NORMAL FORMS AND CONSERVATIVE
EXTENSION PROPERTIES FOR QUERY
LANGUAGES OVER COLLECTION TYPES*

Limsoon Wong
Real World Computing Partnership Novel Function

Institute of Systems Science Laboratory
Heng Mui Keng Terrace, Singapore 0511

18 July 1995

*This reviewed invited paper appeared in Journal of Computer and System Sciences, 52(3):495-505, June
1996.

1

CONSERVATIVE EXTENSION PROPERTY

Correspondence to: Limsoon Wong, Institute of Systems Science, Heng Mui Keng Terrace, Sin-
gapore 0511. Email: limsoon@saul.cis.upenn.edu.

Abstract

Strong normalization results are obtained for a general language for collection types.
An induced normal form for sets and bags is then used to show that the class of functions
whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the
complex object) at most 7 and output has height at most o definable in a nested relational
query language without powerset operator is independent of the height of intermediate
expressions used. Our proof holds regardless of whether the language is used for querying
sets, bags, or lists, even in the presence of variant types. Moreover, the normal forms are
useful in a general approach to query optimization. Paredaens and Van Gucht proved a
similar result for the special case when ¢ = 0 = 1. Their result is complemented by Hull
and Su who demonstrated the failure of independence when powerset operator is present
and ¢ = 0 = 1. The theorem of Hull and Su was generalized to all ¢ and o by Grumbach
and Vianu. Our result generalizes Paredaens and Van Gucht’s to all ¢ and o, providing a
counterpart to the theorem of Grumbach and Vianu.

1 Introduction

In Breazu-Tannen, Buneman, and Wong [7], a nested relational calculus and a nested relational
algebra based on structural recursion [6, 5] and on monads [34, 22] were proposed. In this report,
we describe relative set abstraction as a third nested relational query language. This query
language is similar to the well-known list comprehension mechanism in functional programming
languages such as Miranda [31] and KRC [30]. This language is equivalent to the two earlier
query languages both in terms of semantics and in terms of equational theories. This strong sense
of equivalence allows these three query languages to be freely combined into a nested relational
query language, called N'RL, and allows one to prove many properties about it by looking only
at one of the original languages.

In particular, we show that every expression of relative set abstraction can be reduced to a
normal form. This normal form has an immediately apparent property: an expression in normal
form does not have any subexpression with set height exceeding the set height of the type of the
expression. Here, the set height of a complex object refers to the maximal depth of nesting of
sets in that object, and similarly for object types. For functions from objects to objects, the set
height of the function type is the maximum of the set height of the input and output types. Let
NRL;,\ denote the class of functions whose input has set height at most ¢ and whose output
has set height at most o and are definable in N'RL using intermediate expressions whose set
heights are at most k£ > max(i, 0). Then this result says that for any i, o, k > max(i, 0), NRL; ok
coincides with N/ RL;ox+1 as a class. In other words, N RL;ox+1 18 a conservative extension of
NRL,;,\ as a language. Consequently, the class NRL; . is independent of k. Thus the ability
to use intermediate expressions of great height does not increase expressive power.

As an example of the conservative extension property, let us consider several possible ways to test
whether every drinker likes the same selection of beers. Let R : {drinker x beer} tabulate which
drinker likes what beers. One way is to first group by the beers around each invidual drinker
and then test whether these groups are all identical. Another way to express the same query is
to test whether the cartesian product of all drinkers and beers in R is equal to R itself. The first
method results in an intermediate set having one extra level of nesting — the set containing the
groups of beers. On the other hand, the second method needs nothing more than flat relations.
Having the conservative extension property means that any query, such as the drinker-and-beer
problem above, that is expressible using some deeply-nested intermediate data, such as the first
method above, can always be expressed using intermediate data that is less deeply nested, such
as the second method above. A third method is to produce the groups of beers liked by each
individual drinker one at a time and perform an on-the-fly test to see if the current group contains
all the beers mentioned in R. This last method corresponds to the optimization idea known as
pipelining and it also does not need nested relations. All three methods can be expressed as
queries in N'RL. The conservative extension property in this paper is essentially proved by
showing that queries like the first method can always be optimized into queries like the third
method, if N'RL is the query language.

This research complements work by other researchers. To begin with, Paredaens and Van Gucht
[25] showed that the nested relational algebra of Thomas and Fischer [27] is conservative with
respect to flat relational algebra in the sense we have described. Since the language of Thomas
and Fischer is equivalent to ours [36], this result implies that N'RL; , 41 is conservative with
respect to NRL;, when ¢ = o = 1. Our result generalizes this to conservativeness for all i
and o. Hull and Su proposed a nested relational query language in which powerset is expressible
and studied its expressive power [13]. One of their results is that it is not conservative with
respect to the flat relational algebra in this sense. Adding the powerset operator to N'RL gives
us a language equivalent to Hull and Su’s. Hence N'RL(powerset); o x+1 is not conservative with
respect to N'RL(powerset); ., when i = o = 1. Grumbach and Vianu [10] proved that the
language of Hull and Su is not conservative with respect to set height of input/output at all,
implying the failure of conservativeness in N'RL(powerset) for all i and o. In contrast, our
language cannot express powerset and is conservative with respect to set height of input/output.

The general conservative extension result can be further improved in two ways. Firstly, many
modern data models possess an additional data structuring mechanism known variously as co-
products, variant types, sum types, or tagged unions; see Abiteboul and Hull [3] and Hull and
Yap [14]. However, many papers on expressive power do not consider this feature [13, 10, 2].
We extend the nested relational calculus of Breazu-Tannen, Buneman, and Wong [7] with vari-
ant types and prove that the extended calculus remains conservative with respect to height of
input/output.

Secondly, the proof we give for relative set abstraction relies on a set-based semantics. This
is in line with the work of many researchers as reported in Abiteboul et. al. [1], Abiteboul
and Beeri [2], Hull and Su [13], Grumbach and Vianu [10], Paredaens and Van Gucht [25], and
Gyssens and Van Gucht [12]. But our languages can also be given interpretations based on bags
and lists. It is desirable to know whether the main result holds when the languages are used to
manipulate nested lists and bags. We prove that it does. Moreover, the proof is uniform across
these semantics.

The organization of this paper is as follows. Section 2 introduces relative set abstraction and the
nested relational calculus of Breazu-Tannen, Buneman, and Wong [7]. We establish translations
between these languages that preserve semantics, preserve set heights, and preserve and reflect
equational theories. Section 3 presents a strongly normalizing rewrite system. It is then used
to show the main result that the query language is conservative with respect to set height of
input/output. The two improvements mentioned above are presented in the Section 4.

2 Relative Set Abstraction

First let us sketch the calculus of Breazu-Tannen, Buneman, and Wong [7] (or N'RC for short).
Note that they simulated the Booleans using {()} and {} for reason of conceptual economy. In
this paper, we use real Booleans for reason of readability.

