
o4 b o Heighbour Counting weight > 0.2
035
c 031 s .
2 o
2 025 ¢ e s
o a
€ pzl “ o uﬂﬂ-:;r
015 | D“"ig;,
o4 b T,
'-I-
nos | +'+++*
0
0 0.z 04 05 08 1
Recall

Copyright 2007 © Limsoon Wong
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Improvement to 5o NUS

Potio] Unltia

- - - egpes
Over-Rep of Functions in Neighbours

o [+] [s]

Fraction of neighbour pairs with Functional Similarity Fraction of neighbours with Functional Simitarity
a FSeight threshold 0.2
! ost-s2 1
oo 0s2-81 09 081.52

Fraction
=
o

g.t; 8182 08 082. 81

' m All Pairs 07
0.6 | mAlFars | c 08 =51, 82

X o ﬁ 05 o
04 Z o4
03 03
ot 0z

%]
0
o 1 2 3 4

3
1] 1 2 3 4 5

MIPS Annotation Level

MIPS Annotation Level

Q o o

Source: Kenny Chua
Copyright 2007 © Limsoon Wong

e
SENUS
Use L1 & L2 Neighbours for Prediction” =

* FS-weighted Average

1
f(u)= — A+ (STR(u,v)c?(v, X)+ D S (u,w)s(w, X)J
veN, weN,
* 1, is fraction of all interaction pairs sharing function
A is weight of contribution of background freq
d(k, x) = 1 if k has function x, 0 otherwise
N, is the set of interacting partners of k

» =, is freq of function x in the dataset
* Zis sum of all weights

Z=1+ | Sr(u,v)+ > S (u,w)

veN, weN,

Copyright 2007 © Limsoon Wong
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FINUS
Performance of FS-Weighted AveragRg™

* LOOCV comparison with Neighbour Counting,
Chi-Square, PRODISTIN

Informative FCs

1
frate & NG
0.0 %% e
08 ™ o PRODISTIN
1 * x FunctionalFlow
07l "x = FS Weighted Avg
u 6 ] uﬂ >‘l(
s : o og L
% 054 2
8 M
a 0.4 *
EY o x
03 "m, o ey
B ©
0.2 4 "*x{;\( Cop,  F
g £ e, ® 2
0.1 ‘gi‘x"f}‘@%;:xxm
0 08 0 S e

T T T T
0 01 02 03 04 05 06 07 08 09 1
Recall
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e
INUS
Performance of FS-Weighted Averagifg=—

« Dataset from Deng et al, 2003
— Gene Ontology (GO) Annotations
— MIPS interaction dataset

« Comparison w/ Neighbour Counting, Chi-Square,
PRODISTIN, Markov Random Field, FunctionalFlow

Precision

Copyright 2007 © Limsoon Wong

; Cellular Role Biochemical Function
1
NC &3 NG
o2 s » Chi2 0990 %, a Che
oa | o TR PRODISTI 08 ® omor, = PRODETN
o7 l5 e WRF o, = MAF
T x FunctionalFlow o7
o Sl . "’“\‘x « FunctionalFlow
£ 061{% ke e x FS Weighted Avg
H oo, S,
0.5 ® 05x% o oy x
% = .
0.4 i E 04 5, ;“ L'y
LE] ’f&: 03 ™
s ey o, e
ot 02 0.
i Baq,
0.1 %1!% 0.1 %’;ﬁﬁx
U 0

0 01 02 03 04 05 06 07 08 08 1
Recall

Precision

SubCellular Location

1

o
09
08

oF
06
05

,,,,,

04 4
034"

o
02« MFF

o1

x FunctionalRow ay Be
« FS Weightad Avgl

0

0 01 02 03 04 05 06 07 08 09 1
call

]

01 02 03 04 05 06 O7 08 09 1
Recall
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Conclusions

* Indirect functional association is plausible
e Itis found often in real interaction data

* It can be used to improve protein function
prediction from protein interaction data

» It should be possible to incorporate interaction
networks extracted by literature in the inference
process within our framework for good benefit

Copyright 2007 © Limsoon Wong

Another thing that we can use a more reliable PPI for:

Protein complex prediction
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9 NUS
PPI-Based Complex Prediction Alge” =

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood | simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

* Issue: recall vs precision has to be improved
* Does a “cleaner” PPl network help?

