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ABSTRACT

QUERYING NESTED COLLECTIONS

Limsoon Wong

Advisor� Peter Buneman

This dissertation investigates a new approach to query languages inspired by structural

recursion and by the categorical notion of a monad�

A language based on these principles has been designed and studied� It is found to have the

strength of several widely known relational languages but without their weaknesses� This

language and its various extensions are shown to exhibit a conservative extension property�

which indicates that the depth of nesting of collections in intermediate data has no e�ect

on their expressive power� These languages also exhibit the �nite
co�niteness property on

many classes of queries� These two properties provide easy answers to several hitherto

unresolved conjectures on query languages that are more realistic than the 
at relational

algebra�

A useful rewrite system has been derived from the equational theory of monads� It forms the

core of a source
to
source optimizer capable of performing �lter promotion� code motion� and

loop fusion� Scanning routines and printing routines are considered as part of optimization

process� An operational semantics that is a blending of eager evaluation and lazy evaluation

is suggested in conjunction with these input
output routines� This strategy leads to a

reduction in space consumption and a faster response time while preserving good total time

performance� Additional optimization rules have been systematically introduced to cache

and index small relations� to map monad operations to several classical join operators� to

cache large intermediate relations� and to push monad operations to external servers�

A query system Kleisli and a high
level query language CPL for it have been built on top of

the functional language ML� Many of my theoretical and practical contributions have been

physically realized in Kleisli and CPL� In addition� I have explored the idea of open system

in my implementation� Dynamic extension of the system with new primitives� cost func


tions� optimization rules� scanners� and writers are fully supported� As a consequence� my
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system can be easily connected to external data sources� In particular� it has been success


fully applied to integrate several genetic data sources which include relational databases�

structured �les� as well as data generated by special application programs�
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Part I

The adventure of a

logician�engineer

�



Chapter �

Introduction

We don�t really know what the basic equations of physics are� but they have to

have great mathematical beauty� Paul Dirac

The 
at relational data model Codd ���� introduced two decades ago is a simple and powerful

theory� However� I feel that this time
worn theory is not quite the �right	 theory to support

modern database applications� The objective of this report is to construct an improved

system for querying large collections�

Organization

Section ���� A brief description of structural recursion ���� as a paradigm for querying

collection types is given� I illustrate its expressive power and e�ciency with examples� I

then propose a new approach to querying databases based on a very natural restriction of

this paradigm�

Section ���� This section organizes the four theoretical themes of this report� the study of a

query language as a restricted form of structural recursion� the study of its expressive power

through the conservative extension property� the study of its expressive power through the

�



�nite
co�niteness property� and the concretization of an abstract theoretical language into

a more realistic query language�

Section ���� My theoretical work results in the design of a high
level query language called

CPL� Two pure examples from CPL are given to provide a taste of the kind of query

languages that my approach leads to and to provide a rare�ed picture of its connection

with structural recursion�

Section ���� This section organizes the four practical themes of this report� the study of

optimizations that can be expressed within my query languages� the study of how other kinds

of optimizations can be brought in� the empirical veri�cation of the e�ectiveness of these

optimizations� and the construction of a real extensible query system and its application to

query heterogenous biomedical data sources�

Section ��	� My practical work culminates in the implementation of an open query system

in ML called Kleisli� CPL is implemented on top of Kleisli and serves as its high
level query

language� An example distilled from real genetic queries handled by the system is given to

provide a solid demonstration of the achievement of the system in the biomedical database

area and to provide an idea of its potential in the broader information integration arena�

��� Thesis

Structural recursion

Past experience lead Backus ���� to propose an applicative programming style with a well


chosen collection of primitives� Research on the Bird
Meertens formalism on lists suggests

that such a style is remarkably expressive �see Bird ���� ���� Meertens ������ and Bird

and Wadler ������ Programming with sets works out the same way �see Codd ����� Ohori�

Buneman� and Tannen ������ and Bancilhon� Briggs� Khosha�an� and Valduriez ������ A

signi�cant idea in the above work is that they identi�ed certain simple forms of recursion

and advocated programming in these restricted forms� One such simple form of recursion is

�



structural recursion� which I now present based on the work of Tannen and Subrahmanyam

���� and Tannen� Buneman� and Naqvi �����

As illustrated by Wadler ������ a more abstract view of data types leads to much simpler

programs� I thus adopt the abstract view of collection types described below� Informally�

an object of type dsc is a collection of objects of type s� and three operations are expected

to be available on objects of type dsc� as depicted in Figure ���� where dc forms the empty

dcs � dsc

e � s

dec � dsc

e� � dsc e� � dsc

e� � e� � dsc

Figure ���� The constructors for collection types�

collection� dec forms a singleton collection� and e�� e� forms a new collection by combining

two existing collections� There are many ways to interpret collection types� For example�

� Sets� Interpret dsc as �nite sets of type s� dc as the empty set� dec as the singleton

set containing e� and e� � e� as union of sets e� and e�� In this case � is associative�

commutative� and idempotent� and dc is the identity for ��

� Bags� Interpret dsc as �nite multisets �also known as bags� of type s� dc as the empty

bag� dec as the singleton bag containing e� and e� � e� as additive union of bags e�

and e�� In this case � is associative� commutative� but not idempotent� and dc is the

identity for ��

� Lists� Interpret dsc as �nite lists of type s� dc as the empty list� dec as the singleton

list containing e� and e� � e� as concatenation of lists e� and e�� In this case � is

associative but is neither commutative nor idempotent� and dc is the identity for ��

� Other possibilities include orsets� certain kinds of tree� �nite maps� arrays� etc� See

Libkin and myself ������ Watt and Trinder ������ Atkinson� Richard� and Trinder �����

�



and Buneman �����

Tannen and Subrahmanyam ���� described one way� depicted in Figure ���� of doing struc


tural recursion of the above view of collection types that is inspired by the notion of universal

property�

u � t� t� t f � s� t i � t

sru�u� f� i� � dsc � t

obeying the following three axioms�

sru�u� f� i�dc � i

sru�u� f� i�dec � f�e�

sru�u� f� i��e� � e�� � u�sru�u� f� i��e��� sru�u� f� i��e���

Figure ���� The structural recursion construct for collection types�

The need for sru�u� f� i� � dsc � t to respect the three axioms means that it is not well

de�ned on every u� f � and i� depending on the interpretation of dsc� Let me use an example

of Val Tannen to illustrate this point� Consider the function de�ned as Card � sru��� F� ���

where � is addition� and F is the constant function F �n� � �� If dNc is interpreted as lists

�or bags� of natural numbers� then Card � dNc � N is the cardinality function on list �or

bag�� However� here is what happens when dNc is interpreted set
theoretically so that � is

idempotent� � � Cardd�c � Card�d�c � d�c� � �� � � �� That is� the equational theory

has become inconsistent� The reason for this is that � is not idempotent while � under our

set
theoretic interpretation is�

�



Therefore� some restrictions must be placed on sru�u� f� i� to ensure that it is well de�ned for

a given interpretation of dsc� A set of simple conditions guaranteeing the well
de�nedness

of structural recursion with respect to lists� bags� and sets was worked out by Tannen and

Subrahmanyam �����

Proposition ����� sru�u� f� i� � dsc � t is well de
ned when dsc is interpreted list�theore�

tically� bag�theoretically� or set�theoretically� if �t� u� i� is respectively a monoid� a commu�

tative monoid� or a commutative idempotent monoid� �

Examples

Let me illustrate the expressive power and e�ciency of structural recursion by some ex


amples on sets� taken mostly from Tannen� Buneman� and Naqvi ����� I begin with some

common operators for sets� These examples can also be de�ned in �rst
order logic� They

are chosen to illustrate the mileage that can be obtained using structural recursion of the

simple form sru��� f� dc��

� The function map�f� � dsc � dsc� where f � s � t� such that map�f�fo�� � � � � ong

is the set ff�o��� � � � � f�on�g is de�nable as map�f� � sru��� F� dc�� where F is the

function such that F �x� � df�x�c�

� The function select�p� � dsc � dsc� where p � s � B is a predicate� such

that select�p��O� is the largest subset of O whose elements satisfy p� It is de


�nable as select�p� � sru��� F� dc�� where F is the function such that F �x� �

if p�x� then dxc else dc�

� The function flatten � ddscc � dsc which 
attens a set of sets is de�nable as flatten �

sru��� id� dc�� where id is the identity function�

� The function pairwith� � s � dtc � ds � tc so that pairwith��o� fo�� � � � � ong� �

f�o� o��� � � � � �o� on�g is de�nable as pairwith��o�O� � sru��� F� dc��O�� where F is
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the function such that F �x� � d�o� x�c� The analogous function pairwith� � dsc� t�

ds� tc can also be so de�ned�

� The function cartprod � dsc�dtc � ds� tc such that cartprod�O�� O�� is the cartesian

product of O� and O� is de�nable as cartprod � flatten�map�pairwith���pairwith��

� The function � � dr � sc � ds � tc � dr � tc such that O�� O� is the relational

composition of O� and O� is expressible as � � sru��� F� dc� � cartprod� where

F ��x� y�� �u� v�� � if y � u then d�x� v�c else dc�

� The function member � s � dsc � B such that member�o�O� is true if and only

if o is a member of O is de�nable as member�o�O� � sru�or� F� false��O�� where

F �x� � �x � o��

Tannen and Subrahmanyam ���� had a second form of structural recursion sri�h� i� � dsc � t�

where h � s� t� t and i � t� It can be de�ned� with the help of some higher
order functions�

in terms of the �rst form of structural recursion as sri�h� i��l� � sru�U� I� id��l��i�� where

U�x� y��z� � x�y�z�� and I�x��y� � h�x� y�� �A more complicated but purely �rst
order

implementation of sri in terms of sru has also been discovered� See Suciu and Wong �������

I use this second form of structural recursion to give a few more examples� These examples

are queries which are known to be inexpressible in �rst
order logic ��� ��� ���� They illustrate

the power and 
exibility of structural recursion�

� The function tc � ds � sc � ds � sc such that tc�O� is the transitive closure of O is

de�nable as tc � sri�F� dc�� where F �o�O� � doc � O � �doc�O� � �O�doc� �

�O�doc �O��

� The function odd � dsc � B such that odd�O� is true if and only if the cardinal


ity of O is odd is de�nable� odd � �� � sri�F� �dc� false��� where F �x� �y� z�� �

if member�x� y� then �y� z� else �dxc � y� not z��

� The function Card � dsc � N such that Card�O� is the cardinality of the

set O is expressible� Card � �� � sri�F� �dc� ���� where F �x� �y� z�� �

if member�x� y� then �y� z� else �dxc � y� � � z��

�



All the examples above execute in polynomial time with respect to the size of input with an

appropriate implementation of the functions sru�u� f� i�� For a discussion on the e�ciency of

the transitive closure example� see Tannen� Buneman� and Naqvi ����� Now� let me provide

an expensive example by using sru to compute powerset�

� The function powerset � dsc � ddscc which computes the powerset of its input is

de�nable� powerset � sru�map��� � cartprod� F� ddcc�� where F �x� � ddcc � ddxcc�

My �nal example is designed to demonstrate the possibility of applying structural recursion

to query nested relations� This example also uses only recursion of the form sru��� �� dc��

� The function nest� � ds � tc � ds � dtcc which expresses the relational nesting on

its input is de�nable� nest��O� � sru��� F� dc��O�� where G�x��u� v� � if x �

u then dvc else dc and F �x� y� � d�x� sru��� G�x�� dc��O��c�

Towards monads

As seen earlier� structural recursion is a rather attractive paradigm for querying lists� bags�

and sets� It has considerable expressive power� it is relatively e�cient� it scales from 
at

collections to nested collections� The only caveat is the need to verify certain preconditions

for well
de�nedness� Automatic veri�cation of these conditions� as discussed in Tannen and

Subrahmanyam ����� is very hard and the general problem is undecidable�

One way to proceed from here is to equip the compiler with a powerful theorem prover�

The compiler accepts and compiles only those programs whose de�nedness can be veri�ed

by the theorem prover� This approach was proposed by Immerman� Patnaik� and Stemple

������ This approach is feasible ������ but it requires extensive experience with theorem

provers ������

Another way is to abandon structural recursion and look for alternative primitives which

have similar expressive power and performance� Powerset operators� �xpoint operators� and
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while
loops are possible alternatives� They were already competently and fruitfully studied

in Abiteboul and Beeri ���� Hull and Su ����� Grumbach and Milo ����� Grumbach and Vianu

����� Gyssens and Van Gucht ����� Kuper ������ etc�

In the two approaches above� there is su�cient power to express non
polynomial time

computation� Their aim is to retain as much expressive power of structural recursion as

possible� In the context of querying databases� it is reasonable to limit queries to those

which are practical� Therefore� a third approach can be envisioned� I propose to impose

further syntactic restrictions so that any expressions conforming to these restrictions are

automatically well de�ned� Moreover� I propose that these restrictions should be su�ciently

strong to limit queries to those which have polynomial time and data complexity� This third

approach was taken by Tannen� Buneman� and Naqvi ����� They found some syntactic

restrictions which cut structural recursion down to a language whose expressive power

is that of the traditional relational algebra ����� In this report� a simpler restriction is

considered� queries are expressed using only structural recursion of the form sru��� �� dc��

By restricting structural recursion to sru��� �� dc�� the u and i parameters of sru�u� f� i�

are �xed and while f is allowed to vary� The restriction sru��� f� dc� is very natural� It

respectively cuts structural recursion on lists� bags� and sets down to homomorphisms of

monoids �of lists with concatenation as the binary operation and the empty list as identity��

commutative monoids �of bags with additive bag union as the binary operation and the

empty bag as identity�� and commutative idempotent monoids �of sets with union as the

binary operation and the empty set as identity�� Judging from the examples given earlier�

it is very promising in terms of expressive power and e�ciency� Tannen� Buneman� and I

���� showed that this form of structural recursion corresponds to the categorical notion of

a monad� thus providing a basis for constructing algebras and calculi suitable for abstract

manipulation of collections� Encouraged by these observations� I propose to construct query

languages for collection types around this syntactic restriction on structural recursion�

�



��� Overview of theoretical results

There are four theoretical themes in this dissertation� The results of my investigation on

these themes are organized into the following four chapters� one for each theme�

Querying nested relations

The theme of Chapter � is the design of query languages based on the restriction of structural

recursion proposed in Section ���� I have considered this theme for conventional collection

types such as sets in a paper with Tannen and Buneman ���� and bags in a paper with

Libkin ������ as well as unconventional collection types such as orsets ����� ���� in another

paper with Libkin ������ I discuss here only the query language for sets I have thus obtained�

The set
theoretic interpretation of my restricted structural recursion language is denoted

by NRC� The main results are�

� A language NRC based on restricting structural recursion on sets to sru��� f� fg� is

presented� A fully algebraic version of NRC� based on a more abstract presentation

of monads� is given as well� Functions de�nable in the algebra are shown to have

polynomial time complexity� The equivalence between these two formulations are

sketched� An interesting aspect of the proof is that it is largely equational� in contrast

to the usual semantic proofs of this kind of results�

� Variants are a useful data modeling concept ����� and are ubiquitous in modern pro


gramming languages ����� I describe how they can be added to NRC� I show that

variants do not change the expressive power of NRC in any essential way� A corollary

of this result is that adding booleans and the conditional construct to NRC does not

greatly a�ect its expressive power� The most interesting aspect of this result is its

entirely equational proof�

� All common non
monotonic operators such as the equality test� the membership

test� the subset test� set intersection� set di�erence� and relational nesting are inter
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de�nable using NRC as the ambient language� Since adding such operators to NRC

does not take it out of polynomial time� this result strengthens a similar result of

Gyssens and Van Gucht ���� who proved the inter
de�nability of these operators in

the presence of the costly powerset operator� For this reason� I use NRC�B ��� as my

ambient language�

� NRC�B ��� is shown to possess precisely the same expressive power as the well
known

nested relational algebra of Thomas and Fischer ������ Then I argue that NRC�B ���

can be pro�tably regarded as the �right	 core for nested relational languages�

Conservative extension properties

The theme of Chapter � is the conservative extension property of query languages� If a

query language possesses the conservative extension property� then the class of functions

having certain input and output heights �that is� the maximal depth of nesting of sets in

the input and output� de�nable in the language is independent of the height of intermediate

data used� Such a property can be used to prove interesting expressibility results� The main

results are�

� NRC�B ��� has the conservative extension property� Paredaens and Van Gucht �����

proved a similar result for the special case when input and output are 
at relations�

Their result was complemented by Hull and Su ���� who demonstrated the failure of

independence when the powerset operator is present and input and output are 
at�

The theorem of Hull and Su was generalized to all input and output by Grumbach

and Vianu ����� My result generalizes Paredaens and Van Gucht�s to all input and

output� providing a counterpart to the theorem of Grumbach and Vianu� A corollary

of this result is that NRC�B ���� when restricted to 
at relations� has the same power

as the 
at relational algebra �����

� As a result NRC�B ��� cannot implement some aggregate functions found in real

database query languages such as the �select average from column	 of SQL ������ I
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therefore endow the basic nested relational language with rational numbers� some basic

arithmetic operations� and a summation construct� The augmented language NRC�B �

Q � �� �� 	� 
�
P
� �� is then shown to possess the conservative extension property�

This result is new because conservativity in the presence of aggregate functions had

never been studied before�

� NRC�B � Q � �� �� 	� 
�
P
� �� is augmented with a linear order on base types� It

is then shown that the linear order can be lifted within NRC�B � Q � �� �� 	� 
�
P
�

�� to every complex object type� The augmented language also has the conservative

extension property� This fact is then used to prove a number of surprising results� As

mentioned earlier� Grumbach and Vianu ���� and Hull and Su ���� proved that the

presence of powerset destroys conservativity in the basic nested relational language� A

corollary of my theorem shows that this failure can be repaired with a little arithmetic

operations� aggregate functions� and linear orders�

� A notion of internal generic family of functions is de�ned� It is shown that the

conservative extension property of NRC�B � Q � �� �� 	� 
�
P
� �� endowed with �well


founded� linear orders can be preserved in the presence of any such family of functions�

This result is a deeper explanation of the surprising conservativity of NRC�B � Q � ��

�� 	� 
�
P
� �� �� in the presence of powerset and other polymorphic functions�

Finite�cofinite properties

Predicates de�nable in �rst
order logic exhibits a �nite
co�nite property� That is� they

either hold for �nitely many things or they fail for �nitely many things� The theme of

Chapter � is the �nite
co�niteness property in the various extensions of my basic query

language� The main results are�

� Every property expressible in NRC�B � Q � �� �� 	� 
�
P
� �� on rational numbers is

shown either to hold for �nitely many rational numbers or to fail for �nitely many

rational numbers� This result generalizes the above mentioned property of �rst
order
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logic� A corollary of this result is that� inspite of its arithmetic power� NRC�B � Q � ��

�� 	� 
�
P
� �� cannot test whether one number is bigger than another number� This

justi�es the augmentation of NRC�B � Q � �� �� 	� 
�
P
� �� with linear orders on base

types�

� Every property expressible in the augmented language NRC�B � Q � �� �� 	� 
�
P
� ��

�� on natural numbers is shown to be �nite or co�nite� Many consequences follow

from this result� including the inexpressibility of parity test in NRC�B � Q � �� �� 	� 
�
P
� �� �� on natural numbers� This is a very strong evidence that the conservative

extension theorem for NRC�B � Q � �� �� 	� 
�
P
� �� �� is not a consequence of

Immerman�s result on �xpoint queries in the presence of linear orders�

� Properties on certain classes of graphs in NRC�B � Q � �� �� 	� 
�
P
� �� �� when

the linear order is restricted to rational numbers is considered� I show that these

properties are again �nite
co�nite� This result settles the conjectures of Grumbach

and Milo ���� and Paredaens ����� that parity
of
cardinality test� transitive closure�

and balanced
binary
tree test cannot be expressed with aggregate functions or with

bags� This also generalizes the classic result of Aho and Ullman ��� that 
at relational

algebra cannot express transitive closure to a language which is closer in strength to

SQL�

Towards a practical query language

The theme of Chapter � is the realization of an abstract language like NRC�B ��� into a

real query language called CPL� The outstanding features of CPL worth mentioning here

are�

� A rich data model is supported� In particular� sets� lists� bags� records� and variants

can be freely combined� The language itself is obtained by orthogonally combining

constructs for manipulating these data types�

� A comprehension syntax is used to uniformly manipulate sets� lists� and bags� CPL�s
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comprehension notation is a generalization of the list comprehension notation of func


tional languages like Miranda ������

� A pattern matching mechanism is supported� In particular� convenient partial
record

patterns and variable
as
constant patterns are supported� The former is also available

in languages like Machiavelli ����� but not in languages like ML ������ The latter is

not available elsewhere at all�

� Types are automatically inferred� In particular� CPL has polymorphic record types�

However� the type inference system is simpler than that of Ohori ������ Remy ������

etc�

� Easily extensible� External functions can be easily added to CPL� New data scanners

and new data writers can be easily added to CPL� Thus CPL is readily connected to

di�erent external systems�

� An extensible optimizer is available� The basic optimizer does loop fusion� �lter

promotion� and code motion� It optimizes scanning and printing of external �les� It

has been extended to deal with joins by picking alternative join operators and by

migrating them to external servers� Additional optimization rules can be introduced

readily�

��� Prelude to real applications

The simple restricted form of structural recursion that I explore in this dissertation leads

to a rather appealing query language and system� The query language is called CPL� It is

previewed in this section via two example queries which illustrate its 
avor� I then illustrate

its connection to structural recursion by explaining how CPL handles the second example�
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The first example

is a query to �nd employees who are allocated an o�ce O in a buildingX� It can be applied

to any database DB having at least columns �emp� �room� and �bldg� It produces a set of

employees�

primitive inOfficeOInBuildingX �� ��DB� �O� �X� ��

� E 	 ��room
 O� �bldg
 X� �emp
 �E� ���� �
 DB ��

Result 
 primitive inOfficeOInBuildingX registered�

Type 
 ���
���emp
�����bldg
�����room
���� ��������
������
 ����


������

Let me use this example to explain some relevant part of CPL syntax� �A dialect of it can

be found in Buneman� Libkin� Suciu� Tannen� and Wong ������ An expression of the form

p �� e de�nes a function whose input is required to match the pattern p and whose output is

computed by the expression e� In the above example� the input pattern p is ��DB� �O� �X��

which speci�es that the input must be a triple� Pre�xing an identi�er in a pattern with a

slash is CPL�s way of introducing a new variable� Hence this pattern introduces three new

variables DB� O� and X� which bind respectively to the �rst� second� and third components

of the input when the function is applied� In the example� the expression corresponding to

e has the form of a set comprehension�

A set comprehension of the form fe� j q �
 e�g means perform e� on every element of e�

that matches the pattern q and then union the results into a set� In the example above�

e� is the value which DB is bound to �that is� the �rst component of the input to the

function�� Here the pattern q is ��room
 O� �bldg
 X� �emp
 �E� ����� which matches

records having at least �elds �room� �bldg� and �emp� �If the ellipsis is omitted from the

pattern� an exact match is then required�� Moreover� this pattern introduces a new variable

E which is bound to the value associated with the �emp �eld of the record� Notice that

O and X are not slashed in this pattern� That means they are not new variables being

introduced� Rather� it means the value associated with the �room �eld must match whatever
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O is currently bound to �in this case� to the second component of the input to the function�

and the value associated with the �bldg �eld must match whatever X is currently bound

to �in this case� to the last component of the input to the function�� Finally� the e� part

of the comprehension is the expression E� which corresponds to the value at the �emp �eld

of the pattern q� Hence as the pattern q is being matched against each element of e�� e�

extracts the names of employees�

Assuming we have the following database �le of o�ce allocations�

readfile DB from �OffAlloc� using StdIn�

Result 
 File DB registered�

Type 
 ���room
string� �bldg
string� �emp
string� �phone
int��

DB�

Result 
 ���phone
������ �emp
�limsoon�� �bldg
�moore�� �room
�������

��phone
������ �emp
�jong�� �bldg
�moore�� �room
�������

��phone
������ �emp
�jinah�� �bldg
�moore�� �room
�������

��phone
������ �emp
�ben�� �bldg
�moore�� �room
�������

��phone
������ �emp
�chuck�� �bldg
�pender�� �room
�������

Type 
 ���room
string� �bldg
string� �emp
string� �phone
int��

Then we can check who has been given room ��� in the Moore Building �the �
sign is CPL�s

symbol for function application��

inOfficeOinBuildingX � �DB� ������ �moore���

Result 
 ��limsoon�� �jong��

Type 
 �string�

��



The second example

is a query to group together employees who share an o�ce in a given building X� It is

expressed in CPL in the rather simple manner below� It can be applied to any database

DB having at least columns �emp� �room� and �bldg� It produces a nested relation having

columns �room and �occupants� where entries in the latter column are sets themselves�

primitive shareOfficeInBuildingX �� ��DB� �X� ��

� ��room 
 O�

�occupants
 � E 	 ��room
 O� �bldg
 X� �emp
 �E� ���� �
 DB ��

	 ��room
 �O� �bldg
 X� ���� �
 DB ��

Result 
 Primitive shareOfficeInBuildingX registered�

Type 
 ���
���emp
����� �bldg
����� �room
����� ������ ��
�����


����occupants
������� �room
������

Then we can check who shares an o�ce with whom in the Moore Building�

shareOfficeInBuildingX � �DB� �moore���

Result 
 ���occupants
 ��limsoon�� �jong��� �room
 �������

��occupants
 ��jinah�� �ben��� �room
 �������

Type 
 ���occupants
�string�� �room
string��

Let me try to reveal the connection of CPL to structural recursion sru��� f� fg� by explaining

how the query shareOfficeInBuildingX is handled in CPL in the absence of optimization�

The �rst step taken by the CPL compiler is to replace certain enhanced forms of pattern

matching by simpler patterns� Thus the query becomes�

��DB� �X� ��

���room
 O�

�occupants
 �E 	 ��room
 �O�� �bldg
 �X�� �emp
 �E� ���� �
 DB�

O� � O� X� � X ��

��



	 ��room
 �O� �bldg
 �X��� ���� �
 DB� X�� � X ��

The simple patterns are then removed so that the query becomes a pure set comprehension�

�Y ��

���room
 A��room�

�occupants
�B��emp 	 �B �
 Y���� B��room�A��room� B��bldg�Y�����

	 �A �
 Y���� A��bldg � Y��� ��

Finally� set comprehensions are implemented in terms of the primitive sextfe� j nx �
 e�g�

which is precisely our restricted structural recursion sru��� �x�e�� fg��e���

�Y �� sext� if A��bldg � Y���

then ���room
 A��room�

�occupants
 sext� if B��room � A��room

then if B��bldg � Y���

then �B��emp�

else ��

else �� 	 �B �
 Y����

else � � 	 �A �
 Y�����

��� Overview of practical results

There are four practical themes in this dissertation� My work on these these themes is

organized into the following four chapters� one for each theme�

�Monadic� optimizations

Query evaluation has three phases� input� evaluation� output� Query cost has three aspects�

total time� response time� and peak memory usage� The theme of Chapter � is the investiga
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tion of techniques for improving queries over nested collections which takes all three phases

of evaluation and all three aspects of cost into account� In particular� I consider techniques

that are expressible in query languages based on my restricted form of structural recursion�

The main contributions are�

� Structural rewrite rules of su�cient generality to capture fusion of loops� migration

of �lters� etc� in the pure language NRC are given� Most of these rules come directly

from orientating the axioms of NRC in a suitable way which eliminates large interme


diate data� In fact� they form a superset of the rules used in proving the conservative

extension property for NRC�B ����

� The input phase is abstracted as a process of converting input stream into a com


plex object� Scanning constructs are introduced� Rewrite rules for exploiting these

constructs to reduce excessive space consumption caused by loading entire �les are

given�

� The output phase is abstracted as a process for converting a complex object into an

output stream� Printing constructs are introduced� A lazy operational semantics is

suggested for these constructs� Rewrite rules for exploiting these constructs to reduce

space consumption and to improve response time are given� It is interesting to note

that query execution is eager by default and laziness is introduced by these rewrite

rules� This strategy is in contrast to the tradition of lazy languages where execution

is lazy by default and eagerness is introduced by performing strictness analysis �����

Additional optimizations

There exists a large body of literature on optimization in 
at relational system� The theme of

Chapter � is to investigate how some of these optimizations can be applied to my languages�

Flat relational optimizations that I have generalized to my languages are enumerated below�

� Two new constructs are introduced to cache and to index small external relations into
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memory� Rules are suggested for using these new operators in query optimization� An


other new construct is introduced to cache large intermediate data onto disk to avoid

recomputation� Rules are given for using this new construct in query optimization�

� A new construct is introduced to capture the blocked nested
loop join algorithm�

Rules for recognizing whether a nested loop is a join or not and for other general

optimizations involving this new construct are given� Another new construct is intro


duced to capture the indexed blocked
nested
loop join algorithm� Rules for recogniz


ing whether a join condition in a blocked nested
loop join can be indexed or not and

for other general optimizations involving this new construct are given�

� A new construct is introduced to illustrate the use of relational servers as providers

of external data� Rules for moving selection� projection� and join operations to these

servers are given� Another new construct is introduced to illustrate the use of nonrela


tional servers as providers of external data� Rules for moving selection and 
attening

operations to these servers are given�

Performance and experiments

I have implemented many of the optimizations outlined earlier� Several experiments were

performed in part to check the correctness of my implementation and in part to validate the

e�ectiveness of these optimizations� Chapter � is a summary of some of these experiments�

The results support the expectation that the optimizations I have implemented are indeed

optimizations�

Towards a useful query system

I have built an open query system Kleisli and have implemented the collection programming

language CPL� as a high
level query language for it� �Kleisli is just a library of routines

in a host programming language� It is itself neither a query language nor a programming

language� CPL is a particular high
level syntax for manipulating collections� This syntax
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is interpreted in terms of the routines provided in Kleisli� In other words� CPL is a query

language for Kleisli�� The openness of Kleisli allows the easy introduction of new primitives�

optimization rules� cost functions� data scanners� and data writers� Furthermore� queries

that need to freely combine external data from di�erent sources are readily expressed in

CPL� I claim that Kleisli� together with CPL� is a suitable tool for querying heterogenous

data sources� Chapter � presents an overview of Kleisli and several examples towards this

claim�

� An extended example is used illustrate the libraries provided in Kleisli for application

programming and for building new primitives� The example is the implementation of

the indexed blocked
nested
loop join operator ������

� Three examples are used to illustrate the ease of adding new data scanners to Kleisli�

Speci�cally� I show how a driver for Sybase servers� a driver for ASN�� ����� servers�

and a sequence similarity package are introduced into Kleisli and CPL�

� Two examples are presented to illustrate the ease of writing new optimization rules for

the extensible optimizer of Kleisli� I show how to describe a rule for turning a blocked

nested
loop join into an indexed blocked
nested
loop join and a rule for pushing join

operations on external data to their source servers�

��� A real application to query genetic databases

Kleisli ���� is a query system whose most outstanding feature is its openness� new primitives�

new optimization rules� new cost estimation functions� new data readers and writers can all

be dynamically added to the system� The collection programming language CPL has been

built on top of Kleisli and serves as its high
level query language� The openness of Kleisli

allows easy connection to several genetic databases and their associated tools� A partial

list of these databases and tools include GDB ������ NCBI ASN�� ������ Sortez ����� Entrez

������ and BLAST ���� These can then be freely combined in any CPL queries�
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In Spring ����� the Department of Energy published a report ���� which listed twelve

�impossible	 genomic data retrieval problems� These were thought to be impossible because

they involve the integration of databases� structured �les� and applications  something

well beyond the capabilities of any existing heterogenous database system� A colleague from

the genetic department at Penn and I have succeeded in implementing many of these hard

queries using CPL� I now present an extended example to demonstrate the possibility of

using CPL as a general query language for genetic databases�

The example

is the following problem� which is quite typical of the so
called impossible queries�

Find information on the known DNA sequences on chromosome ��� as well as

information on homologous sequences in this area�

To tackle this problem� access to GDB� Sortez� and Entrez is needed� GDB is the main

Sybase relational database� I use it for obtaining marker information for the region in

question� This database is located in Baltimore and has to be accessed remotely� Entrez is

a special collection of tools for the NCBI ASN�� database� I use it for accessing precomputed

links to retrieve homologous sequences� This database is stored on a CD
ROM connected

directly to my machine at Penn�s computing department� As GDB and Entrez use di�erent

identi�ers� a third database is needed to look up the alternative names� I use Sortez� a

home
brew Sybase derivative of the MEDLINE portion of NCBI ASN��� for this purpose�

Sortez is located at Penn�s genetic department and has to be accessed remotely� All three

of them are available in CPL as external primitives�

The primitive for accessing GDB

is the function GDB� This function takes in a string� It sends this string as a Sybase query

to the GDB server� The result is then returned as a set of records of the appropriate type�
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See Section ��� for its implementation�

Our example requires us to retrieve from GDB genetic records within a certain range� This

is accomplished by de�ning a new primitive Loci�� in terms of GDB as below�

primitive Loci�� �� GDB �

�select distinct

genbank�ref� locus�symbol� loc�cyto�chrom�num�

rtrim�loc�cyto�band�start���
��rtrim�loc�cyto�band�end��

loc�cyto�band�start�sort� loc�cyto�band�end�sort

from

locus� locus�cyto�location� object�genbank�eref

where

locus�locus�id�object�genbank�eref�object�id and

object�genbank�eref�object�id � locus�cyto�location�locus�id

and object�class�key � � and loc�cyto�chrom�num � ����

order by loc�cyto�band�start�sort�loc�cyto�band�end�sort��

When Loci�� is invoked� a set of records beginning with the following two is returned�

���genbank�ref
 �M������� �locus�symbol
 �D��Z���

�loc�cyto�chrom�num
 ����� �bogus�
 �cen
��

�loc�cyto�band�start�sort
 ������� �loc�cyto�band�end�sort
 ��������

��genbank�ref
 �M������� �locus�symbol
 �D��Z���

�loc�cyto�chrom�num
 ����� �bogus�
 �cen
��

�loc�cyto�band�start�sort
 ������� �loc�cyto�band�end�sort
 ��������

����
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The primitive for accessing Sortez

is the function Sortez� This function takes in a string� It sends this string to the Sortez

server as a Sybase query� The result is returned as a set of records� See Section ��� for its

implementation�

Our example requires us to de�ne a function CurrentACC which takes in a GenBank ref


erence and returns all its alternative identi�ers� This function is implemented by look


ing the aliases up in Sortez as follows� ��� it takes in a string x� ��� it appends x

to the string select locus� accession� title� length� taxname from gb�head�accs

where pastaccession � to form a Sybase query� and ��� passes the query to Sortez� �The

symbol o is CPL�s symbol for function composition� The � sign is the string concatenation

operator��

primitive CurrentACC �� Sortez o

��x �� �select locus� accession� title� length� taxname

from gb�head�accs

where pastaccession � �� � x � ���� �

For example� CurrentACC � �M������ returns the singleton set below�

���locus
 �HUMAREPBG�� �accession
 �M�������

�length
 ���� �taxname
 ���

�title
 �Human alphoid repetitive DNA repeats ��� monomer�

clone alpha
RI����� ��
��
I
�����

The primitive for accessing Entrez

is the function EntrezLinks� which takes in an identi�er string and returns a set of genes

that are within a certain homological distance of the gene identi�ed by the input string�

See Section ��� for its implementation�
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For example� EntrezLinks � �M������ gives us the following set of records�

���ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCI��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
X������ ��
��� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCA��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
��� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPBS��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
�� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCQ��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMASATAB��

�title
 �Human alpha satellite DNA sequence����

The CPL query implementing the example

For the purpose of clarity� let me �rst de�ne a primitive for extracting similar genes�

primitive Homologs �� �id ��

��x� EntrezLinks � y� 	

�x  ��accession
 �y����� �
 CurrentACC � id ��

The meaning of this query is as follow� Given input identi�er id� iterate over the set

CurrentACC � id� Bind x to each successive record� Bind y to the �accession �eld of the

record� Return the pair �x� EntrezLinks � y� at each iteration� Therefore� this query

returns all data that are similar to the gene identi�ed by id and groups the data with

respect to its aliases�
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As EntrezLinks � y returns a set� the output of this query is a nested relation� Indeed�

Homologs � �M������ gives the expected singleton set below� where the second �eld of the

single record in the output is itself a set of records�

����
 ��locus
 �HUMAREPBG�� �accession
 �M�������

�length
 ���� �taxname
 ���

�title
 �Human alphoid repetitive DNA repeats ��� monomer�

clone alpha
RI ����� ��
��
I
�����

��
 ���ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCI��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
X������ ��
��� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCA��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
��� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPBS��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
�� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMAREPCQ��

�title
 �Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
� III����

��ncbi�id
 ��� �linkacc
 �M������� �locus
 �HUMASATAB��

�title
 �Human alpha satellite DNA sequence������

The function Homologs can now be used as a subquery in the �nal solution to our problem�

We just apply it to each record returned by Loci�� using a simple comprehension as below�

� �x� Homologs � id� 	 �x  ��genbank�ref
 �id� ���� �
 Loci�� ��

The result is a nested relation of nested relations� For completeness� the �rst record of the

output of this query is display below�
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����
��genbank�ref
�M������� �locus�symbol
�D��Z���

�loc�cyto�chrom�num
����� �bogus�
�cen
��

�loc�cyto�band�start�sort
�������

�loc�cyto�band�end�sort
��������

��
����
��locus
�HUMAREPBG�� �accession
�M�������

�length
���� �taxname
���

�title
�Human alphoid repetitive DNA repeats ��� monomer�

clone alpha
RI����� ��
��
I
�����

��
���ncbi�id
��� �linkacc
�M������� �locus
�HUMAREPCI��

�title
�Human alphoid repetitive DNA repeats �� monomer�

clone alpha
X������ ��
��� III����

��ncbi�id
��� �linkacc
�M������� �locus
�HUMAREPCA��

�title
�Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
��� III����

��ncbi�id
��� �linkacc
�M������� �locus
�HUMAREPBS��

�title
�Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
�� III����

��ncbi�id
��� �linkacc
�M������� �locus
�HUMAREPCQ��

�title
�Human alphoid repetitive DNA repeats �� monomer�

clone alpha
T������ ��
� III����

��ncbi�id
��� �linkacc
�M������� �locus
�HUMASATAB��

�title
�Human alpha satellite DNA sequence��������

����

The performance� measured on a SuperSPARC Server� of our prototype on this example

is reasonable� The �rst record of the output was displayed within seconds and the whole

query was completed in �� minutes by the wall clock� It should also be pointed out that it

took us less than � minutes to compose and write down our example query  largely due to

the fact that external databases and their tools can be freely combined in a compositional

manner in CPL� Hence the entire process of composing the query and executing it was
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accomplished in �� minutes�

��� Statement

This dissertation is drawn from several joint works with my colleagues� The theoretical

chapters contain results from the papers of Buneman� Libkin� Naqvi� Subrahmanyam� Suciu�

Tannen� and myself ���� ��� ��� ���� ���� ���� ���� ���� The practical chapters contain

material from the working notes that Hart and I wrote ���� ��� ��� ���� Lest I forget to

indicate their contributions in speci�c places later on� let me enumerate them now�

Section ��� contains many ideas which can mostly be attributed to Buneman� Tannen�

Naqvi� and Subrahmanyam ���� ���� Sections ��� and ��� have their roots in Tannen�

Buneman� and Wong ���� and owe as much to Buneman and Tannen as to myself� Section

��� is taken from Libkin and Wong ����� and owes as much to Libkin as to myself� Section

��� is founded on the linear
order
lifting trick taught to me by Libkin ������ Section ��� is

a theorem which was �rst proved by Libkin ������ That my proof of the �nite
co�niteness

of k
multi
cycle queries in Section ��� applies verbatim to k
strict
binary
trees was �rst

noticed by Libkin ������ Finally� the idea in Chapter � of indicating the introduction of a

new variable in CPL by a slash is due to Buneman�

Section ��� is taken from Hart and Wong ����� the prose is mine but the example itself �as

are all other examples of biological queries� is due to Hart� Chapter � is based on Hart

and Wong ���� ���� Hart deserves as much credit as I do in connecting Kleisli to so many

biomedical systems� All C programs mentioned there� as well as part of the prose� are due

to him� All ML programs mentioned there� as well as the design and the implementation

of Kleisli� are due to me� Section ��� is based on an abstract of Buneman� Hart� and myself

����� the vision presented there owes as much to Buneman and Hart as to myself�

Chapter � contains no new idea� It is included in this dissertation for the following three

reasons�
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� Several members on my proposal committee pressured me to consider the kind of

optimizations mentioned there� The wisdom in this should be attributed to them�

� As the theory I am proposing is new� I think I should at least show that it does not

hinder the application of known optimization techniques�

� The theme of my implementation in Chapter � is not the implementation of CPL�

the real theme is extensibility or openness� Such a property is best demonstrated

by showing how easy it is to extend the basic system� The classical operators and

optimization rules are examples which most database practitioners are familiar with�

Thus I use them for this purpose and so I present them in this unoriginal Chapter �

in preparation for this ultimate purpose�

Chapter � is a collection of notes on experiments and thus contains nothing original� It is

included in this dissertation for three reasons�

� To show that the prototype is working�

� To provide an idea of the performance of my prototype�

� To help illustrate the e�ect of the optimization rules of Chapters � and ��

All remaining results� opinions� and faults in this dissertation are my own�
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Part II

A logician�s idle creations
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Chapter �

Querying Nested Relations

What is� was� or has been is not necessarily desirable� Sidney Hook

When relational databases were introduced by Codd ����� a �rst
normal
form restriction

was imposed on them� That is� the components of tuples in a relation were required to

be atomic values� This constraint is considered unacceptable in many modern applications

����� ���� ���� ���� ���� Subsequently� many nested relational databases were introduced�

The earliest of these was probably by Jaeschke and Schek ����� who allowed the components

of tuples to be sets of atomic values� That is� nesting of relations was restricted to two

levels� This restriction was relaxed by Thomas and Fischer ������ who allowed relations to

be nested to arbitrary depth� Their algebraic query language consisted of the operators of


at relational algebra generalized to nested relations together with two operators for nesting

and unnesting relations� However� their operators can only be applied to the outermost level

of nested relations� Before a deeply nested relation could be manipulated� it was necessary

to bring it up to the outermost level by a sequence of unnest operations� and after the

manipulation� it was necessary to push the result back down to the right level of nesting

by a sequence of nest operations� This constant need for restructuring was eliminated by

Schek and Scholl ������ who introduced a recursive projection operator for navigation� The

idea of recursive operator was taken further by Colby ����� who made all her operators
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recursive� There were more complicated nested relational languages �such as Roth� Korth�

and Silberschatz ������ see also the comments of Tansel and Garnett ������� which I prefer

not to describe�

The design of nested relational query languages seems to be following a trend of increasing

complexity� However� the increase in complexity is not always rewarded with an increase in

expressive power� Speci�cally� the algebras of Thomas and Fischer ������ Schek and Scholl

������ and Colby ���� are all equivalent in expressive power� This complexity is an indication

that some important simplifying concepts are lacking in the design of these languages� This

chapter considers the use of NRC� a calculus inspired by the categorical notion of a monad�

as a nested relational language�

Organization

Section ���� A language based on restricting structural recursion on sets to sru��� f� fg�

is presented� This is the monad calculus initially proposed by Tannen� Buneman� and

myself ���� and is referred to here as NRC� NRC follows the programming language

design principle of assigning to each fundamental type construction in the language a set

of canonical operators and allowing these operators to be freely mixed� As a result� a full

description of NRC can be presented in two pages�

Section ���� A fully algebraic version of NRC� based on a more abstract presentation of

monads� is given in this section� Functions de�nable in the algebra are shown to have poly


nomial time complexity� The equivalence between these two formulations are sketched� A

large part of the proof is entirely equational� In contrast� the usual proof of equivalence

between the relational algebra and the relational calculus is justi�ed semantically� I use

mainly NRC in this report� as it exhibits a good balance between abstractness and con


creteness that is particularly suitable here� The algebraic version is more convenient for

investigating the relationship between my languages and other nested relational algebras

and I use it for this purpose in this chapter�
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Section ���� Variants or tagged
unions are a useful data modeling concept ����� and are

ubiquitous in modern programming languages ����� I describe how they can be added

to NRC� The main result of this section is that variants do not change the expressive

power of NRC in any essential way� A corollary of this result is that adding booleans and

the conditional construct to NRC does not greatly a�ect its expressive power� The most

interesting aspect of this result is its entirely equational proof� Few other nested relational

query languages possess an equational theory strong enough for such a proof� This proof

demonstrates the power of NRC�s principled design over more ad hoc designs of many other

nested relational languages�

Section ���� As it stands� NRC cannot express any non
monotonic operators such as the

equality test� However� common non
monotonic operators such as the equality test� the

membership test� the subset test� set intersection� set di�erence� and relational nesting are

inter
de�nable using NRC as the ambient language� Since adding such operators to NRC

does not take it out of polynomial time� this result strengthens a similar result of Gyssens

and Van Gucht ����� who proved the inter
de�nability of these operators in the presence

of the costly powerset operator� For this reason� this report uses the more convenient

NRC�B ��� as its ambient language�

Section ��	� As mentioned earlier� the nested relational languages of Thomas and Fischer

������ Schek and Scholl ������ and Colby ���� are equivalent in expressive power� I extend this

result by proving that NRC�B ��� is also equivalent to these languages� Then I argue that

NRC�B ��� can be pro�tably regarded as the �right	 core for nested relational languages�

I believe my results in this and in subsequent chapters are a convincing basis for this claim�

��� A query language based on the set monad

Structural recursion is a uniform paradigm for computing with collection types such as

sets� bags� and lists� Tannen and Subrahmanyam ���� investigated the semantic aspect of

structural recursion over sets� bags� and lists� They showed that certain preconditions must
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be satis�ed for structural recursion to be well de�ned� Tannen� Buneman� and Naqvi ����

demonstrated the connection of structural recursion to database query languages� They

showed that by imposing suitable restrictions on structural recursion� a language equivalent

to the traditional relational query language can be obtained� Tannen� Buneman� and I

���� restricted structural recursion in a di�erent but more natural way that cuts structural

recursion on sets down to homomorphisms over the set monoid �that is� the monoid with

sets as objects� fg as the identity� and � as the binary operator��

The restricted form of structural recursion of Tannen� Buneman� and myself ���� results in

an iteration mechanism on sets that corresponds to the central transformation on Kleisli

triples ������ There is a natural correspondence between Kleisli triples and monads ������

Inspired by Moggi ������ Tannen� Buneman� and I ���� derived a calculus based on Kleisli

triples and an algebra based on monads for querying nested relations� We showed� amongst

other things� that the calculus and the algebra are equivalent� Inspired by the work of

Wadler on monad comprehension ������ I presented ����� an equivalent language in the

comprehension style�

In this section� I present the calculus� which I named NRC� The algebra is presented in

the next section� The presentation of the comprehension language is delayed until Chapter

�� The calculus exhibits a good balance between the abstract and the concrete and is

particularly suitable for my work in all subsequent chapters� The algebra is more abstract

and is especially handy for the remainder of this chapter which studies the relationship

between my languages and existing nested relational algebras� The comprehension version

is most convenient for writing programs and is used as the basis for CPL� a practical by


product of this dissertation�

The types in NRC

are either complex object types or are function types s � t where s and t are complex

object types� The complex object types are given by the grammar below�

s� t ��� b j unit j s� t j fsg

��



The semantics of a complex object type is just a set of complex objects� An object of type

s � t is a pair whose �rst component is an object of type s and whose second component

is an object of type t� An object of type fsg is a �nite set whose elements are objects of

type s� The type unit has precisely one object� which I denote ��� There are also some

unspeci�ed base types b�

The expressions of NRC

are given in Figure ��� together with their typing rules� The type superscripts are usually

Lambda Calculus and Products

xs � s

e � t

�xs�e � s� t

e� � s� t e� � s

e� e� � t

�� � unit

e� � s e� � t

�e�� e�� � s� t

e � s� t

�� e � s

e � s� t

�� e � t

Set Monad

fgs � fsg

e � s

feg � fsg

e� � fsg e� � fsg

e� � e� � fsg

e� � fsg e� � ftg
S
fe� j xt � e�g � fsg

Figure ���� The expressions of NRC�

omitted elsewhere in this report because they can be inferred ������ �In fact� they remain

inferrable even when records instead of pairs are used� See Ohori ������ Ohori� Buneman� and

Tannen ������ Jategaonkar and Mitchell ������ Remy ������ etc�� The usual convention that

bound variables are all distinct is adopted� Note also that I use the construct
S
fe� j x � e�g

��



instead of the equivalent ext��x�e���e�� construct of Tannen� Buneman� and myself ����� In

later chapters� this basic language is extended by the introduction of new constants c of

complex object type Type�c� and new primitives p of function type Type�p��

The semantics of these constructs are described below� The expression �x�e denotes the

function f such that f�x� � e� The expression �e�� e�� denotes the pair whose �rst com


ponent is the object denoted by e� and whose second component is the object denoted by

e�� It has already been mentioned that �� denotes the unique object of type unit � The

expression �� e denotes the �rst component of the pair denoted by e� The expression �� e

denotes the second component of the pair denoted by e� The expression e� e� denotes the

result of applying the function e� to the input e��

The expression fg denotes the empty set� The expression feg denotes the singleton set

containing the object denoted by e� The expression e� � e� denotes the union of the sets

e� and e�� The expression
S
fe� j x � e�g denotes the set obtained by �rst applying the

function �x�e� to each object in the set e� and then taking their union� that is�
S
fe� j x �

e�g � f�o�� � � � � � f�on�� where f is the function denoted by �x�e� and fo�� � � � � ong is the

set denoted by e�� In other words�
S
fe� j x � e�g is really our restricted structural recursion

sru��� �x�e�� fg��e���

Note that the x � e� part in the
S
fe� j x � e�g construct is not a membership test� It is

an abstraction that introduces the variable x whose scope is the expression e�� It should be

understood in the same spirit in which the lambda abstraction �y�e is understood�

The
S
fe� j x � e�g construct is the sole means in NRC for iterating over a set� More

to the point�
S
fe� j x � e�g is precisely the restricted form of structural recursion

sru��� �x�e�� fg��e��� It endows NRC with some basic capability for structural manipu


lations of nested relations� For example� the cartesian product of two sets X and Y can

be de�ned as cartprod�X�Y � �
S
f
S
ff�x� y�g j x � Xg j y � Y g� As a second exam


ple� the 
attening of a nested set X can be de�ned as flatten�X� �
S
fx j x � Xg�

As a last example� the projection of the �rst column of a relation X can be de�ned as

!��X� �
S
ff�� xg j x � Xg�

��



The philosophy behind the design of NRC is very di�erent from that of traditional query

languages such as the 
at relational algebra� The 
at relational algebra is a rather ad

hoc language and the only interesting thing about it is that it captures �rst
order logic�

In contrast� the design of NRC follows very much in the spirit of Reynolds ����� and

Cardelli ����� Each distinct type construction in NRC is associated with a number of

canonical assembly and dissembly operations that characterize the type construction in a

universal sense� function abstraction and application for the arrow types� pair formation

and projections for the tuple types� and set formations and iteration for the set types� The

language is formed by allowing these constructs to be freely combined� provided typing

constraints are satis�ed� This philosophy on the design of modern programming languages

can be seen in many books such as Gunter ����� Schmidt ������ etc� Indeed� one �nds that

the complaints of Codd ���� ��� and Date ���� ��� on the de facto query language SQL �����

cannot be applied to NRC�

An equational theory for NRC

The axioms for NRC are listed below� The re
exivity� symmetry� transitivity� congruence�

and identities for fg and e��e� have been omitted� These axioms are the inspiration for the

rewrite system used in Chapter � for proving the conservative extension property of NRC

and in Chapter � for designing the pipelining rules in my optimizer� In the presentation of

these rules� I write e��e��x� for the expression obtained by replacing all free occurrences of

the variable x in the expression e� by the expression e��

� ��x�e���e�� � e��e��x�

� �x�e x � e� if x is not free in e�

� ���e�� e�� � e�

� ���e�� e�� � e�

� ��� e� �� e� � e

� e � ��� if e � unit �

�
S
fe� j x � fe�gg � e��e��x�

�
S
ffxg j x � eg � e

�
S
fe� j x �

S
fe� j y � e�gg �

S
f
S
fe� j x � e�g j y � e�g

These axioms are sound for NRC� That is�

��



Proposition ����� Let e� and e� be two NRC expressions� Suppose there is a proof of

e� � e� using the axioms above� Then indeed e� � e� in our set�theoretic semantics� �

In this dissertation� I use e� � e� to for all of the following situations� ��� e� and e� denote

the same value� ��� a syntactic expression in my languages� and ��� the equality of e� and

e� can be proved in the equational theories given in this dissertation� I rely on context to

distinguish between the �rst sense and the second sense above� I always explicitly indicate

the third sense as in Proposition ����� above� For simplicity� most of the soundness results

are stated semantically� even though many parts of their proofs factor through the soundness

result of Proposition ����� above�

��� Alternative �monadic	 formulation of the language

There is a natural correspondence between Kleisli triples and MacLane�s monads� see Manes

����� for instance� While Kleisli triples correspond to the calculus NRC� monads corre


spond to an algebra I name NRA here� This section presents the algebra� shows that it is

polynomial
time bounded� and demonstrates its equivalence to NRC�

The expressions of NRA

are given in Figure ��� together with their typing rules� The meanings of these operators are

as follow� The expression id is the identity function� The expression g�h is the composition

of functions g and h� that is� �g �h��x� � g�h�x��� The expression " is the terminator� hence

"�x� � ��� The expressions �� and �� are respectively the �rst and the second projection on

pairs� The expression hg� hi is pair formation� that is� hg� hi�x� � �g x� h x��

The expression � forms singleton set� that is� ��x� � fxg� The expression Kfg forms

empty set� that is� Kfg�� � fg� The expression � is the set union function� The ex


pression � 
attens a set of sets� that is� �fX�� � � � �Xng � X� � � � � � Xn� The expression

	� is the tensor function that pairs an object with every objects in a given set� that is�

��



Category with Products

K xs � unit � s ids � s� s

g � s� t h � r � s

g � h � r � t

"s � s� unit �s�t� � s� t� s �s�t� � s� t� t

g � r � s h � r � t

hg� hi � r � s� t

Set Monad

�s � s� fsg �s � ffsgg � fsg

f � s� t

map�f� � fsg � ftg

	s�t� � s� ftg � fs� tg Kfgs � unit � fsg �s � fsg � fsg � fsg

Figure ���� The expressions of NRA�

	��x� fx�� � � � � xng� � f�x� x��� � � � � �x� xn�g� The expressionmap�f� is the function which ap


plies f to every element in the input set� that is� map�f�fx�� � � � � xng � ff�x��� � � � � f�xn�g�

The variables x of NRC correponds one
to
one to expressions Kx in NRA� In addition�

for each new primitive function p � s � t to be added to NRC� p is added to NRA as an

additional primitive� Also� for each new constant c � s to be added to NRC� a constant

function Kc � unit � s is added to NRA�

Note that all expressions in NRA have function types s � t� Another interesting obser


vation is that FQL ����� a language designed for the pragmatic purpose of communicating

with network databases� was based roughly on the same set of operators as NRA�

��



It is easy to see that for any reasonable de�nition of complex object size� NRA is always

polynomial
time computable� A similar theorem can be proved for NRC� In fact� a stronger

version� where polynomiality under a speci�c operational semantics� can also be proved�

Theorem ����� Let every additional primitive function p be computable in polynomial time

with respect to the size of its input� Then every function de
nable in NRA is computable

in polynomial time with respect to the size of its input�

Proof� For any morphism expression f � a time
bound function jf j � N � N is given by

jf j�n� �

�������������
������������

jgj�n� � jhj�n� if f is hg� hi

jgj�jhj�n�� if f is g � h

n� jgj�n� if f is map�g�

O�nkp� if f is a primitive function p� bound is by assumption

O�n� otherwise

�

An equational theory for NRA

The axioms for NRA are listed below� The re
exivity� symmetry� transitivity� congruence�

and identities for Kfg and � have been omitted� In these axioms� I write �f � g� as a

shorthand for hf � ��� g � ��i and � as a shorthand for h�� � ��� h�� � ��� ��ii�

� f � �g � h� � �f � g� � h

� f � id � f

� id � f � f

� h�� � f� �� � fi � f

� �� � hf� gi � f

� �� � hf� gi � g

� f � "� if f � s� unit �

� map�id� � id

� map�g � f� � map�g� �map�f�

� map�f� � � � � � f

� map�f� � � � � �map�map�f��

��



� id � � � �

� id � � �map���

� � � � � � �map���

� map���� � 	� � ��

� 	� � �id � �� � �

� 	� � �id � �� � � �map�	�� � 	�

� map�f � g� � 	� � 	� � �f �map�g��

� map��� � 	� � 	� � �id� 	��� �

These axioms are sound for NRA� That is�

Proposition ����� Let f and g be expressions of NRA� Suppose there is a proof of f � g

according to the axioms above� Then indeed f � g in our set�theoretic semantics� �

The remainder of this section is devoted to working out the equivalence between NRA and

NRC�

Translating from NRC to NRA

The following translation is due to Tannen and Buneman ����� An expression e � s of NRC

is translated to an expression A�e� � unit � s of NRA� while an expression e � s � t of

NRC is translated to an expression A�e� � s � t of NRA� In order to translate lambda

abstraction� it is necessary to show thatNRA enjoys a combinatorial completeness property

������ Speci�cally� one can express abstraction of variables as a derived operation as follow�

For any expression h � s � t of NRA and for any variable x � r� de�ne an expression


x�h � r � s� t in NRA by


x�h � h � �� if h does not contain Kx


x�Kx � ��


x�hf� gi � h
x�f� 
x�gi


x��g � f� � �
x�g� � h��� 
x�fi


x�map�f� � map�
x�f� � 	�

This operation satis�es the property that� in the equational theory of NRA above� there

is a proof of �
x�h� � hKx � "� idi � h� This property corresponds to the beta
conversion

��



rule of NRC� ��x�e���e�� � e��e��x�� With this� a description of the translation can now

be given�

A���� � id � unit � unit

A�e�� � unit � s A�e�� � unit � t

A��e�� e��� � hA�e���A�e��i � unit � s� t

A�e� � unit � s� t

A��� e� � �� � A�e� � unit � s

A�e� � unit � s� t

A��� e� � �� � A�e� � unit � t

A�e� � unit � t

A��xs�e� � �
x�A�e�� � hid� "i � s� t

A�e�� � s� t A�e�� � unit � s

A�e� e�� � A�e�� � A�e�� � unit � t

A�xs� � K xs � unit � s A�c� � K c � unit � Type�c�

A�p� � p � Type�p�

A�e� � unit � s

A�feg� � � � A�e� � unit � fsg

A��x�e�� � t� fsg A�e�� � unit � ftg

A�
S
fe� j x � e�g� � � �map�A��x�e��� � A�e�� � unit � fsg

A�fgs� �Kfgs � unit � s

A�e�� � unit � s A�e�� � unit � t

A�e� � e�� � � � hA�e���A�e��i

Translating from NRA to NRC

An expression f � s � t in NRA is translated to an expression C�f � � s � t in NRC� A

description of the translation is given below�

C�K x� � �u�x C�K c� � �u�c C�p� � p C�id� � �x�x

C���� � �x��� x C���� � �x��� x C�"� � �x��� C��� � �x�fxg

C�g � f � � �x�C�g��C�f �x� C�hf� gi� � �x��C�f �x� C�g�x�

C�	�� � �x�
S
ff��� x� y�g j y � �� xg C�map�f�� � �x�

S
ffC�f � yg j y � xg

C��� � �x�
S
fy j y � xg C��� � �x���� x� � ��� x� C�Kfg� � �x�fg

��



The equivalence of NRA and NRC

There is an intimate connection between the equational theories NRA and NRC� Namely�

it can be shown that the translations preserve and re
ect these theories� In fact� this result

can be extended by adding arbitrary closed axioms� Similar results hold for the connection

between simply typed lambda calculi and cartesian closed categories �����

Theorem ����� � Let f be an expression in NRA� Then it can be proved in the theory

of NRA that A�C�f �� � f �

� Let e � s be an expression of NRC and x not free in e� Then it can be proved in the

theory of NRC that C�A�e�� � �x�e�

� Let e � s� t be an expression of NRC� Then it can be proved in the theory of NRC

that C�A�e�� � e�

� Let e� and e� be expressions of NRC� Then it can be proved in the theory of NRA

that A�e�� � A�e�� if and only if it can be proved in the theory of NRC that e� � e��

� Let f and g be expressions of NRA� Then it can be proved in the theory of NRC that

C�f � � C�g� if and only if it can be proved in the theory of NRA that f � g� �

As a corollary of Proposition ������ Proposition ����� and Theorem ������ it is readily proved

that the translations preserve semantics� Consequently� the equivalence between NRA and

NRC is proved�

Corollary ����� NRA � NRC in the following sense�

� Let f � s� t be a closed expression in NRA� Then C�f � � f �

� Let e � s� t be a closed expression in NRC� Then A�e� � e�

� Let e � s be a closed expression in NRC� Then A�e� � �x�e� where x � unit is arbitrary�

��



Proof� The �rst item is proved by a routine structural induction on f � For the second item�

let e � s � t be a closed expression in NRC� By Theorem ������ C�A�e�� � e is provable

in the theory of NRC� By Proposition ������ C�A�e�� � e� By the �rst item� we have

C�A�e�� � A�e�� Combining these two� we conclude A�e� � e� The third item is similarly

proved� �

An immediate bene�t of the equivalence of the algebra and the calculus via translations is

that constructs from both formalisms can be freely mixed� This combined language can be

thought of as an extension by syntactic sugar of either the algebra or the calculus� It can

also be regarded as a single formalism whose equational theory is obtained by joining the

theories of NRA and NRC and adding the equations that de�ne the translations between

them� The result is a very rich and semantically sound theory�

��� Augmenting the language with variant types

Flat relations can be very inconvenient for certain applications� The need to encode complex

information into 
at format is sometimes an unnecessary hassle and can cause degradation

in performance� Nested relations were introduced to alleviate the problem to some extent�

see Makinouchi ������ There remains some situations that are unnatural to model using

nested relations� For example� how does one model the address of a person when it can be

in very di�erent formats such as his electronic mail identi�er� his o�ce address� or his home

address#

In the Format data model of Hull and Yap ����� there is a type called the tagged
union�

It is a good solution to the example problem� Intuitively� every object of a tagged
union

carries a tag that indicates how it is injected into the union� Using it� one can de�ne

a contact address to be the tagged
union of electronic mail identi�er� o�ce address� and

home address� Given such a contact address� its tag can be inspected to determine what

kind of address it is before the appropriate processing is carried out� Such an idea was also

present in the more complicated IFO data model of Abiteboul and Hull ����

��



Tagged
unions correspond to variant types in programming languages ���� and to co


products in category theory ����� A variant type s � t is normally equipped with two

assembly operations and one dissembly operation� One of the assembly operation is left �

when it is applied to an object o of type s� it injects o into the variant type by tagging o

with a left
tag� The other assembly operation is right � when it is applies to an object o

of type t� it injects o into the variant type by tagging it with a right
tag� Note that if s

and t are the same type� then for each object o in s� there is an object left o and an object

right o in s � t that correspond respectively to the left
tagged and right
tagged version of

o� The dissembly is �f j g�� when it is applied to the left
tagged left o� it strips the tag and

then applies f to o� when it is applied to the right
tagged right o� it strips the tag and then

applies g to o�

This section adds variant types to NRA and to NRC� Then I prove that the presence of

variants contributes insigni�cantly to the expressive power of these languages� In fact� they

add no expressive power when only functions of type s� ft�g�� � ��ftng are considered� For

this reason variants are subsequently omitted from all my theoretical results on expressive

power� However� being equally expressive does not mean being equally convenient� For this

reason� I allow them to re
emerge in Chapter � in the design of the concrete query language�

Also� a limited form of variants� in the guise of the if 
then
else construct� is used as part

of NRC for the same reason in all subsequent chapters�

Syntax and axioms for variants in NRA

Let me write NRA� for NRA extended with variants� The additional expressions for

NRA� are listed in Figure ���� The meaning of the top three constructs have already

been explained in the introduction to this section� The �� primitive prescribes the interac


tion between pairs and variants� It is the function such that ���x� left y� � left�x� y� and

���x� right y� � right�x� y��

The additional axioms for NRA� are given below� The �rst three are the usual ones for

variants� The remaining �ve axiomatize the distribution of pairs into variants�
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lefts�t � s� t rights�t � s� t

f � s� t� r g � s� t� r

�f j g� � s� t� r

�r�s�t� � r � �s� t�� �r � s� � �r � t�

Figure ���� The variant constructs of NRA��

� �g � left j g � right� � g

� �g j f� � left � g

� �g j f� � right � f

� �left � �� j right � ��� � �� � ��

� ��� j ��� � �� � ��

� �� � �id� left� � left

� �� � �id� right� � right

� ����f��right �g j left �h�� � �right �

�f � g� j left � �f � h�� � ��

Despite their apparent simplicity� these equations for NRA� are su�ciently strong for

proving a large number of identities� Let me list three here� �f � g j f � h� � f � �g j h��

��f � g� j �f � h�� � �� � �f � �g j h��� and �� � �f � �left � g j right � h�� � �left � �f �

g� j right � �f �h��� The �rst one reveals that �� � �� distributes over �� j ��� The second one

shows the absorption of ��� The third one illustrates the naturality of ���

Syntax and axioms for variants in NRC

Let me write NRC� for NRC extended with variants� The additional constructs of NRC�

are given in Figure ���� The left and right constructs have analogous meanings to the

algebraic version� The semantics of case e� of left x do e� or right y do e� is as follow� if

e� is an object left o� then the meaning of the whole expression is the object obtained by

applying �x�e� to o� if e� is an object right o� then the meaning of the whole expression is

the object obtained by applying �x�e� to o�
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e � s

left te � s� t

e � t

rightse � s� t

e� � s� t e� � r e� � r

case e� of left xs do e� or right yt do e� � r

Figure ���� The variant constructs of NRC��

The additional axioms for NRC� are listed below�

� �case left e� of left x do e� or right y do e�� � e��e��x�

� �case right e� of left x do e� or right y do e�� � e��e��x�

� �case e� of left x do e��left x� or right y do e��right y�� � e� e�� if x and y are not

free in e��

� �case �case e of left x� do e� or right x� do e�� of left x� do e� or right x� do e�� �

�case e of left x� do �case e� of left x� do e� or right x� do e�� or right x� do �case e�

of left x� do e� or right x� do e���� if x� and x� not free in e� and e� and x� and x�

not free in e��

These identities are the usual ones for variant types in lambda calculi� Let me pro


vide two examples of the useful and interesting identities I have derived� The �rst

one corresponds to a rule for migrating a piece of invariant code out of a loop�
S
f�case e� of left x do e� or right y do e�� j z � e�g � case e� of left x do

S
fe� j z �

e�g or right y do
S
f e� j z � e�g� where x and y not free in e� and z not free in e�� The sec


ond example is actually a kind of �lter promotion� �e��case e� of left x do e� or right y do

e�� � case e� of left x do e e� or right y do e e�� if x and y not free in e�

��



Equivalence of NRA and NRC in the presence of variants

Now we need to extend the translations between NRA and NRC to deal with these new

variant constructs� Three changes are requred�

First� we modify the de�nition for 
x�h� which translates the abstraction of variables� For

the case when h is left � right � ��� or �f j g� such that Kx does not occur in f and g� the

existing de�nition can be used� Speci�cally� 
x�h � h � ��� For the case of �f j g� and Kx

occurs in f or in g� then 
��f j g� � �
x�f j 
x�g� � ���

Second� we modify the de�nition of A���� which translates an expression of the calculus

to an expression of the algebra� A�left e� � left � A�e�� A�right e� � right � A�e�� and

A�case e� of left x do e� or right y do e�� � �A��x�e�� j A��y�e��� � A�e���

Third� we modify the de�nition of C���� which translates a morphism of the alge


bra to an expression of the calculus� C�left � � �x�left x� C�right � � �x�right x�

C��f j g�� � �x�case x of left y do C�f ��y� or right z do C�g��z�� and� C���� �

�x�case �� x of left y do left��� x� y� or right z do right��� x� z��

The extended translations have the desirable property of preserving and re
ecting the equa


tional theories of NRA� and NRC�� In other words� a result analogous to Theorem �����

can be proved� Hence we conclude� in the same sense as Corollary ������

Proposition ����� NRA� � NRC�� �

Equivalence of NRA with and without variants

I now prove that NRA� and NRA have the same expressive power� Instead of giving a

semantic
based argument� a more interesting proof that is entirely equational is given� As a

consequence� this argument works even when the set
theoretic semantics for our languages

is replaced by some other kind of semantics� This proof requires several preliminary de�ni


tions� First extend NRA� with an extra operator decollects � fsg � s that is required to

��



satisfy the equation� decollect � � � id� Note that decollect can be realized by any function

that� on singleton input� returns the unique element in the input set� I denote NRA so

extended with decollect by NRA�decollect�� This convention of explicitly listing additional

primitives is used throughout the dissertation�

De�ne s� by induction on s as follows�

� b� � fbg�

� unit � � funitg�

� �s� t�� � fs� � t�g�

� �s� t�� � f�s� � funitg�� �t� � funitg�g� and

� fsg� � ffs�gg�

De�ne �s � s� s� by induction on s as follows�

� �unit � ��

� �b � ��

� �s�t � � � ��s � �t��

� �fsg � � �map��s�� and

� �s�t � � � �F j G�� where F � hh�s� �� "i� hKfg� "� Kfg� "ii and G �

hhKfg� "� Kfg� "i� h�t� �� "ii�

De�ne ��
s � s

� � s by induction on s as follows�

� ��
unit � decollect�

� ��
b � decollect�

� ��
s�t � ��

�
s � ��

t� � decollect�

��



� ��
fsg � map���

s� � decollect� and

� ��
s�t � �left � ��

s � �� j right � ��
t � ��� � decollect � � � �C �D� � decollect�

where C � 	� � �left � id� and D � 	� � �right � id��

Essentially� �s and �
�
s form an encode
decode pair� The former encodes objects of type s�

which may contain variants� into objects of type s�� which contain no variants� The latter

decodes the encoded objects to obtain the original objects� The encoding
decoding process

is lossless�

Lemma ����� There is a proof in the equational theory of NRA�decollect� that ��
s ��s �

id� �

Let s be a type not involving variants� De�ne 
s � s
� � fsg by induction on s as follows�

� 
unit � id�

� 
b � id�

� 
s�t � � � map�cartprod � �
s � 
t��� where cartprod � � � map�	�� � 	�� and

� 
fsg � � � � � map�� � map�
s���

Essentially� 
s is a special decoding function for types which do not involve variants� Its

most important property is that decollect does not occur in its de�nition� The encoding


decoding process is also lossless� except that the decoded result is placed in a singleton

set�

Lemma ����� Let s be a type not involving variants� Then there is a proof in the equational

theory of NRA that 
s � �s � �� �

Assume that for each unspeci�ed primitive p in NRA�� Type�p� does not involve variants�

Then

��



Theorem ����� For each expression f � s� t in NRA�� there is an expression f � � s� � t�

in NRA such that the diagram below commutes in the theory of NRA��decollect��

s
f � t

id� t

s�

�s
�

f �
� t�

�t
�

id
� t�

��
t

�

Proof� The left square commutes by de�ning f � by induction on the structure of f as

follow� where I write � as a shorthand for the inverse of ��

� Kc� � map�Kc�

� id� � id

� "� � map�"�

� hf� gi� � � � hf �� g�i

� �f � g�� � f � � g�

� Kfg� � map�Kfg�

� �map f�� � map�mapf ��

� �� � � � �

� �� � map�� � map����

� �� � map��� �map��� ��

� 	�� � map�	� � �id� ���

� ��� � � � map����

� ��� � � � map����

� left � � � � hhid� � � "i� hKfg� "� Kfg� "ii

� right � � � � hhKfg� "� Kfg� "i� hid� � � "ii

� �f j g�� � � � map�� � � � ��map���� �

	� � �f �� id��� �map���� � 	� � �g�� id����

� �� � map�h!��!�i�h!��!�i� � map�	��	�� �

map�� � �� � maph�id � ���� �id � ���i �

� � map�	��� where �� h�� � ��� ��� � id�i

and !i � map��i��

� p� � � � map��t� � map�p� � 
s� where

Type�p� � s� t�

The right square commutes by Lemma ������ Hence the theorem holds� �

As a consequence of Theorem ������ NRA� and NRA have the same expressive power

modulo the encoding and decoding functions � and ��� Hence in order to use NRA to

�compute	 an expression f de�nable inNRA�� the input and output must be appropriately

encoded and decoded� If the type of f involves no variant types� such encoding and decoding

��



can be done away with�

Corollary ����� NRA � NRA� in the following sense� Let f be an expression of NRA��

Let s and t be two types involving no variants� If f � s � t� then there is an expression

g of NRA such that there is a proof in the equational theory of NRA� that g � � � f �

If f � s � ftg� then there is an expression h of NRA such that there is a proof in the

equational theory of NRA� that f � h�

Proof� De�ne g � 
t � f
� ��s� By Theorem ������ g � 
t ��t � f is provable in NRA�� By

Lemma ������ g � � � f is provable in NRA�� The �rst item is thus proved� The second

item follows immediately by de�ning h � � � g� �

Since we know that NRA � NRC and that NRA� � NRC�� Corollary ����� immediately

gives us NRC � NRC� under the same conditions� That is� NRC is equivalent to NRC�

over the class of functions f � s � ftg� where s and t involve no variants� This result is

easily generalized to the class of functions f � s� ft�g � � � �� ftng�

Let NRC extended with the usual boolean type B and associated constructs true� false�

and if 
then
else be denoted NRC�B �� It is easy to see that these boolean constructs

can be considered as a special case of variants as follow� Identify B with unit � unit �

Identify true with left��� Identify false with right��� Identify if e� then e� else e� with

case e� of left x do e� or right y do e�� Therefore� we immediately obtain� in the same

sense as Corollary ������

Corollary ����� NRC � NRC�B �� �

��� Augmenting the language with equality tests

As it stands� NRC can perform many structural manipulations on nested relations� It is

not yet adequate as a nested relational query language� In particular� it cannot express

��



any non
monotonic operations� �A monotonic operation� in the usual database sense� is an

operation that preserves the inclusion ordering on sets�� To see this� let 
s � fsg�fsg � fsg

be the function that computes set intersection� Then

Proposition ����� NRC cannot express 
s�

Proof� De�ne an ordering vs on complex objects of type s inductively�

� For base types� o vb o

� For pairs� pairwise ordering is used� �o�� o�� vs�t �o
�
�� o

�
�� if o� vs o

�
� and o� vt o

�
��

� For sets� the Hoare ordering is used� O� vfsg O� if for every o� � O� there is some

o� � O� such that o� vs o��

Every function de�nable in NRC is monotone with respect to v� However� 
s is not� �

Therefore it is reasonable to add some extra primitives to NRC� Booleans are not �rst


class citizens in popular relational query languages like the 
at relational calculus and

the 
at relational algebra� see Maier ������ Ullman ������ etc� I stick with this tradition

for now and simulate the booleans in NRC by treating the type funitg as the boolean

type B and using fg as false and f��g as true� In this case� an equality test predicate on

type s is a function �s� s � s � funitg such that �o � o�� � fg whenever o and o� are

distinct complex objects and �o � o� � f��g� The conditional can then be simulated as

�if e� then e� else e�� �
S
fe� j x � e�g �

S
fe� j x � �e� � fg�g� I write NRC��� to

denote NRC augmented with such an equality test at every type�

There are several other common non
monotonic operators commonly found in database

query languages� Remarkably� it is not necessary to make ad hoc additions to NRC because

all these operators are inter
de�nable when NRC is the ambient language�

Theorem ����� The following languages are equivalent�
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� NRC���� where �s� s� s� B is the equality test�

� NRC�nest��� where nest
s�t
� � fs� tg � fs� ftgg is the relational nesting operator�

� NRC�
�� where 
s � fsg � fsg � fsg is set intersection�

� NRC���� where �s� s� fsg � B is the set membership test�

� NRC���� where �s� fsg � fsg � B is the subset inclusion test�

� NRC�	�� where 	s � fsg � fsg � fsg is set di
erence�

Proof� Given �s one can de�ne �s as follow� e� �s e� � fe�g �s e�� Given �s one can

de�ne �s as follow� e� �
s e� �

S
f�e� �

s fe�g� j x � �e� �
s fe�g�g� Given �

s one can

de�ne 
s as follow� e� 
s e� �
S
f
S
fif x �s y then fxg else fg j y � e�g j x � e�g� Given

both �fsg and 
s one can de�ne �s as follow� e� �s e� � �e� 
s e�� �
fsg e�� Therefore�

NRC��� � NRC�
� � NRC��� � NRC����

Given �s and �s one can de�ne 	s as follow� e�	se� �
S
fif x �s e� then fg else fxg j x �

e�g� Given 	s one can de�ne 
s as follow� e�
se� � e�	s�e�	se��� Given �
s one can de�ne

nests�t� as follow� nest
s�t
� �e� �

S
ff����x��

S
fif ���x� �

s ���y� then f���y�g else fg j y �

eg�g j x � eg� Therefore� NRC�nest�� � NRC��� � NRC�
� � NRC��� � NRC��� �

NRC�	��

I need to complete the cycle by deriving 	s from nest�� As this part of the proof is rather

cunning� I use notations from both NRC and NRA to increase clarity� The operators

from NRA appearing in this part of the proof are to be regarded as shorthands via the

translation of Section ����

Let � � h��� ��i� Let 	��e� � map��� � 	�� �� Let nest� � map��� � nest� �map����

Let cartprod � � �map�	�� � 	�� To compute R	 S� observe that �maphh��� �x�fgi� ��i �

nest� �nest� � ���	��R� fg�� 	��S� fg�� is a set containing possibly the following three pairs

and nothing else�
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U �

������
�����

� �R 
 S� fg� � ffg� f��gg ��

� �R	 S� fg� � ffgg ��

� �S 	R� fg� � ff��gg �

������
�����

Now a way to select the second pair is needed� To accomplish this� let

W �

������
�����

� �fg� fg� � ffg� f��gg ��

� �fg� f��g� � ffgg ��

� �fg� fg� � ff��gg �

������
�����

Then �map���� � nest� � ���U�W � produces a set consisting of three sets�

������
�����

f �R 	 S� fg� � �fg� f��g� g�

f �R 
 S� fg� � �fg� fg� g�

f �S 	R� fg� � �fg� fg� g

������
�����

This set is further manipulated to obtain the set consisting of the pairs below by applying

the function � � map�map��� � ���� � map�cartprod � hid� idi��

V �

����������������
���������������

� R	 S � fg ��

� R	 S � f��g ��

� R 
 S � fg ��

� fg � f��g ��

� fg � fg ��

� S 	R � fg �

����������������
���������������

Using the fact that the product of any set with the empty set is empty� apply cartprod to

each of these pairs to obtain the desired di�erence� �map���� � � � map�cartprod���V ��

Thus the theorem is proved� �

A result similar to Theorem ����� was also proved by Gyssens and Van Gucht ����� They

showed that� in the presence of the powerset operator� those non
monotonic operators are

inter
de�nable in the algebra of Schek and Scholl ������ The algebra of Schek and Scholl is

equivalent to NRC���� see Theorem ����� below� In view of Theorem ������ the expensive

��



powerset operator is not de�nable in NRC���� Consequently� Theorem ����� is a big im


provement of Gyssens and Van Gucht�s result� Incidentally� adding the powerset operator

to NRC��� gives us the nested relational algebra of Abiteboul and Beeri ����

��� Equivalence to other nested relational languages

Other nested relational languages

The language of Thomas and Fischer ����� is the most widely known nested relational al


gebra� It consists of the �ve operators of the traditional 
at relation algebra generalized

to nested relations  namely� the relational projection operator that corresponds approx


imately to !� � fs � tg � fsg� the relational selection operator that corresponds approx


imately to select � �X�
S
fif ���x� � ���x� then fxg else fg j x � Xg� the join operator

that corresponds approximately to cartprod � fsg � ftg � fs � tg� the set union operator

� � fsg � fsg � fsg� and the set di�erence operator 	 � fsg � fsg � fsg  together with

the relational nesting operator �that corresponds to nest� � fs � tg � fs � ftgg� and the

relational unnesting operator �that is roughly flatten � ffsgg � fsg��

A major shortcoming of Thomas and Fischer�s language is that all their operators must be

applied to the top level of a relation� Therefore� to manipulate a relation X that is nested

deeply inside another relation Y � it is necessary to �rst perform a sequence of unnesting

operations to bring X up to the top level� then perform the manipulation� and �nally

perform a sequence of nesting operations to push the result back to where X was� These

restructurings are ine�cient and clumsy� The fact that the relational nesting and unnesting

operators are not mutually inverse further compounds the problem�

The language of Schek and Scholl ����� is an extension of Thomas and Fischer�s proposal�

They parameterized the relational projection operator by a recursive scheme� The recursive

scheme is speci�ed in a language that mirrors their expression constructs� but it must be

stressed that a scheme is not an expression� This projection operator gives them the ability

��



to navigate nested relations� The language of Colby ���� is an extension of the language

of Schek and Scholl� Essentially� she parameterized all the rest of Thomas and Fischer�s

operators with a recursive scheme�

The unsatisfactory aspect in Schek and Scholl�s �and also Colby�s� proposal lies in the

speci�cation of the semantics of their language� The de�nition given by Schek and Scholl

����� for their projection operator contains more than �� cases� one for each possible way

of forming a scheme� This complicated semantics indicates a want of modularity in the

design of their language� What seems to be missing here is the concept that functions can

also be passed around and the concept of mapping a function over a set� As a result� Schek

and Scholl ����� lamented their inability to provide their algebra with a useful equational

theory�

Furthermore� the increased semantic complexity in the languages of Schek and Scholl �����

and of Colby ���� does not buy them any extra expressive power over the simple language

of Thomas and Fischer ������

Proposition ����� Schek$Scholl � Colby � Thomas$Fischer�

Proof� It is a theorem of Colby ���� that her algebra is expressible in Thomas and Fischer

������ The latter is a sublanguage of Schek and Scholl ������ which is in turn a sublanguage

of Colby�s� �

This result of Colby is strengthened in this section by showing that my basic nested rela


tional language NRC��� coincides in expressive power with these three nested relational

languages� Hence it can be argued that NRC��� possesses just the right amount of expres


sive power for manipulating nested relations�
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Description of Thomas�Fischer

A detailed description of Thomas and Fischer�s language is required for proving this result�

Their language has types of the form fs� � � � �� sn � sn��g� These types can obviously be

trivially encoded as types of the form fs�� �� � �� �sn� sn��� � � ��g� Hence in my treatment

below� I use only binary tuples�

� Union of sets� �s � fsg � fsg � fsg� This one is already present in NRC����

� Intersection of sets� 
s � fsg � fsg � fsg� This one is de�nable in NRC��� by

Theorem ������

� Set di�erence� 	s � fsg � fsg � fsg� This one is de�nable in NRC��� by Theorem

������

� Relational nesting� nests�t� � fs � tg � fs � ftgg� It is de�nable in NRC��� by

Theorem ������

� Relational unnesting� unnests�t� � fs�ftgg � fs� tg� Its semantics can be de�ned in

terms of NRA��� as follow� unnest� � � �map�	���

� Cartesian product� cartprods�t � fsg � ftg � fs � tg� It is de�nable in NRA��

� as follow� cartprod � � � map�	�� � 	�� The actual product operator used by

Thomas and Fischer concatenates tuples� For example� it takes fs� � s�g � ft� � t�g

to fs� � �s� � �t� � t��g� But it is trivially decomposable into cartprod� which takes

fs� � s�g � ft� � t�g to f�s� � s��� �t� � t��g� followed by a projection operation to

shift the brackets from f�s� � s��� �t� � t��g to fs� � �s� � �t� � t��g�

� Their projection is the relational projection� That means it is a powerful operator

that works on multiple columns� it can be used for making copies of any number of

columns� and it can be used for permuting the positions of any number of columns�

Such a powerful operator can be rare�ed into �ve simpler operators� ��� the projection

operator !�� which is equivalent to the function map����� ��� the shift
left operator

Wr�s�t� fr � �s� t�g � f�r � s�� tg� which is equivalent to the function map���� ���
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the shift
right operator Vr�s�t� f�r� s�� tg � fr� �s� t�g� which is the inverse of the

shift
left operator� ��� the switch operator WVs�t� fs�tg � ft�sg� which is equivalent

to the functionmap���� and ��� the duplication operator copys � fsg � fs�sg� which

is equivalent to maphid� idi�

� Their selection operator is the relational selection and actually has the form

select�f� g� and can be interpreted as the function �x�
S
fif f�y� � g�y� then fyg

else fg j y � xg� However� very severe restriction is placed on the form of f and g�

they must be built entirely from ��� ��� h�� �i� � � �� and id�

� As in the traditional relational algebra� Thomas and Fischer used letters to represent

input relations� The letter R is reserved for this purpose and it is assumed to be

distinct from all other variables� Finally� constant relations are written down directly�

For example� ffgg is the constant relation whose only element is the empty set� �Ac


tually� the real McCoy did not have them� This absence of constants was an oversight

of the original paper ����� and almost everyone assumed their presence� see Colby ����

for example� There were of course exceptions� For example� Van Gucht and Fischer

���� investigated normalization
lossless nested relations under the explicit assumption

that constant relations� especially ffgg� were absent��

A query is just an expression of complex object type such that R is its only free vari


able� Clearly every expression in the language of Thomas and Fischer can be treated as a

shorthand of an expression in NRC���� The rest of this section is devoted to proving the

converse�

Equivalence of NRC��� and Thomas�Fischer

It is more convenient to prove this equivalence via a detour by restricting equality test to

base types� Let �b� b� b� B be the equality test on base types� Let � � B � B be boolean

negation� �Note that B is really funitg at this point of the report� So �fg � f��g and

�f��g � fg�� I �rst show that NRC��� and NRC��b��� are equivalent� That is� equality
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test at every type can be expressed completely in terms of �b and ��

Lemma ����� NRC��� � NRC��b����

Proof� The right
to
left inclusion is obvious since �e � �e �B fg�� For the left
to
right

inclusion� it su�ces to show that� with NRC as the ambient language� equality test �s at

every type s can be de�ned in terms of equality test �b at base type and negation ��

Let us proceed by induction on s� For base types� �b is used� For pairs� e� �
s�t e� �

if �� e� �
s �� e� then �� e� �

t �� e� else fg� For sets� e� �
fsg e� � if e� �

s e� then e� �
s

e� else fg� The subset test can be de�ned using negation as follow� e� �s e� � �
S
fif x �s

e� then fg else f��g j x � e�g� The membership test can be de�ned as follow� e� �
s e� �

S
fif x �s e� then f��g else fg j x � e�g� �

As a consequence� to prove the inclusion of NRC��� in Thomas$Fischer� it su�ces for

us to prove the inclusion of NRC��b��� in it instead� By Theorem ������ this inclusion

reduces to the following�

Proposition ����� NRA��b��� � Thomas$Fischer over functions whose input�output

are relations�

Proof� Let encodes � s� funit � sg be the function encodes�o� � f���� o�g� Let decodet �

funit � tg � t be the partial function decodetf���� o�g � o� Note that both encodes and

decodet are de�nable in Thomas$Fischer when s and t are both products of set types�

Suppose

Claim� For every closed expression f � s � t in NRA��b���� for every complex object

type r� there is an expression f � � fr � sg � fr � tg in Thomas$Fischer such that

f � � map�id� f��
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Then calculate as below�

� decode � f � � encode

� decode �map�id� f� � encode By the claim above�

� decode � � � h"� fi De�nition of encode

� f De�nition of decode

It remains to provide a proof of the claim� This proof is not di�cult if one de�nes f ��R� by

induction on the structure of f as follows�

� Kc��R� � �!��V �cartprod�WV �R�� fcg����

� "��R� � �!��V �cartprod�WV �R�� f��g����

� Kfg��R� � �!��V �cartprod�WV �R�� ffgg����

� ���R� � !��V �nest��W �copy�R�����

� �g � f���R� � �g��f ��R���

� id��R� � R

� ����R� �WV �!��V �WV �R����

� ����R� �WV �!��W �WV �W �R�����

� hf� gi��R� � V �!��WV �V �V �!��V �WV �!��V �copy�V �WV �V �V �WV

�!��V �select��� � ��� �� � ����cartprod�f ��WV �!��V �copy�R������ g
��WV �!��V

�copy�R�������������������������

� �map f���R� � A�R� � B�R�� where

A�R� � �WV �!��W �WV �nest��f
��unnest��WV �!��V �copy�R�������������

B�R� � !��V �cartprod�WV �!��select��� � ��� ����cartprod�R� ffgg����� ffgg����

� ���R� � A�R� � B�R�� where

A�R� � !��V �cartprod�WV �!��select��� ���� ����cartprod�R� ffgg����� ff��gg����

B�R� � !��V �cartprod�WV �!��select��� ���� ����cartprod�R� ff��gg����� ffgg����

��



� 	���R� � A�R� � B�R�� where

A�R� � !��V �nest��V �unnest��W �W �copy�R���������

B�R� � !��V �cartprod�WV �!��select��� � �� � ��� ����cartprod�R� ffgg�����

ffgg����

� ���R� � A�R� � B�R� � C�R�� where

A�R� � nest��unnest��unnest��R����

B�R� � !��V �cartprod�WV �!��select��� � ��� ����cartprod�R� ffgg����� ffgg����

C�R� � !��V �cartprod�WV �!��select������� ����cartprod�R� fffggg����� ffgg����

� ��b���R� � A�R� � B�R�� where

A�R� � !��V �cartprod�WV �select��� � ��� �� � ����R��� ff��gg����

B�R� � !��V �cartprod�WV �R	 select��� � ��� �� � ����R��� ffgg���� �

Therefore� over relational input
output�

Theorem ����� NRC��� � Thomas$Fischer � Schek$Scholl � Colby� �

As all these languages are equivalent in expressive power� one has to compare them in

terms of some other characteristics� As it is inconvenient to write queries in the language of

Thomas and Fischer� it is not a good candidate for the �right	 nested relational language�

As it is inconvenient to reason about queries in the languages of Schek and Scholl and of

Colby� they are not good candidates either� So NRC��� is a better candidate than them�

NRC��� uses simulated booleans� However� it is more convenient to add the booleans as a

base type B and the conditional directly to the language� I denote by NRC�B � the language

obtained by augmenting NRC with the constructs in Figure ����

According to Corollary ������ this augmentation does not drastically modify NRC���� I

therefore strengthen my claim about NRC��� to the following�

��



true � B false � B

e� � B e� � s e� � s

if e� then e� else e� � s

Figure ���� The constructs for the Boolean type�

Claim ����� NRC�B ��� is the �right� nested relational language�

And from this point onwards� I use NRC�B ��� as the ambient language within which all

subsequent results are developed�
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Chapter �

Conservative Extension Properties

The height of a complex object is the maximal depth of nesting of sets in the complex object�

Suppose the class of functions� whose input has height at most i and output has height at

most o� de�nable in a particular language is independent of the height of intermediate data

used� Then that language is said to have the conservative extension property� This chapter

proves that NRC�B ��� and several of its extensions possess the conservative extension

property� which is then used to prove several interesting results�

Organization

Section ���� A strong normalization result is obtained for the nested relational language

NRC�B ���� The induced normal form is then used to show that NRC�B ��� has the

conservative extension property� The proof in fact holds uniformly across sets� bags� and

lists� even in the presence of variant types� Paredaens and Van Gucht ����� proved a similar

result for the special case when i � o � �� Their result was complemented by Hull and Su

���� who demonstrated the failure of independence when the powerset operator is present

and i � o � �� The theorem of Hull and Su was generalized to all i and o by Grumbach

and Vianu ����� My result generalizes Paredaens and Van Gucht�s to all i and o� providing

a counterpart to the theorem of Grumbach and Vianu� A corollary of this result is that

��



NRC�B ���� when restricted to 
at relations� has the same power as the 
at relational

algebra �����

Section ���� As a result NRC�B ��� cannot implement some aggregate functions found in

real database query languages such as the �select average from column	 of SQL ������ I

therefore endow the basic nested relational language with rational numbers� some basic

arithmetic operations� and a summation construct� The augmented language NRC�B � Q �

�� �� 	� 
�
P
� �� is then shown to possess the conservative extension property� This result

is new because conservativity in the presence of aggregate functions had never been studied

before�

Section ���� NRC�B � Q � �� �� 	� 
�
P
� �� is augmented with a linear order on base

types� It is then shown that the linear order can be lifted within NRC�B � Q � �� �� 	� 
�
P
� �� to every complex object type� The augmented language also has the conservative

extension property� This fact is then used to prove a number of surprising results� As

mentioned earlier� Grumbach and Vianu ���� and Hull and Su ���� proved that the presence

of powerset destroys conservativity in the basic nested relational language� My theorem

shows that this failure can be repaired with very little extra machinery� Finite
co�niteness

results from the next chapter shows that this theorem does not follow from Immerman�s

����� result on �xpoint queries in the presence of linear orders�

Section ���� A notion of internal generic family of functions is de�ned� It is then shown

that the conservative extension property of NRC�B � Q � �� �� 	� 
�
P
� �� endowed with

�well
founded� linear orders can be preserved in the presence of any such family of functions�

This result is a deeper explanation of the surprising conservativity of NRC�B � Q � �� �� 	�


�
P
� �� �� in the presence of powerset and other polymorphic functions�

��



��� Nested relational calculus has the conservative extension

property at all input and output heights

Conservative extension property

The height ht�s� of a type s is de�ned by induction on the structure of type� it is essentially

the maximal depth of nesting of set
brackets in the type�

� ht�unit� � ht�b� � �

� ht�s� t� � ht�s� t� � max�ht�s�� ht�t��

� ht�fsg� � � � ht�s�

Every expression of NRC has a unique typing derivation� The height of an expression e

can thus be de�ned as ht�e� � maxfht�s� j s occurs in the type derivation of eg�

De	nition ����� Let Li�o�k be the class of functions de�nable by an expression f � s � t

in the language L� where ht�s� � i� ht�t� � o� and ht�f� � k� The language L is said to

have the conservative extension property at input height i and output height o with

displacement d and �xed constant c if Li�o�k � Li�o�k�� for every k � max�i� d� o� d� c�� �

My aim in this section is to show that NRC�B ��� has the conservative extension property�

Towards this end� consider the

Strongly normalizing rewrite system

consisting of the rules below�

� ��x�e���e��� e��e��x�

��



� �i�e�� e��� ei

�
S
fe j x � fgg� fg

�
S
fe� j x � fe�gg� e��e��x�

�
S
fe j x � �e� � e��g�

S
fe j x � e�g �

S
fe j x � e�g

�
S
fe� j x �

S
fe� j y � e�gg�

S
f
S
fe� j x � e�g j y � e�g

�
S
fe j x � �if e� then e� else e��g � if e� then

S
fe j x � e�g else

S
fe j x � e�g

� �i �if e� then e� else e��� if e� then �i e� else �i e�

� if true then e� else e� � e�

� if false then e� else e� � e�

These rules are derived from the theory of NRC� by giving the axioms the orientation

above� Clearly� they are sound� That is�

Proposition ����� If e� � e�� then e� � e�� �

A rewrite system is strongly normalizing if there is no in�nite sequence of rewriting in that

system� That is� after a �nite number of rewrite steps� we must arrive at an expression

to which no rewrite rule is applicable� The resulting expression is sometimes known as a

normal form of the rewrite system�

Proposition ����� The rewrite system induced by the rewrite rules above is strongly nor�

malizing�

Proof� Let � maps variable names to natural numbers greater than �� Let ��n�x� be the

function that maps x to n and agrees with � on other variables� Let kek�� de�ned below�

measure the size of e in the environment � where each free variable x in e is given the size

��x��

��



� kxk� � ��x�

� ktruek� � kfalsek� � kck� � k��k� � kfgk� � �

� k�� ek� � k�� ek� � kfegk� � � � kek�

� k�x�ek� � kek����x�

� k��x�e��e��k� � kek��ke�k��x� � ke�k�

� ke� � e�k� � k�e�� e��k� � � � ke�k�� ke�k�

� k
S
fe� j x � egk� � �ke�k��kek��x� � �� � kek�

� kif e� then e� else e�k� � ke�k� � �� � ke�k�� ke�k��

De�ne � � �� if ��x� � ���x� for all x� It is readily seen that k � k� is monotonic in ��

Furthermore� it is readily veri�ed that whenever e � e�� we have kek� � ke�k� for any

choice of �� Therefore� the rewrite system is strongly normalizing� �

Proof of conservative extension property

Thus� every expression of NRC�B � can be reduced to a very simple normal form� These

normal forms exhibit an interesting property� Assuming no additional primitive p is present�

Theorem ����� Let e � s be an expression of NRC�B � in normal form� Then ht�e� �

max�fht�s�g � fht�t� j t is the type of a free variable in eg��

Proof� Let k be the maximum height of the free variables in e� Now proceed by induction

on e � s�

� Case e � s is x� ��� c� true� false� or fg� Immediate�

� Case e � s is fe�g� Immediate by hypothesis on e��

� Case e � s is �e�� e�� � t� � t� or e� � e� � ftg� Immediate by hypothesis on e� and e��

��



� Case e � s is �x�e� � r � t� By hypothesis� ht�e�� � max�k� ht�t�� ht�r��� So ht�e� �

max�ht�e��� ht�s�� � max�k� ht�s���

� Case e � s is �ie
�� By assumption e� is a normal form of the rewrite system� By a

simple analysis on normal forms� it can be shown that e� must be a �possibly null�

chain of projection on a variable� The case thus holds�

� Case e � s is
S
fe� j x � e�g� Because e is in normal form� e� must be a chain of

projections on a free variable� Hence ht�e�� � k� So ht�x� � ht�e��	 � � k� Then� by

hypothesis� ht�e�� � max�k� ht�x�� ht�s��� Then ht�e� � max�ht�s�� ht�e��� ht�e��� �

max�k� ht�s���

� Case e � s is if e� then e� else e�� where e� � B � e� � s and e� � s� Since e is a normal

form� e� must be a chain of projections on a free variable� Hence ht�e�� � k� By

hypothesis� ht�e�� � max�k� ht�s��� Similarly� ht�e�� � max�k� ht�s��� Now ht�e� �

max�ht�e��� ht�e��� ht�e��� � max�k� ht�s��� �

This theorem implies that NRC�B � has the conservative extension at all input and output

types with displacement � and constant �� Since equality at all types can be expressed in

terms of equality at base types �b� b� b � B and the emptiness test � � funitg � B with

NRC�B � as the ambient language� it is straightforward to argue that our nested relational

language has the conservative extension property�

Corollary ����� NRC�B ���i�o�k � NRC�B ���i�o�k�� for all i� o� k � max�i� o��

Proof� Given any expression e� � s in NRC�B ���� First� replace all occurrences of �

in it by its de�nition in terms of �b and �� How � is implemented in terms of �b and

� is unimportant� In particular� heights need not be preserved" This is because the new

expression e � s is an expression of NRC�B ��b ���� Theorem ����� yields the conservative

extension theorem for NRC�B ��b ��� with �xed constant � because the emptiness test

primitive has height �� Now� if e � s is such that ht�s� � � and all free variables have height

�� then in any normal form of e� any occurrence of � must appear in a context of the form

��



��e�� � � ��en� where each of ei has the form fg or the form f�g� So the normal form can be

adjusted as follow� if each of ei is fg� then replace this subexpression with true� otherwise

replace it with false� The resulting expression contains no �� Thus the �xed constant is

reduced to � as desired� �

As remarked earlier� the above result implies height of input and output dictates the kind

of functions that our languages can express� In particular� using intermediate expressions

of greater height does not add expressive power� This property is in contrast to languages

considered by Kuper and Vardi ������ Abiteboul and Beeri ���� Abiteboul� Beeri� Gyssens

and Van Gucht ���� Grumbach and Vianu ����� and Hull and Su ����� The kind of functions

that can be expressed their languages is not characterized by the height of input and output

and is sensitive to the height of intermediate operators� The principal di�erence between

my languages and these languages is that the powerset operator is not expressible in my

languages �see Theorem ������ but is expressible in those other languages� This indicates a

non
trivial contribution to expresive power by the powerset operator�

This result has a practical signifcance� Some databases are designed to support nested

sets up to a �xed depth of nesting� For example� Jaeschke and Schek ����� considered

non�rst
normal
form relations in which attribute domains are limited to powersets of simple

domains �that is� databases whose height is at most ��� NRC�B ��� restricted to expression

of height � is a natural query language for such a database� But knowing that NRC�B ���

is conservative at all heights� one can instead provide the user with the entire language

NRC�B ��� as a more convenient query language for this database� so long as queries have

input and output heights not exceeding ��

Furthermore� as a special case� it is easy to show that the basic nested relational calculus�

with input and output restricted to 
at relations� is in fact conservative over 
at relational

algebra�

Proposition ����� Every function de
nable in NRC�B ��� from �at relations to �at rela�

tions is also de
nable in the traditional �at relational algebra�

��



Proof� The direct proof based on analysis of normal forms of the above rewrite system can

be found in my paper ������ For an indirect proof� recall that NRC�B ��� � Schek$Scholl�

Then use the result of Paredaens and Van Gucht ����� that Schek$Scholl is conservative

over the 
at relational algebra� �

Comparison with Paredaens and Van Gucht�s technique

The proposition above is the result �rst proved by Paredaens and Van Gucht ������ The

key to the proof of the conservative extension theorem is the use of normal form� The heart

of Paredaens and Van Gucht�s proof is also a kind of normal form result� However� the

following main distinctions can be made between our results�

� The Paredaens and Van Gucht result is a conservative property with respect to 
at

relational algebra� This result implies NRCi�o�k � NRCi�o�k�� for i � o � �� My

theorem generalizes this to any i and o�

� The normal form used by Paredaens and Van Gucht is a normal form of logic formulae

and the intuition behind their proof is that of logical equivalence and quanti�er elim


ination� In my case� the inspiration comes from a well
known optimization strategy

�see Wadler�s early papers ����� ���� on this subject�� In plain terms� I have evaluated

the query without looking at the input and managed to 
atten the query su�ciently

until all intermediate operators of higher heights are optimized out� This idea is sum


marized by the rewrite rule
S
fe� j x �

S
fe� j y � e�gg�

S
f
S
fe� j x � e�g j y � e�g�

which eliminates the intermediate collection built by
S
fe� j y � e�g�

� It should be pointed out that the syntax of NRC can be given slightly di�erent inter


pretations� For example� it can be used as a query language for bags by interpreting

fg as the empty bag� feg as the singleton bag� and � as the additive union for bags�

It is also possible to use it to query lists by interpreting fg as the empty list� feg as

the singleton list� and � as concatenation of lists� My theorem holds uniformly for

these other interpretations of NRC� The theorem also holds �see my paper ������ in

��



the presence of variant types� It is not clear that the proof given by Paredaens and

Van Gucht is applicable in such cases�

The fact that the basic nested relational language is conservative with respect to the 
at

relational algebra has several consequences� transitive closure� parity test� cardinality test�

etc� cannot be expressed in NRC���� This fact in turn implies that the language of

Abiteboul and Beeri ���� which is equivalent to NRC��� augmented with the powerset

operator� must express things like transitive closure via an extremely expensive excursion

through the powerset operator� see Suciu and Paredaens ������

As pointed out� Paredaens and Van Gucht�s result involved a certain amount of quanti�er

elimination� There are several other general results in logic that were proved using quanti�er

elimination� see Gaifman ����� Enderton ����� etc� The pipeline rule is related to quanti�er

elimination� It corresponds to eliminating quanti�er in set theory as fe j %� � ��x�x �

fe� j %�g� � %�g � fe�e��x� j %� � %� � %��e
��x�g� It is interesting to observe that the

logical notion of quanti�er elimination corresponds to the physical notion of getting rid of

intermediate data� Nevertheless� I stress again that the pipeline rule makes sense across

lists� bags� and sets but quanti�er elimination does not�

��� Aggregate functions preserve conservative extension

properties

Real database query languages

are usually equipped with some aggregate functions� For example� the mean value in a

column can be selected in SQL ������ To handle queries such as totaling up a column and

averaging a column� several primitives must be added to my basic nested relational calculus�

In this section� I consider adding rational numbers Q and the constructs depicted in Figure

��� to NRC�B ����
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e� � Q e� � Q

e� � e� � Q

e� � Q e� � Q

e� � e� � Q

e� � Q e� � Q

e� 
 e� � Q

e� � Q e� � Q

e� 	 e� � Q

e� � Q e� � fsg
P
fje� j xs � e�jg � Q

Figure ���� Arithmetic and summation operators for rational numbers�

The operators �� �� 	� and 
 are respectively addition� multiplication� subtraction� and

division of rational numbers� The summation construct
P
fje� j xs � e�jg denotes the

rational obtained by �rst applying the function �x�e� to every item in the set e� and then

adding up the results� Hence
P
fje� j xs � e�jg � f�o��� � � ��f�on�� where f is the function

denoted by �x�e� and fo�� � � � � ong is the set denoted by e��

The extended language NRC�B � Q � �� �� 	� 
�
P
� �� is capable of expressing many

aggregate operations found in practical databases� For instance� counting the number of

records in R is count�R� �
P
fj� j x � Rjg and totaling up the �rst column of R is total�R� �

P
fj�� x j x � Rjg� Another example is to take the average of the �rst column of R

by average�R� � total�R� 
 count�R�� A more sophisticated example is to calculate the

variance of the �rst column of R as variance�R� � �
P
fjsq��� x� j x � Rjg	�sq�

P
fj�� x j x �

Rjg�
 count�R���
 count�R�� where sq�x� � x � x�

Aggregate functions were �rst introduced into 
at relational algebra by Klug ������ He

introduced these functions by repeating them for every column of a relation� That is�

aggregate� is for column �� aggregate� is for column �� and so on� Ozsoyoglu� Ozsoyoglu�

and Matos ����� generalized this approach to nested relations� The summation construct is

more general� On the other hand� Klausner and Goodman ����� had �stand
alone	 aggregate

functions such as mean � fQg � Q� However� they had to rely on a notion of hiding to deal

correctly with duplicates� Hiding is di�erent from projection� Let R � f��� ��� ��� ��� ��� ��g�

��



Projecting out the second column of R gives us R� � f�� �g� Hiding the second column of

R gives us R�� � f��� ����� ��� ����� ��� ����g� where the hidden components are indicated by

square brackets� Observe that the former �eliminates	 duplicates as sets have no duplicate

by de�nition� The latter �retains	 the duplicated � by virtue of tagging them with di�erent

hidden components� Thenmean�R��� produces the average of the �rst column of R� whereas

mean�R�� does not compute the mean correctly� The use of hiding to retain duplicates is

rather clumsy� The summation construct is simpler�

In the remainder of this section� I show that NRC�B � Q � �� �� 	� 
�
P
� �� has the con


servative extension property� The proof is a generalization of the previous proof� However�

let me �rst replace �s and �s with the syntactic sugars de�ned in the proposition below�

It is important to observe that the
S
fe� j x � e�g construct is not used in these syntactic

sugars� This observation is crucial in verifying the claims on the measures kek
� and kek�

used in the proof of Proposition ������

Proposition ����� Any equality test �s� s�s� B can be implemented in terms of equality

tests at base types �b� b � b � B � using NRC�B � Q � �� �� 	� 
�
P
� �� as the ambient

language�

Proof� Proceed by induction on s�

� �b is the given equality test at base type b�

� x �s�t y � if �� x �
s �� y then �� x �

t �� y else false

� X �fsg Y � if X �s Y then Y �s X else false� where

� X �s Y � ��
P
fjif x �s Y then � else � j x � Xjg� �Q ��

� x �s Y � �
P
fjif x �s y then � else � j y � Y jg� �Q �� �

More rewrite rules

Now� consider appending the rules below to those of the previous section�
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�
P
fje j x � fgjg� �

�
P
fje j x � fe�gjg� e�e��x�

�
P
fje j x � if e� then e� else e�jg� if e� then

P
fje j x � e�jg else

P
fje j x � e�jg

�
P
fje j x � e� � e�jg�

P
fje j x � e�jg�

P
fjif x � e� then � else e j x � e�jg

�
P
fje j x �

S
fe� j y � e�gjg

�
P
fj
P
fj�e


P
fj
P
fjif x � v then � else � j v � e�jg j y � e�jg� j x � e�jg j y � e�jg

This system of rewrite rules preserves the meanings of expressions� The last rule de


serves special attention� Consider the incorrect equation�
P
fje j x �

S
fe� j y � e�gjg �

P
fj
P
fje j x � e�jg j y � e�jg� Suppose e� evaluates to a set of two distinct objects fo�� o�g�

Suppose e��o��y� and e��o��y� both evaluate to fo�g� Suppose e�o��x� evaluates to �� Then

the left
hand
side of the �equation	 returns � but the right
hand
side yields �� The division

operation in the last rule is used to handle duplicates properly�

Proposition ����� If e� � e�� then e� � e�� �

While the last two rules seem to increase the �character count	 of expressions� it should be

remarked that
P
fje� j x � e�jg is always rewritten by these two rules to an expression that

decreases in the e� position� This observation is the key to the following result�

Proposition ����� The rewrite system above is strongly normalizing�

Proof� Modify the measure k � k� used in Proposition ����� to include k
P
fje� j x � ejgk� �

�ke�k��kek��x� � �� � kek�� Then kek� is monotone in �� Moreover� if e� � e� via any rule

but not the last two� then ke�k� � ke�k�� That is� this measure strictly descreases with

respect to all the rules except the last two�

Let � be a function that maps variable to natural numbers greater than �� Let ��n�x� be

the function that maps x to n and agrees with � on other variables� Let kek� be de�ned as

below� Then kek� is monotone in �� Moreover� if e� � e�� then ke�k� � ke�k��

��



� ktruek� � kfalsek� � kck� � k��k� � kfgk� � �

� k�� ek� � k�� ek� � kek�

� kxk� � ��x�

� k�x�ek� � kek����x�

� k��x�e���e��k� � max�ke�k�� ke�k��ke�k��x��

� kif e� then e� else e�k� � max�ke�k�� ke�k�� ke�k��

� kfegk� � � � kek�

� ke� � e�k� � � �max�ke�k�� ke�k��

� k
S
fe� j x � e�gk� � �ke�k��ke�k��x��

ke�k�

� k�e�� e��k� � ke� � e�k� � ke� 	 e�k� � ke� � e�k� � ke� 
 e�k� � max�ke�k�� ke�k��

� k
P
fje� j x � e�jgk� � max�ke�k�� ke�k��ke�k��x��

Let � denote an in�nite tuple �� � � � ����� ����� with �nitely many non
zero components� Let

