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Protein Function Prediction:
Motivation & Challenges

B &

NUS
95 i

e A protein is a large
complex molecule
made up of one or
more chains of amino
acids

* Protein performs a
wide variety of
activities in the cell
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o _ nNus
Function Assignment to Protein Seq -

SPSTNRKYPPLPVDKLEEE INRRMADDNKLFREEFNALPACP I1QATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDY INASF INGYQEKNKF I AAQGPKEETVNDFWRMIWE
ONTAT IVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRL ITQFHFTSWPDFGVPFTP I GMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFI1YQALLEHYLYGDTELE
VT

 How do we attempt to assign a function to a new
protein sequence?
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An Early Example of Seq Analysis ——

Source: Ken Sung

* Doolittle et al. (Science, July 1983) searched for
platelet-derived growth factor (PDGF) in his own
DB. He found that PDGF is similar to v-sis
oncogene

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

= “Guilt by association” of sequence similarity!
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Guilt by Association
of Sequence Similarity

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

EBNUS
Guilt by Association: General Idea -'-“’"-5-""

« Compare the target sequence T with sequences
S,, ..., S, of known function in a database

* Determine which ones amongst S,, ..., S, are the
mostly likely homologs of T

» Then assign to T the same function as these
homologs

* Finally, confirm with suitable wet experiments
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EBANUS
Guilt by Association of Seq Similarity "“*'"-"“"’

Compare T with segs of Good Sequence Alignment
known function in a db —

+ Good alignment usually has clusters of
extensive matched positions
= The two proteins are likely to be homologous

Poor Sequence Allgnment I il 13476732 xef INP_106301. 11 wnkoown protain [Uesarhizohien lati]
—— TS Db BABSTTEL 11 uslwonn protein (Nsoshizbion. lo1i]
Length - 105
« Poor seq alignment shows few matched positions
= The two proteins are not likely to be homologous R it T T IR e TR
: M GL e WA FaA AATIEeTer LV 5P § ARWGITI WWN BV AHT
Fajet: | WRAGALIRLEVLAALAL M APAARATIEVT IDELVF SPATVEAKWITIEFVIRDVVANT 50

Alignment by FASTA of the sequences of amicyanin and domain 1 of e pre—
ascorbate oxidaso ot . .
Amicvanin and uf wn M. loti protein

60 0 80 90 160

GEAAL

nicyanin

Racorbate Owldase 1LO) TSQCATHPGETPP NP THINP:
0 20 30 100

No ublvimls match between ASSign tO T same
Amicyanin scorbate Oxidase o
1 function as homologs

| |

Discard this function . ‘ :
as a candidate Confirm with suitable
wet experiments
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INUS
Seq Alignment &=

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

* A seq alignment maximizes the number of
positions that are in agreement in two sequences

 Many implementations:
— Global vs local alignment

— Gapped vs ungapped
— Filtered vs unfiltered, ... Exercise: Name a seq alignment algo
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* Poor seq alignment shows few matched positions
= The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amleyanin and domain 1 of
ascorbate oxidase

60 70 80 20 10
Amioyanin MPHNVHFVACGVLOERALHEGPMMEKKBOAY S LTFTEAGTYDYHC TP HP PMRGHVVVE

T 80 g0 100 110

No obvious match between
Amicyanin and Ascorbate Oxidase

iz
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FINUS
Seq Alignment: Good Example

o S

* Good alignment usually has clusters of extensive
matched positions

= The two proteins are likely to be homologous

|_>gi|134?6'?32|r8f|ﬂP 108301.11  unknown proteln [Mesorhizobium loti]
2il140274931dbj |IBAB53762.1]1  unknown protein [Mesorhizobium loti]
Length = 105

Score = 105 bits (262), Expect = le-22

Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)
Query: | MKPGRLASIALAIIFLPMAVPAHAATIEITMENLYISPTEVSAKVGDT [RWWNKDVEAHT &0
MK G L ++

MA PA AATIE+T++ LV 3P V AKVGDTI WWN DV AHT
MEAGALIRLSWLAALAI MAAPAASATIEVTIDELVF SPATVEAKVGDT IEWVNNDVVAHT 40

good match between
Amicyanin and unknown M. loti protein

Shjct: 1

e EnT

INUS
Seq Alignment: Poor Example

hevozbate Oxidase ILQRGIPWADGTARISQCAINPOETFFYNFIVDNPGTPEYHGHLOMORERGLYGELI

2

2
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BE & N
BLAST: How It Works :-_-_l_Jw:-g‘
Altschul et al., JMB, 215:403--410, 1990

 BLAST is the most popular tool for “guilt by
association” seq homology search

find seqs with
anking

>
Q
=]
3
)
=

find from db seqs
with short perfect
matches to query
seq

|

Exercise: Why do we need this step?
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i BLAST  BINUD

Translations Retrieve results for an RID|

C.
<3 NCBI

Nucleotide Protein

NREYVNILPYDHSRVHLTPVEGVPDSDY INASF INGY QEEKNEF LAAQGPKEETVIDFWR ’I ]

NINEQNTATIVHUTNLEEREECEC AQYWPDQGCUTY GNVRVSVEDVTVLVDYTWREF C
Seatch | TOOVGDWINREPQRLITOFHF TSUPDFGVEF TP IGMLKF LEEVEACNP QT AGATVVHC [ = ‘

SAGVGRTGTFVVIDAMLDMMHSERKVDVYGFVIRIRAQRCOMVOTDHQYVF ITQALLE [ ]

HYLYGDTELE ¥
Set subsequence Feom: To
Choose database |nr E

Do CD-Zearch

Y ‘BLAS T! e messravan Cresoran
\

—
Options for advanc ed blasting

Limit. by entrez
Ut
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INUS
Homologs by BLAST e

Socore E
Sequences producing significant alignments: (bits) Value
il 14193720 | gb| AAK56109.1]|AF332081 1 protein tyrosin phosph... =] : e-177
il 126467 sp|P15433 | PTRA HUMAN Protein-tyrosine phosphatase... 62I e-177
gi| 4506303 |ref|NP 0025827 .1| protein tyrosine phosphatase, r... 62| e=176
gila27294 | prf] | 17015004 protein Tyr phosphatase 620 e=176
21118450360 | ref | NP _S43030.1] protein tyrosine phosphatase, szl e-176
i 32067 |emb | CAA3T447.1| tyrosine phosphatase precursor [Ho... 51 e=176
gil285113 | pir||JC12685 protein-tyrosine-phosphatase (EC 3.1.... 619 e=176
gi| 69581446 |ref|NP 0365895.1| protein tyrosine phosphatase, r... 61: e-176
il 2095414 | pdb| 1¥FO| A Chain A, Receptor Protein Tyrosine FPh... Slﬂ e-174
il 323153 |emb | CALISE62 .1 protein-tyrosine phosphatase [Homo... 61 e-174
il 4505585 | gb| AARO4150.1 protein tyrosine phosphatase >gi|4... G605 e-172
gqi| 6672557 |ref|NP _033006.1] protein tyrosine phosphatase, r... 60- e-172
il 453922 | ol | AALITO90. 1] protein tyrosine phosphatase alpha 599 e-170
T —

* Thus our example sequence could be a protein
tyrosine phosphatase o (PTPa)
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FINUS
Example Alignment with PTPa ——

