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Abstract. MicroRNAs (miRNAs) have been shown to play important
roles in post-transcriptional gene regulation. The hairpin structure is a
key characteristic of the microRNAs precursors (pre-miRNAs). How to
encode their hairpin structures is a critical step to correctly detect the
pre-miRNAs from background sequences, i.e., pseudo miRNA precur-
sors. In this paper, we have proposed to encode the hairpin structures
of the pre-miRNA with a set of features, which captures both the global
and local structure characteristics of the pre-miRNAs. Furthermore, we
find that four essential attributes are discriminatory for classifying hu-
man pre-miRNAs and background sequences with an information theory
approach. The experimental results show that the number of conserved
essential attributes decreases when the phylogenetic distance between the
species increases. Specifically, one A-U pair, which produces the U at the
start position of most mature miRNAs, in the pre-miRNAs is found to
be well conserved in different species for the purpose of biogenesis.

1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of about 22 nucleotides long.
More and more evidences show that miRNAs play important roles in gene reg-
ulation and various biological processes, as reviewed in [1–3]. MicroRNAs tran-
scripts, which may be produced by RNA polymerase II or III [3], often fold to
form stem loop structures, and become what are called primary miRNAs, or
pri-miRNAs. In the nucleus, the Drosha RNase III endonuclease cleavages both
strands of the stem at the base of the primary stem loop [4], and produce the
pre-miRNAs. Then, in cytoplasm, a second RNase III endonuclease, Dicer, to-
gether with its dsRNA-binding partner protein makes a second pair of cuts and
defines the other end of the mature miRNAs (see example in Figure 1), which
produces the miRNA:miRNA∗ duplex. Finally, the miRNA stand is separated
from the duplex by the helicase and form the mature miRNA molecules [2–4].
The mature miRNAs are then loaded to RNA-induced silencing complex (RISC),
which binds the 3

′
untranslate region of messenger RNAs of the miRNA target

genes to repress the production of related proteins [3, 5].



2 Zheng, Hsu, Lee and Wong

The hairpin structures of the pre-miRNAs are highly conserved in differ-
ent species [6, 7]. Thus, how to convert the hairpin structures into informative
features is a critical step to correctly identify the pre-miRNAs against the back-
ground sequences, i.e., pseudo pre-miRNAs.

There have been some endeavors for this purpose. The MirScan relied on
the observation that the known miRNAs derive from phylogenetically conserved
stem loop precursor RNAs with characteristic features [7]. The MiRseeker has
been used to identify miRNA genes from insect DNA sequences [6]. It uses
the hairpin structure predicted with the Mfold [8] as the primary criteria, but
also takes into account the nucleotide divergence of miRNA candidates. The
phylogenetic shadowing is a new method to find miRNA genes by comparing
DNA sequences of different species [9, 10]. Xue et al. [11] proposed a triplet-SVM
classifier which encoded the hairpin structures with local structure features and
obtained good sensitivity for both human data sets and data sets of other species.
Bentwich et al. [12] proposed to score the pre-miRNAs with thermodynamical
stability and structural features, which mainly capture the global properties of
the hairpin structures, to classify the pre-miRNA. Sewer et al. [13] proposed
an SVM-based method to find clustered pre-miRNAs. Yang et al. [14] proposed
to encode the pre-miRNAs with their secondary structures, the upstream and
downstream sequences.

However, first and foremost, few endeavors have been given to exploring the
essential attributes for classifying pre-miRNAs and finding the biological roles
of these essential attributes. Second, pre-miRNAs have been phylogenetically
conserved not only for the whole hairpin structures but also for local properties
at the level of nucleotides and their secondary structures, as shown in [6, 15].
Finally, the specificities of the existing methods [13, 11] still need to be improved.

In this research, we propose to encode the hairpin structures with the com-
bination of global and local characteristics. In our approach, the pre-miRNA
sequences and negative samples are first analyzed using the RNAfold software
[16]. Second, the global characteristics of the hairpins, such as the number of base
pairs and GC content, and the local structure triplet elements are used to encode
the pre-miRNAs and background sequences that are predicted to contain hairpin
structures with 43 features. Third, the resulted data sets are used to build clas-
sification models, which display better performance, especially specificity, for
new data sets. Finally, we investigate the phylogenetically conserved essential
attributes of the pre-miRNAs with the Discrete Function Learning (DFL) algo-
rithm [17]. These features found by the DFL algorithm are accurate in predicting
the pre-miRNAs, which is discussed with respect to the biogenesis mechanism
of the miRNAs.

