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1 Introduction

The possibility of using gene expression profiling by microarrays for purposes of diagnostics, prognostics,
and understanding the mechanisms of diseases has also generated much excitement in the past decade.
Similarly, mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling
systems-wide protein expression changes (Cox and Mann, 2007). It can be applied to better understand
cancer pathogenesis and discover indicative biomarkers for early progression. However, a number of issues
persist that hamper the effective use of these technologies. In particular, both microarray gene expression
profiling and MS-based proteomics have severe consistency issues; and MS-based proteomics additionally
have coverage issue. These issues make it difficult to identify genes and proteins that are meaningful in
explaining the difference in disease phenotypes (Soh et al., 2007).

The coverage issue concerns the coverage of the proteome at the level of an individual sample. In
particular, even as the advancement of MS technologies continues, certain limitations to current pro-
teomics approaches remain that hamper the complete mapping of the proteome in a sample. Like many
high-throughput methods, proteomics data is noisy. Furthermore, due to demanding technological and
manpower requirements as well as limited sample availability, often there are few repeats to guarantee
that the results are not false positives due to chance. Consequently, stringent score thresholding is gener-
ally used in various steps of peptide detection and identification to reduce noise. However, more stringent
thresholds also reduce coverage of the proteome. For example, a relevant protein may escape reporting
because it does not meet a required threshold on its dynamic range. A relevant protein may also escape
detection because it does not meet a require threshold on its signal intensity, perhaps due to imperfect
prediction of MS-amendable transitions (Tang et al., 2006; Mead et al., 2009).

The consistency issue concerns the consistency of gene expression and proteomic profiles at the phenotype
level across patient samples. To understand oncobiology and for the discovery of biomarkers, quantitative
comparisons of cancerous and non-cancerous samples are performed (Bukhman et al., 2008). Traditional
gene expression and post-MS analysis approaches are to select and study only those genes and proteins
that are found in most of the samples of the phenotype in question and have a consistently overexpressed
or underexpressed ratio. However, genes and proteins with noticeably high or low expression are not
necessarily causal or important. At the same time, a mutated gene or protein that drives other genes and
proteins to change their levels may not itself report any change in expression or may miss being detected
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by the MS assay. Moreover, many relevant genes and proteins report “swing” ratios, that is, a mixture
of both high and low ratios. These factors are further compounded by the noise and coverage of the
proteome at the level of individual samples. Hence one often fails to find biomarkers that are consistent
and reproducible across different batches of patient samples.

Proteins usually function as combinatorial units. At a fine granularity, these units are protein complexes;
at a coarser granularity, these units are biological pathways. We shall generically refer to these combi-
natorial units of proteins as “biological networks”. Biological networks are critical to understanding the
function of genes and proteins in a more holistic way. Thus, the appearance in recent years of many
databases containing information on biological networks may offer innovative solution to the two issues
above.

As proteins in the same functional unit—e.g., a protein complex—interact with each other in some
manner, these proteins can be expected to be expressed in a correlated or coordinated manner. Therefore,
it is reasonable to postulate that detected proteins in a proteomic screen that form a known functional
unit are likely to be involved in biological function, while isolated proteins are noise. This postulate can
be applied to improve coverage of a proteomic screen and remove noise. For illustration, let A, B, C,
D, and E be 5 proteins that function as a group and thus are normally correlated in their expression.
Suppose only A is detected in a proteomics screen and B–E are not detected. Suppose also that the
screen has 50% reliability. Then A’s chance of being false positive is 50% while the chance of B–E all
being false negatives is (50%)4 = 6%. Hence, it is almost 10 times more likely that A is noise than B–E
all being missed. Conversely, suppose only A is not detected and all of B–E are detected. Then A’s
chance of being false negative is 50% while the chance of B–E all being false positives is (50%)4 = 6%.
Hence, it is almost 10 times more likely that A is false negative than B–E all being false positives.

