Illuminating the twilight zone of protein function prediction and deep learning model assessment

Wong Limsoon

This is work of my student, Neamul Kabir

Protein function assignment

A protein is a large complex molecule made up of one or more chains of amino acids

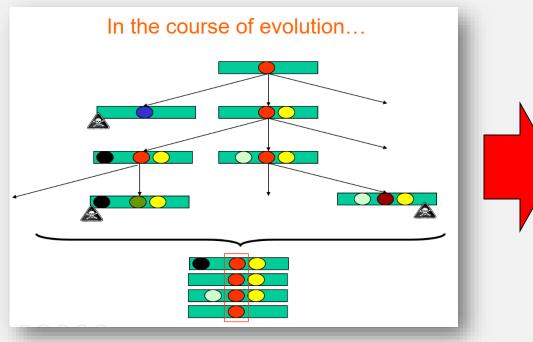
Usually, only the sequence of amino acid is known

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT

Proteins perform a wide variety of activities in the cell

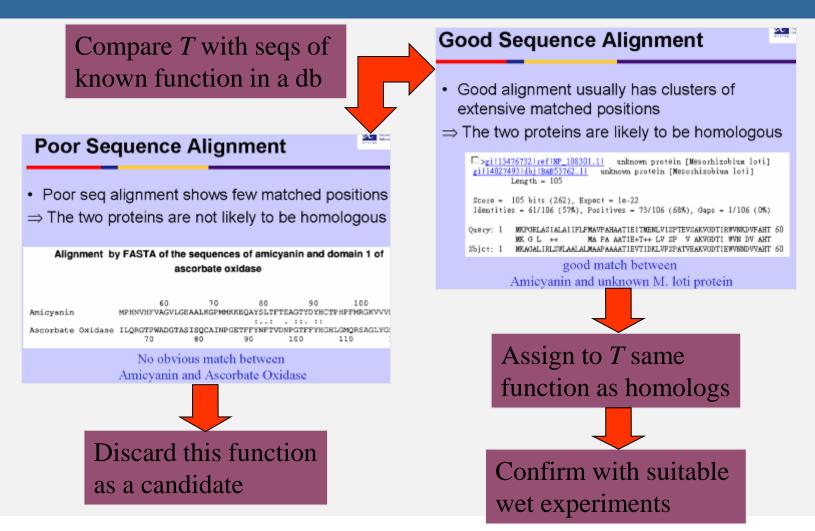
How do we predict the function of a protein?

A standard postulate based on evolution



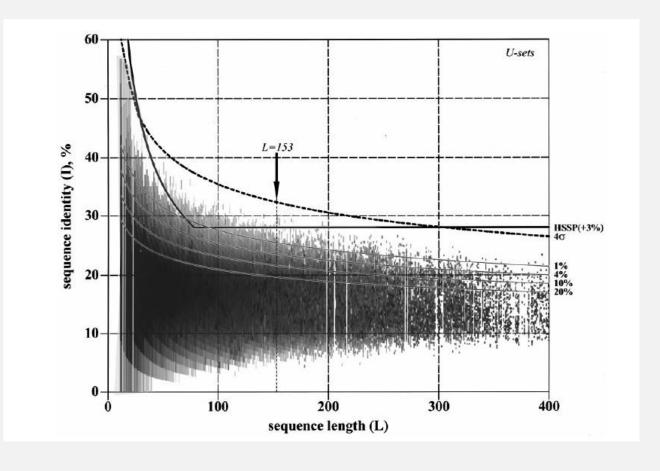
Two proteins (not) inheriting their function from a common ancestor (do not) have similar amino acid sequences

Guilt by association



Twilight zone: Limit of sequence similarity-based protein function assignment

So, need clever methods for the twilight zone



Similarity to ref proteins high \Rightarrow easy Similarity is low (~30%) \Rightarrow error prone Similarity is very low \Rightarrow really hard

Many deep learning models to the rescue?

