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Proteomics provides important information – that may not be inferable from indirect sources

such as RNA or DNA – on key players in biological systems or disease states. However, it

suffers from coverage and consistency problems. The advent of network-based analysis

methods can help in overcoming these problems but requires careful application and inter-

pretation. This review considers briefly current trends in proteomics technologies and

understanding the causes of critical issues that need to be addressed – i.e., incomplete data

coverage and inter-sample inconsistency. On the coverage issue, we argue that holistic

analysis based on biological networks provides a suitable background on which more robust

models and interpretations can be built upon; and we introduce some recently developed

approaches. On consistency, group-based approaches based on identified clusters, as well as

on properly integrated pathway databases, are particularly useful. Despite that protein

interactions and pathway networks are still largely incomplete, given proper quality checks,

applications and reasonably sized data sets, they yield valuable insights that greatly

complement data generated from quantitative proteomics.
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1 Introduction

Mass spectrometry (MS)-based proteomics is a widely used

and powerful tool for profiling systems-wide protein

expression changes [1]. It can be applied for various

purposes, e.g. biomarker discovery in diseases and study of

drug responses. Although RNA-based high-throughput

methods have been useful in providing glimpses into the

underlying molecular processes, the evidences they provide

are indirect. Furthermore, RNA and corresponding protein

levels have been known to have poor correlations [2]. On the

other hand, MS-based proteomics tend to have consistency

(poor reproducibility and inter-sample agreement) [3, 4], and

coverage [5] (inability to detect the entire proteome) issues

that need to be urgently addressed. The former of which

implies that multiple analytical runs of the same sample

under constant experimental conditions will result in the

detection of different but overlapping sets of proteins.

Intuitively, this means more LC-MS/MS runs are required

to identify a sufficiently large portion of any proteome and is

intricately linked to the second issue of inadequate

proteome coverage.

Proteomics captures valuable information about the level

and existence of individual proteins but the data can be noisy

and incomplete. As mentioned, two exigent issues in proteo-

mics are data coverage and consistency. Experimental meth-

ods to overcome these issues are technically challenging,
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resource heavy or place an unreasonable heavy dependency on

the quality of the initial data set. These include exhaustive

fractionation of samples [6, 7], repeated MS runs of the same

sample to reach saturation [4, 8] and compilation of MS data

specific to a sample type generated and archived from differ-

ent laboratories [9–11].

The problems are particularly exemplified in a large-scale

collaborative study to assess the extent of reproducibility

across different laboratories. The results were striking – only

7 out of 27 laboratories correctly reported all 20 proteins,

and only 1 laboratory successfully reported all 22 unique

peptides [3].

Therefore, alternative approaches are needed to comple-

ment the existing experimental approaches to circumvent

the stochastic sampling of peptides by MS and increase the

comprehensiveness of proteome coverage. Networks provide

an informative background or scaffold on which higher

confidence assertions can be founded.

A biological network is a set of molecules, e.g. proteins or

genes, that are linked together via defined functional rela-

tionships. The inter-connections between molecules contain

a wealth of information that has yet to be fully exploited in

network-based analysis. Deciphering the patterns of wiring

in a system allows us to penetrate the apparent complexity,

and understand how these wirings could result in coordi-

nated function. Early discoveries suggest that biological

networks share common properties with many other natural

and man-made systems. For example, it was reported that

protein–protein interaction networks (PPINs) are scale-free

[12], small-world [13] and disassorted [14]. It was also

suggested that highly connected proteins (hubs) were more

likely to be essential for cellular survival [15]; and that there

were two kinds of hubs – date and party [16].

As our ability to exploit network information improves,

some of these early observations are beginning to come

under intense scrutiny and revision – especially since they

were performed by relatively crude methods that do not

capture enough of the complexity underlying biological

processes. For example, the existence of date and party hubs

[17], or that hubs are also more likely to be essential genes

[18], is increasingly disputed. The Barabasi–Albert model,

while elegant, does not capture the notion that biological

molecules tend to work in complexes or clusters [19]. As of

now, there is still no perfect mathematical model for

generating a biological network.

Given that network-based analysis methods are still

evolving, they must be applied appropriately in order to gain

confident biological insight. Network-based analysis in

biology is mostly limited to areas where data are more

readily accessible or interpretable. Hence, protein–protein

interactions, gene-regulation and metabolic systems are

more widely studied although, strictly, they are not distinct

systems in themselves. A fortunate development is that

recent experimental initiatives have increased tremendously

the amount of biological network information available

about which to perform analysis. For example, groups such

as Marc Vidal’s [20] have been generating large-scale yeast

two hybrid (Y2H) data in order to build extensive PPINs for

model organisms. Also noteworthy are the ascension of

large pathway and metabolic databases, as well as integrative

platforms.

Currently, not much is known about the true topology of

biological networks. And even less is known about how

errors such as false positives can adversely affect analysis.

Combining networks to include several different types of

molecules (e.g. proteins, RNA and metabolites) and inter-

actions (e.g. protein interaction, gene interaction and

signaling) to capture various levels of biological complexity

is an even taller order.