The rest of the paper is organized as follows. In Section 2, we introduce
the features for encoding the pre-miRNAs and the classification algorithms for
evaluating the separation ability of the generated features. In Section 3, we
briefly review the DFL algorithm. In Section 4, we introduce the data sets and
show the experimental results. In Section 5, we summarize the paper and discuss
some future directions.
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Fig. 1. The secondary structure of Homo sapiens miR-1-1 pre-miRNA. The red nu-
cleotides represents the mature miRNA. The two triangles represent the happening
of the local feature A·(( at position 7 and 50. The two positions pointed by the two
arrows are the cutting points of Dicer [5], which produces the miRNA:miRNA∗ duplex
by cutting off the central loop on the right side at the two positions.

2 Methods

In this section, we show how to encode the pre-miRNA sequences and their
secondary structures with a set of features which captures both their global and
local characteristics. Then, we briefly review the classification algorithms used
in this research.

2.1 Encoding the Hairpin Structures of Pre-miRNAs

In our approach, the secondary structures of the pre-miRNAs, as well as the
candidates, are predicted with the RNAfold [16]. Then, we propose to encode
the nucleotide sequences and secondary structure sequences of the pre-miRNAs
with 43 features, which consist of 11 global features and 32 local features.

We first talk about the global features. The 11 global features of the pre-
miRNAs are symmetric difference, number of basepairs, GC content, length
basepair ratio (length of the sequence/the number of basepairs), sequence length,
length of central loop, free energy per nucleotide, bulge size, bulge number, tail
length and the number of tail(s).

The definitions of these features are given as follows with an example in
Figure 1. To be convenient, the pre-miRNA hairpin is divided into two arms.
The left arm is from 5’ end (upper in Figure 1) to the center of the central loop,
and the rest nucleotides form the right arm. The symmetric difference is defined
as the difference of length of the two arms. For example, the symmetric difference
of the hsa-miR-1-1 precursor in Figure 1 is 2. The bulge size is defined as the
size of the largest mismatch region in either of two arms. As shown in Figure 1,
the largest mismatch region is the three consecutive mismatch nucleotides in the
right arm. Thus, the bulge size is 3 for the hsa-miR-1-1 precursor. The bulge
number is the defined as the larger number of bulge in the two arms. Similarly,
there are 3 bulges in the right arm of the hsa-miR-1-1 precursor. Thus, its bulge
number is 3. The tail length is defined as the the length of the longer free tail
of the two arms. The free energy per nucleotide is obtained by dividing the free
energy given by the RNAfold program with the number of nucleotide in the
pre-miRNAs. For hsa-miR-1-1 precursor, the free energy given by the RNAfold
program is -30 kcal/mol. Then, the energy per nucleotide is -30/71 = -0.42 kcal.
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In summary, for the hsa-miR-1-1 pre-miRNA in Figure 1, the values of the eleven
global features are 2, 28, 0.37, 2.54, 71, 5, -0.42 (kcal), 3, 3, 1 and 2 respectively.

We choose these global features of the hairpins based on the following consid-
erations. First, the pre-RNAs sequences have lower GC content than background
sequences [12]. Second, the pre-miRNAs have lower folding energy than back-
ground sequences [18]. Third, we noticed that the lengths of the two arms of the
pre-miRNAs are often equal or approximately equal. But the lengths of the two
arms of the pseudo pre-miRNAs may be quite different. Fourth, the length of
pre-miRNAs has a stable distribution [19]. Fifth, the number of basepairs and
length basepair ratio are important features to decide the free energy [20]. Sixth,
the number of bulge and the size of bulges are related to length basepair ratio.
Seventh, we also noticed that the pre-miRNAs have no or shorter free tails at
the ends of two arms than background sequences.

