An Introduction to Remy’s Fast Polymorphic Record Projection

*

Limsoon Wong

Real World Computing Partnership Novel Function
Institute of Systems Science Laboratory

Mui Keng Terrace, Singapore 0511.
Email: 1imsoon@iss.nus.sg

Abstract

Traditionally, a record projection is compiled when all
fields of the record are known in advance. The need to
know all fields in advance leads to very clumsy programs,
especially for querying external data sources. In a paper
that had not been widely circulated in the database com-
munity, Remy presented in programming language con-
text a constant-time implementation of the record pro-
jection operation that does not have such a requirement.
This paper introduces his technique and suggests an im-
provement to his technique in the context of database
queries.

1 Introduction

In a prototype we have recently constructed for query-
ing over heterogenous genome data sources [9], there is
a need to compile queries in which many information
used by traditional systems are missing. Consider the
innocent-looking query below for example.

\DB1 => \DB2 =>

{(#name:n, #age:a, #sex:s) |
(#name:\n, #age:\a, ...) <- DB1,
(#name: n, #sex:\s, ...) <- DB2}

This query, in comprehension syntax [3], is a function
that joins DB1 and DB2 on the #name field. However,
there are several crucial differences between it and what
is encountered in a relational system:

e The schema for DB1 is not given. We know that it
is a set of records and that each record has a #name

*Appeared in ACM SIGMOD Record 24(3):34-39, September
1995.

and a #age field. We do not know what other fields
are in the record and we do not know what are the
type of values that can be found in these two fields.

e The schema for DB2 is not given. We know that it
is a set of records and that each record has a #name
and a #sex field. We do not know what other fields
are in the record and we do not know what are the
type of values that can be found in these two fields.

¢ This function may be applied to different pairs of
relations, not all having the same schema. That is,
it can be applied first to some DB} and DB} and
then be applied a second time to some DBj and
DBY that do not have the same schemas as DB]
and DBj,.

Such an example arise from our prototype because the
prototype has to work on many genetic ‘databases.’
These sources are highly heterogenous. They range from
traditional relational databases to non-traditional com-
plex structured files to data generated by specialized
software packages. While some of these sources have
schemas that are accessible, many lack them. Even for
those which provide their schemas, these schemas are
not described using a single unified format. In addition,
these data sources are regularly evolving and hence their
schemas are changing regularly too. Lastly, practically
all these data sources are remote.

Due to the above characteristics, it is not possible to
compile our queries using traditional techniques, which
requires precise knowledge of types to calculate field off-
sets at compile time. Let us first consider some simple
techniques that do work. We can store a record as a list
of field-name-field-value pairs. Then field selection or
record projection can be done by simply traversing the
list to look for the pair having the right field name. This
technique obvious requires a linear number of operations

and is thus too inefficient. It can be improved by storing
arecord as an array of field-name-field-value pairs sorted
on field name. Then record projection can be done by
binary-searching the array. This has logarithmic cost but
is still inefficient.

What is desired is a technique that (1) has constant time
efficiency and (2) has low space overhead. In this pa-
per, we introduce in Section 2 a technique due to Remy
that posseses these two properties. In his original paper
[16], which is not widely circulated in the database com-
munity, he presented his technique and concentrates on
showing that it has low space overhead. In this paper,
we compare in Section 3 its time performance with other
techniques and we suggest in Section 4 an improvement
in the context of querying homogenous collections.

2 Remy’s Technique

The technique of Remy for implementing fast poylmor-
phic record projection can be found in the paper [16]. As
this paper had not been widely circulated, we describe
his technique in detail below.

e We take advantage of the fact that when a record
object is created, we know how many fields it has
and what are the labels naming these fields.

e First assign to each label that appears in a program
a distinct number. Let A(l) be the number assigned
to label I.

e We do not have to know what is the type of each field
of a record. Hence, we use the notation [Iy, ...,1,] to
stand for the abstract type of a record which has
exactly the fields named by /4, ..

o In.

e For each abstract type [l1,...,1,], we create a direc-
tory Dy, ,...1,] as described below.

