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Summary

Evolutionary computation is a family of nature-inspired metaheuristic algo-

rithms for solving various optimization problems. The most significant advantage

of evolutionary computation is that it does not make any assumptions about the

characteristics and the underlying landscapes of the optimization problem being

considered. Thus, evolutionary computation can tackle a variety of optimiza-

tion problems even when decision variables and objective functions have com-

plex characteristics. Decision variables having complex characteristics are very

common in most real applications, but can be hardly handled by conventional

optimization algorithms. In this thesis, some new evolutionary computation

algorithms are proposed to handle two representative complex characteristics of

decision variables, and are applied to solve real problems.

The first complex characteristic is decision variables that are with constraints.

Constrained optimization is more difficult for the following reasons: rigorous

pressure of searching towards the optimal region is exerted since only a subset of

the decision space, termed as a feasible region, is considered for optimization.

Furthermore, due to the conflicting effects of optimization and reducing con-

straint violations, it is hard for a general constraint-handling technique to balance

both the task of optimization and the task of reducing constraint violations for

different problems. My proposed constraint-handling technique ε-SEC can tackle

these difficulties. ε-SEC partitions candidate solutions into different sections

of the feasible region to enhance evolutionary search diversity. In addition, the

upper bound of each section is reduced dynamically to drive the convergence

of optimized solutions. The effective balance of both tasks is achieved by con-

currently enhancing the diversity of solutions and driving solutions gradually
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convergent to the optimal feasible region. The proposed constraint-handling tech-

nique ε-SEC is applied to solve a formulated parametric optimization problem

with several constraints of a dynamic-system model. My experiment results show

the effectiveness and robustness of ε-SEC in solving a constrained parametric

optimization problem compared with other state-of-the-art constraint-handling

techniques in evolutionary computation. Moreover, with the optimized parame-

ters, the dynamic system model can be used for prognostication of outcome.

However, there exist small-data issues in this constrained parameter optimiza-

tion. To tackle this issue, a data-augmentation pipeline is formulated. Empirical

results provide evidence that this data-augmentation pipeline is effective in im-

proving model resolution by various constraint-handling techniques. The results

also provide evidence that ε-SEC sustains its superior model resolution compared

to the other four constraint-handling techniques post data augmentation. Lastly,

the results provide evidence that training the other constraint-handling techniques

using the pseudo training data set generated by ε-SEC improves their resolution

more than using their own respective pseudo training data set.

The second complex characteristic is decision variables that are high-dimensional.

When a problem becomes high-dimensional, the issue of premature convergence

is raised and solutions are easily trapped in local optima. Moreover, if decision

variables are not only high-dimensional but also dependent on each other, the

problem becomes non-separable and it is more difficult for solutions to escape lo-

cal optima. Although there are several state-of-the-art evolutionary computation

algorithms for solving high-dimensional problems, there is no specially-designed

one to enhance the exploration of novelty solutions and to assist in escaping local

optima. Differential evolution (DE) in the family of evolutionary computation

is applied as the base algorithm to solve high-dimensional problems since DE

can solve numerical problems well and has simple operations. My proposed

algorithm NovDE is specially designed to explore novelty regions in the decision
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space different from previous explored regions so that NovDE remedies the

lack of exploration in other state-of-the-art DE variants when handling high-

dimensional problems. The diversity of solutions is enhanced so that solutions

are capable of escaping local optima with a higher chance. NovDE is applied

to solve the domain applications of optimal designs which are widely used in

industrial designs and bio-medical fields. A commonly used optimal design is

D-optimal design, but previous studies can only tackle trivial D-optimal designs.

High-dimensional D-optimal design problems are never touched in previous

studies. My experiment results show that NovDE can find optimal design points

for some high-dimensional D-optimal design problems with different settings.

Moreover, NovDE can also find the optimal design of a real problem with more

demanding requirements.

To sum up, this thesis proposes new evolutionary computation algorithms

for solving the optimization problems with decision variables that are with

constraints or are high-dimensional. When handling constrained optimization

problems, the proposed technique ε-SEC has successfully addressed the issue

of balancing the two conflicting tasks of optimizing objective function and

reducing constraint violations. To solve the small-data issue in some constrained

optimization problems, a data-augmentation pipeline is formulated. With more

generated pseudo data fed into the model, constraint-handling techniques can

improve their model resolution. However, even with more data, ε-SEC still

presents superior effectiveness and robustness compared to other constraint-

handling techniques. When handling high-dimensional problems, the proposed

approach NovDE has successfully solved the issue of solutions easily getting

trapped in local optima. The effectiveness and robustness of these proposed

algorithms are supported by empirical studies.
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Chapter 1

Introduction

Solving an optimization problem is to search the space of its decision variables x

that optimizes the objective function f(x) of the problem. If its decision variables

do not have complex characteristics, the problem can be trivially solved by con-

ventional optimization techniques or some heuristic methods [1]. However, it is

common in real problems that their decision variables have complex characteris-

tics. This thesis studies decision variables with various complex characteristics.

1.1 Background and Motivation

In real problems, two common complex characteristics of decision variables are

that of constraints and high-dimensionality. Decision variables with constraints

are discussed at first.

If there are constraints on decision variables, only a subset of the decision

space termed as a feasible region (c.f. Fig. 1.1) is considered for optimization [2].

Compared with unconstrained optimization, constrained optimization is more

difficult due to the need to balance both the task of optimization and the task

of reducing constraint violations [3]. While more emphasis on optimization

would make it difficult to drive solutions into the feasible region, more emphasis

1



CHAPTER 1. INTRODUCTION

on reducing constraint violations would obtain the solutions far away from

the optimal one. Thus, balancing these two tasks makes the problem more

complex. In various industrial fields, decision variables generally follow some

principles as constraints. For instance, in the field of scheduling [4, 5], in

addition to pursuing the optimal objective value, the maximum capacity for

transportation is formulated as constraints on decision variables. In the area

of clinical therapy [6], the optimization objective is to assign the dosage of

each medicine to achieve optimal treatment outcomes. However, the dosage of

each medicine should also follow specific physiological and pharmacological

principles to avoid adverse effects after the treatment. Thus, the decision variables

are required to be constrained as well. Conventionally, Lagrangian function

is used to handle constrained optimization problems. However, Lagrangian

function is effective only when both the objective function and the constraints

are convex [7]. In real life, this precondition is not a general case. Thus, the issue

of solving real optimization problems with constraints effectively is raised.

Figure 1.1: Decision space of a constrained optimization problem.

In addition to decision variables with constraints, high-dimensionality of

decision variables is another complex characteristic. When a problem becomes

2
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high-dimensional, the issue of premature convergence often arises and solutions

often get trapped in local optima [8]. The complexity of finding an optimal

solution becomes larger as the number of dimensions increases. Furthermore, if

the high-dimensional decision variables are dependent on each other, the problem

is non-separable [9], resulting in difficulty to escape local optima. It is far more

difficult to solve the problem if the decision variables are both high-dimensional

and dependent on each other. However, this is the more general case in real

problems, and the scale of the decision variables can be in the order of hundreds

or thousands in real problems. Such problems cannot be solved effectively by

conventional optimization techniques. Thus, the issue of effectively solving

high-dimensionality and non-separability real problems is raised.

Conventional optimization techniques fail in solving the issues above because

they require an optimization problem to satisfy certain preconditions such as

convexity and low-dimensionality in its decision space. Stochastic search tech-

niques like meta-heuristics are more suitable and efficient for solving such real

problems.

As one of the most famous meta-heuristics, the family of evolutionary com-

putation (EC) has demonstrated a capability of solving optimization problems in

many practical applications [10–12]. Evolutionary Algorithm (EA) is one of the

representative algorithms of EC. EA is a population-based optimization algorithm

and mimics the natural evolution process [13]. Each solution is represented as a

single individual in the population. Each individual evolves itself by performing

the operations of crossover, mutation and survival selection iteratively. The

significant advantages of EA are that first, no assumptions are made in terms of

the underlying landscape of the optimization problems as well as the constraints;

second, population-based search encourages the exploration of various regions

in the decision space at early evolutionary stage to avoid getting trapped in local

optima.
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This thesis aims at addressing all the aforementioned issues by proposing

new algorithms of EC.

1.2 Basic Definition

Evolutionary Computation

Evolutionary computation (EC) is a family of algorithms for global optimization.

Evolutionary algorithm (EA) is one of the representative algorithms of EC [14].

1.2.1 Evolutionary Algorithm

EA is a population-based optimization algorithm inspired by the natural evolu-

tion process. Each individual in the population represents a single solution in

the decision space. These individuals evolve themselves generation by genera-

tion by performing the operations of crossover, mutation and survival selection

sequentially [15].

Each individual is encoded as a chromosome and is initialized using a sam-

pling method. All the individuals together constitute a population. As shown in

Fig. 1.2, for crossover, two parent individuals are randomly selected from the

population, and part of the decision variables of these two individuals are inter-

changed to form child individuals so that some information of the chromosome

can be combined and passed to the offspring. For mutation shown in Fig. 1.3, a

child individual obtained after crossover is mutated on one or several decision

variable(s) to enhance the diversity of the distributions of the population. The

operation of survival selection is that parent and child individuals are combined

together to select elite individuals that would survive into the next generation

based on their objective function values.
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1 0 1 0 0 0

0 1 1 0 1 1

Parent 1

Parent 2

Crossover Point

1 0 1

0 0 00 1 1

0 1 1Child 1

Child 2

Figure 1.2: The crossover operation of the evolutionary algorithm.

1 0 1 0 1 1Child after Crossover

Mutation Point

1 0 1 1 1 1Mutant

Figure 1.3: The mutation operation of the evolutionary algorithm.

Differential Evolution

Differential Evolution (DE) [16] is one of the algorithms from the family of

EA, and was proposed by Storn and Price in 1995. DE is a population-based

optimization algorithm that searches for the optimum iteratively. DE is simple to

implement and has good performance for solving various types of optimization

problems. Compared with the standard evolutionary algorithm (EA), DE does

not need to encode each solution into a binary code as the chromosome for

conducting crossover and mutation operations and after that, to decode the
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chromosome into the solution vector. DE can conduct crossover and mutation

operations directly on each solution without encoding and decoding, so DE

is suitable to solve numerical optimization problems. Furthermore, the space

complexity of DE is low [17] and the number of control parameters in DE is

small [18–20] . There are two control parameters in DE: a scaling factor F

for mutation and a crossover rate CR for crossover. The parameter F controls

convergence speed and the parameter CR affects both the convergence and the

diversity of populations [21, 22].

To fix ideas, suppose f(X) is a given objective function and we want to

minimize it over a user-selected D-dimensional space comprising the decision

variables. DE has three main operations: mutation, crossover and survival

selection. Each solution of generation g is represented by Xi,g, where i is the

index of the corresponding solution. Sometimes Xi,g is referred to as the target

vector, which needs to be updated for the next generation g + 1. A mutant vector

Vi,g is generated by mutation. After the mutation operation, a trial vector Ui,g is

generated by crossover using both Vi,g and Xi,g. Survival selection is conducted

after crossover, and a decision is made whether Xi,g+1 = Ui,g or Xi,g+1 = Xi,g

based on the objective function values of Ui,g and Xi,g. Some details for the three

operations are as follows:

i) Mutation

Each target vector Xi,g generates a new individual, called the mutant vector Vi,g.

Some frequently used mutation strategies are listed below.

“DE/rand/1”:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (1.1)
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“DE/rand-to-best/2”:

Vi,g = Xi,g + F · (Xbest,g −Xi,g) + F · (Xr1,g −Xr2,g)

+ F · (Xr3,g −Xr4,g)
(1.2)

“DE/rand/2”:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) + F · (Xr4,g −Xr5,g) (1.3)

“DE/current-to-rand/1”:

Vi,g = Xi,g +K · (Xr1,g −Xi,g) + F · (Xr2,g −Xr3,g) (1.4)

In (1.4), K is randomly generated from [0, 1]. In (1.1)−(1.4), Xr1,g to Xr5,g

represent the random individuals selected from the population pool at generation

g.

ii) Crossover

Crossover operation is employed after mutation. In crossover, the mutant vector

Vi,g is recombined with the original individual Xi,g to form the trial vector Ui,g.

Two types of crossover schemes of DE are binomial crossover and exponential

crossover, respectively. Binomial crossover is commonly used in DE to determine

the trial vector as follows [23]:

U j
i,g =

 V j
i,g, if randij(0, 1) ≤ Cr or j =randi(1,D)

Xj
i,g, otherwise

j = 1, 2, · · ·D (1.5)

where U j
i,g is the j − th element of U j

i,g, and randi(1, D) is an index randomly

selected from {1, 2, 3, · · · , D} to ensure that the trial vector Ui,g can get at

least one variable from the mutant vector Vi,g. For each i and j, the notation
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randij(0, 1) is a fresh uniform random number from the interval [0,1] and Cr is

the pre-specified crossover rate.

An exponential crossover is another way to implement the crossover operation

[24]. An integer z is randomly generated from [1,D]. Another integer L, i.e. the

length of decision variables to be mutated, is determined as follows:

L=0

WHILE(rand(0,1)≤ Cr AND L ≤ D-z)

DO(L = L+ 1)

After determining the value of L, the exponential crossover operation is con-

ducted as follows:

If L ≥1, the trial vector Ui,g is generated as follows:

U j
i,g =

 V j
i,g , if j ∈ {z, z + 1, z + 2, · · · , z + L− 1}

Xj
i,g , otherwise

j = 1, 2, · · ·D (1.6)

If L = 0, then Ui,g = Xi,g.

iii) Survival Selection

Survival selection is the last operation to determine whether the trial vector

Ui,g survives to enter the next generation based on the objective function value

f(Ui,g).

The survival selection operation in DE is described below:

Xi,g+1 =

 Ui,g, if f(Ui,g) ≤ f(Xi,g)

Xi,g, otherwise
(1.7)
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1.2.2 Formulation of Constrained Optimization Problem and

High-dimensional Problem

Constrained Optimization Problem

The constrained optimization problem is formulated as follows:

min f(x)

s.t. gj(x) ≤ 0,where j = 1, 2, · · ·n
(1.8)

In [25], constraint violation can be defined in terms of the maximum of all

constraints or the sum of all constraints. In this thesis, constraint violation is

defined as the maximum of all constraints:

φ(x) = max
j
{max{0, gj(x)}}, (1.9)

where gj(x) is the constraint value of each constraint j. If any constraint j is

violated, φ(x) > 0. Otherwise, φ(x) = 0.

High-Dimensional and Non-Separable Problem

When the dimension of its decision variables is at least 50, the problem is

generally regarded as high-dimensional in the EC community. In this thesis, the

dimension of the decision variables is assumed to be larger than 100.

If a problem is non-separable, it means that the decision variables are depen-

dent on each other. For instance, the objective function is an additive model with

variable interactions such as:

f(x) = xixj + xjxk + xkxl, (1.10)

where xi, xj , xk, xl are decision variables of solution x. These decision variables,

e.g. xj , cannot be optimized independently. Since xj has interactions with xi and
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xk, the optimization of xj should be conducted concurrently with both xi and xk.

In order to escape local optima, it is essential to explore regions in the decision

space that are different from the current xi, xj and xk together.

In real problems, it is common that the decision variables are both high-

dimensional as well as non-separable.

1.3 List of Contributions

This thesis focuses on designing evolutionary computation algorithms to solve

optimization problems having decision variables with complex characteristics.

Both the scope and contributions are listed below:

1. Although recent studies have shown that evolutionary constraint-handling

techniques are capable of solving optimization problems with constraints,

these techniques are often evaluated based on benchmark test functions

instead of challenging real problems. Furthermore, these state-of-the-art

constraint-handling techniques concentrate more on the task of optimizing

objective function values or reducing constraint violations. It is difficult for

these techniques to balance both conflicting tasks. To balance the task of

optimization and the task of reducing constraint violations, the constraint-

handling technique ε-SEC is proposed in this thesis. ε-SEC preserves

search diversity and concurrently imposes selective pressure towards the

optimal feasible region in the evolutionary optimization process. Compared

with other state-of-the-art constraint-handling techniques, my empirical

studies provide evidence that ε-SEC has achieved more effective and robust

performance in general. Furthermore, with the optimized parameters, the

established model can be used for both replication of collected results and

prediction of unseen outcomes.

2. Although the constraint-handling technique ε-SEC can solve the con-
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strained parameter optimization problems effectively, “small-data” issues

are encountered in some constrained parameter optimization problems,

where the optimization is performed given very few data points. To tackle

this issue and improve the resolution (in terms of error size) of the model,

a data-augmentation pipeline is proposed and tested on several constraint-

handling techniques, including ε-SEC. My empirical studies provide evi-

dence that the data-augmentation pipeline can improve the resolution of the

model derived by each of these constraint-handling techniques. Therefore,

I believe this data-augmentation pipeline is a feasible solution that can be

applied to other constrained optimization problems that have small-data

issues.

3. Solving high-dimensional problems poses a big challenge for both con-

ventional optimization and meta-heuristic optimization algorithms. Since

premature convergence is severe when an optimization problem becomes

high-dimensional, even some meta-heuristic optimization algorithms such

as Particle Swarm Optimization (PSO) fails to solve the problem due to

difficulties in escaping local optima. Good capability in search space ex-

ploration plays an important role in getting out of local optima. Although

there are several state-of-the-art evolutionary algorithms for solving high-

dimensional problems, the exploration capability of these algorithms does

not present an overall effective performance. Furthermore, in the field of

optimal designs, there is a lack of studies on tackling high-dimensional

optimal design problems. It is crucial to fill obvious research gaps in

optimal designs in order to handle more realistic cases. In this thesis, the

problem of decision variables with high-dimensionality is tackled using

a new differential evolution (DE) algorithm. The proposed algorithm

NovDE remedies the ineffective exploration capability of other state-of-

the-art DE algorithms when handling high-dimensional problems. NovDE
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is specially-designed to explore novelty regions in the decision space dif-

ferent from previously explored regions so that the diversity of solutions

can be preserved. My empirical studies show that NovDE can handle

high-dimensional optimal design problems, which is previously a research

gap. This is demonstrated on logistic models on various design spaces and

a real application with more demanding requirements.

1.4 Organization

The organization of the remaining chapters is as follows:

Chapter 2 reviews existing state-of-the-art approaches of evolutionary com-

putation related to techniques for constraint-handling and approaches to solving

high-dimensional problems. Issues in state-of-the-art approaches are commented

upon and research gaps are identified.

Chapter 3 proposes a new evolutionary constraint-handling technique, namely,

ε-SEC which can enhance evolutionary search diversity and drive the convergence

of solutions towards feasible region. ε-SEC is then deployed on a formulated

parameter optimization problem with several constraints and is compared with

four other state-of-the-art evolutionary constraint-handling techniques.

Chapter 4 formulates a data-augmentation pipeline to solve small-data issues

that are sometimes encountered when doing constrained parameter optimization,

like in Chapter 3. Some observations are made on the effectiveness of five

constraint-handling techniques when pseudo data are included in optimizing

a model, and on the effectiveness of the constraint-handling technique ε-SEC

compared with other four techniques.

Chapter 5 describes details of the proposed differential evolution algorithm

NovDE which enhances exploration of novelty regions in the decision space

different from previously explored regions. NovDE is specially designed to

12



enhance the diversity of solutions and to improve the capability of escaping from

local optima, which is a severe issue in high-dimensional and non-separable

problems. NovDE has been implemented on a variety of high-dimensional

D-optimal design problems and a real application. NovDE is compared with

seven other state-of-the-art differential evolution algorithms to demonstrate its

effectiveness in solving high-dimensional and non-separable problems.

Chapter 6 concludes this thesis and discusses possible future research direc-

tions.
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Chapter 2

Literature Survey

This chapter summarizes and reviews existing research in the field of evolution-

ary algorithms (EA) that is related to tackling decision variables that are with

constraints or are high-dimensional. Current research gaps are identified and

insights are sought for proposing new algorithms for solving both constrained

optimization problems and high-dimensional problems in real-life domain appli-

cations.

2.1 Constraint-handling Techniques in EA

Constraint-handling methods in the field of EA can be classified into four cat-

egories, namely, penalty function methods, methods based on preference of

feasible solutions over infeasible solutions, methods based on multi-objective

optimization techniques and repairing methods as listed in Table 2.1.

2.1.1 Penalty Function Methods

Penalty function methods construct a fitness function by adding a penalty term

proportional to the amount of constraint violation into an objective function, and

then use this revised objective function to compare the individuals [26]. The
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general formulation of penalty function methods is given in Equation (2.1).

f ′(x) = f(x) +
m∑
j=1

rjgj(x)

f(x) : actual objective function;

rj : penalty coefficient for constraint j;

gj(x) : amount of constraint violation of constraint j corresponding to the individual x;

f ′(x) : revised objective function value after adding penalty.

