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Identifying reproducible yet relevant features is a major challenge in biological research. This is

well documented in genomics data. Using a proposed set of three reliability benchmarks, we ¯nd

that this issue exists also in proteomics for commonly used feature-selection methods, e.g. t-test
and recursive feature elimination. Moreover, due to high test variability, selecting the top

proteins based on p-value ranks ��� even when restricted to high-abundance proteins ��� does

not improve reproducibility. Statistical testing based on networks are believed to be more

robust, but this does not always hold true: The commonly used hypergeometric enrichment that
tests for enrichment of protein subnets performs abysmally due to its dependence on unstable

protein pre-selection steps. We demonstrate here for the ¯rst time the utility of a novel suite of

network-based algorithms called ranked-based network algorithms (RBNAs) on proteomics.
These have originally been introduced and tested extensively on genomics data. We show here

that they are highly stable, reproducible and select relevant features when applied to proteomics

data. It is also evident from these results that use of statistical feature testing on protein

expression data should be executed with due caution. Careless use of networks does not resolve
poor-performance issues, and can even mislead. We recommend augmenting statistical feature-

selection methods with concurrent analysis on stability and reproducibility to improve the

quality of the selected features prior to experimental validation.
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1. Introduction

Next-generation mass spectrometry (MS)-based proteomics is indispensable to

current biological and clinical research.1 It is the primary means of observing
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protein changes relating to the phenotype and, thus, provides direct information on

druggable targets or biomarkers. Recent proteomic advancements have led to

brute-force acquisition approaches such as the new data-independent acquisition

(DIA) and high-resolution data-dependent acquisition (DDA) paradigms, which

yield more complete datasets.2,3 However, noise and proteome-coverage issues

remain prevalent.

A common application in biostatistical analysis is to compare and identify which

variables are strongly discriminative between two groups. This process is known as

feature selection. In proteomics, the measured variables (or features) are the proteins

and their measured expression levels. Discriminative proteins may be causal or

merely correlated to the di®erences between the groups in a particular dataset.

Discriminative proteins that are causal are useful for building predictive models that

may be used for diagnostics and prognostics. However, irrelevant proteins that are

merely correlated would exhibit poor generalizability, and are of no practical value in

real settings. Unfortunately, given current feature-selection approaches, they are not

easy to tell apart from each other. Also, ranking by p-values and taking the top n%

features does not guarantee signatures of better quality.4 Amongst the most popular

feature-selection methods at the level of individual proteins (e.g. t-test, SAM,5 and

DESEQ,6 no approach strongly outperforms the others with respect to e®ect size,

proportion size (i.e., how large one sample class is over the other) and in°uence on

the false-discovery rate (FDR).7

Networks can be combined with proteomics synergistically.8–13 to overcome its

idiosyncratic coverage and consistency issues.14,15 They can also be adapted for

feature selection (where features are subnets or complexes instead of individual

proteins) with high stability; i.e. similar features are selected given any random

subsampling of the original data.16 Recent advances in network-based approaches

have led to the development of a new class of methods, rank-based network algo-

rithms (RBNAs), which have been extensively tested on genomics data and shown to

be extremely powerful for identi¯cation of relevant subnets, producing unparalleled

prediction reliability and reproducibility.17,18 RBNAs include SNET (SubNET-

works).18 and its successors, FSNET (Fuzzy SNET) and PFSNET (Paired

FSNET).17 As they have never been studied in the context of proteomics (as high-

quality proteomics datasets of su±cient sample sizes have only become recently

available), it is useful (for users) to know how well they fare, and how much better

relative to conventional approaches.

This case-study paper also illustrates the importance of incorporating other

means of evaluating feature-selection stability and relevance as alternative indica-

tors in addition to the statistical p-value. For real data, we introduce a set of three

benchmarking approaches here. While networks are potentially powerful approa-

ches, we do not think they are all born equal as some underlying assumptions or

algorithm design may be °awed. Hence, in addition to protein features, we also

consider a multitude of network approaches that select subnets/protein complexes

as features.
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2. Material and Methods

2.1. Simulated proteomics data ��� D1.2 and D2.2

Two simulated datasets from the study of Langley and Mayr7 is used. D.1.2 is from

LC-MS/MS study of proteomic changes resulting from addition of exogenous matrix

metallopeptidase (3 control, 3 test). D2.2 is from a study of hibernating arctic

squirrels (4 control, 4 test). Quantitation in both studies is based on spectral counts.

For both D1.2 and D2.2, 100 simulated datasets each with 20% randomly gen-

erated signi¯cant features are used. For D1.2 and D2.2, this works out as 177 and 710

signi¯cant proteins, respectively. E®ect size of these 20% features is not even as they

are randomly generated from one out of ¯ve possibilities or p (20%, 50%, 80%, 100%,

and 200%) and is expressed as:

SCi;j ¼ SCi;j � ð1þ pÞ; ð1Þ
where SCi;j is the simulated spectral count from the jth sample of protein i.

2.2. Proteomics dataset 1 based on DDA ��� colorectal cancer

The colorectal cancer (CR) study contains 90 CR samples derived through the

TCGA Biospecimen Core Resource (BCR).19 30 normal (non-matched) samples are

obtained from screening colonoscopies.