The directory is an m + 1 cell array of numbers.
Here m is a ‘magic’ number such that A(l;) mod m,
-y A(lp) mod m are distinct integers.

Let cell 0 contains the number m. Let cell 1 +
A(l;) mod m contains the number i, for 1 <14 < n.
The contents of the remaining cells are not impor-
tant. That is Dy, . ;,.1[1 + A(l;) mod m] = 4, if
1<i<n.

e Each record object of abstract type [l1,...,1,] is
stored as an array of n+1 pointers. Let O be a typ-
ical record object whose abstract type is [I1, ..., 5]
We describe its contents below.

In cell O[0], we store the pointer to the directory
Dy,,... 1,1+ In cells O[1],...O[n], we store pointers to
values of fields Iy, ..., I, of the record object re-
spectively. (Actually, we might be able to store the
values there directly.)

e To compile record selection, say r.I, the follow-
ing steps can be used. Let O be the record
object that r has been compiled into. Then
deref(O[deref(O[0])[1 + A(I) mod deref(O[0])[0]])])
fetches out the value of field { of r.

This method is quite efficient in terms of both space and
speed. In terms of speed, a record projection involves 4
array fetches, 2 pointer dereferencing, and 1 mod com-
putation. This is the constant cost for access to any field
of any record. In terms of space, there is 1 directory
for each abstract type and one extra array slot for each
record. A few cells get wasted if the corresponding m is
not chosen wisely. But the wastage is minimal (unlikely
to be more than the number of labels in the abstract
type). This wastage is mitigated by the fact that differ-
ent real records share the same directory.

The method can be made more efficient by picking m
to be 2" — 1. Then the mod computation can be re-
placed by faster bitwise intersection. Such a choice of
m increases directory wastage; however, this wastage is
mitigated by the fact that directories are shared. It is
also interesting to observe that, with this modification,
the Remy directory scheme becomes specialized to a kind
of extendible hashing scheme used in accessing external
data [7].

The basic implementation of the technique above
needs to be adjusted slightly when querying external
databases. Under this situation, it is often not possible
to know in advance the labels or field names that will be
found in incoming data. Hence label numbers, abstract
types, and directories have to be created on-the-fly as
external data streams are parsed. However, it is often
possible to make special arrangements so that efficiency
is improved.

For example, instead of having the an external heteroge-
nous data stream being trasmitted as

{ (#name:"john",#age:10),
(#name:"bill",#age:20),
(#name: "mary" ,#age:15,#note: "naughty"),
.

we could arrange to have it transmitted as

$d1 (#name,#age)
$d2 (#name,#age,#note)
{ (841, "john", 10),
($d1, "pbill", 20),
($42, "mary", 15, "naughty"),
..}

So that when $d1 (#name,#age) is parsed, we create the
Remy directory Diname,age] dynamically, if it does not
already exist, and associate it with $d1. Then when we
come to parsing ($d1, "john", 10), we can create the
record directly using the previously created directory.

3 Comparisons

In this section we compare three alternative implementa-
tions of a simple query requiring 750000 projection op-
erations. The first being the implementation of Remy
described in the previous section. The second is an im-
plementation based on binary search, which illustrates
the efficiency of Remy’s technique over typical imple-
mentations of polymorphic record projection. The third
is an implementation using ordinary record projection,
which is monomorphic and illustrates that Remy’s tech-
nique is only eight times slower. In the next section,
we suggest an improvement to Remy’s technique that
roughly triples its efficiency.

The query to be implemented is:

{ if x.#1 = y.#1 then x.#0 else y.#0 |
\x <- DB1, \y <- DB2 }

For each x in DB1 and each y in DB2, if the #1 field of x is
equal to the #1 field of y, this query includes the #0 field
of x in its output; it includes the #0 field of y otherwise.
Note that #[is the name of a field; it is not the position
of a field.