Types. A type in N'RC is either an object type s or is a function type s — ¢ where s and ¢ are
both object types. The object types are given by the grammar:

s,t = unit | bool | b | s xt]|{s}

The semantic of a complex object type is just a set of complex objects. The type unit has
precisely one object which we denote (). The type bool has as objects the two Boolean values,
true and false. There are also some unspecified base types b. An object of type s x t is a pair
whose first component is an object of type s and whose second component is an object of type
t. An object of type {s} is a finite set whose elements are objects of type s.

Expressions. The expressions of N'RC are formed according to the rules in Figure 1. Type
superscripts are usually omitted because they can be inferred [21]. In fact, they remain inferrable
even when records instead of pairs are used. See Ohori [24]; Ohori, Buneman, and Breazu-Tannen
[23]; Jategaonkar and Mitchell [16]; and Remy [26]. The usual Barendregt convention [4] that
bound variables are all distinct is adopted.

e:t e1:8s—t €y : 8§
z5:s Axfe:s—t e eg:t
e1: s eyt e:sxt e:s Xt
() : unit (e1,€9) 18 %t T e:s mo et
e; : bool €y: 8 e3: S
true : bool false : bool if e1 then ey else e3 : s
e:s er: {s} es: {s} er : {t} e : {s}
{}:{s} {e}: {s} er Uey : {s} U{er | z° € ea} : {t}
e;: b er: b e : {unit}
c:b e1 b es : bool empty e : bool

Figure 1: Expressions of N'RC.

For example, U{{m z°**} | 2°** € R{***}} is a valid expression because it can be typed, as shown
below, according to our formation rules. On the other hand, U{{z*} | z* € R™} is not a valid
expression no matter what s is, because the type int is not a set type and thus cannot be formed
according to our rules.

x>t g xt
sxt .

T T s

T O N e
U{{Wl xsxt} | 5t ¢ R{sxt}} . {s}

Semantics. The semantics of these constructs are described below. The expression z is used to
denote the input object. The expression Az.e denotes the function f such that f(z) = e. The
expression e; e, denotes the result of applying the function e; to the object es.

It has already been mentioned that () denotes the unique object of type unit. The expression
(e1, e3) denotes the pair whose first component is the object denoted by e; and whose second
component is the object denoted by e;. The expression 7 e denotes the first component of the
pair denoted by e. The expression 75 e denotes the second component of the pair denoted by e.

The expression {} denotes the empty set. The expression {e} denotes the singleton set containing
the object denoted by e. The expression e; U e5 denotes the union of the sets e; and e;. The
expression J{e; | € ez} denotes the set obtained by first applying the function Az.e; to each
object in the set e and then taking the union of the results (which must be sets by the typing
rule for the construct). That is, U{e; | € es} = f(01) U...U f(0,), where f is the function
denoted by Az.e; and {o1,...,0,} is the set denoted by ey. It should be emphasized that the
x € ey part in the U{e; | = € ey} construct is not a membership test. It is an abstraction which
introduces the variable x whose scope is the expression e;; and it should be understood in the
same spirit in which the lambda abstraction \y.e is understood.

The expressions true and false denotes the two Boolean values in the obvious way. The expression
if e; then ey else es has the usual meaning. That is, if e; is true, then the whole expression
denotes the same object as e,; and if e; is false, then the whole expression denotes the same
object as es.

The expression ¢ denotes a constant of base type b. The expression e; b ey is the equality
test restricted to base type b. As will be shown later, the equality tests at all complex object
types are definable in terms of b using N'RC as the ambient language. Finally, the expression
empty e is the emptiness test restricted to the unit type. Testing for emptiness of sets e’ at other
types can be expressed as empty{() | z € €'}.

Shorthands. The following shorthands are very intuitive and we use them whenever possible.
The “expression” not e is to be interpreted as if e then false else true. The “expression” e; and e,
is to be interpreted as if e; then ey else false.

Examples. Let X and Y denote sets having types {s x {t}} and {t'} respectively. Then
U{U{{(z,y)} | = € X} | y € Y} has type {(s x {t}) x t'} and denotes the cartesian product of
the sets denoted by X and Y; while U{U{{(m2,y)} | y € maz} | x € X} has type {s x ¢t} and
denotes the unnesting of the set denoted by X.

Wadler and Trinder argued that list/set/bag comprehensions is a natural query notation [29, 28,

7

35]. They also demonstrated that this notation does not hamper query optimization. In the
remainder of this section we present a query language based on the comprehension syntax that
is equivalent to NRC. We call this query language Relative Set Abstraction (or RS.A for short).

Types. The types in RSA are the same as those in N'RC.

Expressions. These are the same as N'RC, but with the U{e | x € €'} construct replaced by
the set comprehension construct {e | z; € ej,...,z, € e,} whose typing rule is given in Figure
2. Note that the e in the comprehension construct is not required to be a set.

er:{s1} en : {sn} e:t
{e|xi' €ery...,a5" €ep}: {t}

Figure 2: Set comprehension in RSA.

The lexical ordering of z1 € ey,...,2, € ¢, in {e | x1 € e1,...,z, € €,} is significant, since z;
can be used in e;, for j > . It must be pointed out that, as in the U{e; | = € es} construct, the
x; € e; in the comprehension construct is not a set membership test. It is the introduction of a
variable binding, similar to that of lambda abstraction Az.e. It is to emphasize this point that
we call this language relative set abstraction.

We use the notation A as a shorthand for x; € ey,...,2, € e,. The scope of a set abstraction
variable z; in {e | A, z; € e;, A’} is A’ and e. There is a close syntactic similarity between RS.A
and the traditional flat relational calculus. In fact, the lexical ordering constraint mentioned
above can be seen as a straightforward device for guaranteeing safety. This simple constraint,
though apparently more restrictive than those safety constraints imposed on relational calculus,
does not lead to a loss in expressive power.

Semantics. The meaning of {e | z1 € e1,...,z, € e,} is the set f(o;)U...U f(on), where f is
the function such that f(z;) ={e | 2 € €9,..., 2, € e,} and {04, ...,0,} is the set e;. For the
base case, the meaning of {e | } is just the singleton set {e}. Thus, the semantics can be defined
in terms of N'RC as follows:

{e|ziee, Ay =J{{e| A} | z1 € &1}

This, with the semantics of the base case, provides a recursive definition of comprehensions purely
in terms of the U{e; | € e} construct.

Shorthand. The following shorthand is very intuitive and we use it whenever possible. The
“expression” {e | Aj, €',As}, where €' has type bool, is to be interpreted as {e | Ay, z €
(if € then {()} else {}), Ay}, where x is a fresh variable.