�� � �� denotes the tuple � obtained by component
wise summation of �� and ��� Let ��n�

denotes the tuple �� such that ���n� � ��n� � � and ���m� � ��m� for m �� n� Let 
 be a

function mapping variables to tuples ��s� Let 
���x� maps x to the tuple � and agrees with


 on other variables� Let kek
� be de�ned as below� Then kek
� is monotone in both 
 and

�� Furthermore� if e� � e�� then ke�k
� � ke�k
�� More importantly� if e� � e� via the

last two rewrite rules above� then ke�k
� � ke�k
�� Thus this measure strictly decreases

for the last two rules and remains unchanged for the other rules�

� kxk
� � 
�x�

� k�x�ek
� � kek
��� � � � ���x�����x�

� k��x�e���e��k
� � k
S
fe� j x � e�gk
� � ke�k
� � ke�k�
�ke�k
��x�����ke�k��x��

� ktruek
� � kfalsek
� � kck
� � k��k
� � kfgk
� � �� � � � ��

��



� kif e� then e� else e�k
� � ke�k
� � ke�k
� � ke�k
�

� k�� ek
� � k�� ek
� � kfegk
� � kek
� � kek
�

� ke� � e�k
� � ke�k
� � ke�k
�

� k
P
fje� j x � e�jgk
� � �ke�k
� � ke�k
�ke�k
��x���ke�k��x���ke�k��

The termination measure for the rewrite system above can now be de�ned as kek�
� �

�kek
�� kek��� Then kek�
� is monotone in all of �� 
� and �� Furthermore� if e� � e��

then ke�k�
� � ke�k�
�� Therefore� the rewrite system above is strongly normalizing� �

Conservative extension in the presence of aggregate functions

Finally� by a routine application of structural induction� we obtain the conservative exten


sion property for NRC�B � Q � �� �� 	� 
�
P
� ���

Theorem ����� Let e � s be an expression of NRC�B � Q � �� �� 	� 
�
P
� �� in normal

form� Then ht�e� � max�fht�s�g � fht�t� j t is the type of a free variable occurring in

eg�� So NRC�B � Q � �� �� 	� 
�
P
� �� has the conservative extension property with 
xed

constant �� �

Conservativity in the presence of aggregate functions was not studied by earlier researchers�

The theorem above implies that NRC�B �Q ��� ��	�
�
P
���i�o�h � NRC�B � Q � �� �� 	� 
�

P
� ��i�o�h�� for any i� o� h � max�i� o�� Hence I have generalized the result of Paredaens

and Van Gucht ����� and my earlier theorem to the case where aggregate functions are

present�

��



��� Linear ordering makes proofs of conservative extension

properties uniform

The conservative extension property can be used to study many properties of languages �see

Libkin and myself ����� for some examples�� In Corollary ������ I use it to show thatNRC�B �

Q � �� �� 	� 
�
P
� �� is incapable of expressing the usual linear ordering �Q� Q � Q � B

on rational numbers� So I propose to augment NRC�B � Q � �� �� 	� 
�
P
� �� with a linear

order �b� b � b � b for each base type b� Many important data organization functions

such as sorting algorithms and duplicate detection or elimination algorithms rely on linear

orders� It is not necessary to introduce linear order at every type because linear order at

base types can be lifted� using a technique introduced to me by Libkin in our paper ������

This section studies the e�ect of linear orders on conservative extension properties�

Lifting of linear orders

Recall that the Hoare ordering v� on the subsets of an ordered set is de�ned as X v� Y if

and only if for every x � X there is y � Y such that x v y� Then

Proposition ����� Let �D�v� be a partially ordered set� De
ne an order �� on the 
nite

subsets of D as follows� X �� Y if and only if either X v� Y and Y �v� X� or X v� Y and

Y v� X and X	Y v� Y 	X� Then �� is a partial order� Moreover� if v is a linear order�

then so is ���

Proof� The proof is by Libkin and can be found in ������ �

Kupert� Saake� and Wegner ����� gave three linear orderings on collection types in their

study of duplicate detection and elimination� The ordering de�ned above coincides with

one of them� Incidentally� the above formulation is a special case of an order frequently used

in universal algebra and combinatorics �see Kruskal ����� or Wechler ������� An important

feature of this technique of lifting linear orders is that the resulting linear orders are readily

��



seen to be computable by my very limited language�

Theorem ����� When augmented with linear orders at all base types� NRC�B � Q � �� �� 	�


�
P
� �� can express linear orders �s� s� s� B at all types s�

Proof� Proceed by induction on s�

� �b is the given linear order on base type b�

� x �s�t y � if �� x �
s �� y then �if �� x �

s �� y then �� x �
t �� y else true� else false

� X �fsg Y � if X v�
s Y then �if Y v�

s X then X ��s Y else true� else false� where

� X v�
s Y � �

P
fj�if �

P
fj�if x �s y then � else �� j y � Y jg� � � then � else �� j x �

Xjg� � � and

� X ��s Y � �
P
fjif x �s Y then � else �if �

P
fjif y �s X then � else �if x �s

y then � else �� j y � Y jg� � � then � else �� j x � Xjg� � �� �

Hence the language endowed with linear orders at base types is denoted NRC�B � Q � �� ��

	� 
�
P
� �� ���

Power of linear orders

Several queries commonly encountered in practical database environment but cannot be

expressed in �rst
order logic can now be expressed� For example� �nd those rows in R

whose �rst column value is maximum is de�nable as maxrows�R� �
S
fif �

P
fj if ���x� �

���y� then � else if ���y� � ���x� then � else � j x � Rjg � �� then fyg else fg j y � Rg�

Another example is to �nd the rows in R whose �rst column value occurs most frequently by

moderows�R� �maxrows�
S
ff�
P
fj if ���y� � ���x� then � else � j y � Rjg� x�g j x � Rg��

The language also has su�cient power to test whether the cardinality of a set R is odd

or even by de�ning odd�R� �
S
fif

P
fjif x � y then � else � j y � Rjg �

P
fjif y �

x then � else � j y � Rjg thenf��g else fg j x � Rg � f��g�

��



More signi�cantly� it can compute the rank assignment function� The de�nability of rank

assignment leads to very unexpected conservativeness results to be discussed shortly�

Proposition ����� A rank assignment function sorts � fsg � fs�Qg is the function such

that sortfo�� � � � � ong � f�o�� ��� � � � � �on� n�g where o� � � � � � on� NRC�B � Q � �� �� 	� 
�
P
� �� �� can de
ne sorts�

Proof� The rank assignment function can be de�ned as sort�R� �
S
ff�x�

P
fjif y �

x then � else � j y � Rjg�g j x � Rg� �

Linear orders lead to uniformity

The ability to compute a linear order at all types can be used to provide a more uniform

proof of the conservative extension theorem� To illustrate this� let me introduce three

partially interpreted primitives �� � and
Q
to NRC�B � Q � �� �� 	� 
�

P
� �� ��� where b is

some �xed type� � � b � b � b is a commutative and associative binary operation� � � b is

the identity for �� and
Q
fje j xs � fo�� � � � � ongjg � e�o��x

s�� � � �� e�on�x
s�� � for any set

fo�� � � � � ong of type fsg� As an example� take � to be � and b to be Q� then � becomes �

and
Q
becomes the bounded product�

Theorem ����� For every i� o� and h � max�i� o� ht�b��� NRC�B � Q ��� ��	�
�
P
����

���
Q
� ��i�o�h coincides with NRC�B �Q ��� ��	�
�

P
�������

Q
� ��i�o�h���

Proof� It su�ces to append the rules below to the rewrite system of the previous section�

Note the use of the linear ordering �� The earlier rules on
P
fje� j x � e�jg can be replaced

using these rules too� achieving conservative extension without needing 
� �If � is also

idempotent� then rules mirroring those for
S
fe� j x � e�g can be used��

�
Q
fje j x � fgjg� �

�
Q
fje j x � fe�gjg� e�e��x�

��



�
Q
fje j x � e� � e�jg�

Q
fje j x � e�jg �

Q
fjif x � e� then � else e jx � e�jg

�
Q
fje j x � if e� then e� else e�jg� if e� then

Q
fje j x � e�jg else

Q
fje j x � e�jg

�
Q
fje j x �

S
fe� j y � e�gjg �

Q
fj
Q
fjif �

P
fjif x � e��w�y� then �if w �

y then � else �if w � y then � else ��� else � j w � e�jg� � � then e else � j x �

e�jg j y � e�jg �

Linear orders lead to surprises

The two preceeding results have some surprising consequences� Let me proceed by adding

for every complex object type s� the following primitives� tcs � fs�sg � fs�sg� bfixs�f� g� �

fsg� where g � fsg and f � fsg � fsg� and powersets � fsg � ffsgg� The interpretation is

that tc�R� computes the transitive closure of R� bfix�f� g� computes the bounded �xpoint

of f with respect to g �that is� it is the least �xpoint of the equation f�R� � g
�R�f�R����

and powerset�R� is the powerset of R�

Corollary ����� The following languages have the conservative extension property�

� NRC�B �Q ��� ��	�
�
P
����� tc� with displacement � and 
xed constant ��

� NRC�B �Q ��� ��	�
�
P
����� bfix� with displacement � and 
xed constant �� and

� NRC�B �Q ��� ��	�
�
P
����� powerset� with displacement � and 
xed constant ��

Proof� The proof of the �rst one is given below� the other two are straightforward adap


tation of the same technique� First observe that NRC�B �Q ��� ��	�
�
P
����� tcQ�� where

only the primitive for transitive closure on rational numbers is added� has the conservative

extension property with displacement � and constant �� Therefore� it su�ces to show that

tcs is expressible in it for every s� We do so by exploiting the sort function by de�ning

� tc�R� � decode�tcQ�encode�R� sort�dom�R����� sort�dom�R���� where

��



� dom�R� �
S
ff�� xg j x � Rg �

S
ff�� xg j x � Rg�

� encode�R�C� �
S
f
S
f
S
fif �� x � �� y then if �� x � �� z then f��� y� �� z�g

else fg else fg j z � Cg j y � Cg j x � Rg� and

� decode�R�C� �
S
f
S
f
S
fif �� x � �� y then if �� x � �� z then f��� y� �� z�g

else fg else fg j z � Cg j y � Cg j x � Rg�

The purpose of encode�R�C� is to produce a relation R� of rational numbers by replacing

every pair �o�� o�� � R with a pair �n�� n��� where ni is the rank of oi in the rank table C�

The purpose of decode�R�� C� is to recover� from the pair of ranks �n�� n�� � R�� the pair

�o�� o�� by looking up the rank table C� Therefore� tr�R� is computed by �rst encoding R

into a binary relation R� of rational numbers� then compute trQ�R��� and �nally recovering

from it the transitive closure of R� �

Conservativity of NRC��� powerset� was considered by Hull and Su ���� and Grumbach and

Vianu ����� The former showed that NRC��� powerset�i�o�h �� NRC��� powerset�i�o�h�� for

any h and i � o � �� implying the failure of conservative extension for NRC��� powerset�

with respect to 
at relations� The latter generalized this result to relations of any height�

Corollary ����� above shows that the failure at height higher than � can be repaired by

augmenting NRC��� powerset� with a summation operator� some limited arithmetic oper


ations� and linear orders at base types�

More recently� Suciu ����� showed� using a technique related to that of Van den Bussche

����� that NRC��� bfix�i�o�h � NRC��� bfix�i�o�h�� for i � o � �� This result is remarkable

because he did not need any arithmetic operation� Corollary ����� above shows that the

conservativity of bounded �xpoint can be extended to all input and output in the presence

of summation�

Immerman ����� showed that �rst
order logic with least �xpoint operator �lfp� and order

computes exactly the class of queries that have polynomial time complexity� This result

may implyNRC�Q��� ��	�
�
P
����� lfp�����h � NRC�Q��� ��	�
�

P
����� lfp�����h��� In

��



that case� NRC�Q��� �� 	�
�
P
����� lfp� is conservative over 
at relations� This result

should be contrasted with Corollary ����� above� The languages there do not necessarily

give us all polynomial time queries over 
at relations� Furthermore� conservativity holds

for them over any input and output� As evidence that the languages do not necessarily

compute all polynomial time queries� I observe that every predicate p � Q � B expressible

in NRC�B � Q � �� �� 	� 
�
P
� �� �� is either �nite or co�nite� see Section ����

��� Internal generic functions preserve conservative exten


sion properties

Internal generic functions

There is a more general conservative extension result underlying Corollary ������ To describe

precisely this result� I introduce type variables �i and consider nonground complex object

types

�� � ��� � j b j unit j � � � j f�g

If ��� ���� �n occur in �� then ��s����� � � � � sn��n� stands for the type obtained by re


placing every occurrence of �i in � by si� A complex object type s is an instance of a

nonground complex object type � if there are complex object types s�� ���� sn such that

s � ��s����� � � � � sn��n� where ��� ���� �n are all the type variables in �� The minimal

height mht��� of type � is de�ned as the depth of nesting of set brackets in �� That is�

mht��� is equivalent to ht�s� where s is obtained from � by replacing all occurrences of

type variables in � by some base types b� I write p��������n � � � � for the family of functions

ps������sn � s� t where s � ��s����� � � � � sn��n� and t � � �s����� � � � � sn��n�� �Note that for

each s�� ���� sn� there is exactly one p
s������sn in the family p��������n �� The minimal height

mht�p� of p��������n � � � � is de�ned as max�mht����mht�����

Let s � ��s����� � � � � sn��n� t���� Let dom
s�t
����o� be the set of subobjects of type t in

the object o � s occurring at positions corresponding to the type variable �� Formally�

��



de�ne doms�t
��� � s � ftg as follows� doms�t

b���x� � fg� doms�t
����x� � fxg� doms�t

�����x� � fg�

where � and �� are distinct type variables� domu�v�t
������x� y� � domu�t

����x� � domv�t
����y�� and

dom
fsg�t
f�g���X� �

S
fdoms�t

����x� j x � Xg�

De	nition ����� The family of functions p��������n � � � � is internal �see Hull ����� in

�i if for all complex object types s � ��s����� � � � � sn��n�� t � � �s����� � � � � sn��n�� and

complex object o � s� it is the case that domt�si
���i
�ps������sn�o�� � doms�si

���i
�o�� �

In other words� p��������n � � � � is internal in �i if it does not invent new values in

positions corresponding to the type variable �i� That is� every subobject in p�O� at a

position corresponding to �i can also be found in O at a position corresponding to �i�

Let s � ��s����� � � � � sn��n� t���� r � ��s����� � � � � sn��n� t
����� and � � t � t�� Let

modulates�t�t
�

����	�O� be the object O
� � r obtained by replacing every subobject o � t in

O � s occurring in positions corresponding to type variable � by ��o� � t�� Formally�

de�ne modulates�t�t
�

����	 � s � r as follows� modulates�t�t
�

b���	�x� � x� modulates�t�t
�

����	�x� � ��x��

modulates�t�t
�

�����	�x� � x� where � and �� are distinct type variables� modulateu�v�t�t�

������	�x� y� �

�modulateu�t�t
�

����	�x��modulatev�t�t
�

����	�y��� modulate
fsg�t�t�

f�g���	�X� � fmodulates�t�t
�

����	�x� j x � Xg�

De	nition ����� The family of functions p��������n � � � � is generic in �i if for all

complex object types s � ��s����� � � � � sn��n�� t � � �s����� � � � � sn��n�� complex object

o � s� set R � frg� and � � si � r such that � is a bijection from doms�si
���i�o� to R and

��� � r � si is its inverse when restricted to dom
s�si
���i�o�� it is the case that

s
ps������sn � t

s�

modulates�si�r���i�	

�

ps
�

�
�����s�n

� t�

modulatet
��r�si
���i�	��

�

the diagram above� where s�j � sj for j �� i and s�i � r� commutes� �

��



The aim of this section is to show that adding a family p��������n � internal and generic in

all type variables� to NRC�B � Q � �� �� 	� 
�
P
� �� �� does not destroy its conservative

extension property�

An implication of internal genericity

This is best seen if the linear orders assumed for base types are well
founded� I assume for

now that �b� b � b � B is a well
founded linear order for every base type b� Note that�

for the rest of this section� I use �Q to stand for this well
founded linear order on rational

numbers and use minQ to denote the rational number that is least with respect to this

well
found linear order� Consider NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� obtained by adding

the construct depicted in Figure ��� to NRC�B � Q � �� �� 	� 
�
P
� �� ���

e� � s e� � ftg
F
fe� j xt � e�g � s

Figure ���� The
F

construct�

The expression
F
fe� j xt � e�g denotes the greatest element in the set fe� j xt � e�g

�it is mins when the set is empty�� I write mins as a shorthand for the least element of

type s with respect to �s� hence� mins�t is �mins�mint� and minfsg is fg� Note that
F
fe� j x � e�g� where e� � fsg� is already de�nable in NRC�B � Q � �� �� 	� 
�

P
� �� ��

and can be treated as a syntactic sugar� It is clear that both doms�t
��� and modulates�t�t

�

����	 are

de�nable in NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� whenever � is�

Proposition ����� Let p��������n � � � � be a family of functions that is internal generic�

Then NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� endowed with the family of primitives p��������n

has precisely the expressive power of NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� endowed with

��



just the primitive pQ�����Q�

Proof� For each s � ��s����� � � � � sn��n� and o � fsig� de�ne

� ��o� � �x�
F
fif x � �� y then �� y else � j y � sort�o�g and

� ����o� � �x�
F
fif x � �� y then �� y else mins j y � sort�o�g�

where sort � fsig � fsi�Qg is as de�ned in Corollary ������ ��o� and ����o� are functions

of type si � Q and Q � si respectively� Clearly� ��o� when restricted to o is a bijection

whose inverse is ����o��

Let ui � ��Q��� � � � � �Q��i�� � si��i� � � � � sn��n� and vi � � �Q��� � � � � �Q��i�� � si��i� � � � �

sn��n�� Note that s � u� and t � v�� De�ne

� �i�o� �modulateui�si�Q
���i�	�dom

s�si
���i

�o��
and

� ���
i �o� �modulate

vi���Q�si
���i�	���dom

s�si
���i

�o��
�

Then the following diagram commutes by induction on n and by the assumption that the

family p��������n is internal and generic�

o � u�
���o� � � � u� ��������������� � � un

�n�o�� � � un��

� � v�

ps������sn

�
�
���
� �o�

� � v�

pQ�s������sn

�
��������������� � � vn

pQ����Q�sn

�
�
���
n �o�

� � vn��

pQ�����Q

�

Hence ps������sn � �x����
� �x� � � � � ��

��
n �x� � p

Q�����Q � �n�x� � � � � � ���x�� The right hand side

is clearly expressible in NRC�Q��� ��	�
�
P
�����

F
� pQ�����Q�� �

I now proceed to prove

��



The conservativeness of NRC�B � Q � �� �� �� ��
P
� �� ��

F
�

Proposition ����� NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� has the conservative extension

property with 
xed constant �� Moreover� when endowed with any additional primitive p� it

retains the conservative extension property with 
xed constant ht�p��

Proof� Add the following rewrite rules for
F
� assuming that the use of the construct

F
fe� j x � e�g is restricted to the situation when the type of e� is not a set type �when

e� � fsg� it is treated as a shorthand��

�
F
fe j x � fgg� min

�
F
fe� j x � fe�gg� e��e��x�

�
F
fe j x � e� � e�g � if

F
fe j x � e�g �

F
fe j x � e�g then

F
fe j x �

e�g else
F
fe j x � e�g

�
F
fe� j x �

S
fe� j y � e�gg�

F
f
F
fe� j x � e�g j y � e�g

�
F
fe j x � if e� then e� else e�g� if e� then

F
fe j x � e�g else

F
fe j x � e�g

� �i
F
fe� j x � e�g �

S
fif

P
fif e� � e��y�x� then � else � j y � e�g �

� then �i e� else fg j x � e�g� when e� � fsg�

� �i
F
fe� j x � e�g �

F
fif

P
fif e� � e��y�x� then � else � j y � e�g �

� then �i e� else fg j x � e�g� when e� is not of set type�

The extended collection of rewrite rules forms a weakly normalizing rewrite system and

conservativity can be derived by induction on the induced normal forms along the lines of

Theorem ������ �

Putting together the two previous propositions� the desired theorem follows straightfor


wardly�

��



Theorem ����� NRC�B � Q � �� �� 	� 
�
P
� �� ��

F
� endowed with an internal generic

family p��������n � � � � has the conservative extension property with 
xed constant mht�p��

�

As remarked earlier�
F
fe� j x � e�g is already de�nable in NRC�B � Q � �� �� 	� 
�

P
� ��

�� if e� � fsg� Therefore� if every type variable occurs in the scope of some set brackets in

� and � � then the assumption of well
foundedness on �b used in Proposition ����� is not

required and the proposition holds for NRC�B � Q � �� �� 	� 
�
P
� �� ��� Thus� we have

Corollary ����� NRC�B � Q � �� �� 	� 
�
P
� �� �� endowed with an internal generic

family p��������n � � � � � where each type variable is within the scope of some set brackets�

has the conservative extension property at all input and output heights with 
xed constant

mht�p�� �

In particular� any polymorphic function de�nable in the algebra of Abiteboul and Beeri

���� which is equivalent to NRC��� powerset�� gives rise to an internal generic family of

functions for all possible instantiations of type variables� Since the Abiteboul and Beeri

algebra has the power of a �xpoint logic� a great deal of polymorphic functions can be

added to NRC�B � Q � �� �� 	� 
�
P
� �� �� without destroying its conservative extension

property �but may be increasing the �xed constant�� Corollary ����� is special case of this

general result�

��



Chapter �

Finite�co�nite Properties

All popular commercial database query languages such as SQL are equipped with aggregate

functions and linear orders on numbers� These languages are further complicated by the

fact that they may use bag semantics as well as set semantics� Theoretical results obtained

on the basis of �rst
order logic or 
at relational algebra� as in Chandra and Harel ���� and

Fagin ����� often do not apply to these real query languages� For example� while it is known

��� that transitive closure is inexpressible in �rst
order logic� its inexpressibility in SQL is

not clear� Indeed� it is not even clear how one can stretch �rst
order logic so as to embed

aggregate functions in it naturally�

Recently there is an increasing interest to study query languages which more closely ap


proximates real query languages� Chaudhuri and Vardi ����� Albert ���� Grumbach and

Milo ���� and Grumbach� Milo� and Kornatzky ���� all consider query languages for bags�

Mumick� Pirahesh� and Ramakrishnan ������ and Libkin and myself ����� all consider query

languages with aggregate functions� Libkin and I ����� provided an explicit connection be


tween bags and aggregate functions� via which many results proved for aggregate functions

can be transferred to bags and vice versa�

Grumbach and Milo put forward two questions on bag query languages in their paper �����

The �rst is whether their bag query language can express the parity test on the cardinality

��



of sets without using any power operators� The second is whether their bag query language

can express transitive closure on relations without using any power operators� Paredaens

posed to me a third question on bag query languages in a conversation at Bellcore ������

His question was whether the test for balanced binary trees is expressible in Libkin and my

bag query language�

NRC�B � Q � �� �� 	� 
�
P
� �� is an arguably natural extension of NRC�B ��� with ag


gregate functions� Moreover� it possesses the conservative extension property which has a

simplifying e�ect on the analysis of the expressive power of the language� In this chap


ter� I demonstrate this simplifying e�ect by proving several �nite
co�niteness properties for

NRC�B � Q � �� �� 	� 
�
P
� �� by analysing the normal forms induced by the conservative

extension properties� The last of these properties yields negative solutions of all the above

conjectures as immediate corollaries�

Organization

Section ���� Every property expressible in NRC�B � Q � �� �� 	� 
�
P
� �� on rational

numbers is shown either to hold for �nitely many rational numbers or to fail for �nitely

many rational numbers� This result is a generalization of the classic result that� in the

language of pure identity� �rst
order logic can only express properties that are �nite or

co�nite� A corollary of this result is that� inspite of its arithmetic power� NRC�B � Q � �� ��

	� 
�
P
� �� cannot test whether one number is bigger than another number� This result

justi�es the augmentation of NRC�B � Q � �� �� 	� 
�
P
� �� with linear orders on base types�

Section ���� Every property expressible in the augmented language NRC�B � Q � �� �� 	� 
�
P
� �� �� on natural numbers is again shown to be �nite or co�nite� Many consequences

follow from this result� including the inexpressibility of parity test in NRC�B � Q � �� �� 	� 
�
P
� �� �� on natural numbers� This result is a very strong evidence that the conservative

extension theorem for NRC�B � Q � �� �� 	� 
�
P
� �� �� is not a consequence of Immerman�s

result on �xpoint queries in the presence of linear orders�

��



Section ���� Certain classes of graphs are introduced� Expressibility of properties on these

graphs in NRC�B � Q � �� �� 	� 
�
P
� �� �� when the linear order is restricted to ra


tional numbers is considered� I show that these properties are again �nite
co�nite� This

result settles the conjectures of Grumbach and Milo ���� and Paredaens ����� that parity
of


cardinality test� transitive closure� and balanced
binary
tree test cannot be expressed with

aggregate functions or with bags� This also generalizes the classic result of Aho and Ullman

��� that 
at relational algebra cannot express transitive closure to a language which is closer

in strength to SQL�

��� Finite
co�niteness of predicates on rational numbers

It is well known that in the pure language of identity �that is� with no predicate symbols

other than equality�� �rst
order logic can only express properties that are �nite or co�nite�

This fact can be extended to �xpoint logic via pebble games ����� As an example of the

theoretical usefulness of the conservative extension theorem on NRC�B � Q � �� �� 	� 
�
P
�

��� I show below that NRC�B � Q � �� �� 	� 
�
P
� �� can only express properties on rational

numbers that are �nite or co�nite�

Proposition ����� Let p � Q � B be a primitive predicate on rational numbers� Suppose

p is de
nable in NRC�B � Q � �� �� 	� 
�
P
� ��� Then p must be 
nite or co
nite� That

is� either there are only 
nitely many rational numbers which satisfy p or there are only


nitely many rational numbers which do not satisfy p�

Proof� Let p be de�nable in NRC�B � Q � �� �� 	� 
�
P
� ��� By Theorem ������ it must

be de�ned by a normal form �x�e of height ht�Q � B � � �� Thus e must be constructed

entirely from constants� �� 	� 
� �� �b� and if 
then
else�

First add �� �� and � �with the usual interpretation� to the language� Rewrite e into a

formula without if 
then
else such that all the leaves are of the form A � B� where A and

B uses just rational constants� �� 	� �� and 
� This step can be accomplished using rules
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such as�

� if e� then e� else e� � �e� � e�� � ��� e�� � e��� where e� � B and e� � B �

� �if e� then e� else e�� � e� � if e� then e� � e� else e� � e�

Each leaf A � B of the outcome of the previous step is turned into a polynomial equation

C � � where C may use only �� �� 	� and constants� but not 
� This is achieved using

rules like�

� A
B � C � A � C �B

� A � �B � C� � D � �A �B� � �A � C� � D

The proposition follows immediately from the claim below�

Claim� Let E � B be any formula� of one free variable x � Q� constructed entirely from x�

�� �� �� rational constants� �� 	� and � such that the leaves of E are polynomial equations

of the form C � �� Then either E�n�x� is true of �nitely many rationals n or it is false of

�nitely many rationals n�

Proof of Claim� Proceed by structural induction on E�

� Suppose E is C � �� It is well known that polynomials of degree k has at most k

roots� Hence there are only �nitely many n for which C�n�x� � � is true�

� Suppose E is � E�� By hypothesis� either E��n�x� is true for �nite many n or it is

false for �nitely many n� In the �rst case� E�n�x� is false for �nitely many n� In the

second case� E�n�x� is true for �nitely many n�

� Suppose E is E� � E�� By hypothesis� either there are �nitely many n so that E��n�x�

is true or there are �nitely many n so that E��n�x� is false� In this �rst case� it is clear

that there are only �nitely n so that E�n�x� is true� For the second case� there are

two subcases� The �rst subcase� suppose the hypothesis on E� yields E��m�x� is true

��



only for �nitely many m� This implies E�m�x� holds only for �nitely many m� The

other subcase is when the hypothesis on E� yields E��m�x� is false only for �nitely

many m� So E�n�x� is false only for �nitely many n�

� Suppose E is E� � E�� This case follows because E� � E� if and only if ���� E�� �

�� E���� �

Given any rational number� there are both in�nitely many rational numbers greater than

it and in�nitely many rational numbers less than it� Therefore� the usual linear order

�Q� Q � Q � Q on rational numbers cannot be expressed in NRC�B � Q � �� �� 	� 
�
P
� ���

in spite of its arithmetic prowess�

Corollary ����� NRC�B � Q � �� �� 	� 
�
P
� �� cannot de
ne �Q� �

��� Finite
co�niteness of predicates on natural numbers

Corollary ����� justi�es augmenting NRC�B � Q � �� �� 	� 
�
P
� �� with linear orders�

The augmented language is indeed a very much richer language� As shown in Section ����

NRC�B � Q � �� �� 	� 
�
P
� �� �� can even test whether the cardinality of a set is odd or

even� This fact is signi�cant because this query cannot be expressed in �rst
order logic�

This language still has the �nite
co�niteness property� when restricted to natural numbers�

Proposition ����� Let p � Q � B be any predicate on rational numbers� Suppose p is

expressible in NRC�B � Q � �� �� 	� 
�
P
� �� ��� Then either p holds for 
nitely many

natural numbers or p fails for 
nitely many natural numbers� That is� the restriction of p

to N is either 
nite or is co
nite�

Proof� The trick is to realize that p has height �� Thus it is de�nable inNRC�B � Q � �� �� 	�


�
P
� �� �� using an expression of height �� see Theorem ������ It is then straightforward

to modify the proof of Proposition ����� to obtain a proof for this proposition� We need

��



only to deal with the new case of E being C � �� Since every polynomial equation of

degree k has at most k roots� let n be the largest root for C� Then either for all m � n�

C�m�x� � �� that is� C�n�x� � � fails for �nitely many n� Or for all m � n� C�m�x� � ��

that is� C�n�x� � � holds for �nitely many n� An earlier proof by Libkin based on the same

trick can be found in our paper ������ �

As a result� while NRC�B � Q � �� �� 	� 
�
P
� �� �� can test whether the cardinality of a set

is odd or even� it cannot test whether a rational number is actually an odd natural number

or not�

Corollary ����� Let p � Q � B be a predicate such that p�n� holds if and only if n is a odd

natural number� Then p is not expressible in NRC�B � Q � �� �� 	� 
�
P
� �� ��� �

Libkin and I ����� introduced a query language for bags by interpreting the syntax of NRC

bag
theoretically� This language is equivalent to NRC�B � Q � �� �� 	� 
�
P
� �� �� minus

the division operator� This relationship� proved by Libkin and myself ������ gives rise to

some interesting corollaries� The �rst is a consequence of Corollary ������ the basic query

language for bags introduced by Libkin and myself ����� can test whether a bag contains an

odd number of distinct objects� but it cannot test whether a bag contains an odd number

of objects� A special case of this result was independently proved by Grumbach and Milo

����� The second is a consequence of Proposition ������ the basic bag language of ����� can

only express those predicates p � fjunit jg � B � where fjunit jg is the type of objects that are

bags of unit � that are either �nite or co�nite� This result is a generalization of the �rst

consequence �and hence of Grumbach and Milo�s result�� The third is a consequence of

Theorem ������ the basic language for bags introduced by Libkin and myself ����� has the

conservative extension property at all input and output heights with constant �� however�

the displacement is � due to the translations used� See my paper with Libkin ����� for

details� The bag language of Grumbach and Milo minus its power operators is equivalent

to Libkin and mine� Hence the above discussion applies to this fragment of their language

too�

��



��� Finite
co�niteness of predicates on special graphs

The two �nite
co�niteness theorems presented earlier are straightforward consequences of

two observations� The �rst observation is that the predicates involved have height �� My

conservative extension theorems immediately tell us that these predicates can be imple


mented using expressions of height � and hence no set is involved� The second observation

is that such expressions are essentially boolean combinations of polynomial equations� The

fundamental theorem of analysis tells us such equations have �nite number of roots� Finite


co�niteness then follows without complication�

Predicates of height � are simple from a database perspective because they concern primarily

the base types� Predicates on graphs are seen more frequently in database query languages�

�rst
order logics� and �nite models� These predicates are of height � and hence they involve

sets� They are considerably more di�cult to analyse and hence they are very interesting�

In this section� the expressive power of NRC�B � Q � �� �� 	� 
�
P
� �� �Q� over unordered

graphs is considered� The language NRC�B � Q � �� �� 	� 
�
P
� �� �Q� is obtained by adding

the usual linear order on rational numbers to NRC�B � Q � �� �� 	� 
�
P
� ��� In particular�

I show that every predicate p � fb � bg � B de�nable in NRC�B � Q � �� �� 	� 
�
P
� ��

�Q�� when restricted to certain classes of unordered graphs� either holds for �nitely many

non
isomorphic graphs or fails for �nitely many non
isomorphic graphs� As the technique

applied on this problem is sophisticated� I �rst present the eureka step before I present the

proof details� After that� I demonstrate the application of this result to the conjectures of

Grumbach� Milo� and Paredaens�

An insight into the structure of NRC�B � Q � �� �� �� ��
P
� �� �Q� queries

NRC�B � Q � �� �� 	� 
�
P
� �� �Q� can construct arbitrarily deeply nested sets� and it

can implement many aggregate functions� On the face of it� both of these features add

complexity to the analysis of graph queries� It is fortunate that nested sets turn out to be

a red herring because Theorem ����� holds for NRC�B � Q � �� �� 	� 
�
P
� �� �Q�� That is�

��



NRC�B � Q � �� �� 	� 
�
P
� �� �Q� has the conservative extension property� Since graph

queries has height �� it is only necessary for us to consider NRC�B � Q � �� �� 	� 
�
P
� ��

�Q� expressions having height ��

The rewriting done in the conservative extension theorem to eliminate intermediate data

in fact gives us more than just expressions of height �� It produces normal forms having a

rather special trait� Let e � Q be an expression of height � in normal form� Let R � fb� bg

be the only free variable in e� Let b be an unordered base type� Let e contains no constant

of type b� Then e contains no subexpression of the form
S
fe� j x � e�g� Also� every

subexpression involving
P
is guaranteed to have the form

P
fje� j x � Rjg�

It is natural to speculate on what e can look like� The most natural shape that comes to

mind is the one depicted below�

X

����������������
���������������

																				

� � �
X

����������������
���������������

																				

if P�

then f�
���

else if Ph

then fh

else fh��

																				

x� � R

																				

����������������
���������������

� � �

																				

xn � R

																				

����������������
���������������

Assume that the probability� in terms of the number of edges in R� of Pi being true and

Pj
i being false is pi� Then the expression above is equivalent to the polynomial N
n � �p� �

f� � � � �� ph�� � fh���� with N being the number of edges in R�

This observation is a crucial for two reasons� First� the use of the summation operator is

no longer arbitrary� It is now used only for computing the number of edges in R� All other

uses of it have been replaced by a polynomial expression� Second� the expression no longer

depends on the topology of the graph R� The only thing in R that can a�ect the value of

the polynomial �and hence the original expression� is the cardinality of R� Then a result

similar to Proposition ����� can be derived� leading to �nite
co�niteness of graph queries

for which the probability assumption holds�
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Expressible properties of k�multi�cycles are finite�cofinite

The insight above leads to a search for classes of graphs that possess su�cient regularity so

that the required probability analysis can be performed� The simplest class of such graphs

is probably the k
multi
cycles de�ned below�

De	nition ����� A binary relation O � fb� bg is called a k�multi�cycle if it is nonempty

and is of the form
������
�����

�o��� o
�
��� �o

�
�� o

�
��� � � � � �o�h��� o

�
h�� �o

�
h� o

�
���

���
���

�om� � o
m
� �� �o

m
� � o

m
� �� � � � � �omh��� o

m
h �� �o

m
h � o

m
� �

������
�����

where h � k and oji are all distinct� That is� it is a graph containing m � � unconnected

cycles of equal length h � k� �

Let me �rst provide a sketch of how the probability anaylsis discussed earlier can be carried

out on k
multi
cycles� Two preliminary de�nitons are needed for this purpose�

De�ne distancec�o� o
�� O� to be a predicate that holds if and only if the distance from node

��o to node ��o
� in k
multi
cycle O is c� Note that distancec is de�nable in NRC�B � Q � ��

�� 	� 
�
P
� �� for each constant c�

De�ne a d�state S with respect to variables R � fb�bg� x�� ���� xm � b�b to be a conjunction

of formulae of the form distancec�xi� xj � R� or the form �distancec�xi� xj � R� such that for

each � � c � d� � � i� j � m� either distancec�xi� xj� R� or �distancec�xi� xj � R� must appear

in it� Moreover� S has to be satis�able in the sense that some chain O of length d and edges

o�� ���� om in O can be found so that S�O�R� o��x�� ���� om�xm� holds�

Let R � fb� bg� x�� ���� xm � b� b be �xed� Since any chain can be extended to a cycle� this

implies that any d
state with respect to these variables can be satis�ed by some d
multi


cycle� Conversely� if a k
multi
cycle is shorter than d� then it cannot satisfy every d
state

with respect to these variables�
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Proposition ����� Let e be an expression of NRC�B � Q � �� �� 	� 
�
P
� �� �Q� having

R � fb� bg� N � Q� x�� ���� xm � b� b as free variables such that e has the special form below

X

������
�����

										
� � �

X

������
�����

										

if P

then E

else �

										
xm�� � R

										

������
�����

� � �

										
xm�n � R

										

������
�����

where E is a ratio of polynomials in terms of N � P is a boolean combination of formu�

lae of the form �ixi� � �jxj�� �ixi� �� �jxj�� �distancec�xi� xj � R�� or distancec�xi� xj � R��

Let d � �n � m� � �C � �� where C is the sum of the c�s for each distancec�xi� xj � R�

or �distancec�xi� xj � R� in P � Let S be any d�state with respect to R� x�� ���� xm�

Then there is a ratio r of polynomials in terms of N such that for any d�multi�cycle

O� and edges o�� ���� om in O making S�O�R� o��x�� ���� om�xm� true� it is the case that

e�O�R� o��x�� ���� om�xm� card�O��N � � r�card�O��N ��

Proof� By the probability p for a predicate P of n free variables to hold with respect to a

graph O� I mean the proportion of the instantiations of the free variables to edges in O that

make P true� The key to the proof of this proposition is in realizing that the probability

p for P to hold can be determined in the case of k
multi
cycle when k is large �any k � d

is good enough�� Moreover p can be expressed as a ratio of two polynomials of N � Thus r

can be de�ned as Nn � p � E

The probability p can be calculated as follows� First� generate all possible d
states Dj�s

with respect to the variables R� x�� ���� xm�n� Second� determine the probability qj of Dj

given the certainty of S� this can be calculated using the procedure to be given shortly�

Third� eliminate those Dj �s that are inconsistent with the conjunction of S and P � Finally�

calculate p by summing the qj�s corresponding to those remaining d
states�

It remains to show that each qi can be expressed as a ratio of two polynomials inN � Partition

the positive leaves of the correspondingDi into groups so that the variables in each group are

connected between themselves and are unconnected with those in other groups� �Variables

x and y are said to be connected in Di if there is a positive leaf distancec�x� y�R� in Di��

Note that the negative leaves merely assert that these groups are unconnected� Then we

��



proceed by induction on the number of groups�

The base case is when there is just one group� In such a situation� all the variables lie on

the same cycle� Since a d
state can be satis�ed by a chain of length d� these variables must

lie on a line� Let u be the number of bound variables amongst xm��� ���� xm�n appearing in

the group� in this case u � n� Then qi � N 
Nu if no variables amongst x�� ���� xm appear

in the group� Otherwise� qi � �
Nu� In either case� qi is a ratio of polynomials in N �

For the induction case� suppose we have more than one group� The independent probability

of each group can be calculated as in the base case� Then qi is the di�erence between the

product of these independent probabilities and the sum of the probabilities where these

groups are made to overlap in all possible ways� These groups are made to overlap by

turning some negative leaves in Di into positive ones so that the results are again d
states�

Notice that when groups overlap� the number of groups strictly decreases� Hence the in


duction hypothesis can be applied to obtain these probabilities as ratios of polynomials in

N � Consequently� qi can be expressed as a ratio of polynomials in N as desired� �

The proposition above shows that expressions of the given special form can be reduced to

a simple polynomial in terms of the number of edges in R� In the theorem below� I sketch

the process for converting any expression of type fb� bg � B in NRC�B � Q � �� �� 	� 
�
P
�

�� �Q� into this special form�

Theorem ����� Let G � fb � bg � B be a function expressible in NRC�B � Q � �� �� 	� 
�
P
� �� �Q�� Then there is some k such that for all k�multi�cycles O� it is the case that G�O�

is true� or for all k�multi�cycles O� it is the case that G�O� is false�

Proof� Let G � fb � bg � B be implemented by the NRC�B � Q � �� �� 	� 
�
P
� �� �Q�

expression �R�E� Without loss of generality� E can be assumed to be a normal form with

respect to the rewrite system used in the proof of conservative extension theorem� Theorem

������ We note that such an E contains no subexpression of the form
S
fe� j x � e�g�

Furthermore� all occurrences of summation in E must be of the form
P
fje j x � Rjg�

��



Let us temporarily enrich our language with the usual logical operators �� �� �� ��� ���

as well as distancec and �distancec� Also introduce a new variable N � Q� which is to be

interpreted as the cardinality of R� Rewrite all summations into the special form given

below

X

������
�����

										
� � �

X

������
�����

										

if P

then f

else �

										
xm�� � R

										

������
�����

� � �

										
xm�n � R

										

������
�����

so that f has the form h
g� where h is a polynomial in terms of N and g is either a polyno


mial in terms of N or is again a subexpression of the same special form� Also� P is a formula

whose leaves are of the following form� �ixi� � �jxj� � �ixi� �� �jxj� � distancec�xi� xj � R��

�distancec�xi� xj � R�� U �Q V � U ��Q V � U � V � or U �� V � where U and V also have the

same special form�

Let the resultant expression be F � The rewriting should be such that for all su�ciently long

k
multi
cycles O� F �O�R� card�O��N � holds if and only if E�O�R� holds� This rewriting can

be accomplished by using rules such as�

� if e� then
P
fje� j x � Rjg else e� �

P
fj if e� then e� else e� 
N j x � Rjg

� if e� then e� else
P
fje� j x � Rjg�

P
fj if e� then e� 
N else e� j x � Rjg

� e� �
P
fje� j x � Rjg�

P
fje� � e� j x � Rjg

�
P
fje� j x � Rjg � e� �

P
fje� � e� j x � Rjg

�
P
fje� j x � Rjg 
 e� �

P
fje� 
 e� j x � Rjg

�
P
fje� j x � Rjg� e� �

P
fje� � �e� 
N� j x � Rjg

�
P
fje� j x � Rjg 	 e� �

P
fje� 	 �e� 
N� j x � Rjg

� e� 	
P
fje� j x � Rjg�

P
fj�e� 
N�	 e� j x � Rjg

� e� �
P
fje� j x � Rjg�

P
fj�e� 
N� � e� j x � Rjg

�
P
fjif e� then e� else e� j x � Rjg �

P
fjif e� then e� else � j x � Rjg �

P
fjif �e� then e� else � j x � Rjg� if neither e� nor e� is ��
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Having obtained F in this special form� the proof is continued by repeating the following

steps until all occurrences of R have been eliminated�

Step �� Look for an innermost subexpression of F that has the special form required by

Proposition ������ Let this subexpression be F � and its free variables be y�� ���� ym� R

and N � Generate all possible d
states with respect to these free variables of F �� The d

is the smallest one suggested by Proposition ����� and serves as a lower bound for k� Let

S�� ���� Sh�� be these d
states� Apply Proposition ����� to F
� with respect to each Si

to obtain expressions ri which are ratios of polynomials of N � Then F
� is equivalent to

if S� then r� else � � � if Sh then rh else rh�� under the assumption of the theorem that the

variable R is never instantiated to short k�
multi
cycles where k� � k�

Step �� To maintain the same special form� we need to push the Si up one level to the

expression in which F � is nested� This rewriting is done using rules such as�

� �if S� then r� � � � if Sh then rh else rh��� �
Q V � �S��r� �Q V ��� � ���Sh���rh�� �

Q

V �

� if P then �f 
 �if S� then r� else � � � if Sh then rh else rh���� else e

� if P � S� then f 
 r� � � � if P � Sh�� then f 
 rh�� else e

Step �� After Step �� some expression having the form U �Q V � U � V � or their negation�

can become an equation of ratios of polynomials of N � Such an expression can be replaced

either by true or by false� For illustration� we explain the case of U �Q V � the other cases

are similar� First� U �Q V is readily transformed into a polynomial P � � with N being

its only free variable� Check if P is identically �� In that case� replace U �Q V by true� If

P is not identically �� we use the fact that a polynomial has a �nite number of roots� By

choosing a su�ciently large lower bound for k� we can ensure that N always exceeds the

largest root of P � Thus� in this case we replace U �Q V by false�

Observe that in step � we have reduced the number of summations and in step � we have

reduced the number of equality and inequality tests� By repeating these steps� we eventually

reach the base case and arrive at an expression where R does not occur� When we are
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�nished� the resultant expression is clearly a boolean formula containing no free variable�

Therefore its value does not depend on R� Consequently the theorem holds for any k not

smaller than the lower bound determined by the above process� �

This theorem expresses a �nite
co�niteness of k
multi
cycle queries in the following sense�

Let isomorphic k
multi
cycles be identi�ed� Then for anym � �� properties of k
multi
cycles

consisting of at most m components are either �nite or co�nite� This result is pregnant

with implications� I present some of the obvious ones below�

Corollary ����� Let chain � fb� bg � B be the predicate such that chain�O� holds if and

only if O is a chain� Then chain is not de
nable in NRC�B � Q � �� �� 	� 
�
P
� �� �Q��

Proof� Let singlecycle � fb�bg � B be the predicate for testing if a graph is a single cycle�

It is clear that for a k
multi
cycle O� singlecycle�O� if and only if chain�O 	 fog� for any

o � O� If chain is de�nable in NRC�B � Q � �� �� 	� 
�
P
� �� �Q�� then the right
hand
side

is de�nable in it too� This implies singlecycle is de�nable in NRC�B � Q � �� �� 	� 
�
P
� ��

�Q�� contradicting Theorem ������ �

Corollary ����� Let connected � fb�bg � B be the predicate such that connected�O� holds

if and only if O is a connected graph� Then connected is not de
nable in NRC�B � Q � �� ��

	� 
�
P
� �� �Q��

Proof� A k
multi
cycle O is connected if and only if it is a single cycle� Since NRC�B �

Q � �� �� 	� 
�
P
� �� �Q� cannot test the latter� it cannot test the former� Note that this

result holds for both directed connectivity and undirected connectivity� �

Corollary ����� Let evencard � fb� bg � B be the predicate such that evencard�O� holds

if and only if O has even cardinality� Then evencard is not de
nable in NRC�B � Q � �� ��

	� 
�
P
� �� �Q��

Proof� By Theorem ������ there is no query in NRC�B � Q � �� �� 	� 
�
P
� �� �Q� that can

distinguish one k
multi
cycle from another as long as k is big enough� Therefore� there is
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no query in NRC�B � Q � �� �� 	� 
�
P
� �� �Q� that can distinguish a k
multi
cycle having

an odd number of edges from a k
multi
cyle having an even number of edges� as long as k

is big enough� The corollary follows immediately� �

Corollary ����� Let tc � fb � bg � fb � bg be the function which computes the transitive

closure of binary relations� Then tc is not de
nable in NRC�B � Q � �� �� 	� 
�
P
� �� �Q��

Proof� Let singlecycle � fb � bg � B be a predicate such that singlecycle�O� holds if

and only if O is a graph having exactly one cycle� Clearly� singlecycle�O� if and only if

tc�O� � cartprod�!�O� !�O�� Hence de�nability of tc in NRC�B � Q � �� �� 	� 
�
P
� ��

�Q� implies de�nability of singlecycle in NRC�B � Q � �� �� 	� 
�
P
� �� �Q�� By Theorem

������ singlecycle is not de�nable in NRC�B � Q � �� �� 	� 
�
P
� �� �Q�� Hence neither is

tc� �

A result similar to Corollary ����� was also obtained by Consens and Mendelzon ����� They

proved that if LOGSPACE is strictly included in NLOGSPACE� then transitive closure

cannot be expressed in �rst
order logic augmented with certain aggregate functions� The

separation of these two complexity classes has been and is likely to remain a di�cult open

problem� In contrast� my result does not require such a precondition� I should also point

out that there is no simple alternative proof using complexity arguments of my corollaries

above� It is known that many queries mentioned in the corollaries above are not in a low

complexity class such as AC�� see Johnson ����� and Furst� Saxe� and Sipser ����� Hence

if NRC�B � Q � �� �� 	� 
�
P
� �� �Q� can be shown to be in such a class� then many of

my results would be immediate� However� NRC�B � Q � �� �� 	� 
�
P
� �� �Q� has higher

complexity than AC�� it has multiplication and it can test the parity of the cardinality of

ordered sets� Neither of these capabilities belong to AC��

Expressible properties of k�strict�binary�trees are finite�cofinite

The proof of Theorem ����� relies on two things� satis�ability of d
states is easy to decide for

k
multi
cycles and probabilities are easy to calculate and express as ratios of polynomials
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in terms of the size of graphs for k
multi
cycles� There is another class of graphs having

these two properties� k
strict
binary
trees� A k
strict
binary
tree is a nonempty tree where

each node has either � or � decendents and the distance from the root to any leaf is at least

k�

Theorem ����
 Let G � fb� bg � B be a function that is expressible in NRC�B � Q � �� ��

	� 
�
P
� �� �Q�� Then there is some k such that for all k�strict�binary�trees O� it is the

case that G�O� is true� or for all k�strict�binary�trees O� it is the case that G�O� is false�

Proof sketch� It is easy to decide if a d
state is satis�able by some k
strict
binary
trees�

The probability calculation is also simple� The only problem is that the probability must

be expressed wholely as a ratio of polynomials of the number of edges in the tree� This is

dealt with by observing that in k
strict
binary
trees� the number of internal nodes is � fewer

than half the number of edges and the number of leaves is equal to � plus the number of

internal nodes� The theorem follows by repeating verbatim the proof for k
multi
cycles� �

Therefore� no queries in NRC�B � Q � �� �� 	� 
�
P
� �� �Q� can tell the di�erence of one

k
strict
binary tree from another� provided k is big enough� It follows immediately that

Corollary ����� Let balanced � fb� bg � B be a predicate such that balanced�O� holds if

and only if O is a balanced binary tree� Then balanced is not de
nable in NRC�B � Q � �� ��

	� 
�
P
� �� �Q�� �

Libkin and I ����� introduced a query language for bags by interpreting the syntax of NRC

bag
theoretically� This bag language is equivalent to a sublanguage of NRC�B � Q � �� �� 	�


�
P
� �� �Q�� It is also equivalent to the bag language of Grumbach and Milo ���� minus

their power operators on bags� This equivalence allows us to use the results above to settled

several conjectures on this bag query language� First is the conjecture of Grumbach and

Milo ���� that this bag query language cannot test the parity of the cardinality of relations�

This conjecture is implied by Corollary ������ Second is the conjecture of Grumbach and

Milo ���� that this bag query language cannot de�ne the transitive closure of relations� This

���



conjecture is implied by Corollary ������ Third and last is the conjecture of Paredaens �����

that this bag query language cannot test whether a binary tree is balanced or not� This

conjecture is implied by Corollary ������
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Chapter �

A Collection Programming

Language called CPL

Based on some of the ideas described earlier on� I have built a prototype query system called

Kleisli� �See Chapter ��� The system is designed as a database engine to be connected to

the host programming language ML ����� via a collection of libraries of routines� These

routines are parameterized for more open and better control so that expert users do not

have to resort to wily evasion of restriction in their quest for performance� �There is strong

evidence ����� that experts demonstrate a canny persistence in uncovering necessary detail

to satisfy their concern for performance��

I have included an implementation of a high
level query language� for non
expert users�

called CPL with the prototype� The libraries actually contain enough tools for a competent

user to quickly build his own query language or command line interpreter to use in connec


tion with Kleisli and the host language ML� In fact� CPL is an example of how to use these

tools to implement query languages for Kleisli� This chapter is intended as an informal but

accurate description of CPL�
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Organization

Section 	��� A rich data model is supported in CPL� In particular� sets� lists� bags� records�

and variants can be freely combined� The language itself is obtained by orthogonally com


bining constructs for manipulating these data types� The data types and the core fragment

of CPL is described in this section� Examples are provided to illustrate CPL�s modeling

power�

Section 	��� A comprehension syntax is used in CPL to uniformly manipulate sets� lists�

and bags� CPL�s comprehension notation is a generalization of the list comprehension

notation of functional languages such as Miranda ������ The comprehension syntax of CPL

is presented in this section and its semantics is explained in terms of core CPL� Examples

are provided to illustrate the uniform nature of list
� bag
� and set
comprehensions�

Section 	��� A pattern matching mechanism is supported in CPL� In particular� convenient

partial
record patterns and variable
as
constant patterns are supported� The former is also

available in languages such as Machiavelli ������ but not in languages such as ML ������

The latter feature is not available elsewhere at all� The pattern matching mechanism of

CPL is presented in two stages� In the �rst stage� simple patterns are described� In the

second stage� enhanced patterns are described� Semantics is again given in terms of core

CPL� Examples are provided to illustrate the convenience of pattern matching�

Section 	��� More examples are given to illustrate other features of CPL� These features

include� ��� Types are automatically inferred in CPL� In particular� CPL has polymorphic

record types� However� the type inference system is simpler than that of Ohori ������ Remy

������ etc� ��� External functions can be easily imported from the host system into CPL�

Scanners and writers for external data can be easily added to CPL� More details can be

found in Chapter �� ��� An extensible optimizer is available� The basic optimizer does loop

fusion� �lter promotion� and code motion� It optimizes scanning and printing of external

�les� It has been extended to deal with joins by picking alternative join operators and by

migrating them to external servers� More details can be found in Chapters � and ��
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��� The core of CPL

I �rst describe CPL�s types� Then I describe the core fragment of CPL� The core fragment is

based on the central idea of restricting structural recursion to homomorphisms of collection

types� In fact� when restricted to sets� CPL is really a heavily sugared version of NRC����

Lastly� several examples are provided to illustrate CPL�s modeling power�

Types

The ground complex object types� ranged over by s and t� are given by the grammar below�

The li are labels and are required to be distinct� The b ranges over base types�

s ��� b j fsg j f	s	g j !s" j �l� � s�� � � � � ln � sn� j �l� � s�� � � � � ln � sn�

The ground types� over which u and v range� are given by the grammar below�

u ��� b j fsg j f	s	g j !s" j �l� � u�� � � � � ln � un� j �l� � u�� � � � � ln � un� j u 
� v

CPL allows �u�� � � � � un� as a syntactic sugar for ��� � u�� � � � ��n � un�� Labels in CPL

always start with the �
sign�

Objects of type fsg are �nite sets whose elements are objects of type s� Objects of type

f	s	g are �nite bags whose elements are objects of type s� Objects of type !s" are �nite

lists whose elements are objects of type s� Objects of type �l� � u�� � � � � ln � un� are records

having exactly �elds l�� ���� ln and whose values at these �elds are objects of types u�� ���� un

respectively� An object of type �l� � u�� � � � � ln � un� is called a variant object and is a pair