Brore = 632 bits (1629), Expect = e-130
Idomtitics = 2045302 (), Pocitiwvos = 2045332 (078

Query: 1 SPRTNRKYPPLPVIKLEEE [ NERMADDNKI FREEF VAL PACP 'QA’I‘CEMSW 60
SPETHNREYPPT PVDET EEE TNERMATDNET FREEFTAT PACP QATCEARER

Shict: 202 RPSTNREYPPLFVDELEEE INRRMADDNKI FREEFJALFACE QATCEMSKEENKEKNR 141

=3

Query: 61 YVNILFYDHSRVHLTPVEGVEDSDY INASF INGYQIKNKF [ AsQGPEEETYNDFWEMIVE 120
YVNILPYDHSEVHLTPVEGYPDEDY INASF INGYQZENKF [ AaQGPEEETVHDEFWEMIVE
Fhict: 262 YVNILPYDHSEVHLTPVEGVEDSDY [NASF INGYQIKNKF [ AsQGPEEETVNDFUWRMIVE 321

—

Query: 121 QNTAT IVMYTNLEERKECKCAQTWPDQOCWTVGNVRYEVEDV VLVDYTVREFC IQOVGD 180
QNTAT IVMVTNLEEREECEC AQYWE DOGCWTYGHVAVEVEDV VLVDVTVERFC 1QQVGD

Fhict: 322 QNTATIVMYTNLEERKECKCAQTWPDQOCWTVGNVRYEVEDV VLVDYTVREFC IQOVGD 381

Query: 181 VINRKPJRLITQFHFTRWPDEGVPFTF IGMLEFLEVEACNE QT AGA T VVHC SAGVORTS 240
WINREEPJRLITQFHF TSWPDEGVEFTF IGMLEFLEXVEACNPOYAGA I VRHC SAGVGRTG
Bbicl. 282 VINREPJFLITQFHF TRWFDFGVPFTF IGMLEFLECYEACHPOTAGS [ VWVHC BAGVORTG 441

(uery: 241 TFVVIDAMLDMMHEEREVDVYGFY SR IRAQRCOMYDTDMOYVE [ YQALLFHYLYGDTELE 300
TFYV I DANLDMMHSEREVD VY GF VSR I RAQRCOMVI TD MO YVF 1 ¥ ALLEHYL YD TELE
Bhict: 442 TEVVIDAMLDMMHIEREVDVIGFVER [ BAQRCOMVUTDMOYVE I TQALLEHYLYGDTELE 501
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of Guilt by Association
of Seq Similarity




INUS
Seq Similarity: Caveats e

 Ensure that the effect of database size and other
biases has been accounted for

* Ensure that the function of the homology is not
derived via invalid “transitive assignment”’

* Ensure that the target sequence has all the key
features associated with the function, e.g., active
site and/or domain

Copyright 2007 © Limsoon Wong

G
Law of Large Numbers —

e Suppose you areinaroom < Q: What is the prob that

with 365 other people there is a person in the
room having the same
* Q: What is the prob that a birthday as you?
specific person in the * A:1-(364/365)%°=63%
room has the same
birthday as you? « Q: What is the prob that
e A:1/365=0.3% there are two persons in
the room having the same
birthday?
« A:100%

Copyright 2007 © Limsoon Wong
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ZINUS
Interpretation of P-value -
e Seq. comparison progs, e Suppose the P-value of an
e.g. BLAST, often alignment is 10
associate a P-value to
each hit » If database has 107 seqs,

then you expect 107 * 10¢ =
10 seqs in it that give an

¢ P-value is interpreted as .
equally good alignment

prob that a random seq

has an equally good

alignment = Need to correct for
database size if your seq
comparison prog does not
do that!

Exercise: Name a commonly used method
for correcting p-value for a situation like this

Copyright 2007 © Limsoon Wong

G
Lightning Does Strike Twice! =

* Roy Sullivan, a former park ranger from Virgina,
was struck by lightning 7 times

— 1942 (lost big-toe nail)
— 1969 (lost eyebrows)
— 1970 (left shoulder seared)
— 1972 (hair set on fire)
— 1973 (hair set on fire & legs seared)
— 1976 (ankle injured)
— 1977 (chest & stomach burned)
o September 1983, he committed suicide

Cartoon: Ron Hipschman
Data: David Hand

Copyright 2007 © Limsoon Wong
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EAINUS
Effect of Seq Compositional Bias ='"—=-‘“"

* One fourth of all residues in protein seqs occur in
regions with biased amino acid composition

* Alignments of two such regions achieves high
score purely due to segment composition

= While it is worth noting that two proteins contain
similar low complexity regions, they are best
excluded when constructing alignments

* E.g., by default, BLAST employs the SEG algo to
filter low complexity regions from proteins before
executing a search

Source: NCBI

Copyright 2007 © Limsoon Wong

FINUS
Effect of Seq Length =
0 \ I l U-sets
i i .
% X Distribution of seq identity vs length

of unrelated proteins

L=157

HSSP(+3%)
1 4o

sequence identity (T), %

0

sequence length (L) Source: Abagyan & Batalov
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INUS
Seq Similarity: Caveats e

* Ensure that the effect of database size and other
biases has been accounted for

* Ensure that the function of the homology is not
derived via invalid “transitive assignment”’

* Ensure that the target sequence has all the key
features associated with the function, e.g., active
site and/or domain

Copyright 2007 © Limsoon Wong
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Examples of Invalid Function Assignment:

The IMP Dehydrogenases (IMPDH)

12 cames were found

m Organism TR Swiss-Prov TrEMEL RefSeq/GenPept
[ F nnsine-T-monophosphste
- . FA4131 conaerved hypnthetion proteén I : ) . dehydegennar (k)
MFO01R1A5T Methanococens jannasch | OTeLs YE53_METLA Hypothetical protein MIDGS3 T e
dehydrogensse (gasll)
E355 MIDEST hemalog AFUEAT | 264754 mosing menophosphate
[ " \ALT_MAMES: inocins-monophosphate 22241 | INOSINE MONOTHOSPHATE dehydrogenase (gasll T)
HEQMETTES| Archaeoglobos filgidus delydrogenass (guab 1) homulog DEHYDROUEN ASE (GUAE 1) T —
[mastvomer] delipdogenase (guat 1)
[ 4251 yhue¥ homolog 1 [ T morme monophorphabe
- ) ALT_NAMES: inosine-monophosphnte CIZA16 INOSINE MONOPHOSFHATE dehydgennar (gnB-2)
MEQ01E826T Archasoglobus Rilgidus dehydagenase (paaB-7) heamolag DEHYTROGEH ASE (GUAR-T) HE 070943 innaine monephosphnte
[mianamer] dehydengennar (gunB-2)
aphosphate

e e A partial list of IMPdehydrogenase misnomers: s
in complete genomes remaining in some g