DeepFam (2018, CNN)

DeepGO (2018, CNN + DNN)

DeepPred (2019, hierarchical DNN)

DeepGoPlus (2019, CNN + DNN)

UDSMProt (2020, LSTM)

MultiPredGO (2020, multimodal DL)

TALE+ (2021, transformer)

DeepGraphGO (2021, CNN + DNN, multimodal)

DeepGoZero (2022, zero-shot learning), ...

DeepFam, deep learning for protein family prediction

This looks good

Really?

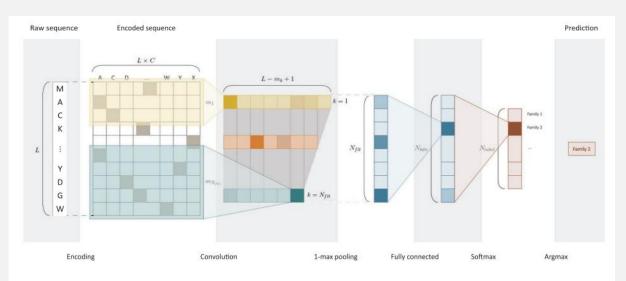


Fig. 1. The overview of DeepFam model. It is a feedforward convolution neural network whose last layer represents the probabilities of each family. convolution layer and 1-max pooling layer calculate a score (activation) of the existence of a conserved regions. The next layer is fully-connected neural network which can detect longer or complex sites. In order to infer the probability of each family, the last layer is designed as softmax layer (multinomial logistic regression), generally used for multi-class classification

Table 2. Prediction accuracy (%) comparison of COG dataset

Dataset	COG-500-1074	COG-250-1796	COG-100-2892
DeepFam	95.40	94.08	91.40
pHMM	91.75	91.78	91.67
3-mer LR	85.59	81.15	75.44
Protvec LR	47.34	41.76	37.05

Bold indicates the best performance for each dataset.

Illuminating the twilight zone of deep-learning model assessment

How do you set final exam of your course?

This is how I set exams

Some easy questions

Enough hard questions

And often some surprising questions

Students don't get "A" answering easy questions

Dataset	COG-500-1074	COG-250-1796	COG-100-2892
DeepFam	95.40	94.08	91.40
pHMM	91.75	91.78	91.67
3-mer LR	85.59	81.15	75.44
Protvec LR	47.34	41.76	37.05

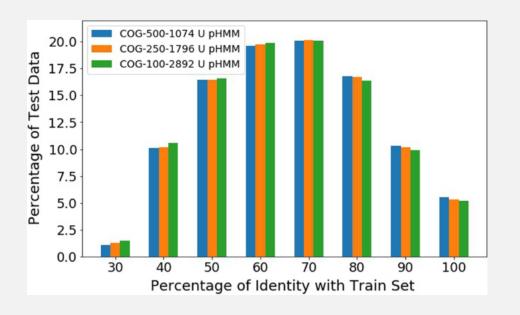
Table 2 Prediction accuracy (%) comparison of COG dataset

Bold indicates the best performance for each dataset.

Is this a good assessment of DeepFam?

Do the test sets have enough hard
questions and surprising questions?

DeepFam's good accuracy is largely due to "easy" proteins



Dataset	Method	predCount = 1	predCount = 2	predCount = 3	predCount = 4	predCount = 5	predCount > 5	
Identity: $0 < x \leq 30$								
COG-500-1074	EnsembleFam	72.07	81.00	82.82	84.96	85.33	85.27	
	рНММ	69.54	73.75	55.51	70.62	70.85	73.55	
	DeepFam	57.14	54.52	49.90	46.92	43.64	35.94	
COG-250-1796	EnsembleFam	72.84	77.07	81.02	82.14	84.66	86.45	
	рНММ	75.39	73.82	73.9/	71.02	67.44	72.43	
	DeepFam	32.44	32.54	30.24	29.53	30.02	28.68	
COG-100-2892	EnsembleFam	75.24	79.55	81.21	80.63	82.05	88.95	
	рНММ	63.44	59.69	53.45	48 16	47.42	57.57	
	DeepFam	27.30	26.13	25.54	27.62	24.83	25.36	

If there are few twilight zone proteins in real life, maybe DeepFam's poor twilight zone performance is ok?