The local features is defined with the triplet elements proposed by Xue et al.
[11]. One triplet is defined by one nucleotide and the secondary structure of its
-1,0,+1 positions. There are 4 nucleotide, A, C, G, U, and 2 possible secondary
structures, match ‘(’ and mismatch ‘·’. Thus, there are totally 4×23 = 32 possible
triplet elements. The count values of them are used as the 32 local features of
our data sets. For example, for the hsa-miR-1-1 pre-miRNA in Figure 1, the
value of the feature “A·((” is 2, since it has happened at position 7 and 50, as
indicated by the two dotted triangles.

2.2 The Classification Algorithms

In prior section, we demonstrate how to transform the pre-miRNA into a set
of features, which carries the information of the class value of the sequences.
The converted data sets are used by different algorithms to build predictors
(classifiers).

In this study, we use four classification algorithms to demonstrate the value
of encoding the pre-miRNA with both the global and local structural properties.
The selected algorithms are the Support Vector Machines (SVM) algorithm [21],
the C4.5 algorithm [22], the k-Nearest-Neighbors (kNN) algorithm [23] and the
RIPPER algorithm [24].

3 The Discrete Function Learning Algorithm

To find which subset of features are relatively more important when used to
predict the samples of different species, we use the Discrete Function Learning
algorithm [17] to find the essential attributes (EAs) that contribute most to the
class distinctions between samples. As to be introduced, there are two parameters
for the DFL algorithm, the expected cardinality K and the ε value. The choice
of parameters of the DFL algorithm is available in our early work [17] or at the
supplementary website 1 of this paper.
1 The supplements of this paper are available at

http://www.comp.nus.edu.sg/∼zhengy/vldb2006.htm.
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We will first introduce some notation. We use capital letters to represent
discrete random variables, such as X and Y ; lower case letters to represent an
instance of the random variables, such as x and y; bold capital letters, like X, to
represent a vector; and lower case bold letters, like x, to represent an instance
of X. In the remainder parts of this paper, we denote the attributes except the
class attribute as a set of discrete random variables V = {X1, . . . , Xn}, the class
attribute as variable Y . The entropy of X is represented with H(X), and the
mutual information between X and Y is represented with I(X ; Y ).

In this section, we start with a the theoretic background of information the-
ory. Then, we introduce the motivation of the DFL algorithm. Finally, we briefly
describe the DFL algorithm.

3.1 Theoretic Background

The entropy of a discrete random variable X is defined in terms of probability
of observing a particular value x of X as [25]:

H(X) = −
∑

x

P (X = x)logP (X = x).

The entropy is used to describe the diversity of a variable or vector. The more
diverse a variable or vector is, the larger entropy it will have. Hereafter, for the
purpose of simplicity, we represent P (X = x) with p(x), P (Y = y) with p(y),
and so on. The mutual information between a vector X and Y is defined as [25]:

I(X; Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) = H(X)+H(Y )−H(X, Y ) (1)

Basically, the stronger the relation between two variables, the larger mutual
information they will have. Zero mutual information means the two variables
are independent or have no relation.

The conditional mutual information I(X ; Y |Z) [26](the mutual information
between X and Y given Z) is defined by

I(X ; Y |Z) =
∑

x,y,z

p(x, y, z)
p(x, y|z)

p(x|z)p(y|z)
.

The chain rule for mutual information is give by Theorem 1, for which the
proof is available in [26].

Theorem 1. I(X1, X2, . . . , Xn; Y ) =
∑n

i=1 I(Xi; Y |Xi−1, . . . , X1).

3.2 Motivation

I(X; Y ) is evaluated with respect to H(Y ) in the DFL algorithm, which is dif-
ferent from those in existing methods, as shown in Equation 2. Suppose that
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Us−1 is the already selected feature subset at the step s − 1, and the DFL al-
gorithm is trying to add a new feature Xi ∈ V \ Us−1 to Us−1. Specifically,
X(1) = argmaxiI(Xi; Y ), and

X(s) = argmaxiI(Us−1, Xi; Y ), (2)

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}. From Theorem 1,
we have

I(Us−1, Xi; Y ) = I(Us−1; Y ) + I(Xi; Y |Us−1). (3)

In Equation 3, note that I(Us−1; Y ) does not change when trying different Xi ∈
V \ Us−1. Hence, the maximization of I(Us−1, Xi; Y ) in the DFL algorithm is
actually maximizing I(Xi; Y |Us−1), the conditional mutual information of Xi

and Y given the already selected features Us−1, i.e., the information of Y not
captured by Us−1 but carried by Xi.