To ensure data quality: For every ¯ve CR samples, benchmark quality

controls (QCs) from one basal and one luminal human breast tumor xenograft are

analyzed. Both standard search (Myrimatch v2.1.87) and spectral search (Pepitome)

were used. Peptide identi¯cation stringency is set at FDR of 2% for higher sensi-

tivity. For protein assembly, a minimum of two unique peptides per protein is es-

sential for a positive identi¯cation (3899 proteins with a protein-level FDR of 0.43%).

To limit data holes, only proteins supported by 95% of samples are kept (3609

proteins).

Proteins are quanti¯ed via spectral count, which is the total number of MS/MS

spectra acquired for peptides from a given protein.

2.3. Proteomics dataset 2 based on DIA ��� renal cancer

For the second case study, a SWATH-derived renal cancer (RC) dataset is used.20

This contains 12 normal and cancer samples which have been captured in duplicates.

Here, we opt to analyze the technical duplicates together: If technical noise is

present, it will impede the ability of less-robust feature-selection methods to con-

sistently select the same features anyway.

All spectral maps are analyzed using OpenSWATH21 against a spectral library

containing 49,959 reference spectra for 41,542 proteotypic peptides from 4624

reviewed SwissProt proteins.20 The library is compiled using DDA data of the kidney

tissues in the same mass spectrometer. Protein isoforms and protein groups are

excluded.
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In the original dataset, 2375 proteins are quanti¯ed across all samples with a

precursor FDR below 0.1% and 32% sparsity. The high level of sparseness is likely

due to higher noise and poorer alignments between features. To improve consistency

in the data, we relax the retention time (RT) alignment criteria using transition of

identi¯cation con¯dence (TRIC) (version r238) where we allow a wider maximal

RT di®erence (max RT ¼ 30) but set the precursor FDR to 0.001% to limit false

matches. The two most intense peptides are used to quantify proteins. Finally,

protein FDR is set to 1% with 3123 reported proteins.

2.4. Reference complexome

For network-based feature-selection methods, the features are subnets/complexes.

Currently, the gold-standard protein-complex dataset is the CORUM database,

which contains manually annotated protein complexes from mammalian organ-

isms.22 In earlier studies, real complexes are demonstrated to be superior to predicted

ones from protein-interaction networks23; so we use real complexes.

2.5. Two-sample t-test of single proteins

As a control, the two-sample t-test for selection of single proteins (SP) is performed.

Brie°y, a t-statistic (Tp) and its corresponding nominal p-value are calculated for

each protein p by comparing the expression scores between classes C1 and C2, with

the assumption of unequal variance between the two classes24:

Tp ¼
�x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
1

n1
þ s 2

2

n2

q ; ð2Þ

where �xj is the mean expression level of the protein p, sj is the standard deviation,

and nj is the sample size, in class Cj.

2.6. Hypergeometric enrichment

The hypergeometric enrichment (HE) is a frequently used form of subnet evaluation

and consists of two steps9: First, di®erential proteins are identi¯ed using the two-

sample t-test. This is followed by a hypergeometric test where given a total of N

proteins (with B of these belonging to a complex) and n test-set proteins (i.e. dif-

ferential proteins), the exact probability that b or more proteins from the test set are

associated by chance with the complex is given by:

pðX � bÞ ¼
Xminðn;BÞ

i¼b

n

i

� �
N�n

B�i

� �

N

B

� � : ð3Þ

The sum P ðX � bÞ is the p-value of the hypergeometric test.
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2.7. SNET/FSNET/PFSNET

The RBNAs (SNET, FSNET, and PFSNET) are in principle, improvements on top

of each other. Implementations of these RBNAs are available at http://www.comp.

nus.edu.sg/� wongls/projects/drug-pathway/pfsnet-v2.zip.

We begin with a description of SNET: Given a protein gi and a tissue pk,

let fsðgi; pkÞ ¼ 1, if the protein gi is among the top alpha percent (default ¼ 10%)

most-abundant proteins in the tissue pk; and ¼ 0 otherwise. Given a protein gi and a

class of tissues Cj, let

�ðgi;CjÞ ¼
X
pk�cj

fsðgi; pkÞ
jCjj

: ð4Þ

That is, �ðgi;CjÞ is the proportion of tissues in Cj that have gi among their top alpha

percent most-abundant proteins.

Let score(S; pk;Cj) be the score of a protein complex S and a tissue pk weighted

based on the class Cj. It is de¯ned as:

scoreðS; pk;CjÞ ¼
X
gi2S

fsðgi; pkÞ � �ðgi;CjÞ: ð5Þ

The function fSNET ðS;X;Y ;CjÞ for some complex S is a t-statistic de¯ned as:

fSNETðS;X;Y ;CjÞ ¼
meanðS;X;CjÞ �meanðS;Y ;CjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðS;X;CjÞ
jXj þ varðS;Y ;CjÞ

jY j

q ; ð6Þ

where mean(S,#,Cj) and var(S,#,Cj) are respectively the mean and variance of the

list of scores fscore(S,pk,CjÞjpk is a tissue in #g.
The complex S is considered di®erential (weighted based on Cj) in X but not in

Y if fSNETðS,X,Y ,Cj) is at the largest 5% extreme of the Student t-distribution,

with degrees of freedom determined by the Welch–Satterwaite equation.