The reference database comprises proteins with known function

If no function is predicted for a protein, or a wrong function is predicted, there won't be any validated result for the protein

.: Few twilight zone proteins can get into the reference database

A self-fulfilling prophecy!

How often do you encounter twilight-zone proteins

Here is a typical distribution of protein similarity of a new (fungal) genome to large reference protein databases

Identity region	Percentage of proteins from genome
Zero identity	54.29%
$0 < \text{identity} \le 30$	35.23%
$30 < identity \le 40$	3.81%
identity > 40	6.67%

New genomes are dominated by twilight-zone proteins

Don't be fooled by high accuracy on test sets with too many easy examples

Need to stratify wrt easy and hard test instances

Does the test sets contain surprising questions?

How do DeepFam perform on these?

The test sets don't have surprises (proteins from novel classes)

If you give DeepFam a protein from a novel class it was not trained on, it will always (wrongly) assign it to one of the classes it was trained on

There are thousands of function classes DeepFam cannot be trained on due to too few samples...

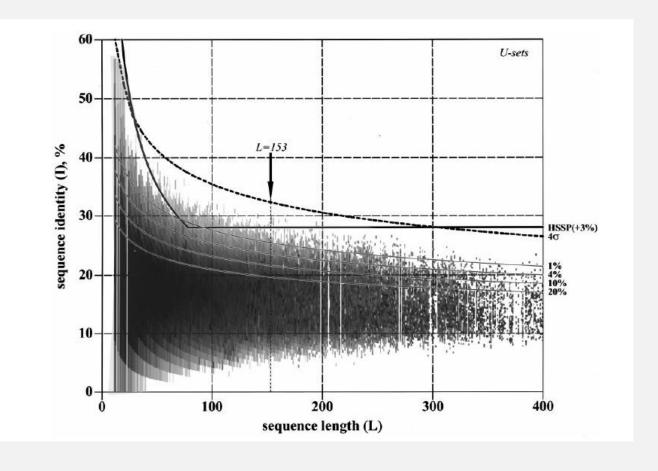
Don't be fooled by high accuracy on test sets without surprises

Real world is full of them

Illum a ing the twilight zone of protein function at ediction

Inferring protein function from low-similarity reference proteins is harmful

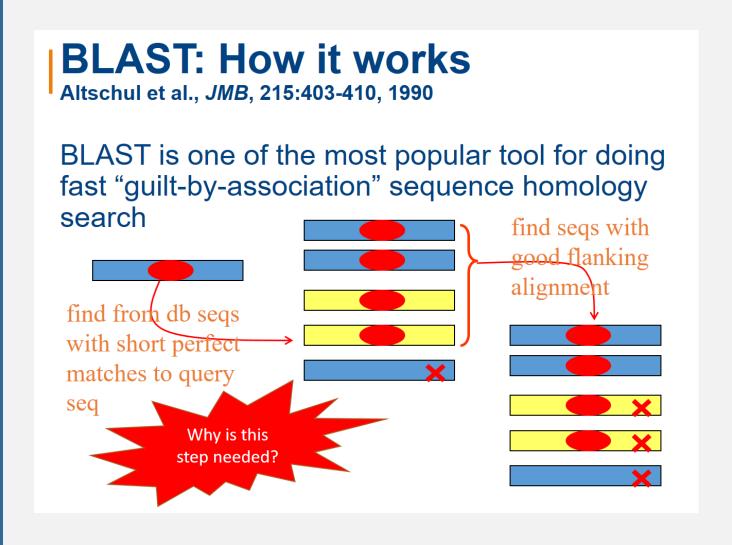
Really?