Each disease generally has some underlying causes. Thus it is reasonable to postulate that there should
be some unifying biological themes—certain biological networks or subnetworks—for genes and proteins
that are truly associated with the disease (Sohler et al., 2004; Liu et al., 2007; Chuang et al., 2007). Hence
the uncertainty in the reliability of the selected proteins from quantitative comparisons of cancer and
non-cancer samples can be reduced by considering the molecular functions and the biological processes
associated with the genes and proteins (Sivachenko et al., 2007). Such a unifying biological theme is also
a basis for inferring the underlying cause of the cancer phenotype. For illustration, let there be 3 cancer
samples and 3 controls. Assuming the chance of an arbitrary protein to be found highly expressed in an
arbitrary sample is 50%. Then a group of 5 functionally linked proteins that is perfectly correlated to
these two groups of samples—e.g., they are all highly expressed in the 3 cancer samples and not in the 3
controls—has ((50%)3 ∗ (1 − 50%)3)5 = 8 ∗ 10−8% chance of being a false positive group. On the other
hand, if just 1 of these 5 functionally linked proteins was perfectly correlated to the two phenotypes, its
chance of being a false positive would be (50%)3 ∗ (1−50%)3 = 1.5%, which is many orders of magnitude
higher than when all 5 proteins are simultaneously correlated with the two phenotypes.

Clearly, leveraging on these paradigms can aid in circumventing some of the shortcomings of current
proteomics approaches mentioned. In the remainder of this tutorial note, we first describe the different
types of biological networks. We then present approaches based on biological networks for improving the
coverage of the proteome at the level of individual samples. Following that, we present approaches based
on biological networks for improving the consistency of gene expression and proteomic profile analysis at
the phenotype level across patient samples.
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2 Types of biological networks

A biological network is a simplified model that describes the inter-relationships between a set of functional
entities such as genes, proteins or metabolites. For the purpose of this review, we broadly regard the
followings as biological networks: metabolic pathways (MNs), regulatory pathways (RNs), protein-protein
interactions (PPINs), genetic interactions (GINs), protein complexes, and proteins annotated to the same
Gene Ontology (GO) terms.

MNs link two proteins in a directed relationship if the product of one is the substrate of the other.
RNs refer to transcriptional relationships or other indirect relationships where one protein controls
the expression or repression of the other. MNs and RNs are thus natural biological pathways. Pop-
ular databases of MNs and RNs include KEGG (Kanehisa et al., 2010), BioCyc (Krummenacker et al.,
2005), WikiPathways (Kelder et al., 2009), Reactome (Vastrik et al., 2007), Ingenuity R© Knowledge Base
(http://www.ingenuity.com), NetProTM (http://www.molecularconnections.com), Pathway Com-
mons (Cerami et al., 2011), and PathwayAPI (Soh et al., 2010).

In PPINs, a relationship between two proteins exists if they are experimentally verified to interact phys-
ically. In GINs, a gene interacts with another if a combined mutation between them results in a more
severe phenotype as opposed to a single mutation in either of them. A genetic interaction may imply a
physical interaction (as part of a complex) or a complete ablation of functions across two compensatory
pathways. GINs are only beginning to be better understood but remain difficult to study empirically; see
Dixon et al. (2009) for an excellent review on GINs. Unlike MNs and RNs, PPINs and GINs are purely
pairwise interaction information and cannot yet be put into the context of a natural biological pathway.
Important databases of PPINs and GINs include BioGRID (Stark et al., 2006), DIP (Xenarios et al.,
2002), HPRD (Prasad et al., 2009), IntAct (Aranda et al., 2010), MINT (Chatr-aryamontri et al., 2007),
and STRING (Szklarczyk et al., 2011).