WEDOLETT 6 Therma d probem

nemuplosphale
public databases e
nacphnsphnte
s B hethanethermotacter PRRAEUSRE AL SART BTLIIWG TR 8 480 1027204 THOSIHE. L MONOPHOSPHATE dehyidagennar relsted peotein ¥
HEQ04 14709 Mhermatotreptocus ALT_MAMES. mosine-meacphosphale ppusmipesey aeg pE ATET PROTEIN ¥ HE 276354 iringine- T-marnphoaphate
genase related protem V[ !
dehydrogenage relsted protein ¥
| D6R035 MI1232 protein homolog MTHLZE | 2621166 mosing-F-moncphosphate
hE00414211 [Miethmethermabacter .m' mus mosing-F-monophosphate 0126250 INOSINE- L MONOPHOSTHATE dehydragensse related protein VI
2 2 T gtnase relted proten VI [DEHYDROGENASE RELATED PROTEIN VIl KF_275269 inosine- S-monophosphate
[mustsumer] dlidragemase selated proten Vil
[ o A— U movme ¥ mumophuoephisbe
Eang14g; Methamothemobactee %ﬁﬂﬂ,’:f_ﬁx’;’g’;ﬂ"ﬂ: e 13 INUSIHE & MONOPHOSPHATE el drogenass relsbad proten 1
S ot op s de}r;d:o eh;s:xdm;ipm:-:‘;)c [:Iisnaml] DIEH VTR ARE HELATED PROTEIN 13 HE 26107 wname- Ssarnphoaphatn
& = dehyisagennar relaed peotsin T
k [ZAIE0T incsine-T-monophosphite
(ethancthermobacter BI2077 yiack homolog 2 CTALA THOSTHE. F MONOPHOSPHATE dehyisopennan relstad protsin 30
[HEQO4 14365 T e e R L P (DEHYTROGEN ASE RELATED PROTEIN X HE_276657 inosine-S-monophosphate
L defipdrogensse related protein X0
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ZINUS
IMPDH Domain Structure —

FCMO04E7: PDOCOO3E1 IMF dehydrogenase / GMF reductase signature
“ﬁ FPFO0478: IMP dehydrogenase / GMP reductase C terminus
e PFOOS71: CBS demain
DO0G PROT3ET: Helixtum-helix
e FFO1574: IMF dehydrogenase ¢ G reductase N terminus
iy FPFO2185: FarB-like nuclease domain
431997
FYsFOn0130) '~ hES
E7O212
(SFOO0131)  sipeimpmimieimitemion == 404 4\
EB4381 i H
(SFo0aB28) 194 <: IMPDH Misnomer in Methanococcus jannaschii
669355
(SFOD456) L) <:
(Srobasay 183 <: IMPDH Misnomers in Archaeoglobus fulgidus
BE3407
250
(SFOD4599) SRR <:

* Typical IMPDHs have 2 IMPDH domains that form
the catalytic core and 2 CBS domains.

* A less common but functional IMPDH (E70218)
lacks the CBS domains.

 Misnomers show similarity to the CBS domains

Copyright 2007 © Limsoon Wong

Invalid Transitive Assignment
Root of invalid transitive assignment
B::> [T H70468 ||SFO01258 USI44D'%W—%Z%%L ;;;Ehnsghatas }Aquexaeahcus

(EC 3.6.1.31) [similarity]

|phosphonbosyl- AMP cyclohydrolase (EC
039935 3.5 4.19) / phosphonbosyl-ATP pyrophosphatase  |Synechocyshs sp Proligram- [557.0 |5.7e-24 230 39.175
(EC 3.6 1.31) [similarity] |
T3 SF028243 005738 pprobable phosphonbosyl-AMP cyclohyirolase |Stmpmmyr:esr:uellcn]ur |Pmk1g1a[rr+ 3993 |3.5e-15 128 42.157
phosphonbosyl- AMP cyclohydralase (EC
[gs34n | SF001257 001185 B3 19)/ phosphoribosyl ATP pyrophosphatase oo ornvces corevisiae Eokifimg (3641 |2.56-14 (799 31.863

EC 36.1.31) / histidinol dehydrogenase (EC
11123

[
|phosphonbosyl-AMP cyclohydrolase (EC
k:} [T E69493 ||SF029243 005738 5.5.4.19) [similar |&rchazoglobus fulgdus chae [396.8

O::} M 64337 |SFO06833 010327325 ?:mh:;,,;in ophoshatase (EC Methanocaccus jannaschii
— I 3.6 31) [similarity]

hephorbosy-ATP py i (EC

[ D81178 |SFO06833 ||101491 /131 NMBDﬁD][s:rm]an |Nm=.=mm.=mnm‘ﬁrim

sphonbosyl-ATP pyrophosphal A=>B>C == A->C -
7 C81925 |SF00683] ||101491 (3.6.1 31) NMA080T [simlari
hosphoribosyl- AMP cyclohydrolz B (SF'I]J]ZSG]

13.5.4.19) / phosphoribosyl-ATP gy
Dissisl3 |\ SF001257 \00)ABE (s s 1.31) f Bisticnol dehyiirog |__

11.1.23)

. ./ ———| —_——
MIS-&SSlgnmeﬂt A (SF029243) C (SF
of function No IMPDH domain”

Prolfother [594.3 |4.8e-26 205 39.086

97

I 87606

=

SFO01258

¥

02 | e—

0 | e—

4.8e-15 |108 47778 |90 —

‘Archae 2469 |lle-06 (95 |36.842 |95

|Prnhfmm. 7309 |7ﬁ.-.nr. 107135 937 128

006833)




INUS
Seq Similarity: Caveats e

* Ensure that the effect of database size and other
biases has been accounted for

* Ensure that the function of the homology is not
derived via invalid “transitive assignment”’

» Ensure that the target sequence has all the key
features associated with the function, e.g., active
site and/or domain

Copyright 2007 © Limsoon Wong

INUS
Emerging Pattern &=

Typical IMPDH Functional IMPDH w/o CBS

£31997
(SFO00130)

a4

E70213
(SFO0O131)

104 <: IMPDH Misnomer in Methanococcus jannaschii

EB4351
(SFO04695)

GHA3I55 < ::

(SFO046O6) 182

Lo 183 &&== IMPDH Misnomers in Archaeoglobus fulgidus
BEOA0T

(SFO04629) A 69 <:

e Most IMPDHs have 2 IMPDH and 2 CBS domains
« Some IMPDH (E70218) lacks CBS domains

= Alignment must preserve IMPDH domain to infer
IMPDH
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EBANUS
Important Unsolved Challenges Y=
* What if there is no useful seq homolog?
» Guilt by other types of association!

— Domain modeling (e.g., HMMPFAM)

— Similarity of dissimilarities (e.g., SVM-PAIRWISE)

— Similarity of phylogenetic profiles

— Similarity of subcellular co-localization & other

physico-chemico properties(e.g., PROTFUN)
— Similarity of gene expression profiles
— Similarity of protein-protein interaction partners

— Fusion of multiple types of info

Copyright 2007 © Limsoon Wong
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Guilt by Association
of Similarity of
Dissimilarities

Similarity of Dissimilarities

orange,

banana,

apple,

Color =red vs orange
Skin = smooth vs rough
Size = small vs small
Shape = round vs round

Color =red vs yellow
Skin = smooth vs smooth
Size = small vs small
Shape = round vs oblong

apple,

Color =red vs orange
Skin =smooth vs rough
Size = small vs small
Shape = round vs round

Color =red vs yellow
Skin = smooth vs smooth
Size = small vs small
Shape = round vs oblong

orange,

Color = orange vs orange
Skin = rough vs rough
Size = small vs small
Shape = round vs round

Color = orange vs yellow
Skin = rough vs smooth
Size = small vs small
Shape = round vs oblong

