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In proteomics, useful signal may be unobserved or lost due to the lack of con¯dent peptide-

spectral matches. Selection of di®erential spectra, followed by associative peptide/protein

mapping may be a complementary strategy for improving sensitivity and comprehensiveness of

analysis (spectra-¯rst paradigm). This approach is complementary to the standard approach
where functional analysis is performed only on the ¯nalized protein list assembled from iden-

ti¯ed peptides from the spectra (protein-¯rst paradigm). Based on a case study of renal cancer,

we introduce a simple spectra-binning approach, MZ-bin. We demonstrate that di®erential

spectra feature selection using MZ-bin is class-discriminative and can trace relevant proteins via
spectra associative mapping. Moreover, proteins identi¯ed in this manner are more biologically

coherent than those selected directly from the ¯nalized protein list. Analysis of constituent

peptides per protein reveals high expression inconsistency, suggesting that the measured protein
expressions are in fact, poor approximations of true protein levels. Moreover, analysis at the

level of constituent peptides may provide higher resolution insight into the underlying biology:

Via MZ-bin, we identi¯ed for the ¯rst time di®erential splice forms for the known renal cancer

marker MAPT. We conclude that the spectra-¯rst analysis paradigm is a complementary
strategy to the traditional protein-¯rst paradigm and can provide deeper level insight.

Keywords: Mass spectrometry; data independent acquisition; SWATH; proteomics; feature-
selection.

1. Introduction

Mass-spectrometry (MS)-based proteomics is a critical technology in high-through-

put biological research as it is our primary means of proteome characterization, and
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has key clinical applications. Unfortunately, the data it generates is noisy, and dif-

¯cult to analyze comprehensively (incomplete proteome coverage and inter-sample

inconsistency) without incorporating other biological data sources as contextuali-

zation frameworks (e.g. networks and protein complexes.1–4

In a typical MS run, as low as 30% of acquired spectra are con¯dently mapped

to known peptides.5 On one hand, this means a large proportion of remaining

spectra are left unused (due to low-con¯dence matches, noise, or unspeci¯ed post-

translational modi¯cations). On the other hand, since only a handful of peptides

are identi¯able per protein, the ¯nalized protein expression may not be accurate.

Traditionally, functional analysis of proteomics data relies on the protein-¯rst

paradigm, where spectra are ¯rst matched to peptides peptide-spectra matches

(PSMs), ¯ltered based on some statistical threshold, and the ¯nalized protein list

assembled based on the statistically signi¯cant PSMs. In most cases, peptide-spectra

matching is based on library search algorithms, which assign PSMs between theo-

retical spectra from known peptides and real spectra. This is an error-prone process.

One may increase the statistical stringency to reduce the number of false positives

but doing so increases the false negatives, resulting in lower proteome coverage.

Alternatively, one may use the false discovery rate (FDR) e.g. via decoy sequences

matches.6 However, this is an inferential procedure, and an inferred 1% FDR based

on the decoy, even if unbiased, does not guarantee the inclusion of all good quality

PSMs.7 Useful information is still lost nonetheless.

Although the protein-¯rst paradigm is the de facto standard, and it is possible

to work with the protein lists it generates, perhaps more or other means of

analysis can be done with raw spectra. One alternative to the protein-¯rst par-

adigm is to perform feature selection on raw spectra directly before mapping them

to peptides/proteins. We refer to this as the spectra-¯rst paradigm where di®er-

ential spectra are ¯rst identi¯ed followed by associative peptide matching and

functional analysis. Unlike the protein-¯rst paradigm, spectra-¯rst strategies are

likely more sensitive although this may come at the cost of lower precision, as raw

spectra are highly redundant and noisy. Spectra-¯rst paradigm is not an entirely

new concept, traditional methods in this class of approaches include PPC,8

BinDa9 and CAMS-RS.5

As proteomics data advances from the traditional data-dependent acquisition

(DDA) to the new data-independent acquisition (DIA) methods, the spectra-¯rst

paradigm may still be a useful and interesting complement to traditional protein lists

generated from the protein-¯rst paradigm. Against an extensively analyzed renal

cancer dataset based on DIA,10 we have designed and tested a spectra-¯rst heuristic,

MZ-bin, and determined if the di®erential spectra features it selects map to pheno-

typically-relevant proteins. By focusing on di®erential spectra ¯rst, we are also in-

terested to know if this may increase resolution at the level of proteome expression

analysis.
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2. Material and Methods

2.1. MZ-bin design

MZ-bin is a heuristic that deploys iterative spectral feature selection on three steps:

A/Retention-time (RT)-Condensation, B/Binning and C/Deconvolution (Fig. 1).