Similarity to ref proteins high \Rightarrow easy Similarity is low (~30%) \Rightarrow error prone Similarity is very low \Rightarrow really hard

Many homology search tools are optimized to skip comparing & retrieving low-similarity proteins

A twilight-zone protein is low similarity ⇒ get nothing back!



Inspiration

Similarities of dissimilarities

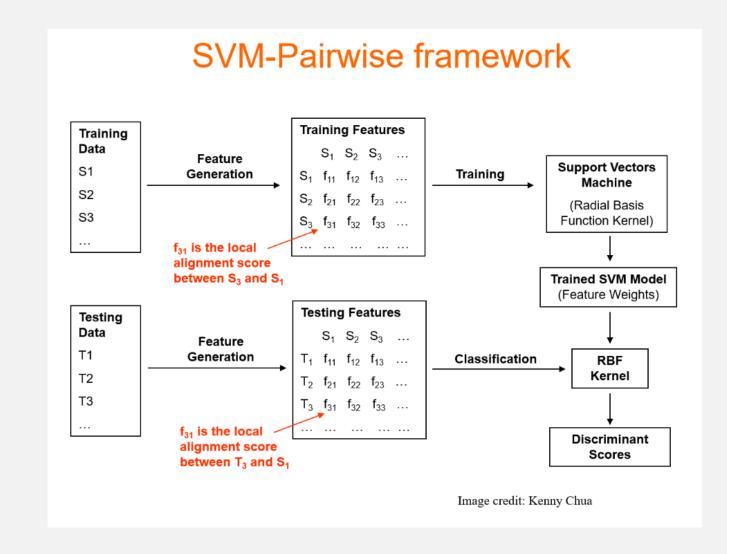
The diff betw any apple to orange / banana / mango / etc. are mostly same as the diff betw any other apple with that orange / banana / mango / etc.

The diff betw a mysterious fruit X to orange / banana / mango / etc. are mostly same as the diff betw an apple to orange / banana /mango / etc.

⇒The fruit X is likely an apple

EnsembleFam uses low-/dis-similarity information discarded by other methods!

Inspired by SVM-pairwise



Design of EnsembleFam

One ensemble per protein family

Each ensemble has 3 base SVMs

Base SVMs use diff combinations of similarity & dissimilarity features

Ensemble decides (in vs not-in target family) by a majority vote

If no ensemble predicts "yes", the protein is from a novel class Feature group #1 (Dissimilarities)

Best BLAST scores from each nontarget class (only 10 ref proteins used
per class)

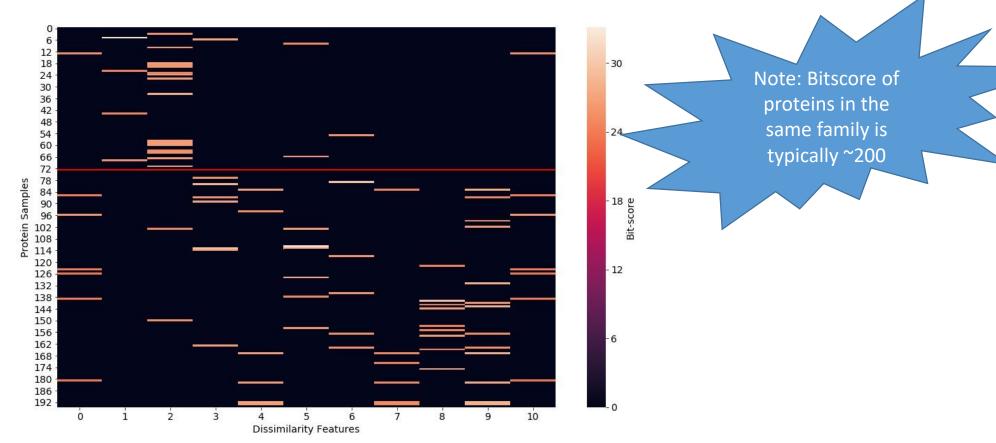
Feature group #2 (Dissimilarities) pHMM scores from each pFam family