Given two classes C1 and C2, the set of signi¯cant protein complexes returned

by SNET is the union of fSjfSNETðS,C1,C2,C1) is signi¯cantg and fSjfSNETðS,C2,

C1,C2) is signi¯cantg; the former being complexes that are signi¯cantly consistently

highly abundant in C1 but not C2, the latter being complexes that are signi¯cantly

consistently highly abundant in C2 but not C1.

FSNET is identical to SNET, except in one regard:

For FSNET, the de¯nition of the function fsðgi; pk) is replaced such that fs(gi,pkÞ
is assigned a value between 1 and 0 as follows: fsðgi; pk) is assigned the value 1 if gi is

among the top alpha1 percent (default ¼ 10%) of the most-abundant proteins in pk.

It is assigned the value 0 if gi is not among the top alpha2 percent (default ¼ 20%)

most-abundant proteins in pk. The range between alpha1 percent and alpha2 percent

is divided into n equal-sized bins (default n ¼ 4), and fs(gi; pk) is assigned the value

0.8, 0.6, 0.4, or 0.2 depending on which bin gi falls into pk.
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A test statistic fFSNET is then de¯ned analogously to fSNET. Given two classes C1

and C2, the set of signi¯cant complexes returned by FSNET is the union of

fSjfFSNETðS;C1,C2,C1Þ is signi¯cantg and fSjfFSNETðS,C2,C1,C2) is signi¯cantg.
For PFSNet, the same fsðgi; pk) function as in FSNet is used. But it de¯nes a score

delta(S; pk;X;Y ) for a complex S and tissue pk with respect to classesX and Y as the

di®erence of the score of S and tissue pk weighted based onX from the score of S and

tissue pk weighted based on Y . More precisely: delta(S; pk;X;Y Þ ¼ score(S; pk;XÞ –
score(S; pk;Y Þ.

If a complex S is irrelevant to the di®erence between classesX and Y , the value of

delta(S; pk;X;Y ) is expected to be around 0. So PFSNet de¯nes the following one-

sample t-statistic:

fPFSENTðS;X;Y ;ZÞ ¼ meanðS;X;Y ;ZÞ
seðS;X;Y ;ZÞ ; ð7Þ

where mean(S;X;Y ;Z) and se(S;X;Y ;Z) are respectively the mean and

standard error of the list fdelta(S; pk;X;Y Þjpk is a tissue in Zg. The complex S is

considered signi¯cantly consistently highly abundant in X but not in Y if

fPFSNet(S;X;Y ;X [ Y ) is at the largest 5% extreme of the Student t-distribution.

Given two classes C1 and C2, the set of signi¯cant complexes returned by

PFSNet is the union of fSjfPFSNet(S;C1;C2;C1 [ C2Þ is signi¯cantg and

fSjfPFSNet(S;C2;C1;C1 [ C2Þ is signi¯cantg; the former being complexes that are

signi¯cantly consistently highly abundant in C1 but not C2, and vice versa.

2.8. Recursive feature elimination

Recursive feature elimination (RFE) is another popular feature-selection method and

it follows a di®erent paradigm (viz machine learning) from t-test.25 In RFE, a ma-

chine-learning approach (e.g. support vector machines (SVMs), Naïve Bayes, or

random forest (RF)) is used to build a classi¯er ¯rst. This is followed by iteratively

eliminating features having the least impact on accuracy. This allows the features to

be ranked and selected based on their overall impact on model accuracy.

We used the R module \caret" to perform RFE.26 The machine-learning approach

we used here is the popular ensemble method, RF.27 Model accuracy is evaluated

based on 10-fold cross-validation. Two feature-selection thresholds are used: The

minimum number of features required to reach 100% model accuracy (designated

RFE in our tests) and the top 500 features to match approximately the number of

proteins selected in PFSNET (designated RFE500).

2.9. Performance benchmarks (simulations)

There is no universally accepted standard for generating randomized data/com-

plexes for evaluating network-based feature-selection methods. Using D1.2 and 2.2,

we propose two related approaches: In the ¯rst, we randomly partition the di®er-

ential proteins into non-overlapping pseudo-complexes of sizes 6 to 7 (20 complexes)
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and 7 to 10 for D2.2 (101 complexes). An equal number of non-signi¯cant proteins

are randomly selected and partitioned into same number of pseudo-complexes. The

signi¯cant and non-signi¯cant pseudo-complexes are combined into a single complex

vector and evaluated.

To create a more realistic simulation, we can incorporate expression information

as a constraint. In this second approach, for both di®erential and non-di®erential

proteins, a Euclidean distance is calculated for all protein pairs across the samples.

These are then clustered via Ward's linkage. The proteins are then reordered such

that those with similar expression pattern are adjacent to each other. This reordered

list is then split at regular intervals to generate 20 and 101 complexes for D1.2 and

D2.2, respectively. The remaining steps are similar to the ¯rst method.

Since the signi¯cant and non-signi¯cant complexes are known a priori, we can

determine the distribution of precision and recall as well as the F-score across all

simulation datasets (see next section).

2.10. Performance benchmarks (real data)

To evaluate stability and relevance on real data (where the real di®erential features

are not known prior), we propose benchmarks based on three criteria: Precision/

recall, feature-selection stability, and normalized cross-validation prediction accu-

racy. These benchmarks are designed to evaluate reproducibility in the form of

sensitivity of a method to variations in the training set.28

Precision/recall ��� The set of signi¯cant complexes c, from each subsampling is

benchmarked against the total set of signi¯cant complexes, C, derived from an

analysis of the complete dataset. This makes the assumption that the complete

dataset is representative of the population. Thus, a completely precise method based

on a subsampling should report a subset c of C (c � CÞ as signi¯cant, and no more

(considered false positives). Similarly, perfect recall should report all complexes in C

as signi¯cant.