Examples. Let X and Y denote sets having types {{s}} and {¢} respectively. Then {(z,y) |z €
X, y € Y} has type {{s} x t} and denotes the cartesian product of the sets denoted by X and
Y. As a second example, {y | ¢ € X, y € z} has type {s} and denotes the flattening of the
set denoted by X. For a more ambitious example, let W denote a set having type {s x t}.
Then {(mz, {my |y € W, my =m z}) | £ € W} has type {s x {t}} and denotes the nesting
operation on the first column of W.

Having introduced the languages, we show that they are equivalent. To this end, we need a
translation N'R[-] taking an expression e : s of N'RC to an expression N R|e] : s of RSA and a
translation RN[-] taking an expression e : s of RSA to an expression RN [e] : s of NRC. The
translations are straightforward [34]. Since the languages differ only in one pair of constructs,
only rules for this pair are needed.

e NR[U{e1 |z € e} ={y | 2 € NRles], y € NRe1|}, where y is fresh.
e RN[{e|xz1€e1,...,xn€e}] = URN[{e|z2€€a,....0, €ey}] | 11 € RNe1]} =
U{...U{{RNe]} | z,, € RNe,]} | ...} | 1 € RNes]}-

Theorem 2.1 Every closed e of NRC denotes the same value as N'R[e]; and every closed e of
RSA denotes the same value as RN[e]. That is, RSA and NRC are equivalent. O

Since N'RC does not have membership test, or anything that looks like a nesting operation,
we show that they are definable. It has been established [7] that equality test =* on all object
types s can be used to simulate membership test, subset test, set difference, set intersection, and
relational nesting. Therefore, it suffices to prove that

Proposition 2.2 Equality at all complex object types is definable in RSA.

Proof. Let =° be the equality test at type s. It can be defined by induction on s.

unit

ez = y = true

o =000l — if & then y else (not y)

o g =0 y 1s given.

oz =%t ¢y = (mz =°*my) and (mex =' moy)

o X =0} Y = (X subset® Y) and (Y subset® X), where

X subset® Y = empty{() | + € X, (z nonmembersY)}

e z nonmember®* Y = empty{() |y € Y,z =% y}. .

3 Normal Form and Conservativity

We first present a rewrite system for RSA that is strongly normalizing. The normal forms
induced by this rewrite system are then used to prove that every definable function is definable
using subexpressions whose set height is at most the set height of the input/output of the
function. The set height ht(s) of a type s is defined by induction on the structure of type:

e ht(unit) = ht(bool) = ht(b) =0
e hit(s x t) = ht(s — t) = max{ht(s), ht(t)}
o ht({s}) =1+ ht(s)

Note that every expression of our languages has a unique typing derivation. The set height of
expression e is defined simply as ht(e) = max{ht(s) | s occurs in the type derivation of e}. Then
the theorem expresses a very general conservative property. It says that to process information
(that is, input/output) of set height n, no operators whose set height exceed n is required. In
other words, if a function whose input/output has height n is defined by an expression e whose
height exceeds n, we can find an alternative expression ¢’ whose height does not exceed n to
implement it.

As an illustration, let us consider the first method mentioned earlier for testing if all drinkers like
the same beers. It can be implemented by the expression e defined as empty{() | z € {{my |y €
R, (my ="kt)} |z € RY, not (z = {mw | w € R})}, where R : {drinker x beer}
tabulates which drinker likes what beers. This expression has height 2 because the subexpression
{{my |y € R, (my =%k 7 2)} | € R} has height 2. This expression e having the sole free
variable R implicitly defines a function f(R) = e. (This function f can also be formally defined
as AR.e in RSA.) Thus, the value of R is the input to f and the value of e given R is the output
of f. So f has input height 1 = ht(R), output height 0 = ht(bool), and set height 2 = hit(e).

In other words, the function f uses intermediate data that has a greater level of set nesting
than its input and output. We now introduce a rewrite system to eliminate this problem by
deriving a flat implementation of f. Let e[e’/x] stands for the expression obtained by replacing
all free occurrences of x in e by €', provided the free variables in e’ are not captured during

the substitution. Similarly, the notation Ale’/x], where A is z1 € ey,...,x, € ey, stands for
1 € eq[e'/x],...,x, € ey[€’/x]. Now, consider the rewrite system consisting of the following
rules:

1. (A\x.e)e’ ~ ele'/x]
2. mi(e1, ex) ~ e

3. if true then ey else ey ~» ey

10

4. if false then eq else ey ~» ey

5. if (if e1 then ey else e3) then ey else e5 ~ if ey then (if es then ey else es) else (if e3 then ey
else e5)

mi(if e1 then ey else e3) ~ if ey then m; es else m; e3

{e| Ay, wef}, Ao}~ {}

{e] A1, zwefe'}, Ao}~ {ele'/a] | Ay, Agle'/x]}

{e| Ay, x €egUey, A}~ {e| Ay, x€er, AgtU{e | Ay, x € eg, Ay}
10. {e | Ay, x € {e'| A"}, Ay}~ {e[e'/x] | A1, A, Aqle'/x]}

11. {e | Ay, = € if e then ey else e3, Ao} ~ {e | Ay, u € if e then {()} else {}, z €
ea, Ao} U {e | Ay, u € if eq then {} else {()}, es, Aq}, provided (1) u is fresh, (2) eq is
not {()} and e3 is not {}, and (3) ey is not {} and e; is not {()}.

© % N o

Rule 10 is the most significant rule. It rewrites the expression {e | A;, z € {¢' | A’}, Ay}
to {e[e'/x] | Ay, A', Ayle’/z]}. In the process of doing so, it eliminates the intermediate set
{¢/ | A’} constructed by the original expression. If this intermediate set has great height, than
the set height of the resulting expression would be reduced.

Rule 11 basically rewrites {e | A1, = € if ey then ey else ez, Ay} to {e | Ay, €1, = € €3, Ag} U
{e | A1, not e;, x € e3, Ay}. It is given the more complicated form above in order to guarantee
the termination of the system. In the next section, we present a strikingly simpler system based

on N'RC.

Rule 5 is not really needed for proving the conservative extension theorem in this section. It
is included here to provide a correspondence to a more general rule used in proving the more
general result of the next section. It is of course also a useful simplification rule in its own right.

As an illustration of these rules, let us consider the first method for testing if all drinkers like
the same beers: empty{() | z € {{my | y € R, (my =" m2)} | 2 € R}, not (z ={beer}
{mw | w € R})}. As discussed earlier, it has set height 2. It can be rewritten using Rule 10
to give the expression empty {() | € R, not {my | y € R, (my =%inker rg)} =lbeer}
{myw | w € R})}, which has height 1 and is the third method mentioned earlier. The difference
between these two expressions is simple. The original expression generates all the grouping of
beers {{my | y € R, (my =9""* 1)} | x € R} before testing that each group {my | y €
R, (my =%kt 7 x)} is the same as all the beers mentioned in R. The new expression
generates one group {my | y € R, (my =%k m 1)} and tests it before going on to the next
group, avoiding the need to keep all groups simultaneously. Note that the expression can be
further reduced because ="} is a compound expression defined in terms of =" as given by
Proposition 2.2. However, these subsequent rewrite steps do not change the height of expressions.