Feature #3 (Similarity)

Best BLAST score from target class

HeatMap of dissimilarity features

Extracted from EnsembleFam

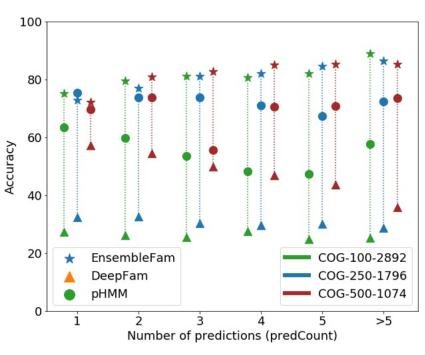


There is consistency in the way two proteins of the same family differ from the other families

EnsembleFam performance on the whole COG test set

Dataset	Method	predCount = 1	predCount = 2	predCount = 3	predCount = 4	predCount = 5	predCount > 5
	EnsembleFam	98.14	98.59	98.73	98.87	98.87	99.13
COG-500-1074	рНММ	96.46	97.22	97.06	96.63	95.74	95.44
	DeepFam	84.88	82.49	80.86	79.46	78.18	77.25
	EnsembleFam	97.74	98.41	98.54	98.81	98.80	99.17
COG-250-1796	рНММ	96.44	97.08	96.89	96.13	94.88	95.04
	DeepFam	72.29	71.60	71.22	71.28	71.20	70.48
	EnsembleFam	98.01	98.44	98.71	98.82	98.96	99.37
COG-100-2892	рНММ	96.59	96.75	95.83	94.36	95.70	95.84
	DeepFam	61.51	62.59	64.87	67.41	68.12	67.89

EnsembleFam performance in the twilight zone



0 < identity <=30

	0 < identity <= 30							
Dataset	Method	Pred Count=1	Pred Count=2	Pred Count=3	Pred Count=4	Pred Count=5	Pred Count > 5	
COG-500-	Ensemble Fam	72.07	81.00	82.82	84.96	85.33	85.27	
1074	рНММ	69.54	73.75	55.51	70.62	70.85	73.55	
	DeepFam	57.14	54.52	49.90	46.92	43.64	35.94	
COG-250-	Ensemble Fam	72.84	77.07	81.02	82.14	84.66	86.45	
1796	рНММ	75.39	73.82	73.84	71.02	67.44	72.43	
	DeepFam	32.44	32.54	30.24	29.53	30.02	28.68	
COG-100-	Ensemble Fam	75.24	79.55	81.21	80.63	82.05	88.95	
2892	рНММ	63.44	59.69	53.45	48.16	47.42	57.57	
	DeepFam	27.30	26.13	25.54	27.62	24.83	25.36	

Contribution of dissimilarities

Method	predCount = 1	predCount = 2	predCount = 3	predCount = 4	predCount = 5	predCount > 5		
Identity: $0 \le x \le 30$								
SVM Model 1	59.82	66.96	67.60	67.96	67.32	74.67		
SVM Model 2	57.11	65.09	65.01	65.86	64.55	71.80		
SVM Model 3	57.34	65.34	64.29	65.02	63.36	70.13		
EnsembleFam	72.07	81.00	82.82	84.96	85.33	85.27		

Bases SVM have similar performance, Not much better than e.g. DeepFam

Where does performance increment of the ensemble come from?

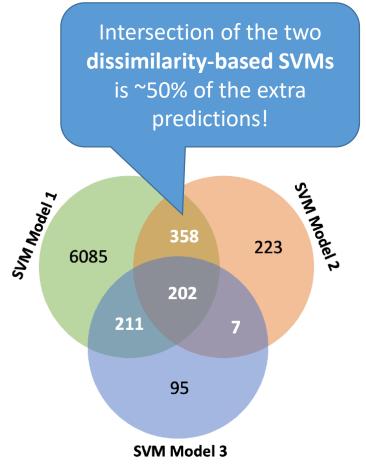


Figure 3.7: Prediction overlap of the three base classifier on the twilight zone proteins in $0 \le \text{identity} \le 30$ region. The Venn diagram is drawn based on the prediction made on twilight zone proteins of the testset of COG-500-1074 dataset. The number of predictions made by each base classifier is indicated in the figure. Numbers highlighted in white indicate overlap between at least two methods, hence predicted by EnsembleFam.