Precision and recall are de¯ned as:

precision ¼ TP

TPþ FP
;Recall ¼ TP

TPþ FN
; ð8Þ

where TP, FP, and FN are the True Positives, False Positives, and False Negatives,

respectively.

Precision and Recall can be combined using the harmonic mean. This is also

known as the F-score (FSÞ:

Fs ¼ 2 � Precision � Recall
Precisionþ Recall

: ð9Þ

Repeated subpopulation sampling provides insight into the variability and approx-

imation of precision/recall. However, a caveat is that it may mislead when a feature-

selection algorithm is unstable, as it is likely to return an entirely di®erent \gold

standard" set of features when applied on a di®erent dataset.

Evaluating feature-selection stability in next-generation proteomics
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Feature-selection stability ��� Random subsamplings is performed 1000 times to

generate a binary matrix, where rows and columns represent samplings and com-

plexes, respectively. A value of 1 denotes statistical signi¯cance and 0 otherwise.

To evaluate the stability of each complex, each column can be summed and

normalized by the number of subsamplings such that a value close to 1 indicates very

high stability. The distribution of the protein-complex stabilities provides an overall

indication of the stability of the feature-selection approach. For simplicity, the mean

of the complex stabilities denotes the feature-selection stability.

Normalized cross-validation accuracy ��� If the selected features are relevant,

then they should be able to correctly predict sample classes (e.g. normal versus

disease) from new data. In the absence of suitable independent data, cross-validation

is an, albeit less satisfying, alternative. In cross-validation, the data is split into

training and validation sets. Features selected from the training set are used to train

a machine-learning classi¯er (in this case, Naïve Bayes). The classi¯er is then pre-

sented with the validation set (of known class assignments), and a cross-validation

accuracy (CVAccuracy) determined,

CVAccuracy ¼ Number of correct class assignments

Total size of validation set
: ð10Þ

The CVAccuracy in itself is not particularly meaningful as random features may also

have predictive accuracy comparable to the selected features themselves.29 There-

fore, to determine whether CVAccuracy is meaningful, an equal number of random

features is used for retraining the Naïve Bayes classi¯er. This is repeated 1000 times

to generate a null distribution. Akin to Monte Carlo resampling statistics, the

CVAccuracy p-value is the number of times null accuracy � CVAccuracy divided by

1000.30

The normalized CVAccuracy considers both the CVAccuracy and its corre-

sponding p-value simultaneously. It is expressed as the ratio, CVAccuracy/p-value,

and is >> 1 if meaningful.

3. Results and Discussions

3.1. Network-based methods, especially RBNAs excelled

in the simulation studies

The original RBNA papers base their evaluations on subnet and gene agreements

between related real data where the true positive features are not known a priori.17,18

While subnet/gene agreements provide an indication of feature reproducibility, it is

not exactly a clear measure of feature-selection performance. As the preponderance

of false positives and negatives are not known, evaluation based on reproducibility is

a reasonable compromise. This unfortunately stems from a lack of gold-standard

simulation approaches for evaluating network-based approaches.

Here, we try two approaches that may be useful ��� the ¯rst generates pseudo-

complexes via random incorporation while the second utilizes expressional

W. W. B. Goh & L. Wong
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correlations (given that complex constituents are more likely to be co-expressed). It

turns out that regardless of simulation approach, the RBNAs ��� in particular,

PFSNET ��� excelled, especially at recall while maintaining reasonable precision

(Figs. 1 and 2). Moreover, the correlation-based simulation approach does not im-

mediately appear to be superior. These results are consistent both at the protein-

complex as well as the individual-protein level (Figs. 1 and 2; top and bottom rows).

As the RBNAs have never been evaluated based on simulation studies, these

results further demonstrate the power of this class of approaches. The high recall

performance is especially noteworthy, given that only the top 20–30% of proteins

across samples are actually being considered. In contrast, the standard t-test (SP) is

severely lacking in both precision and recall. For the hypergeometric test (HE), while

precision tends to be very high, its recall tends to be very poor. We expect that this

simulation tends to favor HE: All the incorporated proteins in the signi¯cant com-

plexes are di®erential; so we expect better intersection rates and hence, better

p-values. But this may be counteracted by the poor precision and recall of the t-test

step (which is the same as SP) prior to over-representation testing. In this regard, HE

appears to be a good means of ¯ltering false positives reported by the t-test: When

the complex is reported to be signi¯cant in HE, it is likely correct (high precision).

This is within expectation, and quite frequently why the hypergeometric test is used

as a post-hoc ¯lter following the t-test. However, its very low recall leaves room for

concern.