The Gene Ontology (GO) was established by the Gene Ontology Consortium (2001) as an important
reference terminology for annotating the function and cellular localization of proteins. GO terms are
organized into three separate hierarchical ontologies—viz., cellular component terms (CC), molecular
function terms (MF), and biological process terms (BP). A protein that is annotated by a particular GO
term is considered to be annotated by all ancestor terms (in the corresponding hierarchical ontology) of
that GO term; that is, the so-called “through-path” rule is applied. Associated with the GO is a large
and well-organized database of proteins annotated to GO terms. In particular, when a group of proteins
are annotated to a CC, BP, or MF term, it means this group of proteins are localized to that cellular
compartment (corresponding to the CC term), participate in that biological process (corresponding to
the BP term), or participate in that molecular function (corresponding to the MF term), respectively.

Protein complexes and proteins annotated to the same GO terms are not actually networks. Nevertheless,
proteins that are in the same complex or annotated to the same GO terms are functionally linked and
can be considered to form functional linkage networks. The larger databases of protein complexes include
CORUM (Ruepp et al., 2010), MIPS (Mewes et al., 2004), and CYC2008 catalogue (Pu et al., 2009).

3 Improving coverage using biological networks

There are cases where the mass spectra may identify some particular proteins, but, because their scores
are below the defined cutoff threshold, they may not be reported initially in the first round of data
analysis. This occurs frequently in the struggle in the tradeoff between sensitivity and specificity in
precursor ion selection for fragmentation. Other potential reasons why these proteins are unreported in
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the initial round of data analysis include: (i) not satisfying the minimum two unique peptides requirement
for confident protein identification, that is the protein is identified by a single peptide; (ii) the proteins
are short in amino acid composition and subsequently are identified only by short peptides; and/or (iii)
they are not consistently found in patient samples.

Network-based analysis can allow expansion of the detected proteome to uncover and/or discover novel
proteins. This is critical in recovering missing proteins in known pathways or complexes. It is even more
important in uncovering less abundant proteins commonly shrouded in shotgun proteomics. A simple
network-based method, as suggested earlier, is to use a database of protein complexes and identify those
complexes that have a large overlap with the initial list of detected proteins. The rest of the proteins
in these identified complexes are postulated as likely to be present. More sophisticated methods that
build on this principle include CEA (Li et al., 2009), MaxLink (Ostlund et al., 2010), shortest-path
analysis (Managbanag et al., 2008), and the method of Goh et al. (2011) (which we call PEP here). We
describe them in subsections below.

Regardless of the methods used, they are all a form of “guilt by association”. Hence the list of recovered
proteins should be validated using some additional evidence. The most direct evidence is by returning
to the original mass spectra to verify the quality of the corresponding y- and b-ion assignments (Goh
et al., 2011). Proteins with low copy numbers and high cellular turnover such as transcription factors and
some protein kinases may still not be located through retrospective assessment of the original MS/MS
data. Therefore, other validation methods such as immunological assays may be used on interesting
targets. A less direct evidence is to check whether these recovered proteins are annotated to a list of
GO terms that are enriched in the initial list of high-confidence proteins (Ostlund et al., 2010). Another
indirect evidence is using databases of gene expression profiles—e.g., Human Protein Atlas (Berglund
et al., 2008)—to check whether these recovered proteins show a pattern of differential expression between
relevant disease samples and normal samples that is similar to that shown by the initial list of high-
confidence proteins (Ostlund et al., 2010).

3.1 Clique Enrichment Analysis (CEA)

The simple network-based method suggested earlier is to shortlist non-confidence proteins in protein
complexes that contain many high-confidence proteins. However, the number of known protein complexes
available in protein complex databases such as CORUM (Ruepp et al., 2010) is still small. So, one should
supplement them with predicted protein complexes and functional modules.

An example that pursues this route is the Clique Enrichment Analysis (CEA) proposed by Li et al.
(2009). CEA generates cliques—i.e., fully connected subnetworks—from a PPIN. Those cliques that are
enriched with high-confidence proteins are considered detected. Non-confident proteins in these cliques
are thus rescued. The use of cliques from PPINs is reasonable because cliques in a PPIN often correspond
to proteins at the core of complexes (Bader and Hogue, 2003).