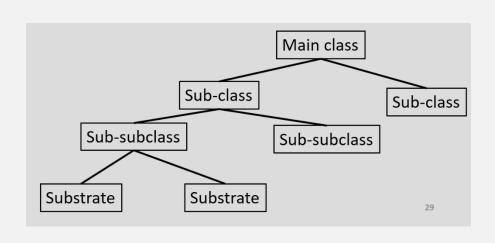
Enzyme Commission (EC) # prediction

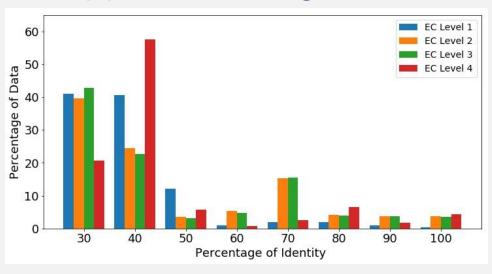
Enzymes are more heterogeneous due to hierarchical nature

This heterogeneity adds more difficulty in annotation

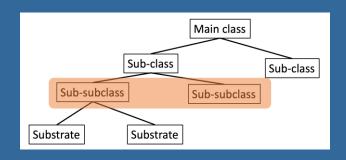
There also exists twilight zone enzymes

Current method do not provide good support for twilight zone





EC # - level 3

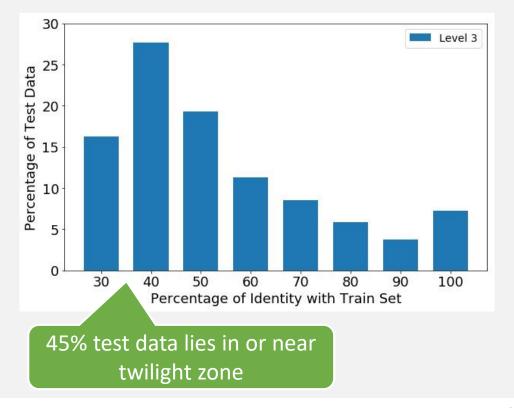


Dataset used for expt: Swiss-Prot Total # of families: 185

Min # of annotated member: 30

Total	Training Data	Blind Test Set*
SWISS-PROT	Annotated before 2019	Annotated in 2019 or later
254,176 seq	251,817 seq	2,359 seq

^{*}As all methods, compared in our experiment, are trained using Swiss-Prot annotations of 2018 or earlier, we used the rest, annotated in 2019 or later, as our blind test set.



EnsembleFam's performance on EC-level 3 predictions in and near the twilight zone in Swiss-Prot

0 <= identity <= 30	TP	FP	Specificity	Sensitivity	Precision	F1-score	Geo Mean
e-EnsembleFam	109	290	98.54	17.69	27.32	21.48	41.75
DEEPre	82	231	98.71	13.31	26.20	17.65	36.25
DeepEC	46	29	99.98	7.47	61.33	13.31	27.33
EFICAz ^{2.5}	81	75	99.92	13.15	51.92	20.98	36.25
CatFam	33	32	99.96	5.36	50.77	9.69	23.14
ECPred	17	25	99.98	2.76	40.48	5.17	16.61

30 < identity <= 40	TP	FP	Specificity	Sensitivity	Precision	F1-score	Geo Mean
e-EnsembleFam	398	121	98.89	57.85	76.69	65.95	75.64
DEEPre	211	196	96.64	30.67	51.84	38.54	54.44
DeepEC	77	47	99.96	11.20	62.10	18.97	33.46
EFICAz ^{2.5}	357	78	99.92	51.89	92.07	63.58	72.01
CatFam	109	14	99.99	15.84	88.62	26.88	39.80
ECPred	34	27	99.98	4.94	55.73	9.08	22.22