To measure which subset of features is optimal, we restate the following
theorem, which is the theoretical foundation of our algorithm. It has been proved
that if H(Y |X) = 0, then Y is a function of X [26]. Since I(X ; Y ) = H(X) −
H(Y |X), it is immediate to obtain Theorem 2.

Theorem 2. If the mutual information between X and Y is equal to the entropy
of Y , i.e., I(X; Y ) = H(Y ), then Y is a function of X.

The entropy H(Y ) represents the diversity of the variable Y . The mutual
information I(X; Y ) represents the relation between vector X and Y . From this
point of view, Theorem 2 actually says that the relation between vector X and Y
are very strong, such that there is no more diversity for Y if X has been known.
In other words, the value of X can fully determine the value of Y .

3.3 Training Methods

A classification problem is trying to learn or approximate a function, which
takes the values of attributes (except the class attribute) in a new sample as
input and output a categorical value which indicates the class of the sample
under consideration, from a given training data set. The goal of the training
process is to obtain a function which makes the output value of this function be
the class value of the new sample as accurately as possible. From Theorem 2,
the problem is converted to finding a subset of attributes U ⊆ V whose mutual
information with Y is equal to the entropy of Y . The U is the EAs that we are
trying to find from the data sets. Here, we will briefly describe the main steps
of the DFL algorithm as shown in the following.

1. ∀Xi ∈ V, compute I(Xi; Y );
2. add A = argmaxiI(Xi; Y ) to the EA set U1;
3. ∀Xi ∈ V\Us−1, compute I(Us−1, Xi; Y );
4. add B = argmaxiI(Us−1, Xi; Y ) to the EA set Us−1;
5. repeat 3-4, until find U so that I(U; Y ) = H(Y ).
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The DFL algorithm will find the most informative feature A in the first step.
Then, the DFL algorithm will try every subsets with A and another remaining
feature in V, and find the most informative feature subset {A, B} in the second
step. Next, the similar calculation will be done until the target combination U,
which satisfies the criterion of Theorem 2, is found.

To prevent exhaustive search of all subsets of V, one parameter called the
expected cardinality K of the EAs is introduced to restrict the searching space
to subsets with ≤ K features.

After U is found, the DFL algorithm will stop its searching process, and
obtain the classifiers by deleting the non-essential attributes and duplicate rows
in the training data sets.

3.4 The ε Value Method

We also introduce a method called ε value to overcome the noisy problems [17].
Theorem 2, the exact functional relation demands the strict equality between the
entropy of Y , H(Y ) and the mutual information of X and Y , I(X; Y ). However,
this equality is often ruined by the noisy data, like microarray gene expression
data. In these cases, we have to relax the requirement to obtain a best estimated
result. By defining a significant factor ε, if the difference between I(X; Y ) and
H(Y ) is less than or equal to ε × H(Y ), then the DFL algorithm will stop the
searching process, and build the classifier for Y with X at the significant level
ε. The ε is the second parameter of the DFL algorithm.

3.5 Prediction Method

After the DFL algorithm obtaining the classifiers as function tables of the pairs
(u, y), the most reasonable way to use such function tables is to check the in-
put values u, then find the corresponding output values y. Therefore, we per-
form predictions in the space defined by the EAs U, the EA space, with the
1-Nearest-Neighbor (1NN) algorithm [23] based on the Hamming distance de-
fined as follows.

Definition 1. Let 1(a, b) be an indicator function, which is 0 if and only if a =
b, otherwise is 1. The Hamming distance between two arrays A = [a1, . . . , an]
and B = [b1, . . . , bn] is Dist(A,B) =

∑n
i=1 1(ai, bi).

Note that the Hamming distance [27] is dedicated to binary arrays, however,
we do not differentiate between binary or non-binary cases in this paper. We use
the Hamming distance as a criterion to decide the class value of a new sample,
since we believe that the rule with minimum Hamming distance to the EA values
of a sample contains the maximum information of the sample. Thus, the class
value of this rule is the best prediction for the sample.