In RT-condensation, spectra intensities with same mass-to-charge (m/z) ratio are

summed and the RT is ignored (Fig. 1(A)).

(A)

(B)

(C)

Fig. 1. Illustration of MZ-bin concepts. (A) RT-condensation. The intensity of spectra with same mass-to-

charge (m/z) ratio is summed irrespective of retention time (rt). (B) MZ-binning. Given an m/z range, the

intensities of overlapping spectra are combined together. (C) MZ-bin deconvolution. If an MZ-bin is
di®erential, it is dismantled iteratively, until we reach the lowest-level MZ-bin(s) that can explain the

di®erential result between X and Y.
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Binning is the process of generating spectral bins based on m/z windows (which

we also refer to as MZ-bins) (Fig. 1(B)). The m/z windows are nested to give several

levels of MZ-bins (from level 1. . . level n) such that at level n, a spectrum with m/z x

is mapped to the MZ-bin b((10ðn�1 � x) þ 0.5)/10ðn�1Þc, where b c is a function

returning the largest integer less than or equal to a given number.

To see how this works: consider an MZ-bin at level 2. Given the formulation

above, a level 2 MZ-bin can be expressed as 10.1, 10.2, etc. A level 2 MZ-bin 10.1,

would include spectra with m/z values of 10.1, 10.12, 10.123, 10.14, etc. A deeper-

level MZ-bin has higher resolution but smaller m/z range (since m/z ranges are

nested by levels). Consider a level 3 MZ-bin 10.12. Spectral values with m/z of 10.12,

10.123 and 10.1234 fall within it, but not m/z of 10.10 or 10.14.

In deconvolution, for each MZ-bin (at the level being tested), we compare the

summed intensity scores of this MZ-bin for samples across classes X and Y. If the

comparison is signi¯cant (based on feature-selection test procedure; see below), we

can deconvolute the MZ-bin by dismantling it iteratively into MZ-bins one level

deeper (recall that MZ-bins are nested by levels), until we reach the deepest or

lowest-level MZ-bin(s) that can explain the di®erential result. Figure 1(C) shows one

MZ-bin dismantling event which revealed that the di®erential signal originates from

the blue bars, which becomes increasingly isolated as we proceed down each MZ-bin

level.

To elaborate further, for the set of signi¯cant MZ-bins selected at the (n� l)-th

level, we iteratively work down to the nth level, and reselect the critical MZ-bins

based on the t-test with an alpha of 0.01 (i.e. p < 0:01). For example, we can only

select MZ-bin 10.123 provided we have earlier selected MZ-bin 10.12, and we can

only select MZ-bin 10.12 provided we have even earlier selected MZ-bin 10.1, and we

can only select MZ-bin 10.1 provided in the beginning we have selected MZ-bin 10.

Since the limit of the machine resolution for m/z measurements is only up to four

decimal places, the iterative MZ-bin expansion procedure can theoretically proceed

up to four levels (e.g. 10, 10.1, 10.12 and 10.123).

MZ-bin can potentially deal with misalignments and stochastic variation issues:

the spectra attributable to a given peptide are expected to shift depending on sto-

chastic and experimental variation. Suppose a peak px at m/z ¼ x in subject sx

actually corresponded to a peak py at m=z ¼ y (where y 6¼ x) in another subject sy.

Without binning, the peaks px and py would be regarded as distinct peaks and thus

there would be no peak (i.e. a hole) at m/z ¼ y in subject sx and at m/z ¼ x in

subject sy. If subjects sx and sy belong to the same class, the hole at m/z ¼ y in sx

would weaken the test statistic for the peak py, and the hole at mz ¼ x in sy would

weaken the test statistic for the peak px. This increases the likelihood of peaks px and

py being declared insigni¯cant/noninformative. In contrast, suppose the peaks px

and py were in the same MZ-bin, then there would not be a hole in sx and sy for this

MZ-bin.