Copyright 2007 © Limsoon Wong
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ZINUS
SVM-Pairwise Framework ——

Training Training Features
Data
Feature S S S, Support Vectors
S1 Generation S, fy fip fis .o Training Machine
S2
Se fu fo T o (Radial Basis
s3 /s%f31 fa fig ... Function Kernel)
f;y is the local — | --- .- s e e l
alignment score
between S; and S, Trained SVM Model
(Feature Weights)
Testing Testing Features i
D
ata Feature S1 S, S
T1 Generation T, fu fip fig oo Classification RBF
T2 Tt fe fm - Kernel
T3 Ty fy fo fy o l
. /
fyy is the local — --- - e e

Discriminant

alignment score
9 Scores

between T; and S,

Image credit: Kenny Chua
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FINUS
Performance of SVM-Pairwise —-—

SVM-pai rwise
SWM-Fisher

40

30

20

10

No. of families with given performance

o0

0]

ROC
e ROC: The area under the curve derived from

plotting true positives as a function of false
positives for various thresholds
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Guilt by Association
of Genome Phylogenetic Profiles

Archaea| Bacteria |Eukl

NERRERREL RN AL LR RERR TR R DNR TR RN R EAREARRARRRRAER O RRAR AR RERRY
ARRRENRRRRURRER CORDERR 00 DODNRRSE'K N0 MUARRECAN CENMORRDREINRINE * HORERD RANEDA
I LT TR I
ANRRNRRRRRRRRRER: el
I T T T T T T
JLTTETVTTETAHTANAY SRR W 1 DNRURY | AT AU | AR | RRRARY W 11|
{LTTTTUTTTT TN ARART TR T AT TR TINRO T | T A SR 171 17)
TURIRRIATDRRRERERR ERORRIATRIRUM RN AR AR AT TR
Rv2869¢ INININNARD 10000 eneep e e
ATRIRTREANRRRARRY 00 ELNUDED ANRRRUNRNREL RONIRRAND: DOEAD NRDDRNRD ERRUSCRRERRIND

Rv3583c
Rv1012
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Phylogenetic Profiling ._.'E'__L_E

Pellegrini et al., PNAS, 96:4285--4288, 1999

* Gene (and hence proteins) with identical patterns
of occurrence across phyla tend to function
together

= Even if no homolog with known function is
available, it is still possible to infer function of a
protein

Copyright 2007 © Limsoon Wong

Genomes: |

E— Sl EBANUS
P2 P4 e f @ Btz Unkesralig

& rs 5

\\ P7 :

8. cerevisiae {8C)
— Fl P3
4 PhPS B. subtilis (BS)
[ —
E eoli (EC) H. influeizae (H1)

U Profe Castrs Phylogenetic
Phylogenetic Profile: 1 o -'|’J PI’OfI|Ing
e 770 | How It Works
I " [ RN R
R _ 1

Conclusion: P2 and PT are functionally linked ,
3 andl P6 are finctionally linked
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B & E‘lé
Phylogenetic Profiling: P-value -

The probability of observing by chance z occurrences of genes X and Y in a set
of ¥ lincages, given that X occurs in # lincages and ¥ in y lincages is

_ Wy kW
P(e|N,2,y) = ——
where
N
x = z
No. of ways to distribute z
co-occurrences over N T = N-z N N-12
lineage's % ¥ —z y—2z
N N
y W = " ,\N_o. qf ways of
No. of ways to distribute T i distributing X and Y
the remaining x—zandy -z over N lineage's
occurrences over the remaining without restriction

N -z lineage's

Copyright 2007 © Limsoon Wong

Phylogenetic Profiles: Evidence E—«-_"_é

Pellegrini et al., PNAS, 96:4285--4288, 1999
No. of non- Mo, Mo

homologous ~ neighbers  neighbors
proteinsin in kewword in random

Kevvenud group proup S¥oup
Ribosome ail 197 23
Tramscription 6 17 L
TRMA snthase and ligase 26 11 5
Membane proleins’ 25 59 <
Flagellar Z1 b 3
Jrew, fervic, and ferritin 1% 3 2
Galactose metabolism 18 3 2
Molybdeterin and &olybdemmm,
and melgbdoterin 12 [ |
Hypotheticalt (T 1418, 226 84200

» E. coli proteins grouped based on similar keywords
in SWISS-PROT have similar phylogenetic profiles

Copyright 2007 © Limsoon Wong
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. - . ERANUS
Phylogenetic Profiling: Evidence 85 i
Wau et al., Bioinformatics, 19:1524--1530, 2003

hamming distance y y
= #lineages X oceurs + 4KEGG
#lineages Y occurs — 0COG
2 * #lineages X, Y occur

in KEGG/COG

fraction of gene pairs
having hamming distance D
and share a common pathway

hamming distance (D)

* Proteins having low hamming distance (thus
highly similar phylogenetic profiles) tend to share

common pathways Exercise: Why do proteins having high
hamming distance also have this behaviour?

Copyright 2007 © Limsoon Wong
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Guilt by Association
of Physico-Chemico
Properties

Qo [s]
oo cQO@C o
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O 000 @«
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&) b Aming acd sy hesis

Biotynihass of cofactons.

Coll ervelope.

Cellutar processes

Caniral nbwrmudiary
metabolizm

[Enargy metaboksm

Faity ackl metabolism

Purines and pyrimicines

Reguiatory kncions

Replication and
Iranmeription

Transiation
Transport and binding

The ProtFun Approach

Jensen, JMB, 319:1257--1265, 2002

e A protein is not alone
when performing its
biological function

i/

v e
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& &

’
dff‘: @%‘f’* SO ﬁ%%ﬁg

46
EINUS
w Btz Unkesralig

o= =

© )
o éﬁ#
g
S

Af

e It operates using the same ‘ @ o
cellular machinery for
modification and sorting
as all other proteins do,
such as glycosylation,
phospharylation, signal
peptide cleavage, ...

* These have associated
consensus motifs,
patterns, etc.

o @0

© l seql

Proteins performing
similar functions should

share some such
“features”

protein function by

= Perhaps we can predict

comparing its “feature”
profile with other proteins?

Copyright 2007 © Limsoon Wong
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ProtFun: Evidence

EANUS
¥

o
)
@]
O
O

Cell envelope

o
6]
@]

)

o

Cellular processes

- \b"a;\b& o
& oS & & & &
&a‘&‘d'ﬁ;f"’oiq- < -S'Po i\"@ c?‘ﬁq*% a"f?}
& @%ﬂf Lﬁﬁ ) «%  Combinations of
(«)‘0@\1°x\‘*0”<\ » ”
= features” seem to
gi O o @ OO @ Amine acid biosynthesis characterize some
o4 Q O o OOO ) | Biosynthesis of cofactors

functional
categories

Qo

O O

O | Central intermediary
metabalism

o Energy metabolism
Fatty acid metaboli sm
O Furines and pyrimidines

r Regulatory functions

O | Replication and
transcription

O O | Translation
o

Transport and binding
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. Btz Unkesralig

ProtFun: How it Works e

\Ahhrivimiun \ Encoding | Description

‘ec ‘SIHQ\E walue |Ex1|ncl\un coefiicient predicted by ExPASy ProtParam

gravy single value Hydr predicted by ExPASy ProtParam

nneq single value Murnber of negatively charged residues counted by ExPASy ProfParam

npos single value Murnber of positively charged residues counted by ExPASy FrotParam