In the prediction process, if a new sample has same distance to several rules,
we choose the rule with the biggest count value happened in the training data
set.
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Table 1. The summary of data sets.

Data Set Sample # Class

0 TR-C (training) 163/168 pre-miRNAs/background
1 TE-C1 30 pre-miRNAs
2 TE-C2 1000 background
3 CONSERVED-HAIRPIN(T3) 2444 background
4 UPDATED(T4) 39 pre-miRNAs

5 Mus musculusi(mmu) 36 pre-miRNAs
6 Rattus norvegicus(rno) 25 pre-miRNAs
7 Gallus gallus(gga) 13 pre-miRNAs
8 Danio rerio(dre) 6 pre-miRNAs
9 Caenorhabditis briggsae(cbr) 73 pre-miRNAs
10 Caenorhabditis elegans(cel) 110 pre-miRNAs
11 Drosophila pseudoobscura(dps) 71 pre-miRNAs
12 Drosophila melanogaster(dme) 71 pre-miRNAs
13 Oryza sativa(osa) 96 pre-miRNAs
14 Arabidopsis thaliana(ath) 75 pre-miRNAs
15 Epstein Barr Virus(ebv) 5 pre-miRNAs

total (1 to 15) 4094

4 Results

In this section, we first introduce the data sets used. Then, we show the experi-
mental results. All data sets and software used in this study are available at the
supplementary website of this paper.

4.1 Data Sets and Preprocessing

In this research, we use the data sets in literature [11] to validate our approach,
since it is valuable to compare the published results. These data sets are sum-
marized in Table 1. Data set 0 to 4 is from human, and data set 5 to 15 is from
other species, as indicated by their names. Data set 0 is used as the training
data set, and data set 1 to 15 are used as testing data sets. There are totally
4094 samples used as testing data sets, with 3444 background sequences and 650
pre-miRNAs.

The sequences of human pre-miRNAs are obtained from miRNA registry
database (release 5.0) [28]. The secondary structures of these 207 pre-miRNA
sequences are predicted with the RNAfold [16]. Then, 193 sequences with only 1
loop are chosen. Next, 163 of them are randomly selected to be positive samples
of the training data set, i.e., TR-C in Table 1. The rest 30 samples are used as
TE-C1 testing data set.

The background sequences in data set 2 are collected from protein coding
regions (CDSs) according to the UCSC refGene annotation tables [11]. The
length of these sequences has the same distribution of human pre-miRNAs. The
RNAfold is also used to predict the secondary structure of them. Then, the se-
quences with multiple loops, the sequences with less than 18 base pairs and the
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sequences with larger than -15kcal/mol free energy are removed. Finally, there
are 8494 sequences in this data sets. Among them, 168 are randomly selected
as the negative samples of the TR-C data set, and 1000, different from the 168
used, are randomly chosen as the TE-C2 testing data set.

The data set 3 also consists of background sequences, which are retrieved
from the genome region from position 56,000,001 to 57,000,000 on the human
chromosome 19 with the UCSC database [29]. A window of 100 nucleotides is
used to scan the region and those sequences with a predicted hairpin secondary
structure by the RNAfold [16] are selected. This produces 2444 background
sequences in data set 3. Unlike data set 2, some sequences on data set 3 are
likely to be the true pre-miRNAs. Actually, there are 3 known miRNAs (hsa-
mir-99b, hsa-let-7e and hsa-mir-125a) in data set 3 [11].

Bentwich et al. [12] reported 89 new pre-miRNAs, of which 1 has multiple
loops and is removed. To further remove the similar sequences, BLASTCLUST
with S = 80, L = 0.5 and W = 16 is applied to the remaining 88 sequences.
Only one representative sequence in each cluster is selected to remove the closely
related sequences. This produces 40 non-redundant sequences, which are further
checked with respect to the training data set. One of the 40 sequences that has
high similarity to the training data set is removed. Finally, only 39 sequences
are chosen as the data set 4.