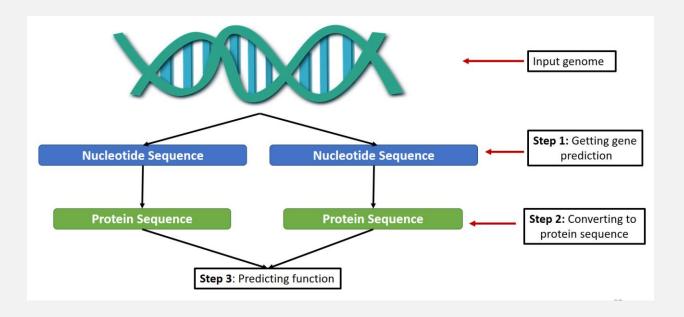
Identifying enzymes in new genomes

Enzyme Name	EC Number
PETase (PET hydrolase)	3.1.1.101
MHETase (MHET hydrolase)	3.1.1.102
Terpene (MLH)	3.1.1.83

Enzymes of interest

Output

• Enzymes of interest exist in genome or not



Enzyme hunting in new fungal genomes

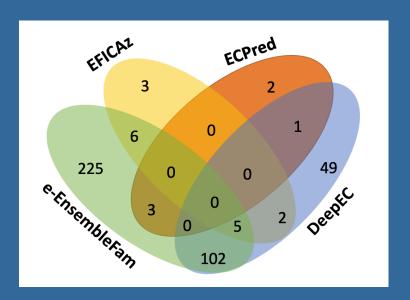
EC level 3 prediction of diff methods. EnsembleFam provides more predictions than competing methods

Genome 1: # predicted genes = 3302						
	Enzyme Non-enzyme					
EnsembleFam	635 (19%)	2667 (81%)				
DeepEC	56 (2%)	3246 (98%)				

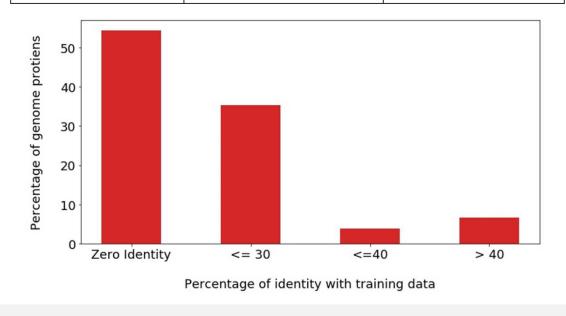
Genome 2: # predicted genes = 3864			
	Enzyme	Non-enzyme	
EnsembleFam	725 (19%)	3139 (81%)	
DeepEC	54 (1%)	3810 (99%)	

Genome 3: # predicted genes = 3599			
	Enzyme	Non-enzyme	
EnsembleFam	684 (19%)	2915 (81%)	
DeepEC	68 (2%)	3531 (98%)	

EC level-3 prediction for chr1 of a new fungal genome



Genome 1 – chr1 : Total predicted gene = 504			
	Predicted Enzyme	Non-Enzyme	
e-EnsembleFam	341 (<i>67.66%</i>)	163 (32.34%%)	
DeepEC	159 (31.35%)	345 (68.65%)	
EFICAz ^{2,5}	16 (3.18%)	488 (96.82%)	
ECPred	6 (1.20%)	498 (98.80%)	



Useful info is overlooked

There are similarities in dissimilarities

Two take-home messages

Prediction model assessment needs careful thought Easy questions, hard questions, surprise questions, & many more nuances

A lot of useful information get overlooked Similarity of dissimilarities

Neamul Kabir & Limsoon Wong, "EmsembleFam: Towards more accurate protein family prediction in the twilight zone," BMC Bioinformatics, 23:90, 2022