To demonstrate this, we considered the e®ects of spectral-feature selection

without binning (Supplementary Fig. 1(A)) where we observed a large number of

W. W. B. Goh & L. Wong

1644004-4



missing data points. Furthermore, the unbinned spectra features are uninformative

(Supplementary Fig. 1(B)). An analogous argument also applies for rt shifts.

In practice, we do not expect most proteins to be di®erential between sample

classes, i.e. di®erential features are rare. Suppose in a comparison between classes A

and B, an MZ-bin contains a peptide from a protein X and a peptide from a protein

Y. Suppose also that protein X is di®erential in its abundance levels in the two

phenotype classes, but protein Y is not. Thus, the MZ-bin's di®erential signal is

dominated by the peptide from X Summing m/z intensities from X and Y wipes out

the irrelevant Y but still maintains the signal. To demonstrate this, we plotted the

distribution of signal intensities for each contributing spectra in each level 1 MZ-bin

(Supplementary Fig. 1(C)). Most of the signal intensity in any MZ-bin is attributable

to a very small number of spectra. On average, only 20 spectral features are needed to

account for 25% of total intensity.

2.1.1. Rules-based feature selection procedure

For feature selection (i.e. selection of di®erential MZ-bins), we can compare the

corresponding MZ-bins between samples from classes A and B using a simple feature-

selection method, e.g. two-sample t-test at an alpha of 0.01 (see Supplementary

methods).11 However, this may not be robust enough due to potential issues with MS

data quality. Hence, we introduced some re¯nement rules:

Rule 1. If an MZ-bin has nonzero intensity values in more than half of the samples in

class A and nonzero in more than half of the samples in class B, it is kept (for further

¯ltering by Rule 2 below). Otherwise, it is discarded.

Rule 2. For each class (A or B), the top 20% MZ-bins (ranked by summed intensity)

supported by at least half of the samples in that class are kept.

These rules are sensible and have been used for feature selection on protein-based

expression data. For Rule 1, if the majority of intensity values are 0, then there is

very little evidence (amongst samples) to support the existence or summed intensity

value of that particular MZ-bin. For Rule 2, there are two lines of evidence from

recent works: One comes from quantitative proteomics signature pro¯ling (QPSP)

where low-abundance proteins (and by implication, low-abundance MZ-bins) have

very high coe±cient of variation and thus rather unstable.12 Another evidence comes

from work on Paired Fuzzy SubNETs (PFSNET) analysis where restricting the top

20% proteins (and by implication the top 20% MZ-bins) improves stability and does

not impact sensitivity.13

2.2. Associative peptide mapping

The MS setup has been pre-calibrated with known proteins such that the m/z and rt

coordinates of their constituent peptides are known.10 Since the rt coordinates are

irrelevant due to the binning process, each di®erential MZ-bin can be mapped to

known peptides (and the originating protein) based on m/z overlap (Fig. 2(A)).
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2.3. Cross-validation

Cross-validation (CV) evaluation tests the reproducibility of a method based on

di®erent subsets derived from the dataset. Since we do not have large numbers of

samples for this MS screen, we repeated CV 10 times on 10 di®erent equal random

splits of the data into training and testing sets. Each split maintains the same

proportion of cancer and normal tissues as in the original un-split data set. For each

split, a Naïve Bayes classi¯er is trained on the di®erential MZ-bins and validated on

the test set for accuracy. The CV accuracy is calculated as:

CV Accuracy ¼ Number of correct class assignments

Size of testing set
:

(A)

(B)

Fig. 2. Associative peptide mapping and cross-validation procedure. (A) Associative peptide mapping.
Signi¯cant MZ-bins are mapped to known peptides based on m/z overlap, i.e. the m/z coordinate of a

known peptide falls within the m/z range of an MZ-bin. (B) Cross-validation evaluation. Normal and

cancer samples are split randomly to form a training set and testing set. The training set is used for model

building which is evaluated with the testing set. Accuracy is the proportion of a sample class which is
correctly predicted over all predictions.
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To determine if CV accuracy is meaningful, we randomly picked an equal number of

features 1,000 times and retrained the Naïve Bayes classi¯er to produce a vector of

null accuracy values. The CV accuracy p-value is the number of times null accuracy

beats the actual accuracy divided over total number of simulations.

2.4. False-positive analysis

Samples from the normal sample class are randomly split 1,000 times into two

pseudo-groups, followed by conversion into MZ-bins. Di®erential MZ-bins selected

via the two-sample t-test here are considered false positives.