The sequences from other species are chosen from the release 5.0 of the
miRNA registry [28]. 581 out of 1138 pre-miRNAs are remained after removing
the sequences with high similarity with the pre-miRNAs in the training data set.
The similarity of the sequences is also calculated with BLASTCLUST with S =
80, L = 0.5 and W = 16. These pre-miRNAs form the data set 5 to 15.

4.2 Experimental Results

We have developed a software, miREncoding, to encode the pre-miRNA se-
quences, together with their secondary structure sequences, into the 43 proposed
features with the Java language. We use the Weka software (version 3.4) [30] to
evaluate the performance of the selected classification algorithms. For the SVM
algorithm, polynomial kernels are used. All selected algorithms are applied to
the data sets with the default settings of the Weka software.

To demonstrate the advantage of using both the global and local structural
characteristics, we generate three data sets for each data set in Table 1 with the
miREncoding program. The first one contains both the global and local features,
the second one contains only the 32 local features, and the third one contains
only the 11 global features. Then, we apply the selected algorithms to the three
data sets to compare their prediction accuracies, which are shown in Figure 2.

As shown in Figure 2, the SVM, C4.5, and kNN algorithms show large im-
provements of accuracy for data set 2 and 3 when applied to data sets with
all features. This suggests that the combination of global and local characteris-
tics are critical in removing false positives, since data sets 2 and 3 are negative
samples, i.e., the background sequences. For the remaining data sets, the four
algorithms demonstrate stable prediction accuracies when applied to data sets
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Fig. 2. The prediction accuracies of difference classification algorithms, where the de-
tailed values are available in Supplementary Table S2 to S4. (a) SVM. The curve marked
with pluses represents the results of the triplet-SVM classifier, on 32 local features, in
literature [11]. (b) C4.5. (c) kNN (k = 5). (d) RIPPER.

Table 2. The summary of prediction performance of the classification algorithms. The
values shown present the performance of the classification algorithms on data sets with
32 local/11 global/all 43 features respectively. The best value for each measure (MS) is
shown in bold face. The SS, SP and AC in measure (MS) column stand for sensitivity,
specificity and accuracy respectively.

MS SVM C4.5 kNN RIPPER Tri-SVM1

human SS 92.8/92.8/94.2 89.9/97.1/94.2 94.2/95.7/94.2 91.3/92.8/94.2 92.8
(D1-4) SP 89.5/90.3/93.3 80.7/88.4/89.7 81.5/86.8/88.8 81.7/89.1/87.0 88.7

AC 89.6/90.3/93.3 80.8/88.6/89.8 81.7/87.0/88.9 81.8/89.2/87.1 88.8

other SS2 91.9/89.8/91.7 84.7/85.5/83.3 87.2/90.4/87.8 89.7/84.0/87.8 90.9
species
total SS 92.0/90.2/92.0 85.2/86.8/84.5 88.9/90.9/89.4 89.9/84.9/88.5 91.1

SP 89.5/90.3/93.3 80.7/88.4/89.7 81.5/86.8/88.8 81.7/89.1/87.0 88.7
AC 89.9/90.3/93.1 81.4/88.1/88.9 85.9/87.5/88.9 83.0/88.4/87.2 89.1

1 This column shows the results of the triplet-SVM classifier [11]. 2 The sensitivity
equals to the accuracy, since there are only positive samples for data set 5 to 15.

with all features. When applied to only the global or local features, the prediction
accuracies of the algorithms fluctuate intensively. This suggests that the combi-
nation of global or local features carries more information of the class attribute
than only the global or local features.