Despite these difficulties, the theory of networks is an

essential next stage in the study of biology. Traditional

reductionist methods, while excellent in the study of the

individual components of the system, cannot yield its

emergent qualities. And it is at the systems level where

knowledge on coordination, regulation and control of

biological processes can be obtained. Currently, it is

increasingly recognized that the understanding of properties

that arise from whole-cell function require integrated,

theoretical descriptions of the relationships between differ-

ent cellular components [12].

In this review, we begin in Section 2 with a brief intro-

duction to proteomics methods, protein identification algo-

rithms and experimental planning to suit network-based

analysis. This is followed in Section 3 by a general intro-

duction to different types of biological networks. Section 4

covers in greater detail the coverage and consistency issues

and why network-based approaches are suitable. Sections 5

and 6 introduce some methods for dealing with the former

and latter issues, respectively, with a focus on protein-

interaction networks and biological pathway networks. In

Section 7, we take issue on the importance of data quality of

the reference network, and what are the caveats to note in

order to maximize analytical outcome.

2 Quantitative advances in proteomics
and algorithms for protein
identification

2.1 Proteomics methods

Proteomics can be pursued in many different flavors (e.g.

2D gels and shotgun proteomics) and forms (e.g. protein

structures, activities, expressions and interactions). 2D gels

were traditionally favored but lack reproducibility and are

resource heavy [21].

Recent MS-based methods have higher sensitivity,

increased throughput and greater automation. These

include shotgun proteomics, differential isotope labeling,

label-free quantitation and targeted proteomics. Further

details and other recent advances in MS technologies can be

found in, e.g. the review by Mann and Kelleher [22].
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2.2 Bioinformatics for peptide and protein

identification

The detection of a peptide and the determination of its

amino acid sequence can be done using two types of algo-

rithms. The first type is database search algorithms that

work by matching the mass spectrum of the peptide to a

database of known peptide sequences. Examples of these

algorithms include MASCOT [23], Protein Prospector [24],

SEQUEST [25] and Paragon [26].

A second type performs de novo sequencing of peptides

from mass spectra. Examples of these algorithms include

PEAKS [27], ADEPTS [28], Lutefisk [29], PepNovo [30] and

GST-SPC� [31].

3 Types of biological networks

A biological network is a simplified model that describes the

inter-relationships between a set of functional entities such

as genes, proteins or metabolites. For the purpose of this

review, we broadly regard the followings as biological

networks: metabolic pathways (MNs), regulatory pathways

(RNs), protein–protein interactions (PPINs), genetic inter-

actions (GINs), protein complexes and proteins annotated to

the same Gene Ontology (GO) terms.

MNs link two proteins in a directed relationship if the

product of one is the substrate of the other. RNs refer to

transcriptional relationships or other indirect relationships

where one protein controls the expression or repression of

the other. MNs and RNs are thus natural biological path-

ways. Popular databases of MNs and RNs include KEGG

[32], BioCyc [33], WikiPathways [34], Reactome [35], Inge-

nuitys Knowledge Base (http://www.ingenuity.com),

NetProTM (http://www.molecularconnections.com), Path-

way Commons [36] and PathwayAPI [37].

In PPINs, a relationship between two proteins exists if

they are experimentally verified to interact physically. In

GINs, a gene interacts with another if a combined mutation

between them results in a more severe phenotype as

opposed to a single mutation in either of them. A GIN may

imply a physical interaction (as part of a complex) or a

complete ablation of functions across two compensatory

pathways. GINs are only beginning to be better understood

but remain difficult to study empirically; see Dixon et al. [38]

for an excellent review on GINs. Unlike MNs and RNs,

PPINs and GINs are purely pairwise interaction information

and cannot yet be put into the context of a natural biological

pathway. Important databases of PPINs and GINs include

BioGRID [39], DIP [40], HPRD [41], IntAct [42], MINT [43]

and STRING [44].

The GO was established by the Gene Ontology Consor-

tium as an important reference terminology for annotating

the function and cellular localization of proteins [45]. GO

terms are organized into three separate hierarchical ontol-

ogies — viz., cellular component terms (CC), molecular

function terms (MF) and biological process terms (BP). A

protein that is annotated by a particular GO term is

considered to be annotated by all ancestor terms (in the

corresponding hierarchical ontology) of that GO term; that

is, the so-called ‘‘through-path’’ rule is applied. Associated

with the GO is a large and well-organized database of

proteins annotated to GO terms. In particular, when a group

of proteins are annotated to a CC, BP or MF term, it means

that this group of proteins is localized to that cellular

compartment (corresponding to the CC term), participate in

that biological process (corresponding to the BP term), or

participate in that molecular function (corresponding to the

MF term), respectively.

Protein complexes and proteins annotated to the same

GO terms are not actually networks. Nevertheless, proteins

that are in the same complex or annotated to the same GO

terms are functionally linked and can be considered to form

functional linkage networks. The larger databases of protein

complexes include CORUM [46], MIPS [47] and CYC2008

catalogue [48].