Fig. 1. F-score, precision, and recall distributions for simulated data D1.2. A/B and C/D show the F-score,
precision, and recall distributions across 100 simulated datasets based on the random pseudo-complex

generation method and correlations-based pseudo-complex generation method, respectively. The top row

(A/C) shows the distributions for HE and the RBNAs based on complexes while the bottom row (B/D)

show the same distributions in terms of the proteins embedded within the complexes. Note that SP does
not change in either row, as it does not utilize pseudo-complexes. The RBNAs, particularly PFSNET,

dominate, excelling in recall.
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The simulation studies provide a surprising glimpse into the ability of RBNAs to

recover signi¯cant features (subnets and complexes), as it only considers a small

subset of the di®erential proteins (based on the alpha ¯lters). It also reveals some

rather interesting aspects regarding the individual RBNAs. For SNET, FSNET, and

PFSNET, their precision is largely comparable, although PFSNET lags relatively in

this respect. However, PFSNET is far more sensitive, allowing it to achieve con-

siderably higher F-score than the other two.

Incorporation of correlations for pseudo-complex generation has subtle e®ects. It

appears to have consistent homogenizing e®ects on the RBNAs' accuracy, making

them closer to each other as well as elevating it slightly. It appears to have minimal

bene¯cial e®ects on HE (SP does not use the pseudo-complexes). We acknowledge

that this may not be the perfect way of generating pseudo-complexes, as these

pseudo-complexes may not be biologically coherent. However, if the di®erential

proteins are simply grouped together, then the RBNAs do a good job of identifying

these groups anyway. The proposed three benchmarks (e.g. feature-selection sta-

bility and CVAccuracy) for real data may also be performed on the simulated data,

but these require large numbers of resamplings, for which the simulated dataset is

unsuitable due to small n. Moreover, despite these promising results, simulation

studies do not capture true biological reality, hence it is essential, and more

important, to test on real data.

Fig. 2. F-score, precision, and recall distributions for simulated data D2.2. A/B and C/D show the F-score,

precision, and recall distributions across 100 simulated datasets based on the random pseudo-complex
generation method and correlations-based pseudo-complex generation method, respectively. The top row

(A/C) shows the distributions for HE and the RBNAs based on complexes while the bottom row (B/D)

show the same distributions in terms of the proteins embedded within the complexes. Note that SP does

not change in either row, as it does not utilize pseudo-complexes. As with Fig. 1, the RBNAs, particularly
PFSNET, dominate, excelling in recall.
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3.2. On real data, network-based approaches do not necessarily do better

Tables 1 and 2 summarize the performance of the three benchmarks across the

standard SP t-test, HE, and the RBNAs (SNET, FSNET, PFSNET) for the CR and

RC datasets, respectively. As a di®erent class of techniques, the results from RFE

with the RF are discussed in Sec. 3.7. Three resampling sizes (4, 6, and 8) are used to

Table 1. Summary score tables for CR. A. The individual and average of the F-scores across resamplings
of sizes 4 to 8. B. The individual and average of the feature-selection stability scores across resamplings of

sizes 4 to 8. C. The normalized CVAccuracy is the cross-validation accuracy (CV Accuracy) divided over

its accompanying p-value. Hence, it is meaningful when it is >> 1. D. Overall rank sums across the three

evaluation benchmarks. The smaller the rank sum, the better the performance. Here, PFSNET> FSNET
> SNET > SP > HE.

A

F-scores

Method/Sampli
ng size 4 6 8 Avg

SP 0.73 0.81 0.81 0.79
HE 0.11 0.17 0.17 0.15

SNET 0.65 0.76 0.76 0.72

FSNET 0.73 0.80 0.80 0.78
PFSNET 0.84 0.89 0.89 0.88

B

Feature-stability scores

Method/Sampli
ng size 4 6 8 Avg

SP 0.38 0.47 0.53 0.46
HE 0.04 0.07 0.09 0.07

SNET 0.45 0.56 0.61 0.54

FSNET 0.57 0.65 0.69 0.64

PFSNET 0.74 0.83 0.86 0.81

C

Method Number features CVaccuracy CV p-val CVAccuracy/CV pval

SP 2662 1.00 1.00 1.00

HE 570 0.75 1.00 1.00
SNET 130 0.98 0.61 1.61

FSNET 141 1.00 0.67 1.49

PFSNET 200 1.00 0.72 1.39

D

Method F-score Feature-stability CVaccuracy/CVp-val Total Ranks

SP 2 4 4.5 10.5

HE 5 5 4.5 14.5
SNET 4 3 1 8

FSNET 3 2 2 7

PFSNET 1 1 3 5
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simulate small to moderate data scenarios. In both CR and RC, SP has better

feature-selection reproducibility and stability than HE. However, they perform

similarly where normalized CVAccuracy is concerned. As with the observation of

Venet et al.,29 which is based on genomics, proteomic features selected by SP and HE

also do no better than randomly selected features. On the same benchmarks, the

RBNAs do extremely well and are highly ranked (Tables 1D and 2D). The network

Table 2. Summary score tables for RC. A. The individual and average of the F-scores across resam-

plings of sizes 4 to 8 B. The individual and average of the feature-selection stability scores across
resamplings of sizes 4 to 8 C. The normalized CVAccuracy is the cross-validation accuracy (CV

Accuracy) divided over its accompanying p-value. Hence, it is meaningful when it is >> 1 D. Overall

rank sums across the three evaluation benchmarks. The smaller the rank sum, the better the perfor-

mance. Here, as with CR (c.f. Table 1), PFSNET > FSNET > SNET > SP > HE.