�li � o� such that o is an object of type ui� that is� it is an object of type ui tagged with the

label li� �Variants are also called tagged
unions and co
products� See Gunter ���� or Hull

and Yap ����� for more information�� Objects of type u 
� v are functions from type u to

type v� Included amongst the base types are int� real� string� bool� and unit �which is

the type having exactly the empty record �� as its only object��
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Observe that function types u 
� v in CPL are higher
order because u and v can contain

function types� This is di�erent from the �rst
order function types s � t of NRC in the

previous chapters� Higher
order function types are allowed in CPL for two reasons� To

discuss these two reasons� I need some results obtained by Suciu and myself ����� on the

forms of structural recursion sri and sru� Let HNRC�B ��� sri � and HNRC�B ��� sru �

respectively denote the language obtained by generalizing NRC�B ��� sri � and NRC�B ��

� sru� to higher
order function types� We showed that HNRC�B ��� sri � � HNRC�B ��

� sru� � NRC�B ��� sri � � NRC�B ��� sru � over the class of �rst
order functions� Hence

every function of type s� t expressible using the higher
order languages is also expressible

using the �rst
order languages� This result gives us the �rst reason for having higher


order function types in CPL it makes many things more convenient but without making

analysis of �rst
order expressive power of CPL more complicated� Another result in the

same paper ����� is that all uniform implementations of sri in NRC�B ��� sru � are bound to

be expensive while there are e�cient uniform implementations of sri in HNRC�B ��� sru ��

This gives us the second reason for having higher
order function types in CPL it allows

the implementation of more e�cient algorithms� See my paper with Suciu ����� for details�

CPL also has nonground types� I only intend to explain how to read a CPL type expression

having nonground types below� The nonground complex object types are ranged over by

the symbol �� Nonground complex object types are obtained from ground complex object

types by replacing some subexpressions with complex object type variables of the following

forms�

� Unconstrained complex object type variable� It has the form ��n� where n is a natural

number� It can be instantiated to any ground complex object type�

� Record complex object type variable� It has the form �l� � ��� � � � � ln � �n� ��m�� where

m is a natural number� It can only be instantiated to ground record types having at

least the �elds l�� ���� ln� so that �i can be consistently instantiated to the type at �eld

li�

� Variant complex object type variable� It has the form �l� � ��� � � � � ln � �n� ��m�� where
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m is a natural number� It can only be instantiated to ground variant types having

at least the �elds l�� ���� ln� so that �i can be consistently instantiated to the type at

�eld li�

The nonground types are ranged over by the symbol �� Nonground types are obtained

from ground types by replacing some subexpressions with a universal type variable of the

following forms�

� Unconstrained universal type variable� It has the form �n� where n is a natural

number� It can be instantiated to any ground type�

� Record universal type variable� It has the form �l� � ��� � � � � ln � �n� �m�� where m is

a natural number� It can only be instantiated to ground record types having at least

the �elds l�� ���� ln� so that �i can be consistently instantiated to the type at �eld li�

� Variant universal type variable� It has the form �l� � ��� � � � � ln � �n� �m�� where m is

a natural number� It can only be instantiated to ground variant types having at least

the �elds l�� ���� ln� so that �i can be consistently instantiated to the type at �eld li�

Hence for example ��age 
 string� ��� 
� string indicates the type of functions whose

inputs are records having at least the �eld �age of string type and producing outputs of

string type� Similarly� ��age 
 string� ��� 
� ��age 
 string� ��� indicates the

type of functions whose inputs are records having at least the �elds �age of string type

and produces outputs of exactly the same type as the inputs�

The distinction between nonground complex object types and nonground types is that

the latter types include function types but the former types do not� For example� the non


ground complex object type ��input�set
 �int�� ���� cannot be instantiated to a record

type such as ��input�set
 �int�� �transformer
 int
�int�� On the other hand� the

nonground type ��input�set
 �int�� ��� can be instantiated to a record type such as

��input�set
 �int�� �transformer
 int
�int��

CPL also has a token stream type !	s	"� An object of type !	s	" is a token stream
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representing an object of type s� As token streams seldom appear in normal user programs�

I omit them from this description of CPL�

Expressions

The expressions are ranged over by e� The variables are ranged over by x� For simplicity�

we assign a ground type once
and
forever to all the variables� the type u assigned to a

variable x is indicated by superscripting� xu� Expression formation constructs are based on

the structure of types� See also the comments at end of Section ����

For function types� the expression constructs are given in Figure ���� The meaning of

nxu �� e is the function f that when applied to an object o of type u produces the object

e�o�xu�� �The notation e�o�xu� means replace all free occurrences of xu in e by o�� The

meaning of e� � e� is the result of applying the function e� to the object e��

xu � u

e � v

nxu �� e � u 
� v

e� � u 
� v e� � u

e� � e� � v

Figure ���� The constructs for function types in CPL�

For record types� the expression constructs are given in Figure ���� I have already mentioned

that �� is the unique object having type unit� The construct �l� � e�� � � � � ln � en� forms a

record having �elds l�� ���� ln whose values are e�� ���� en respectively� A label when used as

an expression stands for the obvious projection function�

For variant types� the expression constructs are given in Figure ���� The construct �l � e�

forms a variant object by tagging the object e with the label l� The case
expression evaluates

to ei�o�x
ui
i � if e evaluates to �li � o�� The case
otherwise
expression evaluates to ei�o�x

ui
i � if

e evaluates to �li � o� where � � i � n� otherwise it evaluates to e�� See also Section ����

���



�� � unit

e� � u� � � � en � un

�l� � e�� � � � � ln � en� � �l� � u�� � � � � ln � un�

l�l	u� l�	u������ln	un� � �l � u� l� � u�� � � � � ln � un� 
� u

Figure ���� The constructs for record types in CPL�

e � u

�l � e��l�	u������ln	un� � �l � u� l� � u�� � � � � ln � un�

e � �l� � u�� � � � � ln � un� e� � u � � � en � u

case e of �l� � nx
u�
� � �� e� or � � � or �ln � nxunn � �� en � u

e � �l� � u�� � � � � ln�m � un�m� e� � u � � � en � u e� � u

case e of �l� � nx
u�
� � �� e� or � � � or �ln � nxunn � �� en otherwise e� � u

Figure ���� The constructs for variant types in CPL�
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For the base type bool� there are the usual constructs given in Figure ����

true � bool false � bool

e� � bool e� � u e� � u

if e� then e� else e� � u

Figure ���� The constructs for the Boolean type in CPL�

For set types� the expression constructs are given in Figure ���� The meaning of fgs is

the empty set� The meaning of feg is the singleton set containing e� The meaning of

e� f�g e� is the set union of e� and e�� The expression sextfe� j nxt �
 e�g stands for the

set e��o��x
t� f�g � � � f�g e��on�xt�� where o�� ���� on are all the elements of the set e��

fgs � fsg

e � s

feg � fsg

e� � fsg e� � fsg

e� f�g e� � fsg

e� � fsg e� � ftg

sextfe� j nxt �
 e�g � fsg

Figure ���� The constructs for set types in CPL�

For bag types� the expression constructs are given in Figure ���� The meaning of f		gs

is the empty bag� The meaning of f	e	g is the singleton bag containing e� The meaning

of e� f	�	g e� is the bag union of e� and e�� it is sometimes called the additive union�

For example� if e� is a bag of �ve apples and two oranges and e� is a bag of one apple

and three oranges� then e� f	�	g e� is a bag of six apples and �ve oranges� The expres


sion bextf	e� j nxt �

 e�	g stands for the bag e��o��xt� f	�	g � � � f	�	g e��on�xt�� More

information on bags can be found in ������

For list types� the expression constructs are given in Figure ���� The meaning of !"s is the

empty list� The meaning of !e" is the singleton list containing e� The meaning of e� !�" e�

���



f		gs � f	s	g

e � s

f	e	g � f	s	g

e� � f	s	g e� � f	s	g

e� f	�	g e� � f	s	g

e� � f	s	g e� � f	t	g

bextf	e� j nxt �

 e�	g � f	s	g

Figure ���� The constructs for bag types in CPL�

is the list concatenation of e� and e�� The expression lext!e� j nx
t �


 e�" stands for the

list e��o��x
t� !�" � � � !�" e��on�x

t��

!"s � !s"

e � s

!e" � !s"

e� � !s" e� � !s"

e� !�" e� � !s"

e� � !s" e� � !t"

lext!e� j nxt �


 e�" � !s"

Figure ���� The constructs for list types in CPL�

CPL also includes the primitives functions listed in Figure ��� for comparing complex ob


jects� The operator � is the equality test� The operator �� is the linear order� The

operator � is the strict version� The linear order is based on the technique of lifting

presented in Section ����

CPL supports conversion between lists� bags� and sets� These operators� listed in Fig


ure ���� correspond to the monad morphisms mentioned in Wadler ������ The expression

sextfe� j nxt �

 e�g stands for the set e��o��xt� f�g � � � f�g e��on�xt�� where o�� ���� on are

the distinct elements in the bag e�� The expression bextf	e� j nxt �
 e�	g stands for the bag

e��o��x
t� f	�	g � � � f	�	g e��on�xt�� where o�� ���� on are the distinct elements in the set e��

���



e� � s e� � s

e� � e� � bool

e� � s e� � s

e� �� e� � bool

e� � s e� � s

e� � e� � bool

Figure ���� The constructs for comparing objects in CPL�

The expression sextfe� j nx
t �


 e�g stands for the set e��o��x

t� f�g � � � f�g e��on�x
t��

where o�� ���� on are the distinct elements in the list e�� The expression lext!e� j nxt �
 e�"

stands for the list e��o��x
t� !�" � � � !�" e��on�x

t�� where o�� ���� on are the distinct ele


ments in the set e� and o� � � � � � on� The expression bextf	e� j nxt �


 e�	g stands for

the bag e��o��x
t� f	�	g � � � f	�	g e��on�xt�� where o�� ���� on are the elements in the list

e�� with oi occurring at position i� The expression lext!e� j nxt �

 e�" stands for the

list e��o��x
t� !�" � � � !�" e��on�xt�� where o�� ���� on are the elements in the bag e� and

o� �� � � � �� on�

e� � fsg e� � f	t	g

sextfe� j nxt �

 e�g � fsg

e� � fsg e� � !t"

sextfe� j nxt �


 e�g � fsg

e� � f	s	g e� � ftg

bextf	e� j nxt �
 e�	g � f	s	g

e� � f	s	g e� � !t"

bextf	e� j nxt �


 e�	g � f	s	g

e� � !s" e� � ftg

lext!e� j nxt �
 e�" � !s"

e� � !s" e� � f	t	g

lext!e� j nxt �

 e�" � !s"

Figure ���� The constructs for list
bag
set interactions in CPL�

CPL supports some syntactic sugar on expressions�
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� The expression e� � e� means e� � e��

� The expression e� e� e� is the binary function application in in�x form for e� � �e�� e���

all binary functions in CPL can be applied in in�x form�

� The expression e� o e� means nx
u �� e� � �e� � xu� where xu is fresh and u is the

appropriate type�

� The expression �e�� � � � � en� means ��� � e�� � � � � �n � en��

� The expression let nxs �� e� in e� means �nx
s �� e�� � e��

� The expression fe�� � � � � eng means fe�g f�g � � � f�g feng�

� The expression f	e�� � � � � en	g means f	e�	g f	�	g � � � f	�	g f	en	g�

� The expression !e�� � � � � en" means !e�" !�" � � � !�" !en"�

� The expression e� �g e� means fe�g f�g e��

� The expression e� �	g e� means f	e�	g f	�	g e��

� The expression e� �" e� means !e�" !�" e��

CPL comes with a type inference system that is considerably simpler than those of Ohori

������ Remy ������ etc�� because CPL does not have a record
concatenation operation� Hence

there is no need to indicate types any where in CPL expressions� So we drop our type

superscripts henceforth� except when giving typing rules�

Examples� CPL�s modeling power

Sets� lists� bags ������ records� and variants ���� are supported in CPL� These types can be

freely combined� giving rise to a rich and 
exible data model�

Example� Here is a list of sets of numbers in CPL�

���



! � �� �� ��� ��� �� ��� ��� ��� �� " �

Result 
 !��� �� ��� ��� �� ��� ��� ��� ��"

Type 
 !�int�"

Example� We can model the employee salary history example of Makinouchi ����� by a

nested relation as below�

���name
 �tom�� �history
 ���date
 �june ������ �salary
 ������

��date
 �july ������ �salary
 �������� ��name
 �jim�� �history
 �����

Result 
 ���history
 ���

�name
 �jim���

��history
 ���salary
 �����

�date
 �july �������

��salary
 �����

�date
 �june ��������

�name
 �tom���

Type 
 ���history
���salary
int� �date
string��� �name
string��

Notice that �jim� has the empty set as his salary history� he is probably a new employee�

Had we not used nested relations� we must resort to either two 
at tables �one for new

employees and one for old employees� or to null values�

Example� We model student information� where some of them have phone number as contact

address and some have room number instead� This is done using variants�

���name
�jim�� �contact
��phone
��
�������� ��name
�tom�� �contact


��office
��
�������� �

Result 
 ���contact
 ��office
 ��
�������

�name
 �tom���

��contact
 ��phone
 ��
�������

�name
 �jim���

���



Type 
 ���contact
��office
string��phone
string�������name
string��

Had we not used variants� we must resort to either two 
at tables �one for people having

phone number and one for those who have room number� or to null values�

��� Collection comprehension in CPL

An important in
uence on the design of CPL is Wadler�s idea of using the comprehension

syntax for manipulating monads ������ His idea is to introduce a comprehension construct

fe j x� � e�� � � � � xn � eng in place of the
S
fe� j x � e�g construct of NRC� This construct

can be interpreted in NRC by treating fe j x � e��%g as
S
ffe j %g j x � e�g and fe j g as

feg� Conversely the
S
fe� j x � e�g construct can be interpreted as fy j x � e�� y � e�g in

Wadler�s language� Thus his language is equivalent to NRC�

The comprehension syntax is less abstract than NRC for the purpose of theoretical study�

However� it is very appealing for the purpose of everyday programming� Therefore� I have

added a collection comprehension mechanism to CPL� This mechanism is similar to the

list comprehension mechanism in functional languages such as KRC ����� and Haskell �����

However� CPL�s version is slightly more general�

Collection comprehensions in CPL

There are three constructs for collection comprehension� one each for sets� bags� and lists�

The typing rules are given in Figure ����� where Ai and Ai� has one of the following forms�

� Ai is an expression ei� Then Ai� is the type
derivation showing ei � bool�

� Ai a set
abstraction nxsi �
 ei� Then Ai� is the type
derivation showing ei � fsig�

� Ai is a bag
abstraction nxsi �

 ei� Then Ai� is the type
derivation showing ei �

f	si	g�

���



e � s A� � � � � An�

fe j A�� � � � � Ang � fsg

e � s A� � � � � An�

f	e j A�� � � � � An	g � f	s	g

e � s A� � � � � An�

!e j A�� � � � � An" � !s"

Figure ����� The comprehension constructs in CPL�

� Ai is a list
abstraction nx
si �


 ei� Then Ai� is the type
derivation showing ei � !si"�

I now de�ne the semantics of these comprehension constructs in terms of the various ext

constructs introduced earlier� The translation used is based on that suggested by Wadler

������ Let us use % as a meta notation for a sequence of Ai�

For set comprehensions�

� Interpret fe� j nxs �
 e�%g as sextffe� j %g j nxs �
 eg�

� Interpret fe� j nxs �

 e�%g as sextffe� j %g j nxs �

 eg�

� Interpret fe� j nxs �


 e�%g as sextffe� j %g j nxs �


 eg�

� Interpret fe� j e�%g as if e then fe� j %g else fg�

For bag comprehensions�

� Interpret f	e� j nxs �
 e�%	g as bextf	f	e� j %	g j nxs �
 e	g�

� Interpret f	e� j nxs �

 e�%	g as bextf	f	e� j %	g j nxs �

 e	g�

� Interpret f	e� j nxs �


 e�%	g as bextf	f	e� j %	g j nxs �


 e	g�

� Interpret f	e� j e�%	g as if e then f	e� j %	g else f		g�

For list comprehensions�

���



� Interpret !e� j nxs �
 e�%" as lext!!e� j %" j nxs �
 e"�

� Interpret !e� j nxs �

 e�%" as lext!!e� j %" j nxs �

 e"�

� Interpret !e� j nxs �


 e�%" as lext!!e� j %" j nxs �


 e"�

� Interpret !e� j e�%" as if e then !e� j %" else !"�

The basic idea of interpreting comprehension in terms of the monad transformation con


structs ext is due to Wadler ������ Wadler explicitly considered the situation of fe j x� �

e�� � � � � xn � eng where e�� ���� en come from the same monad �in this case set�� He also

had the idea of monad morphism that takes objects from one kind of monad to a di�erent

kind of monad� For some reason� he did not take the obvious step of building monad mor


phism into his comprehension syntax� My comprehension syntax directly incorporates the

six special cases of monad morphism �set&bag&list
conversions� above�

Examples� Uniform collection manipulation with comprehension

Comprehension notations are used in CPL to uniformly manipulate sets� lists� and bags�

This mechanism is a generalization of the list comprehension mechanism in functional lan


guages like Haskell ����� Miranda ������ KRC ������ Id ������ etc� As demonstrated by

Trinder ������ this is a rather natural notation for writing queries�

Example� The cartesian product on sets can be written in CPL as below� �Note�

primitive P �� e is CPL�s syntax for explicitly naming a value��

primitive cpSet �� ��x� �y� �� � �u� v� 	 �u �
 x� �v �
 y � �

Result 
 Primitive cpSet registered�

Type 
 ���
 ������ ��
 ������ 
� ����
 ���� ��
 �����

����� cpSet ����� �

Result 
 ����
�� ��
��� ���
�� ��
��� ���
�� ��
��� ���
�� ��
���

Type 
 ����
int� ��
int��

���



Example� The cartesian product on lists can be written in CPL as follows� where set
brackets

are replaced by list
brackets and set
abstractions are replaced by list
abstractions�

primitive cpList �� ��x� �y� �� ! �u� v� 	 �u �


 x� �v �


 y " �

Result 
 Primitive cpList registered�

Type 
 ���
 !���"� ��
 !���"� 
� !���
 ���� ��
 ����"

!�a�� �b�" cpList !�c�� �d�" �

Result 
 !���
 �a�� ��
 �c��� ���
 �a�� ��
 �d���

���
 �b�� ��
 �c��� ���
 �b�� ��
 �d��"

Type 
 !���
string� ��
string�"

Example� Conversion between lists� bags� and sets is very natural� Here is the function that

selects all positive numbers in a list and puts them in a set�

primitive positiveListToSet �� �x �� � y 	 �y �


 x� � �� y � �

Result 
 Primitive positiveListToSet registered�

Type 
 !int"
��int�

positiveListToSet � !#�� �� #�� �" �

Result 
 � �� � �

Type 
 �int�

��� Pattern matching in CPL

To further increase the user
friendliness of CPL queries� I add a pattern
matching mecha


nism to CPL� This mechanism is more general than that found in languages such as HOPE

���� and ML ������ In particular� it supports partial
record patterns found in Machiavelli

����� and it supports variable
as
constant patterns not found anywhere else� I introduce the

pattern matching mechanism in two stages� viz� simple patterns and enhanced patterns�

���



Simple patterns

I use the meta symbol S to range over simple patterns� The grammar is given below�

S ��� Match anything

j nx Match anything and bind it to x

j nx S Match using S and bind it to x

j �l� � S�� � � � � ln � Sn� Match records

j �l� � S�� � � � � ln � Sn� ���� Match records partially

j �� Match �� only

A pattern must also satisfy the constraint that no nx is allowed to appear more than once in

it� The last three dots in the pattern �l� � S�� � � � � ln � Sn� ���� are part of the syntax� this is

called the partial record patten� Also I say a pattern is ultra
simple if it is just nx� CPL also

support the pattern �S�� � � � � Sn� as syntactic sugar for the pattern ��� � S�� � � � ��n � Sn��

Simple patterns are used in lambda abstraction� case
expression� case
otherwise
expression�

set abstraction� bag abstraction� and list abstraction� That is� they can be used anywhere a

nx can be used� I now de�ne the semantics of these patterns in terms of the core language

presented earlier� The translation is given by cases below�

For lambda abstraction�

� Treat �� e as nx �� e where x is fresh�

� Treat nx S �� e as nx �� �S �� e� � x�

� Treat �l� � S�� � � � � ln � Sn� �� e as nx �� �S� �� � � � �Sn �� e � �x � ln�� � � �� � �x � l��

� Treat �l� � S�� � � � � ln � Sn� ���� �� e as nx �� �S� �� � � � �Sn �� e � �x � ln�� � � ��

� �x � l��

� Treat �� �� e as nxunit �� e� where xunit is fresh�

For case
expressions�

���



� Treat case e of �l� � S�� �� e� or � � � or �ln � Sn� �� en as case e of �l� �

nx�� �� �S� �� e�� � x� or � � � or �ln � nxn� �� �Sn �� en� � xn� where all xi are

fresh and some Si are not ultra
simple�

� Treat case e of �l� � S�� �� e� or � � � or �ln � Sn� �� en otherwise e� as case

e of � l� � nx� � �� �S� �� e�� � x� or � � � or �ln � nxn� �� �Sn �� en� � xn

otherwise e�� where all xi are fresh and some Si are not ultra
simple�

For collection abstractions� I provide only the cases of sext for illustration� The cases for

bext and lext are analogous�

� Treat sextfe� j S �
 e�g as sextf�S �� e�� � x j nx �
 e�g� where x is fresh and S is

not ultra
simple�

� Treat sextfe� j S �

 e�g as sextf�S �� e�� � x j nx �

 e�g� where x is fresh and

S is not ultra
simple�

� Treat sextfe� j S �


 e�g as sextf�S �� e�� � x j nx �


 e�g� where x is fresh and

S is not ultra
simple�

���



Enhanced patterns

I use the meta symbol E to range over enhanced patterns� Enhanced patterns are a gener


alization of simple patterns� The grammar is given below�

E ��� Match anything

j nx Match anything and bind it to x

j nx E Match using E and bind it to x

j �l� � E�� � � � � ln � En� Match records

j �l� � E�� � � � � ln � En� ���� Match records partially

j �� Match �� only

j c Match constant c only

j �l � E� Match variants

j x Match the value bound to x only

Observe that in simple patterns every occurrence of a variable x is slashed� as in nx� In

enhanced patterns� a variable can appear without being slashed� A pattern where a variable

x occurs without being slashed is called a variable
as
constant pattern� As before� a pattern

must satisfy the constraint that no nx is allowed to appear more than once in it� however�

unslashed variables can appear as frequently as desired�

Enhanced patterns are used only in set abstraction� bag abstraction� and list abstraction� I

de�ne their semantics in terms of simple patterns� I give the cases for sext for illustrations�

The other cases are analogous�

� Treat sextfe� j E �
 e�g as sextfif x � A then e� else fg j E� �
 e�g� where x is

fresh� A is a subpattern in E and is either a constant or an unslashed variable� and

E� is obtained from E by replacing one occurrence of A with nx�

� Treat sextfe� j E �
 e�g as sextfcase x of �l � ny� �� sextfe� j E�� �
 fygg

otherwise fg j E� �
 e�g� where x and y are fresh� �l � E��� is a subpattern in

E and E� is obtained from E by replacing one occurrence of �l � E��� by nx�

� Treat sextfe� j E �

 e�g as sextfif x � A then e� else fg j E� �

 e�g� where x

���



is fresh� A is a subpattern in E and is either a constant or an unslashed variable� and

E� is obtained from E by replacing one occurrence of A with nx�

� Treat sextfe� j E �

 e�g as sextfcase x of �l � ny� �� sextfe� j E�� �
 fygg

otherwise fg j E� �

 e�g� where x and y are fresh� �l � E
��� is a subpattern in E

and E� is obtained from E by replacing one occurrence of �l � E��� by nx�

� Treat sextfe� j E �


 e�g as sextfif x � A then e� else fg j E� �


 e�g� where

x is fresh� A is a subpattern in E and is either a constant or an unslashed variable

and E� is obtained from E by replacing one occurrence of A with nx�

� Treat sextfe� j E �


 e�g as sextfcase x of �l � ny� �� sextfe� j E
�� �
 fygg

otherwise fg j E� �


 e�g� where x and y are fresh� �l � E
��� is a subpattern in E

and E� is obtained from E by replacing one occurrence of �l � E��� by nx�

This is a good place to explain the motivation of slashing a variable on its introduction�

Consider the expression �x�f�x� y� j �x� y� � Rg written in a comprehension notation con


sistent with Wadler�s ������ On �rst sight� this seems to be a program which takes in an

x and then selects from the relation R every pair whose �rst component is equal to this

x� However� this obvious impression is incorrect� The expression above is equivalent to

�x�f�x�� y� j �x�� y� � Rg with x� a fresh variable� That is� it takes in an x and reproduces

an exact copy of the relation R�

Variable
slashing reduces this kind of mistake because it makes the above expression il


legal� To see this� let me rewrite the expression in CPL without inserting the proper

slashes� nx �� f�x� y� j �x� y� �
 Rg� Now this expression is no longer closed because

y has become a free variable� The CPL program that implements the obvious but in


correct meaning of the original expression is� nx �� f�x� y� j �x� ny� �
 Rg� The CPL

program that implements the correct but obscured meaning of the original expression is�

nx �� f�x� y� j �nx� ny� �
 Rg� The absence and presence of the slash in front of the third

x makes the di�erence very clear�

���



Examples� Convenience of pattern matching

It is generally agreed that pattern matching makes queries more readable� Here are some

examples to illustrate CPL�s pattern
matching mechanism�

Example� To illustrate partial
record patterns� here is a CPL query for �nding the names

of children who are ten years old�

primitive ten�year�olds ��

�people �� � x 	 ��name
 �x� �age
 ��� ���� �
 people� �

Result 
 Primitive ten�year�olds installed�

Type 
 ���name 
 ���� �age
 int� �����
������

ten�year�olds � ���name
�tom�� �age
��� �sex
�male��� ��name
�liz��

�age
 �� �sex
�female��� ��name
�jim�� �age
��� �sex
�male����

Result 
 ��tom��

Type 
 �string�

Example� To illustrate layered patterns� here is the CPL query that returns those children

who are ten years old �that is� not just their names��

primitive ten�year�olds� ��

�people �� � y 	 �y ��name
 �x� �age
 ��� ���� �
 people� �

Result 
 Primitive ten�year�olds� installed�

Type 
 ���name
���� �age
int� �����
����name
���� �age
int������

ten�year�olds� � ���name
�tom�� �age
��� �sex
�male��� ��name
�liz��

�age
 �� �sex
�female��� ��name
�jim�� �age
��� �sex
�male����

Result 
 ���name 
 �tom�� �age 
 ��� �sex 
 �male���

Type 
 ���name 
 string� �age 
 int� �sex 
 string��

Example� To illustrate variable
as
constant patterns� consider generalizing ten�year�olds
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to �nd names of children who are x years old� where x is to be given� Here is the query in

CPL�

primitive x�year�olds ��

��people� �x� �� � y 	 ��name
 �y� �age
 x� ���� �
 people � �

Result 
 Primitive x�year�olds installed�

Type 
 ���
 ���name 
 ���� �age
 ���� ������ ��
 ����
������

x�year�olds � � ���name
�tom�� �age
��� �sex
�male��� ��name
�liz��

�age
 �� �sex
�female��� ��name
�jim�� �age
��� �sex
�male���� ��� �

Result 
 ��jim��

Type 
 �string�

Notice that the �� in the ten�year�olds query is simply replaced by x� the input to be given�

Since this occurrence of x is not slashed� it is not the introduction of a new variable� Rather

it stands for the value that is supplied to the function as its second argument �that is� the �x

argument�� This kind of pattern is not found in any other pattern
matching language with

which I am acquainted� �Prolog ����� does support a pattern mechanism based on uni�cation

which can be used to simulate my variable
as
constant patterns� However� Prolog is not

a pattern
matching language� The task of matching Q against a pattern P is in �nding a

substitution � so that Q � �P ��� The task of unifying Q and P is in �nding a substitution

� so that �Q�� � �P ��� The two are clearly di�erent��

Without the variable
as
constant pattern mechanism� the same function would have to

be written using an explicit equality test� producing a query that is quite di�erent from

ten�year�olds�

primitive x�year�olds� ��

��people��x� �� �y 	 ��name
�y� �age
�z� ���� �
 people� z � x��

Result 
 Primitive x�year�olds� installed�

Type 
 ���
 ���name 
 ���� �age
 ���� ������ ��
 ����
������
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Example� As the �nal pattern
matching example� here is a CPL query that computes

the average salary of employees in departments� �This example uses an external primitive

average� See Section ��� and Chapter � for a description of how to add a new external

primitive to CPL��

primitive ave�sal�by�dept �� �DB ��

���dept
 x�

�ave�sal
 average � �	 y 	 ��dept
x� �sal
�y� ���� �
 DB 	��

	 ��dept
 �x� ���� �
 DB��

Result 
 Primitive ave�sal�by�dept installed�

Type 
 ���sal
int� �dept
����� �����
����ave�sal
real� �dept
������

ave�sal�by�dept � �

��dept
 �cis�� �emp
 �john�� �sal
 ������

��dept
 �cis�� �emp
 �jeff�� �sal
 ������

��dept
 �cis�� �emp
 �jack�� �sal
 �����

��dept
 �math�� �emp
 �jane�� �sal
 �����

��dept
 �math�� �emp
 �jill�� �sal
 �����

��dept
 �phy�� �emp
 �jean�� �sal
 �������

Result 
 ���stat
 ������� �dept
 �phy���

��stat
 ������ �dept
 �math���

��stat
 ������ �dept
 �cis���

Type 
 ���stat
real� �dept
string��

Note the conversion to bag in the query� which captures the semantics of group�by in SQL�

Without this conversion� then John and Je� in the example input will cause the average

salary in the CIS Department to be miscounted�
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��� Other features of CPL

I have mentioned a few other features of CPL earlier on� it has a type inference system� it is

extensible� and it has an optimizer� Extensibility and optimization are discussed in greater

detail in later chapters� I use some simple examples to illustrate them here�

Types are automatically inferred

The type system is simpler than that of Ohori ������ Remy ������ and Jategaonkar and

Mitchell ������ The reason for this is that CPL does not have a record concatenation

mechanism� For example� CPL infers that ten�year�olds has unique most general type

���name 
 ���� �age
 int� �����
�������

Easy to add new primitives

The core of CPL is not a very expressive language� In fact� when restricted to sets� it is

equivalent to the well
known nested relational algebra of Thomas and Fischer ������ There


fore� it has to be augmented with extra primitives that re
ect the needs of the applications

that non
expert users are trying to solve� The extra primitives are provided by expert users

who build them in the host language� Non
expert users only need to import them into CPL�

This philosophy is demonstrated later� in Chapter ��

It is very easy to extend CPL with new primitives� I illustrate this feature by showing how

to insert a factorial function into CPL� The expert user �rst programs the factorial function

hostFact in his host language� and registers it with the Kleisli query system as factorial

by a simple library call in his host language� The host language is ML ������ it is not to be

confused with CPL� �In ML� F o G stands for composition of functions F and G and M�F

stands for the function F in the module M��

DataDict�RegisterCompObj�
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�factorial��

CompObjFunction�Mk�CompObjInteger�Mk o hostFact o CompObjInteger�Km��

TypeInput�ReadFromString �int 
� int���

DataDict�RegisterCompObj is the registration routine� TypeInput�ReadFromString is the

routine for converting a type speci�cation given in a string to the internal format used by

Kleisli� CompObjFunction�Mk� CompObjInteger�Mk� and CompObjInteger�Km are routines

for converting between the Kleisli�s and the host language�s representations of complex

objects� These routines are provided in the libraries of the Kleisli query system�

The non
expert user can then begin using the new primitive factorial�

factorial � � �

Result 
 ���

Type 
 int

Easy to add new writers

To be useful a query language must be able to produce external data� CPL uses �writers	

for writing external data in various format� It is easy to add new writers to CPL� There

are �ve things associated with a writer� First is a function for connecting a text stream

to the external data sink� Second is a de
tokenizer for converting Kleisli�s token stream to

a text stream in the required external format� Third is a string for identifying the writer�

Fourth is a schema generator for generating the schema of the external data� Fifth is an

input parameter type speci�cation that describes how the external data sink is speci�ed�

Below is an example program which adds the standard writer StdOut to CPL� The ML

function FileManager�WriterTab�Register is the registration routine� The ML function

Tokenizer�TokenStreamToOutStream is de
tokenizer for converting token stream to a text

stream in Kleisli�s standard exchange format�
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FileManager�WriterTab�Register�

fn X �� let val X � CompObjString�Km X

in �X� open�out�X � ��val��� end�

fn ���OS�TS� �� Tokenizer�TokenStreamToOutStream�

TS�OS� fn � �� output�OS� ��n����

�StdOut��

fn �X� T� �� let

val X � open�out��CompObjString�Km X� � ��typ��

val T � Type�Stringify T

val � � output�X� T�

val � � output�X� ��n��

val � � close�out X

in �� end�

Type�String�

A non
expert user can use the writefile DATA to SINK using WRITER command for

producing external data� as in the CPL example below�

writefile ������� to �temp� using StdOut�

Result
 File temp written�

Type
 �int�

Easy to add new scanners

To be useful a query language must be able to read external data� CPL uses �scanners	 for

reading external data in various format� It is easy to add new scanners to CPL� There are

�ve things associated with a scanner� First is a generator function which returns the external

data as a text stream in a chosen information exchange format� Second is a tokenizer for

converting the text stream into token stream� Third is a string for identifying the scanner�

Fourth is an input parameter type speci�cation which describes how the external data
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source is speci�ed� Fifth is schema reader for reading the schema of the external data�

Here is a program that adds the standard scanner StdIn to CPL� The ML func


tion FileManager�ScannerTab�Register is the registration routine� The ML function

Tokenizer�InStreamToTokenStream is the tokenizer for text stream in Kleisli�s standard

exchange format�

FileManager�ScannerTab�Register�

fn X �� let val X � Kleisli�CompObjString�Km X

in �X� open�in �X � ��val��� end�

Tokenizer�InStreamToTokenStream�

�StdIn��

Type�String�

fn X �� TypeInput�ReadFromFile�

�Kleisli�CompObjString�Km X� � ��typ���

After that� a non
expert user can read external data �les in Kleisli�s standard exchange

format using the readfile NAME from SOURCE using SCANNER command� For example�

the �le temp written out earlier can now be read in�

readfile pmet from �temp� using StdIn�

Result
 File pmet registered�

Type
 �int�

pmet�

Result
 ��� �� ��

Type
 �int�
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An extensible optimizer is available

CPL is equipped with an extensible optimizer� The optimizer does pipelining� joins� caching�

and many other kinds of optimization� I illustrate it here on a very simple query� First� let

me create a text �le�

writefile �������� ������� ���� ��� ��� ���� to �tmp� using StdOut�

Result 
 File tmp written�

Type 
 �����
int� ��
int���

Now we query the �le by doing a 
atten and a projection operation on it�

readfile db from �tmp� using StdIn�

Result 
 File db registered�

Type 
 �����
int� ��
int���

� x 	 �X �
 db� ��x� �� �
 X � �

Result 
 ��� �� �� ��

Type 
 �int�

Without the optimizer� the peak space requirement is memory to hold � integers and nothing

gets printed until the entire set f�� �� �� �g has been constructed� With the optimizer� the

peak space requirement for this query is space for � integer and the �rst element of the output

is printed instantly �while the rest of the output is still being computed�� The reason is that

the optimizer is sophisticated enough to push the projection on ��x� �� and the printing of x

directly into the scanning of the input �le �tmp�� �Note that the readfile db from �tmp�

part of the query does not actually read the �le� it merely establishes the �le �tmp� as an

input stream��

A more detailed account of these extensibility features can be found in Chapter ��
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Part III

An engineer�s drudgeries
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Chapter �

�Monadic� Optimizations

The evaluation of a query in a practical database has three phases� The �rst phase reads

external data into memory and converts it into the right format for manipulation� The

second phase performs the actual manipulation to satisfy the objective of the query� The

�nal phase prints the result of the query� There are also three aspects in the cost of a query�

The �rst is the amount of time it takes to complete the query� The second is the amount

of memory space �disk space is ignored� it takes to evaluate the query� The third is the

amount of time it takes before any portion of the result can be output� that is� response

time�

Many existing treatments of query optimization �such as Fegaras ����� Sheard and Fegaras

������ Ullman ������ and Trinder and Wadler ������ did not explicitly consider reading of

external data and printing of results� Translations between structured strings and databases

were studied by Abiteboul� Cluet� and Milo ���� They gave examples of some possible op


timizations� It is not yet clear to me whether their examples are due to pre
determined

circumstances or are instances of a more general technique� Freytag ���� is a more out


standing exception in that he explicitly considered transformation of scanning routines and

their interaction with the more usual query operators� He used very sophisticated program

transformation techniques for this purpose and he only considered 
at relations� All of the
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work above also did not explicitly discuss the three aspects� especially response time� of the

cost of query evaluation�

This chapter investigates techniques for improving queries over nested collections� taking

all three phases of evaluation and all three aspects of cost into account�

Organization

Section ���� There are two important methods for optimizing loops� both involve combining

two loops into one �see Freytag ���� and Goldberg and Paige ���� for example�� The �rst�

called vertical loop fusion� is the fusion of two loops where the �rst loop produces the data

consumed by the second loop� The second� called horizontal loop fusion� is the fusion of

two independent loops iterating over the same collection� Another method for reducing the

cost of loops is the migration of �lters closer to generators �see Watt and Trinder ����� and

Ullman ����� for examples�� The performance of loops can also be improved by moving

invariant code out of a loop �see Aho� Sethi� and Ullman ��� for example�� This section

suggests structural rewrite rules of su�cient generality to capture these methods�

Section ���� The input phase is captured abstractly as a process of converting an input

stream into a complex object� Some scanning constructs for converting input tokens into

complex objects are described� I present rewrite rules for improving queries in query lan


guages enriched with these constructs� I discuss how excessive consumption of space caused

by loading entire external �les can be avoided using these rules�

Section ���� The output phase is captured abstractly as a process of converting a complex

object into an output stream� Some printing constructs for converting complex objects

to output tokens are described� I present rewrite rules for improving queries in query

languages enriched with these constructs� When the result of a query is a large relation� it

is desirable that the �rst few rows be printed as soon as possible while the remaining rows

are still being computed� This property is achieved by giving the printing constructs a lazy

operational semantics� The rewrite rules suggested in this section progressively pushes these

���



lazy printing operators into the query� giving rise to interesting interactions between the

lazy and the eager mechanisms� In particular� execution is eager by default and laziness is

introduced by rewrite rules� This strategy is in contrast to the tradition of lazy languages�

where execution is lazy by default and eagerness is introduced by performing strictness

analysis �����

Section ���� The two previous sections deal with the situation of scanning an external

stream followed by complex object manipulations and with the situation of complex object

manipulations followed by printing� This section provides additional rewrite rules and pro


gramming constructs to take care of the situation where scanning is followed by printing� I

also consider the situation where input token streams and output token streams are iden


ti�ed� This consideration leads to more rules to handle the fourth situation where printing

is followed by scanning� however� no new programming construct is needed�

��� Structural optimizations

Basic optimizations

Several rewrite rules have already been given in Chapter �� In this section� I discuss their

e�ect as query optimization rules for NRC� Let me list these rules and a few additional

ones below� These rules are obtained by orienting equational axioms of NRC in a manner

that reduces the amount of intermediate data�

� ��x�e���e��� e��e��x�

� �x��e x�� e if x not free in e�

� e� �� if e � unit and e is not ���

� �i�e�� e��� ei

� ��� e� �� e�� e
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� if true then e� else e� � e�

� if false then e� else e� � e�

� if �if e� then e� else e�� then e� else e
 �

if e� then �if e� then e� else e
� else �if e� then e� else e
�

� e �if e� then e� else e��� if e� then e e� else e e�

� if e� then e� else e� � e�

� �e� if e� then e� else e��� if e� then �e� e�� else �e� e��

� �if e� then e� else e�� e�� if e� then �e�� e� else �e�� e�

� e � �if e� then e� else e��� if e� then e � e� else e � e�

� �if e� then e� else e�� � e� if e� then e� � e else e� � e

� fif e� then e� else e�g� if e� then fe�g else fe�g

�
S
fe j x � if e� then e� else e�g� if e� then

S
fe j x � e�g else

S
fe j x � e�g

�
S
fif e� then e� else e� j x � eg � if e� then

S
fe� j x � eg else

S
fe� j x � eg� if x

not free in e��

�
S
ffg j x � eg� fg

�
S
fe j x � fgg� fg

� fg � e� e

� e � fg� e

� e � e� e

�
S
ffxg j x � eg� e

�
S
fe� j x � fe�gg� e��e��x�

�
S
fe j x � e� � e�g�

S
fe j x � e�g �

S
fe j x � e�g
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�
S
fe� j x � eg �

S
fe� j x � eg�

S
fe� � e� j x � eg

�
S
fe� j x �

S
fe� j y � e�gg�

S
f
S
fe� j x � e�g j y � e�g

The correctness of these rules can be easily ascertained�

Proposition ����� If e� � e�� then e� � e�� �

Although the rewrite system induced by the above rewrite rules is quite big� it has a

desirable property� any sequence of applications of these rules leads to a normal form in a

�nite number of steps� Therefore an optimizer constructed using this system of rewriting

is guaranteed to terminate� regardless of how it chooses to apply these rules� This strongly

normalizing property allows the optimizer to concentrate on picking the most pro�table

sequence of rewriting� without worrying about getting into a loop�

Proposition ����� The rewrite system induced by the above rules is strongly normalizing�

�

Observe that the proof on the conservative extension property of NRC in Section ��� uses a

subset of the above rules� In the remainder of this section I present arguments showing that

these rules are e�ective optimization rules� As a consequence� the normalization process

used in Section ��� is also conservative over e�ciency"

Loop fusion

The most costly construct in NRC is its loop construct
S
fe� j x � e�g� Assume that this

construct is evaluated as follows� First evaluate e� into a set fo�� � � � � ong� Then evaluate

each e��oi�x� into o
�
i� Then form o��� � � ��o

�
n� Assume the cost of evaluating e� to be ��e���

Assume� for simplicity� the cost of evaluating e��oi�x� to be ��e��� Assume that the union of

two sets takes constant e�ort � �this assumption is reasonable by supposing that duplicates

���



are not removed�� The cost of evaluating the loop is� however� not ��e���n ���e���n	��

There is an overhead of taking apart the set fo�� � � � � ong that must also be accounted for�

Assume the cost for traversing a set to be equal the its cardinality minus � �this assumption

is reasonable since a good implementation should use no more than n links to connect up

n� � items�� Consequently the cost of the loop is ��e�� � n ���e�� � n	 � � n	 �� �This

cost function is admittedly rather naive� Nevertheless� it is indicative of the relative costs

of di�erent expressions��

There are two well
known methods for optimizing loops� both involving combining two loops

into one ����� The �rst one is applicable when the �rst loop is a producer and the second

loop is a consumer� Instead of building a separate set to keep the objects produced by the

�rst loop and then pass this set to the second loop� the objects are pipelined directly to the

second loop� This optimization is called vertical loop fusion� The second one is applicable

when there are two independent loops over the same set� Instead of doing the �rst loop

and then the second loop in a process requiring the set to be traversed twice� both loops

are performed simultaneously� This optimization is called horizontal loop fusion�

The point of loop fusion is to reduce the amount of intermediate data� not unlike traditional

database query optimization techniques that concentrate on reducing the number of columns

and rows involved ����� ����� For NRC the rule
S
fe� j x �

S
fe� j y � e�gg�

S
f
S
fe� j x �

e�g j y � e�g is the only way to achieve vertical loop fusion� while
S
fe� j x � eg �

S
fe� j x �

eg�
S
fe� � e� j x � eg appears to be the principal way to achieve horizontal loop fusion�

�There are other more involved ways of doing horizontal loop fusion� but it is not very

rewarding to describe them�� Their e�ectiveness with respect to the cost measure explained

earlier is veri�ed below�

Observation ����� The cost of evaluating
S
fe� j x �

S
fe� j y � e�gg exceeds the cost of

evaluating
S
f
S
fe� j x � e�g j y � e�g by an amount roughly equal to twice the number of

elements in the result of evaluating e��

Explanation� Let e� evaluate to a set having a elements� For simplicity assume that

each e��o�y�� where o � e�� evaluates to a set having b elements� Then the cost of the �rst
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expression is ���e���a���e���a	��a	�����a�b����e����a�b	����a�b	���� However�

the cost of the second expression is ��e���a ����e���b ���e���b	��b	���a	��a	��

The di�erence is � � a� �

The improvement above comes from avoiding the overhead of having to construct the set
S
fe� j y � e�g and from avoiding the overhead of having to dismantle that very same set

immediately� This saving directly reduces the time taken to complete the query� If we

assume that each object in e��o�y� where o � e� takes up a large amount of space� this

saving also reduces the space consumption of the query� Response time is also improved

indirectly�

Observation ����� The cost of evaluating
S
fe� j x � eg �

S
fe� j x � eg exceeds the cost

of
S
fe�� e� j x � eg by an amount roughly equal to the sum of the cost of e and the number

of elements in e�

Explanation� Let e evaluate to a set having n elements� Then the cost of the �rst

expression is ���e� � n ���e�� � n	 � � n 	 �� � ���e� � n ���e�� � n	 � � n	 �� � ��

However� the cost of the second expression is ��e��n � ���e�����e��� ���n	 ��n	 ��

The di�erence is ��e� � n� �� �

Under a smarter system the cost of executing e twice in the observation above can be

avoided� However� the need for traversing the set twice cannot be avoided� The horizontal

fusion rule thus reduces the time taken to complete a query� although its impact is not as

signifcant as the vertical fusion rule�

Examples

The system above of rewrite rules also generalizes many optimizations known for relational

algebras� Following Trinder ������ I illustrate some of these improvements by examples� Let

me use
S
fe� j x � e� where e�g as a shorthand for

S
fif e� then e� else fg j x � e�g� Since
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S
fe� j x � e�g is the only loop construct in NRC� the e�ciency gained can be roughly

estimated by comparing the number of loops before and after optimization�

� Combining a chain of projections� The query
S
ff��xg j x �

S
ff������ y�� �� y�g j y �

Rgg contains two consecutive projections� It rewrites to
S
ff����� y�g j y � Rg� The

optimized query is expected to execute faster than the original one because it has

fused two projection loops into one�

� Combining a chain of selections� The query
S
ffyg j y �

S
ffxg j x � R where p x g

where q y g has two selection conditions that are applied one after another� It is

rewritten to a conjunctive query
S
fif p�x� then if q�x� then fxg else fg else fg

j x � Rg� If the predicate p has f' selectivity� the improved query is expected to

apply the predicate q about ����	 f�' less often than the original version� Also� the

two selection loops has been fused into one�

� Combining selection and projection� The query
S
ff�� xg j x �

S
ffyg j y �

S
ff������ z�� �� z�g j z � R g where p�y� g g contains a selection sandwiched

between two projections� It rewrites to
S
ff�� zg j z � R where p������ z�� �� z�g�

The optimized query is likely to execute faster than the original query� because the

optimized query has only one loop while the original query has three�

� Moving �lter toward generator� The query
S
f
S
fif p�x� then e� else e� j y � Sg j x �

Rg contains a �lter p�x� that is far away from the generator x � R� It rewrites to
S
fif p�x� then

S
fe� j y � Sg else

S
fe� j y � Sg j x � Rg� The �lter has been moved

immediately next to its generator in the optimized query� Suppose the selectivity of

the �lter is f'� S has s elements� and R has r elements� The cost of the original

query is roughly r � s � r� The cost of the optimized query is only r � s � r � f'�

� Subquery
to
join conversion� The query
S
f
S
f
S
ffag j y �

S
ffqB bg j b �

B where pB bgg j z �
S
ffqC cg j c � C where pC cgg j a � A where p�a� y� z�g contains

two subqueries� It goes to
S
f
S
f
S
ffag j c � C where pC cg j b � B where pB bg j a �

A where p�a� qB b� qC c�g� The two subqueries in the original query are converted

into a join� Joins are preferable to subqueries because a lot of work has been done on
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join optimization ������ In any case� the original query contains �ve loops while the

optimized query has only three�

Miscellaneous rules

Some of the rewrite rules above can cause certain expressions to be evaluated several times�

To compensate for their e�ect� common subexpressions must be identi�ed� There is cur


rently no way to identify common subexpressions in NRC� So one can contemplate in


troducing the new construct in Figure ��� and interpret let x � e�in e� as e��e��x�� The

e� � s e� � t

let xs � e� in e� � t

Figure ���� The let
construct�

obvious evaluation rule for let x � e� in e� is �rst evaluate e� to an output N � store it in x

and then evaluate e�� The let x � e� in e� construct is then used to take care of common

subexpressions� The obvious rule has the form

�� � � e � � � e � � ��� let z � e in �� � � z � � � z � � ��

where the free variables of e form a subset of the free variables of �� � � e � � � e � � �� and e is not

a variable or constant�

This construct gives us a third way to optimize a loop� code motion ���� The idea is to

migrate a block of invariant code out of a loop� It can be achieved by a rule of the form



f�� � � e� � � �� j x � eg� let y � e� in



f�� � � y � � �� j x � eg

where the free variables of e� form a subset of the free variables of
S
f�� � � e� � � �� j x � eg

and e� is not a variable or a constant� �Note that it is incorrect to use the simpler condition
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that x is not free in e��� It is easy to see that code motion yields a saving proportional to

the number of elements in set e� unless the e�s can be optimized better in place�

Discussion

In the work of Beeri and Kornatzky ����� Trinder ����� ����� and Osborn ������ they suggested

a number of general identities that can be used for query optimization� Their identities must

be used carefully because not all sequences of rewriting using them are guaranteed to reach

a normal form� That is� the optimizers must incorporate some mechanism for avoiding

non
termination� The rules of Beeri and Kornatzky are for a language that is more general

than the calculus of this report� Their identities are very powerful� However� the generality

of their identities may cause di�culty in the automation of their rules� This di�culty is

precisely the reason that many implementations of program transformation systems� such

as Darlington ���� and Firth ����� require human guidance�

In a series of papers ����� ���� ����� Wadler proposed general loop fusion techniques and

proved their e�ectiveness in general functional programming systems� Freytag ���� demon


strated their e�ectiveness in the speci�c context of 
at relational databases� In both cases�

they worked with a powerful recursive programming language� It should be mentioned that

Freytag�s rewrite system has the Church
Rosser property� Hence all rewritings lead to a

unique normal form� However� Freytag has to sacri�ce certain optimizations to achieve this

property� My system does not enjoy this property due to the presence of rules such as

�e� if e� then e� else e��� if e� then �e� e�� else �e� e��� Having more rules gives me some

freedom to incorporate a cost model for picking which rules to apply during rewriting�

I should mention the work of Fegaras ���� and Sheard and Fegaras ������ They identi�ed

a special form of structural recursion that is slightly more general than my homomorphic

restriction and developed very general rules for performing vertical loop fusion for it� There

are very strong parallels between our approaches� However� they emphasized types that are

sums
of
products while I concentrate on collection types such as sets and bags�
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Erwig and Lipeck ���� provided a set of rules somewhat similar to that of Beeri and Ko


rnatzky�s� In addition� they suggested a strategy for using their rules� The strategy is

similar the rule of thumb described in database texts like Ullman ����� and Maier ������

The strategy is very simple and there is a possibility that� after carrying out rewriting ac


cording to it� some of the rules might still be applicable� Hence it might not realize fully the

improvements that can be gained by a more clever application of their rules� In contrast�

my procedure is very thorough� it always reduces a query to a normal form� Normal forms

are desirable because they are usually simpler than non
normal forms� It is thus easier to

estimate their costs and to perform further processing on them�

��� Scan optimizations

Input token streams

External data must be read and converted into a complex object prior to being queried� The

conventional input conversion process is usually a routine that reads the external data and

simply produces the corresponding complex object� There are two principal shortcomings of

using such an input conversion process� First� a potentially large amount of space must be

allocated for storage of the complex object in spite of the likelihood that the complex object

will soon be dismantled for subsequent processing� Second� the input conversion process

is a black box and prevents pro�table migration of some of the subsequent operations on

the complex object into it� This section investigates the opening up of the input conversion

process and its e�ect on query optimization�

External data is regarded as a list of tokens� Tokens are essentially objects of base types and

punctuation symbols� �� �� �� f� and g� A complex object is represented as external data in

the obvious fashion� For example� the external data representing the object f��� ��� ��� ��g

is the following sequence of tokens� f� �� �� �� �� �� �� �� �� �� �� �� g� The space occupied

by external data is disregarded� An input stream is an object representing a sub�x of such

a list� representing the remaining portion of the external data to be processed� �See Field
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and Harrison ���� on the use of lazy data structures such as streams in programming� See

Henderson ���� and Kelly ����� on the use of streams and process network in concurrent

systems��

An e�cient implementation of input streams should have the following properties� ���

An input stream should occupy a small constant amount of space� ��� It should provide

a constant time function getInputToken such that getInputToken�S� produces the �rst

token on the input stream S� ��� It should provide a constant time function skipInputToken

such that skipInputToken�S� produces an input stream S� obtained by skipping over the

�rst token on S� ��� It should provide a constant time function skipInputObj such that

skipInputObj�S� produces an input stream S� obtained by skipping over a pre�x of S where

the pre�x represents a complex object� ��� It should be pure in the sense that it must not

exhibit any observable side e�ects� �In contrast� the notion of streams in a language such

as the Standard ML of New Jersey ���� is not pure�� It is not possible to achieve the above

ideal� especially the fourth item� Nevertheless� it is possible to come quite close in practice�

It should be stressed that while an input stream represents an external datum� it does not

have to contain the entire sequence of tokens at any one time� It merely has to produce the

tokens in sequence when getInputToken� skipInputToken� or skipInputObj are applied

to it� In other words� it lazily ���� brings in portions of the external datum�

Scanning constructs

The opening up of the input conversion process can be achieved by adding to NRC the

new constructs listed in Figure ���� where �sj� is the type for input streams representing

complex objects of type s� While �sj� is added to the type system� the collection of complex

object types remain unchanged� A complex object type is still a type built entirely from

sets� pairs� and base types� that is� it has neither ��j� nor arrows�

I present the semantics of the new constructs below� Note that these constructs manipulate

input streams� as opposed to external data�
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e� � r e� � �s� tj�

scan���e� j x
�sj� C e�� � r

e� � r e� � �s� tj�

scan���e� j x
�tj� C e�� � r

e � �sj�

scanObj e � s

e� � fsg e� � �ftgj�

scanSet�e� j x�tj� C e�� � fsg

Figure ���� The constructs for input streams�

� The scanObj e construct requires e to be a input stream whose pre�x represents an

object o of complex object type s� The result of scanObj e is object o�

� The scan���e� j x C e�� construct requires e� to be an input stream whose pre�x

represents a pair �o�� o��� The result of the whole expression is e��O�x� where O is

the portion of the input stream representing o�� Intuitively� O is obtained from e� by

skipping over the initial left bracket � of the pre�x �o�� o�� of the input stream e��

� The scan���e� j x C e�� construct requires e� to be an input stream whose pre�x

represents a pair �o�� o��� The result of the whole expression is e��O�x� where O is

the portion of the input stream representing o�� Intuitively� O is obtained from e� by

skipping over the initial fragment �o�� of the pre�x �o�� o�� of the input stream e��

� The construct scanSet�e� j x C e�� requires e� to be an input stream whose pre�x

represents a set fo�� � � � � ong� The result of the whole expression is f�O��� � � ��f�On�

where f is the function �x�e� and Oi is the portion of the input stream representing

oi� Intuitively� each Oi is obtained from e� by skipping over the initial fragment

fo�� � � � � oi��� of the pre�x fo�� � � � � ong of the input stream e�� The point of binding x

to input streams instead of to objects is an important one� If x is required to bind to

objects� then it is necessary to scan and hold the entire object in memory� However�

by making x a stream� this complete loading is avoided�
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The functions getInputToken� skipInputToken� and skipInputObj can be used to im


plement the constructs above� For illustration� I describe the operational behavior of

scanSet�e� j x C e��� First evaluate e� into an input stream S representing a set fo�� � � � � ong�

assume this step has a cost ��e��� Then use skipInputToken to skip over the opening f

to get the stream S�� assume this step has cost �� Then evaluate e��S��x� into a set O��

assume this step has cost ��e��� Then use skipInputObj on S� to skip over the object o��

assume this step has cost �� Then use getInputToken to see if the next token is the closing

g or is the comma �� assume this step has cost �� If it is a comma� use skipInputToken to

skip over it to obtain the input stream S�� Then evaluate e��S��x� into a set O�� Repeat

the procedure to obtain sets O�� ���� On until the matching closing g is encountered� Then

form O� � � � � � On� assume this step has cost n 	 �� The cost of scanSet�e� j x C e�� is

easily seen to be ��e�� �n ���e�� �n� n� n� n	 �� where n is the cardinality of the set

represented by the input stream e��

Scan optimization

The scanObj e construct is essentially the conventional scan
and
convert routine� However�

the parameterization in the other constructs opens up the input conversion process� It

is these other constructs that I exploit in my query optimizer obtained by appending the

following rewrite rules to the system given in Section ����

� e�scan�i�e� j x C e���� scan�i�e e� j x C e��

� �i�scanObj e�� scan�i�scanObj x j x C e�

�
S
fe� j x � scanObj e�g� scanSet�e���scanObj y��x� j y C e��

�
S
fe� j x � scanSet�e� j y C e��g� scanSet�

S
fe� j x � e�g j y C e��

� scanSet�e� j x C e� � scanSet�e� j x C e�� scanSet�e� � e� j x C e�

These rules are sound�
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Proposition ����� If e� � e�� then e� � e�� �

The last two rules are for vertical loop fusion and horizontal loop fusion� Their e�ectiveness

are discussed in the two propositions below�

Observation ����� The cost of evaluating
S
fe� j x � scanSet�e� j y C e��g exceeds the

cost of evaluating scanSet�
S
fe� j x � e�g j y C e�� by an amount roughly twice the number

of elements in the set represented by the input stream e��

Explanation� Assume e� represents a set having a elements� Assume each e��Si�y� is a set

having b elements� where Si is a su�x of the stream e� after skipping i	� objects� Then the

cost of the �rst expression is ���e���a ���e���� �a	����a �b� ���e����a �b�	���a �b�	��

However� the cost of the second expression is ��e���a����e���b���e���b	��b	�����a	��

The di�erence is roughly � � a� �

Observation ����� The cost of evaluating scanSet�e� j x C e��scanSet�e� j x C e� exceeds

the cost of evaluating scanSet�e�� e� j x C e� by an amount approximately equal to the sum

of the cost of evaluating e and thrice the number of elements in the set represented by e�

Explanation� Assume e represents a set having n elements� The cost of the �rst expression

is ���e� � n ���e�� � � � n	 �� � ���e� � n ���e�� � � � n	 ��� However� the cost of the

second expression is ���e� � n � �� � ��e�� � ��e��� � � � n	 ��� The di�erence is roughly

��e� � � � n� �

The saving in vertical loop fusion comes from having avoided the need to explicitly assemble

and dissemble the set scanSet�e� j y C e��� This directly reduces the time for the query

to complete and the space requirement� The saving in horizontal loop fusion comes from

scanning the stream e only once� This reduces the time requirement� The two examples

below provide more speci�c illustration of how space consumption is reduced by vertical

loop fusion�
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� Combining projection with scan� The query
S
ff�� xg j x � scanObj Rg �rst scans the

input stream R to build a set of pairs and then returns the �rst components of these

pairs� It is rewritten to scanSet�fscan���scanObj y j y C x�g j x C R�� The improved

query performs the projection while scanning the stream� As a result� assuming

both components of the pairs occupy an equal amount of space� space consumption

is reduced by ��'� Furthermore� the time required by the original query for �rst

assembling the external data into a complex object is eliminated in the improved

query�

� Combining selection with scan� The query
S
f if p�x� then fxg else fg j x C

scanObj Rg �rst scans the input stream R to build a set and then extracts those

items that satisfy the predicate p� This query is rewritten to scanSet�if p�scanObj y�

then fscanObj yg else fg j y C R�� The improved query performs the selection while

scanning the input stream� As a result� assuming the predicate has ��' selectivity�

the amount of space consumed is reduced by ��'� Moreover� the time required by the

original query for �rst assembling the external data into a complex object is eliminated

in the improved query�

Discussion

Freytag ���� explicitly considered scanning routines during query optimization� Both his

queries and scanning routines are expressed in a general functional language� His optimizer

has the potential of expressing very e�cient algorithms answering queries� However� this

potential can only be realized by carrying out very sophisticated analysis on queries� In

comparison� my optimizer uses much simpler analysis to produce appreciable improvement

in queries�

Abiteboul� Cluet� and Milo ��� considered translation between structured strings and

databases� They gave examples where queries are optimized by pushing some operations

down to the scanning level� Their approach is more general than mine because they perform

scanning based on description of external data that are not �xed beforehand� On the other
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hand� their treatment of how to carry out the optimization is not very satisfactory� It is not

unreasonable to envision a technique to tokenize their external data into an input stream

of the form manipulable by my constructs� My optimizer can then be used to perform the

optimization� Such an approach is more modular than theirs�

��� Print optimizations

Output token streams

The evaluation of a query is only useful when the result is written out� This requires

a process of converting a complex object into external data� Such a process is usually a

routine that takes in a complex object and then prints out some string
based representation

of it� There are two shortcomings of using such a conversion process� First� a potentially

large amount of space must be allocated for storage of the complex object in spite of the

fact that it is immediately dismantled and written out� Second� nothing is written out until

the whole complex object is materialized� this results in a long wait for the �rst output

character to be written out �on the display screen�� This section investigates the opening

up of the output conversion process and its e�ect on query optimization�

Recall that external data is regarded as a list of tokens here� An output stream is an object

representing a sub�x of such a list� representing the portion of a complex object that is

to be written out� A good implementation of output streams should have the following

properties� ��� An output stream should occupy a small constant amount of space� ��� It

should provide a function getOutputToken such that getOutputToken�S� returns the �rst

token on the output stream S� ��� It should provide a function skipOutputToken such

that skipOutputToken�S� returns an output stream S� obtained by the output stream S

by skipping over the �rst token� ��� It should be pure in the sense that it exhibits no

observable side e�ects� It is impossible to achieve all the properties above� especially the

�rst item� Nevertheless� it is possible to come quite to close to it in practice�
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It should be stressed that while an output stream represents a complex object� it does not

have to contain the entire sequence of tokens representing that object� It merely has to

be able to produce those tokens in sequence when getOutputToken and skipOutputToken

are applied to it� Hence an output stream lazily ���� produces the portion of the complex

object that needs to be written out�

Printing constructs

The opening up of the output conversion process is achieved by augmenting NRC with the

constructs listed in Figure ���� where �js� is the type for output stream representing complex

objects of type s� While �js� is added to the type system� the collection complex object types

remain unchanged� A complex object type is still a type built entirely from sets� pairs� and

base types� that is� it has neither �j�� nor arrows�

putEmptySet s � �jfsg�

e � �js�

putSingletonSet e � �jfsg�

e� � �jfsg� e� � �jfsg�

putUnionSet�e�� e�� � �jfsg�

e � s

putObj e � �js�

e� � �js� e� � �jt�

putPair�e�� e�� � �js� t�

e� � �jfsg� e� � ftg

putSet�e� j xt � e�� � �jfsg�

Figure ���� The constructs for output streams�

Note that these constructs manipulate output streams as oppose to printing out external

data� Their semantics is given below�

� The putObj e construct produces an output stream representing the complex object

e�

� The putPair�e�� e�� construct produces an output stream whose �rst token is �� fol
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lowed by tokens on the output stream e�� followed the token �� followed by tokens on

the output stream e�� followed by the token ��

� The putEmptySet construct produces an output stream consisting of the token f

followed by the token g�

� The putSingletonSet e construct produces an output stream whose �rst token is f�

followed by tokens on the output stream e� followed by the token g�

� The putUnionSet�e�� e�� expects e� to be an output stream representing a sequence

of tokens of the form f� o�� �� ���� �� on� g and expects e� to be an output stream

representing a sequence of tokens of the form f� o��� �� ���� �� o
�
m� g� It produces an

output stream representing the following sequence of tokens� f� o�� �� ���� �� on� �� o
�
��

�� ���� �� o�m� g� That is� it strips the closing set
bracket g from e� and the opening

set
bracket f from e� and then concatenating the two resulting streams� inserting a

comma � if necessary� I should remark that it is not the duty of putUnionSet to

eliminate duplicates�

� The putSet�e� j x � e�� construct has the following semantics� Suppose e� is the

set fo�� � � � � ong and �x�e� is the function f � Then it produces the output stream

putUnionSet�f�o��� putUnionSet� � � �� putUnionSet�f�on���� f�on�� � � ����

The functions getOutputToken and skipOutputToken can be used to implement the con


structs above� The operational semantics I have in mind for the above constructs is a mix


ture of lazy and eager evaluation� I avoid a detailed description here and provide a simpli�ed

description instead� First an expression e � �js� is evaluated into an output stream P � Then

P is passed to a print
loop that repeatedly executes the steps� ��� apply getOutputToken

to the current output stream to get the current token� ��� display the token thus obtained�

and ��� apply skipOutputToken to the current output stream to advance it by one token�

Hence the behavior of the execution of e � �js� can be considered in two stages� the evaluation

of e � �js� to P � and the execution of getOutputToken�P ��
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Mixed evaluation

To get a picture of the evaluation of e � �js� to P � let me introduce the output format given

by the following grammar�

P�Q ��� putObj M j putEmptySet j putSingletonSet M

j putUnionSet�P�Q� j putSet�e j x �M� j putPair �P�Q�

where M�N ��� c j �M�N� j fg j fMg j M � N � The expression e � �js� is reduced using a

call
by
value eager strategy ���� to an output format� From the output format it should be

clear that putSet�e� j x � e�� is a partly lazy construct� it evaluates e� completely and then

suspends in the state P � putSet�e� j x �M�� where M is a tree
like representation of the

set fo�� � � � � ong� All other constructs are intended to be eager�

Now the print
loop is entered� In step ���� getOutputToken�P � is executed� which leads

to P being split into e��o��x� and putSet�e� j x � fo�� � � � � ong�� Then e��o��x� is again

evaluated into an output format P �� However� putSet�e� j x � fo�� � � � � ong� is suspended�

Then getOutputToken is applied to P � to extract its �rst token� In step ���� this token

is printed� In step ���� the e�ect is equivalent to applying skipOutputToken to P � to get

the output stream P ��� The process now repeats with the new output stream equivalent to

putUnionSet�P ��� putSet�e� j x � fo�� � � � � ong��� The net e�ect is that getOutputToken is

next applied to P �� to extract the second token to be printed� this process is repeated until

the tokens on e��o��x� are exhausted� then putSet�e� j x � fo�� � � � � ong� is accessed until all

tokens are consumed�

Print optimization

The construct putObj e is essentially the conventional convert
and
print routine� However�

the parameterization in other constructs opens up the output conversion process� It is these

other constructs that I exploit in my optimizer obtained by appending the following rewrite

rules to the system given in Section ����
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� putObj �e�� e��� putPair�putObj e�� putObj e��

� putObjfg� putEmptySet

� putObjfeg� putSingletonSet �putObj e�

� putObj �e� � e��� putUnionSet�putObj e�� putObj e��

� putObj
S
fe� j x � e�g� putSet�putObj e� j x � e��

� putSet�e j x � fg�� putEmptySet

� putSet�e j x � e� � e��� putUnionSet�putSet�e j x � e��� putSet�e j x � e���

� putSet�e� j x � fe�g�� e��e��x�

� putSet�e� j x �
S
fe� j y � e�g�� putSet�putSet�e� j x � e�� j y � e��

� putUnionSet�putSet�e� j x � e�� putSet�e� j x � e���

putSet�putUnionSet�e�� e�� j x � e�

The above rules are sound in the following sense�

Proposition ����� Let two output streams be regarded as equivalent when they represent

the same complex object� Then e� � e� implies e� � e�� �

The response time of a query is the time taken for the �rst token of the result to appear on

the output stream �and get printed�� A rough measure of the response time of putSet�e� j x �

e�� is ��e�� ���e��� Note that we are not interested in how fast the query completes� but

how fast the �rst few characters appear on the screen� The e�ect of the rule corresponding

to vertical loop fusion is demonstrated in the following proposition�

Observation ����� The response time of putSet�e� j x �
S
fe� j y � e�g� is slower than

that of putSet�putSet�e� j x � e�� j y � e�� by approximately the product of the number of

elements in e� and the cost of evaluating e��o�x�� where o is a typical element in e��
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Explanation� Assume e� is a set having a elements� The response time of the �rst

expression is estimated at ���e�� � a ���e�� � a	 � � a	 �� � ��e��� The response time

of the second expression is estimated at ��e�� � ��e�� � ��e��� The di�erence is roughly

�a	 �� � ���e�� � ��� �

The improvement in response time is signi�cant� There is also a good reduction in space

consumption because the set
S
fe� j y � e�g is not constructed in the improved query� The

overhead of suspending and re
activating subexpressions can a�ect the total time taken for

the query to complete� This aspect of the performance of my mixed strategy tends to be

better than a fully lazy strategy� However� it can be worse than a fully eager strategy if

input data and intermediate data are small enough to �t entirely into memory�

��� Print
scan optimizations

Copying constructs

There is still an unsatisfactory aspect in the current set up� Consider putObj �scanObj e���

There is currently no way in my language to avoid reading in the entire stream e� to

assemble the object scanObj e� and then immediately dismantle it to print it out� This

calls for some new constructs for combining the input conversion process and the output

conversion process� To ease the fusion of input conversion and output conversion� I suggest

the constructs listed in Figure ����

The semantics of these new constructs is given below�

� The putscanObj e construct expects e to be an input stream whose pre�x represents

a complex object o of type s� It denotes the output stream representing the same

complex object o�

� The putscan���e� j x C e�� construct expects e� to be an input stream whose pre�x

represents a pair �o�� o��� It denotes the output stream e��O�x�� where O is the portion

���



e� � �jr� e� � �s� tj�

putscan���e� j x
�sj� C e�� � �jr�

e� � �jr� e� � �s� tj�

putscan���e� j x
�tj� C e�� � �jr�

e � �sj�

putscanObj e � �js�

e� � �jfsg� e� � �ftgj�

putscanSet�e� j x�tj� C e�� � �jfsg�

Figure ���� The constructs for stream interactions�

of the input stream representing o�� Intuitively� O is obtained by skipping over the

opening left
bracket of the input stream e��

� The putscan���e� j x C e�� construct expects e� to be an input stream whose pre�x

represents a pair �o�� o��� It denotes the output stream e��O�x� where O is the portion

of the input stream representing o�� Intuitively� O is obtained from e� by skipping

over the initial fragment �o���

� The putscanSet�e� j x C e�� construct requires e� to be an input stream whose pre


�x represents a set fo�� � � � � ong� The whole expression denotes the output stream

putUnionSet�f�O��� � � � � putUnionSet�f�On��� f�On�� � � ��� where f is the function

�x�e� and Oi is the portion of the input stream representing oi� Intuitively� each Oi

is obtained from e� by skipping over the initial fragment fo�� � � � � oi��� of the pre�x

fo�� � � � � ong�

Mixed evaluation

To give a simpli�ed account of the operational behavior these constructs� I need to add a

few more output formats�

P ��� � � � j putscanObj y j putscan�i�e� j x C y� j putscanSet�e� j x C y�
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�In a real implementation the y above will be names of input streams or pointers to �les�

In this dissertation� regard them either as free variables or as constants standing for input

streams�� The evaluation of an expression e � �js� again has two stages� The �rst stage uses

an eager call
by
value strategy to reduce e � �js� to an output format P � �js�� Observe that

the three new output formats introduced above are also partly lazy� The second stage is the

print
loop described earlier� Let me describe the behavior of the print
loop on the output

format P � putscanSet�e j x C R�� where R is an input stream representing fo�� � � � � ong�

In step ���� getOutputToken�P � is executed� This causes P to be split into e�O�x� and

putscanSet�e j x C R��� where O is the portion of R representing o� and R
� is the portion

of R representing fo�� � � � � ong� Then e�O�x� is evaluated to an output format P
�� However

putscanSet�e j x C R�� is suspended� Then getOutputToken is applied to P � to extract its

�rst token� In step ���� this token is printed� In step ���� the e�ect is equivalent to applying

skipOutputToken to the output stream P � to get the output stream P ��� The process now

repeats with the new output stream equivalent to putUnionSet�P ��� putscanSet�e j x C R����

The net e�ect is that getOutputToken is next applied to P �� to extract the second token

to be printed� this process is repeated until the tokens on e�O�x� are exhausted� then

putscanSet�e j x C R�� is accessed until all tokens are consumed�

Copy optimization

The putscanObj e construct is essentially a conventional �le copy routine� The other new

constructs are parameterized and provide some opportunity for optimization� The addi


tional rules I have in mind are listed below�

� putObj �scanObj e�� putscanObj e

� putObj �scan�i�e� j x C e���� putscan�i�putObj e� j x C e��

� putObj �scanSet�e� j x C e���� putscanSet�putObj e� j x C e��

� putSet�e� j x � scanSet�e� j y C e���� putscanSet �putSet�e� j x � e�� j y C e��

� putSet�e� j x � scanObj e��� putscanSet�e���scanObj y��x� j y C e��
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� putUnionSet�putscanSet �e� j x C e�� putscanSet�e� j x C e��

� putscanSet�putUnionSet�e�� e�� j x C e�

The above rules are sound in the following sense�

Proposition ����� Let two output streams be equivalent when they represent the same

complex object� Then e� � e� implies e� � e�� �

For simplicity� I assume the response time of the putscanSet construct to be same as the

putSet construct� hence the response time of putscanSet�e� j x C e�� is roughly ��e�� �

��e��� Similarly� I assume the total time of putscanSet and putSet to be same as the scanSet

construct� hence the total time of putscanSet�e� j x C e�� is roughly ��e�� � n � ��e�� �

� � n	 �� Using these estimates the improvement achieved by some of the above rules can

be calculated� I provide below the improvement from the vertical loop fusion rule� where

it is clearly shown that the putscanSet construct e�ectively combines the response time

improvement of putSet and the total time improvement of scanSet �

Observation ����� The response time of putSet�e� j x � scanSet�e� j y C e��� is slower

then that of putscanSet�putSet�e� j x � e�� j y C e�� by approximately the product of the

number of elements in e� and the time it takes to evaluate e�� Moreover� the total time of

the former is longer than the latter by approximately equal to the number of elements in e��

Explanation� Assume e� is an input stream representing a set having a elements� Assume

each e��o�y�� where o is an element of the set represented by e�� yields a set having b elements�

Then the response time of the �rst expression is ���e�� � a � ��e�� � � � a 	 �� � ��e���

However� the response time of the second expression is ��e�����e�����e��� The di�erence

in response time is �a	 �� ���e��� � � a	 �� Similarly� the total time of the �rst expression

is ���e�� � a ���e�� � � � a	 �� � �a � b ���e�� � � � a � b	 ��� However� the total time of the

second expression is ���e�� � a � ���e�� � b ���e�� � � � b	 �� � � � a	 ��� The di�erence in

total time is a	 �� �
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Monad of token stream

In the last three sections I distinguish between input token stream �sj� and output token

stream �js�� This distinction has been useful for explaining the introduction of the various

token stream constructs� However� it is reasonable to drop the distinction and to identify

both of them as token stream �jsj�� I gather in Figure ��� the token stream constructs pre


sented in earlier sections� Since �sj� � �js� � �jsj� now� the conversion construct putscanObj s

is redundant� I omit it from the �gure�

The token stream monad fragment of the table constitutes a complete physical language at

an extremely low level� It corresponds strongly to the abstract language NRC� In fact� the

same kind of equational reasoning we have performed on NRC can be performed on this low

level physical language  a feat that is quite remarkable� This physical language and NRC

are then tied together by the interaction constructs� This is the same approach used in

combining the set� bag� and list fragments of CPL into CPL� see Chapter �� This approach

to fusing languages sometimes leads to very interesting interaction operators� For example�

when Libkin and I ����� glued the language of orsets and NRA into a single language�

the orset
set interaction operator introduced is precisely the function which establishes the

isomorphism between iterated powerdomains ������

More rewrite rules

The identi�cation of input token streams with output token streams gives rise to new

possibilities� applying a scan construct to the output produced by a print construct and

applying a putscan construct to the output of a put or a putscan construct� Fortunately�

as demonstrated in the rewrite rules below� no new construct is required for optimization

purpose�

� scanObj �putObj e�� e

� scanObj �putPair �e�� e���� �scanObj e�� scanObj e��
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Token Stream Monad

e� � �jrj� e� � �js� tj�

putscan���e� j x�jsj� C e�� � �jrj�

e� � �jrj� e� � �js� tj�

putscan���e� j x�jtj� C e�� � �jrj�

e� � �jsj� e� � �jtj�

putPair�e�� e�� � �js� tj� putEmptySet s � �jfsgj�

e � �jsj�

putSingletonSet e � �jfsgj�

e� � �jfsgj� e� � �jfsgj�

putUnionSet�e�� e�� � �jfsgj�

e� � �jfsgj� e� � �jftgj�

putscanSet�e� j x�jtj� C e�� � �jfsgj�

Complex Object � Token Stream Interactions

e � s

putObj e � �jsj�

e� � r e� � �js� tj�

scan���e j x�jsj� C e�� � r

e� � r e� � �js� tj�

scan���e j x�jtj� C e�� � r

e � �jsj�

scanObj e � s

e� � fsg e� � �jftgj�

scanSet�e� j x�jtj� C e�� � fsg

e� � �jfsgj� e� � ftg

putSet�e� j xt � e�� � �jfsgj�

Figure ���� The monad of token streams�
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� scanObj �putscan�i�e� j x C e���� scan�i�scanObj e� j x C e��

� scanObj putEmptySet � fg

� scanObj �putSingletonSet e�� fscanObj eg

� scanObj �putUnionSet�e�� e���� �scanObj e�� � �scanObj e��

� scanObj �putscanSet �e� j x C e���� scanSet�scanObj e� j x C e��

� scanObj �putSet�e� j x � e����
S
fscanObj e� j x � e�g

� scan�i�e� j x C putObj e��� e��putObj ��i e���x�

� scan�i�e� j x C putPair�e�� e���� e��ei�x�

� scan�i�e� j x C putscan�j�e� j y C e���� scan�j�scan�i�e� j x C e�� j y C e��

� scanSet�e� j x C putObj e���
S
fe���putObj y��x� j y � e�g

� scanSet�e� j x C putscan�i�e� j y C e���� scan�i�scanSet�e� j x C e�� j y C e��

� scanSet�e j x C putEmptySet�� fg

� scanSet�e� j x C putSingletonSet e��� e��e��x�

� scanSet�e� j x C putUnionSet�e�� e���� scanSet�e� j x C e�� � scanSet�e� j x C e��

� scanSet�e� j x C putscanSet �e� j y C e���� scanSet�scanSet�e� j x C e�� j y C e��

� scanSet�e� j x C putSet�e� j y � e����
S
fscanSet�e� j x C e�� j y � e�g

� putscan�i�e� j x C putObj e��� e���putObj ��i e����x�

� putscan�i�e j x C putPair�e�� e���� e��ei�x�

� putscan�i�e� j x C putscan�j�e� j y C e���

� putscan�j�putscan�i�e� j x C xe�� j y C e��

� putscanSet�e j x C putEmptySet�� putEmptySet

� putscanSet�e� j x C putSingletonSet e��� e��e��x�
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� putscanSet�e� j x C putUnionSet�e�� e���

� putUnionSet�putscanSet �e� j x C e��� putscanSet�e� j x C e���

� putscanSet�e� j x C putscanSet�e� j y C e���

� putscanSet�putscanSet �e� j x C e�� j y C e��

� putscanSet�e� j x C putSet�e� j x � e���� putSet�putscanSet �e� j x C e�� j x � e��

� putscanSet�e� j x C putscan�i�e� j y C e���

� putscan�i�putscanSet �e� j x C e�� j y C e��

Rules such as scanSet�e� j x C putSet�e� j y � e��� �
S
fscanSet�e� j x C e�� j y � e�g

are optimization rules� Recall the putSet�e� j y � e�� has a lazy semantics� Laziness comes

with an overhead that can be costly� These rules turn the lazy constructs into equivalent

eager ones� which are cheaper to execute�

Discussion

There are very few papers that explicitly considered the use of laziness in query process


ing and optimization� The only one that I know of is Buneman� Nikhil� and Frankel �����

They were more concerned with reducing space consumption using laziness than in reduc


ing response time� This bias is consistent with tradition� For the classical exposition of

lazy evaluation stressed the possibility of using lazy evaluation to explore in�nite search

space �the sieve of Eratosthenes being a favourite example� see Field and Harrison ������

This tradition accentuated the space
saving virtue of lazy evaluation� while response
time

improvement had not been emphasized�

The usual way to build compilers for lazy languages such as Haskell ���� and Lazy ML

���� is to evaluate everything lazily by default� Then� use sophisticated techniques ���� ��

to perform strictness analysis on programs to bring in eagerness� My emphasis on using

lazy evaluation to improve response time makes my approach di�erent� I execute everything

eagerly by default� Then I use the simple rewrite rules presented above to introduce laziness
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into my programs in a pro�table way�

I emphasize again that my token stream monad constructs closely correspond to the con


structs for my nested relational calculus� This correspondence is not surprising because

both are organized around the categorical concept of a monad and both are obtained by

turning universal properties into syntax� The fusion of the physcial language and the ab


stract language is cleanly obtained via the complex object and token stream interaction

constructs� These interaction constructs are what Wadler called monad morphisms ������

This design principle is the cohesive thread that links together the concrete language CPL�

the abstract language NRC� and the physical language of token streams�

The recent work of Fegaras ���� is closely related to the work here� His paper is in
u


enced by the work of Buneman� Ohori� Tannen� Wadler� and myself ���� ���� ���� ��� �����

He independently found that abstract programming constructs on collection types can be

mapped to physical programming constructs having the same form� While he gave a good

treatment of the mapping from abstract constructs to physical constructs� he did not con


sider the signi�cance of alternative operational semantics and he did not provide speci�c

rules for mapping from physical constructs to speci�c algorithms� For example� a direct

interpretation of his merge join program is still a nested loop� My treatment is more in

depth in both cases because the impact of laziness on performance is considered in this

chapter and speci�c rules for mapping to joins algorithms are given in the next chapter�
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Chapter �

Additional Optimizations

Instruction for reading� Skip� Philip Johnson�Laird

There exists a large body of literature on physical optimization in 
at relational systems�

See Graefe ����� Jarke and Koch ������ Kim ������ Mishra and Eich ������ Nakayama� Kitsure


gawa� and Takagi ������ Selinger� Astrahan� Chamberlin� Lorie� and Price ������ etc� This

chapter applies some of the better known traditional optimization techniques to NRC� Even

though these techniques are not new� I think this chapter is a contribution in at least two

ways� Flat relational systems deal in an impoverished class of data that excludes nested rela


tions but NRC deals with a much richer class of data that includes nested relations� Hence

the application of these techniques to NRC is also a generalization of these techniques�

Flat relational systems are generally implemented by a collection of enriched operators

based upon the 
at relational algebra but NRC� as seen in Chapter �� is implemented on

top of operators based upon the categorical notion of a monad� Hence the application of

these techniques to NRC is also a demonstration that my �monadic	 framework does not

obstruct techniques conceived in an alient way�

I stress that the rewrite rules presented in this chapter are not intended to be com


plete� Rather� they are intended to give a taste of how less tidy optimization tech


niques can be added to my system� I also assume the use of the commutative rule
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if e� then �if e� then e� else e�� else e� � if e� then �if e� then e� else e�� else e�

throughout this chapter�

Organization

Section ���� Two new constructs are introduced� The �rst is for caching small external

relations into memory� The second is for indexing small external relations into memory�

Some rules are suggested for using these new operators in query optimization�

Section ���� A new construct is introduced to capture the blocked nested
loop join algo


rithm� Some rules for using this operator in query optimization are presented� in particular

rules for recognizing a nested loop to be a join are given�

Section ���� A new construct is introduced to capture the indexed blocked
nested
loop

join algorithm� Some rules for using this operator in query optimization are presented� in

particular rules for recognizing whether the join condition in a blocked nested
loop join can

be dynamically indexed or not are given�

Section ���� A new construct is introduced for caching large intermediate results on disk to

avoid recomputation� Some rules for using this operator in query optimization are presented�

Section ��	� A new construct is introduced to illustrate the use of relational servers as

providers of external data� Some rules for migrating queries to such servers are presented� In

particular� rules for the migration of selection� projection� and join operations are illustrated�

Section ���� A new construct is introduced to illustrate the use of nonrelational servers as

providers of external data� Some rules for migrating queries to such servers are presented�

In particular� rules for moving selection and set

attening operations are given�
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��� Caching and indexing small relations

Using the techniques of Chapter �� joins inNRC are expressed in the physical language using

nested loops of the form putscanSet�putscanSet �if p�x� y� then q�x� y� else putEmptySet

j y C R� j x C S�� Evaluating this program causes the inner relation R to be fetched from

disk �or worse  brought in from a slow remote site� into memory as many times as there

are tuples in the outer relation S� However� if R is small enough to �t completely into the

available memory� then such repeated fetching can be avoided� The �rst half of this section

considers the general situation where nothing is known about the join condition p� The

second half of this section considers the special situation where the join condition p involves

an equality test� which can be turned into an index probe�

Caching small relations

The new construct in Figure ��� is introduced to achieve the e�ect of caching small relations

in a general way� Semantically� cache�e�� e�� � e���� That is� cache�e�� e�� is required to

e� � N e� � unit � �jfsgj�

cache�e�� e�� � �jsj�

Figure ���� The construct for caching small relations�

return the same result as e���� However� cache�e�� e�� is given an operational semantics with

the following side e�ect� The �rst time cache�e�� e�� is invoked during query evaluation� a

cache is created� This cache is identi�ed by the natural number e� and the token stream

e��� is stored in the cache� The token stream e��� is then returned as the result� The next

time cache�e�� e�� is invoked� the token stream already stored in the cache identi�ed by e�

is directly returned�
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Notice that the operational semantics of cache�e�� e�� is not sound with respect to the

equation cache�e�� e�� � e���� To achieve soundness� it is su�cient to impose three con


ditions on cache�e�� e��� The �rst condition is that e� should be a constant identifying an

external data source� The second condition is that e� is required to be a constant� The

third condition is that if cache�e�� e�� and cache�e
�
�� e

�
�� occur in two places in a query� then

e� and e
�
� must be di�erent unless e� and e

�
� are identical� These conditions are easily guar


anteed if the cache construct is only introduced during optimization and is not present in

the original query�

The basic optimization rule to exploit this construct is

� R� cache�n� �x�R�� if R � �jsj� is an identifer of an external data source �for example�

a �le pointer�� the size of R is determined to be small enough to �t into memory� and

n is a fresh cache identi�er�

The e�ectiveness of this rule is easily illustrated� Consider the query scanSet�scanSet�e j x C

R� j y C S� where R is a small external relation and S a big relation� Then R has to be

scanned as many times as there are objects in S� Using the rule above� the query is rewritten

to scanSet�scanSet�e j x C cache��� �z�R�� j y C S�� Thus R is scanned only once� the

improvement in total time is obvious�

Indexing small relations

The new construct in Figure ��� is introduced to achieve the e�ect of indexing a

small relation� Semantically� index �e�� e�� e���o� � scanSet�if e��scanObj x� � o then

fscanObj xg else fg j x C e����� That is� it returns all members of e��� having an index

value equals to o� However� index �e�� e�� e�� is given an operational semantics with the

following side e�ect� The �rst time it is executed� an indexed cache is created� The cache is

identi�ed by the natural number e�� The index function to be associated with the indexed

cache is the function e�� The complex object O represented by the token stream e��� is

stored in the indexed cache� The index key of an item is obtained by applying e� to that
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e� � N e� � unit � �jfsgj� e� � s� t

index �e�� e�� e�� � t� fsg

Figure ���� The construct for indexing small relations�

item� Note that several elements may map via e� to the same bucket in the cache� The

function f�o� � fo� j o� � O� e��o� � e��o
��g is returned� �This function is implemented by

applying e� to the input o to obtain the index key� which can then be used to access the

indexed cache to bring out the bucket containing all the matching items�� The next time

index �e�� e�� e�� is executed� the function f is directly returned�

Observe that the operational semantics of index �e�� e�� e�� is not sound with respect to its

intended equational theory in general� To achieve soundness� it is su�cient to impose four

conditions on index �e�� e�� e��� The �rst condition is that e� should be a constant identifying

an external data source� The second condition is that e� should be a constant� The third

condition is that e� should have not free variable� The fourth condition is that whenever

index �e�� e�� e�� and index �e
�
�� e

�
�� e

�
�� appear in two places in a query� then e� and e

�
� must

be distinct unless e� and e
�
� are identical and e� and e

�
� are identical� These conditions are

easily arranged if the index construct is only introduced during optimization�

The basic optimization rules to exploit this construct are given below� They essentially

check if an equality test can be turned into index probe� These two rules are built on top

of the rule introduced earlier for cache�e�� e��� I prefer building my optimization rules in

this incremental fashion� It is my experience that doing so greatly reduces the number of

optimization rules in my system�

� putscanSet�if e� � e� then e� else putEmptySet j x C cache�n� e��� � putSet�

e���putObj y��x� j y C index �m� e�� �z�e���putObj z��x���e���� if m is fresh� x is the

only free variable in e�� and x is not free in e��
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� putscanSet�if e� � e� then e� else putEmptySet j x C cache�n� e��� � putSet�

e���putObj y��x� j y C index �m� e�� �z�e���putObj z��x���e���� if m is fresh� x is the

only free variable in e�� and x is not free in e��

The e�ectiveness of these rules is easily illustrated� Consider the query putscanSet�

putscanSet�if f�x� � g�y� then e else putEmptySet j x C R� j y C S� where

R is a small external relation and S a big relation� Then R has to be loaded as

many times as there are elements in S and the equality test has to be performed a

quadratic number of times� It is rewritten to putscanSet �putSet�e��putObj z��x� j z C

index �m� �u�R� �v�f�putObj v���g y�� j y C S�� Then R is loaded once and the equality

test is performed quasi
linear number of times� The improvement in total time is obvious�

��� Blocked nested
loop join

One of the earliest method for improving performance of joins is the blocked nested
loop

technique ������ The basic idea is to divide the inner and outer relations into blocks� each

of which is small enough to �t into memory� Then perform the join by joining each block

of the inner relation with each block of the outer relation using any e�cient main memory

technique� Using the technique� the inner relation is scanned as many times as there are

blocks� as opposed to records� in the outer relation� �Further improvement can be gained

by scanning boustrophedonically� That is� the direction of scanning for one of the relations

is alternated so that the last block read in each direction need not be re
scanned when

the direction is changed� See Kim ������� This technique is applicable even when the join

condition is not an equality test� It is a generalization of the caching technique to inner

relations that are too big to be cached entirely in memory�

Preparing a join

To simplify subsequent analysis� the new primitive in Figure ��� is introduced� In every
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e� � unit � �jfsgj� e� � �jsj�� B e� � �jsj�� �jftgj�

prejoin�e�� e�� e�� � �jftgj�

Figure ���� The construct for a �lter loop�

way� prejoin�e�� e�� e�� � putscanSet�if e��x� then e��x� else putEmptySet j x C e����� It is

used in conjunction with the basic rules below for putting queries into a simpler form for

subsequent analysis�

� putscanSet�e� j x C e��� prejoin��y�e�� �z�true� �x�e��

� prejoin�e�� e�� �x�if e� then e� else putEmptySet�� prejoin�e�� �x�if e��x� then e�

else false� �x�e��� if x is the only free variable in e��

Blocked nested�loop join

The new construct in Figure ��� is needed to capture the blocked nested
loop join algorithm�

In terms of semantics� blkjoin�e�� e�� e�� e�� e
� e
� � putscanSet �if e��x� then putscanSet�

e� � unit � �jfrgj� e� � �jrj�� B e� � unit � �jfsgj�

e� � �jsj�� B e
 � r � s� B e
 � r � s� �jftgj�

blkjoin�e�� e�� e�� e�� e
� e
� � �jftgj�

Figure ���� The construct for blocked nested
loop join�

if e��y� then if e
�scanObj x��scanObj y�then e
�scanObj x��scanObj y� else putEmptySet

else putEmptySet j y C e���� else putEmptySet j x C e����� In other words� e��� is the
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outer relation of the join� e� is the selection predicate on the outer relation� e��� is the

inner relation of the join� e� is the selection predicate on the inner relation� e
 is the join

condition� and e
 is the transformation to be applied to quali�ed records� This primitive is

implemented using the blocked nested
loop join algorithm�

Some of the basic rules for exploiting this new construct are given below� The �rst rule

recognizes the basic opportunity for a blocked nested
loop join� The second rule recognizes

the occurrence of a quali�cation test in the transformer part of the join and combines it

with the join condition� The third and fourth rules detect that certain parts of the join

condition involve only the inner record or the outer record and combine these tests with

the inner predicate and outer predicates respectively� The remaining rules handle some of

the possible interactions between prejoin and blkjoin�

� prejoin�e�� e�� �x�prejoin�e�� e�� e
�� � blkjoin�e�� e�� e�� e�� �y��z�true� �y��z�

e
��putObj y��x� �putObj z��� if x is not free in e� and e��

� blkjoin�e�� e�� e�� e�� e
� �y��z�if e
 then e� else putEmptySet� � blkjoin�e��

e�� e�� e�� �y��z�if e
�y��z� then e
 else false� �y��z�e��

� blkjoin�e�� e�� e�� e�� �y��z�if e
 then e
 else false� e�� � blkjoin�e�� e�� e��

�v�if e��v� then e
��scanObj v��z� else false� �y��z�e
� e��� if y is not free is e
�

� blkjoin�e�� e�� e�� e�� �y��z�if e
 then e
 else false� e��� blkjoin�e�� �u�if e��u� then

e
��scanObj u��y� else false � e�� e�� �y��z�e
� e��� if z is not free in e
�

� prejoin�e�� e�� �x�blkjoin�e�� e�� e
� e
� e�� e��� � blkjoin�e�� e�� �u�blkjoin�

e�� e�� e
� e
� e�� �y��z�putObj f�y� z�g�� �z�true� �y��z�true � �y��z���x�e�� �putObj

y���� z���� z��� if x is not free in e�� e�� e
� e
� and e��

� blkjoin�e�� e�� e�� e�� e
� �y��z�prejoin�e
� e�� e��� � prejoin�e
� e�� �x�blkjoin�

e�� e�� e�� e�� e
� e
� �y��z�e��x����

� blkjoin�e�� e�� e�� e�� e
� �y��z�blkjoin�e��� e��� e��� e��� e�
� e�� � blkjoin�

�x�blkjoin�e�� e�� e�� e�� e
� �u��v�putObjf�u� v�g�� �u�true� �x�blkjoin�e��� e
�
�� e

�
��
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e��� e�
� �u��v�putObj f�u� v�g�� �v�true � �u��v�true � �u���v����y��z�e���� u����� u��

��� v
����� v

���� if y and z are not free in e��� e
�
�� e

�
�� e

�
�� and e

�

�

� prejoin��u�blkjoin�e�� e�� e�� e�� e
� e
�� e�� e�� � blkjoin�e�� e�� e�� e�� e
�

�y��z�putscanSet �if e��x� then e��x� else putEmptySet j x C e
�y��z���� if u not

free in e�� e�� e�� e�� e
� and e
�

The e�ectiveness of these rules is easily illustrated� Consider the query putscanSet�

putscanSet�if f�x� � g�y� then e else putEmptySet j x C R� j y C S�� where both

R and S are too big to �t in memory� Then R has to be loaded as many times

as there are elements in S� It is rewritten to blkjoin��u�S� �u�true � �v�R� �v�true�

�u��v�f�putObj v� � g�putObj u�� �u��v�e��putObj u��y� �putObj v��x��� Then R is loaded

as many times as there are blocks in S� The performance is improved by a factor propor


tional to the blocking factor used�

��� Indexed blocked
nested
loop join

Suppose the join condition involves an equality test of the form f�x� � g�y� where x is

bound in the outer relation and y to the inner relation� Then it is possible to dynamically

create an index for the outer relation using f as the indexing function and g as the probe

function� The blocked nested
loop join can be turned into the indexed blocked
nested
loop

join by taking advantage of such special join conditions�

The basic idea is similar to the dynamic staging and hashing idea of Nakayama� Kitsuregawa�

and Takagi ������ Divide the outer relation into blocks� Bring one of these blocks into

memory� Dynamically index it� Join this indexed block with the inner relation using any

e�cient main memory indexed join algorithm� Repeat the previous steps for the remaining

blocks of the outer relation� Note that each block is small enough so that the index created

dynamically for it can �t into memory� Using this technique� the outer relation is scanned

only once� while the inner relation is scanned as many times as there are blocks in the outer

relation� Furthermore� the join condition is computed only a quasi
linear number times� as
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opposed to a quadratic number of times�

The new construct in Figure ��� is needed to capture the indexed blocked
nested
loop

join algorithm� In terms of semantics� idxjoin�e�� e�� e�� e�� e
� e
� e�� e�� �

e� � unit � �jfrgj� e� � �jrj�� B e� � r� s

e� � unit � �jftgj� e
 � �jtj�� B e
 � t� s

e� � r� t� B e� � r � t� �jfugj�

idxjoin�e�� e�� e�� e�� e
� e
� e�� e�� � �jfugj�

Figure ���� The construct for indexed blocked
nested
loop join�

putscanSet� if e��y� then putscanSet � if e
�z� then if e��scanObj y� � e
�scanObj z�

then if e��scanObj y��scanObj z� then e��scanObj y��scanObj z� else putEmptySet

else putEmptySet else putEmptySet j z C e���� else putEmptySet j y C e����� In other

words� e��� is the outer relation of the join� e� is the selection predicate on the outer rela


tion� e� is the indexing function� e��� is the inner relation� e
 is the selection predicate on

the inner relation� e
 is the probe function� e� is the join condition� and e� is the transfor


mation to be applied to quali�ed records� This primitive is implemented using the indexed

blocked
nested
loop join algorithm�

Some of the basic rules for exploiting this operator are given below� The �rst and second

rules recognize the basic opportunity for an indexed blocked
nested
loop join� The third

rule discovers that the transformer of the join contains a test which can be combined with

the join condition� The fourth and �fth rules recognize that parts of the join condition

can be combined with the outer or the inner predicates of the join� The sixth and seventh

rules recognize that the join condition contains an equality test that can be turned into an

index probe and proceed to do so� The remaining rules are a sampling of the ways in which

prejoin � blkjoin � and idxjoin interact�
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� blkjoin�e�� e�� e�� e�� �y��z�if e
 � e
 then e� else false� e�� � idxjoin�e��

e�� �y�e
� e�� e�� �z�e
� �y��z�e�� e��� if y is the only free variable in e
 and z

is the only free variable in e
�

� blkjoin�e�� e�� e�� e�� �y��z�if e
 � e
 then e� else false� e�� � idxjoin�e��

e�� �y�e
� e�� e�� �z�e
� �y��z�e�� e��� if y is the only free variable in e
 and z

is the only free variable in e
�

� idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�if e� then e� else putEmptySet� �

idxjoin�e�� e�� e�� e�� e
� e
� �y��z�if e� then e��y��z� else false � �y��z�e��

� idxjoin�e�� e�� e�� e�� e
� e
� �y��z�if e� then e� else false � e�� � idxjoin�e��

�u�if e��u� then e���scanObj u��y� else false� e�� e�� e
� e
� �y��z�e�� e��� if z is

not free in e��

� idxjoin�e�� e�� e�� e�� e
� e
� �y��z�if e� then e� else false � e�� � idxjoin�e��

e�� e�� e�� �u�if e
�u� then e���scanObj u��z� else false � e
� �y��z�e�� e��� if y is

not free in e��

� idxjoin�e�� e�� e�� e�� e
� e
� �y��z�if e� � e� then e� else false� e� � idxjoin�e��

e�� �y��e��y�� e��� e�� e
� �z��e
�z�� e��� �y��z�e�� e�� if z is free in e� but not in e�

and y is free in e� but not in e��

� idxjoin�e�� e�� e�� e�� e
� e
� �y��z�if e� � e� then e� else false� e� � idxjoin�e��

e�� �y��e��y�� e��� e�� e
� �z��e
�z�� e��� �y��z�e�� e�� if y is free in e� but not in e�

and z is free in e� but not in e��

� prejoin�e�� e�� �x�idxjoin�e�� e�� e
� e
� e�� e�� e�� e�� � blkjoin�e�� e��

�v�idxjoin�e�� e�� e
� e
� e�� e�� e�� �y��z�putObj f�y� z�g�� �v�true� �y��z�true�

�y��x��e��putObj y��x���� x
����� x

���� if x is not free in e�� e�� e
� e
� e�� e�� and e��

� idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�prejoin�e�� e�� e�� � prejoin�e�� e��

�x�idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�e x��� if y and z are not free in e� and e��

� idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�idxjoin�e��� e
�
�� e��� e

�
�� e�
� e�
� e��� e�� �

blkjoin��u�idxjoin� e�� e�� e�� e�� e
� e
� e�� �y��z�putObj f�y� z�g�� �u�true�
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�v�idxjoin�e��� e��� e��� e��� e�
� e�
� e��� �y��z�putObj f�y� z�g�� �v�true� �u��v�true �

�y���z����y��z�e��� z
����� z

������ y
����� y

���� if y and z are not free in e��� e
�
�� e

�
�� e

�
��

e�
� e
�

� and e

�
��

� blkjoin�e�� e�� e�� e�� e
� �y��z�idxjoin�e
�
�� e

�
�� e

�
�� e

�
�� e

�

� e

�

� e

�
�� e�� � blkjoin�

�u�blkjoin�e�� e�� e�� e�� e
� �y��z�putObjf�y� z�g�� �u�true� �v�idxjoin�e
�
�� e

�
�� e

�
��

e��� e
�

� e

�

� e

�
�� �y��z�putObjf�y� z�g�� �v�true � �u��v�true � �y

���z����y��z�e��� z
�����

z������ y
����� y

���� if y and z are not free in e��� e
�
�� e

�
�� e

�
�� e

�

� e

�

� and e

�
��

� idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�blkjoin�e
�
�� e

�
�� e

�
�� e

�
�� e

�

� e��� blkjoin�e���

e��� e
�
�� e

�
�� e

�

� �y

���z��idxjoin�e�� e�� e�� e�� e
� e
� e�� �y��z�e�y
���z����� if y and z

are not free in e��� e
�
�� e

�
�� e

�
�� and e

�

�

� prejoin��u�idxjoin�e�� e�� e�� e�� e
� e
� e�� e��� e�� e� � idxjoin�e�� e�� e��

e�� e
� e
� e�� �y��z�putSet�if e��x� then e�x� else putEmptySet j x C e��y��z����

if u is not free in e�� e�� e�� e�� e
� e
� e�� and e��

The e�ectiveness of these rules is easily illustrated� Consider the query putscanSet�

putscanSet�if f�x� � g�y� then e else putEmptySet j x C R� j y C S�� where

both R and S are too big to �t in memory� Then R has to be loaded as many

times as there are elements in S� Furthermore� the equality test has to be performed

m � n times where m and n are the cardinalities of R and S� It is rewritten to

idxjoin��u�S� �u�true� �u�g�putObj u�� �v�R� �v�true � �v�f�putObj v�� �u��v�true� �u��v�

e��putObj u��y� �putObj v��x��� Then S is loaded once� a block at a time� R is loaded as

many times as there are blocks in S� and the equality test is performed m � logn times�

��� Caching inner relations

The inner relation in a join may not be a base table� It can be a subquery� Under such a

situation� this subquery may have to be recomputed several times� For example� if blkjoin

or idxjoin is used to evaluate the join� then the inner subquery has to be recomputed as
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many times as there are blocks in the outer relation� The optimizations suggested so far

do not consume disk storage other than that needed to store the input to and the output

of a query� By allowing additional disk storage to be used� large intermediate data can be

cached to avoid recomputation�

The new construct in Figure ��� is introduced to achieve the e�ect of caching the result

of subqueries on disk� Semantically� bigcache�e�� e�� � e���� That is� bigcache�e�� e�� is

e� � N e� � unit � �jfsgj�

bigcache�e�� e�� � �jfsgj�

Figure ���� The construct for caching large intermediate results on disk�

required to return the same result as e���� However� bigcache�e�� e�� is given an operational

semantics with the following side e�ect� The �rst time bigcache�e�� e�� is invoked during

query evaluation� a �le is created on disk� This �le is identi�ed by the natural number e�

and the token stream e��� is written to that �le� The �le is then returned as the result�

The next time bigcache�e�� e�� is invoked� the �le is directly returned� without recomputing

e����

The operational semantics of bigcache�e�� e�� is not sound with respect to the equation

bigcache�e�� e�� � e���� To achieve soundness� it is su�cient to impose three conditions on

bigcache�e�� e��� The �rst condition is that e� should have no free variable� The second

condition is that e� should be a constant� The third condition is that if bigcache�e�� e�� and

bigcache�e��� e
�
�� occur in two places in a query� then e� and e

�
� must be di�erent unless e�

and e�� are identical� These conditions are easy to ensure if the bigcache is only brought in

during optimization and is not present in the original query�

The basic optimization rules to exploit this construct are given below� They basically

recognized that the inner relation of a join is not a base table and is not yet cached�
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� blkjoin�e�� e�� e�� e�� e
� e
� � blkjoin�e�� e�� �v�bigcache�n� �v�putscanSet �

if e��x� then putSingletonSet�x� else putEmptySet j x C e������ �v�true� e
� e
��

if n is fresh� e� and e� have no free variables� e� is not of the form �v�bigcache�m� e��

and e� is not a base table�

� idxjoin�e�� e�� e�� e�� e
� e
� e�� e�� � idxjoin�e�� e�� e�� �v�bigcache�n�

�v�putscanSet �if e
�x� then putSingletonSet�x� else putEmptySet j x C e������

�u�true� e
� e�� e��� if n is fresh� e�� e
� and e
 have no free variable� e� is not

of the form �v�bigcache�m� e�� and e� is not a base table�

Consider the query putscanSet�putscanSet�if f�x� � g�y� then e else putEmptySet j x C

R� j y C S�� where both R and S are too big to �t in memory� Suppose R is a sub


query� as opposed to a base table� Then R has to be recomputed and loaded as many

times as there are elements in S� It is rewritten to idxjoin��u�S� �u�true � �u�g�putObj u��

�v�bigcache�n� �v�R�� �v�true � �v�f�putObj v�� �u��v�true � �u��v�e��putObj u��y� �putObj

v��x��� Then S is loaded once� a block at a time� R is computed once� the result is cached

on disk and loaded as many times as there are blocks in S� If recomputation of R is costly�

then the improvement of this optimization is signi�cant�

��� Pushing operations to relational servers

Suppose some of the input to a query comes from an external data source that has some

query processing capabilities� For example� the input might actually be produced by a

full

edged relational server� It is usually pro�table to migrate some manipulation of this

input to the source server� The �rst advantage is the reduction of the load on the local

machine� The second advantage is that the source server usually has further information�

such as existence of precomputed indices or frequency statistics� which is useful for im


proved optimization� The third advantage is that several source servers can be kept busy

simultaneously and thus increase parallelism�

This section outlines how a relational server can be exploited� For simplicity of presentation�
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a single server is assumed here� It is straightforward to generalize this optimization to

multiple servers� see Chapter �� The new construct in Figure ��� is needed� where e is an

e � s

sqlserver e � �jfsgj�

Figure ���� The construct for accessing a relational server�

expression that can be translated into an SQL query of the form select COLUMNS from

TABLES where CONDITIONS� COLUMNS are restricted to simple label names quali�ed by

table names or is the wildcard character �� TABLES are restricted to relations stored on

that server� CONDITIONS are simple conjunctions of equality and inequality tests� For

simplicity here� I directly write this e as the string select COLUMNS from TABLES where

CONDITIONS� �This simpli�cation is actually not far from my implementation� See the

sample optimizer output scripts in Section ��� and see Chapter ���

Let me give a couple of short examples to illustrate this construct� The query sqlserver

select � from locus where � � � fetches the table locus from the server and brings it to

the local system� The query sqlserver select gb�head�accs�locus� gb�head�accs�accession� gb�

head�accs�title� gb�head�accs�length� gb�head�accs�taxname from gb�head�accs where gb�head�

accs�pastaccession � �M�	
��
 selects the speci�ed �elds from records in gb�head�accs having

pastaccession of M�	
�� from the server and brings it to the local system�

One more note before I plunge into the details of optimization� Relations are really sets

of records� So I follow CPL and use records instead of pairs in this section� Records are

formed by �l� � e�� � � � � ln � en� and �elds are selected by �li e where li are labels� Analogous

operations on token streams are used as well�

Some basic rules are given below� Throughout these rules� I assumed that the table names

in TABLES have been properly aliased to avoid name clashes� The �rst �ve rules show how
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to move selection predicates to the server� I use the equality test as the example predicate

to be migrated� Other predicates� such as �� �� �� and �� can be similarly shifted to the

server� the only requirement is that they be simple enough for the server� The next �ve

rules give an idea of how to move projection operations to the server� The last three rules

illustrate how to move joins to the server� I use equality test as the example join predicate

to be migrated� Other join predicates� such as �� �� �� and �� can be similarly shifted to

the server as long as they are simple enough for the server�

� prejoin��x�sqlserver select COLUMNS from TABLES where CONDITIONS� �x�if c �

scan�l�scanObj y j y C x� then e� else false� e�� � prejoin��x�sqlserver select

COLUMNS from TABLES where CONDITIONS and t�l � c� �x�e�� e��� if c is a constant�

l is a column name quali�ed by table name t in COLUMNS� or TABLES consists of

just the table name t�

� blkjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� �u�if c �

scan�l� scanObj y j y C u� then e� else false� e�� e�� e
� e
� � blkjoin��u�sqlserver

select COLUMNS from TABLES where CONDITIONS and t�l � c� �u�e�� e�� e�� e
� e
��

if c is a constant� l is a column name quali�ed by table name t in COLUMNS� or

TABLES consists of just the table name t�

� blkjoin�e�� e�� �u�sqlserver select COLUMNS from TABLES where CONDITIONS�

�u�if c � scan�l�scanObj y j y C u� then e� else false� e
� e
� � blkjoin�e��

e�� �u�sqlserver select COLUMNS from TABLES where CONDITIONS and t�l � c�

�u�e�� e
� e
�� if c is a constant� l is a column name quali�ed by table name t in