4 Two issues in proteomic profile
analysis that call for a more holistic
analysis based on biological networks

In this section, we highlight two important issues in

proteomic profile analysis that need to be addressed and

suggest a more holistic proteomic profile analysis utilizing

biological networks and pathways.

The first issue concerns the coverage of the proteome at

the level of an individual sample. In particular, even as the

advancement of MS technologies continues, certain limita-

tions to current proteomics approaches remain that hamper

the complete mapping of the proteome in a sample. Like

many high-throughput methods, proteomics data are noisy.

Furthermore, due to demanding technological and

manpower requirements, as well as limited sample avail-

ability, often there are few repeats to guarantee that the

results are not false positives due to chance. Consequently,

stringent score thresholding is generally used in various

steps of peptide detection and identification to reduce noise.

However, more stringent thresholds also reduce coverage of

the proteome. For example, a relevant protein may escape

reporting because it does not meet a required threshold on

its dynamic range. A relevant protein may also escape

detection because it does not meet a require threshold on its

signal intensity, perhaps due to imperfect prediction of MS-

amendable transitions [49, 50].

The second issue concerns the consistency of proteomic

profiles at the phenotype level across samples. To under-

stand proteome biology and/or for the discovery of

biomarkers, quantitative comparisons – e.g. of cancerous

and non-cancerous samples – are an important aspect of

proteomics [51]. Analogous to DNA/RNA microarrays

and common to all the labeling methods mentioned earlier,
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protein quantification is usually expressed as fold change

ratio. The traditional post-MS analysis approach is therefore

to select and study only those proteins that are found in

most of the samples of the phenotype in question and have a

consistently over-expressed or under-expressed ratio.

However, proteins with noticeably high or low expression

are not necessarily causal or important. At the same time, a

mutated protein that drives other proteins to change their

levels may not itself report any change in expression or may

miss being detected. Moreover, many relevant proteins

report ‘‘swing’’ ratios, that is, a mixture of both high and low

ratios across samples. These factors are further compoun-

ded by the noise and coverage of the proteome at the level of

individual samples. Hence, one often fails to find key

proteins, much less biomarkers that are consistent and

reproducible across different batches of samples.

Proteins usually function as combinatorial units. At a

fine granularity, these units are protein complexes; at a

coarser granularity, these units are biological pathways. We

shall generically refer to these combinatorial units of

proteins as ‘‘biological networks’’.

Biological networks are critical to understanding the

function of genes and proteins in a more holistic way. Thus,

the appearance in recent years of many databases containing

information about biological networks may offer innovative

solution to the two issues above.

As proteins in the same functional unit – e.g. a protein

complex – interact with each other in some manner, these

proteins are expected to be expressed in a correlated or

coordinated manner. Therefore, it is reasonable to postulate

that detected proteins in a proteomic screen that form a

known functional unit are likely to be involved in biological

function, while isolated proteins are noise. This postulate

can be applied to improve coverage of a proteomic screen

and remove noise.

For illustration, let A, B, C, D and E be the five proteins

that function as a group and thus are normally correlated in

their expression. Suppose only A is detected in a proteomics

screen and B–E are not detected. Suppose also that the

screen has 50% reliability. Then, A’s chance of being false

positive is 50%, whereas the chance of B–E being all false

negatives is (50%)45 6%. Hence, it is almost ten times

more likely that A is noise than B–E all being missed.

Conversely, suppose only A is not detected and all of B–E are

detected. Then, A’s chance of being false negative is 50%,

whereas the chance of B–E all being false positives is

(50%)45 6%. Hence, it is almost ten times more likely that

A is false negative than B–E all being false positives.

Each biological state – e.g., in disease – generally has

some underlying causes. Thus, it is reasonable to postulate

that there should be some unifying biological themes –

certain biological networks or subnetworks – for genes and

proteins that are truly associated with the state [52–54].

Hence, the uncertainty in the reliability of the selected

proteins from quantitative comparisons of disease and non-

disease samples can be reduced by considering the mole-

cular functions and the biological processes associated with

the genes and proteins [55]. Such a unifying biological

theme is also a basis for inferring the underlying cause of

the disease phenotype.

For illustration, let there be three disease samples and

three controls. Assume that the chance of an arbitrary

protein found to be highly expressed in an arbitrary sample

is 50%. Then, a group of five functionally linked proteins

that is perfectly correlated to these two groups of samples –

e.g. they are all highly expressed in the three disease

samples and not in the three controls – has ((50%)3�
(1–50%)3)55 9.3� 10�8% chance of being a false-positive

group. On the other hand, if just one of these five func-

tionally linked proteins was perfectly correlated to the two

phenotypes, its chance of being a false positive would be

(50%)3� (1–50%)35 1.6%, which is many orders of

magnitude higher than when all five proteins are simulta-

neously correlated with the two phenotypes.

Furthermore, network-based approaches to proteomic

profiles analysis are able to significantly reduce the number

of samples needed in a proteomic study. To appreciate this,

let us illustrate with the following a simplified scenario.

Assume again that an arbitrary protein has equal chance to

be up or down-regulated in a sample. Suppose that there are

2n samples, with n samples in each of the two phenotypes.