This rewrite system is sound. That is,

11

Proposition 3.1 (Soundness) If e; ~ eq, then e; and ey have the same denotation. O

A rewrite system is said to be strongly normalizing if it does not admit any infinite sequence of
rewriting. That is, any sequence of rewriting must lead to an expression to which no rewrite rule
of the system is applicable.

Theorem 3.2 (Strong normalization) This rewrite system is strongly normalizing.

Proof. Let ¢ be an arbitrary function which maps variable names to a natural number greater
than 1 and let ¢[n/x] be the function which assigns n to x but agrees with ¢ on other variables.
Then ||e||¢, as defined below, measures the size of e in the environment ¢ where each free variable
z in e is given the size p(z).

o |lzlle = p(z)

101l = I{}le = [[truelle = [[falsellp = [[cll = 2

o [Im ellp = |lm; elle = [[{e}llo = [[empty ellp =1+ |lell¢

o [[(Az.e)(e)lle = llellelllello/=] + [le'lle

o [[Az.ellp = lell[2/2]

o [lif er then {()} else {} o = |lif er then {} else {()}[eo = lledll

o ||if e then ey else es||p = ||e1||o- (1+]|e2||¢+||es||¢), provided the cost formula immediately

above is not applicable.

ler U eallg = ll(ensea)llo = ller =P eallo =1+ |les]lo + [leall

I{en | 1 € €o,...,zn € en1}tlle = lleollpo - --- - |lenll¢n, where o = @ and ;11 =
villleillpi/Tiy]-

Now we need several technical claims.

Claim I. Suppose z is not free in e. Then ||e||¢ = ||e||¢[n/x]-

Proof of Claim I. Straightforward induction on e.

Claim II. Suppose ¢1(z) < @o(z) for each z free in e. Then |le||¢1 < |le]|¢p2-

Proof of Claim II. Straightforward induction on e.

Claim III. Suppose ||€'||¢ < n and z not free in €'. Then ||e[e’/z]||p < |le||¢[n/z].

12

Proof of Claim III. Since x is not free in €', it is also not free in e[e//z]. By Claim I, it suffices
to prove ||e[e’/z]||p[n/z] < ||e]|¢[n/x] instead. This is easily accomplished by induction on e.

Claim IV. Suppose z is not free in €’. Suppose ||€'||p1 < @2(x). Suppose ¢1(y) < pa(y) for each
y, distinct from z, free in e. Then |le[e¢'/z]||o1 < ||e]| -

Proof of Claim IV. By Claim III, ||e[e’ /z]||¢1 < ||e||¢1[p2(2)/x]. Clearly, ¢1[ps(z)/x](y) < wa(y)
for all y free in e. By Claim II, ||e||¢1[pa(x)/z] < ||e]|¢2. Thus |le[e’/z]||¢1 < ||e]|p2-

Claim V. Suppose e; ~» ey. Then ||e1]|¢ > ||e2|| for any .

Proof of Claim V. With Claim II and Claim IV in our possession, the proof is a routine analysis
on e; ~ ep. We provide the two most interesting cases for illustration.

Case {ex | z1 €Eep,...,xx Eeg_1}~{e, |21 E€f),...,xx €€ U el |x1 €E€f,...,2 € €h_1},
where e, is e/, U el for a certain fixed n < k; and e;, €}, and e are identical for i # n. Let
wo = ¢ and w11 = iflleillpi/zir]. Let oy = ¢ and @iy = gifllejlli/zi]. Let ¢ = ¢ and
i1 = ¢illled ||} /ziza]. Then we calculate

||{6k | T €€y,...,Tk € ek_1}||g0

= |leollwo - - .- - llexllon

= (lleollwo - - - llen-1lln-1) - (1 + [lenllon + llenllen) - (lentallonsa - - llexllox)

> 1+ ([leollo - - - - llenllen - - -~ llexller) + (leollpo - - - - llenllen - - - - [lexller)

2 1+ (lleollet - - - llenllen - - - - llexller) + (leglleg - -- - - llenllen - - - - llegllek) By IL

= |{e, | z1 € €p,...,x €€} U{er |21 €ep,...,xr €€l_1}Hep
Case {ex | ©1 € €py-.., T E g1}~ {e}, | 1 € €0y Tp € Cn1,Y1 € €5y, Ym € €1 1, Tni2 €
€nitr--- Tk € €1}, where e, is {el, | y1 € €j,...,ym € e, _;} for a certain fixed n < k;

and €] is e;[e;, /Tpp1] for i > n. Let ¢ = ¢ and i1 = ifllel|pi/2i1]. Let o5 = ¢, and
oiv = oillledlef /yira]- Let @p 1 = o _illlem_illom—1/yml and @i, = @ifll€illpi/xit1]. Then
we calculate as follows:

{ex | z1 € eq, ...,z € ex_1}|p

= |leollo - - - - - [lexllox

= |leollpo - - - - [len—1llon—1 - |legllen - - - - - [lemllom - llentillontr - llexllok

> |leollwo - - - [len-1llon—1-lleclleg - - - - - llem—1ll¥m—1 - [lentillonti--- - |lexllor

> leolleo - - - - [len—1llon—1 - [l€F]le7 - - - - lem 1llom_1 - llensillonin - - - - llekllel By IV.
= ||{e} | z1 €ep,.. ., Zn €y 1,Y1 €€y Ym € €1, Tny2 € €515, Tk € €1 @

As a consequence of Claim V, we know that rewriting at the top level is strongly normalizing. To
complete the theorem, we need to show that rewriting at the subexpression level is also strongly
normalizing. Let C[] denotes a context; that is, an expression with a “hole.” Let C[e] be the
expression obtained by “plugging” e into the hole of C[], provided Cle] is well formed. Note that

13

plugging an expression into a hole is different from the normal notion of substitution; the former
allows free variable to be captured by the context, the latter does not. (See Gunter [11] for more
detail on the notion of context.) Then

Claim VI. Suppose e; ~ e2 and Cle;] is well formed. Then Cles] is well formed and ||Cles]||¢ >
|IC[e2]]| for all .

Proof of Clatm VI. Since we have in our possession Claim V, the proof is now a routine induction
on the structure of C[_]. This completes the proof of the theorem. a

Therefore every expression of RSA of complex object type can be reduced to very simple normal
forms. Normal forms can be exploited in many proofs of undefinability by showing that there is
no normal form that defines the desired function. Normal forms can also be used to demonstrate
results of a different nature. An important example of this sort is the following theorem:

Theorem 3.3 (Conservative extension) Let e : s be an expression of RSA. Then there is
an equivalent expression €' of RSA such that ht(e') < max({ht(s)}U{ht(s) | s is the object type
of a free variable in e}).