Copyright 2007 © Limsoon Wong

Cleaning PPl Network by FS-Weight .-.-I\l.::L..’":-§

Chua et al., Proc. CSB 2007

(< @) @ o
e
* Modify existing PPl network as follow

— Remove level-1 interactions with low FS-weight
— Add level-2 interactions with high FS-weight

e Then run RNSC, MCODE, MCL, etc

Copyright 2007 © Limsoon Wong



INUS
: S
Experiments
* PPl datasets » Validation criteria
— PPI[BioGRID], BioGRID
db from Stark et al., 2006 IV V.

lap(S,C) =
overlap(S,C) ARYA

* Gold standards

— PC,y,, Protein
complexes from MIPS

where
— S = predicted cluster

03/30/2004 — C =true complex

- PCzoola Protfem VIPS — V, = vertices of subgraph
complexes from -
05/18/2006 defined by X

e Overlap(S,C) >0.25 is
considered a correct
prediction

Copyright 2007 © Limsoon Wong

SINUS
Validation on PC,y, "'""

Precision vs Recall Precision vs Recall Precision vs Recall
{Biogrid, L1} (Biogrid, L1#Fiktzred L2) {Biogrid, Filtered L1&L2)
1 1 1
] % —— WL \h
aed % CL e —; .8
[1 'j’.“g;. - 0e{ K - Egg;'ﬁg 6] Sl
0 YRy | PP 07 {:\ —— 0.7 e
Py N XY Ll 508 Y \
g T 5 \
05 '\ i g w0 205 A '-
vl I\ 204 \«., &4 -
024 *, 0.3 03[ ——MaL
* 02 \ > 1| ——RKsC
024 12 029 | ——MCooE
01 0.1 01| =—FCF
[} ] [
0 1 [} 3 ] 1 03 0 ] [J
Racal Recal Recall
(d) (& ®

a) Original level-1 PPI
b) Original level-1 PPI and filtered level-2 PPI
c) Filtered level-1 and level-2 PPI

* Precision is improved in all methods
* PCP (more later) performs best

Copyright 2007 © Limsoon Wong
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SINUS
Validation on PC, -

Precision vs Recall Precision vs Recall
{Biogrid, Filtered L18L2 PC2004 {Biogrid, Filtered L18L2 | PC2008)

T -

Pracision

(=

1 02 11 0z
Recall Recall

* When predictions are validated against PC,q,
precision of all algo improved

* Many “false positives” wrt PC,,,, are actually real
* PCP again performs best

Copyright 2007 © Limsoon Wong

]
. AN
PCP Algorithm o=

Chua et al., Proc. CSB 2007

* Find all max cliques in the modified PPl network
— If two cliques overlap, distribute the overlapped
nodes such that both cliques have larger average
FS-weight
* Merge resulting (partial) cliques with good inter-
cluster density
2 Ssg)ieW,-)iel -V, )(i.j)eE

1cD(8,.5,)= AR

* Modify the PPl network by treating the merged
partial cliques as vertices

 lterate the steps above

Copyright 2007 © Limsoon Wong
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SINUS
Robustness of PCP Against Noise~” "~

Precision vs Recall against Random Precision ws Recall against Random Precision vs Recall against Random
Additons Deletions utes
1 1 1
.y o~ \t, .
Eng Dpn e
08 \k&iﬁi e 08 i—;z"rﬁ-‘— . nef T g Nt
= s e
- Ny % . PR sl | 3
gus 1 508 \ sosq | T T
5 g0l [ TE FI | IRY L S o4 | fre—m=w ¢
& 041 S opw & oo i O ¥ ——20%
— 3% —=30% 30
02| 0% LR | p——, 02 0%
—— 0% ¥ 0% ——50%
0 0 0
¢ 05 01 045 02 025 0 oes o o1s 02 03 [ 005 01 015 a2
ecal Fecal Fecal

 PCP is robust against 10-50% random additions
— FW-weight is able to remove spurious interactions
« Random deletions negatively impacts recall

— Increased sparseness caused edges to received
smaller FS-weight; more interactions got filtered

— Led to insufficient info to form good cliques

Copyright 2007 © Limsoon Wong

BE &
NUS
= mm mm PCyyy complex el Lty
=— = = MCL cluster

——————— RNSC cluster
PCP cluster

I*@"G@w ‘- —. - Prediction
' Example 1
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SINUS

PCygqs complex
—— PCP cluster
_______ PChpgs complex

S PCP Prediction

TV U T Example 2
: YDLOO3W !
a |
i YILOTAC !

Copyright 2007 © Limsoon Wong
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ERANUS
Conclusions N

* Precision of protein complex prediction can be
improved by

— PPI network augmented with level-2 interactions
— PPI network cleansed by FS-weight

* PCP performs excellently

Copyright 2007 © Limsoon Wong
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