In every run, the cardinality of DB1 and DB2 is fixed at
500 records each. we use a nested loop in each of our
implementation and thus giving 750000 projection oper-
ations in each run. We repeat the runs by varying the
number of fields from 2 to 40. The Remy and the binary-
search implementations are reused without change when
the number of fields is changed; this illustrates the flex-
ibility of polymorphic record projection. The monomor-
phic implementation has to be changed each time we
change the number of fields; this highlights the clumsi-
ness of monomorphic projection.

Seconds

| BSearch

45.00 — — R

Tmproved Remy -

‘Monomorphic ™~
40.00 — —
35.00 — —
30.00 — —
25.00 — —
20.00 — —
15.00 — —
5.00 — —

00— | | | | X
No. of Fields

40.00

Figure 1: Performance Comparisons of Record Projec-
tion Techniques

The experiments are performed on a Sparc 20 machine.
The results are shown in Figure 1. The topmost curve
is the binary-search version, the next curve is the Remy
implementation, the bottom curve is the monomorphic
version. The third curve is the improved Remy imple-
mentation to be described in the next section.

Both the monomorphic implementation and the Remy
implementation have constant-time performance with re-
spect to the number of fields. On other hand, the binary-
search implementation becomes progressively worse, in
a logarithmic manner, as the number of fields increases.
This shows that the technique of Remy is a clear im-
provement over traditional polymorphic projection im-
plementations.

Remy’s implementation takes about 9 seconds to com-
plete each run. The monomorphic implementation takes
about 1.1 seconds. So Remy’s method is eight times
slower. However, we used the same program in Remy’s
case and 7 different programs in the monomorphic case.
We would have to use 39 different programs if we did not
stop the experiment for the monomorphic implementa-
tion at eight fields. Therefore, Remy’s technique offers a
great deal of flexibility at a rather attractive cost.

In terms of space usage, Remy’s technique is very good
as well. Its records are four bytes (the size of one integer,

the magic number) bigger than the monomorphic imple-
mentation. In addition, it has an overhead of one direc-
tory entry (shared by 1000 records) in each run. Thus
Remy’s technique has very small space overhead. In con-
trast, the binary-search implementation has a space over-
head for each record that is linearly proportional to the
number of fields in the record because a record is rep-
resented as an array of field-name-field-value pairs that
is sorted on field name. Thus the binary-search method
(and other typical polymorphic projection implementa-
tions) is extremely space inefficient.

4 An Improvement

In this section, we discuss a technique for further improv-
ing the performance of Remy’s technique in the context
of programming with homogenous collection types.

If the set of records is homogenous, the offset of any field
in one record must be the same as all other records in the
same set. The Remy projection operation can be divided
into an offset computation, which is the same for all these
records, and the actual retrieval of field value based on
the offset. So the basic idea here is to move the offset
computation outside the loop, whenever we are iterating
over homogenous collections.

We illustrate this idea with the test query from the previ-
ous section. The Remy implementation of the test query
is as follow:

fun TestRemy DB1 DB2 =
map (fn X => map (fn Y
if Record.Proj 1 X =
then Record.Proj 0 X
else Record.Proj 0O

=>
Record.Proj 1 Y

y) DB2) DB1

It is in the syntax of ML [12], where sets are simulated
using lists and field names are represented using integers.
The operation Record.Proj !l E is the projection of field [
of record E, where E is a representation of a record using
Remy’s method. The syntax fn X => FE is ML’s way
of defining a function that takes input X and produces
output E. The syntax map F' E is ML’s way of applying
a function F' to each element in the list E.

TestRemy works correctly regardless of what DB1 and DB2
are, so long as both of them are lists of records having a
field whose name is 0 and a field whose name is 1. In par-
ticular, it works even when DB1 and DB2 are not homoge-
nous. For example, it works even when some records in

DB1 have 3 fields and some have 4 fields. This makes
Remy’s technique very general because it can be used
to implement polymorphic record projection for systems
based on parametric polymorphism [13, 17, 2, 15, 16,
etc.] and for systems based on subtype polymorphism
[4, 5, 6, etc.].