Proof. We first rewrite e to a normal form under the rewrite system given earlier. Note that
in this normal form of e, any occurrence of empty(-) must appear in a context of the form
empty(e; U ... U e,). If each e; has the form {}, then we replace empty(e; U ... U e,) by

true. If some e; has the form {-}, then we replace empty(e; U ... U e,) by false. If some e; has
the form if A then B else C, then we replace empty(e; U ... U e,) by if A then empty(e] U
. U e,) else empty(e]’ U ... U e), where €] is e; if j # 7 and is B if j = i, and e}’ is ¢; if

j # 1 and is C if j = 4. This rewrite process clearly terminates.

Note that if every free variable of e has height 0, then the final expression would contain no
empty(-). However, if some free variable of e has height greater than 0, then each e; in each
empty(e; U...Ue,) of the final expression must have the forms {} or 7...7 z, where z is a free
variable of e. It should also be remarked that if all the free variables in the original expression e
have height greater than 0, the above additional rewrite steps can be skipped.

Let ¢’ be the final result of the above rewrite process. We verify its height by structural induction
on it. Let k£ be the maximum height of the free variables in ¢/, which is no more than that of e.

Case €' : s is z, {}, true, false, c, or (). Immediate.
Case €' : bool is empty €”. Immediate by the discussion above.

Case €' : {t} is {€"}. By hypothesis, ht(e") < max(ht(t), k). Then ht(e') = max(ht(s), ht(e")) <
max(ht(s), k).

Case €' : bool is e; b es. By hypothesis, ht(e;) < k and ht(e;) < k. Then hi(e') =
max (ht(s), ht(e1), ht(ez)) < max(k, ht(s)).

14

Case €' : t; X ty is (e1,e3). By hypothesis, ht(e;) < max(k, ht(t1)) and ht(ey) < max(k, ht(ts)).
Then ht(e') = max(ht(s), ht(eq), ht(ez)) < max(k, ht(s)).

Case €' : sism € or my €”. Then €” must be a free variable or is a chain of projections on a free
variable. The case thus holds.

Case €' : s is if e; then ey else e3. By hypothesis, ht(e3) < max(k,ht(s)) and ht(ex) <
max(k, ht(s)). Also, by hypothesis, ht(e;) < max(k,ht(bool)) < max(k,ht(s)). Thus, ht(e') <
max(k, ht(s)).

Case €' : {t} is e; U eo. By hypothesis, ht(e;) < max(k, ht(s)) and hi(ez) < max(k, ht(s)). Then
ht(e') < max(k, ht(s)).

Case ¢ : {t} is {" | 1 € e1,...,2, € €,}. By hypothesis, ht(e;) < max(k,1+ ht(xy),...,1+
ht(z;—1)). Now we show by induction on ¢ that the 1+ ht(z;) can be replaced by 1. Starting with
e;. If e is of the form empty(-), then ht(z;) = 0. Otherwise, e; must be a chain of projections on
a free variable, then ht(z;) < k. In either case, ht(e;) < max(k,1,1+ ht(z2),...,1+ ht(z;_1)).
The analysis can be repeated for the remaining e;. Then ht(e;) < max(k,1). By hypothesis,
ht(e") < max(k, ht(t)). Then ht(e') = max(k, ht(s), ht(e"), ht(e1),...,ht(e,)) < max(k, ht(s)).
O

Consequently, NRL; k11 = NRL;, for all 4, 0o, and k > max(i,0). As remarked earlier, the
above theorem implies that the height of input/output dictates the kind of functions that our
languages can express. In particular, using intermediate expressions of greater heights does not
add expressive power. This is in contrast to languages considered by Abiteboul, Beeri, Grumbach,
Gyssens, Hull, Su, Van Gucht, and Vianu [2, 1, 13, 10] where the kind of functions that can be
expressed is not characterized by the height of input/output and is sensitive to the height of
intermediate operators. The principal difference between our languages and these languages is
that powerset is not expressible in our languages [7] but is expressible in those other languages.
This indicates a non-trivial contribution to expressive power by an operation such as a powerset.

This result has a practical significance. Some databases are designed to support nested sets up
to a fixed depth of nesting. For example, Jaeschke and Schek [15] consider non-first-normal-
form relations in which attribute domains are limited to powersets of simple domains (that is,
databases whose height is at most 2). “NRL restricted to expressions of height 2” is a natural
query language for such a database. But knowing that N'RL is conservative at all set heights,
one can instead provide the user with the entire language N'RL as a more convenient query
language for this database, so long as queries have input/output height not exceeding 2.

Furthermore, expressions having height 1 is syntactically very similar to the flat relational calcu-
lus. It is therefore not difficult to show further that every function, from a tuple of flat relations
to a flat relation, that is definable in N'RL is also expressible in the flat relational algebra. This
is the result first proved by Paredaens and Van Gucht [25] in the context of the nested relational
algebra of Thomas and Fischer [27]. The Thomas and Fischer algebra is very restrictive and its
operators can be applied only to the topmost level of nested relations. Nevertheless, it is possible

15

to show [36] that the addition of a constant function Az.{{}} to the Thomas and Fischer algebra
yields a query language that is equal in expressive power to NRL. The key to the proof of
the conservative extension theorem is the use of normal form. The heart of Paredaens and Van
Gucht’s proof is also a kind of normal form result. However, the following main distinctions can
be made between our results:

e The Paredaens and Van Gucht result is a conservative property with respect to flat rela-
tional algebra. This implies NRL; ox41 = NRL; o for i = 0 = 1. We have generalized
this to any 7 and o.

e The normal form used by Paredaens and Van Gucht is a normal form of logic formulae
and the intuition behind their proof is mainly that of logical equivalence and quantifier
elimination. In our case, the inspiration comes from a well-known optimization strategy
(see Wadler’s early paper [32, 33] on this subject). In plain terms, we have evaluated the
query without looking at the input and managed to flatten the query sufficiently until all
intermediate operators of higher heights are “optimized out.” This idea is summarized by
the pipeline rule {e | Ay, z € {e'| A}, Ay} ~ {ele’/z] | A1, A, Ayle’/x]} which eliminates
the intermediate set built by {e’| A’}.

e It is clear that NRL can be given a bag semantics by interpreting {} as the empty bag, U
as bag union, {e} as singleton bag, and {e | A} as bag comprehension. Then N'RL can be
used as a nested bag query language. The rewrite rules given earlier are also valid under
the bag semantics. Hence the normal form and the proof of the conservative extension
theorem above hold for bags as well. This is most useful. For example, it follows easily
that the nested bag language obtained by adding a duplicate elimination primitive and the
nested bag language obtained by adding a “bag subtraction” primitive define two distinct
classes of functions, neither of which is properly included in the other [18]. It is not clear
that the proof given by Paredaens and Van Gucht is applicable in this case.

e The setting for this result is also worth mentioning. N'RL can actually be parameterized
by an unspecified signature and we do not use any notion of active domain. So extra
primitives can be added to the language without affecting strong normalization. Conser-
vative extension is sensitive to new primitives. Nevertheless, NRL(D)iox+1 = NRL(D)i ok
continues to hold so long as k > ht(p), where p is the extra primitive. For example, we
can add intpowerset : {int} — {{int}} which computes the powerset of a set of inte-
gers to N'RL. Then any function having input/output of height at most 2 definable in
NRL(intpowerset) can be defined without using intermediate data beyond height 2 [19].