‘nglyc ‘potentlal in 4 hins |N7gly:osy\atlon sites predicted by Meth Gy

‘Uglyc ‘pulemlal-lhreshu\d in10hins |GaINAc O-glycosylations predicted by MNelO Gy

pest fractionin 10 bins PEST rich regions identified by PESTiind

phosST potential in 10 bins Setine and threonine phosparylations predicted by [etPhos

phosY potential in 10 bins Tyrosine phosparylations predicted by MetPhos Extract feature

[psinred  [helix, sheet, coilin & bins |Predicted secondary structure from PEL-Fred profile of pr()tein

‘psun ‘ZU probahbilities |Subce\|ular location predtions by PSORET usina vV rious

ELD fractionin 10 hins Low-complexity regions identified by SEG = AC

signalp means, maxy, log(cleavage pos) Sighal peptide predictions made by SignalP predmt on methOdS

trahmm inside, outside, membrane in 5 hing |Transmembrane helix predictions made by ThiHMW

Category ‘ Hidden | Input features
Aming acid binsynthesis a0 [t peipred psorttrmhrmm
30 e psipred tmhmm
a0 ¢ netoglye psipred psont
Average the output of 1 oied peon

the 5 component ANNs =

|oglyc psipred psort

Copyright 2007 © Limsoon Wi
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ZINUS
ProtFun: Example Output e

Prion A4 TTHY

Amino acid biosynthesis 0.011 0.011 0011 4

Biosynthesis of cofactors 0.041 016 034 Atthe Sl Ievel’
Cell envelope ﬂ,'lélﬁ Prion, A4, & TTHY
Cellular processes 0.027 0.027 0.051 issimi

Central intermediary metabolism 0.047 0.139 0.059 are dissimilar
Energy metabolism 0.029 0.023 0.046

Fatty acid metabolism 0.017 0.017 0.023 )
Purines and pyrimidines 0.528 0.417 0153 ¢ ProtFun predlcts
Regulatory functions 0.013 0.014 0.014

Replication and transcription 0.020 0.029 0.040 them to be cell
Translation 0.035 envelope-related,
Transport and binding m tranport & binding
Enzyme 0.233 0.367 0.227

Non-enzyme

Oxidoreductase (EC 1.—.—.—) 0070 0024 0055 ¢ This is in agreement
Transferase (EC 2.—.—.—) 0.031 0.208 0.037 w/ known

Hydrolase (EC 3.—.—.-) 0.101 0.090 0.208 . .

Isomerase (EC 4.—.—.—) 0020 0020  0.020 functionality of
Ligase (EC 5.-.—.—) 0.010 0.010 0.010 i

Lyase (EC 6.—.—.—) 0.017 0.078 0.017 these prOtelns

Copyright 2007 © Limsoon Wong
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Guilt by Association of
Common Interaction Partners:
Protein Function Prediction
from Protein Interactions

Protein Interaction Based Approache

« Neighbour counting e Clustering @munetal, 2003; samanta et al,
(Schwikowski et al, 2000) 2003)
¢ Rank function based on freq ¢ Functional distance derived
in interaction partners from shared interaction

f partners
° Chl-square (Hishigaki et al, 2001) ¢ Clusters based on functional

* Chi square statistics using distance represent proteins
expected freq of functions in with similar functions

interaction partners

. e Functional FIOW (abieva et al, 2004
+ Markov Random Fields (peng e el e 2
et al, 2003; Letovsky et al, 2003) * Assign reliability to various
» Belief propagation exploit expt s.ourf‘:es .
unannotated proteins for + Function “flows” to
prediction neighbour based on
. . reliability of interaction and
e Simulated Annealing (vazquez et “potential”
al, 2003)
* Global optimization by B .
simulated annealing ¢ Indirect Functional Assoc
« Exploit unannotated proteins (Chuset et i2000) )
for prediction  Identification of reliable
common interaction partners

Copyright 2007 © Limsoon Wong
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SINUS
Functional Association Thru Interactiors™

« Direct functional association: Level-\l neighbour
— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same :>T\.

pathways are likely to interact (o)
+ Indirect functional association

— Proteins that share interaction
partners with a protein may also
likely to share functions w/ it

Level-2 Tighbour

— Proteins that have common xR
. . . . @
biochemical, physical properties o
and/or subcellular localization ./f\.
are likely to bind to the same e
proteins

Copyright 2007 © Limsoon Wong
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An lllustrative Case of E...._l_é

Indirect Functional Association?

SH3 Proteins SH3-Binding
Proteins

 Is indirect functional association plausible?
 Is it found often in real interaction data?

e Can it be used to improve protein function
prediction from protein interaction data?

Copyright 2007 © Limsoon Wong
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ERANUS
Materials &z

* Protein interaction data from General Repository
for Interaction Datasets (GRID)

— Data from published large-scale interaction
datasets and curated interactions from literature

— 13,830 unique and 21,839 total interactions

— Includes most interactions from the Biomolecular
Interaction Network (BIND) and the Munich
Information Center for Protein Sequences (MIPS)

* Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS

— 473 Functional Classes in hierarchical order

Copyright 2007 © Limsoon Wong

IINUS
o 95 e
Validation Methods
+ Informative Functional Classes METAEOLISH
— Adopted from Zhou et al, 1999 o101 10, T
. amino acid metabolsm nitrogen and sulfur metaboksm
— Select functional classes w/ o~
- at least 30 members Rt o e vl
of tha ghutamate group creatine and pofyamines
¢ no child functional class w/ g
at least 30 members 01.01.03.01 (12) 01.01.03.02 15
n'-\a'.a':—:\lsm_-:-f ghatamine metabolism of ghtamate
01.01.03.01.01 (6) ni.m.n:\.m_.m_ )
e | -~
¢ Leave-One-Out Cross Validation
— Each protein with annotated
function is predicted using all
other proteins in the dataset

Copyright 2007 © Limsoon Wong



YALO12W
11.1.6.5
11.1.9

I

[ I 1

116.3.3

142.25 =
[—% 114.7.11 Y
121,
YPLOB8W YBR293W 111,
12.16 116.19.3
11.1.9 142.25
11.1.3
11.1.9
[ | [ i
YBRO23C YLR330W YBL061C YLR14(
110.3.3 11.5.4 11.5.4
132.1.3 134.11.3.7 110.3.3
134.11.3.7 J41.1.1 118.2.1.1
142.1 143.1.3.5 132.1.3
143.1.3.5 143.1.3.9 142.1
143.1.3.9 143.1.3.5
11.5.1.3.2 [ 1.5.1.3.2
YKLOOBW

I
YJR091C YMR300C YPL149W 'YBRO55C
11.3.16.1 11.3.1 114.4 111.4.3.1
120.9.13

Shared Functions with [Fraction

[Level-1 neighbours exclusively 016338
[Level-2 neighbours exclustvely 226574
[Level-1 and Level-2 neighbours 463960
[Level-1 or Level-2 neighbours 706872

11647

1

Copyright 2007 © Limsoon Wong

* Remove overlaps in level-1
and level-2 neighbours to
study predictive power of
“level-1 only” and “level-2
only” neighbours

e Sensitivity vs Precision
analysis

K K
PR = z;( L SN:Z‘Kki
Zi m; Zi n

* n,is no. of fn of protein i

* m;is no. of fn predicted for
protein i

* k; is no. of fn predicted
correctly for protein i

Copyright 2007 © Limsoon Wong

112.1.1 L [
YOR312C 116.3.3 YPL193W YDLO81C YDRO91C
112.1.1 112.1.1 112.1.1 11.4.1
|12.1.1

112.4.1
116.19.3

YPLO13C
112.1.1
142.16

Source: Kenny Chua

S
NS

Prediction Power By Majority Voting =

Precision VS Recall

05+

Precision

AS1IN 82
©52-51
o Si-52

Recall

= “level-2 only” neighbours
performs better

= L1 N L2 neighbours has
greatest prediction power




. . . . . EE &
Functional Similarity Estimate: ,'E'.-_L_é
Czekanowski-Dice Distance
* Functional distance between two proteins euneta 20

D(U.v)= IN,AN, |
NG UN [N, N va'.