(2.1)

Penalty function methods have two different categories, viz. static penalty and

dynamic penalty. In static penalty, the penalty coefficient rj is fixed throughout

the entire evolutionary process. In dynamic penalty, rj is changed based on

the performance of individuals or the current evolutionary stage. Since penalty

coefficients are problem-dependent, the success of the static penalty approach

depends on a proper choice of penalty coefficients. These coefficients need

prior knowledge about the amount of constraint violation present in a problem.

Therefore, the tuning of penalty coefficients leads to a lot of computation for even

very simple problems. In the dynamic penalty approach, there are several related

works to be reviewed. In [27], the penalty assigned to each individual depends on

the generation number G, a scaling constant C and some other hyperparameters

in addition to the violation of constraint j, which is referred to as gj(x). Although

the penalty degree for each individual is changed based on the evolution process,

the difficulty involved in tuning some additional parameters has limited the

applicability of this method. In [28, 29], the rj for each constraint violation j is

altered based on the objective function values of the current population. However,

the average or the best of the objective function values of the current population

may not be correlated to the degree of penalty, which results in the misleading of

the selection pressure towards the feasible region. Since penalty coefficients are

sensitive and problem-dependent, it is difficult to find appropriate values of these
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penalty coefficients either by static or dynamic penalty approaches.

2.1.2 Methods based on Preference of Feasible Solutions over

Infeasible Solutions

Methods based on preference of feasible solutions over infeasible solutions revise

the feasibility rule to handle constraints. In [30], ranking is used as the fitness

value for each individual. This ranking scheme ranks feasible solutions based

on objective function values and ranks infeasible solutions based on constraint

violations. The ranking of feasible solutions is superior to the ranking of infea-

sible solutions so that all feasible solutions dominate infeasible solutions. This

method may work well if both feasible and infeasible solutions are present at

the start of an evolutionary process. However, if only infeasible solutions are

present at the beginning, selective pressure is concentrated entirely on driving all

of the solutions into the feasible region at first. The main drawback is that some

potential infeasible solutions which can assist in balancing the optimization of

objective function and the reduction of constraint violations are overlooked.

To relax some infeasible solutions into feasible ones, the method of ε-

differential evolution (ε-DE) is proposed. The feasibility rule of ε-DE [25]

works as follows:

Let φ(x) be the constraint violation of the solution x.

φ(x) = max
j
{max{0, gj(x)}}. (2.2)

Suppose there are two solutions x1 and x2 for comparisons. Based on ε-DE, x1

is superior to x2 if any one of these three conditions is satisfied:

i) If φ(x1) < ε and φ(x2) < ε, f(x1) < f(x2).

ii) If φ(x1) = φ(x2), f(x1) < f(x2).

iii) Otherwise, φ(x1) < φ(x2).
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The introduction of ε may drive near-feasible solutions into the feasible and

optimal region. Compared with penalty function methods, there are no additional

parameters to be tuned besides ε. In addition, there is no additional computational

cost incurred for the operation. However, since only objective function values are

compared for ε-feasible solutions (i.e. solutions whose constraint violations are

less than ε), any feasible solutions obtained from previous generations are likely

discarded due to their inferior objective function values so that the selection pres-

sure towards feasible region may get undermined. Furthermore, for ε-feasible

solutions, the comparison of objective function values alone tends to deteriorate

the diversity of solutions and results in premature convergence of solutions in

the ε-feasible region. Thus, the core issue of this method is, due to the lack of

diversity, solutions may converge to a feasible region with inferior objective func-

tion values or converge to an infeasible region with superior objective function

values.

2.1.3 Methods based on Multi-Objective Optimization Tech-

niques

Methods based on multi-objective techniques convert a single-objective con-

strained optimization problem into a multi-objective optimization problem by

treating the constraints as one or more objectives to be minimized concurrently.

The general formulation of this method for bi-objective optimization is given in

Equation (2.3).

minx(f(x), φ(x)) (2.3)

In [31–33], the technique of non-dominated sorting [33] commonly utilized in

multi-objective optimization is employed to solve the problem of minimizing

both the objective function and constraint violations. The definition of non-

dominated solutions is: if there is no other solution x′ than x in the decision space
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such that f(x′) < f(x) and φ(x′) < φ(x), then x is a non-dominated solution.

The non-dominated sorting technique aims to select a set of non-dominated

solutions from the candidate solutions. Compared with ε-DE, non-dominated

sorting can assist in preserving the feasible solutions obtained in the previous

generation. Furthermore, since most non-dominated sorting techniques have

the property of preserving the diversity of solutions, the lack of diversity in

methods based on preference of feasible solutions over infeasible solutions can

somewhat be alleviated. However, the disadvantage of this method is that, due to

the utilization of non-dominated sorting, a high computational cost of O(N2) (N

is the population size) according to [33] is incurred, and some useless solutions

with better objective function values but worse constraint violations which are

considered as non-dominated solutions would also be preserved.

2.1.4 Repairing Methods

Repairing methods use the gradient information from constraint functions to

repair infeasible solutions. In [34], the gradients of all violated constraints of

an infeasible solution x are calculated and put into a matrix ∇xV . Then the

pseudo-inverse ∇xV
+ is taken. In each generation g, each infeasible solution

xg is updated as per Equation (2.4) where ∆V is the constraint violation of

infeasible solution xg.

xg+1 = xg + (∇xV )+ ·∆V (2.4)

Based on [34], the update procedure can result in large steps in the decision space.

These large steps may lead to quick fixes of constraint violations, but these large

steps may also induce possible new violations of constraint functions. In [35], the

gradients of constraint surrogates instead of the real constraint functions assist

in forming a region to sample potential feasible solutions. The calculation of
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Table 2.1: Four Categories of Constraint-handling Techniques in EA

S/N Category Name Representative Methods Issues

1 Penalty function methods APFEC [36] and FROFI [37] Penalty parameters are problem-dependent

and are difficult to be precisely tuned.

2 Preference methods ε-DE [25] Obtained solutions are lack of diversity.

3 Methods based on CMODE [38] High computational cost is incurred.

multi-objective optimization Some obtained solutions are useless.

4 Reparing methods COBRA [35] Require gradient information of constraint functions.

the surrogate gradients and the sampling of possible feasible solutions can help

to explore new points in the feasible region so that the performance of [35] is

better than [34]. Although repairing methods are efficient in handling constraints,

the requirement of the gradients or surrogate gradients of constraint functions

restricts its wide applicability.

2.2 High-dimensional Problems in EA

Approaches for tackling high-dimensional optimization in EA can be categorized

into two groups: decomposition approaches and non-decomposition approaches.

In decomposition approaches, a divide-and-conquer strategy is applied to divide

decision variables into smaller subcomponents, and each of which is optimized us-

ing a separate EA. Non-decomposition approaches tackle the high-dimensionality

problems without decomposition and focus on modifying new operators and

introducing structured populations.
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2.2.1 Decomposition Approaches

Cooperative co-evolution (CC) proposed by Potter and De Jong [39] is an ef-

fective method for solving high-dimensional optimization problems through a

divide-and-conquer paradigm. The core idea of CC is to partition the decision

variables of an optimization problem into smaller subcomponents, and each of

the subcomponents is optimized using a separate EA. Thus, the performance

of CC methods is highly dependent on how decision variables get partitioned

into different subcomponents. Based on [40], if a problem is separable, which

means decision variables are independent from each other, CC methods perform

well since how to decompose decision variables becomes trivial. If a problem

is non-separable, which means some decision variables have interactions with

other decision variables, decomposition of decision variables may be a difficult

task, and CC methods may not perform well on non-separable problems.

To tackle these issues in non-separable problems, a random grouping ap-

proach is proposed such that a solution x with dimension D is decomposed into

k subcomponents whose dimensions are s. The elements of x are then randomly

allocated to subcomponents in every co-evolutionary cycle [41]. The random

grouping approach aims to have some chances of optimizing interacting variables

within the same subcomponent. However, experiment results in [41] show that

random grouping performs well only on some non-separable problems which

have only several interacting decision variables. When the number of interacting

variables grows, it is more difficult to assign these interacting variables into the

same subcomponent for optimization. Furthermore, dynamically changing sub-

components without using some prior experiences may result in the divergence

of performance. Thus, random grouping is ineffective for problems with large

numbers of interacting decision variables.

To utilize prior knowledge of interactions between variables, a differential

grouping approach [42] is proposed to achieve an automatic, near-optimal de-
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composition of decision variables. Differential grouping tries to identify whether

two decision variables are interacting first and then groups these interacting

variables into the same subcomponent. The process of the pairwise examination

of interactions is as follows:

Let −→p1 and −→p2 are two sets of solutions. In order to check for interaction between

the ith and the jth dimensions, the vector−→p2 is set to be equal to−→p1 except the ith

dimension. The ith variable of −→p2 is set to the upper bound of the search space

for that dimension. Then ∆1 is calculated as ∆1=f (−→p1)− f (−→p2). Then, the jth

element of −→p2 is set to the center of the search space for that dimension and ∆2 is

calculated in the same manner as the calculation of ∆1. If |∆1 −∆2| is greater

than a pre-defined threshold ε, then the i-th and j-th dimensions interact with each

other and they are grouped into the same subcomponent. After all subcomponents

are formed, each subcomponent is optimized by a separate EA. Empirical studies

in [42] show that the differential grouping approach outperforms the random

grouping approach when tackling high-dimensional non-separable problems.

However, the differential grouping approach fails to handle some non-separable

problems due to premature convergence. Since the effectiveness of the differen-

tial grouping approach is problem-dependent, this approach may not be generally

applicable to all non-separable problems. In addition, due to the pairwise ex-

amination of interacting variables, differential grouping approach has higher

computational complexity compared to the random grouping approach, and the

complexity is even larger as solution dimension grows.

To sum up, decomposition approaches are effective when tackling high-

dimensional separable problems. To solve high-dimensional non-separable prob-

lems, decomposition approaches have two main issues: first, high computational

complexity is incurred since the optimization of each solution x is equivalent

to the optimization of several subcomponent groups of x; second, the grouping

strategy is problem-dependent, and it is difficult to propose a general grouping
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strategy with robust and effective performance.

2.2.2 Non-Decomposition Approaches

Non-decomposition approaches optimize a high-dimensional problem as a whole,

and no divide-and-conquer methods are involved. These non-decomposition

approaches usually focus on alterations such as modifying operators and intro-

ducing structured populations [8, 43].

In terms of modifying operators, there are several related works in literature.

In [44], jDElsgo is proposed to alter the DE control parameters F and CR adap-

tively based on the uniform distribution within [0,1] so that widely distributed

values of control parameters can help to obtain diverse solutions in the decision

space. In [45], JADE uses a DE mutation strategy ’DE/current-to-pbest’ and

tunes F and CR adaptively according to the Cauchy distribution based on pre-

vious experiences. In [46], ANDE applies a proposed triangular DE mutation

strategy so that the mutated vector of a solution is a combination of the best,

the medium, and the worst directions derived from any three solutions. For DE,

modifying operators involves proposing new mutation or crossover strategies

and control parameters adaptation schemes. However, new strategies and new

adaptation schemes are effective for early or medium stages of an evolutionary

process and ineffective for late stages. At late stages, solutions tend to be similar

and close to global or local optimal. New solutions generated based on new

strategies or new control parameters adaptation schemes have fewer chances to

replace current solutions.

In terms of EA with structured populations, populations are divided into

several subpopulations and each subpopulation evolves independently. According

to some specific probability, solutions in different subpopulations are exchanged

to preserve population diversity, which is referred to as migration [47]. To prevent

premature convergence, some exchange methods are proposed accordingly. In
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[48], a new migration scheme is proposed to replace the oldest solution of each

subpopulation instead of the worst one. In [49], a novel migration scheme is

proposed to control the substitution of solutions to occur only when the new

solution is better than the one chosen to be replaced. In [50], inspired by a

phenomenon known as biological invasion, solutions with better fitness values

than the average fitness value of the same subpopulation can enter neighboring

subpopulations as invasion. Although these migration schemes introduce some

new solutions from other subpopulations to the current one, an important issue

is that new solutions are not ensured to be relatively different from the current

subpopulations and may not assist in preserving or enhancing the diversity of the

current subpopulations. The number of new solutions and the diversity of these

new solutions are crucial to preserving and enhancing subpopulation diversity.

To sum up, non-decomposition approaches are effective when tackling high-

dimensional non-separable problems but these approaches are still problem-

dependent and are not robust to tackle various problems. Compared with de-

composition approaches, non-decomposition approaches have advantages of

simple operations and lower computational costs, which are essential for solving

high-dimensional problems.
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Chapter 3

An Evolutionary

Constraint-Handling Technique for

Parameter Optimization of a

Cancer Immunotherapy Model

3.1 Introduction

Many real-world modeling problems can be solved with the help of parameter

optimization based on data collected from physical experiments, real events, or

complex numerical simulations [51]. Depending on the collected data and some

criteria, some objective functions with constraints can be formulated. Solving an

optimization problem based on the collected data and the formulated objective

function(s) is known as data-driven optimization. There are two types of such

data-driven optimization approaches; on-line data-driven optimization for which

new data is acquired during the optimization process, such as aerodynamic

shape optimization [52, 53]; and off-line data-driven optimization for which no

data is acquired during the optimization process, such as optimizing a trauma
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system design which can only use incidents in previous years and cannot use

new incidents collected during the optimization process [54, 55]. In this chapter,

data from cancer clinical trials are collected for the further study. In most

cancer clinical trials, due to cost and time constraints, only off-line limited

clinical results can be collected. This work presents a case study of off-line

data-driven parameter optimization for a cancer immunotherapy model. The

cancer immunotherapy uses the immune system to defend human bodies against

attacks by malignant tumor cells [56]. To replicate and predict therapeutic effects,

it is essential to establish a bio-dynamic model based on biological principles

and to formulate an objective function with constraints for optimizing its model

parameters based on limited clinical results. Subsequently, the established model

can provide significant inferences for further clinical trials.

A mathematical model has been established, based on biological principles,

to express disease progression either with or without drug treatments where

two drugs cyclophosphamide (CY) and a Toll-like receptor agonist (CpG) are

used [57]. Although the dynamic system model is established, it is difficult to find

a set of appropriate parameter values since a dynamic system model is sensitive

to parameter settings. In the literature [58–62], two approaches are commonly

used to determine the values of immunotherapy model parameters. In [58],

some parameters are qualitatively determined and estimated based on biological

principles. This approach is effective for models based on similar experiment

settings and with fewer estimated parameters. In the proposed model, there are 15

parameters to be optimized, and this approach may not work effectively. In [58],

some parameters are empirically determined via a trial-and-error approach with

clinical data. Since this approach requires extensive efforts in manual fine-tuning,

it is neither efficient nor robust for optimizing such a model.

Evolutionary algorithm (EA) is a meta-heuristic global optimization approach

which can be applied to solve optimization problems with single or multiple ob-
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jectives [63–65]. EA has shown much success in solving a variety of optimization

problems in real-world applications [66–71]. Considering these advantages, EA

is applied in this chapter to solve the formulated off-line data-driven parameter

optimization problem with constraints.

Constraint-handling methods in EA can be categorized into four types,

namely, penalty function methods, methods based on preference of feasible

solutions over infeasible solutions, methods based on multi-objective optimiza-

tion techniques and repairing methods [3]. They have been explicitly introduced

and reviewed in Chapter 2.

The contributions of this chapter are summarized as follows,

1) A cancer immunotherapy model is proposed based on biological principles

and the clinical results in [72]. To the best of our knowledge, this work is among

the first work to conduct parameter optimization in cancer immunotherapy.

2) A new constraint-handling technique ε-SEC is proposed to preserve search

diversity and to impose selective pressure towards the optimal feasible region in

an evolutionary optimization process. Thus, decision variables with constraints

are studied and explored to tackle real problems.

3) With the optimized parameter values, the formulated cancer immunother-

apy model can be used for prognostic outcomes in clinical trials. The predictabil-

ity is considered significant for such a parameter optimization approach.

3.2 Technical details of the Mathematical Model

Breast Cancer Immunotherapy Model

Based on biological principles and the clinical results in [72], a mathematical

model for the breast cancer intratumoral immune system is established. The

model expresses the change of the entities with and without treatments. CY and

CpG are two different kinds of drugs for treatments mentioned in [72]. They
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can eradicate advanced mouse tumors. The model takes four major entities:

breast cancer cells (C), effector cells (E), regulatory cells (R), and tumoricidal

myeloid CD11b+Gr1dim cells (M). The model assumes a homogeneous tumor

cell population.

Some specific biology assumptions are made below according to biological

principles [58, 59, 72, 73]:

(1) C cells grow logistically in the absence of treatments.

(2) E cells are capable of killing cancer cells. E cells are activated by cancer

cells, but eventually become inactivated after some number of interactions with

tumor cells.

(3) R cells suppress E cells.

(4) M cells can be induced by CY and CpG to kill cancer cells.

The model inputs are the initial cell counts of these four cell types, the current

time t, and the dosage of CpG and CY at time t, which are represented by VCpG(t)

and VCY (t) in the units of ’mg/kg’. The model outputs are the cell counts of

these four cell types at time t, respectively.

In the model, multiplication rules are applied for the interaction between

two kinds of cells since multiplication rules have been widely adopted in system

biology to model interactions between cells. Similarly, the multiplication rules

have been used to model interaction between cells and drugs as well.

Tumor Cells C

The evolution of the population of tumor cells depends on the cancer growth

terms and the removal of cancer cells by immune cells. The change of tumor

cells is expressed as:

dC

dt
= acC(1− C

Cmax

)− bcEC − ccMC − dcVCY (t)C. (3.1)

The growth term is represented by acC(1− C/Cmax). Cmax is the maximum ca-
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pacity of tumor cells. The removal terms are−bcEC,−ccMC, and−dcVCY (t)C.

They represent the removal of tumor cells by the interactions with E cells and M

cells. Since CY is an anti-cancer chemotherapy drug, it can weaken or destroy

cancer cells. Hence, −dcVCY (t)C is the last removal term.

Effector Cells E

The change of effector cells (E) is represented as:

dE

dt
= aeC − beE − ceEC − deRE. (3.2)

The term aeC characterizes the rate at which E cells accumulate in the

tumor micro-environment due to the presence of tumor cells. The term −beE

characterizes the E cells dying naturally at a rate of be. The term −ceEC is the

inactivation rate due to the interaction between tumor cells and E cells. The term

−deRE represents the E cells suppressed by the regulatory cells.

Regulatory Cells R

The equation for regulatory cells is expressed as follows:

dR

dt
= arE − brR− k1RVCY (t)− k2RVCpG(t). (3.3)

R cells originate from E cells [74], which are described by the term arE. The

term −brR represents the natural death of R cells. Since CY has a property to

selectively kill R cells [75–78], the term −k1RVCY (t) is applied to indicate the

interaction between R cells and CY. Since the number of R cells decreases after

injection of CpG, the term −k2RVCpG(t) is applied.

Tumoricidal Myeloid CD11b+Gr1dim Cells M

The tumoricidal myeloid CD11b+Gr1dim cells (M) are represented as:

dM

dt
= −amM + k3VCY (t) + k4VCpG(t). (3.4)
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The death of M cells is represented by −amM . The terms k3VCY (t) + k4VCpG(t)

describe the increase of M cells by CpG+CY treatment.

Remark: Comparing with a static function, the impact from a parameter to

the output response is much more complicated for a dynamic system. First, the

output response of a dynamic system is not only dependent on the parameters,

but also on the initial conditions as well as exogenous inputs, such as CY and

CpG in our model. Thus, extra dimensions are added to the original optimization

problem. Second, the relations between dynamic output response and system

parameters are far more complicated than that of a stationary mapping. For

instance, the gradient of the output of a stationary function with respect to a

parameter is finite. In a dynamic system, however, the variation of a parameter

can result in many complex behaviors in corresponding solution trajectories, for

instance, stable or unstable response, bifurcation, subharmonics, finite escape

time, and even chaos. The gradient of a parameter can be as steep as infinite.

In other words, the dynamic response can be extremely sensitive to parameter

variations. Hence, parameter optimization becomes much more challenging for

dynamic systems.

3.3 Technical details of the Formulation of the Pa-

rameter Optimization Problem

3.3.1 Decision Variables

There are 16 parameters in the model. Cmax is fixed as 4 × 109. According

to the experiments in [72], the tumor weight of the mouse is approximately

4g. The volume of 1g tumor is about 1cm3. There are around 1 × 109 tu-

mor cells per cm3. Hence, the maximum tumor carrying capacity Cmax is

4 × 109. All the other 15 parameters constitute the solution x. Hence, x =
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(ac, bc, cc, dc, ae, be, ce, de, ar, br, k1, k2, am, k3, k4).

Each parameter has certain biological meaning. The lower bound (Xlb) and

upper bound (Xub) of each parameter are manually set as one order of magnitude

lower and one order of magnitude higher than the magnitude of the estimated

values from the literature [58, 60–62, 72] except for ac since ac cannot be too

large due to its biological meaning in the model. The upper and lower bound of

each parameter are presented in Table 3.1.