As pointed out, Paredaens and Van Gucht’s result involved a certain amount of quantifier elim-
ination. There are several other general results in logic that were proved using quantifier elimi-
nation; see Gaifman [9] and Enderton [8]. The pipeline rule is related to quantifier elimination.
It corresponds to eliminating quantifier in set theory as {e | Ay A (3z.x € {€' | A'}) A Ay} ~

16

{ele'/z] | A1 AN A" A Agle'/x]}. Tt is interesting to observe that the logical notion of quantifier
elimination corresponds to the physical notion of getting rid of intermediate data. Nevertheless,
we stress again that the pipeline rule makes sense across sets and bags (and in the more general
form to be given in the next section, across lists as well) but quantifier elimination does not.

4 Extensions to the Main Theorem

In this section, we extend N'RC to N'RC+ by a variant type mechanism. Then we provide a
proof that this extended language is conservative with respect to set height. Furthermore, the
proof holds uniformly when the language is interpreted under a set-, list-, or bag-based semantics.

Types. Variant types are added to the language. If s and ¢ are object types, then the variant
type s+t is also an object type. The domain of a variant type s+t is the union of the domains
of s and t but values from s are tagged with a 1-tag and values from ¢ are tagged with a 2-tag.

Expressions. Three new constructs are required to manipulate variant objects. Their formation
rules are listed in Figure 3 below.

e:s e:s
leftt e:s+1 right' e 1t + s
€1 :81+ 89 eyt ezt

case ey of left x® = eq | right 2> = ez :t

Figure 3: Syntax for variants.

Semantics. left e injects e into a variant object by tagging the object denoted by e with a
1-tag. right e injects e into a variant object by tagging the object denoted by e with a 2-tag.
case ey of left t = eq | right y = e3 processes the variant object denoted by e; as follows. If
ey is equal to left e, then the case expression is equal to ey[e/z]. If e; is equal to right e, then
the case expression is equal to ez[e/x]. That is, the left or the right branch is taken depending
on whether e; has a 1-tag or a 2-tag respectively.

Examples. Let X denote a set having type {s+t}. Then U{(case x of lefty = {y} | right z =
{}) | * € X} has type {s} and denotes the selection of items that are 1-tagged in the set X.
Variants are really a rational generalization of null values. For example, if an object is either an
integer or is null, it can be given the type unit + int and is represented as left() if it is null or as
right 5 if it is the integer 5.

17

In the presence of variants, we can identify the Boolean type with the variant type unit +
unit. That is, we treat true as a shorthand for left(), false as a shorthand for right(), and
if e; then ey else ez as a shorthand for case e; of left © = ey | right + = e3. This
identification of bool as unit + unit is used below to give a proof that is simpler to than the proof
in the previous section and yet bears a close relationship to it.

Theorem 4.1 Let e : s be an expression of N RC+. Then there is an equivalent expression €' of
NRC+ such that ht(e') < max({ht(s)} U {ht(s) | s is the object type of a free variable in e}).

Proof. We use the strategy of the previous section and consider the new rewrite system below.
The rules of this system corresponds to the rules of the previous system in a direct way. (The
same numbering is used.)

1. (A\z.e)e’ ~ ele'/x]

2. mi(e1, ex) ~ e

3. case left e of left © = eq | right y = e3~ egle/x]
4. case right e of left © = eg | right y = e3~ esle/y]

5. case (case €| of left ¥ = ey | right vv = €}) of left x = ey | right y =
e3 ~ case €y of left ©' = (case ey of left x = ey | right y = e3) | right v =
(case €y of left v = eq | Tight y = e3)

6. m; (case ey of left x = ey | right y = e3) ~> case ey of left © = m; ey | right y = m; e3

7. Ufelzef{}t~{}

8. Ufe |z e {e}}~ ele/x]

9. U{e|z€(erUer)}~ (U{e |z €er}) U (U{e | = € er})

10. U{er | @1 € U{ea | z2 € e3}} ~ U{U{e1 | 1 € ex} | 22 € e3}

11. U{e1 | z1 € (case ey of left o = ez | right x5 = e4)} ~ case ey of left x5 =

U{er | 1 € es} | right x5 = U{er | 1 € ey}

It is easy to see that these rewrite rules are sound. That is, if e; ~ ey, then e; and e; denote
the same value.

Now let k¥ = max{ht(t) | ¢ is the object type of a free variable in e}. Suppose e has a normal
form e’ under the above rewrite rules (and the rewrite steps involving empty described in the
proof of Theorem 3.3). We show by structural induction on €’ that e’ satisfies the requirement
of the theorem. The three more interesting cases are given below.

18

Case € : sis U{e1 | © € e} where ey : {s2}. By hypothesis, ht(e;) < max(k,1). So ht(z) =
ht(es) — 1 < k. Then, by hypothesis, ht(e;) < max(k,ht(z),ht(s)) = max(k,ht(s)). Then
ht(e') = max(ht(s), ht(e1), ht(ez)) < max(k, ht(s)).

Case € : s is left® e; where e; : s1. Then s is s; + so. By hypothesis, ht(e1) < max(k, ht(s1)).
So ht(e') = max(ht(e1), ht(s)) < max(k, ht(s)). The case where €' : s is right e; is similar.

Case €' : s is caseey of leftx = e | righty = ez, where €1 : 57+ So. Then z: s1, y : 59, €9 : s,
and ez : s. By hypothesis, ht(e;) < k. Consequently, ht(s;) < k and hi(sy) < k. By hypoth-
esis, ht(ey) < max(k, ht(x),ht(s)) = max(k,ht(s)). Similarly, ht(ez) < max(k,ht(y), ht(s)) =
max(k, ht(s)). Now ht(e') = max(ht(e1), ht(es), ht(ez)) < max(k, ht(s)).