* N, is the set of interacting partners of k .
e X A Y is symmetric diff betw two sets X and Y.
* Greater weight given to similarity

= Similarity can be defined as
2X
2X +(Y +2)

Copyright 2007 © Limsoon Wong

S(u,v)=1-D(u,v) =

Functional Similarity Estimate: E...._';é
FS-Weighted Measure

* FS-weighted measure

2N, NN, 2N, NN,|
S(U,V)I u v % u v
IN, =N, |+2N, AN, [N, =N,[+2N, "N, |

* N, is the set of interacting partners of k
* Greater weight given to similarity

= Rewriting this as

S(u,v)z 2X y 2X
2X+Y 2X+Z




Meighbours [CD-Distance [F5-Weight
1 0471810 0408743
=5 0.224705 1.208843
51w 5; 0224581 0.20629

TS
Correlation w/ Functional Similarity e

» Correlation betw functional similarity & estimates

» Equiv measure slightly better in correlation w/
similarity for L1 & L2 neighbours

Source: Kenny Chua

Copyright 2007 © Limsoon Wong

62
G
Reliability of Expt Sources —

» Diff Expt Sources have diff | source Reliability
reliabilities
— Assign reliability to an
interaction based on its
expt SOUI'CES (nabieva et al, 2004) Biochemical Assay 0.666667

* Reliability betw u and v

Affinity Chromatography 0.823077

Affinity Precipitation 0.455904

Dosage Lethality 0.5
computed by:
Purified Complex 0.891473
ru,v _1_ I I (1_ r| ) Reconstituted Complex 0.5
IEEu,v Synthetic Lethality 0.37386
* r;is reliability of expt -
source i, Synthetic Rescue 1
* E,, is the set of expt Two Hybrid 0.265407

sources in which
interaction betw u and v is
observed

Copyright 2007 © Limsoon Wong
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Functional Similarity Estimate: ._-'E'.._L_E
FS-Weighted Measure with Reliability

» Take reliability into consideration when
computing FS-weighted measure:

2 ZUWVW 2

SRS S R SRR W

N, "N,

uva

Sa(uv)=
|

* N, is the set of interacting partners of k
* 1, is reliability weight of interaction betw u and v

= Rewriting
2X 2X

S(u,v)= X
2X+Y 2X+Z

o TINUS
Integrating Reliability ——
* Equiv measure shows improved correlation w/

functional similarity when reliability of
interactions is considered:

Neighbours [CD-Distance [F5-Weight [FS5-WeightR
= 0471810 N.408743 .532506
=5 0.224705 0208843 0373317
51w 52 0.224581 0.29629 N.363023

Copyright 2007 © Limsoon Wong
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Improvement to

Improvement to
Prediction Power by Majority Voting
0.5
+ Heighbour Counting fAsweight & L2
045 | & Heighbour Counting Awweights
0.4 o Heighbour Counting
ozs f
c 03| N .
:E ozs | -
5 az L o """a:+
o5 | D“r@é; .
o1 b f*1+
ons - ++*+++'
o
0 0.2 0.4 06 08 1
Recall

] &

EE &

NUS
&=

Considering only
neighbours w/ FS
weight > 0.2

INUS
) i

Over-Rep of Functions in Neighbours

Fraction of neighbour pairs with Functional Similarity

a FSnkight threshold

Fraction
=
o

B All Pairs 07

0.8 4
0.7 q
0.6 4
0.4
0.3 4
0.2 4
04 4
0+ T T T
(1] 1 2 3 4

MIPS Annotation Level

5

Fraction of neighbours with Functional Similarity

02

0s1-s2 1
os2-81 0.9
BS1nS2 08

0 1 2 3 4 ]
MIPS A nnotation Level

Os1-%82
as2-51
=51, 52

o 5]

Source: Kenny Chua
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ANUS
Use L1 & L2 Neighbours for Predictio’*"—"’"

* FS-weighted Average

o)=L { e LR zsmm,w)a(w,x)ﬂ

veN weN

I is fraction of all interaction pairs sharing function
* ) is weight of contribution of background freq
* 3(k, x) =1 if k has function x, 0 otherwise
* N, is the set of interacting partners of k
7, is freq of function x in the dataset
e Zis sum of all weights

Z =1+ Sr(u,v)+ > S (u,w)

veN, weN,

Copyright 2007 © Limsoon Wong
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FINUS
Performance of FS-Weighted AveragiRg=—

 LOOCV comparison with Neighbour Counting,
Chi-Square, PRODISTIN

1 Informative FCs

3 o NC
0.9 "x! & Chit
08 T o PRODISTIN
7 " = FunctionalFlow
07J° " » FS Weighted Avg
0gd o0 xx
s . o og x,
% 054 =
g 04 4= x*
‘m & *x
0.3 ’.’l!x * x,
0.2 4 h*xi\:;% T
b :étﬂ. 2o, "y
0.1 e e,
. anmﬂ;mﬂn

4] D‘I 0203 040506 0?08 09 1
Recall

Copyright 2007 © Limsoon Wong




. 69]
SINUS
Performance of FS-Weighted Averaging=—

» Dataset from Deng et al, 2003
— Gene Ontology (GO) Annotations
— MIPS interaction dataset

» Comparison w/ Neighbour Counting, Chi-Square,
PRODISTIN, Markov Random Field, FunctionalFlow

) Cellular Role Biochemical Function 4 SubCellular Location
e
TG e Fe
0.9 Chiz g 09 @500, e
« O a ChE ., * S o
08 - PRODSTH = PRCDISTIN LLE S o
o : = MRF 07 0e

o7 S « FunctionalFlow m— e
50¢ x P ieaTted Ava 6% g ta " x FS Weighted Avg || 5 08 .o e
Zos 2 o S E o5 ‘*:.,;;
4 $ e R Y
Eoa 3 L. o m s .E 04 " -

0.3 = o 03] s Che ox

0z i 03 L e = PRODISTN o

e - o 02| viF uy
e Engyn, Functionallow %
I e %!;’in&! 04 1| % FS Weightad Avg Pty
o 1]
010203 04 08 06 07 08 08 1 0 01 02 03 04 05 08 07 08 08 1 0 04 02 03 04 05 06 07 08 08 1
Recall Recall
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FINUS
Performance of FS-Weighted AveragiRg=—

» Correct Predictions made on at least 1 function
vs Number of predictions made per protein