2.5. Test proteomics data

The SWATH-MS proteomics dataset of renal cancer is used for evaluating MZ-bin.10

This well-characterized dataset contains 24 MS runs derived from six pairs of non-

tumorous and tumorous clear-cell renal carcinoma (ccRCC) tissues, with two tech-

nical replicates each (12 normal, 12 cancer). For more details, refer to supplementary

methods.

A spectral library containing 49,959 reference spectra from 4,624 reviewed

SwissProt proteins10 is compiled on the same MS setup. We use this for associative

peptide mapping following MZ-bin.

3. Results and Discussions

3.1. Evaluating MZ-bin as a feature-selection method

Raw spectra cannot be directly used for feature selection. Preliminary checks

revealed large numbers of data holes due to stochastic e®ects and misalignments

during spectral acquisition. We ¯nd that raw spectral features are also poorly pre-

dictive (Supplementary Figs. 1(A) and 1(B)). Iterative deconvolution of di®erential

level 1 MZ-bins reveals that di®erential signal is dominated by small number of

constituent spectra in each bin. Thus, iterative deconvolution of the di®erential MZ-

bin should isolate the relevant spectrum (and its associated peptides/proteins)

(Supplementary Figs. 1(C) and 1(D)).

To prevent poor-quality MZ-bins from being selected as di®erential features, we

introduce two re¯nement rules to exclude MZ-bins with many missing values or

whose summed intensities are generally low. We compare this to feature selection

without re¯nement rules, using MZ-bins level 2 and 3 as case example (Table 1). At

level 2, rule-based feature selection identi¯ed less than half the number of features

while at level 3, it was less than one-¯fth. At both levels, features derived from rule-

based ¯ltering maintained similar if not higher CV accuracy. This suggests that rule-

based feature-selection identi¯es relevant high-quality spectral bins.

We further demonstrate that the high CV accuracy of MZ-bin is meaningful via

p-value estimation (Table 2). Here, the p-value is the proportion of simulations where

randomly picked MZ-bins produce higher accuracy. It turns out that randomly

Spectra-¯rst feature analysis in clinical proteomics
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picked MZ-bins are almost never more accurate (Supplementary Fig. 2). Hence, the

observed CV accuracy is meaningful.

In contrast, if feature selection was performed using the two-sample t-test solely

at the level of individual proteins derived from the protein-¯rst paradigm (Single

Proteins, SP), an inordinately large number of proteins are selected as di®erential

Table 1. CV accuracy of levels 2 and 3 MZ-bins with and without rule-based feature

¯ltering (A and B respectively). The rule-based MZ-bin selection process expectedly
predicts less features than nonrule based (standalone t-test), while maintaining

similar CV accuracy. This observation is consistent, as shown for levels 2 and 3.

A

Rule-based feature selection

MS1 merged level 2 MS1 merged level 3

Group

No. of signi¯cant

features (0.01) CV Accuracy

No. of signi¯cant

features (0.01) CV Accuracy

1 130 0.83 171 0.75

2 402 0.75 438 0.75
3 22 0.83 87 0.83

4 261 0.83 274 0.75

5 389 0.83 608 0.75

6 141 0.83 299 0.83
7 140 0.75 270 0.83

8 153 0.75 265 0.92

9 184 0.83 354 0.83

10 30 0.92 53 0.92

mean 185.20 0.82 281.90 0.82
s.d. 130.42 0.05 163.08 0.07

COV 0.70 0.06 0.58 0.08

B

t-test only selection

MS1 merged level 2 MS1 merged level 3

Group
No. of signi¯cant

features (0.01) CV Accuracy
No. of signi¯cant
features (0.01) CV Accuracy

1 65 0.83 451 0.83
2 372 0.75 1290 0.75

3 198 0.83 887 0.75

4 694 0.75 1854 0.75

5 746 0.75 2717 0.75
6 608 0.83 2279 0.75

7 190 0.92 1354 0.92

8 370 0.83 1784 0.83
9 1199 0.83 3471 0.75

10 189 0.83 399 0.92

mean 463.10 0.82 1648.60 0.80

s.d. 348.22 0.05 983.85 0.07

COV 0.75 0.06 0.60 0.09
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features each time (Table 2). Although CV accuracy appears high, almost any

random subset of proteins (containing 5, 20 or 100 randomly picked proteins) per-

forms equally or better (Supplementary Fig. 2). In contrast, random selection of

features in MZ-bin did not generate skewed null distributions (i.e., very few ran-

domly picked MZ-bins generate null CV accuracy > 0.95); cf. Supplementary Fig. 2.