Finally, we have to show that the normal form ¢’ of e exists. To do this, we prove that the
rewrite system is strongly normalizing. Let ¢ maps variable names to natural numbers greater
than 1. Let ¢[n/z| be the function that maps = to n and agrees with ¢ on other variables. Let

|le||, defined below, measure the size of e in the environment ¢ where each free variable z in e
is given the size p(z).

o |lzlle = p(z)

lelle = 0lle = {3l = 2

o |Imi el = |2 ellp = |lempty ellp = ||lleft ellp = [|right e|lp = [[{e}]l¢ =2 - |lell¢
o [[Az.ellp = |lellp[2/z]

o [[(Az.e)(e)lle = llellellle’|e/=] - [le'][¢

o lev U edllo=ll(er,exlle =ller =0 eallo=1+leslle+ llesllep

o |[U{e' [z € e}lle = (lle'llelllello/z] +1) - [lell¢

o |lcasees of left x = e of right y = el = [lesllo-(1+leallelllell o/]+ llesllelllerllo/yl)

Using arguments similar to (and actually simpler than) that of Theorem 3.2, it is readily verified
that whenever e ~» €', we have ||e||¢ > ||¢’||¢ for any choice of . For example, modulo a few
simplifications in notations, the left-hand-side of Rule 5 has measure ||e||¢ + ||€}ll¢ - ||eb]le +
lerlle - lleslle + [lerlle - llexlle + [letlle - [lezlle - llealle + llerlle - lleglle - llealle + ll€blle - [les]le +
€Ll - lleslle - lleslle + lletlle - |leslle - |les]le. On the other hand, the right-hand-side has size
lerlle + llexlle - [leslle + llerlle - llexlle + llerlle - llezlle - [leallo + llerlle - [leglle - llezlle + lletlle -
lleslle - lleslle + lletlle - lleslle - |les|le- The latter is obviously less than the former. Therefore,
the rewrite system is strongly normalizing. This completes the proof. a

As remarked earlier, variant mechanisms have been used in some data models such as Abiteboul
and Hull [3] and Hull and Yap [14]. However, many earlier interesting works on expressive power

19

do not consider them [13, 10, 2]. We hope the above result have rectified this situation to some
extent.

Our languages have been given semantics based on sets. These languages can be given semantics
based on bags or on lists. For example, NRC can be treated as a “nested bag calculus” by
interpreting {} as the empty bag, e; U es as union of bags, and U{e' | z € e} as flatmapping
the function Az.e’ over the bag e. Similarly, N'RC can be treated as a “nested list calculus” by
treating { } as the empty list, e; Uey as the concatenation of list e; to the list ey, and U{e' | z € e}
as flatmapping the function Az.e’ over the list e. It is easy to check that the rewrite rules given
in this section are valid for bag semantics as well as for list semantics. So the same proof above
works for “nested bag calculus” and for “nested list calculus.” 1In fact, it works even in the
presence of variant types.

The proof is really over the syntax of N'RL. It does not matter what semantics is being given to
NRL, as long as the equations used in the rewrite rules are sound with respect to that semantics.
An important point to note is that the equality test primitive available in the syntax of N'RL is
for base types only. Hence the bag and list calculi as mentioned above can perform equality tests
at base types only. Equality tests at other types are not necessarily definable in these calculi.
However, it is known that these calculi can be enriched with more primitives, including equality
tests at all complex object types, and still retain the conservative extension property; see Libkin
and Wong [17, 18, 19].

The uniformity of this proof allows us to draw a few useful conclusions. Observe that the
translations between RSA and N'RC preserve set height. Therefore, the conservative extension
theorem holds also for “relative bag abstraction” and for “relative list abstraction.” It must be
remarked that these conclusions cannot be reached from the proof given in Section 3. The proof
in Section 3 does not work when RSA is interpreted using a list semantics. This is because two
of the rules used in Section 3 (namely Rules 9 and 11) are not valid as list concatenation does
not commute.

In addition, the new proof based on N'RC is also considerably simpler than the proof based RS.A
in several ways. Firstly, the rewrite rules for N'RC are clearly simpler than those for RS.A. For
example, Rule 11 for N'RC has no side condition but Rule 11 for RSA has side conditions. More
significantly, Rules 7 to 11 for N'RC are all “definite” in nature; in contrast, Rules 7 to 11 for
RS A all involve A’s, which are “indefinite” sequences of x; € e;. In other words, implementing
the RSA rules in a real life rewrite system (such as a query optimizer) would be very messy,
whereas implementing the N'RC rules would be very straightforward.

Secondly, most of the claims used are proved by structural induction on expressions. Since RS.A
and N'RC have the same number of constructs, one would expect the proofs to have similar
complexity. However, the proofs involving RS A are often clumsier than the corresponding ones
for NRC. The irregularity of the comprehension construct of RSA is again the culprit, because
when one reaches the case for the {e | z; € ey, ..., x, € e,} construct in RS.A, one would need
to perform a sub-induction on n!

20

However, RSA has an important saving grace: Queries and examples written in RS.A are often
more readable than the corresponding ones in A’RC. Indeed, this readability factor is the reason
that we have chosen to present our main result using RSA, even though it would have been
considerably more elegant using N'RC. Curiously, the comprehension construct of RS.A, which
is bad from the technical discussion above, is what makes RSA queries more readable.

5 Conclusion

In summary, we have shown that the conservative property NRL; ,x+1 = NRL;,x holds at all
i, 0, and k > max(i, 0). Furthermore, we have provided a proof that holds uniformly regardless
of whether N'RL is used as a nested relational language, as a nested bag language, or as a nested
list language.

It should also be remarked that the same technique can be used to show that the conservative
property continues to hold even when rational numbers, rational arithmetics, and a rational
summation operator are added to the N'RL. The language thus augmented is very interesting
because queries such as “select count from column,” “select average from column,” “select min-
imum from column,” and “select maximum from column” can be expressed. In other words,
the language thus endowed with rationals is a conservative extension of SQL. See Libkin and
Wong [17]. This property can then be used to prove a powerful finite-cofiniteness result [20],
which implies that the language extended with rationals and aggregate functions cannot express
recursive queries such as transitive closure.

Also important is the establishment of the strong normalization theorem in Section 3. It induces
very simple normal forms for expressions of RS.A under the set and bag semantics. This result
can be used to study relative strength of various primitives that one may consider adding to
NTRL. This direction proves to be fruitful and we have obtained further results on programming
with nested bags. See Libkin and Wong [18].

The rewrite rules given in Theorem 4.1 are actually a subset of the rules used in an optimizer for
an implementation of N'RL. The entire system of rewrite rules retains the strong normalization
property. We have also been successful in demonstrating the effectiveness of these rules with
respect to a call-by-value evaluation strategy. These rules generalize many well-known algebraic
relational optimization identities. For example, Rule 11 of Theorem 4.1 together with another rule
of our optimizer — U{(case e; of left x = ey | right y = €3) | z € e} ~> (case ey of left x =
U{es | z €€} | right y = U{es | z € e}),if 2z & FV(e;) — is a generalization of the folk wisdom
of migrating “filters” towards “generators.” See Wong [36].

Acknowledgements. The author thanks Val Tannen and Peter Buneman for many useful
discussions and invaluable suggestions, Dirk Van Gucht for explaining a fine point of his con-
servativeness result, and Catriel Beeri for useful suggestions and editorial advice. The author
was supported in part by grants NSF IRI-90-04137 and ARO DAALO3-89-C-0031-PRIME. This

21

work was done when the author was at the University of Pennsylvania.