Correct Predictions Correct Predictions Correct Predictictions
vs Predictions Made - Cellular Role vs Predictions Made - SubCellular Location vs Predictions Made - Biochemical Function
1 1
0.9 0.9 0.9
0.8 08 08
0.7 07 07
06 £06 c 06
S S 2
Bos 505 B o5
] s g
0.4 0.4 i 04
—oNC —o—NC 03 -
03 S 03 —&—Chi2 et
0.2 —&— PRODISTIN 0.2 —B8— PRODISTIN 0.2 —8— PRODISTIN
—%— FunctionalFlow| % FunctionalFlow T FonetionalFlow
0.1 —+— Weighted Avg 01 —— Weighted Avg 01 —— Weighted Avg
0 0 o
12 3 4.5 6 7 8 9 10 12 4_5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Predictions Predictions Predictions
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/1

EE &

Freq of Indirect Functional ._.@.._L_E
Association in Other Genomes

Genome Annotation | 5,-5, 5,-5; 5,MS; SpUS,

S. cerevisiae MIPS 0.007193 0226574 | 0463960 | 0.706872
D. melanogaster GO 0.008801 0.168622 | 0.138138 | 0.315561
C. elegans GO 0.007193 0.051237 | 0.061080 | 0.119510

Copyright 2007 © Limsoon Wong

72
- - TINUS
Effectiveness of FS Weighted 95 i
Averaging in Other Genomes
Precision vs Recall (Yeast / GO Level 3) Precision vs Recall (Worm / GO Level 3)
1
1
+ 09 4t
0.9 1,
0.8 R
071 508 4
06 205 | omy ™,
&3] 03 mh%n‘%%% .
0.2 4 oy
n_a 1 0.& . ‘ . , ﬂﬂﬁ
a 0.2 04 0.6 08 1 0 0.2 D.4Reca"().6 0.8 1
Recall
Precision vs Recall (Fly / GO Level 3)
1
0.9 ¢ Neighbour Counting
071 x NC (Weighted)
%32? ] o NC (Weighted + L2)
£03 + Weighted Avg
0.2 4
01
0 T T T T |
0 0.2 0.4 0.6 0.8 1

]
w
o
-8
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ERANUS
Conclusions &z

Indirect functional association is plausible

» |t is found often in real interaction data

It can be used to improve protein function
prediction from protein interaction data

It should be possible to incorporate interaction
networks extracted by literature in the inference
process within our framework for good benefit

Copyright 2007 © Limsoon Wong

INUS
References O e

e C. Brun et al. “Functional classification of proteins for the
prediction of cellular function from a protein-protein interaction
network”. Genome Biol. 5(1):R6, 2003

e Chua H.N., Sung W.K., & Wong L. “Exploiting indirect
neighbours and topological weight to predict protein
function from protein-protein interactions”. Bioinformatics,
22:1623-1630.

e M. Deng et al. “Prediction of protein function using protein-
protein interaction data”. JCB, 10(6):947-960, 2003

e H. Hishigaki et al. “Assessment of prediction accuracy of protein
function from protein-protein interaction data”, Yeast, 18(6):523-
531, 2001

¢ G.R.G. Lanckriet et al. “Kernel-based data fusion and its

application to protein function prediction in yeast”. Proc. PSB
2004, pp.300-311.

Copyright 2007 © Limsoon Wong



References

S.Letovsky & S. Kasif. “Predicting protein function from
protein/protein interaction data: a probabilistic approach”.
Bioinformatics. 19(Suppl.1):i197-i204, 2003

M.P. Samanta & S. Liang. “Predicting protein functions from
redundancies in large-scale protein interaction networks”.
PNAS, 100(22):12579-83, 2003

A. Vazquez et al. “Global protein function prediction from
protein-protein interaction networks”. Nature Biotechnology.
21(6):697-670, 2003

X. Zhou, M.C. Kao, & W.H. Wong. “Transitive functional
annotation by shortest-path analysis of gene expression data”.
PNAS, 99(20):12783-88, 2002

Copyright 2007 © Limsoon Wong

Guilt by Association of

Multiple Type of Information:
Protein Function Prediction

by Information Fusion
O)

38



o ZINUS
Information Fusion ——
 Markov Random Fields (Deng et al., JCB, 2004)

— Maximum Likelihood

— Model data sources as binary relation betw
proteins

» Kernel Fusion (Lanckriet et al., PSB, 2004)
— Discriminative approach
— Models each data source w/ diff feature vectors

— Weighted linear combination of kernels via semi-
definite programming

Copyright 2007 © Limsoon Wong

ENUS
Difficulties w/ Information Fusion -

» Differences in nature

— E.g., sequence homology vs PPI are very different
relationships

» Differences in reliability

— E.g., noisy datasets such as Y2H PPI and gene
expression

» Differences in scoring metrices

— E.qg., E-Score from BLAST vs Pearson correlation
between expression profiles

Copyright 2007 © Limsoon Wong
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ERNUS
Motivation &=
* Problems:

— Complex models such as MRF and Kernel Fusion
are computationally expensive

— Difficult or not possible to identify contributing
sources in a prediction

» Unified scoring of multiple sources has potential
(Lee et al., Science, 2004)

— Simple scoring using Log Likelihood
— ldentified many functional clusters

= A simple, flexible, and effective way to integrate
data sources that reports contributing sources in
predictions to allow users to exercise judgment

Copyright 2007 © Limsoon Wong

INUS
Strategy — Step 1 &=

 Model a data source as
undirected graph G = (V,E)

. . CDC34 N2
— V is a set of vertices;
each vertex reps a cDC4

protein MET30

CDC53
— E is a set of edges; each

edge (u, v) reps a

relationship (e.g. seq
similarity, interaction)
betw proteins u and v

Copyright 2007 © Limsoon Wong
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EINUS
Strategy — Step 2 G

« Combine graphs from
different data sources
to form a larger graph

Copyright 2007 © Limsoon Wong

Strategy — Step 3

» Estimate edge
confidence from
contributing data
sources

* Predict function by
observing which
functions occur 2
frequently in the high-
confidence neighbours {Fa Fol

{Fe, Fcl {Fa Fel

Copyright 2007 © Limsoon Wong
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INUS
Unified Confidence Evaluation ——

« Subdivide each data source into subtypes to
improve precision (e.g., expt sources, sub-ranges
of existing scores like E-scores)

» Estimate confidence of subtype k for sharing

function f by: Zsf (u’v)

k, f — (u,v)eg,, f
p(k, f) Ek,f‘+1

 E,is subset of edges of subtype k where each edge has
either one or both of its vertices annotated with function f

* S{(u,v) = 1if uand v shares function f, O otherwise

Copyright 2007 © Limsoon Wong

NUS
Discretization of Existing Scores ——

» Scores may come in many forms
— E.g., Blast e-values, Pearson’s correlation

» A simple approach to discretization
— Split ranges into n equal intervals
— Each interval becomes a new subtype
— Assume linearity in range
— Other strategies possible

Copyright 2007 © Limsoon Wong
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INUS
Combination of Confidence ——

» Combine confidence of data sources contributing
to each edge:

ru,v,f =1- I I (1_ p(k’ f))
keD,,
* P(k.f) is confidence of edges of subtype k sharing function f

* D, is the set of subtypes of data sources which contains
the edge (u,v)