However, not every system needs this kind of generality
in record projection. In particular, relational databases
have homogenous sets. It is possible to take advantage of
homogeneity to speed up record projection using Remy’s
technique.

To do so, we recall that Remy record projection con-
sists of two steps. The first step is the computation
of an offset based on field name and the magic num-
ber associated with a Remy directory. The second
step uses the offset to indexed into a Remy record to
retrieve the value of the required field. That is the
Record.Proj ! E operation can be broken into an offset
computation Record.0ffset ! E and an indexing oper-
ation Record.Jump n E, where n is the offset returned
by the Record.0ffset operation.

If the set we are mapping over is homogenous, then all
its records share the same Remy directory. Therefore,
we can apply the idea of code motion [1]. We compute
the offset only for the first record. This offset can be
reused for the remaining records.

To implement this idea, let us first implement a memo-
ization function [11].

fun Memoize () =

let
val Cell = ref (Record.Proj)
val _ = Cell :=(fn L => fn R =>
let

val Offset = Record.Offset L R
val V = Record.Jump Offset R
in Cell:=(fn L =>Record.Jump Offset);
v
end)
in Cell
end

Calling Memoize () gives us a pointer to a function f L E.
The first time f is called with field name ! and record r,
it executes Record.Jump (Record.0ffset [r) r. The
next time f is called with field name I’ and record 7/,
it executes Record.Jump n 7', where n is the value of
Record.0ffset [r computed during the first call. Note
that I’ is ignored. Hence the first time the full cost of

record projection is incurred, but all subsequent calls
incur less than half that cost.

Then the improved implementation is the program be-
low, where 'E is ML’s syntax for dereferencing the
pointer E.

fun TestRemy’ DB1 DB2 =
let
val (cx0,cx1)
val (cy0O,cyl)
in map (fn X => map (fn Y =>
if (tex1 1 X) = (leyl 1Y)
then (!cx0 0 X)
else (!cy0 0 Y)) DB2) DB1

=(Memoize () ,Memoize())
=(Memoize () ,Memoize())

end

The performance of the improved program is also given
in Figure 1. It runs at an average of 3 seconds. This is
a three-fold improvement over the original implementa-
tion.

Note that it is also possible to turn the binary-search im-
plementation into a ‘amortized constant-time’ operation
by moving offset computation outside the loop. However,
its large space overhead remains. So Remy’s technique
is still better.

We must be very careful in the use of the improvement
technique described above. For example, it is not sound
to replaced TestRemy’ by the program Foo below.

val (cx0,cxl) =(Memoize() ,Memoize())
val (cy0,cyl) =(Memoize(),Memoize())

fun Foo DB1 DB2 =
map (fn X => map (fn Y =>
if (lex1 1 X) = (ley1 1Y)
then (!'cx0 0 X)
else (!cy0 O Y)) DB2) DB1

This program creates the cells cx0, cx1, cy0, and cy1
statically and uses them in all invocations of Foo. Then
the first call to Foo DB1 DB2 will work correctly. How-
ever, if we try to call Foo DB1’ DB2’ later, where DB1’
and DB2’ are different in types from DB1 and DB2, this
call will not be computed correctly. The reason is that
records in DB1’ and DB2’ should use Remy directories
different from those used by DB1 and DB2. However, the
memo cells are write-once only and so the second call
will use the incorrect Remy directories. (Our original
program TestRemy’ will work all the time because it
creates new memo cells each time it is called.)

The technique of Remy has been used in our prototype
system [9] for querying heterogenous data sources. A
newer version of our system is also able to automatically
perform the optimization suggested above.