In MZ-bin level 1, the number of false positives given the standalone and rules-

based t-test fall within expectation (Fig. 3). However, the latter turns out more

stringent. As with the CV accuracy results, rule-based re¯nement is bene¯cial.

Feature selection at the level of MZ-bins is more reproducible: To illustrate this,

we used the feature-reproducibility analysis method described in QPSP.12,14 Brie°y,

using the level 2 MZ-bin matrix following rules-based ¯ltering, random samplings of

size six (six from Normal and six from Cancer) were taken 1000 times, and feature

selection was performed using the t-test at a p-value threshold of 0.05. An equal

number of signi¯cant protein features are taken from the corresponding protein

expression matrix each time (the top n based on ranking by p-value). Resampling

was performed 1000 times. For each MZ-bin or protein feature that has been ob-

served at least once, its selection reproducibility is taken as the proportion of times it

was reported as signi¯cant over all 1,000 resampling. Feature-selection reproduc-

ibility can be discerned by plotting the frequency distribution of selection repro-

ducibility where a right shift would suggest more features are reproducibly selected in

spite of resampling (Fig. 3(B)). We observe a stronger right shift for MZ-bin with a

median selection reproducibility of 0.133 whereas for its corresponding proteins, the

median selection reproducibility is 0.022. In other words, the signi¯cant features

Table 2. CV accuracy comparing MZ-bin and protein-based expression (Single Proteins, SP).

Although CV accuracy is high in SP, any random selection of proteins yields equally high CV
accuracy (cf. supplementary Fig. 2). On the other hand, although CV accuracy of MZ-bin is

lower, the results are statistically more meaningful; i.e. random selection of MZ-bin cannot

produce higher CV accuracy.

MS1 ¯ltered merged level 1 spectra Single protein

Group

No. of signi¯cant

features (0.05)

CV

Accuracy

CV

p-value

No. of signi¯cant

features (0.05)

CV

Accuracy

CV

p-value

1 82.00 0.83 0.00 901 1.00 0.92

2 130.00 0.75 0.00 1213 1.00 0.911
3 179.00 0.75 0.00 908 1.00 0.919

4 234.00 0.75 0.00 1210 1.00 0.905

5 220.00 0.75 0.00 800 1.00 0.915

6 158.00 0.75 0.00 1825 0.75 0.892
7 96.00 0.92 0.00 1017 1.00 0.902

8 166.00 0.83 0.00 1284 1.00 0.925

9 230.00 0.75 0.00 1251 1.00 0.917
10 98.00 0.92 0.00 834 1.00 0.92

mean 159.30 0.80 0.00 1124.30 0.98 0.91
s.d. 167.89 0.80 0.00 306.48 0.08 0.01

COV 171.14 0.80 0.00 0.27 0.08 0.01
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Fig. 3. MZ-bin false-positive rates and feature-selection reproducibility analysis. (A) MZ-bin false-positive

rates. Using control samples derived from normal tissues only, and randomly splitting these into two

groups, we tested the level 1 MZ-bins 1,000 times using standalone t-test and rule-based feature selection.
The number of false positives is within expectation, with a median ¼ 1 and mean ¼ 34 (expected

value ¼ 800� 0.05 ¼ 40), con¯rming that the MZ-bin approach does not generate overly high noise levels.

However, the rule-based feature-selection strategy is even more stringent, with lower false positive rate.

(B) Feature-selection reproducibility analysis. (x-axis: proportion of time a signi¯cant feature is observed
over 1000 simulations, y-axis: frequency). Following MZ-bin feature selection with rules at MZ-bin level 2,

random sampling of size six was performed 1000 times using MZ-bin, and an equal number of protein

features selected on the corresponding protein expression matrix. Feature selection at the level of MZ-bins

is more reproducible, with a median feature-selection reproducibility of 0.133 against 0.022 for protein-
based feature-selection.
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selected by MZ-bin are about 10 times more reproducible in di®erent subsamples

than those selected by SP.