Copyright 2007 © Limsoon Wong

o SINUS
Function Prediction -
+ Weighted Average ?
{F, Fo}
Z(ef (V)X Moy s ) {Fo F} o {Fa Fo)
S;(u) = vl
1+ )6,

veN,

» S(u) is score of function f for protein u

» e(V) is 1 if protein v has function f, O otherwise
* N, is set of neighbours of u

* r,, IS confidence of edge (u, v)

u,v,

Copyright 2007 © Limsoon Wong
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Level-2 Neighbours -

* Increase coverage of Protein-Protein interactions
— Indirect function association (Chua et al. 2006)
— Topological weight applied to PPI

— Divide into 3 subtypes:
A A A

B
Cc

Level-1 Neighbours Level-2 Neighbours Level-1&2 Neighbours

— A theshold of 0.01 is applied on L2 neighbours to
limit false positives
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Topological Weight Applied to PPI: E...._';é
FS-Weighted Measure with Reliability

» Take reliability into consideration when
computing FS-weighted measure:

2 Zuwvw 2 Zuwvw

(N, ANy ) we(N, AN, )

St Sz Sio (S Subone S

we(N, NN, (NyPNy) weN, we(N, AN, ) (Ny AN,

Saluv)=
|

* N, is the set of interacting partners of k
r,w is reliability weight of interaction betw u and v

= Rewriting

S( ,V) 2X 2X

= X
2X+Y 2X+Z
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B & E‘lé
Comparison w/ Existing Approaches ~ =

» Dataset from Deng et al, 2004

» 4 data sources (Saccharomyces cerevisiae)
— Protein-Protein Interactions
* 2,448 edges
— Protein Complexes
» 30,731 edges
— Pfam Domains
» 28,616 edges
— Expression Correlation
* 1,366 edges

Copyright 2007 © Limsoon Wong

EBANUS
. . . Btlgre] Urkegrily
Comparison w/ Existing Approaches =
* 12 functional classes
Category Size
1 Metabolism 1048
2 Energy 242
3 Cell cycle & DNA processing 600
4 Transcription 753
5 Protein synthesis 335
6 Protein fate 578
7 Cellular transport & transport mechanism 479
8 Cell rescue, defense & virulence 264
9 Interaction with the cellular environment 193
10 | Cell fate 411
11 | Control of cellular organization 192
12 | Transport facilitation 306
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EBANUS
Comparison w/ Existing Approaches ""*"-'"’""

» Validation Method (Lanckriet et al, 2004)
— Receiver Operating Characteristics (ROC)
— True Positives vs False Positives
— Area under ROC curve for each function

— Averaged over 3 repetitions of 5-fold cross
validation
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Comparison w/ Existing Approaches =

ROC Scores for Functional Classes

0.95 4 O MRF
0.9 o Kernel
0.85 4 | Weighted Avg
0.8 4
o
O 0.75 4
©

0.7
0.65 -
0.6
0.55 4
0.5 +

Functional Class
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GO Terms Prediction for Yeast Proteig =

01(250)
METABOLISM
¢ Proteins from )
01.01 (100} 01.02 (120}
Saccha romyces aming acid metabolsm | | nitrogen and sulfur metabolsm
CereveSiae i 01.01.03 (35 ) ) 01.01.05 (65)
. assimilation of ammonia, metabolism mataboksm Fed Cy
— 5448 proteins from GO oL Y poie
Annotation (SGD) .
01.01.03.01 (12 01.01.03.02 (15

metasboksm of glutamine metabolism of ghutamate

¢ Functional Annotation

- nge Or?tology + Informative GO Terms (for
— Hierarchical evaluation)

— 3 Namespaces — Zhou et al. (2002)

gﬂ?é%?g;?g;%gg;n’ - FC associate(_j with at

cellular componen’t) least 30 proteln_s and no
subclass associated with
at least 30 proteins
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INUS
Data Sources O e

 PPI ¢ Protein Sequences

— BIND — Seqs from GO database

— 12,967 unique (archive.godatabase.org)
interactions betw yeast — Each yeast seq is aligned
proteins w/ rest using BLAST

— FS weight used as score (cutoff E-Score = 1)

— -log(e-score) used as
score

— Top 5 results w/ known
annotations

— 19,808 unique pairs
involving yeast proteins
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L
Data Sources -
e Pfam Domains ¢ Pubmed Abstracts
— SwissPfam database — Pubmed abstracts obtained
(http://www.sanger.ac.uk/ by searching protein’s
Software/Pfam/ftp.shtml) name and aliases on
— Precomputed Pfam Pubmed
domains for SwissProt — Limit to first 1000 abstracts
and TrEMBL proteins w/ returned
E-value threshold 0.01 — Fraction of abstracts w/ co-
— Number of common occurrence used as score
domains used as score — 61,786 unique pairs
— 15,220 unique pairs involving yeast proteins
involving yeast proteins

Copyright 2007 © Limsoon Wong

Multiple Data Sources T

PFAM (15,220)
(12,967)

BIND

(19,808)
BLAST

PUBMED (61,786)
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Precision vs Recall

ERANUS
85 s

Combining all data

k5
2,
£ 04 foom o % n sources outperforms
.3 | © PFAM -
0.2 | -PusmED '-_ + - - -
o2 Jroverau b : any individual data
04 + ALL SOURCES . . .
0 02 0.4 0.6 08 1 source
. l
Molecular Function ™
Precision vs Recall Precision vs Recall
o BIND |
< PFAM
= PUBMED
X BLAST_ALL
A BLAST_SGD
- + ALL SOURCES -
S S L
Q0 £ +
§ ++ § ++
a + o +
*+ 0.3 { o PFAM +
+ 0.2 4 -PuBMED +
: + 01 X BLAST_ALL ++
- P e I
0.8 1 0 0.2 0.4 0.6 0.8 1
Biological Process ™ Cellular Component*®
Precision vs Recall .08
1 2%
0.9 +
0.8 + . .
071 * Weighted Averaging
s e predicts w/ better precision
£ 04 than transferring function
031 © BLAST_SGD TOP from tOp b|aSt hlt
0.2 { © BLAST_ALLTOP +
A BLAST_SGD -
019 xglasTau + * Using all data sources
04 + ALL SOURCES ; ; ; .
o 02 04 06 08 1 outperforms topblast in both

. Recall
Molecular Function

sensitivity and precision

Precision vs Recall Precision vs Recall
1 © BLAST_SGD TOP | 1+ © BLAST_SGD TOP |,
o BLAST_ALLTOP o BLAST_ALLTOP
0.9 4 A BLAST_SGD 0.9 A BLAST_SGD
0.8 1 X BLAST_ALL 0.8 | X BLAST_ALL
- + ALL SOURCES - + ALL SOURCES
0.7 4 0.7
5 06 5 061
2 05 2 05
[ (7]
x 044 £ 04
0.3 0.3
+
0.2 4 a + 0.2 4 +
+
0.1 + 0.1 +,
0 T T T T L 0 T T T T *
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Biological Processeca! -Cellular Componenteca!
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ERANUS
Conclusions &z

 We developed a simple graph-based method that
combines multiple sources of data sources for
function prediction

e Our method is simple, flexible and can report
datasources contributing to each prediction

 We have shown that our method performs
comparable, if not better, than existing
approaches
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