In Figure 2 (a), we also compare the prediction performance of the SVM
algorithm with the triplet-SVM classifiers in literature [11]. The SVM algorithm
performs better than the triplet-SVM classifiers with the more information given
by the global feature of the pre-miRNAs. Especially, the total specificity is im-
proved from 88.7% of the triplet-SVM classifiers to 93.3% of the SVM algorithm
in our study, which has totally reduced 40.6% (or 158 samples) false positives in
literature [11]. For the local data sets, the prediction accuracies of the SVM algo-
rithm in our study are slightly better than those in literature [11]. We attribute
this to the encoding region in our research. We encode the triplet local features
for the whole pre-miRNAs, except the first and last nucleotide. However, only
the paired regions of the pre-miRNAs are encoded into triplet features in [11].
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The prediction performance of all selected algorithms is summarized in Table
2. As shown in Table 2, the SVM algorithm performs best for these data sets
among all selected algorithms and method in literature [11]. From table 2, it
is also shown that the performance of the algorithms generally becomes better
when applied to the data sets with all 43 features. Especially for the specificity,
the SVM, C4.5 and kNN algorithms show large improvements when applied to
data sets with all 43 features. For instance, the specificity of the SVM algorithm
has been dramatically improved from 89.5% for local features and 90.3% for
global features to 93.3%, as shown in Table 2, which means total reduction of
131 and 103 false positive predictions respectively.

4.3 Investigating The Essential Attributes

In this section, we investigate the essential attributes for classifying pre-miRNAs
and background sequences with the DFL algorithm, which has been implemented
with the Java language [17]. The DFL algorithm is not designed for continuous
features. Hence, we discretize the continuous features with an entropy-based
discretization method [31], which has been implemented in the Weka software,
before performing feature selection with the DFL algorithm. The discretization
is carried out in such a way that the training data set is first discretized. Then
the testing data set is discretized according to the cutting points of variables
determined in the training data set. After that, the original continuous values of
the selected features are used by other algorithms.

To find the optimal subset of EAs for the data sets, we first set the expected
cardinality of the EAs K as 10. Next, we use the DFL algorithm to perform
leave-one-out cross validation (LOOCV) on the training set with different ε val-
ues, from 0 to 0.8 with a step of 0.01. Then, we find that the DFL algorithm
reaches its best prediction performance in the LOOCV when ε ∈ [0.12, 0.13]
(see Supplementary Figure S2). When using all samples in training data set, the
distributions of attributes are slightly different from those in LOOCV. Thus, we
try the DFL classifiers obtained from a wider region of ε ∈ [0.1, 0.15]. Finally,
we choose the DFL classifier obtained when ε = 0.11 because it shows overall
better prediction accuracies for data set 1 to 4. In this way, a subset of 4 features,
{A(((, G·((, length basepair ratio, energy per nucleotide}, is chosen as EAs for
the human data sets, D1 to D4. For other data sets, the performance of the
DFL algorithm is not as good as for data set 1 to 4. We attribute this to the
phylogenetic distance between the species. Because fewer and fewer characteris-
tics of the pre-miRNAs are conserved when the species become more distantly
related. Thus, we try the subsets of these 4 EAs and choose those subsets on
which the 1NN algorithm introduced in Section 3.5 produces the best prediction
performances. The selected EAs are shown in Figure 3 (a).

We examine the phylogenetic relations between the species of the selected
data sets with miRBase [32]. As shown in Figure 3 (b), data set 5 and 6 are from
the Rodentia which has the closest relation with the species, Homo sapiens, of
the training data set, D0. Then, 3 out of the 4 EAs are conserved for data set
5 and 6. For other data sets, only the 1 of the 4 EAs, A((( or length basepair
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Fig. 3. The EAs chosen by the DFL algorithm. (a) The EAs chosen by the DFL
algorithm. (b) The phylogenetic tree of the species of data sets from the miRBase [32].
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Fig. 4. The prediction accuracies of difference classification algorithms. (a) SVM. The
curve marked with pluses represents the results of the triplet-SVM classifier, on 32
local features, in literature [11]. (b) C4.5. (c) kNN (k = 5). (d) RIPPER.

ratio, is conserved. This reduction of EAs suggests that less characteristics of
the pre-miRNAs are conserved when the species of data sets and Homo sapiens
of the training data set become more distantly related.

Then, we further run the selected algorithms on the features chosen by
the DFL algorithm. The prediction performance the classification algorithms
is shown in Figure 4 (details available in Supplementary Table S2 and S5) and
summarized in Table 3. In Figure 4 and Table 3, it is shown that the selected
algorithms, except the SVM algorithm, demonstrate large improvements of pre-
diction performance on the EAs in Figure 3 (a). For instance, the C4.5 algorithm
reaches overall sensitivity of 95.5% for the EAs chosen by the DFL algorithm, as
shown in Table 3. However, the C4.5 algorithm only obtains overall sensitivity
of 84.5% for all features. The RIPPER algorithm reaches best overall accuracy
of 93.5% on DFL features, which is slightly better than the 93.1% achieved by
the SVM algorithm on all features. These results suggest that the EAs shown
in Figure 3 (a) are critical for classifying the pre-miRNAs against background
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Table 3. The summary of prediction performance of the classification algorithms on
the DFL features. The best value for each measure is shown in bold face.