5 Conclusion

We have given a detailed description of Remy’s imple-
mentation of polymorphic record projection. We have
shown that it is attractive in terms of time as well as
space. We have suggested an improvement that pro-
duces a three-fold speed-up in queries on homogenous
bulk data types.

We summarize some of the advantages of Remy’s tech-
nique below.

e It is efficient both in space and in time.

It is very flexible and can be used in languages based
on parametric polymorphism or subtyping.

It works even when both homogenous and heteroge-
nous collections are present.

It offers compositionality. We can design the im-
plementation of set independently from the imple-
mentation of records. This orthogonality allows the
same programs to work on set of integers, set of
records, and more usefully, set of variants. A vari-
ant [8] is a data type whose values can be one of sev-
eral distinct types/structures; it is sometimes called
a tagged union in data modeling literature [10].

e It is very straightforward to implement.

e Although we have not discussed hash tables, the
idea behind Remy’s technique can be used in adap-
tive hash tables. In fact, it is closely related to the
extendible hashing technique [7].

To close this paper, we want to mention another tech-
nique, due to Ohori [14], for implementing fast polymor-
phic record projection. It can achieve a slightly smaller
contant-time performance than Remy’s. However, its
implementation is more complex and is closely depen-
dent on the underlying type system. In particular, it
does not generalize to subtyping.

References

[1]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

V. Breazu-Tannen, P. Buneman, and L. Wong.
Naturally embedded query languages. In LNCS
646: Proceedings of 4th International Conference on
Database Theory, Berlin, Germany, October, 1992,
pages 140-154. Springer-Verlag, October 1992.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and
L. Wong. Comprehension syntax. SIGMOD Record,
23(1):87-96, March 1994.

L. Cardelli. Amber. In LNCS 242: Combinators and
Functional Programming, pages 21-47. Springer-
Verlag, 1986.

L. Cardelli. A semantics for multiple inheritance.
Information and Computation, 76(2):138-164, 1988.

L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and
G. Nelson. The Modula-3 type system. In Proceed-
ings 16th Annual ACM Symposium on Principles
of Programming Languages, pages 202-212, Austin,
Texas, January 1989.

R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong. Extendible hashing—a fast access method
for dynamic files. ACM Transactions on Database
Systems, 4(3):315-344, 1979.

C. A. Gunter. Semantics of Programming Lan-
guages: Structures and Technigques. Foundations of
Computing. MIT Press, 1992.

K. Hart, L. Wong, C. Overton, and P. Buneman.
Using a query language to integrate biological data,
August 1994. Talk given at the Meeting on the
Interconnection of Molecular Biology Databases,
Stanford.

R. Hull and C. K. Yap. The Format model: A the-
ory of database organisation. Journal of the ACM,
31(3):518-537, July 1984.

D. Michie. Memo functions and machine learning.
Nature, 268:19-22, 1968.

R. Milner, M. Tofte, and R. Harper. The Definition
of Standard ML. MIT Press, 1990.

[13]

[16]

A. Ohori, P. Buneman, and V. Breazu-Tannen.
Database programming in Machiavelli, a polymor-
phic language with static type inference. In Proceed-
ings of ACM-SIGMOD International Conference on
Management of Data, pages 46-57, Portland, Ore-
gon, June 1989.

A. Ohori. A compilation method for ML-style poly-
morphic record calculi. In A. W. Appel, editor, Pro-
ceedings of 19th ACM Symposium on Principles of
Programming Languages, pages 154-165, 1992.

D. Remy. Typechecking records and variants in a
natural extension of ML. In Proceedings of 16th
Symposium on Principles of Programming Lan-
guages, pages 77-88, 1989.

D. Remy. Efficient representation of extensible
records. In P. Lee, editor, Proceedings of ACM SIG-
PLAN Workshop on ML and its Applications, pages
12-16, 1992.

M. Wand. Complete type inference for simple ob-
jects. In Proceedings of 2nd IEEE Symposium on
Logic in Computer Science, pages 37—44, Tthaca,
New York, June 1987.