Suppose also that there are 1000 proteins being tested in

each sample. Then, for a simple method that tests each

protein individually, the random chance of a protein that is

perfectly correlated with the two phenotypes is (1/2)n�
(1/2)n. Thus, the expected number of false-positive genes

that are perfectly correlated with the phenotypes is

1000� (1/2)2n. In contrast, for a method that tests a group

of proteins at a time, the random chance of a group of

k genes that are perfectly correlated with the phenotypes is

((1/2)n� (1/2)n)k. In theory, there are 1000Ck possible groups

of k genes; and so the expected number of false-positive

groups of k genes is (1/2)2nk � 1000!/(k!� (1000�k)!). In
practice, the group-based methods that we will describe (e.g.

FCS, GSEA) do not test all possible groups. Instead, they

define each pathway in a database to be a group; and they

only test these groups. As a typical pathway database has

o1000 pathways, the expected number of false-positive

groups of k genes is reduced significantly to 1000� (1/2)2nk.

Since 1000� (1/2)2nk/1000� (1/2)2n5 (1/2)k, we can esti-

mate that, given the same number of samples, the group-

based methods achieve (1/2)k times less false positives than

individual-gene methods. Conversely, to achieve the same

number of false positives, the number of samples needed by

group-based methods is (1/2)k times less than that needed

by individual-protein methods. For example, at k5 5, the

number of samples needed by group-based methods is

(1/2)55�3% that of individual-protein methods, while

delivering a comparable level of sensitivity and specificity.

Clearly, leveraging on these network-based paradigms

can aid in circumventing some of the shortcomings of

current proteomics approaches mentioned.
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5 Improving coverage using biological
networks

There are cases where the mass spectra may identify some

particular proteins, but, because their scores are below the

defined cutoff threshold, may not be reported initially in

the first round of data analysis. This occurs frequently in the

tradeoff between sensitivity and specificity in precursor ion

selection for fragmentation. Other potential reasons why

these proteins are unreported include: (i) not satisfying the

minimum two unique peptides requirement for confident

protein identification – that is, the protein is identified by a

single peptide; (ii) the proteins are short in amino acid

composition and subsequently are identified only by short

peptides; and/or (iii) they are not consistently found in

patient samples.

Network-based analysis can allow expansion of the

detected proteome to uncover and/or discover novel

proteins. This is critical in recovering missing proteins in

known pathways or complexes. It is even more important in

uncovering less-abundant proteins commonly shrouded in

shotgun proteomics.

A simple network-based method is to use a database

of protein complexes and identify those complexes

that have a large overlap with the initial list of

detected proteins. A significance value can then be

calculated via generating randomized clusters of equal

size to the cluster. If significant, then the rest of the

proteins in the complex are postulated as likely to be

present. This method is also referred to as functional class

scoring [56].

More sophisticated methods that build on this principle

include Clique Enrichment Analysis (CEA) [57], Maxlink

[58], shortest-path analysis [59] and the method of Goh

et al. [60] (which we call Proteomics Expansion Pipeline

(PEP) here). Regardless of the methods used, they

are all a form of ‘‘guilt by association’’. Hence, the list of

recovered proteins should be validated using some

additional evidence. The most direct evidence is by

returning to the original mass spectra to verify the

quality of the corresponding y- and b-ion assignments [60].

Proteins with low copy numbers and high cellular

turnover such as transcription factors and some protein

kinases may still not be located through retrospective

assessment of the original MS/MS data. Therefore,

other validation methods such as immunological

assays may be used on interesting targets. A less direct

evidence is to check whether these recovered proteins are

annotated to a list of GO terms that are enriched in the

initial list of high-confidence proteins [58]. Another indirect

evidence is using databases of gene expression profiles – e.g.

Human Protein Atlas [61] – to check whether these recov-

ered proteins show a pattern of differential expression

between relevant disease samples and normal samples that

is similar to that shown by the initial list of high-confidence

proteins [58].

5.1 CEA

The simple network-based method suggested earlier is to

shortlist non-confidence proteins in protein complexes that

contain many high-confidence proteins. However, the

number of known protein complexes available in protein

complex databases such as CORUM [46] is still small. So,

one should supplement them with predicted protein

complexes and functional modules.

An example that pursues this route is the CEA proposed

by Li et al. [57]. CEA generates cliques – that is, fully

connected subnetworks – from a PPIN. Those cliques that

are enriched with high-confidence proteins are considered

detected. Non-confident proteins in these cliques are thus

rescued. The use of cliques from PPINs is reasonable

because cliques in a PPIN often correspond to proteins at

the core of complexes [62].

5.2 PEP

About 70–80% of proteins share at least one biological

process or function with their interaction partners in PPINs

and GINs [63]. A protein is also often observed to participate

in a biological process or function that is over-represented in

its interaction partners [64, 65]. More generally, proteins that

are connected or proximal within a biological network often

form a functional unit [66]. On the basis of these observa-

tions, many algorithms have been developed for predicting

protein complexes and functional modules from PPINs and

GINs – e.g. MCL [67], MCODE [62], RNSC [68], CFinder [69,

70], PCP [71] and CMC [72]. These more powerful algo-

rithms can be used in place of clique finding in CEA.