A

F-scores

Method/Samplin

g size 4 6 8 Avg

SP 0.61 0.76 0.76 0.71

HE 0.19 0.36 0.47 0.34
SNET 0.46 0.77 0.77 0.67

FSNET 0.59 0.77 0.77 0.71

PFSNET 0.87 0.94 0.94 0.92

B

Feature-stability scores

Method/Samplin

g size 4 6 8 Avg

SP 0.27 0.36 0.44 0.36

HE 0.08 0.13 0.17 0.13
SNET 0.28 0.60 0.72 0.53

FSNET 0.36 0.52 0.63 0.50

PFSNET 0.79 0.92 0.95 0.88

C

Method Number features CVaccuracy CV p-val CV accuracy/pval

SP 1124 0.98 0.91 1.08

HE 162 0.98 0.91 1.08

SNET 21 0.84 0.06 14.00
FSNET 36 0.96 0.06 16.00

PFSNET 65 0.92 0.06 15.33

D

Method F-score Feature stability CVAccuracy/CV p-val Total ranks

SP 3 5 5 13

HE 6 6 5 17

SNET 5 3 4 12
FSNET 3 4 1 8

PFSNET 2 2 3 7
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features selected by RBNAs are also more relevant, with normalized CVAccuracy

consistently greater than 1 (Tables 1C and 2C).

It is important to also consider the distribution of the scores; hence we plotted the

global pairwise similarities of selected features (Figs. 3(a) and 4(a)) and the stabi-

lity of individual selected features (Figs. 3(b) and 4(b)). While SP bene¯ts from in-

creased sampling size, it is noteworthy that on the contrary, HE does not, further
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Fig. 3. Pairwise global similarity of selected features across random samplings and feature-selection sta-

bility for CR data. (a) Pairwise feature vector similarity across random samplings. All methods were
evaluated 1000 times on random subsets of sizes 4, 6, and 8. Simulations were compared pairwise for

reproducible features using the Jaccard Coe±cient (SP ��� standard protein-based t-test, HE ��� Hyper-

geometric Enrichment). (b) Feature-selection stability across 1000 simulations. Histograms show distri-

bution of feature-stability. Histograms with high density towards the right are more stable. Unlike SNET
and FSNET, PFSNET is very stable at small sample sizes (x-axis: feature stability scores, y-axis: fre-

quency), with the majority of features consistently reproducible across simulations.
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illustrating its innate instability. As with the improved performances observed

in genomic data,17,18 the more advanced RBNAs perform better, in particular

PFSNET.

On real data, SP appears to have good precision/recall (Tables 1A and 2A).

However, a closer inspection reveals this is an artifact due to an excessive number of

features reported as signi¯cant. SP's feature stability is low relative to the F-scores.

This con¯rms that the precision/recall of SP is in°ated ��� individual features are

highly unstable but because SP tends to report most features as signi¯cant (C), any
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Fig. 4. Pairwise global similarity of selected features across random samplings and feature-selection sta-
bility for RC data. (a) Pairwise feature vector similarity across random samplings. All methods were

evaluated 1000 times on random subsets of sizes 4, 6, and 8. Simulations were compared pairwise for

reproducible features using the Jaccard Coe±cient (SP ��� standard protein-based t-test, HE ��� Hyper-

geometric Enrichment). (b) Feature-selection stability across 1000 simulations. Histograms show distri-
bution of feature stability. Histograms with high density towards the right are more stable. Unlike SNET

and FSNET, PFSNET is very stable at small sample sizes (x-axis: feature stability scores, y-axis: fre-

quency), with the majority of features consistently reproducible across simulations.
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random resampling will generate a subset of C. Indeed, when the number of

SP-signi¯cant features is restricted to the top n most (where n ¼ number of unique

proteins in complexes selected by PFSNET), the precision/recall and feature-sta-

bility score of SP drop precipitously (discussed below).

Despite its common usage, HE's poor showing is not completely unexpected since

it uses the unstable t-test to pre-select di®erential protein features.4 HE's instability

implies that, in di®erent subsamplings, the pre-selected proteins tend to enrich dif-

ferent complexes. Thus the subsets of pre-selected proteins that correspond to

complexes are themselves unstable, and those pre-selected proteins that appear

stable mostly do not enrich protein complexes. This is suggestive that many of these

pre-selected proteins are biologically irrelevant. On the other hand, the corre-

sponding values between F-scores and feature-stability scores are well aligned

amongst the RBNAs (Tables 1A/B and 2A/B). PFSNET does particularly well in

this regard. The RBNAs also largely agree with each other where feature selection is

concerned (Fig. 5).

3.3. In proteomics, standard feature-selection approaches do no better

than random signatures

In genomics, at least for breast cancer outcome, it is observed that random gene

signatures do as well, if not better, in class prediction.29 This suggests that many of

(a) (b)

Fig. 5. Feature agreements between the RBNAs. (a) Signi¯cant feature overlaps for CR. (b) Signi¯cant
feature overlaps for RC. All RBNAs have good overlaps with each other.
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the selected features are merely correlated but not relevant to the phenotype. It is

hypothesized that networks may act as useful constraints in improving the signal-to-

noise ratio. Unfortunately, this cannot be naively assumed to be true.31

As with Venet et al.'s work on genomic signatures for breast cancer outcome,29 we

observe a similar phenomenon in proteomics (Tables 1C and 2C). By the CVAccu-

racy alone, it would appear that any method is good for class prediction. However,

the inferred CVAccuracy p-value tells a di®erent story. The traditional approaches,

SP and HE, do no better than random protein signatures.