Iterative deconvolution cannot proceed inde¯nitely given the limits of instrument

detection. Here, we determine the limit is level 3 as none of the level 4 bins can

satisfactorily pass rule-based feature selection (see supplementary results: Analytical

limits of MZ-bin).

3.2. MZ-bin associated peptides have strong class discrimination signal

Across MZ-bin levels 1–3, we check the peptide groups and proteins associated with

the di®erential MZ-bins (Fig. 4(A)). As MZ-bin level progresses from 1 to 3, the

(A)

(B)

Fig. 4. Peptide/protein features associated with signi¯cant MZ-bins from levels 1 to 3. (A) Numbers of

associated peptides/proteins. With each MZ-bin iteration, the number of signi¯cant features generally

increases, with a concomitant decrease in the number of associated peptides/proteins. (B) Class segre-

gation for peptides and proteins. Hierarchical clustering (Euclidean distance; Ward's Linkage) shows that
the signi¯cant peptides selected based on level 3 MZ-bins can clearly separate the phenotype classes

(Notation: N7 CC 2 refers to normal sample 7, clear-cell renal carcinoma, replicate 2). It is particularly

interesting that patients C2 and C8, who su®ered from a severe form of the disease, are grouped together.

In contrast, the proteins corresponding to these peptides seem to have poorer discrimination, since patients
N6, N7 and N8 seem to have been misclassi¯ed in the cancer branch. This suggests there is some loss of

information in the peptide-to-protein transition.
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number of di®erential MZ-bins increases alongside concomitant decrease in associ-

ated proteins. This is unsurprising since MZ-bins are nested by levels. For example, if

MZ-bin 10 (level 1) is signi¯cant, it might be due to several of its nested levels 2 or 3

MZ-bins being signi¯cant, but not necessarily all of them. Thus, while peptides

whose m/z values were in MZ-bin 10 are declared signi¯cant when the analysis was

performed at level 1, they may not be declared signi¯cant when analyzed at level 3 if

their m/z values are not in any of the di®erential nested level 3 MZ-bins. At level

3,337 di®erential MZ-bins are associated with 1,044 peptide groups corresponding to

688 unique proteins.

Via hierarchical clustering (Euclidean distance; Ward's linkage), class-discrimi-

nation based on peptide intensities is strong. Technical replicates are also closely

grouped together. Patients 2 and 8 (severe renal cancer subgroup) are also banded

together (Fig. 4(B) left). This is consistent with previous observation.12 Together,

the results suggest that the MZ-bins are relevant.

Translating peptide expression level to protein expression level is not straightfor-

ward. For example, one may take the mean or median of all unique constituent pep-

tides. Alternatively, in this dataset, the authors used the top two constituent peptides

per protein for quantitation. However, we are concerned the top two peptides per

protein may not be the same across di®erent samples. Furthermore, the two most-

abundant peptides need not be di®erential between sample classes. This may lead to

potential loss-of-signal. It turns out that this concern is valid: class discrimination is

less pronounced at the corresponding protein expression level (Fig. 4(B) right).

3.3. Proteins associated with di®erential MZ-bins are more biologically

coherent

MZ-bin associated proteins have good class-discrimination power. But they are not

the same set of di®erential proteins if a t-test is performed on the protein expression

list derived from the protein-¯rst paradigm (SP). 1,247 out of 1,649 proteins are SP-

unique, and not associated with signi¯cant level 3 MZ-bins. It is useful to determine

which set of di®erential proteins (from MZ-bin or t-test selection directly from the

protein list) are more biologically coherent.

To do this, we check which di®erential protein set tends to cluster together in

same networks, with the reasoning that the more coherent list of di®erential proteins

are more likely to work together, and therefore will be closely located on the reference

biological network.15–19 We may use biological complexes to check this. Using 1,363

protein complexes,20 we generate all possible pairs of di®erential MZ-bin proteins and

determine the fraction of these pairs that hit the same complexes. This is repeated for

SP-unique proteins.

After accounting for the smaller number of MZ-bin proteins, the log odds for

MZ-bin proteins against SP-unique proteins is �1.22x. Therefore, there is stronger

propensity for MZ-bin proteins to co-locate in the same complexes. Hence, we

determine the MZ-bin di®erential protein list is more biologically coherent.
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3.4. Using MZ-bin to search for splice variants ��� novel splice forms

of MAPT di®erentially associated with good and poor renal-cancer

outcomes

We may use the associated peptides in di®erential level 3 MZ-bins to check for splice

variants in corresponding proteins. We ¯rst isolate all peptides that can be unam-

biguously mapped to the 688 level 3 proteins. For any of these, if all constituent

peptides are similarly up- or down-regulated, then the abundance of the entire

protein is likely to be regulated at the transcriptional level. However, if the con-

stituent peptides are inconsistently expressed, this may suggest the presence of

alternative splice events.