A more recent method that uses a powerful protein

complex prediction algorithm is that proposed by Goh et al.

[60]. We call this method the PEP. PEP first identifies the

group of high-confidence proteins from the proteomic

screen. It then maps these proteins to nodes in a large

integrated PPIN. Next, it generates an expanded subnetwork

by taking the immediate neighbors of these seeds in the

PPIN. The subnetwork is then clustered using CFinder [69],

which overlaps closely related cliques. Each cluster is then

ranked based on the average expression value of the proteins

it contains. Proteins (in high-ranking clusters) not found in

the proteomics screen are then screened against the original

mass spectra for evidence of existence.

A notable aspect of PEP is the PPIN that it uses. The

PPIN is one of the most comprehensive to date. It comprises

data from HPRD [41], BioGRID [39], IntAct [42] and DIP

[40], as well as data from the literature [73, 74]. While

combining PPINs improves coverage of the protein inter-

actome, it may also compound the noise present in them

[75]. PEP uses the iterated Czekanowski-Dice distance (CD-

distance) technique from CMC [72] to eliminate potential

noise edges from the integrated PPIN. Although the CD-

distance technique assesses the reliability of an edge in a
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PPIN purely based on the local topology of the edge, it is

very effective. In particular, while this method eliminates

about 50% of the edges from the integrated PPIN, it doubles

the level of functional and localization coherence in the

remaining edges in the PPIN.

5.3 Maxlink

PPINs have a fairly high level of false positives and false

negatives [75]. This has an impact on the sensitivity of clique

finding and other protein complex prediction algorithms

mentioned earlier. For example, a single missing edge in the

PPIN is sufficient to exclude a protein from a clique in

clique finding.

To achieve greater sensitivity, rather than requiring an

entire protein complex to be predicted before testing for

enrichment in high-confidence proteins, one can test for a

more relaxed condition. In particular, one can instead test

whether a protein is likely to be part of the same complex

with a group of already known high-confidence proteins,

without requiring knowing what the other proteins in the

complex are.

Maxlink is a method for identifying cancer genes intro-

duced by Ostlund et al. [58]. Although not explicitly tested

on proteomics data, it can be considered as an example that

follows this more relaxed route. Maxlink first requires the

identification of a set of high-confidence seeds. It then

generates, scores and ranks a list of new candidates based on

the number of links in FunCoup [76] (which is a PPIN

database) to the seed set. The more the number of connec-

tions to seeds, and the less the number of connections to

non-seeds, the higher the score. This approach is justified

because a protein is often observed to participate in the

same biological process, biological function or protein

complex that is over-represented in its interaction partners

[64, 65]. Moreover, proteins in the same complex are

thought to have more interactions between themselves than

with proteins outside the complex [77].

5.4 Shortest-path network analysis

In a related approach, Managbanag et al. [59] proposed

using shortest paths to recover genes that lie between two

high-confidence seeds. In their study, they first define a set

of seeds previously reported to be associated with the disease

in question. They then extract a shortest-path composite

network from PATHWAY STUDIO 5.0, a commercial PPIN

database and software suite [78].

This approach is based on the hypothesis that proteins

connecting pairs of other proteins with a well-defined

biological function have a higher probability to share that

function than randomly selected proteins [79]. This

hypothesis is partially justified by the observation that most

proteins share at least one function with their interaction

partners [63] in a PPIN and thus transitively with the part-

ners of these partners [80]. However, the longer a (shortest)

path gets, the more false positives it inevitably contains [81].

6 Improving consistency using biological
networks

Quantitative comparison of samples is central to proteo-

mics. However, biomarkers identified in one batch are quite

often not consistent and not reproducible in another batch

of samples. This is likely due to (i) the noise and coverage of

the proteome at the level of individual samples and (ii)

limitation of current statistical techniques as a result of

insufficient sample size.

In order to qualitatively improve the statistical power of

proteomic analysis methods and the reliability of the results,

additional dimensions present in the problem have to be

brought into consideration. In particular, current paradigms

suggest that protein interactions constitute a major part of

all cellular processes. The extent of interactions between

proteins denotes shared functionality [82], complex or sub-

module participation [83] and/or co-expression [84]. In the

case of metabolic and biochemical relationships, extensive

validation studies have established with higher confidence

relationships between proteins in a pathway; and it is

reasonable to postulate shared functionalities between such

proteins even though, in pathways, an edge can mean

different things such as regulation or signaling. Thus, a

comparative proteomic profile analysis that incorporates

such information from biological networks, as suggested

earlier, is useful in identifying results that are more

consistent, more reproducible and more biologically

coherent.

An analogous situation exists in gene expression profile

analysis. Many approaches [85–87] have been proposed for

identifying differentially expressed genes useful for diag-

nosis of diseases and prognosis of treatment response.