Table 3.1: Upper and Lower Bound of 15 Parameters

Parameters Units Xlb Xub

ac day−1 1×10−1 5×100

bc (cell day)−1 1×10−7 1×10−5

cc (cell day)−1 1×10−7 1×10−5

dc (cell day)−1 1×10−7 1×10−5

ae day−1 1×10−5 1×10−3

be day−1 1×10−3 1×10−1

ce (cell day)−1 1×10−11 1×10−9

de (cell day)−1 1×10−7 1×10−5

ar day−1 1×10−6 1×10−4

br day−1 1×10−4 1×10−2

k1 mg−1 kg day−1 1×10−4 1×10−2

k2 mg−1 kg day−1 1×10−1 1×101

am day−1 1×10−3 1×10−1

k3 mg−1 kg cell day−1 1×101 1×103

k4 mg−1 kg cell day−1 1×103 1×105

3.3.2 Objective Function

The experiment in [72] was conducted when CY was given to cancer-bearing

mice on day 0 and CpG on day 3 of each seven day cycle. Tumors were allowed

to reach 10-12 mm diameter prior to commencement of therapy on day 17. In
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this chapter, the tumor diameter is assumed to reach the medium value 11mm

on day 17. Then the volume of tumor is 696.91mm3, calculated by the formula

V=4πr3

3
where V is the tumor volume and r is the tumor radius. Since 1 mm3

tumor has 1×106 tumor cells according to [72], the tumor cells on day 17, i.e. the

initial tumor cell counts C0 is 6.9691×108. In addition, based on the experiments

from [72] as well, the yield of E cells per mm3 tumor is 500 and the yield of

R cells per mm3 tumor is 150, so the initial E cell counts and R cell counts are

E0 = 500 × 696.91 = 3.4845 × 105 and R0 = 150 × 696.91 = 1.0454 × 105.

The initial cell counts are shown in Table 3.2.

Table 3.2: Initial Conditions of Number of Tumor Cells C, Effector Cells E, and
Regulatory Cells R

C0 E0 R0

6.9691×108 3.4845×105 1.0454×105

Also based on experiments from [72], CpG, CY and CpG+CY treatments

start to be conducted on day 17, respectively. After 10 days of treatments (i.e.

on day 27), tumor volume reduces to approximately four fifths (4/5) of day 17,

two thirds (2/3) of day 17 and a fourth (1/4) of day 17, respectively. That is, the

corresponding tumor volumes are 557.53 mm3, 464.61 mm3 and 174.23 mm3,

respectively. On day 27, for CpG therapy, the yield of E cells per mm3 is 90 and

the yield of R cells per mm3 is 4; for CY therapy, the yield of E cells per mm3

is 150 and the yield of R cells per mm3 is 20; for CpG+CY therapy, the yield

of E cells per mm3 is 70 and the yield of R cells per mm3 is 0.13. In addition,

in [72], at least 90% eradication of the tumor cells is estimated after 7 cycles with

CpG+CY therapy. Thus, the the corresponding tumor volumes are smaller than

17.42 mm3 on day 66 (=17+(7×7)). Thus, there are 4 different drug schedules

contributing to 10 collected clinical results as shown in Table 3.3.

Limited clinical results were collected before the optimization process, and

an off-line data-driven optimization problem is formulated based on the clinical
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Table 3.3: C Cells, E Cells and R Cells Counts with CpG, CY and CpG+CY
Treatments from the Clinical Results in [72]

C E R

CpG (Day 27) 5.5753×108 5.0178×104 2.2301×103

CY (Day 27) 4.6461×108 6.9692×104 9.2922×103

CpG+CY (Day 27) 1.7423×108 1.2196×104 22.65

CpG+CY (Day 66) ≤1.7423×107 N.A. N.A.

results and biological principles. The aim is to minimize errors between the

computed results from the model and the clinical results in [72]. The sum of

absolute error is selected as the objective at first. Normalization is then applied

because the number of C cells, E cells and R cells are in different order of

magnitudes. In [72], the order of magnitudes of C cells, E cells and R cells are

108, 104 and 103, respectively. Hence, the normalization used for the differences

of C cells, E cells, R cells are 10−8, 10−4 and 10−3, respectively.

It should be noted that if the sum of absolute error is the objective function,

the computed results of C cells, E cells and R cells for CpG+CY on day 27 from

our model are frequently one order of magnitude lower than the corresponding

clinical results in [72]. Since these clinical results are close to zero after the

normalization, the objective function can be insensitive to the change of errors

between the clinical results and computed results from the model. To make the

objective function sensitive to the change of errors, absolute log ratio function is

applied to these terms.

In this work, I set the threshold to be 2.5 so that if the clinical results after

normalization are smaller than 2.5, absolute log ratio will be applied to that term.

Otherwise, absolute error will be applied.

The inputs of the objective function are the clinical results of the cell counts

under different drug schedules at time t, and the computed cell counts from the

established cancer immunotherapy model under different drug schedules at time
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t. The outputs of the objective function are the sum of the errors between the

clinical results and computed results under different drug schedules.

The objective function is thus formulated as follows:

min f(x) = fCpG(x, t = 27) + fCY (x, t = 27)

+ fCpG+CY (x, t = 27)

+ fCpG+CY (x, t = 66)

(3.5)

where

fCpG(x, t = 27) =

|(CCpG(x, t = 27)− ĈCpG(x, t = 27))|/108

+ |(ECpG(x, t = 27)− ÊCpG(x, t = 27))|/104

+ | log(RCY (x, t = 27)/R̂CY (x, t = 27))|,

fCY (x, t = 27) =

|(CCY (x, t = 27)− ĈCY (x, t = 27))|/108

+ |(ECY (x, t = 27)− ÊCY (x, t = 27))|/104

+ |(RCpG(x, t = 27)− R̂CpG(x, t = 27))|/103,

fCpG+CY (x, t = 27) =

| log(CCpG+CY (x, t = 27)/ĈCpG+CY (x, t = 27))|

+ | log(ECpG+CY (x, t = 27)/ÊCpG+CY (x, t = 27))|

+ | log(RCpG+CY (x, t = 27)/R̂CpG+CY (x, t = 27))|,

fCpG+CY (x, t = 66) =

| log(CCpG+CY (x, t = 66)/ĈCpG+CY (x, t = 66))|,

where x denotes the set of parameters in the model. The terms with hat represent

the clinical results in [72], and the terms without hat represent the computed

results from the model.
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3.3.3 Constraints

For the proposed nonlinear biological system as in Equation (3.1) to (3.4), the

stability criteria need to be satisfied for CpG on day 27, CY on day 27, the

combination of CpG+CY on day 27 and the combination of CpG+CY on day 66.

The stability of the equilibrium point without treatment should also be satisfied.

A total of 23 constraints are formulated to satisfy the system equilibrium and

disease progression characteristics. 20 of them are based on bio-stability, and

they are handled by the death penalty method. In control theory, a continuous-

time linear time-invariant system is stable if and only if all of the eigenvalues

λi of the system matrix have negative real parts. The constraints of bio-stability

are formulated such that under various drug schedules as well as equilibrium

condition, eigenvalues of the system matrix should have negative real parts.

The death penalty method is the simplest way to handle such constraints, but

it requires the feasible region to be easily identified [79]. Based on the results

derived from 30 independent runs by the death penalty method, more than 70%

generated solutions of each generation satisfy the constraints of bio-stability for

the first 100 out of 500 generations. After half of an evolutionary process, all

solutions of each generation satisfy the constraints of bio-stability. Thus the

death penalty method is effective in handling the constraints of bio-stability.

The other 3 constraints are based on biological principles. Based on our em-

pirical studies from 30 independent runs, feasible solutions cannot be generated

by the trivial death penalty method so these 3 constraints are more suitable to

be handled by non-trivial constraint-handling methods under the four categories

described in Chapter 2 [79].

To satisfy the disease progression without treatments, 3 constraints should

be formulated according to [58, 59, 72, 73]. Without any treatments, the tumor

cells (C) should not decrease at the starting point. The first constraint is thus

dC/dt ≥ 0 at t = 17. Without any treatments, E cells should to not increase at
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the starting point. The second constraint is thus dE/dt ≤ 0 at t = 17. However,

E cells should not decrease so rapidly at the starting point. I approximate the

rate of change at the starting point using the difference of E cells between two

close but not consecutive days (day 17 and day 20 used in this work) divided by

the difference in days. I manually restrict the minimum E cells counts on day

20 as 5×104, and the lower bound of the rate of the change of E cells on day 17

is -9.9485×104 (=(5×104-E0)/(20-17)) where E0 is from Table 3.2. The third

constraint is thus dE/dt ≥ −9.9485× 104 at t = 17.

In [25], the constraint violation can be defined as the maximum of all con-

straints or the sum of all constraints, and the maximum of all constraints was

selected to be the constraint violation. In this work, since the constraint-handling

technique is proposed based on [25], the constraint violation is also defined as

the maximum of all constraints:

φ(x) = max
j
{max{0, gj(x)}}, (3.6)

where gj(x) is the constraint value of each constraint j for solution x. If some

constraint j is violated, φ(x) > 0. Otherwise, φ(x) = 0.

Since the magnitudes of these three constraints are different, normalization

should be applied to them. In Table 3.3, the order of magnitudes of C cells and E

cells are 108 and 104. Hence, the normalization used for the constraints related

to C cells and E cells is 10−8 and 10−4, respectively. All the 23 constraints are
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formulated as follows:

gi1(x) = λj(x, t = 27, CpG) < 0, where i1 = {1, 2, 3, 4},

and j = {1, 2, 3, 4}.

gi2(x) = λj(x, t = 27, CY ) < 0, where i2 = {5, 6, 7, 8},

and j = {1, 2, 3, 4}.

gi3(x) = λj(x, t = 27, CpG+ CY ) < 0,

where i3 = {9, 10, 11, 12}, and j = {1, 2, 3, 4}.

gi4(x) = λj(x, t = 66, CpG+ CY ) < 0,

where i4 = {13, 14, 15, 16}, and j = {1, 2, 3, 4}.

gi5(x) = λj(x, equilibrium) < 0,

where i5 = {17, 18, 19, 20}, and j = {1, 2, 3, 4}.

g21(x) = −( dC(w/o therapy)(x)
dt

∣∣∣
t=17

)/108 ≤ 0,

g22(x) = ( dE(w/o therapy)(x)
dt

∣∣∣
t=17

)/104 ≤ 0,

g23(x) = −9.9485× 104/104−

( dE(w/o therapy)(x)
dt

∣∣∣
t=17

)/104 ≤ 0,

(3.7)

where λ1 to λ4 are the four eigenvalues of the system matrix under various drug

schedules and equilibrium condition.

3.4 Technical Details of the Proposed Constraint-

Handling Technique ε-SEC

A constraint-handling technique ε-Sectional (ε-SEC) is proposed to solve the

data-driven constrained optimization problem formulated in Section 3.3. The

proposed ε-SEC remedies drawbacks in methods based on preference of feasible

solutions over infeasible solutions, especially ε-DE.
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from sorting based on f(x) to 

φ(x).

Figure 3.1: Working diagram of ε-SEC. In this example, the number of sections
is M=4. dis(1),dis(2), dis(3), and dis(4) represent the original region of these four
sections. dis(1) always represents the feasible region. eps(1), eps(2), eps(3), and
eps(4) represent the upper bounds of the corresponding sections. Individuals are
partitioned into different sections based on their constraint violations φ(x). In
each section, half of the individuals are selected based on f(x) and the other half
based on φ(x) so that part of the Pareto front in each section can be approximated.
Each section dynamically shifts close to the feasible region. For instance, as
dis(4) changes to dis(4’), the solid curve remains. The dotted curve in the lower
right of the remained solid curve diminishes since the upper bound changes from
eps(4) to eps(4’).

3.4.1 Proposed Constraint-Handling Technique-ε-SEC

According to ε-DE in [25], a soft constraint-tolerance ε is introduced to assist the

search for feasible solutions. The soft constraint-tolerance ε is set to converge to

zero as the number of generation is increased. If constraint violation is smaller

than ε, only objective function values are compared. Otherwise, only constraint

violations are compared. If we compare an infeasible solution whose constraint

violation is no larger than ε with a feasible solution, the infeasible solution may

be superior due to the more optimal objective function value.

To circumvent the issue of ε-DE discussed in Chapter 2, a new constraint-

handling technique of ε-SEC is proposed in this Chapter. In ε-SEC as shown
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in Fig. 3.1, several consecutive sections are formed based on the value of ε

with respect to the current generation g, and one of these sections is fixed as

the feasible region. The value of ε is also set to converge to zero as the number

of generation is increased. To enhance diversity of population, both parent

solutions and offspring are distributed into different sections based on their

constraint violations. The selection operation is conducted within each section to

collectively form the population in the next generation. To enhance convergence

of population, the search in the current section can provide information for

the search process in neighboring sections. Furthermore, since ε is reduced

towards 0, the upper bounds of each section are reduced towards 0 accordingly.

Thus, each section is dynamically shifted towards the feasible region. Thereby

ε-SEC imposes selective pressure on individuals in each section towards the

optimal feasible region to enhance convergence. To balance objective function

optimization and constraint violation minimization, in each section, half of the

individuals are selected based on their objective function values, and the other

half are selected based on their constraint violations since the objective function

and constraint violations are typically in conflict with each other.

The constraint violation φ(x) of each individual x is defined in Equation

(3.6). The soft constraint tolerance ε(g) with respect to the current generation g

is defined the same as in ε-DE [25]:

ε(0) = φ(xθ)

ε(g) =

 ε(0)(1− g
Gc

)cp, 0 < g < Gc

0, g ≥ Gc

. (3.8)

φ(xθ) is θ percentage of violation in descending order of the entire initialized indi-

viduals. g represents the current generation. Gc is the threshold of the generation.

cp controls the convergence speed of ε(g), and cp = (−5− log(ε(0)))/ log 0.05.

Algorithm 3.1 presents the proposed constraint-handling technique ε-SEC.
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The constraint violation is divided into M sections which are consecutive to each

other. It is noted that for the setting of ε-SEC, the first district always represents

the feasible region. Hence, forM = 1, there is only one district, and the proposed

technique is equivalent to the death penalty method. For M = 2, there are two

districts such that the first is the feasible region, and the second is the region with

φ(x) ≤ ε(g), where g is the current generation. Hence, for M = 2, ε-SEC is

equivalent to ε-DE. In order to enhance diversity of the population distribution,

the setting of M should be M ≥ 3. From steps 3 to 5, the upper bound of each

section s is determined. The upper bound of each section is the corresponding ε

values in Equation (3.8) with respect to h(1), h(2), · · · , h(M), which are set in

step 3. The districts of these M sections are represented as dis(1), · · · , dis(M)

in Fig. 3.1. The upper bound of each section s is eps(s) as shown in Fig. 3.1.

The most conventional differential evolution (DE) strategy-‘DE/rand/1/bin’

is employed to generate N offspring based on the population in the current

generation. Hence, the size of Pcom is 2N , and it is the same size for fcom

and φcom. Pcom are distributed based on φcom into M sections and the region

with φ(x) > eps(M). The original desired population size for each section s

is popsize = N/M . After the distribution of Pcom, the population size of each

section s is counted and represented as cursz(s). If there are more than N indi-

viduals distributed to M sections, only N individuals will be selected from these

M sections for the next generation. Otherwise, all of the individuals distributed

in these M sections will be selected for the next generation. From steps 12 to 31,

the procedure of selecting the elitist N individuals for the next generation is pre-

sented. From steps 13 to 25, the selectsz(s), which is the number of individuals

selected for the next generation, is determined for each section s. It is desired

to select equal number of individuals denoted as popsize from each section s so

that the individuals can be evenly distributed. However, at the early stages of

evolution, there may be fewer than popsize individuals distributed to sections
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close to the feasible region. Thus, selectsz(s) is initialized to be the minimum

of cursz(s) and popsize. The number of potential individuals for selection into

the next generation is calculated as leftsz(s) for each section s. The number of

individuals to be selected from subsequent sections are calculated and updated

as remain. From steps 17 to 25, leftsz(s) is compared with remain starting

from the feasible region to the M -th section to check whether the number of

potential individuals leftsz(s) of section s should be selected into Pg+1 so that

selectsz(s) can be updated and determined. After selectsz(s) is determined

for all the M sections, the selection of individuals into the next generation is

presented in step 26. For each section s, candidates are ranked in ascending order

based on the objective function values f(x) at first. Candidates are then ranked in

ascending order based on constraint violations φ(x). Candidates ranking before

selectsz(s)/2 based on f(x) are selected for Pg+1. Subsequently, candidates

ranking before selectsz(s)/2 based on φ(x) are selected for Pg+1 as well.

3.4.2 Analysis of ε-SEC

Figure 3.2: Schematic of ε-DE. Ellipses represent the contours of objective
function. The outer dotted ellipse represents the contour of ε-feasible region in
the objective space. The inner dotted ellipse represents the contour of the feasible
region in the objective space.

One issue of ε-DE is that solutions tend to be crowded in the infeasible region

at the early evolutionary stages. If φ(x) is smaller than or equal to ε(g), only
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Algorithm 3.1 ε-SEC
Input: population size N , maximum generation Gmax, threshold generation

Gc, ε(g), section size M , current population Pg, combined population Pcom,
combined objective function values fcom, combined constraint violations
φcom.

Output: population Pg+1

1: for g = 1, 2, · · · , Gmax do
2: if g <= Gc then
3: h(s) = floor(Gc − (Gc − g)/(M − 1) × (s − 1)), where s is the

corresponding section index, and s = 1, 2, · · · ,M .
4: eps(s) = ε(0)(1− h(s)/Gc)

cp, for s = 1, 2, · · · ,M .
5: dis(s) represents each section s. The lower and upper bound of dis(s)

is eps(s− 1) and eps(s). eps(0) = eps(1) = 0.
6: else
7: eps(s) = 0 for s = 1, 2, · · · ,M .
8: end if
9: Pcom are distributed into M sections and the region with φ(x) > ε(g)

based on the φ(x) in φcom.
10: The current population size of each section s is denoted as cur˙sz(s).
11: The required population size of each section s is denoted as popsize =

N/M .
12: if cursz(1) + · · ·+ cursz(M) > N then
13: For each s in s = 1, 2, · · · ,M :
14: selectsz(s) = min(cursz(s), popsize).
15: leftsz(s) = max(0, cursz(s)− popsize).
16: remain = N − (selectsz(1) + · · ·+ selectsz(M)).
17: for s = 1, · · · ,M do
18: if remain <= leftsz(s) then
19: selectsz(s) = selectsz(s) + remain.
20: break.
21: else
22: selectsz(s) = selectsz(s) + leftsz(s).
23: remain = remain− leftsz(s).
24: end if
25: end for
26: For each s, rank the individuals in dis(s) in ascending order based

on f and φ, respectively. Individuals ranking before selectsz(s)/2 in
terms of f are selected into Pg+1. Similarly, individuals ranking before
selectsz(s)/2 in terms of φ are selected into Pg+1.

27: else
28: All of the individuals in Pcom with φ(x) <= ε(g) are selected into

Pg+1.
29: remain = N − (cursz(1) + · · ·+ cursz(M)).
30: Rank the individuals with φ(x) > ε(g) in ascending order based on

φ(x). Select the individuals ranking before remain into Pg+1.
31: end if
32: end for
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Figure 3.3: Schematic of ε-SEC. In this example, the number of sections is M=4.
The ellipses represent the contours of objective function. The dotted ellipses
represent the contours for dis(1), dis(2), dis(3), and dis(4) in the objective space.
The searching direction arrow indicates that the searching in the outer section
can promote the searching in the neighboring inner section. The searching in
these four sections collaboratively drives the solutions into the feasible region
dis(1).

the objective function values are compared. Hence, as shown in Fig. 3.2, in ε-

feasible region, those ε-constrained optimal solutions x′ tend to be crowded in the

objective space, and the diversity of the solutions are deteriorated. As the value

of ε(g) becomes small enough, due to the lack of diversity, the selective pressure

will change to focus on searching for the feasible solutions. The distribution of

solutions in the objective space needs to be abruptly changed. These convergent

solutions x′s have little effects on promoting the search towards the optimal

feasible region.

For the proposed ε-SEC, each section will dynamically shift towards the

feasible region at each generation. The selection of solutions is conducted within

the population in each section instead of the entire population. Hence, solutions

are less likely to be crowded or converged to only one part of the infeasible region.

In Fig. 3.3, solutions obtained in different sections can enhance the search in

neighboring sections, and collaboratively promote the search towards the feasible

region. For example, based on information collected from the solutions in dis(4),
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the search of optimal solutions in dis(3) can be enhanced. Similarly, it works

for the search of optimal solutions in dis(2) and the feasible region (i.e. dis(1)).

This makes the search collaboratively towards the optimal feasible region and

avoids cases where solutions abruptly switch their distributions in the objective

space as caused by the change of ε. Hence, the proposed ε-SEC is less sensitive

to the value of ε(g) as compared to ε-DE.