We ¯rst check for peptides with poor quantitation stability (missing data in more

than half of either sample class) and °ag them (Supplementary Fig. 3(A)). Inter-

estingly, most of the 688 proteins do not have consistent constituent peptide

abundance (supplementary data 1), which suggests that in protein-¯rst paradigm,

the ¯nal reported protein expression is really very rough approximation of true

expression level. Furthermore, while these proteins are expected to have at least one

peptide associated with a di®erential MZ-bin, it turns out that many of the other

constituent peptides are in fact nondi®erential. To increase stringency and re¯ne the

search for alternatively spliced proteins, we introduced the following rules:

(1) There must be at least 10 constituent unique peptides (to ensure reasonable

coverage of the entire length of the protein);

(2) The peptides must be unambiguously mapped to the corresponding protein;

(3) at least 30% constituent peptides are over-expressed, i.e. > 1.25; and

(4) at least 30% constituent peptides are repressed, i.e. < 0.8.

Although four proteins ful¯lled these criteria (Supplementary Fig. 3(B)), microtu-

bule-associated protein tau (MAPT, P10636) is particularly interesting, separating

severe from other less severe cancer patients.

MAPT is di®erentially enriched for di®erent peptides in severe cancer (C2 and

C8 ��� highlighted in red) (Fig. 5(A)). MAPT is commonly associated with neuro-

logical diseases such as dementia and is known to have large numbers of splice

forms.21 Interestingly, MAPT forms part of a predictive gene signature in severe

renal cancer and has been reported as down-regulated.22 But the existence of speci¯c

di®erential splice forms able to distinguish between severe and nonsevere renal

cancer is not known.

The peptides discriminative for severe and less severe renal cancer are evenly

distributed across the full MAPT protein sequence (Supplementary Fig. 4). To de-

termine if the discriminative peptides are localized within the splice junctions, we

used genewise to map the MAPT protein sequence against the MAPT unspliced

DNA sequence (supplementary data 2) where we predicted 13 exons (Fig. 5(B)).23

Mostly, peptides discriminative for severe and less severe respectively are located on

di®erent exons with the exception of exons 5 and 9. This suggests that certain
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splicing junctions are disrupted during tumorigenic progression, possibly due to

mutations that generates novel splice sites.

To see if our di®erential peptides might correspond to any known splice forms, we

picked the two most discriminatory peptides from \severe" and \less severe" groups

(ASPAQDGRPPQTAAR and KLDLSNVQSK for the less severe group, and

ESPLQTPTEDGSEEPGSETSDAK and IGSTENLK to represent the severe group)

(Fig. 5). We compared these sequences to eight known splice forms of MAPT

(UniprotKB, supplementary data 3) using T-Co®ee (default parameters).24

ESPLQTPTEDGSEEPGSETSDAK is found on splice forms 4–9, while

IGSTENLK is found across all splice forms. While ASPAQDGRPPQTAAR is found

across all splice forms and KLDLSNVQS is found only in splice forms 6–9. Forms 7–9

are common to both peptide groups. Forms 4 and 5 are unique to severe cancer

associated peptides. Form 6 is unique to less severe cancer. Perhaps it is these splice

forms themselves that are di®erentially expressed.

We discuss ¯rst ASPAQDGRPPQTAAR (less severe) and IGSTENLK (severe),

which are found in all splice forms. In our opinion, these two peptides make perfect

(A) (B)

Fig. 5. Peptide features associated with MAPT. (A) Hierarchical clustering using MAPT peptides. MAPT
peptides are di®erential between severe (red) and less severe cancers (orange). This suggests that these

peptides may be useful as markers for prognosis. (B) Localization of MAPT di®erential peptides within

exon junction. For the most part, severe and less severe peptides are located within di®erent exons, except
for exons 5 and 9. This suggests that there may be patients with mutations within these regions that may

generate novel splice sites within these exons.
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biomarkers as: (1) they can be detected in everyone and (2) their abundance is

completely distinct between less severe, severe and normal tissue.