However, these methods often produce gene lists that are

inconsistent when they are applied to different data sets of

the same disease phenotypes [88]. For example, for a pair of

data sets involving prostate cancer [89, 90], Zhang et al. [91]

show that the two lists of significant genes identified by

running SAM [87] independently on the two data sets have a

low overlap of 30% in their top 10 genes and an even lower

15% overlap in their top 100 genes. In order to overcome the

uncertainty in the reliability of the selected genes, over the

years, the gene expression analysis community has devel-

oped powerful methods that analyze gene expression

profiles with respect to biological networks. Although gene

expression (DNA and RNA) does not always directly corre-

late with protein expression [92], gene co-expression is

something proven at the protein level, especially when it

comes to an induction of a particular function [93]. Hence,

some of these methods from the gene expression commu-

nity can be adapted for proteomic profile analysis.
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In the following subsections, we briefly introduce three

types of approaches – viz., overlap analysis, direct group

analysis and network-based analysis – for identifying

significant pathways from the gene expression analysis

community. We also briefly describe approaches for identi-

fying and characterizing significant novel protein clusters.

6.1 Overlap analysis

Overlap analysis methods are well known. A list of differ-

entially expressed genes or proteins is first determined. This

list is then intersected with each biological pathway (usually

a protein complex, MN or RN) in a database. The statistical

significance of the overlap is computed using, e.g., the

hypergeometric test. The subsets of differentially expressed

genes that have a statistically significant intersection with a

pathway are declared candidate biomarkers. ORA [94] is a

representative of overlap analysis methods.

These methods have a shortcoming in that they are

sensitive to the thresholds used in determining the differ-

entially expressed genes or proteins.

6.2 Direct group analysis

Direct group analysis methods work on a different principle

to avoid the shortcoming above. In direct group analysis,

each reference biological pathway (usually an MN, RN or

protein complex) is checked to establish whether the path-

way is differentially expressed as a whole. This is achieved

by comparing the distributions of expression values of genes

and proteins on the pathway with the distributions of

expression values of all the other genes and proteins, e.g. by

a weighted Kolmogorov–Smirnov test. FCS [95] and GSEA

[96] are examples of the direct group analysis methods.

These methods are able to detect more subtle changes in

gene and protein expression profiles. For example, if the

majority of genes and proteins on the biological pathway

have small but correlated expression level changes, then

they can still result in a high statistical significance of the

biological pathway under a direct group analysis method.

Nevertheless, direct group analysis methods have a key

shortcoming in that they work on a whole-pathway basis.

Thus, they are unable to declare a large pathway to be

significant when only a small subnetwork within that

pathway is truly responsible for the disease phenotype.

6.3 Network-based analysis

Network-based analysis methods [52–55, 97] are newer

developments in gene expression analysis. The advantage of

these methods is that, rather than using pathways as a

whole, they identify subnetworks that are significantly

differentially expressed. Although gene expression (DNA

and RNA) is known not to correlate directly with protein

expression, the concepts behind these network-based tech-

niques are applicable to proteomics profile analysis.

An early example of these network-based methods is

NEA [55]. NEA extracts from each biological pathway

(usually an MN, RN or PPIN) a set of subnetworks, by

treating each regulator in a pathway and all its direct targets

in the pathway as a separate group. Each such subnetwork is

then tested – using a direct group analysis method like FCS

or GSEA – to see whether the genes and proteins in the

subnetwork are differentially expressed as a whole. A

significant subnetwork potentially provides a more precise

hypothesis that explains the disease phenotype than an

entire pathway. A shortcoming of NEA is that it tends to

produce small subnetworks as each subnetwork comprises

only a regulator and its immediate regulatees.

The latest addition to this family of methods is SNet [97],

which is able to find larger subnetworks than NEA. SNet

first maps the genes or proteins that are highly expressed in

most samples of the disease phenotype in question to

biological pathways (usually MNs, RNs or PPINs). It then

discards other genes and proteins in these pathways and

networks, causing these pathways to fragment into separate

subnetworks. The subnetworks are scored against the

disease cases and the controls. Those subnetworks showing

a significant difference in scores between cases and controls

are declared significant. Experiments have shown that SNet

produces subnetworks that are both much more substantial

in size and much more consistent cross independent data

sets of the same disease phenotypes than other methods

[97]. A disadvantage of SNet in the proteomics context –

compared with NEA, FCS, GSEA, etc. – is that it requires

the subnetworks to be scored against individual samples;

thus it may not be straightforward to adapt SNet for situa-

tions where samples are pooled.

6.4 Identifying and characterizing novel protein

clusters

The methods mentioned earlier – viz., ORA, FCS, GSEA,

NEA, SNet, etc. – are dependent on both the quality and

comprehensiveness of the reference pathway databases.

Hence, they cannot yield good result if the underlying cause

of the disease phenotype is a novel functional module or

pathway. So, they need to be complemented by methods for

identifying and characterizing novel functional modules.