3.5 Results, Analysis and Discussion

3.5.1 Experiment Setup

To support the effectiveness of ε-SEC in solving the breast cancer immunother-

apy model, ε-SEC is compared with four state-of-the-art constraint-handling

techniques viz. CMODE [38], APFEC [36], ε-DE [25] and FROFI [37].

The parameters used in the implementation are listed as follows:

1)Population size N is 100. Maximum generation Gmax is 500. F is 0.5, and

CR is 0.9. The maximum run is 30. Function evaluation times (FEs) for each

run is 1.5×105.

2) For the proposed technique ε-SEC, θ is 90%, and section number M is 5. Gc

is 400.

3) For the compared technique ε-DE, based on the settings in [25], θ is 90%, and

Gc is 400.

4) For the compared technique CMODE, based on the settings in [38], λ is 8,

and k is 22.

5) For the compared technique APFEC, based on the settings in [36], α is 0.5.

6) For the compared technique FROFI, based on the settings in [37], MRN is

D/2, where D is the dimension of solutions.
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3.5.2 The Comparison of Constraint-handling Techniques

Since the optimal solution cannot be known in advance, the average and standard

deviation of the objective function values obtained in 30 runs, feasible rate, and

p-value are considered here. Table 3.4 presents the mean and standard deviation

of the objective function values obtained in 30 runs. Among the five techniques,

ε-SEC achieves the best performance in terms of the mean and standard deviation.

To examine the robustness of algorithms, the feasible rate is used, which is the

percentage of runs where at least one feasible solution is found. Herein, ’∗’

denotes that feasible solutions cannot be consistently found by the corresponding

technique in all runs. In Table 3.4, the feasible rates of ε-SEC, ε-DE and FROFI

are all 100%. Hence, these three techniques are relatively robust. The Wilcoxon

rank-sum test [80] is also conducted at the 5% significance level. The entries

which are significantly better than the compared technique are marked with ∗∗.

In Table 3.4, all of the p-values are smaller than the threshold level of 0.05.

Hence, the effectiveness and robustness of ε-SEC are statistically supported for

solving this constrained parameter optimization problem.

Table 3.4: Experimental Results of ε-SEC, FROFI, ε-DE, CMODE, and APFEC
over 30 runs on the formulated problem. Mean, standard deviation, feasible rate,
and p-value are presented, respectively. ∗ represents the technique with less than
100% feasible rate. ∗∗ represents p < 0.05 so that ε-SEC significantly performs
better than the corresponding technique. The best results are highlighted in bold.

ε-SEC FROFI ε-DE CMODE APFEC

Mean 18.5347 50.4050 704.6794 260.5527 225.8266

Standard Deviation 0.7296 68.5855 1525.4077 817.4933 546.5923

Feasible Rate 100% 100% 100% 40%∗ 0%∗

p-value N.A. 5.76E-04∗∗ 9.38E-07∗∗ 8.35E-06∗∗ 7.37E-05∗∗

To analyze the performance of ε-DE, FROFI and ε-SEC, objective function
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values and constraint violations of solutions obtained from these methods at

various generations are plotted in Fig. 3.4, Fig. 3.5, and Fig. 3.6, respectively. In

Fig. 3.4, it can be observed that solutions are crowded in the circle-marked region

of the objective space at the 100th generation. Since the soft constraint-tolerance

level ε(g) is relatively large at the 100th generation compared with constraint

violations of these solutions, most solutions are compared based on objective

function values and are convergent in a region. As ε(g) becomes smaller, due

to the lack of diversity, many ε-feasible solutions becomes infeasible. The

selective pressure thus concentrates on the search of feasible solutions instead

of optimizing objective function values. In Fig. 3.4 at the 500th generation, it

can be observed that variation of the feasible objective values are large. For the

evolution of FROFI in Fig. 3.5, at 100th generation, solutions are distributed

between the objective function values of 25 and 100. Compared with ε-DE, at

the 100th generation, the diversity of solutions are better. At the 500th generation

as shown in Fig. 3.5, obtained solutions are mostly feasible solutions. The

objective function values of the obtained feasible solutions are between 25 to

120 so FROFI achieves better convergence than ε-DE. In Fig. 3.6, at the 100th

generation, the individuals are distributed between objective values of 10 to

20, and 20 to 40. Compared with ε-DE as shown in Fig. 3.4, the solutions

generated by ε-SEC are not crowded in certain regions at the 100th generation.

The individuals are distributed in different sections to enhance both objective

optimization and convergence to the feasible region. Compared with FROFI

at 100th generation as shown in Fig. 3.5, ε-SEC does not push individuals

into the region close to the feasible region at early generations. Since ε-SEC

enhances both the convergence to feasible regions and objective optimization

simultaneously, at 500th generation, it achieves the best convergence among the

three techniques with the objective values around 17 to 20. Thus, ε-SEC can

balance the task of optimizing objective function and the task of minimizing
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constraint violations well for solving this problem.
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Figure 3.4: Evolution of ε-DE over the median performance run at gen=10,
100, and terminated generation 500 on the data-driven parameter optimization
problem. At gen=500, a sub-figure which enlarges the constraint violation
between 1∼2 is included inside the figure. Red circles mark the crowded regions
of solutions at gen=100 and 500.
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Figure 3.5: Evolution of FROFI over the median performance run at gen=10,
100, and terminated generation 500 on the data-driven parameter optimization
problem. Red circles mark the crowded regions of solutions at gen=100 and 500.
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Figure 3.6: Evolution of the proposed technique ε-SEC over the median perfor-
mance run at gen=10, 100, and terminated generation 500 on the data-driven
parameter optimization problem. Red circles mark the crowded regions of so-
lutions at gen=100. At gen=500, the solutions are crowded within a very tiny
region, so a blank space with a point is shown.

To explore the robustness of ε-SEC, the best solution obtained versus the

number of generations from the best run, median run, and worst run over 30 runs
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is presented in Fig. 3.7. As shown in the figure, the convergence is achieved

after the 100th generation for the best run, median run and worst run. The best

feasible solution generated from ε-SEC is presented in Table 3.5.

Table 3.5: Obtained Best Feasible Solution Generated by ε-SEC

Parameters Units Value

ac day−1 1.11×10−1

bc (cell day)−1 2.63×10−7

cc (cell day)−1 8.19×10−7

dc (cell day)−1 8.18×10−6

ae day−1 1.57×10−5

be day−1 9.98×10−2

ce (cell day)−1 2.94×10−10

de (cell day)−1 1.07×10−7

ar day−1 1.18×10−6

br day−1 2.49×10−4

k1 mg−1 kg day−1 6.04×10−3

k2 mg−1 kg day−1 1.21×100

am day−1 9.99×10−2

k3 mg−1 kg cell day−1 8.04×102

k4 mg−1 kg cell day−1 4.14×104

The section number M is an important parameter of ε-SEC. I have conducted

a sensitivity analysis of the section number M , for which M = {3, 4, 5, 6} over

30 runs in solving the data-driven parameter optimization problem.

In Table 3.6, the mean of the objective values whenM = 3 is larger compared

with the results when M = 4, M = 5 and M = 6. This is because if the

number of sections is small, solutions will not be widely distributed to different

regions and diversity of solutions may not be preserved. As a result, the issues

encountered in ε-DE would likely happen when M = 3. After ε(g) reduces to an

extent, the selective pressure will change abruptly from optimizing the objective
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Figure 3.7: Convergence plot of the best solution obtained from the best run,
median run and worst run of ε-SEC.

function into minimizing the constraint violation. The selective pressure no

longer focuses on optimizing the objective function, the mean of the objective

value can be large when M = 3. Although the best performance is achieved

when M = 5, it is comparable when M = 4, M = 5 and M = 6.

In Fig. 3.8, the box plot of the parameter M is plotted when M = 4, M = 5

and M = 6. The mediums are relatively close to each other and the variance

when M = 5 is smaller. Overall, M is not very sensitive when M > 3. In our

paper, M is set to be 5.

Table 3.6: Experimental Results of ε-SEC for M=3, 4, 5, 6 over 30 Runs.

M=3 M=4 M=5 M=6

Mean 411.5892 18.6498 18.5347 18.6166

Standard Deviation 1413.8743 0.7877 0.7296 0.8149

3.5.3 Tumor Response without Treatments

The simulation results of C cells, E cells and R cells without treatments are

shown in Fig. 3.9.

Based on the parameters generated from ε-SEC, tumor cells (C) increase

logistically from the starting point and are finally stable. These are consistent
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Figure 3.8: Box plot of the parameter sensitivity analysis for M = 4, M = 5,
and M = 6.
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Figure 3.9: Simulation results of C cells, E cells, and R cells without therapy.

with the biological principles that tumor cells increase logistically as well as

the stability of system biology [58]. E cells decrease moderately followed by

a slight increase and reach a stable level when C cells become stable. The

parameters generated from ε-SEC rationalizes the immunotherapy model and

satisfies corresponding constraints.

3.5.4 Stability of Equilibrium

A system will move towards an equilibrium point if that point is stable. To

analyze the long-term dynamics of the system, the next step is to investigate the

stability of the equilibrium point without any treatments. Based on the established
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model in Section 3.2 and the parameters obtained by ε-SEC, two equilibrium

points E1 and E2 are found in Table 3.7.

Table 3.7: Location of Equilibrium

Equilibrium C E R M

E1 0 0 0 0

E2 3.5403×109 4.8660×104 2.3008×102 0

Jacobian Matrix in Equation (3.9) is the system matrix. The Jacobian Ma-

trix is applied to check the stability of these two equilibrium points, and the

eigenvalues are displayed in Table 3.8.

J =



ac − 2acC
Cmax
− bcE − ccM −bcC 0 −ccC

ae − ceE −be − ceC − deR −deE 0

0 ar −br 0

0 0 0 −am


. (3.9)

Table 3.8: Eigenvalues of Equilibrium and Stability

Equilibrium Stability λ1 λ2 λ3 λ4

E1 Unstable -0.0002 -0.0998 0.1113 -0.0999

E2 Stable -0.0002 -0.0997 -1.1397 -0.0999

In Table 3.8, E1 is found to be unstable since λ3 is positive. The high tumor

equilibrium E2 is stable. In addition, according to [72], euthanasia is conducted

to mice if the cross-sectional area of primary tumor reaches 250 mm2. Since

each tumor cell is approximately a sphere, the volume of each tumor cell is

around 3000 mm3. There are 106 tumor cells per mm3 indicated in [72], so the

number of tumor cells should be larger than or equal to 3×109 at the equilibrium

point. The treatment should not be conducted if the mice are dead. Hence, at the

equilibrium point, it is required to check C ≥ 3× 109. In Table 3.7, the number
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Figure 3.10: Simulation results based on ε-SEC with three different treatments
which start on day 17. Squares represent cell counts from [72], and the dotted
vertical line intersects with the cell counts obtained from the model on day 27.

of tumor cells C is larger than 3× 109, which satisfies the requirement of tumor

cell counts at the equilibrium point.

3.5.5 Tumor Response with Treatments

According to [72], for each cycle (i.e. 7 days per cycle) starting on day 17, mice

were injected with CY (200mg/kg) on day 0 and with CpG (5mg/kg) on day 3.

In Fig. 3.10, the tumor responses are displayed with CpG, CY, and CpG+CY

treatments on day 27, respectively. Squares represent cell counts from [72], and

the dotted vertical line intersects with the cell counts obtained from the model on

day 27. In Table 3.9, the computed results from the model and the clinical results

in [72] are shown. The numbers in bold are the computed results from the model.

In Table 3.9 and Fig. 3.10, all of the computed results of C, E and R cells for

CpG and CY on day 27 are acceptable as compared to the clinical results since

the differences between the clinical and computed results are mostly within 10%.

The number of tumor cells are reduced with the help of CpG and CY therapy.

In Fig. 3.10 and Table 3.9, after 10 days of CpG+CY therapy, the number

of tumor cells are reduced to nearly 20% of C0, and nearly 80% of the tumors

are eradicated. Based on the parameters generated from ε-SEC, the computed

number of tumor cells are within 10% difference with the clinical results as

51



shown in Table 3.9. Combining CpG and CY together can eradicate more tumors

as compared with the CpG therapy or CY therapy alone. According to Equation

(3.1) to (3.4), as the injection of CpG and CY, more M cells are generated and

R cells are significantly reduced according to [75, 76]. R cells suppress E cells.

As R cells become smaller and others do not change, the reduction of E cells

is slower as compared with only one therapy conducted. Hence, the number of

E cells become larger after this treatment. Since E cells can kill tumor cells,

according to [72], more E cells and more M cells inhibit the growth of tumor

cells, which lead to the eradication of more tumor cells.

To support the performance of ε-SEC, the simulation results with CpG and

CpG+CY therapy based on the best set of parameters generated by FROFI are

shown in Fig. 3.11 since FROFI produced the second-best performance among

the five techniques studied. For the CpG therapy, the computed result of R cells

on day 27 is around 50, but the obtained clinical result of R cells in [72] is

2.2301×103. The difference between the clinical and computed results is in

two orders of magnitude, which is not acceptable in the field of immunotherapy.

Furthermore, the behavior marked in the circle is abnormal. According to [72],

within the first two therapy cycles, CpG is administered on day 20 and day 27.

One of the effects of the injection of CpG is to reduce the number of R cells [72].

Although for the first treatment cycle after day 20, no CpG is administered, the

number of R cells should increase or decrease gradually instead of increasing

rapidly between day 20 and day 27 as marked in the circle in Fig. 3.11. Similarly

for the CpG+CY therapy, abnormal behavior is also observed as marked in the

circle. According to [72], within the two therapy cycles of CpG+CY, CpG is

administered on day 20 and day 27, and CY is administered on day 17 and day 24.

One of the effects of the administration of CY is to reduce the number of R cells

based on [72]. In addition to the abnormality of the rapid increase of the number

of R cells after the injection of CpG, the fast increase and decrease of the number
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Figure 3.11: Simulation results with CpG and CpG+CY treatments based on the
parameters generated from FROFI. The circle marks the abnormal behavior of R
cells.

of R cells after the injection of CY within only three days (between day 24 to

day 27) is not acceptable. Hence, based on the model with parameters obtained

from FRORI, the therapeutic effects of CpG and CpG+CY do not provide lasting

and stable therapeutic effects, which make the model not applicable for further

clinical studies.

3.5.6 Model-based Prognostics with Different Drug Schedules

In Table 3.9, I also present the tumor cells counts in the long term after 7 cycles

of CpG+CY therapy. The computed result shows more than 99% eradication of

the tumor cells, which is consistent with the estimation in [72] that at least 90%

eradication of the tumor cells was achieved. In the long term, the tumors can

be largely eradicated with the combination of CpG+CY treatment, provided the

assumption of the model on tumour homogeneity holds.

From clinical practices, it is impossible to exhaustively try all possible combi-

nations of drug schedules due to cost and time constraints. With the established

model and the obtained parameters from ε-SEC, we can predict the therapeutic

effects with different ways of drug delivery. To explore treatment strategies, the

CpG+CY drug delivery schedules in [72] can be changed, for example, to the

following two cases:
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Table 3.9: Number of Tumor Cells C, Effector Cells E, Regulatory Cells R
with CY, CpG and CY+CpG Treatments. The numbers in the upper line are the
clinical results in [72], and the numbers in the bottom line in bold are computed
from our model

C E R

CpG (Day 27) 5.5753×108 5.0178×104 2.2301×103

5.5759×108 5.0201×104 2.5107×102

CY (Day 27) 4.6461×108 6.9692×104 9.2922×103

4.2079×108 5.4192×104 9.2933×103

CpG+CY (Day 27) 1.7423×108 1.2196×104 22.65

1.9164×108 5.9027×104 22.6534

CpG+CY (Day 66) ≤1.7423×107 – –

2.2969×103 – –

Case 1: Fix CY delivery on day 0 per cycle, and modify the delivery time of

CpG on day 0, 1, 2, 3, 4, 5, 6 per cycle so that there are 7 different drug schedules

in total.

Case 2: Fix CpG delivery on day 0 per cycle, and modify the delivery time of

CY on day 0, 1, 2, 3, 4, 5, 6 per cycle so that there are 7 different drug schedules

in total.

As indicated in [72], there are approximately 1×106 number of tumor cells

per mm3. Tumor volumes are used to represent the disease progression in Table

3.10. The number in bold represents the tumor cell volumes based on the drug

protocol in [72].

From Table 3.10, it can be observed that

1) If both CpG and CY are administered on day 0 of each cycle, the best

effects of therapy is obtained with the total tumor volume 105.06 mm3. This

value is lower than the standard protocol used in clinical trials.

2) The performance of case 2 is generally better than that of case 1. We can

give some suggestions to the clinical practices that CpG is better to be delivered
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Table 3.10: Comparisons of tumor volumes (mm3) on day 27 of different treat-
ment schemes of CpG+CY. The number in bold is the tumor volumes based on
the drug protocol in [72]. For the first row, it represents on which day CpG or
CY is administered of each cycle.

day0 day1 day2 day3 day4 day5 day6

Case 1 105.06 129.62 162.83 174.23 209.42 231.00 257.59

Case 2 105.06 123.57 147.49 167.68 179.69 193.98 211.22

on day 0, and modify the delivery time of CY of each cycle.

From the biological perspective, observation (1) implies that the treatment

should start as early as possible.

3.6 Chapter Conclusion

In this work, I have formulated an off-line data-driven parameter optimiza-

tion problem for a breast cancer immunotherapy model, and proposed a new

constraint-handling technique to solve the problem. The mechanisms of the

proposed technique can preserve the diversity of solutions and enhance the solu-

tions for convergence to the near-optimal feasible region. The simulation results

have been compared with four state-of-the-art evolutionary constraint-handling

techniques, which show the effectiveness and robustness of the proposed tech-

nique in solving the data-driven parameter optimization problem. The optimized

parameters obtained from the proposed constraint-handling technique not only

rationalizes the established model, but also generalizes the model for both the

replication and prognostication of clinical therapeutic outcomes.

In future work, the model should assume tumor heterogeneity since in real life,

a tumor is often heterogeneous. Such intra-tumour heterogeneity often gives rise

to treatment resistance and cancer relapse. It is therefore important to know when
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the predictions of the model are diverging too much from actual observations

on a patient (e.g. to generate confidence intervals for the model’s predictions),

and thus to switch the treatment regime for the patient. Moreover, more clinical

results can be collected to refine the established cancer immunotherapy model.

In addition, if real-time clinical results can be collected, on-line data-driven

optimization task can also be explored for the cancer immunotherapy model.

Although the proposed constraint-handling technique was developed explicitly for

the parameter optimization of a cancer immunotherapy model, the approach can

be applied to other problems such as experimental designs, industrial prognostics

and so on.
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Chapter 4

A Data Augmentation Pipeline for

Solving the Small-Data Issue of our

Cancer Immunotherapy Model

4.1 Introduction

Many real-world modeling problems can be solved with the help of parameter

optimization based on data collected from physical experiments, real events, or

complex numerical simulations [51]. However, due to time, cost and resource

constraints, in some cases, only very small amounts of data can be collected

and used for training a model. For instance, the clinical trials from cancer

immunotherapy in Chapter 3 collected only 10 real data points. These small

amounts of collected data can lead to poor-fit issues and undermine resolution

and generalizability of a model [81]. Thus, to tackle small-data issues and to

improve the resolution of the cancer immunotherapy model in Chapter 3, it is

crucial to figure out how to generate more training data.

There are several methods of tackling small-data issues in the field of com-

putational intelligence. A representative method is data augmentation, i.e.
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adding more artificially generated data by different methods. The trivial data-

augmentation method is to replicate the same set of data. However, more repli-

cated data does not insert enough additional information to improve the resolution

of a model. In addition to the trivial method, a common one is data transfor-

mation such as adding some noise to the collected data in industrial domain

applications or transforming the training images with shifting and rotation op-

erations in the field of computer vision [82]. Another representative method

for solving small-data issues is fine-tuning [83], which uses well-trained model

parameters obtained from training a large dataset to initialize new model param-

eters. New model parameters are updated based on training using additionally

collected small datasets. The fine-tuning method is generally utilized in deep

neural networks, and is more useful when using gradient-based approaches to

update model parameters. The fine-tuning method is not applicable to updating

model parameters using population-based and gradient-free approaches such as

evolutionary algorithms.

To improve the cancer immunotherapy model in Chapter 3 by solving small-

data issues, the following data augmentation pipeline is proposed.

For any constraint-handling technique X, apply X to an initial small set of

data points to obtain a draft model X_draft. Then use X_draft to generate

some additional pseudo data points. These additional pseudo data points are

combined with the initial small set of real data points, and divided into a new

training and a new testing data set. The constraint-handling technique X is then

applied to the new training data set (after adding some Gaussian noise to the new

training data set to mitigate overfitting) to obtain a new model X_new, which is

then tested on the new testing data set.