References

1]

2]

3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

S. ABITEBOUL, C. BEERI, M. GYSSENS, D. VAN GUCHT, An introduction to the com-
pleteness of languages for complex objects and nested relations, in “Nested Relations and
Complex Objects in Databases,” Lecture Notes in Computer Science, Vol. 361, Springer-
Verlag, Berlin, 1989.

S. ABiTEBOoUL, C. BEERI, On the power of languages for the manipulation of complex
objects, in “Proceedings of International Workshop on Theory and Applications of Nested
Relations and Complex Objects,” Darmstadt, 1988.

S. ABITEBOUL, R. HuLL, IFO: A formal semantic database model, ACM Transactions on
Database Systems 12, No. 4 (1987), 525-565.

H. BARENDREGT, “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic
and Foundations of Mathematics, Vol. 103, Elsevier, 1984.

V. BREAZU-TANNEN, P. BUNEMAN, S. NAQVI, Structural recursion as a query language,
in “Proceedings of 3rd International Workshop on Database Programming Languages,”
Morgan Kaufmann, 1991.

V. BREAZU-TANNEN, R. SUBRAHMANYAM, Logical and computational aspects of program-
ming with Sets/Bags/Lists, in “Proceedings of 18th International Colloquium on Automata,
Languages, and Programming,” Lecture Notes in Computer Science, Vol. 510, Springer Ver-
lag, Berlin, 1991.

V. BrREAZU-TANNEN, P. BUNEMAN, L. WoNG, Naturally embedded query languages,
in “Proceedings of 4th International Conference on Database Theory,” Lecture Notes in
Computer Science, Vol. 646, Springer-Verlag, Berlin, 1992.

H. B. ENDERTON, “A Mathematical Introduction to Logic,” Academic Press, San Diego,
1972.

H. GAIrMAN, On local and non-local properties. in “Proceedings of the Herbrand Sympo-
sium, Logic Colloquium ’81,” North Holland, 1982.

S. GRUMBACH, V. VIANU, Playing games with objects, in “Proceedings of 3rd International
Conference on Database Theory,” Lecture Notes in Computer Science, Vol. 470, Springer-
Verlag, Berlin, 1990.

C. A. GUNTER, “Semantics of Programming Languages: Structures and Techniques,”
Foundations of Computing, MIT Press, Cambridge, Massachusetts, 1992.

22

[12] M. GysseENs, D. VAN GUCHT, A comparison between algebraic query languages for flat
and nested databases, Theoretical Computer Science 87 (1991), 263—286.

[13] R. HuLr, J. Su, On the expressive power of database queries with intermediate types,
Journal of Computer and System Sciences 43 (1991), 219-267.

[14] R. Hurr, C. K. YAp, The format model: A theory of database organisation, Journal of
the ACM 31, No. 3 (1984), 518-537.

[15] G. JAESCHKE, H. J. SCHEK, Remarks on the algebra of non-first-normal-form relations, in
“Proceedings 1st ACM SIGACT/SIGMOD Symposium on Principles of Database Systems,”
Los Angeles, California, 1982.

[16] L. A. JATEGAONKAR, J. C. MITCHELL, ML with extended pattern matching and subtypes,
in “Proceedings of ACM Conference on LISP and Functional Programming,” Snowbird,

Utah, 1988.

[17] L. LiBkIN, L. WoNG, Aggregate functions, conservative extension, and linear orders,
in “Proceedings of 4th International Workshop on Database Programming Languages,”
Manhattan, New York, 1993.

[18] L. LiBkIN, L. WoONG, Some properties of query languages for bags, in “Proceedings of
4th International Workshop on Database Programming Languages,” Manhattan, New York,
1993.

[19] L. LiBKIN, L. WonNgG, Conservativity of nested relational calculi with internal generic
functions, Information Processing Letters 49, No. 6 (1994), 273-280.

[20] L. LiBKIN AND L. WoONG, New techniques for studying set languages, bag languages, and
aggregate functions. in “Proceedings of 13th ACM Symposium on Principles of Database
Systems,” Minneapolis, Minnesota, 1994.

[21] R. MILNER, M. TOFTE, R. HARPER, “The Definition of Standard ML,” MIT Press, 1990.

[22] E. Mogai, Notions of computation and monads, Information and Computation 93 (1991),
55-92.

[23] A. OHORI, P. BUNEMAN, V. BREAZU-TANNEN, Database programming in Machiavelli:
A polymorphic language with static type inference, in “Proceedings of ACM-SIGMOD
International Conference on Management of Data,” Portland, Oregon, 1989.

[24] A. OHORI, “A Study Of Semantics, Types, And Languages For Databases And Object
Oriented Programming,” PhD thesis, Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, 1989.

[25] J. PAREDAENS, D. VAN GucHT, Converting nested relational algebra expressions into flat
algebra expressions, ACM Transaction on Database Systems 17, No. 1 (1992), 65-93.

23

[26] D. REMY, Typechecking records and variants in a natural extension of ML, in “Proceedings
of 16th Symposium on Principles of Programming Languages,” Austin, Texas, 1989.

[27] S. J. THOMAS, P. C. FISCHER, Nested relational structures, in “Advances in Computing
Research: The Theory of Databases,” JAI Press, 1986.

[28] P. W. TRINDER, Comprehension: A query notation for DBPLs, in “Proceedings of 3rd
International Workshop on Database Programming Languages,” Morgan Kaufmann, 1991.

[29] P. W. TRINDER, P. L. WADLER, List comprehensions and the relational calculus, in
“Proceedings of 1988 Glasgow Workshop on Functional Programming,” Rothesay, Scotland,
1988.

[30] D. TURNER, Recursion equations as a programming language, in “Functional Programming
and its Applications.” Cambridge University Press, 1982.

[31] D. TurNER, Miranda—a non-strict functional language with polymorphic types, in “Pro-
ceedings of Conference on Functional Programming Languages and Computer Architecture,”
Lecture Notes in Computer Science, Vol. 201, Springer-Verlag, Berlin, 1985.

[32] P. WADLER, Listlessness is better than laziness, in “Proceedings of ACM Symposium on
Lisp and Functional Programming,” Austin, Texas, 1984.

[33] P. WADLER, Listlessness is better than laziness II, in “Programs as Data Objects,” Lecture
Notes in Computer Science, Vol. 217, Springer-Verlag, Berlin, 1985.

[34] P. WADLER, Comprehending monads, Mathematical Structures in Computer Science 2
(1992), 461-493.

[35] D. A. WATT, P. TRINDER, “Towards a theory of bulk types,” Fide Technical Report
91/26, Glasgow University, Glasgow G12 8QQ), Scotland, 1991.

[36] L. WongG, “Querying Nested Collections,” PhD Thesis, Department of Computer and
Information Sciences, University of Pennsylvania, Philadelphia, PA 19104, August 1994.

24