To examine this issue further, we ¯nd that the CVAccuracy null distribution

generated from SP and HE is strongly biased (Fig. 6) ��� a small random selection of

any 10 features already gives very high CVAccuracy. It seems that this bias may

stem from the use of direct protein expression information as, in contrast, the

RBNAs score each complex based on weighted ranks. Conversion of expression in-
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formation into weighted rank sums appears to be rewarding, with substantially more

signi¯cant CVAccuracy p-values for the RBNAs. This ¯nding deepens recent

examination into ranks as more robust and unbiased than expression values32:

Simple rank conversion is insu±cient; network contextualization is still the key

factor for improved performance (see Sec. 3.6).

3.4. SP-based and hypergeometric-based enrichment (HE) are unsuitable

for clinical applications

The high variability of the t-test p-value is well described, particularly when sample

size is small.4,33 Thus, the poor performance of SP is expected. HE, on the other

hand, is commonly used as a salve to improve con¯dence in SP-selected proteins, by

taking advantage of the rich information in biological networks. HE's poor perfor-

mance therefore is less expected.

Comparisons of the protein expression distributions revealed no major di®erences

between the normal and cancer classes (Supplementary Figs. 1(a)/1(b)). Therefore,

expressional disparity cannot explain why half the proteins are signi¯cant given

the t-test.

We believe the benchmark statistics (e.g. F-score) generated for SP are in°ated

due to the high numbers of selected features but are not convinced that multiple

testing corrections, e.g. Bonferroni, can solve this. We adjust the p-value threshold to

restrict the number of allowed features in SP to the top 500 proteins (which would

approximate the number of corresponding proteins in PFSNET). With this restric-

tion, we observe a substantial drop in the proportion of stable features (Supple-

mentary Fig. 1(c)), which implies high rank °uctuations among selected features and

concomitant drop in pairwise feature similarity (Supplementary Fig. 1(d)).

The drastic drop in precision/recall (top 500 proteins) con¯rms that the perceived

stability and consistency produced by SP is an artifact due to feature in°ation

(Supplementary Fig. 1(e)). This also highlights a problem associated with multiple-

testing correction: Correction methods such as Benjamini–Hochberg and Bonferroni

restrict the number of reported features to the top n but do not resolve rank in-

stability. Moreover, restricting to the top n features post-multiple testing correction

are even more likely to generate °uctuative results. It follows that the hypergeo-

metric test, which is sensitive to the instability of SP, may be even more a®ected

following multiple-testing correction.

There is a positive relationship between stability, t-test p-values and Bayes

weights amongst protein features selected by both SP and HE (Supplementary

Fig. 2. But there is a quali¯cation ��� this only works when HE is performed on a

su±ciently large dataset. The 302 HE-selected proteins (HE-SP intersect) are clearly

enriched for stable SP-selected proteins (Supplementary Figs. 3(a)/3(b)). Unfortu-

nately, this bene¯cial e®ect of HE is strongly dependent on sample size. We have

already established that HE has high instability. Supplementary Fig. 4(a) con¯rms

this as HE feature-selection stability remains low at the complex and corresponding
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protein levels even as sampling size increases. There are 302 proteins associated with

HE-signi¯cant complexes (when tested on the full dataset). Although most of these

are enriched for stable SP proteins (Supplementary Fig. 3(a)/3(b)), reasonable en-

richment for stable SP proteins can only be achieved at a large sample size (Sup-

plementary Fig. 4(b)). Even so, HE cannot capture all stable SP proteins, nor is the

SP subset it captures the most statistically signi¯cant (Supplementary Fig. 3(d)).

Ideal feature-selection methods should be highly accurate, stable, and identify

relevant features. It appears that neither SP nor HE is able to meet these require-

ments. If analysts wish to use these tests on their data anyway, we advocate

benchmarking for reproducibility and stability (and not to simply rank based on

p-value) before attempting to interpret the results biologically.

3.5. Stability issues associated with adjustment of alpha in RBNAs

For RBNAs, we have maintained the default alpha parameters (top 10% þ next

10%) based on prior genomics studies. Results from using default alphas indicate

that the selected features are quite stable.17,18 However, it is a valid concern that

parameterization of alphas in RBNAs is not ¯xed: Increasing alpha from top 10%

onwards can increase sensitivity, but comes at the cost of introducing more

false positives as signals from lower ranked proteins are introduced into the

complex scores.

As a simple demonstration, we repeated PFSNET using di®erent alphas ��� top

10%, 20%, 30%, and 40%, and checked the rank stability (Spearman correlation) and

overlaps (A\B)/min(A,B) amongst di®erential complexes identi¯ed at p < 0:05

against the original parameters. Expectedly (Table 3), as alpha is increased (thus

admitting more low-ranked proteins), more complexes are selected. But the vari-

ability of the PFSNET p-values (as measured by the coe±cient of variation ���
standard deviation/mean) also rises correspondingly (Table 3). This means that the

additional complexes have less signi¯cant p-values.