Using InterPro25,26 to predict domain information, ASPAQDGRPPQTAAR is on

exon 5 (Fig. 5(B)), and corresponds to Microtubule associated protein MAP2/

MAP4/Tau (IPR027324). This domain has a net negative charge and exerts a long-

range repulsive force. This provides a mechanism that can regulate microtubule

spacing which facilitate organelle transport.27 IGSTENLK is found on exon 9

(Fig. 5(B)) and corresponds to several domains ��� IPR027324, MAPT (IPR002955)

associated with microtubule binding, and Microtubule associated protein, tubulin-

binding repeat (IPR001084) which is implicated in tubulin-binding and has a

sti®ening e®ect on microtubules.

Exon 5 enriched for peptides associated with less severe cancer (3), which implies

its over-expression may be a positive prognosis. Disrupting this, as seen with

VSTEIPASEPDGPSVGR, could potentially reverse this either by mutating part of

the exon, or by overall down-regulation of this region. Exon 9 on the other hand, is

enriched for peptides associated with severe cancer, its overall downregulation can be

a poor prognosis indicator. Within exon 9, a single peptide, TAPVPMPDLK is found

to be overexpressed and associated with less severe phenotype. Perhaps, increasing

the expression of IPR001084 stabilizes the microtubules, and makes it harder for the

cancer to undergo metastasis.

To discover more interesting domain-speci¯c information associated with the

alternative splice forms, we aligned the sequences of splice forms 4, 5 (severe) and 6

(less severe) using T-Co®ee. We then extracted two representative domain

sequences ��� ESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPG-

KQAAAQPHTEIPEGTT for severe (severe domain) and QIINKKLDLSNV-

QSKCGSKDNIKHVPGGGSV for less severe (less severe domain) and checked if

these corresponded to any known domains using InterPro.25,26 The severe domain is

found on exon 2 and corresponds to IPR027324 while the less severe domain is found

on exon 10 and maps to both IPR027324 and IPR001084. As before, the repression of

exon 2 suggests this region is potentially impaired in severe cancer. Similarly,

overexpression of exon 10 may increase microtubule stability, impeding metastasis.

Upregulated MAPT is a known good-prognosis indicator in renal cancer while its

down-regulation means the opposite.28 Based on MS analysis, we report here that the

dysregulation is, in fact, inconsistent across its entire length. Certain peptide regions

are speci¯cally over-expressed for less severe renal cancer while other non-over-

lapping regions are repressed for severe renal cancer. Consideration of these speci¯c

peptide regions is more useful as prognostic markers than using the entire protein

length as this will dilute diagnostic signal.

4. Conclusions

MZ-bin is a rule-based heuristic for iteratively identifying relevant features from

complex spectra without the need for prior spectra clustering or peptide-spectra
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assignments. Despite the simplicity of the rules, the selected di®erential features ���
i.e. the condensed spectra ��� have good predictive power and reproducibility. We

further demonstrate that the selected features are phenotypically relevant, on a renal

cancer dataset derived from SWATH-MS.

Furthermore, careful consideration of constituent peptides reveal that reported

expression levels at the level of proteins cannot be fully trusted. Abundance incon-

sistencies amongst constituent peptides and presence of splice forms may mislead.

Lastly, we should highlight a technical aspect that we have not pursued here. Raw

spectra are noisy. Stringent statistical thresholds are thus used in determining PSMs.

As a result, many spectra are discarded. Nonetheless, considering only di®erential

spectra (rather than all raw spectra) potentially requires less stringent the statistical

thresholds in the mapping of this subset of spectra to peptides. For example, if one

corrects the p-value of PSMs using the Bonferroni method, given 100,000 raw

spectra, the p-value threshold is 5� 10�7 to achieve a false-positive rate of 5%.

Suppose only 10% of the spectra are di®erential, and PSMs are sought only for these

10%, the Bonferroni-corrected p-value threshold is 5� 10�6 to achieve a false-

positive rate of 5%. Thus, one can potentially gain sensitivity without increasing

false-positive rate of the PSMs. That said, we have conservatively stuck to PSMs

determined using statistical thresholds based on the entire raw spectra, rather than

based on di®erential spectra. The e®ect described in this example may be worth

investigating in a follow-up study.
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