A simple approach for identifying novel functional

modules is to first map the differentially expressed proteins

to a PPIN. Then, a protein complex prediction method is

run on the mapped portion of the PPIN to produce a list of

predicted protein clusters, each comprising some subsets of

the differentially expressed proteins. These protein clusters

are potentially novel protein complexes and functional

modules. After that, these predicted protein clusters are

characterized using some form of GO term analysis.
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For the protein complex prediction step, there is no

dearth of methods. A detailed review covering newer

methods can be found in [98]. So, we just briefly describe a

few easily accessible methods here. CFinder is based on the

clique percolation method described by Palla et al. [69]. It

relaxes the constraint on cluster definition by first identify-

ing cliques and then scoring those that overlap using a

standard component analysis procedure. MoNet is an

implementation of the Girvan–Newman method based on

betweenness centrality [99]. MCL is based on the Markov

clustering method [67]. CMC works by generating maximal

cliques from the cleansed network and then merges or

removes highly overlapping cliques based on their inter-

connectivity [72].

For the GO term analysis step, it is often performed

using tools based on the hypergeometric test. Examples

include GO East [100] and GO Term Finder [101]. These

tools essentially test predicted protein clusters against the

reference protein sets defined by GO terms. If a predicted

protein cluster is enriched in some GO terms, the proteins

in the cluster can be considered to consistently show a

function described by these GO terms. However, many

times, given the incompleteness of GO annotations and the

complexity of the GO tree structure, the returned GO term

lists can be perplexing and difficult to analyze. Many

significant GO terms may also be returned; this creates a

misleading picture that the cluster is heterogeneous when,

in fact, many of the returned GO terms could be closely

related.

There are other methods that can improve the resolution

of GO analysis. The two simplest are the parent–child

method [102] and the intuitive ‘‘informative GO term’’

method [103].

The parent–child method proposed by Grossmann

et al. [102] modifies the hypergeometric test statistics.

Instead of the standard hypergeometric distribution, they

propose using

Pðst ¼ kjspaðtÞ ¼ npaðtÞÞ ¼ mt

k

� �
mpaðtÞ �mt

npaðtÞ � k

� �
=

mpaðtÞ
npaðtÞ

� �

ð1Þ
where t is the GO term that we need to establish whether it

is enriched in the predicted protein cluster; mt is the

number of proteins in the GO database that are annotated to

t; mpa(t) is the number of proteins in the GO database that

are annotated to the parent terms of t; and npa(t) is the

number of proteins in the predicted protein cluster that are

annotated to the parent terms of t. This approach reduces

the dependencies between individual term’s measurements

and avoids producing false positives due to inheritance

problems [102], thereby increasing the stringency for

significance reporting.

The ‘‘informative GO terms’’ method decreases the

number of terms reported by introducing a threshold on the

GO tree itself. Only terms that are annotated to at least 30

genes, and each of whose direct child has no more than 30

genes, are considered informative. This way, each GO term

considered is at the finest resolution possible while being

annotated to a sufficiently large number of proteins for a

valid analysis [66]. This also has the effect of reducing

redundancy on GO terms reported as a whole [103].

7 Use of biological networks: What to
watch out for

The use of biological network databases for improving

proteomics analysis is very promising. Nevertheless, we

should be aware of a number of caveats, especially with

respect to the reliability and completeness of these data-

bases.

7.1 Reliability of PPINs

The databases of PPINs and GINs have grown rapidly in

size over the years, with improved methodologies in testing

protein interactions; see Fig. 1. The prominent PPIN and

GIN databases include HPRD, BioGRID, MINT, IntAct,

STRING and DIP; see Table 1 for details. It should be noted

that STRING corresponds more to protein functional asso-

ciations than to physical protein interactions.

In spite of the growth of PPIN databases, it is difficult to

ascertain quality. In fact, given high false-positive rates in

Y2H and other binding experiments, up to 70% of the

reported edges may be false [104]. Mark Vidal and

co-workers tried producing higher quality all-against-all

experimental data [73, 74], by testing all possible protein

pairs in their data set using Y2H. However, these data sets

are a select subset of the entire proteome, and are not

reflective of the whole PPIN. It also does not eliminate false

positives reported by Y2H.
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Figure 1. Growth of BioGrid from 2006 to current. All data points

are taken in July except in 2011 (taken in April). While the growth

in human protein interaction has been steady, it does not

significantly contribute to the large growth in recent years. This

is in part due to the incorporation of new species and data from

other model organisms.
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Using a poor-quality PPIN is likely to skew analytical

outcome. Network coverage needs to be sufficiently exten-

sive in order to enhance resolution. In recent works, it is

common to merge data sets across various sources [57, 105].

However, simple integration may lead to compounded

errors for which confidence is not certain due to different or

poorly defined study parameters.

A walk around this problem, as demonstrated by Bossi

and Lehner [105], is to repeat the analysis on two networks

and check for consistency. The first is a lower confidence

construct using edges supported by at least one publication

source. The second is a higher confidence construct using

edges supported by at least two publications. However,

experiment-based filtering is biased, and two papers utiliz-

ing the same flawed technique may also give rise to the

same erroneous result. Hence, more robust methods for

evaluating the network quality are needed.