This data-augmentation procedure is demonstrated on five constraint-handling

techniques, including ε-SEC, using the cancer immunotherapy model from

Chapter 3. The results provide evidence that this data-augmentation procedure
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is universally effective in improving the resolution (viz. error size) of these

constraint-handling techniques. The results also provide evidence that ε-SEC

sustains its superior resolution compared to the other four constraint-handling

techniques post data augmentation. Lastly, the results provide evidence that

training the other constraint-handling techniques using the pseudo training data

set generated by ε-SEC improves their resolution more than using their own

respective pseudo training data set.

4.2 Details of the Data Augmentation Pipeline

In order to solve small-data issues in constrained parameter optimization prob-

lems, I introduce a data augmentation pipeline for constraint-handling techniques

as shown in Fig. 4.1. For any constraint-handling technique X, apply X to the

initial small set of data points S0 to obtain a draft model X_draft. Then

use X_draft to generate some additional pseudo data points S1. These ad-

ditional pseudo data points S1 are combined with the initial small set of real

data points S0, and divided into a new training and a new testing data set. The

constraint-handling technique X is then applied on the new training data set (after

adding some Gaussian noise to the new training data set to mitigate overfitting)

to obtained a new model X_new, which is then tested on the new testing data set.

An alternative data augmentation pipeline is to use the draft model produced

by a constraint handling technique X to produce new training and testing data sets,

and then applied another constraint-handling technique Y to this new training

data set (after adding some Gaussian noise to mitigate overfitting) to obtain a

new model X/Y_new, which is then tested on the new testing data.

Here, I postulate and investigate the following three hypotheses related to the

effectiveness of various constraint-handling techniques when data augmentation

is involved.
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Figure 4.1: A data augmentation pipeline used for cancer immunotherapy model.

Hypothesis 1: X_new has better resolution (i.e. smaller error) than X_draft,

for each of the five constraint-handling technique X considered; thus the data

augmentation pipeline is a universal technique for improving the resolution of

constraint-handling techniques.

Let S0 be the set of 10 real data points from [72], and let X_draft be the

cancer immunotherapy model with the best parameter set obtained by applying a

constraint-handling technique X (where X is any of the five techniques considered

in Chapter Chapter 3) on S0. Inputs into X_draft are initial conditions of

cell counts of C cells, E cells and R cells, drug schedule per cycle, and time

point t. Outputs of X_draft are the predicted (by X_draft) cell counts of

C cells, E cells and R cells at time t in accordance to the input drug schedules.

Let S1 be a set of 60 pseudo data points predicted by X_draft (by feeding

X_draft 20 artificially created drug schedules). Since the 10 real data points

are from 4 real drug schedules, there are 70 data points in total from 24 real

and artificial drug schedules. These 70 data points form S0+S1. I split S0+S1

into 40 data points from 14 drug schedules as the new training data and 30 data

from 10 drug schedules as the new testing data. Gaussian multiplicative noise,

with multiplicative factors distributed according to N(1, 0.01), is inserted into

each training data point in order to train a more robust model. X_new is the
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cancer immunotherapy model with the best parameter set obtained by the same

constraint-handling technique X using these 40 modified training data points.

The 30 testing data points are then evaluated based on X_new.

If the errors from X_new based on S0+S1 are smaller than the errors from

X_draft and S0, it is an evidence that supports hypothesis 1. Otherwise,

hypothesis 1 fails.

Hypothesis 2: ε-SEC/Y_new has better resolution than Y_draft, for each

of the other four constraint-handling technique Y considered; thus the pseudo

data points generated by ε-SEC can assist in improving the resolution of other

constraint-handling techniques.

With reference to the pipeline in Fig. 4.1, let S0 be the set of 10 real data

points from [72], and let ε-SEC_draft be the cancer immunotherapy model

with the best parameter set obtained by applying ε-SEC on S0. Inputs into

ε-SEC_draft are initial conditions of cell counts of C cells, E cells and R cells,

drug schedule per cycle, and time point t. Outputs of ε-SEC_draft are cell

counts of C cells, E cells and R cells at time t predicted by ε-SEC_draft in

accordance to the input drug schedules. Let S1 be the 60 additional data points

predicted by ε-SEC_draft on the same 20 artificial drug schedules created

earlier. Together with the 10 real data points from the 4 drug schedules in S0,

there are 70 data points in total from 24 drug schedules. These 70 data points

form S0+S1. As before, I split S0+S1 into a new training dataset with 40 data

points and a new testing dataset with 30 data points. Gaussian multiplicative

noise, with multiplicative factors distributed according to N(1, 0.01), is inserted

into each data point in this new training dataset in order to train a more robust

model. Let ε-SEC/Y_new be the cancer immunotherapy model with the best

parameter set obtained by applying a constraint-handling technique Y (where Y

is any of the other four techniques considered in Chapter 3) on these 40 modified

training data points. The 30 testing data points are then evaluated based on
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ε-SEC/Y_new.

If the errors from ε-SEC/Y_new and S0+S1 are smaller than the errors

from Y_draft and S0, it is an evidence that supports hypothesis 2. Otherwise,

hypothesis 2 fails.

Hypothesis 3: ε-SEC_new has better resolution than Y_new, for each of the

other four constraint-handling technique Y considered; thus ε-SEC retains its

superior resolution over other constraint-handling techniques post data augmen-

tation.

With reference to the pipeline in Fig. 4.1, let S0 be the set of 10 real

data points from [72], and let ε-SEC_draft and Y_draft be the cancer

immunotherapy model with the best parameter set obtained by applying ε-SEC

and each of the other four constraint-handling techniques Y on S0. Inputs into

ε-SEC_draft and Y_draft are initial conditions of cell counts of C cells,

E cells and R cells, drug schedule per cycle, and time point t. Outputs of ε-

SEC_draft and Y_draft are cell counts of C cells, E cells and R cells at

time t predicted by ε-SEC_draft and Y_draft in accordance to the input

drug schedules. Let ε-SEC_S1 and Y_S1 be the respective 60 additional data

points predicted by ε-SEC_draft and Y_draft on the same 20 artificial drug

schedules created earlier. The 10 real data points from the 4 drug schedules in S0

are combined with ε-SEC_S1 (respectively, Y_S1) to obtain a combined S0+ε-

SEC_S1 (respectively, S0+Y_S1) dataset having 70 data points in total from 24

drug schedules. As before, I split each of these S0+S1 combined datasets into a

new training dataset with 40 data points and a new testing dataset with 30 data

points. Gaussian multiplicative noise, with multiplicative factors in N(1, 0.01),

is inserted into each data point in each new training dataset in order to train

a more robust model. Let ε-SEC_new and Y_new respectively be the cancer

immunotherapy model with the best parameter set obtained by applying ε-SEC

and each of the other four constraint-handling techniques Y on their respective
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40 modified training data points. The respective 30 new testing data points are

then evaluated respectively based on ε-SEC_new and Y_new.

If the errors from ε-SEC_new and S0+ε-SEC_S1 are smaller than the errors

from Y_new and the corresponding S0+Y_S1, it is an evidence that supports

hypothesis 3. Otherwise, hypothesis 3 fails.

4.3 Results, Analysis and Discussion

In this section, empirical studies are conducted to assess the three hypotheses

raised in the previous section. To evaluate the resolution of a model, both training

and testing errors are used based on the mean of the absolute errors between

computed results from the model and ground truth. The constraints mentioned in

this section are exactly those defined in Chapter 3.

4.3.1 Support for Hypothesis 1

According to the pipeline in Fig. 4.1, pseudo data points S1 are generated based

on X_draft by the constraint-handling technique X. The combined data points

S0+S1 are used to optimize model parameters by the same constraint-handling

technique X, and X_new is obtained.

The respective 40 training data in S0+S1 with Gaussian multiplication noise

are used for training by the five constraint-handling techniques used in Chapter 3

with 20 independent runs.

Since the optimal solution cannot be known in advance, the average of the

training and testing errors obtained in 20 runs and feasible rate are considered

here. The feasible rate indicates the percentage of runs where at least one feasible

solution is found. Table 4.1 presents the mean and the standard deviation of the

training errors for the 10 original data points from clinical trials based on model

X_draft, the mean and the standard deviation of the testing errors based on
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model X_new for the 10 original data points from clinical trials, the mean and

the standard deviation of the training errors for the 40 pseudo training data points,

and the mean and the standard deviation of the testing errors for the 30 pseudo

testing data points. For all the five constraint-handling techniques, the testing

errors from X_new and S0, and the training and testing errors from X_new

and S0+S1 are smaller than the training errors from X_draft and S0. Thus,

there is evidence that the data augmentation pipeline is a universal technique

for improving the resolution of constraint-handling techniques when there are

small-data issues. Hypothesis 1 is thus supported.

Table 4.1: Based on the pipeline and model X new, the experiment results of
five constraint-handling techniques over 20 runs for training and testing errors.

ε-SEC ε-DE FROFI CMODE APFEC

X draft Training Error (Original 10 data)

Mean (Std) 1.85 (0.07) 70.5 (15.25) 5.04 (0.68) 26.55 (8.17) 22.58 (5.47)

Feasible Rate 100% 100% 100% 40% 0%

X new Testing Error (Original 10 data)

Mean (Std) 1.43 (0.04) 2.71 (1.07) 2.24 (0.69) 23.35 (7.14) 20.67 (5.13)

Feasible Rate 100% 100% 100% 45% 0%

X new Training Error (40 data)

Mean (Std) 0.25 (0.01) 0.91 (0.73) 0.59 (0.05) 14.15 (1.37) 16.07 (2.39)

Feasible Rate 100% 100% 100% 35% 0%

X new Testing (30 data)

Mean (Std) 0.28 (0.01) 0.89 (0.78) 0.64 (0.07) 14.24 (1.43) 16.79 (2.51)

Feasible Rate 100% 100% 100% 35% 0%

64



4.3.2 Support for Hypothesis 2

I list the S0+S1, generated using ε-SEC_draft, for assessing hypothesis 2

in Table 4.2 (viz. the 40 pseudo training data points) and Table 4.3 (viz. the

30 pseudo testing data points). S0+S1 are the same for all the five constraint-

handling techniques. S0+S1 consist of 40 pseudo training data points from 14

drug schedules and 30 pseudo testing data points from 10 drug schedules. The

injection of CpG and CY are scheduled based on the exact day of each cycle,

and each cycle consists of 7 days. In Table 4.2 and Table 4.3, if only one drug

is injected, only one schedule is shown for each row under the column Drug

Schedule. If two drugs are injected, two schedules are shown for each row under

the column Drug Schedule. The exact day on each row indicates the cell counts

of C cells, E cells and R cells on that day. For example, CpG+CY ((day 1/cycle,

day 0/cycle), Day 27) means CpG injected on day 1 of each cycle, CY injected

on day 0 of each cycle, and the C, E, R columns are the corresponding cell counts

on day 27.

The 40 training data points, generated by ε-SEC_draft, with Gaussian

multiplicative noise added, are used for training by four other constraint-handling

techniques Y used in Chapter 3, excluding ε-SEC, with 20 independent runs.

Table 4.4 presents the mean and the standard deviation of the training errors

for the 10 original data points from clinical trials, the mean and the standard

deviation of the testing errors based on ε-SEC/Y_new for the 10 original data

points from clinical trials based on model Y_draft, the mean and the standard

deviation of the training errors for the 40 training data points, and the mean

and the standard deviation of the testing errors for the 30 testing data points.

For all these four constraint-handling techniques, the testing errors from ε-

SEC/Y_new and S0, and the training and testing errors from ε-SEC/Y_new

and S0+S1 are smaller than the training errors from Y_draft and S0. Thus

the pseudo data points generated by ε-SEC_draft can assist in improving
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Table 4.2: Number of Tumor Cells C, Effector Cells E, Regulatory Cells R
with CY, CpG and CY+CpG Treatments in training group from various drug
schedules.

Drug Schedule C E R

1 CpG ((day 0/cycle), Day 27) 3.0937×108 5.7838×104 7.5060×10−1

2 CpG ((day 2/cycle), Day 27) 4.7478×108 5.2031×104 5.9200×10−1

3 CpG ((day 3/cycle), Day 27) (Real data) 5.5753×108 5.0178×104 2.2301×103

4 CpG ((day 4/cycle), Day 27) 6.0446×108 4.9022×104 2.4636×102

5 CY ((day 1/cycle), Day 27) 4.9115×108 5.1958×104 9.3100×103

6 CY ((day 3/cycle), Day 27) 6.5952×108 4.9047×104 3.1158×104

7 CpG+CY ((day 0/cycle,day 0/cycle), Day 27) 1.0482×108 6.7928×104 2.4600×10−1

8 CpG+CY ((day 1/cycle,day 0/cycle), Day 27) 1.2932×108 6.4046×104 1.4650×10−1

9 CpG+CY ((day 5/cycle,day 0/cycle), Day 27) 2.3045×108 5.6234×104 2.2194×101

10 CpG+CY ((day 0/cycle,day 3/cycle), Day 27) 1.6726×108 6.1370×104 3.5230×10−1

11 CpG+CY ((day 0/cycle, day 4/cycle), Day 27) 1.7028×108 5.7142×104 3.3100×10−1

12 CpG+CY ((day 0/cycle,day 5/cycle), Day 27) 1.9349×108 5.9234×104 3.4560×10−1

13 CpG+CY ((day 0/cycle, day 6/cycle), Day 27) 2.0015×108 5.5654×104 3.2640×10−1

14 CpG+CY ((day 3/cycle, day 0/cycle), Day 66) (Real data) ≤1.7423×107 – –

the resolution of constraint-handling techniques, and hypothesis 2 is supported.

Furthermore, compared to Table 4.1, the testing errors based on ε-SEC/Y_new

from the original 10 real data points are smaller than the testing errors based

on Y_draft/Y_new. The difference in hypothesis 1 and 2 is in the dataset

S1, where S1 is generated by the respective X_draft in hypothesis 1 but it

is generated solely by ε-SEC_draft in hypothesis 2. If the pseudo data is

generated based on a model with better resolution, the replication of real data

points can be improved. Thus, training the other constraint-handling techniques

using the pseudo training data set generated by ε-SEC improves their resolution

more than using using their own respective pseudo training data set. Also,

when Table 4.4 is compared to the ε-SEC column in Table 4.1, ε-SEC_new

presents the smallest training and testing errors, so it is still the most effective
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Table 4.3: Number of Tumor Cells C, Effector Cells E, Regulatory Cells R with
CY, CpG and CY+CpG Treatments in testing group from various drug schedules.

Drug Schedule C E R

1 CpG ((day 1/cycle), Day 27) 3.6081×108 5.1718×104 6.2880×10−1

2 CpG ((day 5/cycle), Day 27) 6.2978×108 4.5755×104 2.3394×102

3 CY ((day 0/cycle), Day 27) (Real data) 4.6461×108 6.9692×104 9.2922×103

4 CY ((day 2/cycle), Day 27) 5.5394×108 4.7763×104 8.8444×103

5 CpG+CY ((day 2/cycle,day 0/cycle), Day 27) 1.5432×108 5.8167×104 6.1500×10−2

6 CpG+CY ((day 3/cycle,day 0/cycle), Day 27) (Real data) 1.7423×108 1.2196×104 2.2650×101

7 CpG+CY ((day 4/cycle,day 0/cycle), Day 27) 1.9848×108 5.4592×104 2.1124×101

8 CpG+CY ((day 6/cycle,day 0/cycle), Day 27) 2.4413×108 5.2580×104 2.1051×101

9 CpG+CY ((day 0/cycle,day 1/cycle), Day 27) 1.1711×108 6.1826×104 1.8100×10−1

10 CpG+CY ((day 0/cycle,day 2/cycle), Day 27) 1.3977×108 5.9817×104 1.2200×10−1

constraint-handling technique when solving this problem.

4.3.3 Support for Hypothesis 3

According to the pipeline in Fig. 4.1, pseudo data points ε-SEC_S1 (respectively,

Y_S1) are generated based on ε-SEC_draft (respectively, Y_draft) by the

constraint-handling technique X (respectively, Y). The respective combined data

points S0+S1 are used to optimize model parameters by the same constraint-

handling technique ε-SEC or Y, and ε-SEC_new and Y_new are obtained,

respectively, with 20 independent runs each.

According to Table 4.1 and Table 4.4, the testing errors from ε-SEC_new

and S0 are smaller than the testing errors from ε-SEC/Y_new and S0, and

the testing errors from Y_new and S0. The training and testing errors from

ε-SEC_new and S0+S1 are smaller than Y_new and the corresponding S0+S1.

Thus, the superiority of ε-SEC over other four constraint-handling techniques, in

solving the constrained parameter optimization problem post data augmentation,
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Table 4.4: Based on the pipeline and model Y new, the experiment results of the
other four constraint-handling techniques Y over 20 runs for training and testing
errors.

ε-DE FROFI CMODE APFEC

Y draft Training Error (Original 10 data)

Mean (Std) 70.5 (15.25) 5.04 (0.68) 26.55 (8.17) 22.58 (5.47)

Feasible Rate 100% 100% 40% 0%

ε-SEC/Y new Testing Error (Original 10 data)

Mean (Std) 2.55 (0.94) 2.08 (0.53) 21.44 (7.05) 19.58 (4.87)

Feasible Rate 100% 100% 35% 0%

ε-SEC/Y new Training Error (40 data)

Mean (Std) 1.92 (0.81) 0.88 (0.06) 14.27(1.52) 16.14 (2.47)

Feasible Rate 100% 100% 35% 0%

ε-SEC/Y new Testing Error (30 data)

Mean (Std) 1.07 (0.73) 1.03 (0.07) 14.34 (1.54) 17.21 (2.59)

Feasible Rate 100% 100% 30% 0%

is supported. In other words, hypothesis 3 is supported. In addition, its 100%

feasible rate indicates the robustness of ε-SEC in handling this problem.

4.3.4 Remark on ε-SEC

Based on Table 4.1 and Table 4.4, ε-SEC presents the best model resolution

compared with the other four constraint-handling techniques. Table 4.5 shows

that, for ε-SEC, the differences between predicted and actual tumor cell counts

on day 27 for different drug schedules are improved from within 10% (draft
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Table 4.5: For Real Data Points on Day 27, the Number of Tumor Cells C,
Effector Cells E, Regulatory Cells R with CY, CpG and CY+CpG Treatments
based on Draft Model and New model.

C E R

CpG ((day 3/cycle), Day 27) (Draft Model) 5.5759×108 (0.01 %) 5.0201×104 2.5107×102

CpG ((day 3/cycle), Day 27) (New Model) 5.5124×108 (1.13%) 4.9694×104 2.4374×102

CpG ((day 3/cycle), Day 27) (Clinical results) 5.5753×108 5.0178×104 2.2301×103

CY ((day 0/cycle), Day 27) (Draft Model) 4.2079×108 (9.43%) 5.4192×104 9.2933×103

CY ((day 0/cycle), Day 27) (New Model) 4.6998×108 (1.16%) 5.3766×104 9.3585×103

CY ((day 0/cycle), Day 27) (Clinical results) 4.6461×108 6.9692×104 9.2922×103

CpG+CY ((day 3/cycle,day 0/cycle), Day 27) (Draft Model) 1.9164×108 (9.99%) 5.9027×104 22.6534

CpG+CY ((day 3/cycle,day 0/cycle), Day 27) (New Model) 1.7161×108 (1.50%) 5.8881×104 22.3570

CpG+CY ((day 3/cycle,day 0/cycle), Day 27) (Clinical results) 1.7423×108 1.2196×104 22.65

model) to within 1.5% (new model). This supports my data augmentation idea

that, when more data are collected or generated artificially, the model gets better

resolution in a small-data scenario.

4.4 Chapter Conclusion

In this work, to tackle small-data issues in the cancer immunotherapy model, I

have formulated a data augmentation pipeline and have raised three hypotheses

related to the effectiveness of the pipeline and the constraint-handling techniques.

The results provide evidence that this data-augmentation procedure is universally

effective in improving the resolution (viz. error size) of these constraint-handling

techniques. The results also provide evidence that ε-SEC sustains its supe-

rior resolution compared to the other four constraint-handling techniques post

data augmentation. Lastly, the results provide evidence that training the other

constraint-handling techniques using the pseudo training data set generated by

ε-SEC improves their resolution more than using their own respective pseudo

training data set.