Measures SVM C4.5 kNN RIPPER Tri-SVM1

features All DFL All DFL All DFL All DFL

human sensitivity 94.2 95.7 94.2 94.2 94.2 97.1 94.2 95.7 92.8
(D1-D4) specificity 93.3 91.5 89.7 90.8 88.8 91.7 87.0 93.1 88.7

accuracy 93.3 91.6 89.8 90.9 88.9 91.8 87.1 93.2 88.8
other species sensitivity2 91.7 91.9 83.3 95.7 87.8 95.5 87.8 95.4 90.9
total sensitivity 92.0 92.3 84.5 95.5 89.4 95.5 88.5 95.4 91.1

specificity 93.3 91.5 89.7 90.8 88.8 91.7 87.0 93.1 88.7
accuracy 93.1 91.6 88.9 91.6 88.9 92.3 87.2 93.5 89.1

1 This column shows the results of the triplet-SVM classifier [11]. 2 The sensitivity
equals to the accuracy, since there are only positive samples for data set 5 to 15.

sequences. Although the prediction accuracies of the SVM algorithm slightly
decreases for the DFL features, the SVM classifiers are much less complex than
the models for all features.

5 Discussions

From Figure 3 (a) and Figure 4, it is shown that the classification algorithms
are accurate on one local feature, A(((, for data sets whose species are distantly
related to the species of the training data set. The A((( feature is actually origi-
nating from the A-U pairs in the pre-miRNAs. By examining the distribution of
A((( in the training data set, it is known that there tend to be more A-U pairs
in the pre-miRNAs than in background sequences. We attribute this higher fre-
quency of A-U pair to two reasons. First, we consider the biogenesis process of
miRNAs. It is reported that most known miRNAs begin with a U [15, 19], which
is originally coming from an A-U pair in the pre-miRNAs, as shown in Figure 1.
In the biogenesis of the mature miRNAs, the Dicer recognizes the A-U pair in
the pre-miRNAs, and performs the second cut in the biogenesis of mature miR-
NAs exactly at the A-U pair to produce the miRNA:miRNA∗ duplex [5]. This
indicates that the A((( feature found in this study is critical for the biogenesis
of the mature miRNAs. The high accuracies shown in Table 3 suggest that this
A-U pair is well conserved in different species, even those distantly related in the
phylogenetic tree, for the biogenesis of miRNAs. Second, the lower GC content
in pre-miRNAs [12] partially contributes to the higher frequency of the A-U pair
in the pre-miRNAs.

We have displayed how to encode the hairpin structures of pre-miRNAs with
a set of features, which captures both their global and local structural proper-
ties. Different classification algorithms have shown large improvements of their
prediction performance, especially the specificity, when applied to these features.
This suggests that the proposed set of features have captured more information
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about characteristics of the hairpin structures of the pre-miRNAs than only the
local features or the global features.

We have found that four EAs, with both global and local features, are critical
for classifying the testing samples from the same species as the training data set.
But when the phylogenetic distance between the species of the testing data sets
and training data set increases, the number of EAs is reducing gradually. The
selected classification algorithms generally show better prediction performance
when applied to these EAs. This indicates that the pre-miRNAs of distantly
related species share less common characteristics than closely related species.
Therefore, to obtain better prediction performance, it is better to use the samples
from the same species or closely related species as the training data set.

The false positives provide a valuable source for finding new pre-miRNAs.
The improvement of specificities of the classification algorithms when applied
to the combination of global and local features, as well as the EAs, can help to
significantly reduce the number of putative pre-miRNA candidates, thus to save
much resource for validating them.

The pre-miRNAs with multiple loops are not considered in this research.
How to encode them is a valuable future direction.
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