A good way to assess the reliability of an edge in a PPIN

is based on GO term coherence. That is, we check whether

the two proteins connected by that edge are annotated to an

informative GO term in common [106]. The overall relia-

bility of a PPIN can in turn be assessed based on the fraction

of its edges that have coherent GO term annotations. This

approach is reasonable because two interacting proteins

should be in the same cellular compartment (i.e. share an

informative CC term) and participate in the same biological

function or process (i.e. share an informative MF or BP

term) [80, 107]. Limitations of this method include incom-

plete GO term annotation, unresolved bona fide localization

of proteins, and the dynamic distribution of proteins in

different physiological states.

Another way to assess the reliability of an edge in a PPIN

is based on the hypothesis that if two proteins interact, it is

also likely that they share common neighbors in the PPIN.

This hypothesis follows naturally from the more funda-

mental postulate that proteins usually function as a group.

One early example of this ‘‘topological’’ approach is given by

the CD-distance, which is calculated as the number of

interaction partners shared between two proteins divided by

the set of interaction partners of both proteins [72]. Other

examples are surveyed in [106]. Since topological cleaning

approaches rely on network intra-connectivity, they do not

perform well on sparse networks. It is possible that

improvements could be achieved via manifold embedding

[108], or homologous transfer of edges [109].

A harder problem to resolve is the false negative problem

– viz., true interactions that are not reported. Chua and

Wong [106] and Shoemaker and Pachenko [110] provided

detailed reviews on approaches for predicting novel

protein–protein interactions, including protein primary

structures and associated physicochemical properties [111],

interacting domains [112], interacting motifs [113], gene-

fusion events [114], coevolution of proteins or residues [115]

and the topology of PPINs [116].

7.2 Completeness of biological pathway databases

The databases of MNs and RNs can be considered as more

reliable than PPIN and GIN data sets due to higher levels of

curation and experimental evidence. In today’s research

landscape, the major ones include single-lab curation efforts

(KEGG, BioCyc), collaborating labs (WikiPathways, Reac-

tome) and commercially compiled databases (Ingenuitys,

NetProTM), as well as integrative databases that merge

information from other databases. The details of these

databases are given in Table 2.

It was a surprising revelation that none of the pathway

databases proved comprehensive in terms of coverage. For

example, comparison of human apoptosis pathway in

humans between Ingenuitys Knowledge Base, KEGG and

WikiPathways showed only a small 32–46% gene overlap

and an even more alarming 11–16% edge overlap.

Soh et al. [37] demonstrated the difficulties associated

with integrating pathway databases. Merging pathways via

gene or reaction overlap proved inefficacious: A low

threshold resulted in many false positives while too high

produced many false negatives. Combining pathways via

longest common substring match in pathway names

(longest common substring, LCS) turned out to be

a good compromise. However, Goh et al. [60] found that

some redundancies still persist within and between

databases during functional analyses. This suggests

limitations in LCS that could be further improved and built

upon in future works. Since pathway edges have been

verified by expert knowledge and experimental verification,

they likely have low false-positive rates. Hence, in combin-

ing same pathways across different databases, it is accep-

table to simply take the union of their genes, proteins and

reactions.
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Table 1. Databases of protein–protein interaction networks

Database # Nodes, # edges URL Build focus References

BioGRID 10k, 40k http://thebiogrid.org Literature [39]
DIP 2.6k, 3.3k http://dip.doe-mbi.ucla.edu Literature [40]
HPRD 30k, 40k http://www.hprd.org Literature [41]
IntAct 56k, 267k http://www.ebi.ac.uk/intact Literature [42]
MINT 30k, 90k http://mint.bio.uniroma2.it/mint Literature [43]
STRING 5200k, ? http://string-db.org Literature, prediction [44]
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Integration problems aside, there are specific problems

associated with different pathway databases that still prove a

challenge to resolve fully. For example, WikiPathways lack a

stable and useful API. Extracting data from the coordinate-

based XML file is also rather challenging. In Ingenuitys

Knowledge Base, only image-based maps can be retrieved.

In previous efforts, we used manual curation to extract the

data. But this is inefficient and non-scalable if we need to

expand coverage to other species.

8 Final remarks

The use of biological networks is an extremely powerful tool

for enhancing proteomics analysis. Although protein clus-

ters and metabolic pathways are topologically different, they

should yield complementary results that can augment the

functional characterization of the proteome.

Data quality is paramount in determining the resolution

and power of analysis. Due to different coverages of various

databases, it is advisable to use all available information for

network construction. A caveat is that quality of information

should also be checked. This can be performed by using

measures such as GO term coherence, or topology-based

edge scoring methods such as CD-distance.

Pathway databases are fragmented, and merging such

information is harder than in PPINs. Although we addres-

sed some of the inherent problems, more work remains to

be done in ensuring higher quality data extraction and

merging.

Another point to address is on expansion of the

proteome. Given the fragmented nature of the recovered

proteins, they usually give rise to a relatively sparse network.

Shortest distance approaches, or identification of whether

the differential protein belongs to a clique, followed by

recovery of lower confidence proteins can help to alleviate

the problem of data wastage. It can also better capture

information about function based on clusters, rather than

average function based solely on differential proteins.
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