In future work, the formulated pipeline can be conducted in multiple rounds

to study the effects on model resolution. This pipeline can also be applied to
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other constrained optimization problems in real applications that have small-data

issues.
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Chapter 5

Finding High-Dimensional

D-Optimal Designs for Logistic

Models via Differential Evolution

5.1 Introduction

Optimal design problems frequently arise in scientific investigations when we

want to obtain the most accurate statistical inference at minimal cost. For

example, D-optimal designs are commonly used to estimate parameters in a

statistical model by finding a series of design points to minimize the volume of

the confidence ellipsoid of the parameters. Before optimization, nominal values

for the parameters are required to replace unknown parameters of a model. Thus,

the resulting optimal design is termed locally optimal [84,85] because it depends

on the nominal values for the parameters. Nominal values for the parameters

may come from an expert’s opinion or from a pilot study. The locally D-optimal

design is then implemented to generate data to estimate the model parameters,

and the estimated parameters become the nominal values in the next step. After

a couple of iterations, the estimates are expected to become stable.
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In the literature, the optimal design is usually found from theory. If the

optimal design of a nonlinear model is found from theory, there is usually only

one or two factors [86, 87] in the model. Such a theoretical approach encounters

mathematical difficulties when the nonlinear model has more factors or the

design criterion becomes complicated. Under such situations, classical numerical

optimization techniques fail to find the locally optimal design or they become

very inefficient. This is because as the number of factors in the model increases,

the number of parameters in the model also increases. Consequently, the number

of design points for the optimal design increases, resulting in having substantially

many more variables to optimize. Thus, the design problem becomes quickly

high-dimensional and also non-separable when factors interact with one another.

Premature convergence can become a severe issue for high-dimensional and

non-separable problems.

Nature-inspired metaheuristic algorithms are now increasingly applied to

solve a large variety of complicated optimization problems [88, 89]. Particle

Swarm Optimization (PSO) [90] is one such algorithm [90–92], which has been

recently used to solve various optimal design problems in the literature [87,93,94].

In [87], Qiu et al. is the first to use the conventional PSO to find a variety of

optimal designs for biomedical problems. In [93], PSO is applied to find optimal

designs for a variety of mixture models, and in [94], PSO is modified to find

minimax optimal designs, which is notoriously difficult to find because it has

a non-differentiable design criterion. However, the D-optimal design problems

in these papers have only 3 or fewer factors in their respective models, and so

premature convergence may not be an issue. Since PSO exerts selective pressure

onto some current best solutions termed as gbest and pbest, models with 4 or

more factors can cause PSO to experience premature convergence and make PSO

less effective [95, 96].

Differential Evolution (DE) is a representative evolutionary algorithm. Muta-
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tion, crossover and selection are three fundamental operations in DE [16,17]. One

advantage that DE has over other evolutionary algorithms is that DE has fewer

control parameters [18–20], and works well in handling numerical optimization

problems [69, 70, 97, 98]. Compared with PSO, DE can alleviate the premature

convergence issue moderately [16] since most of the mutation strategies of DE

do not exert selective pressure on the current best solution [23, 45, 99–101].

However, based on some studies of DE variants for solving high-dimensional

problems, there is a lack of specially designed mechanism to explore various

novelty regions in the search space and to improve the diversity of the population.

To circumvent the above issues and also motivated by novelty search meth-

ods [102, 103] which are capable of escaping from local optima by trying some

novelty solutions for efficient exploration, I propose a new novelty-based muta-

tion strategy. At the start of the evolution, a portion of individuals is randomly

selected as the novelty-based individuals, and their aim is to explore various

individuals which are potentially novelty individuals. For each novelty-based

individual, some difference vectors to be added to the current individual are

sampled. Among these sampled difference vectors, the one which has the largest

angle difference from the difference vectors used in the previous generation is

selected. Each novelty-based individual explores a region of the search space

different from the regions explored in the previous generation so that novelty solu-

tions can be obtained. As evolution proceeds, various regions of the search space

are explored and the diversity of the population is enhanced. The novelty-based

mutation strategy is combined with two common mutation strategies, ’DE/rand/2’

and ’DE/current-to-rand/1’. These two mutation strategies can balance the ex-

ploration and exploitation well at the early and medium stage of evolution as

compared with other mutation strategies [104]. When the individuals obtained

from these two mutation strategies converge, the novelty-based individuals can

provide some novelty searching regions in the decision space to these convergent
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individuals so that the diversity of these convergent individuals can be improved.

I apply the proposed algorithm to generate locally D-optimal designs for

logistic models with several factors with and without interactions on various

design spaces. Logistic regression models have a binary response with one or

more factors and are among the most frequently used in scientific investigations

across many disciplines. Using a broad simulation study, I show that my pro-

posed algorithm consistently outperforms several of its top competitors. As an

application, I also implement my DE-based algorithm to re-design a 10-factor car

refueling experiment with both discrete and continuous factors, with and without

factor interactions.

5.2 Background Knowledge of Generalized Linear

Model and Optimal Design

A generalized linear model is commonly used to study the mean of a real response

variable Y (i.e. Y is the actual output) based on a real input vector X with

dimension n (i.e. n factors) [85]. In the field of optimal designs, Y is an

observed response variable, which is a random variable as well [85]. Thus, it is

reasonable to study the mean of Y . I focus on models with a binary response

variable Y as 0 or 1 even though the methodology proposed herein applies more

generally.

Let l be the index of an input vector, and l = 1, · · · , L. For the inter-

pretation in the field of optimal designs, l represents the index of a design

point referred to as a support point, and L is the total number of support

points in a design ξ. Let µl = E(Yl), where E(Yl) represents the mean of

Yl based on a support point X l. The relationship between inputs and outputs

is postulated here as a linear model. Let ηl=r(X l)Tβ be the linear predictor,

where r(X l)T is the linear model input generated based on support point X l,
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β is the linear model parameter set, and ηl is the corresponding model out-

put. r(X l)T is represented as r(X l)T = {1, xl1, · · · , xln} (additive model) or

r(X l)T = {1, xl1, · · · , xln, xl1xl2, · · · , xln−1xln} (model with all pairwise interac-

tion terms).

To link the model outputs to actual outputs, let g(.) be the link function such

that g(µl) = ηl [105].

In this chapter, since the response variable is binary, according to [105], g(.)

uses a logistic link function:

g(µl) = log(
µl

1− µl
) = ηl. (5.1)

I present a real case of a generalized linear model. In [106], an experiment

related to finding factors that influence the failure of semiconductors when

exposed to electrostatic discharge (ESD) was conducted. The response variable

Y was whether or not a certain part of the semiconductor failed, and the model

was a generalized linear model with five factors that are Wafer Type A, Wafer

Type B, ESD, Pulse, and Voltage, respectively. Taking the random variable Y to

be 1 if the semiconductor fails and 0 otherwise, we have Y ∼ Bernoulli(µ) and

µ is the mean of Y , and the model of interest is η = β0 + β1Wafer Type A+

β2Wafer Type B + β3ESD+ β4Pulse+ β5V oltage. To link model output to

the mean of the response variable, we have η = log(µ/(1− µ)), where µ is the

mean of the response variable Y .

For optimal designs, the design space is a user-selected compact set and

contains all allowable combination levels of the factors to observe the response

variable.

The goal of optimal designs of a generalized linear model is to find L distinct

support points X1, · · · , XL to estimate the parameter set β in the linear model

with n factors [84, 107] with respect to the optimality based on some statistical
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criteria (e.g. the parameter set β is estimated with minimum variance with respect

to β) when resources are given to take N input vectors, referred to as taking

N observations in the field of optimal designs. Each observation of a support

point X l means taking X l as the input vector for once. In optimal designs,

since the observed response variable Yl is a random variable based on the same

support point X l, it is common that the same support point X l can be taken as an

observation (i.e. input vector) for multiple times to derive the mean of Yl. Thus,

N is commonly larger than L.

It is required to determine the optimal number of support points, i.e. the

value of L, the best choices of the support points X1, · · · , XL from a given

design space, and the optimal number of replicates nl at X l, l = 1, · · · , L and

n1 + · · ·+ nL = N . This is a constrained optimization problem where some of

the variables to be optimized are positive integers and constrained to sum to N .

Following [107], the worth of a L-point design ξ with nl replicates at X l is

determined by its Fisher information matrix defined by

Iξ =
L∑
l=1

nlΥ(ηl)r(X
l)r(X l)

T
, (5.2)

where Υ(ηl) =
(dul/dηl )

2

ul(1−ul)
. For the logistic regression model, the link function is

the logit function in (5.1) and

Υ(ηl) =
1

2 + eηl + e−ηl
=

eηl

(1 + eηl)2
. (5.3)

A locally D-optimal design maximizes the log-determinant of the Fisher

information matrix Iξ in (5.2), or equivalently minimizes the generalized variance

of the estimates of the parameters [85]. Thus, D-optimal designs provide the

most accurate estimates of all the model parameters in β. Clearly, Iξ depends on

β and so nominal values for β are required before optimization. Frequently, the
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nominal values for β come from prior experiences or a pilot study [108].

I focus on approximate designs obtained by replacing each nl by pl = nl/N ,

which is the proportion of the total observations to be taken atX l. More generally,

pl is allowed to take on any value between 0 and 1 and doing so the problem is

turned into a convex optimization problem where convex optimization tools can

be used to find and verify the optimality of a design. Designs with weights p′ls

that sum to 1 are called approximate designs.

For D-optimality, the design criterion is −log|I(ξ, θ)| and this is a convex

function over the space of all approximate designs on the given and compact

design space of interest [85]. Following [109], the approximate design ξ is locally

D-optimal among all designs if and only if for all X in the design space, the

following checking condition is satisfied:

er(X)T β

(1 + er(X)T β)
2 r(X)T I−1ξ r(X)− k ≤ 0 (5.4)

with equality at each support point of ξ. Here k is the dimension of β and the

left-hand side of (5.4) is sometimes called the sensitivity function.

Often, it is difficult to obtain a theoretically optimal design. The optimal

efficiency is frequently used to evaluate the worth of a design ξ by its efficiency

relative to the optimal design ξ∗ [85]. For D-optimality, the D-efficiency of a

design ξ is

D − efficiency =

(
det(Iξ)

det(Iξ∗)

)1/k

. (5.5)

If its D-efficiency is near 1, ξ is close to ξ∗. If the theoretical optimal design ξ∗

is unknown, the proximity of a design ξ to ξ∗ can be determined from convex

analysis theory. Specifically, its D-efficiency is at least

D − efficiency ≥ e−θ/k (5.6)
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where θ is the maximum positive value of the sensitivity function across the

entire design space [110]. If the D-efficiency lower bound e−θ/k is close to 1, the

design ξ is close to the D-optimal design ξ∗.

5.3 Technical Details of the Proposed Algorithm

NovDE

5.3.1 Overview

Since the D-optimal design problems in this work are high-dimensional and

non-separable, premature convergence can be a severe issue with solutions easily

getting trapped at local optima. Compounding the problem is that most state-

of-the-art DE methods do not have a special mechanism to preserve diversity

of their solutions and so the issue of premature convergence is not completely

solved. For mutation strategies such as ’DE/rand-to-best/2’, from the start of

evolution, solutions tend to be close to the current best region thus limiting

its exploration capability at the early stage. For mutation strategies such as

’DE/rand/2’ or ’DE/current-to-rand/1’, solutions tend to be close to each other

at the early or medium stage of the evolution. Thus, to circumvent the issue of

premature convergence of DE-based algorithms for solving high-dimensional

and non-separable optimization problems, a mechanism for exploring diverse

novelty regions of the search space should be specially designed and combined

with other DE mutation strategies.

Assume that there are n factors in the model and a design with L support

points is denoted by ξ = ([x11x
1
2 · · ·x1np1], · · · , [xl1xl2 · · · xlnpl], · · · [xL1 xL2 · · ·xLnpL]),

where pl is the proportion of the total observations to be taken at the l-th sup-

port point [xl1x
l
2 · · ·xlnpl]. If each individual Xi,g in the current generation g

with population index i represents a combination of L support points, Xi,g is
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constructed as Xi,g = (x11x
1
2 · · ·x1np1 · · ·xl1xl2 · · ·xlnpl · · ·xL1 xL2 · · · xLnpL). For

an additive model with no interactions among the factors, the dimension D of

Xi,g is (n+ 1)L.

I propose a new novelty-based DE-based algorithm, which is denoted as

NovDE, to solve these complex optimization problems using a novelty-based

mutation strategy. At the start of the evolution process, a group of individuals

are randomly selected to be novelty-based individuals. To preserve the diversity

of solutions, various regions of the search space are explored by these novelty-

based individuals. Fig. 5.1 shows the difference vector di,g−1 which is the

difference between the trial vector ui,g−1 and the target vector xi,g−1 in the

previous generation g − 1. For the current generation g and a user-selected value

of m, m difference vectors are obtained. Each difference vector is calculated

by xr1,g − xr2,g where xr1,g and xr2,g are two randomly selected individuals

from population in the current generation g. Thus, m difference vectors are

represented as d1i,g · · · dmi,g. Fig. 5.1 displays the computed angle θs between

a difference vector dsi,g in the current generation g and the difference vector

di,g−1 in the previous generation g − 1 where s = 1, 2, · · · ,m. The difference

vector d∗i,g, which has the largest angle difference between dsi,g and di,g−1 among

the m samples, is added to the target vector xi,g to generate the mutant vector

vi,g. This is because the largest angle differences between d∗i,g and di,g−1 would

enhance each novelty-based individual to explore a region in the search space

entirely different from what was explored in the previous generation g − 1. As

the evolution proceeds, novelty-based individuals can gradually explore diverse

novelty regions in the search space and the diversity of solutions can be preserved.

The proposed novelty-based mutation strategy is combined with ’DE/rand/2’ and

’DE/current-to-rand/1’ since they can balance exploration and exploitation at the

early or medium stage of evolution [104]. If the individuals obtained based on

’DE/rand/2’ and ’DE/current-to-rand/1’ are close to each other, the novelty-based
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individuals can provide some novelty searching directions to those convergent

individuals. The convergent individuals can either exploit in their current region

of the search space or explore towards some novelty regions of the search space.

Xi,g

di,g- 1

d1
i,g

ds
i,g

dm
i,g

.

.

.

There are m sampled 

difference vectors.
θ

s

d*
i,g 

Vi,g = Xi,g +F х d*
i,g

Figure 5.1: The operation of novelty-based mutation strategy. The target vector
is Xi,g, and the difference vector from the previous generation is di,g−1. In
the current generation, the m difference vectors are d1i,g · · · dmi,g and θs is the
computed angle between dsi,g and di,g−1, where s = 1, · · · ,m. The dsi,g with the
largest angle differences θs is selected to be d∗i,g and the mutant vector Vi,g is
generated based on Xi,g and d∗i,g.

The D-optimality criterion is a function of the information matrix in Equation

(5.2), where xl is part of the consecutive component in the decision variables. The

term xlx
T
l in Equation (5.2) is the consecutive variables multiplied by each other,

so physically proximate variables have stronger correlation and the problem is

non-separable. According to [111], the crossover method Multiple Exponential

Recombination (MER) can solve non-separable problems more efficiently than

the binomial or exponential crossover method for the same CR rate. Further,

MER updates the consecutive variables altogether which is more suitable for the

structure of the decision variables in my problem. Thus, MER is selected to be

the crossover method for my problem.

I adapt the control parameters F and CR to find locally D-optimal designs.

The adaptation of F is the same as the state-of-the-art adaptive DE algorithm

Self-adaptation Differential Evolution (SaDE) [104] where the F value for each
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individual is generated from F = N(0.5, 0.3). In this way, the value of F falls in

the range [-0.4,1.4] with probability of 0.997, which covers exploration capability

when F is large and exploitation capability when F is small [104]. Because the

novelty-based individuals function as exploration, F is not required to be adaptive

for both exploration and exploitation so it is fixed at 0.5. My adaptation method of

CR in NovDE is new. A First-in-First-out (FIFO) memory CRpoolk with a fixed

size is applied, and the memory size for each mutation strategy k is proportional

to the number of individuals involved in mutation strategy k. The CRmeank is

the mean value of the successful CR values stored in CRpoolk memory. The

mean value of CRmeank for each strategy k is adapted based on the success

values of CR stored in CRpoolk for strategy k. This adaptation method updates

the distribution of CR more frequently based on the solutions in the current

evolution stage. In NovDE, CR value for each individual for mutation strategy

k is generated from a Gaussian distribution as CR = N(CRmeank, 0.1). The

initial value of CRmeank is selected to be 0.7 since if the value of CR is larger,

the exploration would be encouraged. At the start of the evolution, exploration

should be encouraged.

5.3.2 Algorithm Structure

The proposed algorithm NovDE is displayed in Algorithm 1. In NovDE, three mu-

tation strategies ’DE/rand/2’, ’DE/current-to-rand/1’ and the proposed ’novelty-

based DE’ are employed to generate the mutant vector Vi,g. Populations are

assigned to these three groups based on the pre-defined ratios p1 and p2. From

step 9 to step 16, the proposed novelty-based DE mutation is presented. For each

novelty-based individual Xi,g, F is fixed to be 0.5. The number of m difference

vectors are represented as d1i,g · · · dmi,g, and the value of m is user-selected. For

each dsi,g in the samples for s = 1, · · · ,m, the angle between dsi,g and the differ-

ence vector from last generation di,g−1 is computed and denoted as θs. The dsi,g
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with the largest θs is denoted as d∗i,g. Then in step 15, the mutant vector Vi,g can

be generated based on target vector Xi,g and difference vector d∗i,g.

For the adaptation of CR, a first-in-first-out queue for each mutation strategy

k is established as CRpoolk with size LPk. CRpoolk is to store the values of

CR that make the trial vector Ui,g successfully replace the target vector Xi,g

for strategy k. The CRmeank is computed as the mean value of elements in

CRpoolk, and CR for each individual is generated from N(CRmeank, 0.1).

The crossover method is MER. After the crossover operation, the novelty-based

individuals should update di,g to be used in the next generation as di,g+1.

5.4 Results, Analysis and Discussion on Locally D-

Optimal Design Problems with Various Settings

In this section, the locally D-optimal design problems of a generalized linear

model with n factors are studied. The inputs of the problem are L support points

X1, · · · , XL and their corresponding proportion p1, · · · , pL. The outputs are the

corresponding linear model output η1, · · · , ηL, which are used to estimate the

mean of the corresponding actual output Yl (a random binary response variable

as 0 or 1) when input is X l where l = 1, · · · , L. The aim of locally D-optimal

designs is that based on the nominal values of parameter set β in ηl = r(X l)Tβ,

generate L support points and their corresponding proportions so that parameter

set β can be estimated with minimum variance. According to [85], this aim can

be formulated that the objective function is to maximize the log determinant

of the Fisher information matrix defined in Equation (5.2) replacing nl with

pl, and the decision variables are the concatenation of L support points and

their proportions. The observation of actual output Y 1, · · · , Y L and estimating

the confidence intervals of parameter set β are conducted after the process of

locally D-optimal design finishes and L support points and their proportions are
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Algorithm 5.1 NovDE
Input: Target Vector Xi,g = (x1i,g, x

2
i,g, · · · , xDi,g), population size N , p1=0.45,

p2=0.9, sample size m, CRpoolk with size LPk, where k represents the
k−th mutation strategy.

Output: Trial Vector Ui,g = (u1i,g, u
2
i,g, · · · , uDi,g).

1: if i ≤ p1 ∗N then
2: F is generated from N(0.5, 0.3).
3: Xi,g performs ’DE/rand/2’ to generate mutant vector Vi,g.
4: end if
5: if p1 ∗N < i ≤ p2 ∗N then
6: F is generated from N(0.5, 0.3).
7: Xi,g performs ’DE/current-to-rand/1’ to generate mutant vector Vi,g.
8: end if
9: if i > p2 ∗N then

10: F is fixed to be 0.5.
11: di,g−1 is the differences between trial vector Ui,g−1 and target vectorXi,g−1

in the previous generation g − 1.
12: Obtain number of m difference vectors as d1i,g · · · dmi,g.
13: Compute the angle θs between dsi,g and di,g−1 where s = 1, 2, · · · ,m.
14: d∗i,g is the one with the largest θs among d1i,g · · · dmi,g.
15: The mutant vector Vi,g = Xi,g + F ∗ d∗i,g.
16: end if
17: CR is generated from (CRmeank, 0.1) for different mutation strategy k.
18: Trial vector Ui,g is generated based on mutant vector Vig and crossover

method MER and crossover rate CR.
19: if i > p2 ∗N then
20: di,g = Ui,g −Xi,g.
21: end if
22: if f(Ui,g) < f(Xi,g) then
23: Record CR value into the corresponding CRpoolk.
24: Perform first-in-first-out operation once the size of CRpoolk exceeds LPk.

25: Update CRmeank as the mean value of elements in CRpoolk .
26: end if
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generated, and they are not covered and discussed in this chapter.

I evaluate the performance of NovDE for finding locally D-optimal designs

for logistic models on various design spaces with several factors. Specifi-

cally, I compare NovDE with six state-of-the-art variants of the DE algorithms.