COLUMNS� or TABLES consists of just the table name t�

� idxjoin�e�� e�� e�� �u�sqlserver select COLUMNS from TABLES where CONDI�

TIONS� �u�if c � scan�l�scanObj y j y C u� then e
 else false� e
� e�� e�� �

idxjoin�e�� e�� e�� �u�sqlserver select COLUMNS from TABLES where CONDITIONS

and t�l � c� �u�e
� e
� e�� e��� if c is a constant� l is a column name quali�ed by table

name t in COLUMNS� or TABLES consists of just the table name t�

� idxjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� �u�if c �
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scan�l�scanObj y j y C u� then e� else false � e�� e�� e
� e
� e�� e�� �

idxjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS and t�l �

c� �u�e�� e�� e�� e
� e
� e�� e��� if c is a constant� l is a column name quali�ed by

table name t in COLUMNS� or TABLES consists of just the table name t�

� prejoin��x�sqlserver select COLUMNS from TABLES where CONDITIONS� �x�e��

�x�e��� prejoin��x�sqlserver select t��l�� ���� tn�ln from TABLES where CONDITIONS�

�x�e�� �x�e��� if the following three conditions are true� First� every occurrence of x

in e� and e� is in a subexpression of the form scan�l�e j y C x� or putscan�l�e j y C x��

Second� the li�s are all the l�s indicated in such subexpressions� Third� COLUMNS is

either the wildcard � and TABLES has exactly one table t and each ti is t� or t��l�� ����

tn�ln are strictly included in COLUMNS�

� blkjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� �y�e�� e��

e�� �y�e
� �y�e
� � blkjoin��u�sqlserver select t��l�� ���� tn�ln from TABLES where

CONDITIONS� �y�e�� e�� e�� �y�e
� �y�e
�� if the following three conditions are true�

First� every occurrence of y in e�� e
� and e
 is in a subexpression of the form �l y�

scan�l�e j w C y�� or putscan�l�e j w C y�� Second� the li�s are all the l�s indicated

in such subexpressions� Third� COLUMNS is either the wildcard � and TABLES has

exactly one table t and each ti is t� or t��l�� ���� tn�ln are strictly included in COLUMNS�

� blkjoin�e�� e�� �v�sqlserver select COLUMNS from TABLES where CONDITIONS�

�z�e�� �y��z�e
� �y��z�e
� � blkjoin�e�� e�� �v�sqlserver select t��l�� ���� tn�ln from

TABLES where CONDITIONS� �z�e�� �y��z�e
� �y��z�e
�� if the following three condi


tions are true� First� every occurrence of z in e�� e
� and e
 is in a subexpression of

the form �l z� scan�l�e j w C z�� or putscan�l�e j w C z�� Second� the li�s are all the

l�s indicated in such subexpressions� Third� COLUMNS is either the wildcard � and

TABLES has exactly one table t and each ti is t� or t��l�� ���� tn�ln are strictly included

in COLUMNS�

� idxjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� �y�e��

�y�e�� e�� e
� e
� �y�e�� �y�e�� � idxjoin��u�sqlserver select t��l�� ���� tn�ln from

TABLES where CONDITIONS� �y�e�� �y�e�� e�� e
� e
� �y�e�� �y�e��� if the following
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three conditions are true� First� every occurrence of y in e�� e�� e�� and e� is in a

subexpression of the form �l y� scan�l�e j w C y�� or putscan�l�e j w C y�� Second�

the li�s are all the l�s indicated in such subexpressions� Third� COLUMNS is either

the wildcard � and TABLES has exactly one table t and each ti is t� or t��l�� ���� tn�ln

are strictly included in COLUMNS�

� idxjoin�e�� e�� e�� �v�sqlserver select COLUMNS where CONDITIONS� �z�e
� �z�e
�

�y��z�e�� �y��z�e�� � idxjoin�e�� e�� e�� �v�sqlserver select t��l�� ���� tn�ln from TA�

BLES where CONDITIONS� �z�e
� �z�e
� �y��z�e�� �y��z�e��� if the following three

conditions are true� First� every occurrence of z in e
� e
� e�� and e� is in a subexpres


sion of the form �l z� scan�l�e j w C z�� or putscan�l�e j w C z�� Second� the li�s are

all the l�s indicated in such subexpressions� Third� COLUMNS is either the wildcard

� and TABLES has exactly one table t and each ti is t� or t��l�� ���� tn�ln are strictly

included in COLUMNS�

� idxjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� e�� �y��l

y� �v�sqlserver select COLUMNS� from TABLES� where CONDITIONS�� e
� �z��l� z�

e�� e��� prejoin��u�sqlserver select COLUMNS
 from TABLE
 where CONDITIONS


and t�l � t��l�� �x�if e��putObj �REFORMAT �scanObj x��� then if e
 �putObj �

REFORMAT� �scanObj x��� then e��REFORMAT �scanObj x�� �REFORMAT� �scanObj

x�� else false else false � �x�e��REFORMAT �scanObj x���REFORMAT� �scanObj x����

if the nine conditions below hold� First� COLUMNS is not the wildcard �� Second�

COLUMNS� is not the wildcard �� Third� COLUMNS
 is the union of COLUMNS and

COLUMNS
� Fourth� TABLES
 is the union of TABLES and TABLES
� Fifth� CONDI�

TIONS
 is the union of CONDITIONS and CONDITIONS
� Sixth� t�l is in COLUMNS�

Seventh� t��l� is in COLUMNS�� Eighth� REFORMAT is �y��l� � �l� y� � � � � ln � �ln y�

where COLUMNS is t��l�� ���� tn�ln� Last� REFORMAT� is �y��l� � �l� y� � � � � ln � �ln y�

where COLUMNS� is t��l�� ���� tn�ln�

� idxjoin��u�sqlserver select COLUMNS from TABLES where CONDITIONS� e�� e��

�v�sqlserver select COLUMNS� from TABLES� where CONDITIONS�� e
� e
� �y��z�if

�l y � �l� z then e� else false� e�� � prejoin��u�sqlserver select COLUMNS
 from

���



TABLES
 where CONDITIONS
 and t�l � t��l�� �x�if e��putObj �REFORMAT�scanObj

x��� then if e
�putObj �REFORMAT��scanObj x��� then if e��REFORMAT�scanObj x��

� e
�REFORMAT��scanObj x�� then ��y��z�e���REFORMAT�scanObj x���REFORMAT�

scanObj x� else false else false else false � �x�e��REFORMAT�scanObj x���REFORMAT�

�scanObj x���� if the nine conditions below hold� First� COLUMNS is not the wild


card �� Second� COLUMNS� is not the wildcard �� Third� COLUMNS
 is the

union of COLUMNS and COLUMNS
� Fourth� TABLES
 is the union of TABLES and

TABLES
� Fifth� CONDITIONS
 is the union of CONDITIONS and CONDITIONS
�

Sixth� t�l is in COLUMNS� Seventh� t��l� is in COLUMNS�� Eighth� REFORMAT is

�y��l� � �l� y� � � � � ln � �ln y� where COLUMNS is t��l�� ���� tn�ln� Last� REFORMAT� is

�y��l� � �l� y� � � � � ln � �ln y� where COLUMNS� is t��l�� ���� tn�ln�

� blkjoin ��u� sqlserver select COLUMNS from TABLES where CONDITIONS� e��

�v�sqlserver select COLUMNS� from TABLES� where CONDITIONS�� e�� �y��z�if �l y �

�l� z then e
 else false� e
�� prejoin��u�sqlserver select COLUMNS
 from TABLES


where CONDITIONS
 and t�l � t��l�� �x�if e��putObj �REFORMAT�scanObj x��� then

if e��putObj �REFORMAT��scanObj x��� then ��y��z�e
� �REFORMAT�scanObj x��

�REFORMAT� �scanObj x�� else false else false� �x�e
�REFORMAT �scanObj x���

REFORMAT��scanObj x���� if the nine conditions below hold� First� COLUMNS is not

the wildcard �� Second� COLUMNS� is not the wildcard �� Third� COLUMNS
 is the

union of COLUMNS and COLUMNS
� Fourth� TABLES
 is the union of TABLES and

TABLES
� Fifth� CONDITIONS
 is the union of CONDITIONS and CONDITIONS
�

Sixth� t�l is in COLUMNS� Seventh� t��l� is in COLUMNS�� Eighth� REFORMAT is

�y��l� � �l� y� � � � � ln � �ln y� where COLUMNS is t��l�� ���� tn�ln� Last� REFORMAT� is

�y��l� � �l� y� � � � � ln � �ln y� where COLUMNS� is t��l�� ���� tn�ln�

Here is an example to illustrate these rules� Consider the query putObj
S
f
S
fif �A x �

�B y then f��C x� �D y�g else fg j x � scanObj �sqlserver select � from U where � �

��g j y � scanObj �sqlserver select � from V where � � ��g� It joins two tables U and V from

the server� It is rewritten to prejoin��u�sqlserver select U�C� V�D from U� V where U�A � V�B�

�u�true� �x�putSingletonSet�putPair �C � putscan�C�y j y C x��D � putscan�D�y j y C x�����

���



The join is migrated to the server� This rewritten query can itself be simpli�ed to sqlserver

select U�C� V�D from U� V where U�A � V�B� if a few additional rules are made available�

��� Pushing operations to ASN�� servers

Relational servers are not the only kind of external data source� Suppose we have servers

that provide data in ASN�� ����� format� Data of this format are essentially hierarchically

structured with records� variants� sets� and lists freely combined� While the data are richer

in structure� these servers may have weaker capability than a relational server� For example�

they may not be able to perform a join�

This section outlines how a simple ASN�� server can be exploited� This simple server is

comparable to the real server to be described in greater detail in Chapter � and Section

���� Without loss of generality� consider a server for a look
up table containing entries of

type string � t� where the �rst component is the look
up key and the second component is

kept in ASN�� format� Let this server be captured by the new construct in Figure ���� The

e� � string e� � ftg � fsg

asnserver �e�� e�� � �jfsgj�

Figure ���� The construct for accessing an ASN�� server�

semantics is as follow� The server looks up all entries with keys matching e�� It applies e� to

transform the second projection of these entries� The result is returned as a token stream�

The server is not very powerful and it can only perform projection and 
attening� Hence

e� is required to be a simple sequence of projections and 
attening� For simplicity here� I

directly write this e� as PATH where PATH is either empty� denoting identity� is �l PATH�

denoting relational projection on column l followed by PATH�� or is �E PATH� denoting


attening followed by PATH��

���



Here is a short example to illustrate this construct� Assuming that the records on

the server have type string � �seq � f�giim � string � � � ��g� � � ��� Then the query

asnserver��hemoglobin	� �seq�E�giim� �nds all records matching hemoglobin and produces

a 
at relation containing all their giim components�

Some basic rules for moving operations to the ASN�� server are given below�

� putscanSet�e� j x C asnserver�e��PATH�� � putscanSet�e��putPair �l � y��x� j y C

asnserver �e�� PATH�l��� if every occurrence of x in e� is in a subexpression of the

form scan�l�e j w C x� or putscan�l�e j w C x��

� putscanSet�putscanSet�e� j y C x� j x C asnserver�e��PATH�� � putscanSet�e� j y C

asnserver �e�� PATH�E��� if x is not free in e��

As an example of the e�ect of these rules� consider the query putObj
S
f
S
ff�giim xg

j x � �seq yg j y � scanObj �asnserver ��hemoglobin	� ��g� In this query� the server returns

all records about hemoglobin� The local system has to perform projections and 
attening

to obtained the desired output� It is rewritten to asnserver ��hemoglobin	� seq�E�giim�� The

server is now made to return the desired output directly�

In the next chapter� I present the results of several simple experiments on the optimizations

discussed in this and in the previous chapters�

���



Chapter 	

Potpourri of Experimental Results

Beware of bugs in the above code� I have only proved it correct� not tried it�

Donald Knuth

This chapter reports experiments I did on my prototype implementation� I divide the exper


iments into six groups� as outlined below� The measurements indicate that the optimizations

suggested in Chapters � and � result in performance improvement�

All experiments were performed on a SPARC Server ���MP Model �� with ��� megabytes

of memory� The load on the machine was light when I ran my experiments� The other

heavyweight that was running during some of my experiments was a �
satis�ability checker�

As my machine has two processors� the impact of this �
satis�ability checker and other

processes on my performance measurements was not signi�cant�

I record only total time �the time taken from query submission to the printing of the last

character of the reply�� response time �the time taken from query submission to the printing

of the �rst two characters of the reply�� and peak memory usage� All timing data are system

time as measured by ML�s �the host language of my system� internal clock mechanism� All

memory usage data are measured using Unix�s top command� The peak memory usage

data are approximate� This is because ��� ML does not collect all garbage immediately� ���
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ML may ask for a larger amount of memory than it needs� and ��� the operating system

may hand ML more memory than it asks for� Nevertheless� the measurements are a good

re
ection of the general memory demand characteristics of various optimization options in

my system�

Organization

Section ���� This group of experiments tests the pipelining rules of Chapter � in typical

single
table scan situations�

Section ���� This group of experiments tests the e�ect of caching and indexing when some

input databases are small enough to �t easily into main memory� This tests the rules

suggested in Section ����

Section ���� The third group tests the join optimization rules presented in Sections ���

and Section ���� I also measure the e�ectiveness of these rules against the rules for small

relations�

Section ���� This group of experiments tests the e�ect of caching large intermediate results

in joins on disk� These experiments essentially exercises those rules given in Section ����

Section ��	� This group of experiments tests the rules given in Section ���� These rules

are for migrating selections� projections� and joins on external data imported from Sybase

sources to their originating Sybase servers�

Section ���� This last group of experiments tests the rules presented in Section ���� These

rules are for pushing projections and variant analysis on non
relational external data im


ported from ASN�� ����� sources to their originating ASN�� servers�
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�� Loop fusions

The experiments in this section are concerned with the use of my pipelining rules� These

are the rules described in Chapter �� I annotate the data obtained when none of these rules

are used by the tag NoPipeline� I annotate the data obtained when only input pipelining

rules �that is� those given in Sections ��� and ���� are used by InOnly� I annotate the

data obtained when only output pipelining �that is� those given in Sections ��� and ���� are

used by OutOnly� I annotate the data obtained when all rules in Section ��� are used by

AllPipeline�

The databases involved in this set of experiments are denoted DB�� They all have type

!���
!���
int� ��
int� ��
int�"� ��
int�"� All integers appearing in them are be


tween � and ����� All subcomponent lists in them contain between � and ��� small records�

The size in terms of number of records of these databases ranges from ���� large records

to ����� large records� The size in terms of number of bytes ranges from ���� megabytes

to ���� megabytes� While these sizes are less than the size of the main memory on my test

machine� they give a sense of how performance relates to database size�

This group of queries are all scans of a single table� They contain many opportunities for

all forms of pipelining and they contain many opportunities for input �ltering� and hence

the output is considerably smaller in size than the input�

Experiment A

The Query

primitive egA �� �DB� �� !z 	 ����z� �


 DB�"�

The query above is a very simple relational projection on the second column of DB��

Recall that the second column of DB� has type int while the �rst column has type

!���
int� ��
int� ��
int�"� So this query allows a great opportunity for input �ltering�

���



Performance Report

The measurements for this experiment are given in Figure ���� InOnly and AllPipeline

perform signi�cantly better than OutOnly and NoPipeline in all aspects� In terms of

response time� AllPipeline is instantaneous because this query involves no search� Ou�

tOnly� InOnly� and NoPipeline have response times proportional to the size of DB�

because they cannot produce any output until the whole projection operation is completed�

InOnly is faster than the other two because it does not load full input records into memory

and so requires less time to complete the projection operation� In terms of memory demand�

AllPipeline and InOnly are much better than the other two� This outcome is a direct

consequence of the fact that OutOnly and NoPipeline do no input pipelining and must

load the entire DB�� including its huge �rst column� into main memory�

Size of DB� in Megabytes

���� ���� ���� ���� ���� �����

Total AllPipeline ����� ������ ������ ����� ������ ������

Time in InOnly ����� ������ ������ ������ ������ �����

Seconds OutOnly ����� ����� ������ ������ ������ �������

NoPipeline ���� ������ ������ ������ ������ ������

Response AllPipeline ���� ���� ���� ���� ���� ����

Time in InOnly ����� ������ ����� ������ ������ ������

Seconds OutOnly ����� ������ ������ ������ ������ ������

NoPipeline ���� ����� ������ ������ ������ ������

Peak AllPipeline �� �� �� �� �� ��

Memory in InOnly �� �� �� �� �� ��

Megabytes OutOnly �� �� �� �� ��� ���

NoPipeline �� �� �� �� �� ���

Figure ���� The performance measurements for Experiment A�

Notice that the memory usage for the last column of OutOnly and NoPipeline slightly
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exceeded the ��� megabytes of main memory on my machine� �This excessive amount of

memory usage is not my programming fault  version ���� of the Standard ML of New

Jersey is just not economical when it comes to using memory�� As a result� the ine�ciency

of OutOnly and NoPipeline can be attributed partially to increased paging activities�

The impact of paging activities on the cost of OutOnly and NoPipeline is likely to be

much more signi�cant for a DB� that is considerably larger than �� megabytes� making

AllPipeline even more desirable�

Experiment B

The Query

primitive egB �� �DB� �� !XY 	 ��XY��z� �


 DB�� ��� � z� z � ���"�

This query contains a relational projection and a relational selection� Here� the �rst column

of DB� is projected� Since the �rst column of DB� has type !���
int���
int� ��
int�"�

the output is a list of lists� This query di�ers from the previous in two aspects� the output

is larger and some search is required�

Performance Report

The measurements for this experiment are given in Figure ���� In terms of total time�

AllPipeline and InOnly retain their performance advantage because they are able to

discard much of the input before constructing the output� AllPipeline is better than

InOnly here as it does not need to accumulate any output� In terms of response time�

AllPipeline beats the other three� OutOnly� NoPipeline� and InOnly are slow because

they need to process DB� completely before printing� In terms of peak memory usage�

AllPipeline peaks at about �� megabytes� As before� OutOnly and NoPipeline is

proportional to size of DB�� This time InOnly begins to need space to store its output�

which is much larger than in the previous query�

���



Size of DB� in Megabytes

���� ���� ���� ���� ���� �����

Total AllPipeline ����� ������ ����� ������ ������ ������

Time in InOnly ���� ������ ������ ����� ������ �����

Seconds OutOnly ������ ������ ������ ������ ������ �������

NoPipeline ������ ������ ������ ������ ������ �������

Response AllPipeline ���� ���� ���� ���� ���� ����

Time in InOnly ����� ������ ����� ������ ������ �����

Seconds OutOnly ����� ������ ������ ������ ����� ������

NoPipeline ����� ������ ������ ������ ������ ������

Peak AllPipeline �� �� �� �� �� ��

Memory in InOnly �� �� �� �� �� ��

Megabytes OutOnly �� �� �� �� ��� ���

NoPipeline �� �� �� �� ��� ���

Figure ���� The performance measurements for Experiment B�
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Experiment C

The Query

primitive egC �� �DB� ��

!�xy�z� 	 ��XY��z� �


 DB�� ��� � z� z � ����

�xy  ���
�x� ���� �


 XY� ��� � x� x � ���"�

This query contains a relational unnesting and two selections� One of the selections is on a

level
one attribute z� The other one is on a level
two attribute x� This query di�ers from

the previous one in two aspects� ��� the previous query returns the �rst column of DB�

without looking at it while this query returns a selected portion of it� and thus ��� this

query gives smaller output�

Performance Report

The performance data for this experiment is given in Figure ��� and is similar to that for

the previous experiment� AllPipeline is best in all aspects� InOnly a close second� while

OutOnly and NoPipeline remain close together at a distant joint
third position� The

e�ect of the selection on x in this query is visible in the memory usage numbers� Here

InOnly does not need as much space as in the previous query�

Experiment D

The Query

primitive egD �� �DB� ��

!!�x�y� 	 ���
�x���
�y����� �


 XY" 	 ��XY����� �


 DB�"�

This query contains a selection and a projection� It di�ers from the earlier queries in two

aspects� First� the projection is performed on each list in the �rst column of DB�� that
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Size of DB� in Megabytes

���� ���� ���� ���� ���� �����

Total AllPipeline ���� ����� ������ ������ ������ �����

Time in InOnly ����� ������ ������ ����� ������ ������

Seconds OutOnly ����� ������ ������ ����� ������ �������

NoPipeline ����� ������ ������ ����� ������ �������

Response AllPipeline ���� ���� ���� ���� ���� ����

Time in InOnly ����� ������ ������ ������ ������ ������

Seconds OutOnly ����� ������ ������ ������ ������ ������

NoPipeline ����� ������ ������ ������ ������ ������

Peak AllPipeline �� �� �� �� �� ��

Memory in InOnly �� �� �� �� �� ��

Megabytes OutOnly �� �� �� �� �� ���

NoPipeline �� �� �� �� ��� ���

Figure ���� The performance measurements for Experiment C�
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is� this operation is a nested projection� Second� the condition used in the selection is an

equality test instead of a range condition� As this selection condition is harder to meet�

more interesting response time behavior can be expected�

Performance Report

The measurements for this experiment are given in Figure ���� The relative performance

of the optimizations remains the same� AllPipeline and InOnly are signi�cantly better

than OutOnly and NoPipeline� The most interesting change is in the response time

of AllPipeline� Its 
uctuations re
ect the positions of the �rst record in the input that

meets the strict selection condition� The other three do not 
uctuate for the simple reason

that they do not produce any output until everything else is completed and hence do not

depend on when the �rst record meeting the condition is found� Nevertheless� it is clear

that AllPipeline cannot respond slower than them�

Sample output of optimization for experiment D

I display below the various versions of query egD produced by my system� The output is

taken straight o� the optimizer and is in Kleisli�s �my query system� internal format� While

it is not easy to read� I think it is very educational to see the general changes made by the

various optimization rules�

The output of NoPipeline

The numbers pre�xed with a v are variable names� StdIn is Kleisli�s standard scanning

procedure� Notice that the output command putObj is placed at the outermost position

while the input command scanObj is placed innermost� The positioning of these commands

corresponds to the three distinct phases of input� execute� and print in query evaluation�

�putObj� � �extList �v�����if ����� � v�� � ���� then �etaList�
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Size of DB� in Megabytes

���� ���� ���� ���� ���� �����

Total AllPipeline ����� ������ ������ ������ ������ ������

Time in InOnly ����� ������ ������ ������ ������ ������

Seconds OutOnly ����� ������ ������ ������ ������ �������

NoPipeline ������ ������ ������ ������ ������ �������

Response AllPipeline ����� ����� ������ ����� ���� �����

Time in InOnly ����� ������ ������ ������ ������ ������

Seconds OutOnly ����� ������ ����� ������ ������ ������

NoPipeline ����� ������ ������ ������ ������ ������

Peak AllPipeline �� �� �� �� �� ��

Memory in InOnly �� �� �� �� �� ��

Megabytes OutOnly �� �� �� �� ��� ���

NoPipeline �� �� �� �� ��� ���

Figure ���� The performance measurements for Experiment D�
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� �extList �v�����etaList� � ���
 ���� � v��� ��
 ���� � v���� �

���� � v�� else !"�� � �scanObj� � �StdIn� � ��KDB��

The output of InOnly

All operations such as extList� which work only on complex objects� have been replaced

by corresponding operations such as scanList which works on token streams� Notice that

the scanObj prevously placed next to StdIn has disappeared� as the query execution phase

and the input phase are now merged�

�putObj� � �scanList �v������if ��scan�� scanObj� � v��� � ����

then �scan�� �v������etaList� � �scanList �v������etaList� �

���
 �scan�� scanObj� � v���� ��
 �scan�� scanObj� � v����� �

v���� � v��� else !"�� � �StdIn� � ��KDB��

The output of OutOnly

All operations such as extList are replaced by corresponding token stream operations such

as putList� The putObj in the original query has disappeared� as the output phase and

the query execution phase are now merged�

�putList �v������if ����� � v��� � ���� then �putEtaList� �

�putList �v����� �putEtaList� � putrecord���
 �putObj� � ���� �

v���� ��
 �putObj� � ���� � v����� � ���� � v��� else putEmptyList��

� �scanObj� � �StdIn� � ��KDB��

The output of AllPipeline

The two previous optimizations are combined here� In addition� places where a scan op


eration is immediately followed by a put operation are replaced by a putscan operation�
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This eliminates the complex object that must be built for scan to communicate with put�

Notice that both the scanObj and the putObj in the original query have disappeared� as

all three phases of query process are now merged�

�putscanList �v�����if ��scan�� scanObj� � v�� � ���� then

�scan�� �v���� �putEtaList� � �putscanList �v�����putEtaList� �

putrecord���
 �scan�� �v�� ��v��� � v��� ��
 �scan�� �v����v��� �

v���� � v��� � v�� else putEmptyList�� � �StdIn� � ��KDB��

Notes

The performance characteristics for this group of queries are quite simple and can be sum


marized as follow�

In terms of total time� the performance is always linearly proportional to the size of the

input table� InOnly andAllPipelines stay close together and are about ��' more e�cient

than OutOnly and NoPipeline� This improvement is expected because InOnly and

AllPipelines pipeline and �lter their inputs� Thus they assemble only a small portion of

the input table into memory �and only a fragment of this small portion at a time�� giving

them an advantage over the other two� which fully assemble their inputs into memory before

doing anything�

In terms of response time� the performance of InOnly� OutOnly� andNoPipeline depend

linearly on the size of their inputs� butAllPipeline depends only on the position of the �rst

record that meets the search conditions of the scan� The �rst three are much more sluggish

than AllPipeline� This outcome is expected under a uniform distribution� Suppose every

record has an equal chance of meeting the search condition� Then the probability of the

�rst record meeting the search condition being near the end of the table table exponentially

decreases with respect to its position� Hence� the �rst record meeting the search condition

has a high probability of being near the front of the input� especially when the search

condition is generous� InOnly is also observed to be about ��' faster in response time
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than OutOnly and NoPipeline � This outcome is expected because it assembles its input

into memory ��' quicker than the other two�

In terms of peak memory usage� the performance of NoPipeline and OutOnly depend

linearly on the size of their inputs� InOnly and AllPipeline do not depend on the size of

their inputs� This outcome is because NoPipeline and OutOnly load whole input tables

into memory before doing anything but InOnly and AllPipeline load a fragment at a

time� The size of output has little e�ect in the experiments of this section because it is

rather small in comparison to the size of input�

The fact that total time improvement is linearly proportional to the size of input when

all pipelinings are done is consistent with the observations in Chapter �� However� recall

that in Chapter � an improvement of approximately ��' is predicted� So there is a ��'

improvement that is missing from my experimental numbers�

This discrepancy between theory and practice can be explained� The cost model used in

Chapter � is overly simple� That cost model assumes that all basic operations have unit

cost� This assumption is not correct� That cost model also assumes that the overhead

of process suspension and resumption required in the implementation of laziness can be

ignored� This assumption is also not correct� Furthermore� that cost model ignores the

e�ect of operating system costs such as page faults� This assumption is also not correct�

In the design of my prototype� I have chosen simplicity over e�ciency in several places�

So this ��' di�erence can be reduced by replacing certain modules with more e�cient

ones� The modules for token streams are a good place to start� Token streams are the

backbone in my system for laziness� Currently� they are implemented using an essentially

linear representation� This implementation does allow us to skip over portions of a token

stream quickly� but it does not allow us to update a token stream quickly� As a result� an

operation such as putUnionSet has linear cost instead of constant cost�
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�� Caching and indexing small relations

The experiments in this section deal with the special situation where some input databases

are small enough to �t completely into main memory� These are the rules described in

Section ���� In this set of experiments� I arti�cially set my rules up so that they consider

anything below � megabyte small�

The baseline for this set of experiments uses all the pipelining rules but no caching rules� I

annotate the baseline data with the tag NoCache� The data where only general caching

rules are used are tagged with CacheOnly� The data where both general and indexed

caching are used are tagged with IndexCache� For this set of experiments� I record only

total times and response times� Peak memory requirements are omitted because they never

exceed �� megabytes�

There are two set of databases used in this set of experiments� The �rst set contains

one database DB� of type ����
����
int� ��
int� ��
 int��� ��
 int�� It has ����

records and is ��� megabytes in size� All integers in DB� are from � to ����� The nested

sets in the �rst column contain � to ��� records� The second set of databases are denoted

DB� and they have type ����
int� ��
int��� Again the integers in DB� are from � to

����� The size in terms of number of records of DB� ranges from ��� to ���� records� in

terms of bytes� from ���� to ����� bytes�

Experiment E

The Query

primitive egE �� ��DB���DB�� ��

� �x�v� 	 ��XY��z� �
 DB��

�z��v� �
 DB�� ��� � v� v � ����

���
�x����� �
 XY� ��� � x� x � ��� ��

���



This query contains two selections� a join� and an unnesting� Note that DB�� the small

relation� is the inner relation of the join� I am not using any form of join optimization in

this group of experiments� so a naive nested
loop join algorithm is used� Thus DB� has to

be read for each record in DB�� the outer relation� So we have an opportunity to do caching

and indexing�

Performance Report

Figure ��� gives the total time performance ofNoCache� CacheOnly� and IndexCache as

DB� varies from ���� to ���� records� The improvement of CacheOnly and IndexCache

over NoCache is dramatic� The savings of CacheOnly comes from loading DB� only

once� it still has to iterate over the whole of DB� for each record in DB�� IndexCache also

builds an index on the �rst column of DB�� so it does not need to iterate over the whole of

DB� for each record in DB�� Thus IndexCache is the most e�cient of the three here�

Figure ��� also gives the response time performance for the same experiments� The response

time of IndexCache follows a trend that is di�erent from CacheOnly and NoCache

because of an implementation decision� CacheOnly keeps the cached version of DB� in

token stream form and builds the cache token
by
token as the query is processed� So its

response time mirrors that of NoCache� IndexCache �rst brings DB� completely into

main memory� builds the index� and only then begins the query� Hence it has a response

time delay proportional to the size of DB��

Experiment F

The Query

primitive egF �� ��DB���DB�� ��

� � �x� v� z� 	

���
�x� ��
�y� ���� �
 XY �

�y� �v� �
 DB� � ��� � x� x � ��� � 	
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Number of Records in DB�

���� ���� ���� ����

Total NoCache ������� ������� ������� �������

Time in CacheOnly ������ ������ ������ �������

Seconds IndexCache ����� ���� ����� ����

Response NoCache ����� ����� ���� �����

Time in CacheOnly ���� ���� ���� ����

Seconds IndexCache ���� ���� ���� ����

Figure ���� The performance measurements for Experiment E�

��XY� �z� �
 DB�� ��� � z� z � ��� ��

This query is a nested query containing two selections� a projection� and a join� It di�ers

from the previous query in that its join is a nested join� That is� each set in the �rst column

of DB� is joined with DB�� This query again o�ers good opportunity for caching�

Performance Report

Figure ��� gives the total time performance of NoCache� CacheOnly� and IndexCache

when DB� varies from ��� records to ���� records� The performance is that both In�

dexCache and CacheOnly are better than NoCache� This improvement comes entirely

from not loading DB� repeatedly� �The impact of page faults can be ignored as no more

than �� megabytes of main memory are used in this experiment�� The di�erence between

IndexCache and CacheOnly is very small here because the sets involved in the joins are

all small� �Recall that all sets in the �rst column of DB� have less than ��� elements��

Figure ��� also gives the response time measurements for the same experiments� All three

have the same response time trend� This is because the initial search is on the second

column of DB�� The joins cannot be performed until a record is found and hence DB� is

���



not touched until then� Hence response time does not depend on what is done to DB��

Number of Records in DB�

��� ��� ���� ���� ����

Total NoCache ������ ������ ������� ������� �������

Time in CacheOnly ������ ������ ������ ������ ������

Seconds IndexCache ������ ������ ������ ������ ������

Response NoCache ���� ���� ���� ���� ����

Time in CacheOnly ���� ���� ���� ���� ����

Seconds IndexCache ���� ���� ���� ���� ����

Figure ���� The performance measurements for Experiment F�

Experiment G

The Query

primitive egG �� �DB� ��

��x�w� 	 ��x��y� �
 DB�� �y��z� �
 DB�� �z��w� �
 DB���

This query is a typical chain query� It has two joins� Moreover� both joins have equality

tests as their join condition� The e�ect of indexing is expected to be very signi�cant�

Performance Report

Figure ��� gives the total time measurements of NoCache� CacheOnly� IndexCache

when DB� varies from ��� records to ���� records� As expected� IndexCache is many

orders of magnitude more e�cient than the other two� The improvement of CacheOnly

over NoCache comes only from not loading the input table repeatedly� However� the

improvement of IndexCache is greater because in addition to not loading the input table
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repeatedly� its index allows it to use only a linear number of equality tests rather than a

cubic number�

Figure ��� also gives the response time measurements of the same experiments� The response

time of CacheOnly and NoCache are better than that of IndexCache� This outcome

is because the latter must completely build the index on the �rst column of DB� before

everything else�

Number of Records in DB�

��� ��� ���� ���� ���� ����

Total NoCache ���� ������ ������� �������� 
 


Time in CacheOnly ���� ����� ������ ������� 
 


Seconds IndexCache ���� ���� ���� ����� ����� ������

Response NoCache ���� ���� ��� ���� 
 


Time in CacheOnly ���� ���� ���� ���� 
 


Seconds IndexCache ���� ���� ���� ���� ����� �����

Figure ���� The performance measurements for Experiment G�

Sample output of optimization for experiment G

The output of NoCache

Only the e�ects of pipelining are present in the NoCache output of the query egG�

�putscanSet �v������putscanSet �v������if ��scan�� scanObj�

� v��� � �scan�� scanObj� � v���� then �putscanSet �v������if

��scan�� scanObj� � v��� � �scan�� scanObj� � v���� then

�putEtaSet� � putrecord���
 �scan�� �v�����v���� � v����

��
 �scan�� �v�����v���� � v���� else putEmptySet�� � �StdIn� �

���



��KDB�� else putEmptySet�� � �StdIn� � ��KDB��� � �StdIn� � ��KDB��

The output of CacheOnly

Notice that all the StdIn � ��KDB�� in the original query are now replaced by Cache

� ��KDB��� Cache is the name of a new primitive that I have added to the system to

implement caching of small input� Two things should be pointed out� ��� It is the op


timizer that discovers that Cache can be pro�tably used in this query� ��� Even though

Cache � ��KDB�� appears three times in the transformed query� the �le �KDB� is read only

once� Cache keeps an internal record of �les that have already been read�

�putscanSet �v������putscanSet �v������if ��scan�� scanObj� �

v��� � �scan�� scanObj� � v���� then �putscanSet �v������if

��scan�� scanObj� � v��� � �scan�� scanObj� � v���� then �putEtaSet�

� putrecord���
 �scan�� �v�����v���� � v���� ��
 �scan�� �v�����v����

� v���� else putEmptySet�� � �Cache� � ��KDB�� else putEmptySet��

� �Cache� � ��KDB��� � �Cache� � ��KDB��

The output of IndexCache

Two occurrences of Cache in indexable positions have been replaced by Index� Index is the

new primitive I have introduced to cache and index small input� It has three parameters�

the name of the input �le is in �eld ��� the indexing function to be used is in �eld ��� an

integer for booking keeping purposes is in �eld ��� �This booking keeping �eld is really an

identi�er for the index to be used� Its value is computed automatically by IndexCache��

Index takes in these parameters and produces an indexing function� When this function is

applied to a key� all the matching entries are returned in a set�

�putscanSet �v������scan�� �v������putSet �v������putSet

�v������putEtaSet� � putrecord���
 �scan�� �v�����v���� � v����

���



��
 �putObj� � ���� � v����� � ��Index� � ���
 ��KDB��� ��
 ��

��
 ���� � ���� � v���� � ��Index� � ���
 ��KDB��� ��
 �� ��
 ����

� �scanObj� � v���� � v���� � �Cache� � ��KDB��


�� Joins

The CacheOnly and IndexCache optimizations have two weaknesses� The �rst is that

they cannot be applied to relations that are too large to �t into memory� The second is that

they always cache and index an entire relation even when only a portion of it is needed� The

blocked nested
loop join and the indexed blocked
nested
loop join� described respectively in

Section ��� and Section ��� are generalization of these two optimizations that do not have

the two de�ciencies stated above�

This set of experiments uses two sets of databases� DB� and DB�� DB� has type

����
 !���
 int� ��
 int� ��
int�"� ��
 int��� Its size in terms of number of

records ranges from ���� records to ����� records and in terms of bytes from ��� megabytes

to ��� megabytes� so a typical record is about ��� bytes in size� The lists in its �rst column

have lengths between � and �� records� DB� has type ����
 int� ��
 int��� Its size in

terms of number of records ranges from ���� records to ���� records and in terms of bytes

from �� kilobytes to �� kilobytes� so a typical record is about �� bytes in size� All integers

in these databases are between � and �����

I use the tag BlockOnly to denote data obtained using only the blocked nested
loop join

optimization rules described in Section ���� I use the tag IndexBlock to tag data obtained

using the indexed blocked
nested
loop join optimization rules described in Section ���� The

IndexCache optimization of the Section ��� is used as a baseline for comparison�

���



Experiment H

The Query

primitive egH �� ��DB���DB�� ��

� �x�v� 	 ��XY��z� �
 DB�� ��� � z� z � ����

�z��v� �
 DB�� ��� � v� v � ����

���
�x����� �


 XY� ��� � x� x � ��� ��

This query is a variation of experiment E� The purpose is to see how well these two op


timizations are doing relative to the IndexCache optimization of the previous section�

Recall that IndexCache builds indices on small relations� So in this query� IndexCache

indexes on DB�� On the other hand� IndexBlock builds indices on outer relations of joins�

So in this query� IndexBlock indexes on DB�� The performance report below has to be

interpreted with accordingly�

Performance Report �Blocking factor at ���� records� DB� at ���� records� DB� varying�

These measurements� in Figure ���� are obtained by �xing the blocking factor at ����

records� DB� at ���� records� and varying DB� from ���� records to ����� records�

The total time performance of all three optimizations is linearly proportional to size of

DB� because all three have chosen DB� to be the outer relation for the join� BlockOnly

and IndexBlock is less e�cient than IndexCache for this range of input data because

IndexCache reads DB� once only� while the other two has to read it as many times as

there are blocks in DB�� BlockOnly is worse than IndexBlock because the latter exploits

the equality test in the join condition to use indexed access�

The response time performance of all three optimizations is stable because the main search

condition is on DB�� the outer relation� BlockOnly and IndexBlock respond quickly

when DB� has only ���� records� The reason is that many of these records do not satisfy
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Number of Records in DB�

���� ���� ���� �����

Total IndexCache ����� ����� ������ ������

Time in BlockOnly ����� ������ ������ ������

Seconds IndexBlock ���� ������ ������ ������

Response IndexCache ���� ���� ��� ����

Time in BlockOnly ���� ����� ����� ����

Seconds IndexBlock ����� ����� ����� �����

Peak IndexCache �� �� �� ��

Memory in BlockOnly �� �� �� ��

Megabytes IndexBlock �� �� �� ��

Figure ���� The performance measurements for Experiment H with DB� varying�

the predicate ��� � z � ��� on the DB� and hence the block bu�er for BlockOnly and

IndexBlock are only partially �lled when DB� is fully read� As a consequence� the bu�er

is released for the block join earlier� IndexCache turns in a lower response time when

DB� is at ���� records for a reason revealed in the memory usage data�

The memory usage of IndexCache is high when DB� is at ���� records� This is because

DB� at this size is below � megabyte� the threshold for a relation to be considered small by

IndexCache� So IndexCache goes ahead and caches DB�� as well as DB�� Fortunately�

the cache is kept in token stream form� so this only delays the response time of IndexCache

by several seconds� In contrast� the memory usage for BlockJoin and IndexBlock is lower

when DB� is small because there are not enough records to �ll the block�

Performance Report �Blocking factor at ���� records� DB� at ���� records� DB� varying�

The data in Figure ��� is obtained by �xing the blocking factor at ���� records� DB� at

���� records� and letting DB� to vary from ���� records to ���� records� The response
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time behavior of these optimizations is unremarkable� the table is omitted�

Number of Records in DB�

���� ���� ���� ����

Peak IndexCache �� �� �� ��

Memory in BlockOnly �� �� �� ��

Megabytes IndexBlock �� �� �� ��

Total IndexCache ������ ������ ������ ������

Time in BlockOnly ������ ������ ������ ������

Seconds IndexBlock ������ ������ ������ ������

Figure ���� The performance measurements for Experiment H with DB� varying�

The total time performance of these three optimizations with respect to size of DB� is

expected to show the following trends� BlockOnly is proportional to the product of the

blocking factor and the size of DB�� IndexBlock is proportional to the product of the log

of the blocking factor and the size of DB�� and IndexCache is proportional to the size of

DB�� The data is consistent with these expectations�

The peak memory usage pattern of all three optimizations is stable� IndexCache is the

least costly in this aspect because it stores only DB�� which is a small relation� The memory

requirement for BlockOnly and IndexBlock is dictated by the blocking factor� However�

BlockOnly has to keep bu�er blocks for both the outer relation �DB�� and the inner

relation �DB��� So it uses more memory than IndexBlock which keeps bu�er blocks for

the outer relation only�

Performance Report �DB� at ���� records� DB� at ���� records� Blocking factor varying�

The measurements in Figure ���� are obtained by �xing DB� at ���� records� DB� at ����

records� and varying the blocking factor from ��� records to ���� records�
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Blocking Factor �Number of Records�

��� ���� ���� ����

Peak Memory BlockOnly �� �� �� ��

in Megabytes IndexBlock �� �� �� ��

Total Time BlockOnly ������ ������ ������ �����

in Seconds IndexBlock ������ ������ ������ ������

Response Time BlockOnly ����� ����� ������ ������

in Seconds IndexBlock ����� ����� ������ ������

Figure ����� The performance measurements for Experiment H with blocking factor varying�

The response time and memory usage pattern are directly a�ected by the blocking factor in

the expected manner  the larger the blocking factor� the slower the response and the more

memory used� In addition� BlockOnly needs more memory than IndexBlock because it

caches both inner and outer blocks while the latter caches only the outer block�

The total time performance is more complex� Total time performance steadily improves as

blocking factor increases until it reaches ���� records and then begins to deteriorate� A

larger blocking factor leads to less blocks and larger blocks� Less blocks means DB� is read

a smaller number of times� this saves time for both BlockOnly and IndexBlock� On the

other hand� larger blocks are more costly to assemble� If DB� is small� than loading it a

few more times may not be that costly� I conjecture that the optimum blocking factor for

this experiment must be about ���� records� In any case� IndexBlock is observed to be

better than BlockOnly�
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Sample output of optimization for experiment H

The output of IndexCache

The baseline for experiment H is IndexCache� As can be seen� all pipelinings have been

done and DB� has also been identi�ed for runtime indexing�

�putscanSet �v������if ��scan�� scanObj� � v��� � ���� then �if

���� � �scan�� scanObj� � v���� then �scan�� �v������putSet �v�����

�if ����� � v��� � ���� then �if ���� � ���� � v���� then �scan��

putscanLS �v������if ��scan�� scanObj� � v��� � ���� then �if ����

� �scan�� scanObj� � v���� then putEtaSet � putrecord���
 �scan��

�v�����v���� � v���� ��
 �putObj� � ���� � v���� else putEmptySet�

else putEmptySet�� � v��� else putEmptySet� else putEmptySet�� �

��Index� � ���
 ��KDB��� ��
 �� ��
 ���� � �scanObj� � v���� � v���

else putEmptySet� else putEmptySet�� � �StdIn� � ��KDB��

The output of BlockOnly

The join present in egH is identi�ed by BlockOnly� which rewrites the query to use the

BlkJoin operator� BlkJoin is a new function I injected into the system to implement

blocked nested
loop joins� It has six input parameters� the generator of the outer relation

is in �eld ��� the selection predicate on the outer relation is in �eld ��� the generator for

the inner relation is in �eld ��� the selection predicate on the inner relation is in �eld ���

the join predicate is in �eld ��� and the transformation to be performed on the join is in

�eld ���

�BlkJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v������if ���� �

�scan�� scanObj� � v���� then ��scan�� scanObj� � v��� � ���� else

false�� ��
 �v������StdIn� � ��KDB��� ��
 �v������if ���� � �scan��

scanObj� � v���� then ��scan�� scanObj� � v��� � ���� else false��

���



��
 �v������v���������� � v��� � ���� � v����� ��
 �v������v�����

�putLS �v������if ����� � v��� � ���� then �if ���� � ���� � v����

then �putEtaSet� � putrecord���
 �putObj� � ���� � v���� ��
 �putObj�

� ���� � v���� else putEmptySet� else putEmptySet�� � ���� � v����

The output of IndexBlock

The join condition produced by BlockOnly is �v������v���������� � v��� � ����

� v����� which is an equality test saying that the second column of the outer relation

has to equal the �rst column of the inner relation� Thus an index can be created on the

second column on the outer relation and the �rst column of the inner relation can be used as

the probe for the indexed blocked
nested
loop join� IndexBlock makes this discovery and

replaces BlkJoin with IdxJoin� IdxJoin is the function I have inserted into the system to

implement the indexed blocked
nested
loop join� It has eight input parameters� the genera


tor for the outer relation is in �eld ��� the selection predicate on the outer relation is in �eld

��� the function for extracting the key to be used for indexing the outer relation is in �eld

��� the generator for the inner relation is in �eld ��� the selection predicate on the inner

relation is in �eld ��� the function for extracting the probe value from the inner relation is

in �eld ��� the join predicate is in �eld ��� and the transformation to be performed on the

join is in �eld ���

�IdxJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v������if ���� �

�scan�� scanObj� � v���� then ��scan�� scanObj� � v��� � ���� else

false�� ��
 ��� ��
 �v����� StdIn � ��KDB��� ��
 �v������if ���� �

�scan�� scanObj� � v���� then ��scan�� scanObj� � v��� � ���� else

false�� ��
 ��� ��
 �v������v�����true� ��
 �v��� �� �v������putLS

�v������if ����� � v��� � ���� then �if ���� � ���� � v���� then

�putEtaSet� � putrecord���
 �putObj� � ���� � v���� ��
 �putObj� �

���� � v���� else putEmptySet� else putEmptySet�� � ���� � v����

���



Notes

I have only implemented these two join operators for sets� Bags should also bene�t from

similar operators and optimizations� However� they cannot be applied to lists because

ordering of elements in a list must be respected�


�� Caching inner relations

The plan for the basic Kleisli system has an important restriction� it is not allowed to

use any disk space during query evaluation� All the optimizations I have described so far

respect this restriction� This restriction has an undesirable consequence for joins� Recall

that the inner relation in a join has to be read as many times as there are blocks in the

outer relation� These repetitious reads are not a problem if the inner relation is a base

relation existing on disk� However� if the inner relation is actually a subquery� then this

subquery must be recomputed as many times as there are blocks in the outer relation� The

recomputation of the subquery can be expensive�

In order to avoid recomputation of the subquery� its result must be stored� As the result

can be potentially large� to be safe� it has to be written to a disk� Section ��� relaxes the

no
disk restriction and introduces a new set of optimization rules to take advantage of the

disk by caching large intermediate results to it� This section contains an experiment to

illustrate the e�ects of these new rules on the total time and the response time performance

of the system� Data obtained when caching is turned on is annotated by the su�x Cache�

The blocking factor used in this experiment is ���� records�

Three set of databases are used� The �rst set� DB�� contains only one database of type

����
 !���
int� ��
 int� ��
int�"� ��
 int��� This database has ���� records and

occupies ��� megabytes� so a typical record is about ��� bytes in size� The lists in it are all

between � and �� records� All integers in it are between � and ����� The second set� DB��

has only one database of type ����
 int� ��
 int��� This database has ���� records and

���



occupies �� kilobytes� Its integers are all between � and ����� The third set� DB�� has four

databases of type ����
 int� ��
 int��� They contain ���� records� ����� records� �����

records� and ����� records respectively� In terms of bytes� they range from ��� kilobytes to

��� kilobytes� All integers in these databases are in the range (���� to �����

Experiment I

The Query

primitive egI �� ��DB�� �DB�� �DB�� ��

� �z� u� �v 	 �v  ���
 �w� ���� �


 XY� z � w� w � u�� 	

�� ��z� �
 DB�� z � ���� �z��u� �
 DB��

��XY�u� �
 DB�� ��� � u� u � �����

This query involves a join of three relations plus a nested selection and returns a nested

relation� Since this is a three
way join� one of the binary join has to be the inner loop and

is a potentially expensive subquery to be repeated many times�

Performance Report

Figure ���� gives the total time measurements when the number of records in DB� grows

from ���� to ������ The cached versions of the blocked nested
loop join and the indexed

blocked
nested
loop join are signi�cantly better than the corresponding uncached versions�

The numbers also indicate that indexing leads to much faster queries�

Figure ���� also gives the response time measurements for the same experiment� It is found

that IndexBlockCache has a slower response time than IndexBlock� On the other hand�

BlockOnlyCache has a signi�cantly faster response time than BlockOnly� In egI� as

can be seen in the optimizer outputs given later� the subquery is the join between DB�

and DB�� This subquery is the inner relation used in both BlockOnly and IndexBlock�
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The blocked nested
loop join algorithm loads both its inner and outer relations block
by


block� using a blocking factor of ���� records in this experiment� Hence the �rst ����

records �in the output of this subquery� that satisfy the inner predicate ��� � u � ���

must be produced before we can proceed further� if the blocked nested
loop join algorithm

is used� On the other hand� the indexed blocked
nested
loop join algorithm does not load

its inner relation block
by
block� Hence we can proceed further without fully generating

the �rst ���� records in the output of this subquery� if the indexed blocked
nested
loop join

algorithm is used� This di�erence is the main reason for IndexBlockCache to respond

slower than IndexCache and for BlockOnlyCache to respond faster than BlockOnly�

Number of Records in DB�

���� ����� ����� �����

Total IndexBlockCache ������ ������ ������ ������

Time in IndexBlock ������ ������ ����� ������

Seconds BlockOnlyCache ������� ������� ������� �������

BlockOnly ������� ������ �������� ��������

Response IndexBlockCache ������ ������ ������ ������

Time in IndexBlock ������ ������ ������ ������

Seconds BlockOnlyCache ������� ������� ������� �������

BlockOnly ������� ������ ������� �������

Figure ����� The performance measurements for Experiment I�

Sample output of optimization for experiment I

The output of BlockOnly

This is the output of BlockOnly for query egI� As can be seen� two applications of BlkJoin

is used to implement the three
way join�

���



�BlkJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v�����true� ��


�v������BlkJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v��� ��

��scan�� scanObj� � v��� � ����� ��
 �v��� �� �StdIn� � ��KDB���

��
 �v�����true� ��
 �v������v���������� � v��� � ���� � v�����

��
 �v������v������putEtaSet� � putrecord���
 �putObj� � v����

��
 putObj � v������ ��
 �v������if ���� � �scan�� scan�� scanObj�

� v���� then ��scan�� scan�� scanObj� � v��� � ���� else false��

��
 �v������v���������� � v��� � ���� � ���� � v����� ��
 �v�����

�v����� putEtaSet � putrecord���
 �putObj� � ���� � ���� � v����

��
 �putObj� � ���� � ���� � v���� ��
 �putLS �v������if ����� �

���� � v��� � ���� � v���� then �if ����� � v��� � ���� � ���� �

v���� then �putEtaSet� � �putObj� � v��� else putEmptySet� else

putEmptySet�� � ���� � v�����

The output of BlockOnlyCache

There are two occurrence of the BigCache operator in the output of BlockOnlyCache�

This operator takes in two parameters� a generator for the data to be cached is in �eld

�� and an integer for housekeeping purposes is in �eld ��� �This housekeeping integer is

generated automatically by BlockOnlyCache�� These two occurrences of BigCache cache

the inner subqueries of the two respective BlkJoin produced by BlockOnly�

BlkJoin � ���
 �v������StdIn� � ��KDB��� ��
 �v�����true� ��


�v��� ��BigCache � ���
 �� ��
 �v������BlkJoin� � ���
 �v��� ��

StdIn � ��KDB��� ��
 �v����� ��scan�� scanObj� � v��� � ����� ��


�v��� �� BigCache � ���
 �� ��
 �v����� PreJoin � ���
 �v��� ��

StdIn � ��KDB��� ��
 �v��������� � �scan�� scanObj� � v����� ��


putEtaSet��� ��
 �v�����true� ��
 �v������v������if ����� � v���

� ���� � v���� then ����� � v��� � ���� else false�� ��
 �v�����

�v����� putEtaSet � putrecord���
 putObj � v���� ��
 putObj � v���

���



���� ��
 �v�����true� ��
 �v������v���������� � v��� � ���� � ����

� v����� ��
 �v������v��� �� putEtaSet � putrecord���
 putObj �

���� � ���� � v���� ��
 �putObj� � ���� � ���� � v���� ��
 �putLS

�v������if ����� � ���� � v��� � ���� � v���� then �if ����� � v���

� ���� � ���� � v���� then �putEtaSet� � �putObj� � v��� else

putEmptySet� else putEmptySet�� � ���� � v�����

The output of IndexBlock

Since the join conditions of both the joins identi�ed by BlkJoin involve equality test�

IndexBlock turns them into IdxJoin�

�IdxJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v�����true� ��
 ���

��
 �v����� �IdxJoin� � ���
 �v������StdIn� � ��KDB��� ��
 �v��� ��

��scan�� scanObj� � v��� � ����� ��
 ��� ��
 �v�����StdIn � ��KDB���

��
 �v��� ��true� ��
 ��� ��
 �v����� �v�����true� ��
 �v����� �v���

�� �putEtaSet� � putrecord���
 putObj � v���� ��
 �putObj� � v������

��
 �v������if ���� � �scan�� scan�� scanObj� � v���� then ��scan��

scan�� scanObj� � v��� � ���� else false�� ��
 �v��������� � ���� �

v���� ��
 �v��� �� �v��� ��true� ��
 �v��� �� �v��� �� putEtaSet �

putrecord���
 putObj � ���� � ���� � v���� ��
 putObj � ���� � ����

� v���� ��
 �putLS �v������if ����� � ���� � v��� � ���� � v����

then �if ����� � v��� � ���� � ���� � v���� then putEtaSet � putObj

� v��� else putEmptySet� else putEmptySet�� � ���� � v�����

The output of IndexBlockCache

The two inner subqueries of the two IdxJoin are then cached by IndexBlockCache which

inserted two BigCache operations into the query�

���



�IdxJoin� � ���
 �v�����StdIn� � ��KDB��� ��
 �v����true� ��
 ���

��
 �v���� BigCache � ���
 �� ��
 �v���� IdxJoin � ���
 �v�� ��

StdIn � ��KDB��� ��
 �v������scan�� scanObj� � v�� � ����� ��
 ���

��
 �v����� BigCache � ���
 �� ��
 �v��� �� PreJoin � ���
 �v�����

�StdIn� � ��KDB��� ��
 �v������if ���� � �scan�� scanObj� � v����

then ��scan�� scanObj� � v��� � ���� else false�� ��
 putEtaSet���

��
 �v�����true� ��
 ��� ��
 �v���� �v����true� ��
 �v���� �v����

�putEtaSet� � putrecord���
 �putObj� � v��� ��
 �putObj� � v������

��
 �v���� true� ��
 �v�������� � ���� � v��� ��
 �v�����v����true�

��
 �v���� �v���� putEtaSet � putrecord���
 putObj � ���� � ���� �

v��� ��
 �putObj� � ���� � ���� � v��� ��
 �putLS �v�����if ����� �

���� � v�� � ���� � v��� then �if ����� � v�� � ���� � ���� � v���

then putEtaSet � putObj � v�� else putEmptySet� else putEmptySet��

� ���� � v����


�� Pushing operations to relational servers

Kleisli is an open system that allows new primitives� new optimization rules� new cost

functions� new scanners� and new writers to be dynamically added� This allows me to

connect it to many external databases� Many of these databases are Sybase relational

databases� Suppose a query involves some of these databases� It is generally more e�cient

to move as many operations to these databases as possible than to try to bring the data

in and to process them locally within Kleisli� I have implemented the optimization rules

of Section ��� to migrate projections� selections� and joins on external Sybase data to their

source database systems�

In the experiment below� the su�x Sel indicates use of selection pushing� the su�x Sel�

Proj indicates use of both selection pushing and projection pushing� and the su�x Sel�

ProjJoin indicates use of all three relational optimizations� Sel is turned on throughout

the experiment� Three large tables on a real Sybase database are used in this experiment�

���



Their sizes are ������ ������ and ����� records for object�genbank�eref� locus� and

locus�cyto�location respectively� The blocking factor used throughout the experiment

is ����� records�

Experiment K

The Query

primitive obj�gdb�eref �� GDB �

�select $ from object�genbank�eref where � � ���

primitive locus �� GDB � �select $ from locus where � � ���

primitive locus�cyto�loc �� GDB �

�select $ from locus�cyto�location where �����

primitive egK ��

���genbank�ref
 a� �locus�symbol
 b� �loc�cyto�chrom�num
 �����

�loc�cyto�band�start
 d� �loc�cyto�band�end
 e�

�loc�cyto�band�start�sort
 f� �loc�cyto�band�end�sort
 g� 	

��genbank�ref
�a� �object�id
�h�

�object�class�key
�� ���� �
 obj�gdb�eref�

��locus�id
h� �loc�cyto�chrom�num
�����

�loc�cyto�band�start
�d� �loc�cyto�band�end
�e�

�loc�cyto�band�start�sort
�f�

�loc�cyto�band�end�sort
�g����� �
 locus�cyto�loc�

��locus�id
h� �locus�symbol
�b����� �
 locus ��

This query contains two joins plus a number of seletions and projections� It has three

subqueries obj�gdb�eref� locus� and locus�cyto�loc that bring in three remote relations

from GDB� a genome database curated by the Welch Medical Library of Johns Hopkins�

���



Notice that egK� the query we want to execute� itself is SQL
free� I left the SQL syntax in

the three subqueries for illustration purposes� they can be avoided as well�

Performance Report

The performance of IndexBlockCacheSelProjJoin is the best in every aspect� This

outcome is to be expected because it manages to push the entire query to the Sybase

server� The performance of IndexBlockCacheSel is the worse in every aspect� This poor

performance is because IndexBlockCacheSel does not push projections to Sybase and

hence has to deal with full records every time� in contrast to the other three which are

transmitted only the relevant �elds of records� See Figure �����

The amount of data in this experiment is su�ciently large to show the di�erence in the per


formance of IndexBlock and IndexBlockCache� From the table below� IndexBlock�

Cache takes about � seconds� estimated from the di�erence in response time when both

Sel and Proj are performed� to write the cache �le� However� the cache shaves more than

�� seconds o� the total time�

Total Response Peak

Time �s� Time �s� Memory �MB�

IndexBlockCacheSel ����� ������ ��

IndexBlockSelProj ����� ����� ��

IndexBlockCacheSelProj ������ ����� ��

IndexBlockCacheSelProjJoin ����� ����� ��

Figure ����� The performance measurements for Experiment K�
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Sample output of optimization for experiment K

The output of IndexBlockCache

For the purpose of comparison� here is the output when no relational optimization is used�

The two joins present in egK have been identi�ed� Notice that the three SQL subqueries

appear in their original form�

�IdxJoin� � ���
 �v������Sybase� � ��password
 �bogus�� �query


�select $ from locus where � � ��� �server
 �WELCHSQL�� �user


�cbil��� ��
 �v�����true� ��
 �locus�id� ��
 �v������BigCache�

� ���
 �� ��
�v����� IdxJoin � ���
�v����� Sybase � ��password


�bogus�� �query
 �select $ from object�genbank�eref where � � ���

�server
 �WELCHSQL�� �user
 �cbil��� ��
 �v������

�scan�object�class�key scanObj� � v��� � ��� ��
 �object�id� ��


�v����� BigCache � ���
 �� ��
 �v������PreJoin� � ���
 �v��� ��

Sybase � ��password
 �bogus�� �query
 �select $ from

locus�cyto�location where � � ��� �server
 �WELCHSQL�� �user


�cbil��� ��
 �v�������scan�loc�cyto�chrom�num scanObj� � v��� �

������ ��
 putEtaSet��� ��
 �v�����true� ��
 �locus�id� ��
 �v���

���v�����true� ��
�v������v����� putEtaSet � putrecord���
putObj

� v���� ��
 �putObj� � v������� ��
 �v�����true� ��
 �v�����

��object�id� � ���� � v���� ��
 �v������v�����true� ��
 �v�����

�v������putEtaSet� � putrecord��genbank�ref
 putObj � �genbank�ref

� �� � v���� �loc�cyto�band�end
 putObj � ��loc�cyto�band�end� �

���� � v���� �loc�cyto�band�end�sort
 �putObj� �

��loc�cyto�band�end�sort� � ���� � v���� �loc�cyto�band�start


�putO bj� � ��loc�cyto�band�start� � ���� � v����

�loc�cyto�band�start�sort
 �putObj� � ��loc�cyto�band�start�sort�

� ���� � v���� �loc�cyto�chrom�num
 �putObj� � ����� �locus�symbol


�putObj� � ��locus�symbol� � v�����
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The output of IndexBlockCacheSel

Sel is turned on� Two selections locus�cyto�chrom�num � ���� and object�class

�key � � are moved into the SQL subqueries as a result�

�IdxJoin� � ���
 �v������Sybase� � ��password
 �bogus�� �query


�select $ from locus where � � ��� �server
 �WELCHSQL�� �user


�cbil��� ��
 �v�����true� ��
 �locus�id� ��
 �v������BigCache� �

���
 �� ��
 �v������IdxJoin� � ���
 �v����� �Sybase� � ��password


�bogus�� �query
 �select $ from object�genbank�eref where � � �

and object�genbank�eref�object�class�key � ��� �server
�WELCHSQL��

�user
 �cbil��� ��
 �v�����true� ��
 �object�id� ��
�v����� Sybase

� ��password
 �bogus�� �query
 �select $ from locus�cyto�location

where � � � and locus�cyto�location�loc�cyto�chrom�num � ������

�server
�WELCHSQL�� �user
�cbil��� ��
�v����� true� ��
 �locus�id�

��
 �v������v�����true� ��
 �v����� �v������putEtaSet� � putrecord

���
 �putObj� � v���� ��
 �putObj� � v������� ��
 �v�����true� ��


�v����� ��object�id� � ���� � v���� ��
�v������v�����true� ��


�v������v������putEtaSet� � putrecord��genbank�ref
 �putObj� �

�genbank�ref � ���� � v���� �loc�cyto�band�end
 �putObj� �

��loc�cyto�band�end� � ���� � v���� �loc�cyto�band�end�sort
 putObj

� ��loc�cyto�band�end�sort� � ���� � v���� �loc�cyto�band�start


�putObj� � ��loc�cyto�band�start� � ���� � v����

�loc�cyto�band�start�sort
 �putObj� � ��loc�cyto�band�start�sort�

� ���� � v���� �loc�cyto�chrom�num
 �putObj� � ����� �locus�symbol


�putObj� � ��locus�symbol� � v�����
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The output of IndexBlockCacheSelProj

Both Sel and Proj are turned on� The e�ect is that all projections are moved successfully

to Sybase� This can be seen from the disappearance of the SQL wildcard $ from the SQL

subqueries�

�IdxJoin� � ���
 �v�����Sybase� � ��password
 �bogus�� �query


�select locus�locus�id� locus�locus�symbol from locus where � � ���

�server
�WELCHSQL�� �user
 �cbil��� ��
 �v����true� ��
 �locus�id�

��
 �v������BigCache� � ���
 �� ��
 �v������IdxJoin� � ���
 �v����

�Sybase� � ��password
 �bogus�� �query
 �select

object�genbank�eref�genbank�ref� object�genbank�eref�object�id

from object�genbank�eref where � � � and

object�genbank�eref�object�class�key � ��� �server
 �WELCHSQL��

�user
 �cbil��� ��
 �v����true� ��
 �object�id� ��
 �v���� Sybase

� ��password
 �bogus�� �query
 �select

locus�cyto�location�loc�cyto�band�end�

locus�cyto�location�loc�cyto�band�end�sort�

locus�cyto�location�loc�cyto�band�start�

locus�cyto�location�loc�cyto�band�start�sort�

locus�cyto�location�loc�cyto�chrom�num�

locus�cyto�location�locus�id from locus�cyto�location where � � �

and locus�cyto�location�loc�cyto�chrom�num � ������ �server


�WELCHSQL�� �user
 �cbil��� ��
 �v�����true� ��
 �locus�id� ��


�v�����v����true� ��
 �v�����v�����putEtaSet� � putrecord���


�putObj� � v��� ��
 �putObj� � v������ ��
 �v�����true� ��
 �v�����

��object�id� � ���� � v���� ��
 �v������v�����true� ��
 �v�����

�v����� putEtaSet � putrecord��genbank�ref
 putObj � ��genbank�ref�

� ���� � v���� �loc�cyto�band�end
 �putObj� � ��loc�cyto�band�end�

� ���� � v���� �loc�cyto�band�end�sort
 �putObj� �
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��loc�cyto�band�end�sort� � ���� � v���� �loc�cyto�band�start


�putObj� � ��loc�cyto�band�start� � ���� � v����

�loc�cyto�band�start�sort
 �putObj� � ��loc�cyto�band�start�sort� �

���� � v���� �loc�cyto�chrom�num
 �putObj� � ����� �locus�symbol


�putObj� � ��locus�symbol� � v�����

The output of IndexBlockCacheSelProjJoin

Sel� Proj� and Join are all turned on� The di�erence between this output and the previous

ones is very signi�cant� In particular� the two occurrences of IdxJoin have been pushed to

Sybase�

�PreJoin� � ���
 �v�����Sybase� � ��password
 �bogus�� �query


�select locus�locus�symbol� locus�cyto�location�loc�cyto�band�end�

locus�cyto�location�loc�cyto�band�end�sort�

locus�cyto�location�loc�cyto�band�start�

locus�cyto�location�loc�cyto�band�start�sort�

object�genbank�eref�genbank�ref from locus� locus�cyto�location�

object�genbank�eref where � � � and � � � and

locus�cyto�location�loc�cyto�chrom�num � ���� and � � � and

object�genbank�eref�object�class�key � � and

object�genbank�eref�object�id � locus�cyto�location�locus�id

and locus�locus�id � object�genbank�eref�object�id�� �server


�WELCHSQL�� �user
 �cbil��� ��
 �v����true� ��
 �v�����putEtaSet�

� putrecord��genbank�ref
 �scan�genbank�ref �v����v��� � v���

�loc�cyto�band�end
 �scan�loc�cyto�band�end �v����v��� � v���

�loc�cyto�band�end�sort
 �scan�loc�cyto�band�end�sort �v����v���

� v��� �loc�cyto�band�start
 �scan�loc�cyto�band�start �v����v���

� v��� �loc�cyto�band�start�sort
 �scan�loc�cyto�band�start�sort

�v����v��� � v��� �loc�cyto�chrom�num
 �putObj� � �����
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�locus�symbol
 �scan�locus�symbol �v����v��� � v����

Notes

I have only implemented these rules to deal with SQL expressions of the special form select

COLUMNS from TABLES where CONDITIONS� as described in Section ���� It should not

be overly di�cult to deal with SQL expressions that are of a more complicated form� A

more challenging improvement is to attempt to shift the computation of certain aggregate

functions� such as taking the average of a column� to the Sybase server as well�


�� Pushing operations to ASN�� servers

The National Center for Biotechnology Information distributes their genetic database on a

CD
ROM� This database is over ��� gigabytes in size and the schema for the MEDLINE

portion of the database alone requires over �� kilobytes to describe� This database is

accessed from my system via a special C program asncpl� The C program is used as follows�

asncpl �d DATABASE �s SELECTION �p PATH� The SELECTION is some boolean combination

of keywords� Asncpl looks up all citations containing keywords satisfying the SELECTION�

The PATH speci�es the part of a citation to be returned� See Section ��� for more detail�

My system contains � optimization rules� two of which are described in Section ���� that

push �eld projections and case analysis from our system down to asncpl by moving them into

the PATH parameter� This section contains an experiment to demonstrate the e�ectiveness

of these rules� I tag the results obtained using CD
ROM optimization rules byWithFilter

and the results obtained without them by NoFilter�
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Experiment J

The Query

Citations in this database comes from di�erent sources� So they carry di�erent but equiv


alent identi�ers� This query takes in a keyword� �nds citations containing that keyword�

and returns the giim and embl identi�ers of these citations� �Here ASN is the primitive

corresponding to asncpl��

primitive egJ �� �keyword �� ��id� acc�

	 ��seq
 ��id
�seq� ����� �
 ASN � keyword

� ��giim 
 ��id
�id� ����� �
 seq

� ��embl 
 ��accession
�acc� ����� �
 seq� �

Performance Report

The query is tested by supplying it with several randomly chosen keywords� They match

from � citation to ��� citations� Citations can di�er quite wildly in size and structure� This

non
uniformity in the data is the main reason that the measurements are not very smooth�

But it is clear that the performance of the system with these CD
ROM optimizations is

signi�cantly better than without the rules� total time is within seconds as opposed to

minutes� response time is more stable� See Figure �����

Sample output of optimization for experiment J

The output for experiment J� when the query egJ is applied to the keyword hemoglobin�

is given below�
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Number of Citations Matched by Keywords

small� nose ear hemo� eye mouth plasma globin

scale globin

��� ��� ���� ���� ����� ����� ����� �����

Total Time in Seconds

NoFilter ���� ���� ���� ����� ����� ����� ����� ������

WithFilter ���� ���� ���� ���� ���� ���� ���� ����

Response Time in Seconds

NoFilter ��� ���� ���� ���� ���� ��� ���� ����

WithFilter ���� ��� ���� ���� ���� ���� ���� ���

Figure ����� The performance measurements for Experiment J�

The output of NoFilter

The function ASN in the original query is de�ned in terms of a lower level primitive Entrez

which directly interfaces with the C program asncpl� Entrez has three parameters� The

name for the NCBI database to be accessed is in �eld �db� the nucleic acid database �na� is

used� The selection condition is in �eld �select� set to hemeglobin here� The �lter path

is in �eld �path� it is set to the root Seq
entry by default�

�putscanSet scanCase �seq
 �v������scan�id putscanSet scanCase

�giim
 �v��� �� �scan�id putscanSet scanCase �embl
 �v��� ��

�putEtaSet� � putrecord���
�scan�id �v�����v���� � v���� ��


�scan�accession �v�����v���� � v���� otherwise putEmptySet� �

v��� otherwise putEmptySet� � v��� otherwise putEmptySet� �

Entrez � ��db
 �na�� �path
 �Seq
entry�� �select
 �hemoglobin��

���



The output of WithFilter

The optimized query produced byWithFilter contains the signi�cant di�erence� the path

parameter of Entrez is set to Seq
entry�seq�id� Thus it succeeds in pushing the selection

on the variant tag seq and the projection on the �eld id in egJ to asncpl�

�putscanSet �v������putscanSet scanCase �giim
 �v������putscanSet

scanCase �embl
 �v������putEtaSet� � putrecord���
 �scan�id �v���

��v���� � v���� ��
 �scan�accession �v�����v���� � v���� otherwise

putEmptySet� � v��� otherwise putEmptySet� � v���� � �Entrez� �

��db
 �na�� �path
 �Seq
entry�seq�id�� �select
 �hemoglobin��


�� Remarks

The ideas described in Chapters � and � are well
known principles for optimizing queries

��� ��� ��� ���� ���� ���� They have well
understood characteristics� My experimental results

in this chapter are consistent with the characteristics of these optimization ideas� Therefore�

this chapter has provided some evidence that I have implemented the optimization rules

described in Chapters � and � correctly�

I would like to point out that the optimizations tested in this chapter were implemented

by me in less than three weeks� The rapid realization of these rules was made possible by

the rule
based optimizer of Kleisli� More details of Kleisli can be found in Chapter �� In

particular� the actual programs that implement some of the optimization rules used in these

experiments can be found in Section ����
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Chapter 


An Open Query System in ML

called Kleisli

Several researchers at the University of Pennsylvania Human Genome Center for Chromo


some �� are regularly required to write programs to query biological data� The task of

writing these programs is taxing for two reasons� First� the information needed often re


sides in several data sources of very di�erent nature� some are relational databases� some are

structured text �les� and others include output from special application programs� There is

currently no high
level tool for combining data across such a diverse spectrum of sources�

This lack of high
level tool makes it di�cult to write programs that implement the queries

because the programmer is forced to use many di�erent application programming interfaces

and programming languages such as SQL embedded in C� Second� the programmer must

often resort to storing intermediate results for subsequent processing because the available

tools are not 
exible enough to retrieve the data into a desired form� which may not be

relational�

Recall the query from Section ���� Find annotation information on the known DNA se


quences on human chromosome ��� as well as information on sequences that are similar to

them� Answering this query requires access to three di�erent data sources  GDB������
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SORTEZ����� and Entrez������ GDB is a Sybase relational database located at Johns Hop


kins and it contains marker information on chromosome ��� Entrez is a non
relational

data source which contains several biological databases as well sequence similarity links�

SORTEZ is our local relational database that we use to reconcile the di�erence between

GDB identi�ers and Entrez identi�ers� To produce the correct groupings for this query� the

answer has to be printed as a nested relation� Writing programs to execute queries such as

this one is possible in C and SQL� but it would require an extraordinary amount of e�ort�

and sharing common code between programs would be di�cult�

I have built an open query system Kleisli and have implemented the collection programming

language CPL� as a high
level query language for it� �The system is named after the

mathematician H� Kleisli who discovered a natural transformation between monads ������

As seen in Chapter �� this transformation plays a central role in the manipulation of sets�

bags� and lists in our system�� The openness of Kleisli allows the easy introduction of new

primitives� optimization rules� cost functions� data scanners� and data writers� Furthermore�

queries that need to freely combine external data from di�erent sources are readily expressed

in CPL� I claim that Kleisli� together with CPL� is a suitable tool for implementing the

kind of queries on biological data sources that frequently need to be written� This chapter

concentrates on connecting Kleisli and CPL to these systems�

Organization

Section ���� A description of the application programming interface of Kleisli is given� A

short description of the compiler interface of Kleisli is given� A short description of how to

use Kleisli and its data exchange format is given�

Section ���� An extended example is presented to illustrate programming with Kleisli�s

application programming interface� The example is the implementation of the indexed

blocked
nested
loop operator described in Section ����

Section ���� Examples are presented to illustrate the compiler interface of Kleisli� Specif
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ically� I show how a driver for Sybase servers� a driver for ASN�� servers� and a sequence

similarity package are introduced into Kleisli and CPL�

Section ���� Examples are presented to illustrate the rule
based optimizer that comes with

Kleisli�s compiler interface� Speci�cally� I show how to describe one of the indexed join rules

in Section ��� and one of the Sybase rules in Section ��� to Kleisli�

Section ��	� Two examples of genetic queries are presented to illustrate the use of Kleisli and

CPL as a query interface for heterogenous biological data sources� One of these examples is

actually a template for solving several real queries that were previously thought to be hard

�����

��� Overview of Kleisli

Kleisli is a prototype query system constructed on top of the functional programming lan


guage ML ������ It is divided into two parts� the application programming interface and

the compiler interface� The design and implementation of Kleisli emphasizes openness� new

primitives� optimization rules� cost functions� data scanners� and data writers can all be

dynamically introduced into the system� This openness� as shown in later sections� makes

it possible to quickly extend Kleisli into a query interface for heterogenous biological data

sources� This section presents an overview of the system�

Application programming interface

Kleisli supports sets� bags� lists� records� variants� token streams� and functions� These

data types can be freely mixed and thus giving rise to a data model that is considerably

richer and more 
exible than the relational model� Each of these data types is encapsulated

within the application programming interface by a collection of ML modules� The core

of the collection
type modules �that is� those for sets� lists� bags� and token streams� are

inspired principally by the work presented in earlier chapters�
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An ML programmer can directly manipulate Kleisli complex objects via function calls to

these modules� Each module consists of� a collection of canonical operators for that par


ticular data type encapsulated by that module� additional operators designed for e�ciency�

additional operators that are frequently used composites of other operators� and conversion

operators between ML and that Kleisli data type�

The modules for the Kleisli record type are worth a special mention� Kleisli supports

record polymorphism ����� ����� Its �eld
selection operator on records therefore has to be a

function that can be applied to any record regardless of what �elds it has� provided the �eld

selected is present� �Record polymorphism is particularly important for accessing external

data sources� It makes possible writing a program to select a �eld from an external table

without knowing in advance what other columns are present in that table�� In the past� such

an operator could not be implemented e�ciently because the structure of the record is not

known in advance� However� this Kleisli operator has e�cient constant time performance�

It is implemented using a technique developed recently by Remy ������

The modules for Kleisli token stream are important as they provide Kleisli the mechanisms

for laziness� data pipelining� and fast response� In an ordinary byte stream� such as ML�s

instream ����� a programmer must explicitly take care of bytes that have been read because

reading is destructive� In contrast� a token stream is like a pure list and the programmer

is free from such care� However� a token stream is also di�erent from a list� A list has

no internal structure� for example� after seeing an open bracket� it is not possible to skip

directly to the matching close bracket� A token stream has internal structure and such

direct jumps are supported�

An example is given in Section ��� to illustrate programming in ML with Kleisli�s application

programming interface�
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Compiler interface

For ad hoc queries� it is frequently more productive to use a high
level query language�

Kleisli has a compiler interface that supports rapid construction of high
level query lan


guages� The interface contains modules which provide support for compiler and interpreter

construction activities� This interface includes� ��� A general polymorphic type system that

supports parametric record polymorphism ����� ����� and a type uni�cation routine central

to general type inference algorithms� ��� An abstract syntax structure for expressing Kleisli

programs� Syntactic matching modulo renaming on abstract syntax objects and many other

forms of manipulations are supported� Type inference on abstract syntax objects is also

provided� ��� A rule
based optimizer and rewrite rule management� New optimization rules

and cost functions can be registered dynamically� ��� External function management� New

primitives can be programmed in ML and injected into the system dynamically� ��� Data

scanner and writer management� New routines for scanning and writing external databases

in various formats can be readily added to the system�

The importance of this interface is its 
exibility and extensibility� A query language built

on top of Kleisli can be readily customized for special application areas by injecting into

the system relevant operators of the application area� rules for exploiting them in query

optimization� appropriate cost estimation functions� and relevant scanners and writers�

Some of these extensible features are demonstrated in Section ��� and Section ����

Using Kleisli

The general strategy for using Kleisli to query external databases is as follow� Special

purpose programs� called data drivers� are used to manage low
level access to external

databases and to return results as a text stream in a standard exchange format� �Any

di�erent exchange format can be used by any data driver� as long as a corresponding

tokenizing program is provided�� The query speci�cation for these programs� usually the

arguments of the driver� is understood by Kleisli via a registration procedure� When a
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query is executed by one of these drivers� the output stream is parsed on
the

y and placed

into a structured token stream� the universal data structure used by Kleisli for remote data

access� At this point� the data has become an object that can be directly manipulated by

Kleisli�

The components of this process are shown in Figure ���� which also reveals the presence

of CPL� CPL is an example of a high
level query language rapidly constructed from the

compiler interface of Kleisli� See Chapter � for an informal speci�cation of CPL�

Data Drivers shell

C

perl

prolog

xyzlanguage

ML

Kleisli
Library CPL

ASNCPL

SQLCPL

QGBCPL

Net

Key

Open
Socket
Stream
(pipe)

I/O

External
Clients

CPL Client

External
Servers

GSDB
Sybase

CH22
Sybase

GDB
Sybase

ENTREZ
ASN.1

<- Queries 

   Data ->    

CPL Server

Flat File
GenBank

External
Applications

Optimizer

Figure ���� Using Kleisli to query external data sources�

The basic data exchange format of Kleisli can be described using the following grammar�

V ��� C Integers� etc�

j fV� � � � � V g Sets

j f	V� � � � � V 	g Bags

j !V� � � � � V " Lists

j �L � V� � � � � L � V � Records

j �L � V � Variants

where L are record labels or variant labels� Functions and token streams cannot be trans


mitted� Punctuations such as commas and colons are optional� Using this basic format� an
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external relational server can transmit a relation to Kleisli by laying it out according to the

grammar like so�

���locus�id �YESP� �genbank�ref �D�������

�

�

��locus�id �IGLV� �genbank�ref �D��������

Since relations from 
at relational databases have regular structure� this format wastes

bandwidth� So the standard exchange format of Kleisli makes special provision for it�

Speci�cally� such a relation can be transmitted by �rst sending a header consisting of a

sequence of labels pre�xed by a dollar sign� then followed by records in the relation� The

�elds of each record is laid out according to the sequencing of labels in the header� In each

record� instead of writing out their labels in full� a dollar sign is used� The f
bracket and

the g
bracket enclosing the relation should each be pre�xed by a dollar sign� The �
bracket

and the �
bracket enclosing each record in the relation should each be pre�xed by a dollar

sign� For example� the same relation above can be transmitted as�

%� %�locus�id %�genbank�ref

%� % �YESP� % �D������ %��

�

�

%� % �IGLV� % �D������ %� %�

��� Programming in Kleisli

This section is an extended example using Kleisli�s application programming interface to

implement in ML the indexed blocked
nested
loop join operator described in Section ����

I present it in a bottom
up manner� Many low
level details of the Standard ML of New

Jersey ���� and of the join algorithm appear in this example� Hence I explicitly point out
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in various places where routines from Kleisli�s application programming interface are used�

Hopefully� this makes it easier to see the help provided by this interface�

The lowest level is the index structure itself� The Kleisli module CompObjDict is used�

This module is a general module for managing adaptive trees ����� whose keys and nodes

are Kleisli complex objects� Since distinct objects in an index can have the same key� the

nodes are set to be Kleisli lists so that objects having the same keys are kept in the same

list� Since the insertion routine CompObjDict�insert does not know that lists are used in

this special situation� a wrapper routine has to be written as below� CompoObjDict�peek

checks if a key is already in the index� The Kleisli token stream scan routine Scan�ScanObj

is for converting a token stream object into a complex object� it behave more or less like

the scanObj construct used in Chapter �� The Kleisli list routine CompObjList�Insert is

for list insertion� The Kleisli list routine CompObjList�Eta is for singleton list formation�

�$ Dict is an adaptive tree managed by CompObjDict�

$ S is a token stream representing a complex object to be inserted�

$ I is the function for extracting the key of S�

$�

fun UpdateIndex�Dict� S� I� �

let val Item � Scan�ScanObj S

val Key � I Item

in �case CompObjDict�peek�Dict� Key�

of SOME CO

�� CompObjDict�insert�Dict�Key�CompObjList�Insert�Item�CO��

	 NONE

�� CompObjDict�insert�Dict� Key� CompObjList�Eta Item��

end

Recall from Section ��� that the indexed blocked
nested
loop join algorithm loads the outer

relation block
by
block and builds an index for each block on
the

y� Below is the ML

function that loads one block and creates an index for it� The Kleisli token stream rou
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tine TokenStream�GetToken is for inspecting what the �rst token is� The Kleisli boolean

complex object routine CompObjBool�IfThenElse is for doing conditional test� The Kleisli

token stream routine TokenStream�SkipObject is for skipping over an entire object on the

token stream� If the object has already been partially read� this routine has a cost pro


portional to the remaining portion of the object� So if the object has been fully read� this

routine jumps straight to its end�

�$ S is a token stream representing blocks to be loaded�

$ P is a predicate for deciding if a record is to be loaded�

$ I is the indexing function�

$ &Limit is the blocking factor to be used�

$ Dict is the index being created�

$ &SRef is a token stream representing blocks remaining�

$ N is the number of remaining slots in the index�

$�

fun LoadBlock��SRef� P� I� Dict� �� � SOME Dict

	 LoadBlock��ref NONE� P� I� Dict� N� � NONE

	 LoadBlock��SRef as ref�SOME S�� P� I� Dict� N� �

�case TokenStream�GetToken S

of TokenStream�CloseSet �� �SRef 
� NONE� SOME Dict�

	 � �� let val �Q� Dict� � CompObjBool�IfThenElse�

P S�

fn�� �� ��� UpdateIndex�Dict� S� I���

fn�� �� ��� Dict��

val � � SRef 
� SOME�TokenStream�SkipObject S�

in LoadBlock��SRef� P� I� Dict� N 
 Q� end�

fun LoadBlock�S� P� I� �

let val SRef � ref�SOME�TokenStream�SkipToken S��

in fn�� �� LoadBlock��SRef� P� I� �CompObjDict�mkDict���� &Limit�
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end

Now the routine to loop over the outer relation and joins it with the inner relation has

to be written� This routine is a ML function having three nested loops as follow� For

each iteration of the outer loop� it loads and indexes one block from the outer relation

using LoadBlock� Having built the index for this block� it proceeds to the middle loop�

which is an iteration over the inner relation using PutScanSet� For each iteration of the

middle loop� one record from the inner relation is loaded� If it satis�es the inner predicate

PredI� then its key is computed using Idx� This key is used to probe the current index

Dict� The inner loop is an iteration using PutList�Set over the list returned by the index

probe� For each iteration of the inner loop� the join predicate PredIO is applied to check

if current inner record and outer record qualify for the join� The transformation Loop is

applied if they qualify� Several routines from the application programming interface are

used� The Kleisli token stream copy routine PutScan�CopySentinelSet copies a set from

a token stream� omitting the enclosing set brackets� The Kleisli token stream print routine

Put�PutList�Set converts a Kleisli list to a set on a token stream� The Kleisli token stream

print routine PutScan�PutEmptySet produces a token stream representing the empty set�

�$ Outer is function for loading next block of the outer relation�

$ Inner is generator of the inner relation�

$ PredI is filter on inner relation�

$ IdxI is function for computing the probe value�

$ PredIO is join predicate�

$ Loop is transformer of records to be joined�

$ State is housekeeping data for token stream routines�

$ Cont is continuation data for token stream routines�

$ TS is token stream to pick up on completion of loop�

$�

fun LoopI�Outer�Inner�PredI�IdxI�PredIO�Loop�State�Cont� TS �� �

�case Outer��

of SOME Dict �� PutScan�CopySentinelSet
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�LoopI�Outer�Inner�PredI�IdxI�PredIO�Loop�State�Cont��

State

�PutScan�PutScanSet �fn X ��

CompObjBool�IfThenElse�

PredI X�

fn�� �� let val CX � Scan�ScanObj X

in case CompObjDict�peek�Dict� IdxI CX�

of SOME CO �� Put�PutList�Set�fn Y ��

if PredIO Y CX

then �Loop Y CX�

else PutScan�PutEmptySet� CO

	 NONE �� PutScan�PutEmptySet end�

fn�� �� PutScan�PutEmptySet��

�Inner����

��

	 NONE �� Cont TS ���

Lastly� a ML function to take care of data conversion between ML and Kleisli has to be

written� In this function� calls of the form SOMETHING�Km are for conversion from Kleisli

to ML and calls of the form SOMETHING�Mk are for conversion from ML to Kleisli�

fun IdxJoinCode�X� �

let

val !Outer�PredO�IdxO�Inner�PredI�IdxI�PredIO�Loop"

� CompObjRecord�KmTuple X

val Inner � fn�� �� CompObjTokenStream�Km�

CompObjFunction�Apply�Inner�CompObjUnit�Mk��

val Outer � CompObjTokenStream�Km�

CompObjFunction�Apply�Outer�CompObjUnit�Mk��

val PredO � �CompObjFunction�Km PredO� o CompObjTokenStream�Mk

val PredI � �CompObjFunction�Km PredI� o CompObjTokenStream�Mk
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val IdxO � CompObjFunction�Km IdxO

val IdxI � CompObjFunction�Km IdxI

val PredIO � fn X �� fn Y �� CompObjBool�Km�CompObjFunction�Km�

�CompObjFunction�Km PredIO� X� Y�

val Loop � fn X �� fn Y �� CompObjTokenStream�Km�

CompObjFunction�Km��CompObjFunction�Km Loop� X� Y�

val State � PutScan�MkState��

in

CompObjTokenStream�Mk�

PutScan�MkOpenSet

�LoopI�LoadBlock�Outer� PredO� IdxO��

Inner� PredI� IdxI� PredIO� Loop�

State� PutScan�MkCloseSet State��

State

TokenStream�NoMoreToken

���

end

At this point� IdxJoinCode can be used within Kleisli as an operator for indexed blocked


nested
loop join� In order to use it within CPL� the high
level query language of Kleisli� it

has to be registered� The registration is done using a simple function call to the compiler

interface of Kleisli as below� see also Section ���� After that� IdxJoin can be used anywhere

within CPL as a �rst
class citizen�

val IdxJoin � DataDict�RegisterCompObj�

�IdxJoin�� �$ Name of primitive $�

CompObjFunction�Mk IdxJoinCode� �$ Code of primitive $�

TypeInput�ReadFromString� �$ Type of primitive
 $�

����
unit
�!	�����	"�� � �$ Outer $�

� ��
!	���	"
�bool�� � �$ PredO $�

� ��
���
������ � �$ IdxO $�
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� ��
unit
�!	�����	"�� � �$ Inner $�

� ��
!	���	"
�bool�� � �$ PredI $�

� ��
���
������ � �$ IdxI $�

� ��
 ��� 
� ��� 
� bool�� � �$ join condition $�

� ��
���
����
�!	�����	"�� � �$ Loop $�

�
� !	�����	"���

��� Connecting Kleisli to external data sources

As mentioned earlier� the compiler interface of Kleisli emphasizes openness� As a result� new

scanners� writers� primitives� cost functions� and optimization rules are readily added to the

system� This section concerns the use of this interface in connecting Kleisli to external data

sources and in expanding Kleisli�s collection of primitives�

Access to external systems are introduced into Kleisli and CPL using a three
step procedure�

In the �rst step� a low
level access program or a data driver for the external system in

question is written� If the program is not written in ML� the host programming language

of Kleisli� it needs to be turned into a function in ML� In the second step� this function

is registered as a scanner with Kleisli� In the third and �nal step� the scanner is turned

into a Kleisli abstract syntax object and inserted into CPL as a full

edged primitive� This

three
step procedure is illustrated on some data drivers useful for querying biomedical data

sources�

Querying relational databases

I have been given a general program for accessing Sybase relational database systems� This

program�

sybcpl USER PASSWORD SERVER QUERY
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is written in C ������ It takes four parameters� QUERY is a SQL query in Sybase Transact


SQL syntax� SERVER is the Sybase system to which the QUERY should be forwarded�

USER and PASSWORD are respectively the user name and the password which have to be

provided to obtain the service of the SERVER� Sybcpl writes the reply from the SERVER

to its standard output after doing an on
the

y conversion to Kleisli�s standard exchange

format�

The �rst step in bringing this C program into Kleisli is to wrap it in a simple ML program

as follow�

fun GetValSybase X � let

val User � CompObjString�Km�CompObjRecord�ProjectRaw ��user� X�

val Pwd � CompObjString�Km�CompObjRecord�ProjectRaw ��password� X�

val Server � CompObjString�Km�CompObjRecord�ProjectRaw ��server� X�

val Query � CompObjString�Km�CompObjRecord�ProjectRaw ��query� X�

val �IS� TmpIn� � execute��'mnt'saul'home'khart'pub'entrez'sybcpl��

!User� Pwd� Server� Query"�

val � � close�out TmpIn

in ��sybcpl � � User � � � � Pwd � � � � Server � � � � Query� IS�

end

The ML function GetValSybase de�ned above takes in a Kleisli complex object X� which is

required to be a record having four �elds� �user� �password� �server� �query� The values

of X at these four �elds are retrieved into the variables User� Pwd� Server� and Query� re


spectively� using the Kleisli record projection operator CompObjRecord�ProjectRaw� These

values are converted into native ML strings using the Kleisli string dissembly operator

CompObjString�Km� Then these four strings are passed on to the C program sybcpl via the

ML pipe operator execute� The result IS is returned as a text stream in the standard

exchange format of Kleisli�
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Sybcpl has been brought into ML in the guise of GetValSybase� However� it is not yet

recognized by Kleisli as a new data scanner� The second step is to register it with Kleisli�

This is accomplished in ML as follow�

val SYBASE � FileManager�ScannerTab�Register�

GetValSybase�

Tokenizer�InStreamToTokenStream�

�SYBASE��

TypeInput�ReadFromString�

���user
string� �password
string�� �

� �server
string� �query
string �� ��

fn � �� TypeInput�ReadFromString ��������

The FileManager�ScannerTab�Register� SCANNER� TOKENIZER� ID� INPUT�TYPE�

OUTPUT�TYPE� function is for registering new scanners in Kleisli� SCANNER is expected

to be the new data scanner� GetValSybase is the data scanner in this case� TOKENIZER

is expected to be a ML function for parsing the text stream returned by SCANNER into

Kleisli�s token stream� As GetValSybase returns a text stream in Kleisli�s standard ex


change format� the standard tokenizer Tokenizer�InStreamToTokenStream is used� ID�

INPUT�TYPE� and OUTPUT�TYPE are respectively the name� the input type� and the out


put type of the new scanner to be used in CPL�s readfile command� See Section ��� for

a description of the readfile command�

At this point sybcpl is recognized by Kleisli as the new scanner SYBASE� However� in order

to turn it into a full

edged primitive of CPL� a third step is needed� This step is again

done in ML�

let val X � Variable�New��

in DataDict�RegisterCooked�

�Sybase��

Lambda�X� Apply�ScanObj� Apply�Read�SYBASE� ��� Variable X����
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TypeInput�ReadFromString

���user
string� �password
string� �server
string�� �

� �query
string� 
� �������

end

DataDict�RegisterCooked�ID� EXPR� TYPE� is a function for registering a macro de�ni


tion in Kleisli� ID is the name of the macro� In this case it is Sybase� EXPR is the body of

the macro� It has to be an expression in Kleisli�s abstract syntax� In this case� the expres


sion is Lambda�X� Apply�ScanObj� Apply�Read�SYBASE���� Variable X���� Lambda�X�

E� is Kleisli�s abstract syntax for de�ning an anonymous function that takes input X and

returns E� Read�SCANNER� CHANNEL� is Kleisli�s abstract syntax for invoking SCANNER

on CHANNEL� In this case� SCANNER is the new scanner SYBASE and CHANNEL is given

a dummy value �� It is unnecessary to worry about this dummy value because Kleisli�s

query optimizer eventually replaces it with the correct channel number� ScanObj is Kleisli�s

abstract syntax representing the Kleisli operator for converting a token stream into a com


plex object� This operator is equivalent to a command to bring an entire database into

main memory� It is unnecessary to worry about this apparent ine�ciency because Kleisli�s

optimizer eventually optimizes away this kind of complete loading� see Chapter �� Thus

the whole expression represents a function that takes an input X� uses it as parameters to

the SYBASE scanner� scans the speci�ed data into memory� and returns the resulting Kleisli

complex object� Since X is used as the input parameter to SYBASE� it is required to be a

Kleisli record having four string �elds �user� �password� �server� and �query� As SYBASE

is expected to return a relational table� the output is expected to be a set containing records

of a type to be determined dynamically� TYPE is used to indicate these input
output type

constraints�

After the three steps above have been carried out� a new primitive Sybase will be avail


able for use in CPL� Applying this primitive to any record ��user
 USER� �password


PASSWORD� �server
 SERVER� �query
 QUERY� in CPL causes sybcpl USER PASSWD

SERVER QUERY to be executed and the result to be returned as a complex object for further

manipulation in CPL� It is important to point out that Sybase is now a �rst
class primi
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tive and can be used freely in any CPL query in any place where an expression of type

��user
string��password
string� �server
string��query
string�
� ������ which

is the type speci�ed for Sybase� is expected� This is a result of CPL being a fully compo


sitional language� in contrast to SQL which does not enjoy this property�

The new Sybase primitive just added to CPL provides us the means for accessing many

biological databases stored in Sybase format� including GDB ����� �which is the main Gen


Bank sequence database located at The Johns Hopkins University�� SORTEZ ���� �which is

a home
brew sequence database located at Penn�s genetics department�� Chr��DB �which is

the local database of the Philadelphia Genome Center for Chromosome ���� etc� These can

now be accessed from CPL by directly calling Sybase with the appropriate user� password�

and server parameters� For convenience and for illustration� I de�ne new primitives for

accessing each of them in terms of Sybase in CPL as follow� See Chapter � for the syntax

of CPL�

primitive SORTEZ �� �Query ��

Sybase � ��user
�asn�� �password
�bogus��

�server
�CBILSQL�� �query
 Query��

primitive GDB �� �Query ��

Sybase � ��user
�cbil�� �password
�bogus��

�server
�WELCHSQL�� �query
Query��

primitive GDB�Tab �� �Table ��

GDB � ��select $ from � � Table � � where ������

primitive Chr��DB�Tab �� �Table ��

Sybase � ��user
�guest�� �password
�bogus�� �server
�CBILSQL��

�query
�select $ from � � Table � � where ������
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Hence� for example� SORTEZ takes a string representing an SQL query and passes it via

Sybase to the server at Penn�s genetics department� Here is a short example for using

SORTEZ to look up identi�ers from the National Center for Biotechnology Information that

are equivalent to the GenBank identi�er M������ This simple query returns a singleton set

shown below�

primitive CurrentACC �� �Id ��

�SORTEZ � �select locus� accession� title� length� taxname

from gb�head�accs

where pastaccession � �� � Id � �����

CurrentACC � �M�������

Result
 ���locus
 �HUMAREPBG��

�accession
 �M�������

�length
 ����

�taxname
 �Homo Sapiens��

�title
 �Human alphoid repetitive DNA repeats ��� monomer�

clone alpha
RI����� ��
��
I
�����

Querying ASN�� databases

The Entrez family of databases is provided by the National Center for Biotechnology In


formation ������ This data is stored in ASN�� format ������ which contains data structures

such as sets and records� as well as lists and variants ����� not commonly seen in traditional

database models� The use of nested data types make this database non
relational� However�

it is easily represented with the native data structures of Kleisli� Unlike the Sybase rela


tional database� there is no existing high
level query language for this database� In order

to retrieve Entrez ASN�� data into Kleisli� it is necessary to design a selection syntax for

indexed retrieval of Entrez entries� A mechanism for specifying retrieval of a partial entry
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is also added for convenience and e�ciency� The resulting program

asncpl �d DATABASE �s SELECTION �p PATH

is written in C by a colleague from Penn�s genetics department� It takes three parameters�

DATABASE names which Entrez database to use� SELECTION is a boolean combination

of index names and values� PATH speci�es the part of an entry to be returned� Asncpl

retrieves the subset of all DATABASE entries satisfying the SELECTION�

Each database has its own set of index names� Valid indices in the nucleic acid database

include word� keyword� author� journal� and organism� Valid operators for SELECTION

are and� or� and butnot� The PATH syntax allows for a terse description of successive record

projections� variant selections� and extractions of elements from collections� The formation

of the expression can most easily be explained via a traversal of the schema represented as

a graph in Figure ���� The graph schema is formed �rst as a tree by placing base types

at the leaves� followed by set� lists� records� and variants at the internal nodes� and �eld

and variant labels on the arcs� The tree becomes a graph in this particular schema because

there are recursive types present �shown by a dotted line�� The PATH expression is built

by starting at the root corresponding to the Seq
entry type� and building a subtree of the

tree while concatenating a dot to the expression for each internal node in the subtree as

well as adding arc names as they are encountered�

Based on the above schema� the title and common name of all nucleic acid entries related

to human beta globin genes can be extracted by executing the following query�

asncpl �d na

�s �gene �beta globin� and organism �homo sapien��

�p Seq
entry��set�seq
set��$�seq�descr���title	org�common��

It causes the following sequence of actions� First� an index lookup is used to retrieve the

intersection of entries corresponding to beta globin genes and all the human entries� Then�

the path expression is applied to each entry so that only the title and common names
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->  expression op expression
->  indexterm | (expression) op (expression)
->  indexname "value"
->  word | keyword | author | journal | ...
 ->  and | or | butnot

selection
expression
indexterm
indexname
op

Query:  Retrieve the title and common name of all GenBank entries
related to non-human beta-globin genes

Projection:  Seq-entry{.set.seq-set.}*.seq.descr..(title|org.common)
Selection:    gene "beta-globin" butnot organism "homo sapien"

Structural Projection Constructors

’.’
’..’

{}*
(f,g,...)
(f|g|...)

field or variant extraction of records or variants
field or variant extraction over sets, lists or bags
of records or variants
specifies recursive path
partial record extraction
disjunctive extraction of variants

Figure ���� Using the ASN�� server�
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are returned� This involves several projection and extraction steps� Only seq variant of

Seq
entry are needed� but a recursive path ��seq�seq
set��$ is necessary to specify all

of them� A single application of this path selects the set variant of Seq
entry� projects

the �eld seq
set� and then extracts from the resulting list each element that is a seq� For

each seq� the �eld descr is projected and a set of variant types limited by the expression

�title	org�common� to the strings title and the �eld common from the record org are

returned�

The same three
step procedure is used to bring this C program into Kleisli and CPL� The

�rst step is to wrap it in ML�

fun GetValEntrez X � let

val DB � CompObjString�Km�CompObjRecord�ProjectRaw ��db� X�

val Keyword � CompObjString�Km�CompObjRecord�ProjectRaw ��select� X�

val Path � CompObjString�Km�CompObjRecord�ProjectRaw ��path� X�

val �IS� TmpIn� � execute��'mnt'saul'home'khart'pub'entrez'asncpl��

!�
d�� DB�

�
s�� StringUtil�stringTrans����������Keyword�

�
p�� Path"�

val � � close�out TmpIn

in ��asncpl 
d � � DB � � 
s � � Keyword � � 
p � � Path� IS� end

Then asncpl can be accessed from ML via GetValEntrez� The second step is to register

the latter as a new scanner with Kleisli� As Kleisli supports all of the basic data structures

of ASN��� there is no problem in engineering asncpl so that it outputs in Kleisli�s standard

exchange format� The registration of the ASN�� scanner and primitive are done in a similar

way as demonstrated with sybcpl� This registration step gives CPL a new primitive Entrez

that takes in a record ��db
 DATABASE� �select
 SELECTION� �path
 PATH�� executes

asncpl �d DATABASE �s SELECTION �p PATH� and returns the result as a complex object�
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This general primitive brings many databases that have been converted to the National

Center for Biotechnology Information�s ASN�� format into CPL including EMBL ����� DDBJ

������ PIR ����� etc� These databases are organized into the three divisions� MEDLINE�

nucleotide� and protein� They can now be accessed directly in CPL by calling Entrez with

the database names ml� na� and aa respectively� Below is a short example of using Entrez

to �nd other identi�ers corresponding the the accession number M������ Only the �rst two

records in the output are given below� Notice it is a set of sets of variants of records�

Entrez � ��db
 �na��

�select
 �accession M�������

�path
 �Seq
entry�seq�id���

Result
����giim
 ��id
 ������� �db
 ��� �release
 �����

��genbank
��name
�CEBGLOBIN�� �accession
�M�������

�release
��� �version
#�����

���genbank
��name
�M��������� �accession
���

�release
 ��� �version
#����

��giim
 ��id
 ������� �db
 ��� �release
 ������

����

Integrating application programs

An important operation performed on biological databases is homologous sequence search


ing� That is� looking for sequences that are similar� Special application programs are

usually used for this purpose� These application programs can also be connected to Kleisli

using the same three
step procedure shown earlier� Getlinks is one such program that uses

precomputed links in the Entrez family of databases� It is written in C� I only use it in a

very simple way in this dissertation�

getlinks �n	 �a ACCESSION
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It looks for the � genes most homologous to the one identi�ed by ACCESSION�

The �rst step is to turn it into a function in ML�

fun GetValEntrezAccessionLinks X �

let val �IS� TmpIn� � execute�

�'mnt'saul'home'khart'pub'entrez'getlinks��

!�
n��� �
a�� CompObjString�Km X"�

val � � close�out TmpIn

in ��getlinks 
n� 
a � ��CompObjString�Km X�� IS� end

The second step is to register this function as a scanner to Kleisli�

val ENTREZLINKS � FileManager�ScannerTab�Register�

GetValEntrezAccessionLinks�

Tokenizer�InStreamToTokenStream�

�ENTREZLINKS��

Type�String�

fn � �� TypeInput�ReadFromString ��������

The third step is to turn the scanner into a full

edged CPL primitive�

let val X � Variable�New��

in DataDict�RegisterCooked�

�EntrezLinks��

Lambda�X�Apply�ScanObj�Apply�Read�ENTREZLINKS����Variable X����

TypeInput�ReadFromString �string 
� �������

end

It then becomes available for use in CPL� Below is a short CPL query for looking up genes

homologous to CEBGLOBIN� I display just the �rst two items in the output�
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EntrezLinks � �CEBGLOBIN��

Result
 ���ncbi�id
 ���� �linkacc
 �M������� �locus
 �HUMHBGAA��

�title
 �Human A
gamma
globin gene� �� end����

��ncbi�id
 ���� �linkacc
 �X������� �locus
 �HSGL����

�title
 �Human gamma
globin gene alternative

transcription initiation sites���

����

��� Implementing optimization rules in Kleisli

The ability to add new scanners and new primitives to Kleisli does not make it a practical

query system� In order to be practical� Kleisli must be able to exploit the capabilities of

these new scanners and new primitives� For example� the primitive Sybase added in Section

��� handles SQL queries� If a CPL query accesses Sybase databases and some operations

in that query can be performed directly by the underlying Sybase servers� then Kleisli

should try to push these operations to these servers to improve performance� Kleisli has

an extensible rule
based optimizer for this purpose� As new primitives are added to Kleisli�

new optimization rules should also be added to Kleisli� These rules provide Kleisli with the

necessary knowledge to make e�ective use of these new operators�

The rule base for the optimizer in the core of Kleisli is based on those rules described in

Chapter �� As a consequence of these rules� Kleisli does an aggressive amount of pipelining

and seldom generates any large intermediate data� The evaluation mechanism of Kleisli

is basically eager� These rules are also used to introduce a limited amount of laziness in

strategic places to improve memory consumption and to improve response time�

This core of optimization rules has recently been augmented with a superset of those rules

described in Chapter �� In particular� two join operators have been introduced as additional

primitives to the basic Kleisli system� One of them is the blocked nested
loop join ������
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The other is the indexed blocked
nested
loop join where indices are built on
the

y� this is

a variation of the hashed
loop join with dynamic staging ������ �See Section ��� for how

the second join operator is implemented in Kleisli�� Both operators have a good balance

of memory consumption� response time� and total time behaviors� The former is used for

general joins and the latter is used when equality tests in join conditions can be turned into

index keys� These two operators are accompanied by over twenty
three new optimization

rules to help the optimizer decides when to use them� As my system is fully compositional�

the inner relations for these joins can sometimes be subqueries� To avoid recomputation�

an operator is introduced to cache the result of selected subqueries on disk� This operator

is accompanied by three optimization rules to help the optimizer to decide what to cache�

There are over eight additional optimization rules to make more e�ective use of the capa


bilities of asncpl by pushing projections and variant analysis on Entrez data from CPL to

it� There are over thirteen additional optimization rules to make more e�ective use of the

capabilities of sybcpl by pushing projections� selections� and joins on Sybase data from

CPL to it� If any relational subquery in CPL only uses relations from the same database

and does not use powerful operators� our optimizer is able to push the entire subquery to

the server� This capability is a physical realization of Theorem ������

This section shows how new optimization rules can be introduced into Kleisli� One of the

rules used for pushing joins to sybcpl and one of the rules for exploiting IdxJoin are

presented�

Example� Turning BlkJoin into IdxJoin

Rewrite rules are expressed in ML by pattern matching on Kleisli abstract syntax objects�

Speci�cally� a rewrite rule R is a ML function that takes in a Kleisli abstract syntax object

E and produces a list of equivalent abstract syntax objects �E�� ���� En�� where each Ei

is a legal substitute for E� Let me reproduce for illustration a rule for turning a blocked

nested
loop join into an indexed blocked
nested
loop join given in Section ����
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fun RuleIdxJoin���Apply�Primitive BJ� Record R�� �

if Symbol�Eq�BJ� BlkJoin�

then case Record�KmTuple�InRec R�

of !Outer� PredO� Inner� PredI� Lambda�O� Lambda�I�

IfThenElse�Eq�E�� E��� E�� False���� Loop"

�� if VarSet�Eq�FreeVar E�� VarSet�Eta O� andalso

VarSet�Eq�FreeVar E�� VarSet�Eta I�

then !Apply�Primitive IdxJoin�

�Record o OutRec o Record�MkTuple�

!Outer� PredO� Lambda�O�E���

Inner� PredI� Lambda�I�E���

Lambda�O� Lambda�I� E���� Loop"�"

else !"

	 � �� !"

else !"

	 RuleIdxJoin�� � � !"