When alpha is low (< 20%), protein-complex agreements are fairly stable

(Table 3). However, when alpha rises above 20% more complexes are selected but the

overall overlaps with the default settings remain fairly high (> 75%). Although more

complexes are selected when alpha is raised, the rank correlations for the selected

Table 3. Feature-selection overlaps and rank correlation of PFSNET signi¯cant features
selected at various alphas (compared against the default parameters).

PFSNET (alphas)

Number of

predicted

complexes

Overlaps

relative to top

10 (A\B)/min (A,B)

Spearman rank

correlation

p-values

variability

(s.d/mean)

10 42 1.00 1.00 2.47

20 53 1.00 0.84 2.81
30 76 0.79 0.86 3.08

40 83 0.75 0.93 4.05
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complexes remain conserved and stable ��� i.e. overlapping complexes tend to

maintain fairly similar ranks even at di®erent alphas. However, we do not recom-

mend setting alpha too high at ¯rst pass (> 20%), as this will introduce many poorer-

quality complexes early into analysis.

3.6. Network constraints are the critical factor for deriving stability

To con¯rm that network contextualization is the critical factor for obtaining sta-

bility, and not just restriction to the top 20% of proteins, for each sample, we replace

the expression values by ranks. Then, we keep just the top n% proteins (n ¼ 20% to

match the RBNAs) per sample; i.e. di®erent n proteins is allowed to be chosen per

sample. The proteins outside the top n in each sample are set to the same rank

(100,000). This is followed by a t-test and a Wilcoxon rank-sum test based on the

rank values assigned as above. In this test scenario, the non-network-based feature-

selection approaches such as the t-test and the Wilcoxon test both still fare worse

than RBNAs (Supplementary Fig. 5). Unsurprisingly, fewer proteins are selected

following rank restriction (Supplementary Fig. 5(c)) but these top n% proteins do

not exhibit the same degree of stability as the RBNAs (Supplementary Fig. 5(d)).

This demonstrates that restriction to the top n% most highly abundant proteins is

insu±cient for obtaining the stability observed in RBNAs. Thus, introducing net-

work-based constraints (e.g. scoring against a protein complex) is a key factor for the

performance improvement.

3.7. Machine-learning approaches are powerful but the feature

selection is unstable

We have discussed some of the most commonly used deterministic feature-selection

methods, e.g. the t-test and hypergeometric test. But machine-learning approaches

such as the SVM and ensemble methods such as the RF and AdaBoost are important

and can generate extremely robust models with good class-prediction accuracy.

Machine-learning methods incorporate feature ranking and model evaluation

internally and iteratively. An example is the popular RFE method. Here, we opted to

perform RFE with the RF and 10-fold cross-validation for model evaluation. Two

feature-selection thresholds are used ��� the minimum number of features required

for the model to reach 100% accuracy (default), and the top 500 (to approximate the

number of corresponding proteins in PFSNET). We examine RFE's performance on

CR and RC based on our stability benchmarks.

As powerful as machine-learning methods are, the default option leads to extreme

instability issues (as demonstrated by the ¯rst two benchmarks on feature stability

and precision/recall): A selected predictive feature here is as good as any other across

the resamplings (Supplementary Figs. 6(a)/(c), and 7(a)/(c); Supplementary

Tables 1 and 2). Here, predictive signatures range from one to ¯ve irreproducible

proteins. Obviously, this also makes functional interpretation di±cult. The result
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also mirrors our observation that random selection of any ¯ve proteins can generate

very accurate predictive models (Fig. 4).

Increasing the number of selected proteins to 500 improves stability (Supple-

mentary Figs. 6(b)/(d), and 7(b)/(d); Supplementary Tables 1 and 2). However,

while RFE is now superior to HE, it still trails far behind SP and the other RBNAs in

terms of feature-selection reproducibility. As RFE does poorly on the ¯rst two

benchmarks, and given known issues with use of SP as predictors (Fig. 6), it is not

worthwhile to further evaluate its CVAccuracy performance.

3.8. Making a case for RBNAs in proteomics

On simulated data, RBNAs dominate, excelling particularly at recall. On real data,

RBNAs display high feature-selection stability, precision/recall, and high normalized

CVAccuracy. PFSNET is particularly powerful and can work even in the small-

sample-size scenario, which is a big advantage given the high cost of generating large

proteomics datasets. RBNAs easily outperform conventional SP expression and HE

techniques. However, there is one poignant limitation: Because RBNAs work on the

rank system, low-abundance proteins are occluded, even if they are informative.

Although this is a critical limitation, low-abundance proteins generally have poor

quantitation reliability. Thus, their rank shifts are less informative.16 Earlier tran-

scriptomic analysis results have proven this point, which resulted in the development

of the alpha cut-o®s.17,18 Moreover, low-abundance proteins associated with signif-

icant yet stable complexes may be recoverable.23

4. Conclusions

Statistical feature selection in proteomics shares similar irreproducibility problems as

in genomics. On simulated data, we demonstrate that RBNAs excelled, particularly

at recall, even though we may not be able to fully capture biological coherence in our

pseudo-complexes. On real data, we have introduced a suite of three reliability

benchmarks that may be used for evaluating the quality of a given feature-selection

method. We have shown that not all network-based approaches are born equal ���
the fundamental assumptions of the method (and how sound these are) are far more

important. We have also demonstrated, for the ¯rst time, the bene¯cial utility of the

RBNAs on proteomics data. Although rank conversion in RBNAs is important,

network contextualization is the key factor for their superior performance.
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