’DE/rand/2/bin’ [16] and SaDE [104] are effective in handling general numerical

optimization problems; SaDE+MER [111] is effective in solving non-separable

optimization problems; JADE [45] is an effective DE variant for its control

parameter adaptation scheme; ANDE [46] and DDE-AMS [47] are effective in

solving high-dimensional optimization problems. In order to validate the effec-

tiveness of novelty-based mutation, I also compare the novelty-based mutation

combined with the conventional crossover (i.e. binomial crossover), which is

termed as NovDE-Bin. I compare using logistic models on various design spaces

with seven continuous factors and five sets of nominal values. The design space

of each factor is first selected to be on the prototype interval [-1, 1] before I vary

the design space to [-3, 3], followed by the interval [0, 3]. I next describe the

details of my experiment setup for comparing the eight algorithms.

5.4.1 Experiment Setup

I compare the performance of the proposed NovDE with NovDE-Bin and six

competitive DE-based algorithms viz. ’DE/rand/2/bin’ [16], ANDE [46], SaDE

[104], SaDE+MER [111], JADE [45] and DDE-AMS [47] using 3 different

design spaces to illustrate that NovDE is an effective DE variant in solving the

high-dimensional D-optimal design of a logistic model.

1) Population size is 100.

2) The preset upper bound on the number of support points L is 100.

3) The dimension D of the problem to be optimized for seven factors without

interactions is 800 (=(7 + 1) × 100). The dimension for each support point

is 8, which includes the number of factors (i.e. 7) and the dimension of the
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corresponding portion of observations taken at each support point (i.e. 1).

4) For all my experiments, I set the maximum number of generation to be

20000.

5) The maximum number of run is 30.

6) For ’DE/rand/2/bin’, according to [16], I set F = 0.5 and CR = 0.9.

7) For ANDE, I follow recommendations in [46] and generate F1, F2, and

F3 from the uniform distribution on [0, 1]. I select CR accordingly to [46].

8) For SaDE and SaDE+MER, according to [104] and [111], I set LP = 20,

initial value of pk = 0.25 for each strategy, the initial CRm for each strategy as

0.5 and F sampled from the normal distribution [0.5,0.3].

9) For JADE, according to [45], I set p = 0.05, c = 0.1, µCR = 0.5 and

µF = 0.5.

10) For DDE-AMS, according to [47], I use 4 sub-populations, and set

Up = 25, T = 80, Dr = 0.3, φ = 0.05, F = 0.5 and CR = 0.9.

11) For NovDE and NovDE-Bin, I set p1 = 0.45, p2 = 0.9 and m = 10.

Initial CRmeank for each strategy is 0.7 to encourage the exploration at the

start of evolution. The upper bound of CRmeank is 0.9, and the lower bound

of CRmeank is 0.1. For both ’DE/rand/2’ and ’DE/current-to-rand/1’, I set

LP = 50, and for the novelty-based mutation strategy, I set LP = 10. I generate

values of F for both ’DE/rand/2’ and ’DE/current-to-rand/1’ from the normal

distribution [0.5, 0.3], and set F = 0.5 for the novelty-based mutation strategy.

12) I generate each of the nominal values of parameter set β defined in the

linear predictor ηl = r(X l)Tβ as βT = (β0, β1, β2, β3, β4, β5, β6, β7) in an addi-

tive 7-factor generalized linear model randomly from the interval [-1,1] without

loss of generality. In this experiment, I generate five parameter sets and they are

as follows:

β1 = (0.6294, 0.8116,−0.7460, 0.8268, 0.2647,−0.8049,−0.4430, 0.0938),

β2 = (−0.6710, 0.8256,−0.9221, 0.8348, 0.0538, 0.8664, 0.9186, 0.7741),
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β3 = (−0.4926,−0.6280,−0.3283, 0.4378, 0.5283,−0.6120,−0.6837,−0.2061),

β4 = (−0.4336, 0.3501,−0.8301, 0.3295, 0.0853, 0.5650, 0.0870, 0.1688),

β5 = (0.8379,−0.5372, 0.1537,−0.1094,−0.2925, 0.2599,−0.8201,−0.8402).

13) The program is implemented in MATLAB R2017b.

14) In this chapter, the D-efficiency lower bound criterion as in Equation (5.6)

is applied to evaluate the optimality of the generated design ξ and ”DE/rand/2/bin”

with F=0.5 and CR=0.9 is used to find the maximum positive value of the

sensitivity function θ. Recall that this value is used to compute the D-efficiency

lower bound of the design ξ, which is exp (−θ/k) where k is the dimension of

β. In what is to follow, if a design has at least 95% D-efficiency, the design is

considered close enough to the optimum.

5.4.2 Results and Discussions

Since the optimal designs of the logistic model under various sets of nominal

values and design spaces are unknown, the average of the objective function

values obtained in 30 runs is considered as one performance indicator. Since

the aim is to maximize the log-determinant, the larger the objective function

value is, the better is the performance of the algorithm. Another performance

indicator is the success rate, which is the percentage of runs where the generated

design has at least 95% D-efficiency. To judge whether the proposed NovDE

algorithm outperforms each of the other seven DE-based algorithms in a statisti-

cally significant way, I employ a nonparametric statistical test called Wilcoxon

rank-sum test [80] at the 5% significance level. For each algorithm, the numbers

in the upper line in each entry represent the mean and standard deviation of the

objective values. The numbers in the bottom line represent the success rate of the

algorithm. The best values of the mean and success rates are in bold, and entries

with ∗ represent NovDE significantly outperforms the other algorithm based on

Wilcoxon rank-sum test at the 0.05 significance level.
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For each design space, there are 5 different settings with nominal values

β1 to β5. Hence, for the three different design spaces, there are 15 different

settings in total. For the 15 different settings, when NovDE is compared with the

other seven DE algorithms, NovDE ranks first 9 times out of 15 in terms of the

mean of the objective function values. Furthermore, in these 9 cases, excluding

NovDE-Bin, NovDE significantly outperforms the other six DE algorithms in 6

out of 9 times. NovDE also ranks first 10 times out of 15 in terms of the success

rate. These empirical results suggest that since the novelty-based mutation

strategy combined with the MER crossover has advantages of superior capability

of exploration [102] and maintaining the dependent variables structure [111],

NovDE can work well in handling non-separable problems and can avoid getting

trapped in local optima with higher chances. Thus, NovDE is more effective

in generating locally D-optimal designs based on these 15 different settings

compared with the other seven algorithms.

To show the effectiveness of novelty-based mutation alone, NovDE-Bin

which is the novelty-based mutation with the conventional crossover-binomial

crossover, is compared with the other 6 DE algorithms. For the 15 different

settings, NovDE-Bin ranks first 3 times out of 15, and second 8 times out of 15

in terms of the mean of the objective function values. NovDE-Bin also ranks first

8 times out of 15 in terms of success rate. These empirical results suggest that

the novelty-based mutation strategy presents better exploration capability and

can prevent solutions from getting trapped at local optima, which is consistent

with the advantages of novelty search methods as illustrated in [102].

To give a clearer picture of the performance difference between NovDE and

the other seven DE algorithms, Fig. 5.2 plots the change of best-of-run objective

function values over generations for each DE algorithm. The plots in Fig. 5.2 are

based on nominal parameter β3 and plots based on the other 4 sets of nominal

values showed a similar pattern. As can be observed from Tables 5.1 to Table 5.3
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and Fig. 5.2, both NovDE and NovDE-Bin clearly outperform ’DE/rand/2/bin’

for all of the settings. Although ’DE/rand/2/bin’ converges faster than NovDE,

’DE/rand/2/bin’ has the issue of premature convergence so that the solutions tend

to become close to each other and its exploration capability is deteriorated. The

better performance of both NovDE-Bin and NovDE demonstrates that exploration

is important for solving high-dimensional non-separable problems which have

local optima. Furthermore, novel information collected from exploration can be

provided to individuals generated from ’DE/rand/2’ and ’DE/current-to-rand/1’

to enhance both exploration and exploitation. As shown in Fig. 5.2, NovDE

has the best converged objective function values close to the global optimum on

various design spaces.
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Figure 5.2: Average best-of-run objective function values of 30 independent runs
over generations for X = [−1 1]7, X = [−3 3]7 and X = [0 3]7, respectively.
The nominal parameter is β3.

Since CRmean can represent the overall CR values of the individuals under

different strategies, it is instructive to plot theCRmean values versus generations
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Figure 5.3: Adaptation behaviors of the median run among the 30 multiple runs
of the CRmean values in NovDE for X = [−1 1]7, X = [−3 3]7 and X = [0 3]7,
respectively. The nominal parameter is β3.
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Table 5.1: Performances of NovDE, NovDE-Bin and six competitors for finding
locally D-optimal designs on [−1, 1]7 using 5 sets of nominal values. In each
cell, the numbers in the upper line are the mean and standard deviation of the
values of the objective function over 30 runs, and the number at the bottom line is
its success rate. For each set of nominal values, the best values of the mean and
success rates are in bold. The entries with an ∗ means that NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -13.2018 (0.0079) -13.5845 (0.0153) -12.8106 (0.0054) -12.6012 (0.0041) -13.0221 (0.0093)

86.67% 90% 73.33% 83.33% 90%

NovDE-Bin -13.2028 (0.0077)∗ -13.5958 (0.0526)∗ -12.8116 (0.0049) -12.5946 (0.0044) -13.0224 (0.0242)

86.67% 90% 70% 96.67% 86.67%

DE/rand/2/bin -13.2274 (0.0153)∗ -13.5973 (0.0092)∗ -12.8459 (0.0128)∗ -12.6412 (0.0253)∗ -13.0650 (0.0205)∗

3.33% 0% 3.33% 3.33% 0%

ANDE -13.2340 (0.0146)∗ -13.6009 (0.0197)∗ -12.8460 (0.0095)∗ -12.6330 (0.0144)∗ -13.0543 (0.0163)∗

3.33% 6.67% 0% 3.33% 3.33%

SaDE -13.2030 (0.0060)∗ -13.5778 (0.0052) -12.8195 (0.0106)∗ -12.6006 (0.0078) -13.0505 (0.0651)∗

73.33% 93.33% 23.33% 96.67% 73.33%

SaDE+MER -13.2032 (0.0071)∗ -13.5761 (0.0012) -12.8186 (0.0057)∗ -12.6022 (0.0052) -13.0233 (0.0059)∗

80% 96.67% 53.33% 90% 76.67%

JADE -13.2035 (0.0021)∗ -13.5799 (0.0021) -12.8156 (0.0033)∗ -12.5958 (0.0072) -13.0248 (0.0039)∗

30% 73.33% 53.33% 40% 33.33%

DDE-AMS -13.2390 (0.0096)∗ -13.5961 (0.0186)∗ -12.8690 (0.0154)∗ -12.6258 (0.0169)∗ -13.0549 (0.0204)∗

3.33% 3.33% 0% 6.67% 0%

for each design space. Fig. 5.3 plots the CRmean values based on the median

run using β3 as nominal values for the same reason explained earlier. In Fig. 5.3,

I observe that the CRmean values for ’DE/rand/2’ and ’DE/current-to-rand/1’

would converge to 0.1, which is the lower bound of the CRmean in NovDE.

The variation of the CRmean values for novelty-based strategy presents distinct

patterns under different design spaces. When X = [−1 1]7 and X = [−3 3]7, the

CRmean converge to 0.1, which is the lower bound of the CRmean in NovDE.

Under these two design spaces, the decrease of CRmean values indicates their
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Table 5.2: Performances of NovDE, NovDE-Bin and six competitors for finding
locally D-optimal designs on [−3, 3]7 using 5 sets of nominal values. In each
cell, the numbers in the upper line are the mean and standard deviation of the
values of the objective function over 30 multiple runs, and the number at the
bottom line is its success rate. For each set of nominal values, the best values
of the mean and success rates are in bold. The entries with ∗ represent NovDE
significantly outperforms the other algorithm based on Wilcoxon rank-sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -0.1052 (0.0048) -0.4441 (0.0038) 0.5343 (0.0128) 0.7487 (0.0076) 0.3678 (0.0028)

100% 80% 46.67% 93.33% 90%

NovDE-Bin -0.1054 (0.0049) -0.4438 (0.0036) 0.5384 (0.0177) 0.7476 (0.0051) 0.3645 (0.0055)

93.33% 90% 40% 93.33% 90%

DE/rand/2/bin -0.1209 (0.0135)∗ -0.4581 (0.0221)∗ 0.4879 (0.0283)∗ 0.7140 (0.0127)∗ 0.3396 (0.0061)∗

43.33% 23.33% 0% 6.67% 16.67%

ANDE -0.1131 (0.0080) ∗ -0.4561 (0.0113)∗ 0.4940 (0.0207)∗ 0.7097 (0.0295)∗ 0.3412 (0.0138)∗

53.33% 40% 3.33% 3.33% 6.67%

SaDE -0.1033 (0.0027) -0.4435 (0.0040) 0.5234 (0.0155)∗ 0.7457 (0.0109) 0.3641 (0.0070)

80% 90% 40% 86.67% 73.33%

SaDE+MER -0.1022 (0.0032) -0.4440 (0.0030) 0.5240 (0.0143) ∗ 0.7474 (0.0067) 0.3661 (0.0061)

100% 86.67% 36.67% 90% 83.33%

JADE -0.1031 (0.0025) -0.4436 (0.0038) 0.4979 (0.0274) 0.7467 (0.0058) 0.3667 (0.0031)

50% 46.67% 10% 83.33% 83.33%

DDE-AMS -0.1241 (0.0320)∗ -0.4590 (0.0304)∗ 0.4278 (0.0350)∗ 0.7130 (0.0197)∗ 0.3547 (0.0098)∗

30% 16.67% 0% 3.33% 33.33%

exploration capability tends to be restricted as evolution proceeds; for X =

[−3 3]7, the CRmean values would converge faster. When X = [0 3], the

CRmean converges to around 0.9, which is the upper bound of the CRmean in

NovDE. The increase of CRmean values indicates their exploration capability

tends to be enhanced as evolution proceeds. For different design spaces, the

CRmean for the novelty-based strategy presents its adaptation to the exploration

capability.

Table 5.4 to Table 5.6 present the support points of the locally D-optimal

designs when β3 is the set of nominal values. Interestingly, each support point
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Table 5.3: Performances of NovDE, NovDE-Bin and six competitors for finding
locally D-optimal designs on [0, 3]7 using 5 sets of nominal values. In each cell,
the numbers in the upper line are the mean and standard deviation of the values
of the objective function over 30 multiple runs, and the number at the bottom line
is its success rate. For each set of nominal values, the best values of the mean
and success rates are in bold. The entries with ∗ represent NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -8.2056 (0.0091) -11.0117 (0.0023) -9.3156 (0.0191) -7.6625 (0.0183) -9.1025 (0.0124)

83.33% 100% 26.67% 83.33% 76.67%

NovDE-Bin -8.2064 (0.0047) -11.0134 (0.0027) -9.3188 (0.0314) -7.6508 (0.0038) -9.1076 (0.0171)

80% 100% 23.33% 96.67% 80%

DE/rand/2/bin -8.2344 (0.0196)∗ -11.0293 (0.0121)∗ -9.3562 (0.0193)∗ -7.6977 (0.0184)∗ -9.1549 (0.0194)∗

3.33% 16.67% 3.33% 6.67% 3.33%

ANDE -8.2430 (0.0194)∗ -11.0249 (0.0055)∗ -9.3500 (0.0256)∗ -7.6861 (0.0163)∗ -9.1510 (0.0135)∗

3.33% 46.67% 0% 0% 3.33%

SaDE -8.2147 (0.0145)∗ -11.0141 (0.0019)∗ -9.3282 (0.0213)∗ -7.6571 (0.0063) -9.1066 (0.0128)∗

66.67% 90% 10% 86.67% 46.67%

SaDE+MER -8.2067 (0.0052) -11.0139 (0.0030)∗ -9.3348 (0.0270)∗ -7.6594 (0.0121) -9.1098 (0.0147)∗

70% 86.67% 16.67% 76.67% 56.67%

JADE -8.2085 (0.0019)∗ -11.0330 (0.0093)∗ -9.3213 (0.0207)∗ -7.6517 (0.0040) -9.1095 (0.0032)∗

20% 20% 6.67% 33.33% 36.67%

DDE-AMS -8.2212 (0.0145)∗ -11.0239 (0.0114)∗ -9.3939 (0.0279)∗ -7.7216 (0.0250)∗ -9.1529 (0.0377)∗

3.33% 26.67% 0% 0% 3.33%

of these locally D-optimal designs has at most one factor level supported at its

non-extreme values. This observation may provide an impetus for further study

using analytical tools.
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Table 5.4: NovDE-generated locally D-optimal design for the logistic model
with seven variables when the vector of nominal values for the parameters is β3,
and X = [−1, 1]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi
1 1 -1 1 -1 -1 -1 -1 0.0230
2 1 -1 1 -1 -1 -1 1 0.0160
3 1 1 1 1 1 -1 1 0.0255
4 1 1 -1 1 1 -1 -1 0.0223
5 1 -1 1 -1 -1 1 1 0.0152
6 -1 -1 1 1 1 1 1 0.0212
7 -1 1 1 -1 1 -1 1 0.0269
8 1 -1 1 -1 1 -1 -1 0.0101
9 1 -1 1 -1 -1 1 -1 0.0269

10 -1 1 1 -1 -1 1 -1 0.0117
11 1 -1 -1 1 1 -1 1 0.0269
12 -1 -1 1 1 1 1 1 0.0142
13 -1 1 1 1 1 -1 1 0.0219
14 1 1 1 -1 -1 -1 1 0.0182
15 1 1 -1 1 -1 -1 1 0.0183
16 -1 -1 1 1 1 1 -1 0.0199
17 -1 -1 -1 -1 -1 -1 1 0.0269
18 -1 -1 -1 -1 1 -1 -1 0.0101
19 -1 -1 1 -1 1 1 -1 0.0269
20 -1 1 1 -1 -1 -1 -1 0.0163
21 1 -1 1 1 -1 -1 1 0.0102
22 -1 1 -1 -1 1 -1 -1 0.0269
23 -1 1 -1 1 -1 -1 1 0.0241
24 -1 -1 -1 -1 -1 -1 1 0.0213
25 -1 -1 -1 -1 -1 1 1 0.0269
26 -1 -1 1 -1 1 -1 -1 0.0269
27 1 -1 -1 1 -1 -1 -1 0.0269
28 -1 1 -1 -1 -1 1 -1 0.0184
29 -1 -1 -1 1 -1 1 -1 0.0269
30 1 -1 -1 1 -1 1 -1 0.0161
31 1 -1 1 1 -1 1 -1 0.0165
32 1 -1 -1 -1 -1 -1 1 0.0143
33 -1 1 -1 -1 1 -1 -1 0.0269
34 -1 -1 1 1 1 1 -1 0.0124
35 -1 1 1 1 1 -1 -1 0.0269
36 -1 1 1 -1 -1 1 1 0.0204
37 1 1 1 1 -1 1 -1 0.0269
38 -1 1 -1 1 1 -1 -1 0.0103
39 1 -1 1 1 1 -1 1 0.0269
40 -1 1 -1 1 -1 1 1 0.0152
41 1 1 -1 1 -1 -1 -1 0.0150
42 1 1 1 -1 -1 -1 -1 0.0260
43 -1 -1 -1 -1 -1 -1 1 0.0144
44 -1 1 -1 1 -1 1 -1 0.0260
45 -1 -1 -1 1 1 1 1 0.0269
46 1 1 1 1 -1 1 1 0.0203
47 -1 1 1 1 -1 1 1 0.0245
48 1 -1 -1 1 1 -1 -1 0.0269
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Table 5.5: NovDE-generated locally D-optimal design for the logistic model
with seven variables when the vector of nominal values for the parameters is β3,
and X = [−3, 3]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi
1 -3 -3 -3 -3 3 -3 -3 0.0311
2 3 3 3 3 -3 3 3 0.0100
3 -3 -3 -3 -3 3 -3 3 0.0347
4 3 -3 3 3 3 -2.9971 3 0.0480
5 -3 -3 3 -3 3 2.9217 -3 0.0292
6 3 -3 -3 -3 -3 -3 -3 0.0100
7 -3 3 -3 -3 2.0891 -3 -3 0.0107
8 -3 -3 3 -3 -2.7545 3 3 0.0468
9 3 3 3 3 3 -3 -3 0.0187