When this rule is applied to an expression� the following steps take place� In the

�rst step� ML pattern matching is used to check that the expression is a Kleisli ab


stract syntax object representing the application of a primitive BJ to a record R� In

the second step� the function Symbol�Eq provided in Kleisli to check if BJ is the

blocked nested
loop join operator BlkJoin� In the third step� the Kleisli record dis


sembly operator KmTuple is used to inspect the record R� This step should return a list

!Outer� PredO� Inner� PredI� PredIO� Loop"� Outer is the generator of the outer

relation of the join� PredO is the �lter for the outer relation� Inner is the generator

of the inner relation� PredI is a �lter for the inner relation� PredIO is the join predi


cate� and Loop is the transformation to be applied to the two records to be joined� see

Section ���� In this step� ML pattern matching is used to check if PredIO is of the

form Lambda�O� Lambda�I� IfThenElse�Eq�E�� E��� E�� False���� that is� to check

is equality test is part of the join predicate� In the fourth step� the function VarSet�Eq
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provided in Kleisli is used to check whether O is the only free variable in E� and whether I

is the only free variable in E�� if this is so� then this equality test can be indexed� In the

�fth step� the join predicate is split into Lambda�O� E��� Lambda�I� E��� and Lambda�O�

Lambda�I� E���� The �rst is to be used as the index function� The second is to be used

as the probe function� The third is to become the new join predicate� Finally� BlkJoin is

turned into IdxJoin� If any of the steps above fails� the empty list is returned indicating

that the rule is not applicable to the given expression�

After a rule is de�ned in ML� it has to be registered with Kleisli in order for the optimizer to

use it� This is done by using the Kleisli function RuleBase�Reductive�Add�THRESHOLD�

NAME� RULE� or the Kleisli function RuleBase�Nonreductive�Add�THRESHOLD�NAME�

RULE�� In both cases� NAME is a string used for identifying the rule within Kleisli� RULE

is the ML function implementing the rule� and THRESHOLD is the �ring threshold of the

rule� The di�erence between these two add functions is that the former adds the rule as a

reductive rule while the latter adds it as a nonreductive rule�

More detail of Kleisli is needed to explain these two types of rules� Kleisli divides its rule base

into two parts� reductive rules and nonreductive rules� It assumes that the reductive rules

form a strongly normalizing rewrite system and that normal forms are always better than

non
normal forms� Most of the rules given in Chapters � and � are reductive rules� It makes

no assumption on nonreductive rules� An example of nonreductive rule is the commutative

rule if e� then �if e� then e� else e�� else e� � if e� then �if e� then e� else e�� else e�

mentioned in the beginning of Chapter ��

Given an expression to be optimized� Kleisli applies the reductive rules repeatedly until

a normal form is reached� rules with lower threshold are given precedence over rules with

higher threshold� It then applies the nonreductive rules in all possible ways to generate more

alternatives� An alternative is discarded if its cost computed based on the currently active

cost function exceeds the current best alternative by more than a speci�ed hill
climbing

factor� Kleisli then repeats the optimization cycle with each remaining alternative in a

best
�rst manner ������ The process stops when no new alternative is generated or when
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a speci�ed time limit is reached� The best alternative is then picked� In comparison to a

sophisticated optimizer generator like that of Exodus ����� Volcano ����� or Starburst �����

this optimizer is simple minded and there is room for improvement� In addition� Kleisli can

be 
agged to present all good alternatives to the user so that he can make the �nal choice�

this feature can be important when the cost function provided is not su�ciently re�ned�

Kleisli allows a prologue phase to be applied to an alternative before the reductive rules

are applied and an epilogue phase to be applied to a normal form before it is stored as an

alternative optimized query� These two phases can be used to invoke alternative specialized

optimizers that a sophisticated programmer may want to used in conjunction with Kleisli�s

optimizer� They can also be used to make certain rules easier to implement� For example�

some rules in Chapter � requires unique natural numbers to be generated� these numbers

are best generated during the epilogue phase�

The ML function RuleIdxJoin�� is registered in my system as a reductive rule� Its e�ect

can be seen in the optimizer output for experiment H in Section ����

RuleBase�Reductive�Add������ �IdxJoin
IdxJoin��
�� RuleIdxJoin����

Example� Pushing joins to sybcpl

Let me reproduce one of the rules used for migrating blocked nested
loop joins from Kleisli

and CPL to Sybase servers� It is an ML function that takes a Kleisli abstract syntax object

and produces a list of equivalent objects�

fun RulePush��Apply�Primitive BJ� Record R�� �

if Symbol�Eq�BJ� BlkJoin�

then case Record�KmTuple�InRec R�

of !Lambda�A� Apply�Read�ScannerO� ��� DBO��� PredO�

Lambda�B� Apply�Read�ScannerI� ��� DBI��� PredI�

PredIO� Loop"
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�� if Scanner�Eq�ScannerO� SYBASE� andalso

Scanner�Eq�ScannerI� SYBASE� andalso

OkayToPush��DBO� DBI� PredIO�

then let val �Join� Pred� � FindJoinCond��DBO� DBI� PredIO�

val DB � CombineSQL�Join� DBO� DBI�

val D � Variable�New��

val RO � Reformat�DBO� DBI�

val RI � Reformat�DBI� DBO�

val O � Apply�RO� Apply�ScanObj� Variable D��

val I � Apply�RI� Apply�ScanObj� Variable D��

val Pred � Apply�Apply�Pred� O�� I�

val Loop � Apply�Apply�Loop� O�� I�

val O � Apply�PutObj�Apply�RO�

Apply�ScanObj�Variable D���

val I � Apply�PutObj�Apply�RI�

Apply�ScanObj�Variable D���

val PredO � Apply�PredO� O�

val PredI � Apply�PredI� I�

in !Apply�Primitive PreJoin�

Record�OutRec�Record�MkTuple!

Lambda�A� Apply�Read�SYBASE� ��� DB���

Lambda�D� IfThenElse�PredO�

IfThenElse�PredI�Pred�False��False���

Lambda�D� Loop�"���"

end

else !"

	 � �� !"

else !"

	 RulePush� � � !"
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When this rule is applied to an expression� the following things happen� In the �rst step�

ML pattern matching is used to check if the expression is the application of a primi


tive BJ to a record R� In the second step� the Symbol�Eq function provided in Kleisli

is used to check if the primitive BJ is the blocked nested
loop operator BlkJoin de


scribed in Section ���� In the third step� the record dissembly operator Record�KmTuple

provided in Kleisli is used to inspect the record R� This step should return a list

!Outer� PredO� Inner� PredI� PredIO� Loop"� Outer is the generator of the outer re


lation of the join� PredO is a �lter for the outer relation� Inner is the generator of the inner

relation� PredI is a �lter for the inner relation� PredIO is the join condition� Loop is the

transformation to be applied to the two records to be joined� In the fourth step� the func


tion Scanner�Eq provided in Kleisli is used to check if Outer and Inner are both producing

data using the SYBASE scanner� In the �fth step� it checks whether the two relations being

scanned are on the same server and whether the join condition can be pushed to Sybase�

This task is accomplished by a simple function OkayToPush�� which I have to de�ne in ML�

In the sixth step� the join condition PredIO is split into a pair �Join� Pred� using the

function FindJoinCond�� which I also have to de�ne in ML� Join is the part of PredIO that

can be pushed to Sybase� while Pred is the remainder of PredIO which cannot be pushed

due to presence of powerful operators� In the seventh step� a new SQL query DB is formed

using the function CombineSQL provided in a Kleisli library� DB is formed by pushing Join

to join the outer and inner relations� �This transformation is a conceptually simple rewrite

step that can be illustrated as follows� Suppose the outer relation is the query select A from

B where C and the inner relation is the query select D from E where F� Then CombineSQL

produces select A� D from B� E where C and F and Join� with some renamings if necessary��

In the eighth step� PredO� PredI� Pred� and Loop have to be adjusted because the data

coming in has changed� �As can be seen from the example� the data now come from a single

relation with columns A� D� as opposed to from two relations with column A and column D��

A function Reformat is written in ML to accomplish the task of extracting the right �elds

from the new input� The adjusted versions of PredO� PredI� Pred� and Loop are obtained

by applying the originals to the reformatted data� Finally� these modi�ed fragments are

recombined into a Prejoin� which is the simple �lter loop described in Section ����
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After this ML function is de�ned� it has to be registered with the Kleisli optimizer rule base

as shown in the piece of ML program below� Then it is automatically used by the optimizer

to convert blocked nested
loop joins in CPL to joins in Sybase�

RuleBase�Reductive�Add����� �PushGDB�
Push�
�� RulePush���

Below is a short example illustrating the kind of optimizations that this system does� This

CPL query joins three Sybase relations�

primitive Loci�� �� � ��locus�symbol
 x� �genbank�ref
 y� 	

��locus�symbol
�x�

�locus�id
�a� ���� �
 GDB�Tab � �locus��

��genbank�ref
�y�

�object�id
a�

�object�class�key
������ �
 GDB�Tab � �object�genbank�eref��

��loc�cyto�chrom�num
�����

�locus�cyto�location�id
a����� �
GDB�Tab ��locus�cyto�location���

The optimizer is able to migrate all the selections� projections� and joins in the above query

completely to the Sybase server� resulting in the optimized version shown below� See also

the sample optimizer output for experiment K given in Section ����

primitive Loci�� ��

GDB � �select locus�symbol� genbank�ref

from locus� object�genbank�ref� locus�cyto�location

where locus�locus�id � locus�cyto�location�id

and locus�locus�id � object�genbank�eref�object�id

and object�class�key � � and loc�cyto�chrom�num � ������
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��� Two biological queries in CPL and a manifesto

Having connected Kleisli to several biological data sources� it is then possible to manipulate

information from these data sources using the high
level query language CPL� This section

contains two simpli�ed examples taken from real biological queries that were posed to my

system when it �rst became operational� I close this chapter with a short manifesto on

querying heterogenous biomedical data sources�

There are several things about these queries that are worth pointing out� First� these

examples require several di�erent data sources to be accessed� Second� data from these

di�erent sources are freely combined in CPL without any special handling� Third� the last

example requires non

at output  it needs three levels of nesting in order to group the

output correctly� Fourth� their implementation in CPL are all short and concise� Fifth� all

the examples use databases gigabytes in size but all of them are completed within minutes�

This performance is within striking distance of hand
coded programs but without the sweat�

Finally� the last example is a template for dealing with several of the hard queries listed in

a Department of Energy report ����� This is indicative of the potential of Kleisli and CPL�

Example� Find chromosome 		 sequence tag sites in GDB but not in

Chr		DB

Sequence tag sites currently in use in Chr��DB are found using the following CPL query�

�See Davidson� Kosky� and Eckman ���� for a primer written for database workers on ter


minology used by biologists��

primitive STSinUSE �� � n 	

��name
�n�

�lab�code
�GDB��

�item
�STS��

�printname
�Y�� ���� �
 Chr��DB�Tab � �names���
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After this primitive is de�ned� the desired query can be implemented by taking the di�erence

between it and Loci�� in CPL�

�x��locus�symbol 	 �x �
 Loci��� setdiff STSinUSE�

Example� Find annotation information on known DNA sequences on

human chromosome 		 as well as information on sequences homologous

to them

This query is the same example given in Section ���� It needs a CPL subquery Homologs

which takes in a GDB identi�er� looks up the equivalent identi�ers and other information

in SORTEZ� and then applies EntrezLinks to �nd similar sequences�

primitive Homologs �� �Id ��

��y� EntrezLinks � �y��accession�� 	 �y �
 CurrentACC � Id��

Then a simple comprehension over Loci�� accomplishes the task in CPL�

��x� Homologs � �x��genbank�ref�� 	 �x �
 Loci����

Manifesto

In Spring ����� the Department of Energy ���� published a report� listing twelve queries

that were claimed to be unanswerable �until a fully relationalized sequence database is

available�	 Some of these queries require further interpretation of source data� but the

majority can be answered on the basis of existing source data� Presumably these were

thought to be impossible because they involve the integration of databases� structured �les�

and applications  something well beyond the capabilities of any existing heterogenous

database system�
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Kyle Hart from Penn�s genetics department has been able to implement these queries us


ing the open query system Kleisli and the collection programming language CPL that

serves as Kleisli�s high
level query language� The last example is a template solution for

many of these queries� The strength of my system derives from my novel approach to lan


guages for structured data that greatly expands the expressive power of database query

languages� As sketched in the preceding sections� the current system provides transparent

access to biological data sources including relational databases� non
standard �structured

�le� databases� and application programs� It can freely combine information from these

heterogenous sources� it incorporates a rule base that can exploit optimization techniques

in these sources� and its pool of external data scanners and data writers can be readily

expanded to connect to new data sources�

One very important feature of CPL is that it is fully compositional� This feature has obvious

bene�ts as a programming language� but more broadly� it gives us the capability of de�ning

user views simply in terms of queries� These views in turn can be used in other views� Once

documented to re
ect their interpretation� such views can be used to provide relevant�

succinct� and comprehensible information to users at various levels of sophistication�

This new approach to database languages may call into doubt the necessity or advisability

of building monolithic databases for biological data� Individual groups� rather� can simply

publish their data schema along with a query interface to the data� Tools such as CPL and

Kleisli �together with schema restructuring tools such as that developed by Davidson� Kosky�

and Eckman ����� can then be used to reconcile the schema di�erences� create distributed

views� and retrieve integrated information�
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Part IV

The perspective of a

logician�engineer
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Chapter ��

Conclusion and Further Work

The 
nal test of a theory is its capacity to solve the problems which originated

it� George Dantzig

The �rst part of this dissertation begins in Chapter � with the belief that structural recursion

is a useful database programming paradigm and ends in Chapter � with a concrete query

language for nested collections with many desirable properties� In the course of these

�ve chapters� I have examined the expressive power of NRC�B ��� and its many practical

extensions� At one end of the spectrum is NRC�B ���� which is classical because its queries

are generic and internal ����� At the other end of the spectrum is NRC�B � Q � �� �� 	� 
�
P
� �� �� which is much closer in strength to a real query language such as SQL� because

it has arithmetic� orderings� and aggregate functions� The second part of this dissertation

begins in Chapter � with the design of a real query language and ends in Chapter � with

the use of an extensible query system for querying heterogenous data sources� In the course

of these �ve chapters� I have touched on the topics of language design� query optimization�

openness� and have implemented a working prototype of Kleisli and CPL� This chapter

o�ers a summary of the major contributions of this work� an explanation of its relationship

to other approaches to querying databases� and a list of future projects�
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Organization

Section ����� The major contributions of this dissertation in the theory� practice� and

application of querying nested collections are summarized� It is hoped that this summary

conveys some of the merits of my approach to querying nested collections�

Section ����� There are several alternative approaches to generalizing 
at relational

databases� I brie
y examined them in this section� In particular� I explain where my

approach lies in relationship to them�

Section ����� I believe that the most fruitful directions for future work lies in the investiga


tion of new collection types that are useful in real applications� This section identi�es what

I believe are the more fascinating possibilities�

���� Speci�c contributions

This dissertation proposes a new paradigm for the design� study� and implementation of

query languages� The paradigm is to organized query languages around a restricted form

of structural recursion� I believe that this approach to querying nested collections is rich�

interesting� general� and practical� Many contributions have been made in the theory�

practice� and application of query languages for nested collections� I hope the list below� of

some of these contributions� conveys some of the merits of my approach�

� The relationship of this restricted form of structural recursion to relational languages

is established in Chapter �� NRC�B ��� obtained by imposing my restricted structural

recursion on sets is equivalent to several classical nested relational languages�

� The scalability of the basic language NRC�B ��� is shown by extending it with arith


metic� aggregate functions� and orders in Chapter �� with lists� bags� and variants in

Chapter �� with token streams in Chapter �� and with external functions in Chapter

��
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� The conservative extension property� useful in understanding the expressive power of

query languages� is studied in Chapter �� A general technique based on the equational

axioms arising from my restricted form of recursion is introduced for proving the

conservative extension property�

� NRC�B ��� and its many extensions are shown in Chapter � to possess the conservative

extension property� The conservative extension result in the presence of the powerset

operator is quite surprising�

� The �nite
co�niteness property� useful in understanding the limitations of query lan


guages� is studied in Chapter �� A general technique based on the conservative exten


sion property is introduced for proving the �nite
co�niteness property�

� NRC�B � Q � �� �� 	� 
�
P
� �� �Q� is shown in Chapter � to be �nite
co�nite on certain

classes of graph queries� This result uniformly extends many well
known results on


at relational calculus to a language that is closer in strength to SQL� It also settles

several conjectures on a popular bag query language�

� A high
level query language� CPL� based on expressing my restricted form of recursion

using the comprehension syntax is designed in Chapter �� Also variable
as
constant

patterns are used for the �rst time in pattern matching in a query language�

� A prototype extensible query system� Kleisli� organized around my restricted form of

structural recursion is built in Chapter �� CPL is implemented on top of it and serves

as it high
level query language�

� Techniques for doing an aggressive amount of pipelining in languages organized around

my restricted form of recursion� to reduce memory consumption and to improve re


sponse time� are shown in Chapter �� These pipelining techniques have been imple


mented in my prototype and tested in Chapter ��

� Ways for generalizing many classical optimizations to languages organized around my

restricted form of recursion are shown in Chapter �� These techniques have been

implemented in my prototype and tested in Chapter ��
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� Kleisli and CPL are used for querying nested collections in a general way� They proved

satisfactory in querying many biological data sources in Chapter ��

� The implementation of the prototype contains approximately twenty three thousand

lines of ML codes and took approximately two man
months to develop� This prototype

is a substantial contribution to showcase the use of functional programming languages

in rapid prototyping and in serious applications�

���� A Gestalt

Flat relational systems have to be stretched and modi�ed in two directions to satisfy the

needs of modern database applications� The �rst direction is to have a richer data model

than 
at tables and the second direction is to have a more expressive query language than


at relational algebra�

Past and present e�ort in creating better databases can broadly be classi�ed into three alter


natives� The �rst alternative is focused on making the data model richer� the development

of nested relational databases falls into this category� The second alternative is focused on

making the query language more powerful� the development of deductive databases falls into

this category� The third alternative uses more powerful data model as well as more powerful

query languages� the development of object
oriented databases falls into this category�

Let me describe these three lines of development and try to relate my work to them�

Nested relational databases

allow the components of tuples in a relation to be relations� The data model is therefore

more natural for certain problems� such as the salary history example of Makinouchi ������

The better known proposals for nested relational databases are those of Thomas and Fischer

������ Schek and Scholl ������ and Colby ����� The following comments can be made�
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� They did not take into account of modern and useful data types such as variants ������

bags� and until recently ����� lists�

� Their development was strongly tied to sets� For this reason� it is not easy to extend

them in a uniform manner to include the new data types mentioned above�

� Their development followed a trend of increasing semantic complexity without a cor


responding increase in modeling power and expressive power�

� As discussed in Chapter � and in the proof of Proposition ������ important query

language concepts such as orthogonality and mapping of functions are missing from

them�

Deductive databases

introduce a �xpoint operator into the �rst
order logic of 
at relations� Expressive power is

greatly increased by their ability to compute recursive queries� The early theory of deductive

databases was most clearly described by Lloyd and Topor ������ The most notable work on

their development is the large body of knowledge gathered on the optimization of recursive

rules ����� ���� ���� ��� ���� The following additional comments can be made on deductive

databases�

� The basic data type used in various versions of Datalog� the main query language for

deductive databases� is still the 
at relations� Therefore the disadvantages observed

by Makinouchi ����� on the 
at relational data model applies�

� The termination of �xpoint evaluation is guaranteed for pure Datalog� This property

is destroyed in the presence of operations such as addition and multiplication� which

are necessary in real applications�

� Judging from the variety of semantics ���� ���� ���� ���� for negation in Datalog� there

is still no agreement on a general treatment of negation in the presence of �xpoint�
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� There have been attempts to enhance datalog to deal with sets� most notably Kuper

����� and Naqvi and Tsur ������ It remains to be seen how bags and lists �t into the

picture�

Object�oriented databases

essentially turn object
oriented programming languages into database systems� So they

have powerful data models and are very expressive� There are many working prototypes

and systems� Some of the better known examples include ORION ����� ����� O� �����

Exodus ����� IRIS ������ GemStone ����� and ObjectStore ������ The following comments

can be made�

� The diversity of object
oriented database systems is bewildering� This diversity is not

surprising� as they took as their starting points object
oriented languages that are

very di�erent�

� There is much system
building e�ort but little theoretical output� In particular� the

behavior of these systems tends to be de�ned by implementation� This can perhaps

be attributed to the fact that many foundational issues in object
oriented languages

are still in 
ux� See Gunter and Mitchell ����� Cook ����� Borning ����� Cook� Hill�

and Canning ����� etc�

� These systems can do everything� provided the user works in his host language such

as C�� ����� or Smalltalk ����� With a few exceptions such as O� ����� they generally

lack true query languages�

� They generally support some sort of sets� bags� and lists� But they generally do not

support all of them in a uniform way�
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The connections

In constrast to the above languages and systems� CPL cleanly and uniformly supports

lists� bags� sets� and potentially more collection types� CPL has more 
avor of the nested

relational and the object
oriented approaches than the deductive approach because CPL

shares with the former a richness in their data models not found in the latter� CPL is more

radical than the nested relational approach and is less radical than the object
oriented

approach� The following additional comments can be made on its connections to these

alternatives�

� CPL restricted to NRC�B ��� is equivalent in strength to a well
known nested rela


tional algebra� see Theorem ������ However� this dissertation is ample evidence that

CPL comes with a more 
exible and more general theory�

� CPL restricted to NRC�B ��� but augmented with a bounded �xpoint operator is

equal in strength to Datalog with negation over queries on 
at relations� see Suciu

������ However� CPL is more robust and more practical in the following sense� If

numbers and the basic arithmetic operations are added to the former� it remains

very much the same language� On the other� the semantics of Datalog with negation

can get drastically changed by these additions� for instance� termination is no longer

guaranteed�

� Neither I nor my colleagues have attempted a formal comparison of CPL to any object


oriented system� I do not think such a comparison is possible given the current state of

a�airs of object
oriented database systems� Nevertheless� let me make two remarks�

As far as data model is concerned� if one strips away the more poorly understood

features of object
oriented data models� then CPL can be made as rich as any of

them by adding either a suitable notion of identi�ers or recursive values� As far as

expressive power is concerned� CPL cannot match them since they use full

edged

programming languages� However� recall from Chapter � that CPL is obtained by

imposing a strong restriction on structural recursion� So one can recover for CPL

some extra horsepower by relaxing the restriction�
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Perhaps what is most remarkable in this compressed account is the fact that there is a

formal connection between CPL and nested relational algebra and Datalog at all� given

that their starting points are so di�erent�

���� Further work

It is customary to end a dissertation with a list of future projects� There are many projects

that I can propose as future work� especially in improvements to the prototype� However� I

think such projects are best left to the engineer� Instead� I want to put forward possibilities

which are more speculative�

In this dissertation I have focused on reporting my results on query languages for sets� I

have also worked on orsets and bags� My work with Libkin ����� on orsets does not have

an impact on this dissertation� However� it has lead to important advances on the study of

disjunctive and partial information ������ My work with Libkin ����� on bags does have an

impact on this dissertation� In fact� most of the results on aggregate functions in Chapter

� and Chapter � were originally developed to answer questions on bag queries�

From this experience� I believe that one of the most fruitful direction for future work will

be the study of new collection types� Real world applications are without doubt the best

source of inspiration for new collection types� So let me close this dissertation by listing

some of the more fascinating ones�

Indexed collections as first�class citizens

The use of indices is a very important factor in the performance of 
at relational databases�

Traditionally� indices on a relation are recorded separately from the relation� This scheme

was intended to separate implementation from semantics� But is such a scheme scalable

to nested relational databases# What if I want to have a set of sets where the outer set

is not indexed but each member of it are independently indexed# What if I want to have
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an even more complex organization of indices# I think it is possible to introduce explicitly

indexed collections into a query language as a �rst
class citizen with its own type and

expression constructs� without messing up the separation of implementation and semantics

of the query language� In fact� I believe such an approach will exhibit an orthogonality

which can simplify the theoretical study and the practical treatment of indexed collections�

Arrays as a special case of indexed collections

Arrays are one of the most exciting collection types� They are certainly the earliest collection

type to be incorporated into programming languages for they are present in FORTRAN�

albeit in a very primitive way� They become more sophisticated in APL ����� and even

more so in Sisal ����� However� as lamented by Maier and Vance ������ they have been

ignored in query languages� Buneman ���� recently discussed the fast Fourier transform as

a database query� He chose most of his operators for reason of expedience� However� he

did choose a particularly striking construct for accessing arrays� fe j xi � Ag for binding x

and i respectively to an element and its position in the array A� This same choice was later

copied by Fegaras in a more general paper ����� I think this idea of binding both element

and position will be a fundamental feature of query languages with arrays as �rst
class

citizen� I think it can be generalized to binding element and index value in the case of

indexed collections as �rst
class citizen�

Recursive types

Consider the problem of modeling cities and states� Each city record should have a �eld

indicating the state in which the city is located and each state record should have a �eld

indicating all the cities located in that state� Without knowledge about keys� it is very hard

to model this in a relational database� It is easy to model this in an object
oriented database

using object identi�ers� However� using system
speci�c identi�ers leads to transportability

problem� It has been noted ���� for quite some time that it is not easy to move objects

from one object
oriented database to another because object identi�ers that make sense in
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the �rst database are not going to make sense in second� Regular trees ���� can be used to

model problems such as cities and states� Since they do not use the notion of identi�ers� it

is easier to transport them across databases� So they may be a good alternative� However�

regular trees are generally manipulated using full

edged recursion� I believe it is possible to

impose some restrictions to make regular
tree programming recursionless� or at least more

controlled�

Display abstraction and hypertext

I have assumed that when a set is printed� all its members are printed in their entirety�

However� in a more advanced interface� it might be better to hide some detail� For example�

if the output is connected to a hypertext device on the World Wide Web ����� it may be

better to hide some detail and to incrementally expose it when various hyperlinks are

followed� One can of course �rst compute the output completely and then do the hiding

while preparing the hypertext pages� Alternatively� one can delay computing the detail until

its hyperlink is followed� In this way� work is not wasted if the hyperlink is not followed� It

will be challenging to see how a hypertext device can be abstracted away and how delays

can be propagated�

���



Bibliography

��� S� Abiteboul� C� Beeri� M� Gyssens� and D� Van Gucht� An introduction to the

completeness of languages for complex objects and nested relations� In S� Abiteboul�

P� C� Fisher� and H�
J� Schek� editors� LNCS ���� Nested Relations and Complex

Objects in Databases� pages ���(���� Springer
Verlag� �����

��� Serge Abiteboul and Catriel Beeri� On the power of languages for the manipulation

of complex objects� In Proceedings of International Workshop on Theory and Appli�

cations of Nested Relations and Complex Objects� Darmstadt� ����� Also available as

INRIA Technical Report ����

��� Serge Abiteboul� Sophie Cluet� and Tova Milo� Querying and updating the �le� In

Proceedings of ��th International Conference on Very Large Databases� �����

��� Serge Abiteboul and Richard Hull� IFO� A formal semantic database model� ACM

Transactions on Database Systems� ���������(���� December �����

��� S� Abramsky and C� Hankin� editors� Abstract Interpretation of Declarative Lan�

guages� Ellis Horwood� Chichester� England� �����

��� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers� Principles� Techniques�

and Tools� Addison
Wesley� Reading� Massachusetts� �����

��� Alfred V� Aho and Je�rey D� Ullman� Universality of data retrieval languages� In

Proceedings �th Symposium on Principles of Programming Languages� Texas� January

����� pages ���(���� �����

���



��� J� Albert� Algebraic properties of bag data types� In Proceedings of ��th International

Conference on Very Large Databases� pages ���(���� �����

��� S� F� Altschul� W� Gish� W� Miller� E� W� Myers� and D� J� Lipman� Basic local

alignment search tool� Journal of Molecular Biology� �������(���� �����

���� Malcolm Atkinson� Philippe Richard� and Phil Trinder� Bulk types for large scale pro


gramming� In J� W� Schmidt and A� A� Stogny� editors� LNCS 	��� Next Generation

Information System Technology� pages ���(���� Berlin� ����� Springer
Verlag�

���� AT$T Bell Laboratories� Murray Hill� NJ ������ Standard ML of New Jersey User�s

Guide� February �����

���� L� Augustsson� A compiler for lazy ML� In Symposium on LISP and Functional

Programming� pages ���(���� Austin� Texas� �����

���� John Backus� Can programming be liberated from the von Neumann style# A func


tional style and its algebra of programs� Communications of the ACM� ���������(����

August �����

���� F� Bancilhon� Object
oriented database systems� In Proceedings of �th ACM Sym�

posium on Principles of Database Systems� pages ���(���� Los Angeles� California�

�����

���� F� Bancilhon� T� Briggs� S� Khosha�an� and P� Valduriez� A powerful and simple

database language� In Proceedings of International Conference on Very Large Data

Bases� pages ��(���� �����

���� F� Bancilhon� S� Cluet� and C� Delobel� A query language for the O� object
oriented

database system� In Proceedings of �nd International Workshop on Database Pro�

gramming Languages� pages ���(���� Morgan Kaufmann� �����

���� W�C� Barker� D�G� George� L�T� Hunt� and J�S� Garavelli� The PIR protein sequence

database� Nucleic Acids Research� �������(����� �����

���� Michael Barr and Charles Wells� Category Theory for Computing Science� Series in

Computer Science� Prentice Hall International� New York� �����

���



���� Catriel Beeri and Yoram Kornatzky� Algebraic optimisation of object oriented query

languages� Theoretical Computer Science� ���������(��� August �����

���� Tim Berners
Lee� The World Wide Web initiative� The project� Available via

http
''info�cern�ch'hypertext'WWW'TheProject�html on WWW�

���� R� S� Bird� Transformational programming and the paragraph problem� Science of

Computer Programming� �����(���� �����

���� R� S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of

Programming and Calculi of Discrete Design� Volume F�� of NATO ASI Series� pages

�(��� Springer
Verlag� �����

���� R� S� Bird and P� Wadler� Introduction to Functional Programming� Series in Com


puter Science� Prentice
Hall International� �����

���� D� Bjorner� A� P� Ershov� and N� D� Jones� editors� Partial Evaluation and Mixed

Computation� North
Holland� ����� Proceedings of IFIP TC� Workshop� Gammel

Avernaes� Denmark� October �����

���� A� H� Borning� Classes versus prototypes in object
oriented languages� In ACM�IEEE

Fall Joint Computer Conference� pages ��(��� �����

���� V� Breazu
Tannen� P� Buneman� and S� Naqvi� Structural recursion as a query lan


guage� In Proceedings of �rd International Workshop on Database Programming Lan�

guages� Naphlion� Greece� pages �(��� Morgan Kaufmann� August ����� Also available

as UPenn Technical Report MS
CIS
��
���

���� V� Breazu
Tannen and A� R� Meyer� Lambda calculus with constrained types �ex


tended abstract�� In R� Parikh� editor� LNCS ���� Proceedings of the Conference on

Logics of Programs� Brooklyn� June ���	� pages ��(��� Springer
Verlag� �����

���� V� Breazu
Tannen and R� Subrahmanyam� Logical and computational aspects of

programming with Sets&Bags&Lists� In LNCS 	��� Proceedings of ��th International

Colloquium on Automata� Languages� and Programming� Madrid� Spain� July �����

pages ��(��� Springer Verlag� �����

���



���� Val Breazu
Tannen� Peter Buneman� and Limsoon Wong� Naturally embedded query

languages� In J� Biskup and R� Hull� editors� LNCS ���� Proceedings of �th In�

ternational Conference on Database Theory� Berlin� Germany� October� ����� pages

���(���� Springer
Verlag� October ����� Available as UPenn Technical Report MS


CIS
��
���

���� O� P� Buneman� R� Nikhil� and R� E� Frankel� An implementation technique for

database query languages� ACM Transactions on Database Systems� ��������(����

June �����

���� P� Buneman� L� Libkin� D� Suciu� V� Tannen� and L� Wong� Comprehension syntax�

SIGMOD Record� ��������(��� March �����

���� Peter Buneman� The fast Fourier transform as a database query� Technical Report

MS
CIS
��
��&L$C ��� Department of Computer and Information Science� University

of Pennsylvania� Philadelphia� PA ������ March �����

���� Peter Buneman� Kyle Hart� and Limsoon Wong� Answering some �unanswerable	 bi


ological queries� March ����� Presented at ACM Workshop on Information Retrieval

and Genomics� Bethesda� May ����� Available via http
''www�cis�upenn�edu'

#wfan'DBHOME�html on WWW�

���� R� M� Burstall� D� B� Macqueen� and D� T� Sanella� HOPE� An experimental ap


plicative language� In Proceedings of �st LISP Conference� pages ���(���� Stanford�

California� �����

���� Paul Butterworth� Allen Otis� and Jacob Stein� The GemStone object database man


agement system� Communications of the ACM� ���������(��� October �����

���� Luca Cardelli� Types for data
oriented languages� In J� W� Schmidt� S� Ceri� and

M� Missiko�� editors� LNCS ���� Advances in Database Technology � International

Conference on Extending Database Technology� Venice� Italy� March ����� Springer


Verlag� �����

���



���� M� Carey� D� DeWitt� and S� Vandenberg� A data model and query language for

Exodus� In Proceedings of ACM SIGMOD International Conference on Management

of Data� Chicago� Illinois� �����

���� Ashok Chandra and David Harel� Structure and complexity of relational queries�

Journal of Computer and System Sciences� �����(���� �����

���� Ashok Chandra and David Harel� Horn clause queries and generalizations� Journal

of Logic Programming� ���(��� �����

���� Surajit Chaudhuri and Moshe Y� Vardi� Optimization of real conjunctive queries�

In Proceedings of ��th ACM Symposium on Principles of Database Systems� pages

��(��� Washington� D� C�� May �����

���� E� F� Codd� A relational model for large shared databank� Communications of the

ACM� ���������(���� June �����

���� E� F� Codd� Extending the database relational model to capture more meaning� ACM

Transactions on Database Systems� ��������(���� December �����

���� E� F� Codd� Fatal 
aws in SQL� part I� Datamation� pages ��(��� �� August �����

���� E� F� Codd� Fundamentals ignored in SQL� The resulting inadequacies� part �� The

Relational Journal� ����� �����

���� Latha S� Colby� A recursive algebra for nested relations� Information Systems�

���������(���� �����

���� Latha S� Colby� Query Languages and a Unifying Framework for Non�traditional Data

Models� PhD thesis� Computer Science Department� Indiana University� Bloomington�

Indiana �����
����� May ����� Available as Indiana University Computer Science

Technical Report ����

���� Mariano P� Consens and Alberto O� Mendelzon� Low
complexity aggregation in

GraphLog and Datalog� Theoretical Computer Science� ������(���� �����

���



���� W� Cook� Object
oriented programming versus abstract data types� In LNCS ����

Foundations of Object�Oriented Languages� pages ���(���� Springer
Verlag� �����

���� William R� Cook� Walter L� Hill� and Peter S� Canning� Inheritance is not subtyp


ing� In Proceedings ��th Annual ACM Symposium on Principles of Programming

Languages� pages ���(���� San Francisco� California� January �����

���� B� Courcelle� Fundamental properties of in�nite trees� Theoretical Computer Science�

�����(���� �����

���� J� Darlington� An experimental program transformation and synthesis system� Arti�


cial Intelligence� �������(��� �����

���� C� J� Date� A critique of the SQL database language� SIGMOD Record� �������(���

November �����

���� C� J� Date� Some principles of good language design� SIGMOD Record� �������(��

November �����

���� S� B� Davidson� A� S� Kosky� and B� Eckman� Facilitating transformations in a human

genome project database� Technical Report MS
CIS
��
��&L$C ��� University of

Pennsylvania� Philadelphia� PA ������ December �����

���� Anuj Dawar� Feasible Computation Through Model Theory� PhD thesis� Department

of Computer and Information Science� University of Pennsylvania� Philadelphia� PA

������ May ����� Available as UPenn Technical Report MS
CIS
��
���

���� Jan Van den Bussche� Complex object manipulation through identi�ers� An alge


braic perspective� Technical Report ��
��� University of Antwerp� Department of

Mathematics and Computer Science� Universiteitsplein �� B
���� Antwerp� Belgium�

September �����

���� Department of Energy� DOE Informatics Summit Meeting Report� April ����� Avail


able via gopher at gopher�gdb�org�

���� O� Deux� The story of O�� IEEE Transactions on Knowledge and Data Engineering�

�������(���� March �����

���



���� Herbert B� Enderton� A Mathematical Introduction To Logic� Academic Press� San

Diego� �����

���� Martin Erwig and Udo W� Lipeck� A functional DBPL revealing high level opti


mizations� In Proceedings of �rd International Workshop on Database Programming

Languages� Nahplion� Greece� pages ���(���� Morgan Kaufmann� August �����

���� R� Fagin� Finite model theory  a personal perspective� Theoretical Computer

Science� ��������(��� August �����

���� Joseph H� Fasel� Paul Hudak� Simon Peyton
Jones� and Philip Wadler� The functional

programming language Haskell� SIGPLAN Notices� ������ May �����

���� Leonidas Fegaras� E�cient optimization of iterative queries� In Catriel Beeri� Atsushi

Ohori� and Dennis E� Shasha� editors� Proceedings of �th International Workshop on

Database Programming Languages� New York� August ����� pages ���(���� Springer


Verlag� January �����

���� Leonidas Fegaras� A uniform calculus for bulk data types� February ����� Manuscript

available from fegaras�cse�ogi�edu�

���� John T� Feo� Arrays in Sisal� In Lenore Mullin� Michael Jenkins� Gaetan Hains�

Robert Bernecky� and Guang Goa� editors� Arrays� Functional Languages� and Par�

allel Systems� pages ��(���� Kluwer� Boston� �����

���� Anthony J� Field and Peter G� Harrison� Functional Programming� Addison
Wesley�

Wokingham� England� �����

���� M� A� Firth� A Fold�Unfold Transformation System for a Nonstrict Language� PhD

thesis� Department of Computer Science� University of York� Heslington� York� Y��

�DD� England� December �����

���� Johann Christoph Freytag� LNCS ���� Translating Relational Queries into Iterative

Programs� Springer
Verlag� Berlin� �����

���� M� Furst� J� Saxe� and M� Sipser� Parity� circuits� and the polynomial time hierarchy�

Mathematical Systems Theory� �����(��� �����

���



���� Haim Gaifman� On local and non
local properties� In Proceedings of the Herbrand

Symposium� Logic Colloquium ���� pages ���(���� North Holland� �����

���� M� Ginsberg� Nonmonotonic Reasoning� Morgan Kaufmann� Los Alto� California�

�����

���� A� Goldberg and R� Paige� Stream processing� In Proceedings of ACM Symposium on

LISP and Functional Programming� pages ��(��� Austin� Texas� August �����

���� A� Goldberg and D� Robson� Smalltalk��� The Language And Its Implementation�

Addison
Wesley Publishing Company� Reading� Massachusetts� �����

���� Goetz Graefe� Rule�Based Query Optimization in Extensible Database Systems� PhD

thesis� Computer Sciences Department� University of Wisconsin
Madison� Madison�

WI ������ November ����� Available as University of Wisconsin Computer Sciences

Technical Report ����

���� Goetz Graefe� Query evaluation techniques for large databases� ACM Computing

Surveys� ��������(���� June �����

���� Goetz Graefe� Richard L� Cole� Diane L� Davison� William J� McKenna� and

Richard H� Wolniewicz� Extensible query optimization and parallel execution in Vol


cano� In Johann Christoph Freytag� David Maier� and Gottfried Vossen� editors�

Query Processing for Advanced Database Systems� Chapter ��� pages ���(���� Mor


gan Kaufmann� San Mateo� California� �����

���� Stephane Grumbach and Tova Milo� Towards tractable algebras for bags� In Pro�

ceedings of ��th ACM Symposium on Principles of Database Systems� pages ��(���

Washington� D� C�� May �����

���� Stephane Grumbach� Tova Milo� and Yoram Kornatzky� Calculi for bags and their

complexity� In Catriel Beeri� Atsushi Ohori� and Dennis E� Shasha� editors� Proceed�

ings of �th International Workshop on Database Programming Languages� New York�

August ����� pages ��(��� Springer
Verlag� January �����

���



���� Stephane Grumbach and Victor Vianu� Playing games with objects� In S� Abiteboul

and P� C� Kanellakis� editors� LNCS ���� �rd International Conference on Database

Theory� Paris� France� December ����� pages ��(��� Springer
Verlag� �����

���� Dirk Van Gucht and Patrick C� Fischer� Multilevel nested relational structures� Jour�

nal of Computer and System Sciences� �����(���� �����

���� C� A� Gunter and J� C� Mitchell� Theoretical Aspects of Object�Oriented Programming�

Types� Semantics� and Language Design� MIT Press� �����

���� Carl A� Gunter� Semantics of Programming Languages� Structures and Techniques�

Foundations of Computing� MIT Press� �����

���� Marc Gyssens and Dirk Van Gucht� The powerset algebra as a result of adding

programming constructs to the nested relational algebra� In Proceedings of ACM�

SIGMOD International Conference on Management of Data� pages ���(���� Chicago�

Illinois� June �����

���� Marc Gyssens and Dirk Van Gucht� A comparison between algebraic query languages

for 
at and nested databases� Theoretical Computer Science� ������(���� �����

���� L� Haas et al� Starburst mid

ight� As the dust clears� IEEE Transactions on Knowl�

edge and Data Engineering� ��������(���� March �����

���� R� W� Haddad and J� F� Naughton� Counting methods for cyclic relations� In Pro�

ceedings of �th ACM Symposium on Principles of Database Systems� pages ���(����

�����

���� K� Hart� D� B� Searls� and G� C� Overton� SORTEZ� A relational translator for

NCBI�s ASN�� database� Computer Applications in the Biosciences� To appear� See

also UPenn Technical Report CBIL
�����

���� Kyle Hart� SORTEZ Reference Manual� University of Pennsylvania School of

Medicine� Department of Genetics� Computational Biology and Informatics Labora


tory� Philadelphia� PA ������ ����� Available as UPenn Technical Report CBIL
�����

���



���� Kyle Hart and Limsoon Wong� A brief introduction to Kleisli� an open query system

in ML� January ����� Manuscript available from limsoon�saul�cis�upenn�edu�

���� Kyle Hart and Limsoon Wong� CPL as a query language for genetic databases�

January ����� Manuscript available via http
''www�cis�upenn�edu'#wfan'DBHOME

�html on WWW�

���� Kyle Hart and Limsoon Wong� A query interface for heterogenous biological data

sources� February ����� Manuscript available via http
''www�cis�upenn�edu'

#wfan'DBHOME�html on WWW�

���� P� Henderson� Purely functional operating systems� In J� Darlington� P� Henderson�

and D� Turner� editors� Functional Programming and Its Applications� pages ���(����

Cambridge University Press� �����

���� Matthew Hennessy� The Semantics of Programming Languages� An Elementary In�

troduction using Structural Operational Semantics� John Wiley and Sons� Chichester�

England� �����

���� L� J� Henschen and S� A� Naqvi� On compiling queries in �rst
order databases� Journal

of the ACM� ��������(��� �����

���� D� G� Higgins� R� Fuchs� P� J� Stoehr� and G� N� Cameron� The EMBL data library�

Nucleic Acids Research� �������(����� �����

���� P� Hudak and P� Wadler� Report on the programming language Haskell� Technical

Report ��&#� Glasgow University� Glasgow G�� �QQ� Scotland� April �����

���� R� J� M� Hughes� Analysing strictness by abstract interpretation of continuations�

In Abstract Interpretation of Declarative Languages� pages ��(���� Ellis Horwood�

Chichester� England� �����

���� R� Hull� Relative information capacity of simple relational database schemata� SIAM

Journal of Computing� ���������(���� August �����

���� Richard Hull and Jianwen Su� On the expressive power of database queries with

intermediate types� Journal of Computer and System Sciences� ������(���� �����

���



����� Richard Hull and Chee K� Yap� The Format model� A theory of database organisation�

Journal of the ACM� ���������(���� July �����

����� Tomasz Imielinski� Shamim Naqvi� and Kumar Vadaparty� Incomplete objects  a

data model for design and planning applications� In James Cli�ord and Roger King�

editors� Proceedings of ACM�SIGMOD International Conference on Management of

Data� Denver� Colorado� May ����� pages ���(���� ACM Press� �����

����� Tomasz Imielinski� Shamim Naqvi� and Kumar Vadaparty� Querying design and plan


ning databases� In C� Delobel� M� Kifer� and Y� Masunaga� editors� LNCS 	��� De�

ductive and Object Oriented Databases� pages ���(���� Berlin� ����� Springer
Verlag�

����� Neil Immerman� Relational queries computable in polynomial time� Information and

Control� �����(���� �����

����� Neil Immerman� Sushant Patnaik� and David Stemple� The expressiveness of a family

of �nite set languages� In Proceedings of ��th ACM Symposium on Principles of

Database Systems� pages ��(��� �����

����� ISO� Standard ����� Information Processing Systems� Open Systems Interconnection�

Speci
cation of Abstraction Syntax Notation One �ASN���� �����

����� ISO� Standard ���	� Information Processing Systems� Database Language SQL� �����

����� Kenneth E� Iverson� A Programming Language� Wiley� New York� �����

����� G� Jaeschke and H� J� Schek� Remarks on the algebra of non
�rst
normal
form rela


tions� In Proceedings ACM SIGACT�SIGMOD Symposium on Principles of Database

Systems� pages ���(���� Los Angeles� California� March �����

����� M� Jarke and J� Koch� Query optimization in database systems� ACM Computing

Surveys� ���������(���� June �����

����� L� A� Jategaonkar and J� C� Mitchell� ML with extended pattern matching and

subtypes� In Proceedings of ACM Conference on LISP and Functional Programming�

pages ���(���� Snowbird� Utah� July �����

���



����� D� Johnson� A Catalog of Complexity Classes� Chapter �� pages ��(���� North

Holland� �����

����� P� H� J� Kelly� Functional Languages for Loosely�Coupled Multiprocessors� PhD the


sis� Department of Computing� Imperial College of Science and Technology� South

Kensington� London SW� �BZ� England� �����

����� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Language� Prentice


Hall� Englewood Cli�s� New Jersey� second edition� �����

����� W� Kim� J� Garza� N� Ballou� and D� Woelk� Architecture of the ORION next


generation database system� IEEE Transactions on Knowledge and Data Engineering�

��������(���� March �����

����� Won Kim� A new way to compute the product and join of relations� In Proceedings

of ACM SIGMOD International Conference on Management of Data� pages ���(����

�����

����� Won Kim� Introduction to Object�Oriented Databases� MIT Press� Cambridge� MA�

�����

����� Aviel Klausner and Nathan Goodman� Multirelations� Semantics and languages� In

A� Pirotte and Y� Vassiliou� editors� Proceedings of ��th International Conference

on Very Large Databases� Stockholm� August ���	� pages ���(���� Los Altos� CA�

August ����� Morgan Kaufmann�

����� H� Kleisli� Every standard construction is induced by a pair of adjoint functors� Proc�

Amer� Math� Soc�� ������(���� �����

����� Anthony Klug� Equivalence of relational algebra and relational calculus query lan


guages having aggregate functions� Journal of the ACM� ���������(���� July �����

����� P� Kolaitis and C� Papadimitriou� Why not negation by �xedpoint# In Proceed�

ings of �th ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database

Systems� March �����

���



����� J� B� Kruskal� The theory of well
quasi
ordering� A frequently discovered concept�

Journal of Combinatorial Theory Series A� ������(���� �����

����� G� M� Kuper� Logic programming with sets� In Proceedings of �th ACM Symposium

on Principles of Database Systems� pages ��(��� �����

����� G� M� Kuper� On the expressive power of logic programming languages with sets� In

Proceedings of �th ACM Symposium on Principles of Database Systems� pages ��(���

Los Angeles� California� �����

����� Gabriel M� Kuper and Moshe Y� Vardi� On the complexity of queries in the logical

data model� Theoretical Computer Science� ���������(��� August �����

����� K� Kupert� G� Saake� and L� Wegner� Duplicate detection and deletion in the extended

NF� data model� In W� Litwin and H� J� Schek� editors� LNCS ���� Foundation of

Data Organization and Algorithms� pages ��(���� Springer
Verlag� June �����

����� Charles Lamb� Gordon Landis� Jack Orenstein� and Dan Weinreb� The ObjectStore

database system� Communications of the ACM� ������� October �����

����� J� Lambek and P� J� Scott� Introduction to Higher Order Categorical Logic� Volume �

of Cambridge Studies in Advanced Mathematics� Cambridge University Press� London�

�����

����� Leonid Libkin� An elementary proof that upper and lower powerdomain constructions

commute� Bulletin of the EATCS� ������(���� �����

����� Leonid Libkin� Aspects of Partial Information in Databases� PhD thesis� Department

of Computer and Information Science� University of Pennsylvania� Philadelphia� PA

������ August ����� In preparation�

����� Leonid Libkin and Limsoon Wong� Query languages for bags� Technical Report

MS
CIS
��
��&L$C ��� University of Pennsylvania� Philadelphia� PA ������ March

�����

���



����� Leonid Libkin and Limsoon Wong� Semantic representations and query languages for

orsets� In Proceedings of ��th ACM Symposium on Principles of Database Systems�

pages ��(��� Washington� D� C�� May ����� See also UPenn Technical Report MS


CIS
��
���

����� Leonid Libkin and Limsoon Wong� Aggregate functions� conservative extension� and

linear orders� In Catriel Beeri� Atsushi Ohori� and Dennis E� Shasha� editors� Pro�

ceedings of �th International Workshop on Database Programming Languages� New

York� August ����� pages ���(���� Springer
Verlag� January ����� See also UPenn

Technical Report MS
CIS
��
���

����� Leonid Libkin and Limsoon Wong� Conservativity of nested relational calculi with

internal generic functions� Information Processing Letters� ���������(���� March �����

See also UPenn Technical Report MS
CIS
��
���

����� Leonid Libkin and Limsoon Wong� New techniques for studying set languages� bag

languages� and aggregate functions� In Proceedings of ��th ACM Symposium on Prin�

ciples of Database Systems� pages ���(���� Minneapolis� Minnesota� May ����� See

also UPenn Technical Report MS
CIS
��
���

����� Leonid Libkin and Limsoon Wong� Some properties of query languages for bags� In

Catriel Beeri� Atsushi Ohori� and Dennis E� Shasha� editors� Proceedings of �th In�

ternational Workshop on Database Programming Languages� New York� August �����

pages ��(���� Springer
Verlag� January ����� See also UPenn Technical Report MS


CIS
��
���

����� J� W� Lloyd and R� W� Topor� A basis for deductive database systems� Journal of

Logic Programming� ����(���� �����

����� S� MacLane� Categories for the Working Mathematician� Springer
Verlag� Berlin�

�����

����� I� A� Macleod� A database management system for document retrieval applications�

Information Systems� ����� �����

���



����� David Maier� The Theory of Relational Databases� Computer Science Press� Rockville�

Maryland� �����

����� David Maier and Bennet Vance� A call to order� In Proceedings of ��th ACM Sympo�

sium on Principles of Database Systems� pages �(��� Washington� D� C�� May �����

����� Akifumi Makinouchi� A consideration on normal form of not necessarily normalised

relation in the relational data model� In Proceedings of �rd International Conference

on Very Large Databases� Tokyo� Japan� pages ���(���� October �����

����� Ernest G� Manes� Algebraic Theories� Volume �� of Graduate Texts in Mathematics�

Springer
Verlag� Berlin� �����

����� L� Meertens� Algorithmics  towards programming as a mathematical activity� In

Proceedings of the CWI Symposium on Mathematics and Computer Science� pages

���(���� North
Holland� �����

����� Robin Milner� Mads Tofte� and Robert Harper� The De
nition of Standard ML� MIT

Press� �����

����� P� Mishra and M� H� Eich� Join processing in relational databases� ACM Computing

Surveys� ��������(���� March �����

����� Eugenio Moggi� Notions of computation and monads� Information and Computation�

�����(��� �����

����� Inderpal Singh Mumick� Hamid Pirahesh� and Raghu Ramakrishnan� The magic of

duplicates and aggregates� In Dennis McLeod� Ron Sacks
Davis� and Hans Schek�

editors� Proceedings of ��th International Conference on Very Large Databases� Bris�

bane� Australia� August ����� pages ���(���� Palo Alto� CA� August ����� Morgan

Kaufmann�

����� M� Nakayama� M� Kitsuregawa� and M� Takagi� Hash
partitioned join method using

dynamic destaging strategy� In Proceedings of Conference on Very Large Databases�

pages ���(���� �����

���



����� S� Naqvi and S� Tsur� A Logical Language for Data and Knowledge Bases� Computer

Science Press� �����

����� National Center for Biotechnology Information� National Library of Medicine�

Bethesda� MD� ENTREZ� Sequences Users� Guide� ����� Release ����

����� National Center for Biotechnology Information� National Library of Medicine�

Bethesda� MD� NCBI ASN�� Speci
cation� ����� Revision ����

����� R� S� Nikhil� The parallel programming language Id and its compilation for parallel

machines� In Proceedings of Workshop on Massive Parallelism� Amal
� Italy� October

����� Academic Press� �����

����� A� Ohori� P� Buneman� and V� Breazu
Tannen� Database programming in Machiavelli�

a polymorphic language with static type inference� In James Cli�ord� Bruce Lindsay�

and David Maier� editors� Proceedings of ACM�SIGMOD International Conference on

Management of Data� pages ��(��� Portland� Oregon� June �����

����� Atsushi Ohori� A Study of Semantics� Types� and Languages for Databases and Ob�

ject Oriented Programming� PhD thesis� Department of Computer and Information

Science� University of Pennsylvania� Philadelphia� PA ������ �����

����� Atsushi Ohori� Representing object identity in a pure functional language� In Proceed�

ings of �rd International Conference on Database Theory� Paris� France� December

����� pages ��(��� Springer
Verlag� December �����

����� S� L� Osborn� Identity� equality� and query optimization� In K� R� Dittrich� editor�

LNCS ���� Advances in Object Oriented Databases Systems� Springer
Verlag� �����

����� G� Ozsoyoglu� Z� M� Ozsoyoglu� and V� Matos� Extending relational algebra and rela


tional calculus with set
valued attributes and aggregate functions� ACM Transactions

on Database Systems� ���������(���� December �����

����� Jan Paredaens� February ����� Private communication at Bellcore Collection Type

Workshop�
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����� Jan Paredaens and Dirk Van Gucht� Converting nested relational algebra expressions

into 
at algebra expressions� ACM Transaction on Database Systems� ��������(���

March �����

����� P� Pearson� N� Matheson� N Flescher� and R� J� Robbins� The GDB human genome

data base anno ����� Nucleic Acids Research� �������(����� �����

����� P�L� Pearson� The genome data base �GDB�� a human genome mapping repository�

Nucleic Acids Research� �������(����� �����

����� M� Petre and R� L� Winder� Issues governing the suitability of programming lan


guages for programming tasks� In People and Computers IV� Proceedings of HCI����

Cambridge� ����� Cambridge University Press�

����� Hamid Pirahesh� Joseph M� Hellerstein� and Waqar Hasan� Extensible rule
based

query rewrite optimization in Starburst� SIGMOD Record� ��������(��� June �����

����� Raghu Ramakrishnan� Magic templates� A spellbinding approach to logic programs�

In Proceedings of International Conference on Logic Programming� pages ���(����

Seattle� Washington� August �����

����� Didier Remy� Typechecking records and variants in a natural extension of ML� In

Proceedings of ��th Symposium on Principles of Programming Languages� pages ��(

��� �����

����� Didier Remy� E�cient representation of extensible records� In P� Lee� editor� Proceed�

ings of ACM SIGPLAN Workshop on ML and its Applications� pages ��(��� �����

����� John Reynolds� Using category theory to design implicit conversions and generic

operators� In N� D� Jones� editor� LNCS ��� Proceedings of Aarhus Workshop on

Semantics�Directed Compiler Generation� Springer
Verlag� January �����

����� M� A� Roth� H� F� Korth� and A� Silberschatz� Extended algebra and calculus for

nested relational databases� ACM Transactions on Database Systems� ���������(����

December �����
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����� H�
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Information Systems� ���������(���� �����

����� David A� Schmidt� Denotational Semantics� A Methodology For Language Develop�

ment� Allyn and Bacon� Boston� �����

����� P� G� Selinger� M� M� Astrahan� D� D� Chamberlin� R� A� Lorie� and T� G� Price�

Access path selection in a relational database management system� In Proceedings

of ACM SIGMOD International Conference on Management of Data� pages ��(���

����� Reprinted in Readings in Database Systems� Morgan
Kaufmann� �����

����� Tim Sheard and Leonidas Fegaras� A fold for all seasons� In Proceedings of �th ACM

Conference on Functional Programming and Computer Architecture� pages ���(����

Copenhagen� June �����

����� Tim Sheard and David Stemple� Automatic veri�cation of database transaction safety�

ACM Transaction on Database Systems� ���������(���� September �����

����� D� D� Sleator and R� E� Tarjan� Self
adjusting binary search trees� Journal of the

ACM� ������(���� �����

����� David Stemple and Tim Sheard� A recursive base for database programming� In J� W�

Schmidt and A� A� Stogny� editors� LNCS 	��� Next Generation Information System

Technology� pages ���(���� Berlin� ����� Springer
Verlag�
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sachusetts� �����

����� Bjarne Stroustrup� The C�� Programming Language� Addison
Wesley Publishing
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����� Dan Suciu� Fixpoints and bounded �xpoints for complex objects� In Catriel Beeri�

Atsushi Ohori� and Dennis Shasha� editors� Proceedings of �th International Work�

shop on Database Programming Languages� New York� August ����� pages ���(����

Springer
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CIS
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���
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����� Dan Suciu and Limsoon Wong� On two forms of structural recursion� July �����
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����� Abdullah U� Tansel and Lucy Garnett� On Roth� Korth� and Silberschatz�s extended
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���
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����� W� Wechler� Universal Algebra for Computer Scientists� Volume �� of EATCS Mono�
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