10 3 3 3 3 -3 3 -3 0.0298
11 -3 -3 3 3 3 3 3 0.0409
12 3 -3 -3 3 -3 3 -3 0.0403
13 3 3 3 -3 -3 -3 3 0.0100
14 3 3 -3 3 -3 -3 3 0.0100
15 -3 3 3 3 3 3 -3 0.0385
16 3 -3 -3 -3 -3 -3 -3 0.0260
17 3 3 3 -3 -3 -3 -3 0.0517
18 -3 -3 -3 3 3 3 -3 0.0338
19 3 -3 3 -3 3 -3 -3 0.0375
20 -3 3 -3 -3 -3 -3 3 0.0303
21 3 3 -3 3 -3 -3 3 0.0258
22 -2.9190 3 -3 3 -3 3 -3 0.0451
23 -3 3 3 -3 -3 3 3 0.0431
24 3 -3 -3 3 3 -3 -3 0.0100
25 3 -3 -3 -3 -3 -3 3 0.0316
26 -3 -3 -3 -3 -3 3 -3 0.0136
27 -3 3 3 -3 3 -3 -3 0.0356
28 -3 3 -3 3 -3 3 3 0.0162
29 3 -3 3 3 -3 3 3 0.0438
30 -3 3 3 -3 -3 3 3 0.0305
31 3 -3 -3 3 -3 3 -3 0.0140
32 -3 3 -3 3 3 -3 3 0.0517
33 3 3 3 3 3 -3 3 0.0512
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Table 5.6: NovDE-generated locally D-optimal design for the logistic model
with seven variables when the vector of nominal values for the parameters is β3,
and X = [0, 3]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi
1 3 0 3 3 3 0 0 0.0232
2 0 3 3 3 3 0 0 0.0262
3 0 3 3 0 0 0 3 0.0151
4 0 3 3 3 0 3 0 0.0270
5 3 3 3 3 0 0 0 0.0191
6 3 0 3 0 0 0 0 0.0113
7 0 0 3 3 0 3 0 0.0103
8 3 0 3 0 0 0 0 0.0215
9 0 3 3 0 0 0 3 0.0220

10 3 0 0 3 0 0 0 0.0106
11 3 0 3 3 0 0 3 0.0366
12 0 0 0 3 3 0 3 0.0389
13 0 3 3 3 0 0 0 0.0318
14 0 3 0 3 0 0 3 0.0309
15 0 0 3 3 0 3 3 0.0171
16 0 0 3 3 3 0 3 0.0315
17 0 3 3 0 0 0 3 0.0385
18 0 0 0 0 0 0 0 0.0367
19 0 0 3 0 3 0 0 0.0319
20 0 0 3 3 3 0 0 0.0323
21 0 0 0 3 3 0 0 0.0128
22 0 0 0 3 0 0 3 0.0217
23 3 3 3 3 0 0 0 0.0333
24 0 0 3 3 3 0 3 0.0114
25 0 0 0 3 0 3 0 0.0389
26 0 0 0 0 0 0 0 0.0107
27 0 0 3 0 0 3 0 0.0271
28 0 0 3 0 0 0 0 0.0380
29 0 3 3 3 3 0 0 0.0263
30 3 0 3 3 0 0 3 0.0298
31 0 0 3 3 0 3 0 0.0346
32 3 0 0 3 0 0 0 0.0316
33 0 3 0 3 0 0 0 0.0312
34 0 0 3 0 0 0 0 0.0131
35 0 0 0 3 0 0 3 0.0225
36 0 3 0 3 0 0 0 0.0138
37 0 3 3 3 0 3 3 0.0300
38 3 0 3 3 0 0 0 0.0100
39 0 0 3 3 3 3 0 0.0118
40 0 0 3 0 0 0 3 0.0146
41 0 0 3 3 0 3 3 0.0242
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5.5 Results, Analysis and Discussion on a Real Ap-

plication

I now apply the proposed NovDE algorithm to a real application that is to re-

design a ten-factor experiment to test the functionality of a vision-based car

refueling system [112]. The investigators were interested in finding whether a

computer-controlled nozzle was able to insert into gas pipe correctly or not, imply-

ing that the response variable in the study is binary as 0 (fail) or 1 (success). Table

5.7 lists the ten factors, which are the factors of each input vector. Four factors

are discrete, each with two levels -1 or +1, and six factors are continuous. Table

5.7 shows the range of values for each continuous factor and they do vary consid-

erably. The proposed NovDE algorithm is applied to find a locally D-optimal

design for this high-dimensional nonlinear model with mixed factors using

the vector of nominal values β = (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)
T =

(3, 0.5, 0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1, 2.65, 0.65) from literature [112].

Design issues for this ten-factor experiment were also considered in [113] but

without interaction terms. In practice, the binary response is likely dependent on

the joint changes in two or more of the factors, suggesting that interaction terms

should be in the model. To fix ideas, I include five pairwise interactions into the

model and believe that this is the first design work for such a high-dimensional

logistic model. Previous attempts using conventional optimization methods like

multiplicative and modified Fedorov-Wynn algorithms did not converge for this

problem [113]. The vector of nominal values for the model with the five selected

pairwise interactions is β = (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β1,9, β2,5, β3,4,

β6,7, β8,10)
T = (3, 0.5, 0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1, 2.65, 0.65, 0.01,−0.02,

0.03,−0.04, 0.05)T based on literature [112].

Some of the tuning parameters used to find the locally D-optimal designs are

the population size, maximum number of generations and maximum number of
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support points. For the model without factor interactions, the population size is

100, and the maximum number of generations is 10000. The maximum number

of support points L is set to 100 so the dimension D of the problem is 1100

(=(10 + 1)× 100). The dimension for each support point is 11, which includes

the number of factors (i.e. 10) and the dimension of the corresponding portion

of observations taken at each support point (i.e. 1). For the model with factor

interactions, the population size is 100, and the maximum number of generations

is 20000. The maximum number of support points L is 100 so the dimension D

of the problem is 1600 (=(10 + 1 + 5)× 100).

Due to the number of factors in this study, it is hard to construct and visually

appreciate the high-dimensional sensitivity function of the generated design to

confirm its optimality. I apply ”DE/rand/2/bin” with F=0.5 and CR=0.9 to find

the maximum positive value of the function and compute its D-efficiency lower

bound. The lower bound D-efficiency is defined as exp (−θ/k) where k is the

dimension of the model parameter β. Since the variables of this problems are

mixed, the variation of lower bound D-efficiency is very large. In what is to

follow, if a design has at least 90% D-efficiency, I accept the design as close

enough to the optimum.

5.5.1 Without Factor Interactions

Table 5.8 compares the mean of locally D-optimal objective value and success

rate of NovDE with NovDE-Bin and the other six differential evolution algo-

rithms. Wilcoxon rank-sum test [80] is also conducted at the 5% significance

level. In Table 5.8, both the mean of the objective value and the success rate

of NovDE-Bin are the highest. NovDE ranks the second. Both NovDE-Bin

and NovDE significantly outperform all the other six algorithms. Thus, my

empirical results support the effectiveness of novelty-based mutation strategy in

solving the car refueling experiment. By extension, my work suggests that the
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Table 5.7: Factor types and levels for the car refueling experiment.

Type Factor Level

Low High

Discrete

Ring Type White paper Reflective

Lighting Room lighting 2 flood lights and room lights

Sharpen No Yes

Smooth No Yes

Continuous

Lighting angle from 50 degrees to 90 degrees

Gas-cap angle (Z axis) from 30 degrees to 55 degrees

Gas-cap angle (Y axis skew) from 0 degrees to 10 degrees

Car distance from 18 in. to 48 in.

Reflective ring thickness from 0.125 in. to 0.425 in.

Threshold step value from 5 to 15

NovDE and NovDE-Bin are effective for searching locally D-optimal designs

for high-dimensional non-separable problems with mixed variables on various

design spaces. In problems with mixed factors, the solutions obtained from

D-optimal design with mixed factors are more likely to be convergent at the early

evolution stage. Thus, it is more crucial to handle the premature convergence

issue especially for the problems with mixed factors. NovDE and NovDE-Bin

have advantages in handling the premature convergence issue and preserve the

diversity of solutions. As a result, NovDE performs even better than it performs

on handling D-optimal design with continuous factors. Table 5.9 lists the locally

D-optimal design for the car refueling experiment, and 12 support points are

generated. The design criterion value is -35.9178. A direct calculation shows

that the D-efficiency lower bound for the generated design is 94.60%. This is

not surprising even though I set the lower bound to be 90% for this problem.

The reason is because the algorithm is not monotonic in the sense that it does
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not necessarily produce increasingly more efficient designs with each iteration.

Another reason is that some higher D-efficiency optimal design may exist in the

continuous design spaces instead of the mixed design spaces. Based on Table

5.9, the common rule is observed: for each support point, there is at most one

factor value not at the boundary of the design space. This is consistent with the

observation in Section 5.4.

Table 5.8: Comparisons of the performance of NovDE, NovDE-Bin and six
competitors for the car refueling experiments without factor interactions. The
best values of the mean and success rates are in bold. The entries with ∗ represent
NovDE significantly outperforms the other algorithm based on Wilcoxon rank-
sum test.

Algorithm Success Rate Mean (std)

NovDE 90% -35.9390 (0.1060)

NovDE-Bin 90% -35.9180 (0.0035)

DE/rand/2/bin 13.33% -37.4963 (0.8482)∗

ANDE 26.67% -36.7708 (0.8923)∗

SaDE 70% -35.9480 (0.0485)∗

SaDE+MER 46.67% -36.2242 (0.7181)∗

JADE 70% -35.9645 (0.0911)∗

DDE-AMS 10% -39.5935 (0.5128)∗

Table 5.9: NovDE-generated locally D-optimal design for car refueling experi-
ment without factor interactions.

Support point Ring Type Lighting Sharpen Smooth
Lighting

Z axis
Y axis

Car Dist. Ring Thick.
Threshold

Pi
Angle skew Step-size

1 -1 -1 -1 1 50 30 10 48 0.1250 5 0.0909
2 -1 -1 -1 -1 50 30 4.1991 48 0.1250 5 0.0909
3 -1 -1 -1 -1 50 30 10 48 0.1250 8.5698 0.0909
4 -1 -1 -1 -1 50 30 10 48 0.1250 5 0.0807
5 -1 -1 -1 -1 54.6407 30 10 48 0.1250 5 0.0909
6 -1 1 -1 -1 50 30 10 48 0.1250 5 0.0909
7 1 -1 -1 -1 50 30 10 48 0.1250 5 0.0752
8 1 -1 -1 -1 50 30 10 48 0.4250 5 0.0397
9 -1 -1 -1 -1 50 32.9005 10 48 0.1250 5 0.0909

10 -1 -1 -1 -1 50 30 10 45.6796 0.1250 5 0.0909
11 -1 -1 -1 -1 50 30 10 48 0.4250 5 0.0772
12 -1 -1 1 -1 50 30 10 48 0.1250 5 0.0909
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5.5.2 With Factor Interactions

It seems realistic that there are factor interactions between Ring type and Reflec-

tive ring thickness, Lighting and Lighting angle, Sharpen and Smooth, Gas-cap

angle (Z axis) and Gas-cap angle (Y axis skew) and Car distance and Threshold

step value, respectively. The former two interactions are between a discrete factor

and a continuous factor; the third interaction is between a discrete factor and a

discrete factor and the latter two interactions are between a continuous factor

and a continuous factor. In practice, the researcher uses content information to

specify interaction terms in the model and implements a parsimonious model.

My conjecture that interaction terms were ignored in earlier design work for such

a model is to simplify the design construction.

Table 5.10: Comparisons of the performance of NovDE, NovDE-Bin and six
competitors for the car refueling experiment with factor interactions. The best
values of the mean and success rates are in bold. The entries with ∗ represent
NovDE significantly outperforms the other algorithm based on Wilcoxon rank-
sum tests

Algorithm Success Rate Mean (std)

NovDE 80% -71.5401 (0.3365)

NovDE-Bin 70% -71.5640 (0.3453)

DE/rand/2/bin 0% -74.4495 (1.4082)∗

ANDE 23.33% -72.0390 (0.6751)∗

SaDE 3.33% -71.7135 (0.3182)∗

SaDE+MER 20% -71.6072 (0.1860)∗

JADE 30% -71.5843 (0.3562)∗

DDE-AMS 6.67% -71.7058 (0.3136)∗

Table 5.10 compares the mean of locally D-optimal objective value and

success rate of NovDE with NovDE-Bin and the other six differential evolution

algorithms. Wilcoxon rank-sum test [80] is also conducted at the 5% significance

level. In Table 5.10, both the mean of the objective value and the success

rate of NovDE is the highest, and NovDE-Bin is the second highest. NovDE

99



Table 5.11: NovDE-generated locally D-optimal design for the car refueling
experiment with five pairwise factor interactions.

Support point Ring Type Lighting Sharpen Smooth
Lighting

Z axis
Y axis

Car Dist. Ring Thick.
Threshold

Pi
Angle skew Step-size

1 -1 1 -1 -1 50 35.5152 10 48 0.1250 5 0.0625
2 -1 1 1 1 50 30 10 48 0.1250 5 0.0625
3 -1 -1 -1 -1 50 30 10 48 0.1250 5 0.0466
4 -1 1 -1 -1 50 30 10 48 0.1250 5 0.0511
5 -1 1 -1 -1 50 34.5716 8.8571 48 0.1250 5 0.0625
6 -1 1 -1 -1 50 30 8.6212 48 0.1250 5 0.0625
7 -1 1 -1 -1 50 30 10 48 0.4250 5 0.0486
8 -1 1 -1 -1 50 30 10 45.1640 0.1250 5.6974 0.0625
9 1 1 -1 -1 50 30 10 48 0.4250 5 0.0625

10 -1 1 -1 -1 50 30 10 48 0.1250 5.7233 0.0625
11 -1 1 1 -1 50 30 10 48 0.1250 5 0.0625
12 -1 1 -1 -1 54.5960 30 10 48 0.1250 5 0.0625
13 1 -1 -1 -1 50 30 10 48 0.1250 5 0.0242
14 1 1 -1 -1 50 30 10 48 0.1250 5 0.0499
15 -1 -1 -1 -1 54.1003 30 10 48 0.1250 5 0.0625
16 -1 -1 -1 -1 50 30 10 48 0.4250 5 0.0296
17 -1 1 -1 1 50 30 10 48 0.1250 5 0.0625
18 -1 1 -1 -1 50 30 10 45.0586 0.1250 5 0.0625

significantly outperforms all the other six algorithms. I observe that the overall

outperformance of the NovDE and NovDE-Bin algorithms relative to the other

six algorithms are less dramatic than when the model has no interaction terms,

my results still show it is effective in solving non-separable high-dimensional

locally D-optimal design problems with mixed factors on various design spaces.

In particular, it shows the NovDE is able to handle premature convergence and

non-separable issues well in complex optimization problems. The proposed

NovDE algorithm can produce optimal designs for a more realistic situation and

so represents an advancement. Table 5.11 shows the optimal design for the car

refueling experiment with five pairwise factor interactions. There are 18 support

points, and the design criteria value is -71.4284. The design has a D-efficiency of

95% or higher. An interesting note is that Table 5.11 shows each support point

can have one or more factors supported other than at its extreme values. This

violates the common rule mentioned earlier in a model without factor interactions

and serves to show that as the model gets more complicated, the structure of the

optimal design also becomes harder to characterize and understand.
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5.6 Chapter Conclusion

I propose a DE-based algorithm NovDE to search for locally D-optimal designs

for logistic models with multiple factors that may or may not interact with one

another. I employ a new novelty-based mutation strategy to explore various

regions of the search space so that the diversity of the population is preserved.

The new novelty-based mutation strategy is collaborated with ’DE/rand/2’ and

’DE/current-to-rand/1’ which can balance exploration and exploitation at early or

medium stage of the evolution. Both convergence and diversity of the population

are enhanced, and premature convergence issues are alleviated. I have demon-

strated that NovDE provides the best objective function values and success rates

compared with seven other DE-related evolutionary algorithms. NovDE also

outperforms the others in terms of finding a highly efficient D-optimal design for

the ten-factor car refueling study where there are discrete and continuous factors

in the logistic model and some of them interact with one another. My empirical

results also show that the distribution of the support points for optimal designs for

models with interaction terms are more complex than those for models without

interaction terms.

I focus on logistic models which are the most commonly used in practice to

model binary responses. I expect the proposed algorithm works for other link

functions as well, including cases when the response is continuous and there are

many mixed factors. Future study includes testing the capability of my proposed

algorithm for tackling these problems and multiple-objective optimal design

problems.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

The primary focus of this thesis is to propose new evolutionary computation

algorithms for solving optimization problems with decision variables that have

complex characteristics of being with constraints or are high dimensional.

In Chapter 3, a new evolutionary constraint-handling technique ε-SEC has

been proposed. ε-SEC has successfully addressed difficulties of current evolu-

tionary algorithms in balancing the two conflicting tasks of optimizing objective

function and reducing constraint violations. Empirical results have supported

the robustness and effectiveness of the proposed technique in solving the con-

strained parameter optimization problem of a breast cancer immunotherapy

model. Furthermore, the optimized parameters obtained from the proposed

technique generalizes the model for both the replication and prognostication of

clinical therapeutic outcomes.

In Chapter 4, a data-augmentation pipeline has been formulated to solve the

small-data issue in the constrained parameter optimization problem in Chapter 3.

To study the effectiveness of the data-augmentation procedure, the pseudo data

points generated by data-augmentation pipeline, and constraint-handling tech-
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CHAPTER 6. CONCLUSION & FUTURE WORK

niques, three hypotheses are raised. These three hypotheses are supported by my

empirical studies. First, the empirical results show that this data-augmentation

procedure is effective in improving model resolution of various constraint-

handling techniques in small-data scenarios. Second, the empirical results show

that ε-SEC is the most effective constraint-handling technique for improving

model resolution compared to the other four constraint-handling techniques post

data augmentation. Third, the empirical results reveal that training the other four

constraint-handling techniques using the pseudo training data set generated by

ε-SEC improves their model resolution more than using their own respective

pseudo training data set.

In Chapter 5, a DE-based algorithm NovDE has been proposed to solve

locally D-optimal design problems with high-dimensional decision variables.

The main issue of optimal design problems with high-dimensional decision vari-

ables is premature convergence. NovDE employs a new novelty-based mutation

strategy to explore novelty regions of the search space so that the diversity of

populations is preserved. Furthermore, the new novelty-based mutation strategy

is used together with two other common mutation strategies which can balance

exploration and exploitation at the early and medium stage of the evolution pro-

cess so that both convergence and diversity of the population are enhanced, and

premature convergence issues are alleviated. NovDE has successfully addressed

the issue of solutions getting trapped into local optima. My empirical results

show that the specially-designed mechanism, for exploring novelty regions in

the decision space, in NovDE can effectively assist in escaping local optima with

higher chance. NovDE achieves effective and robust performance when solving

problems having more than 500 decision variables in D-optimal designs with

demanding requirements.
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6.2 Future Work

Generally, this thesis has provided an overview of solving optimization problems

having decision variables with complex characteristics by EC techniques. Below

are some additional future works can be explored.

The breast cancer immunotherapy model is formulated based on the assump-

tion of intra-tumor homogeneity. However, actual observations may diverge

from model predictions, thereby intra-tumor heterogeneity may be concluded

and treatment strategy may need to be switched. Since intra-tumor heterogeneity

is an increasingly accepted concept in oncology [114], a new model based on

the assumption of intra-tumor heterogeneity can be established and the proposed

constraint-handling technique can be used to optimize parameters in this new

model. Furthermore, all of the data points are collected off-line, and the model

parameters of a dynamic system are optimized based on off-line data. However,

while the optimized parameter values for a dynamic system are optimal compared

to all other fixed parameter values for this dynamic system, they may not be

optimal compared to dynamic adaptively tuning of this dynamic system. For

example, a current challenge in all forms of drug administration is that drug

synergy is time-dependent, dose-dependent and patient-specific at any given

point of treatment [115]; i.e. the dose changes dynamically and adaptively. In

the future, if on-line data can be collected, both on-line data and off-line data

can be used to incrementally and adaptively optimize model parameters to im-

prove the effectiveness and robustness of the model. Currently, the proposed

constraint-handling technique ε-SEC is applied to solve the constrained parame-

ter optimization problem of a cancer immunotherapy model. ε-SEC can also be

extended to solve other constrained optimization problems in real applications

such as knapsack problems and traveling salesman problems.

In the proposed data-augmentation pipeline, there is one round of generating
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pseudo data points in order to optimize model parameters based on both real

and pseudo data points. Possibly, this pipeline can be conducted in multiple

rounds such that a new set of pseudo data points are generated based on the new

model obtained in the last round, and this new set of pseudo data points and

real data are used to optimize model parameters. It seems worthwhile to study

whether conducting the pipeline in multiple rounds can increase model resolution

while successfully mitigating against over-tuning. Furthermore, this proposed

data-augmentation pipeline can also be applied to other constrained optimization

problems in real applications that have small-data issues.

In the field of optimal design, only locally D-optimal design problems are

studied in this thesis. However, there are other optimal design criteria such as A-

optimal design and G-optimal design. In real cases, it is more general to generate

a design satisfying multiple design criteria instead of D-optimal design alone, so

the problem is converted to multi-objective optimization. Stringently requiring

decision variables to satisfy multiple criteria can be a big challenge to be solved

in the future. Some state-of-the-art multi-objective evolutionary algorithms can

be studied and modified to solve the multi-criteria optimal design problems more

effectively. If the optimal design problems are both multi-objective and high-

dimensional, it is far more challenging to be handled. In addition, the proposed

algorithm NovDE can also be applied to solve other high-dimensional and non-

separable problems in real applications such as traveling salesman problem or

feature selection problem.
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