3.2 Proteomics Expansion Pipeline (PEP)

70-80% of proteins share at least one biological process or function with their interaction partners in
PPINs and GINs (Titz et al., 2004). A protein is also often observed to participate in a biological
process or function that is over-represented in its interaction partners (Hishigaki et al., 2001; Schwikowski
et al., 2000). More generally, proteins that are connected or proximal within a biological network often
form a functional unit (Chua et al., 2007). On the basis of these observations, many algorithms have
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been developed for predicting protein complexes and functional modules from PPINs and GINs—e.g.,
MCL (Enright et al., 2002), MCODE (Bader and Hogue, 2003), RNSC (King et al., 2004), CFinder (Palla
et al., 2005; Adamcsek et al., 2006), PCP (Chua et al., 2008), and CMC (Liu et al., 2009). These more
powerful algorithms can be used in place of clique finding in CEA.

A most recent method that uses a powerful protein complex prediction algorithm is that proposed by
Goh et al. (2011). We call this method the Proteomics Expansion Pipeline (PEP). PEP first identifies
the group of high-confidence proteins from the proteomic screen. It then maps these proteins to nodes in
a large integrated PPIN. Next, it generates an expanded subnetwork by taking the immediate neighbors
of these seeds in the PPIN. The subnetwork is then clustered using CFinder (Palla et al., 2005), which
overlaps closely related cliques. Each cluster is then ranked based on the average expression value of
the proteins it contains. Proteins (in high-ranking clusters) not found in the proteomics screen are then
screened against the original MS spectra for evidence of existence.

A notable aspect of PEP is the PPIN that it uses. The PPIN is one of the most comprehensive to date.
It comprises data from HPRD (Prasad et al., 2009), BioGRID (Stark et al., 2006), IntAct (Aranda et al.,
2010), and DIP (Xenarios et al., 2002), as well as data from literature (Rual et al., 2005; Stelzl et al.,
2005). While combining PPINs improves coverage of the protein interactome, it may also compound the
noise present in them (von Mering et al., 2002). PEP uses the iterated Czekanowski-Dice distance (CD-
distance) technique from CMC (Liu et al., 2009) to eliminate potential noise edges from the integrated
PPIN. Although the CD-distance technique assesses the reliability of an edge in a PPIN purely based on
the local topology of the edge, it is very effective. While this method eliminates about 50% of the edges
from the integrated PPIN, it doubles the level of functional and localization coherence in the remaining
edges in the PPIN.

3.3 Maxlink

PPINs have a fairly high level of false positives and false negatives (von Mering et al., 2002). This has
an impact on the sensitivity of clique finding and other protein complex prediction algorithms mentioned
earlier. For example, a single missing edge in the PPIN is sufficient to exclude a protein from a clique in
clique finding.

To achieve greater sensitivity, instead of requiring an entire protein complex to be predicted before testing
for enrichment in high-confidence proteins, one can test for a more relaxed condition. In particular, one
can instead test whether a protein is likely to be part of the same complex with a group of already known
high-confidence proteins, without requiring knowing what the other proteins in the complex are.

Maxlink is a method for identifying cancer genes introduced by Ostlund et al. (2010). Although not
explicitly tested on proteomics data, it can be considered as an example that follows this more relaxed
route. Maxlink first requires the identification of a set of high-confidence seeds. It then generates,
scores and ranks a list of new candidates based on the number of links in FunCoup (Alexeyenko and
Sonnhammer, 2009) (which is a PPIN database) to the seed set. The more the number of connections to
seeds, and the less the number of connections to non-seeds, the higher the score. This approach is justified
because a protein is often observed to participate in the same biological process, biological function, or
protein complex that is over-represented in its interaction partners (Hishigaki et al., 2001; Schwikowski
et al., 2000). Moreover, proteins in the same complex are thought to have more interactions between
themselves than with proteins outside the complex (Chen and Yuan, 2006).
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3.4 Shortest-path network analysis

In a related approach, Managbanag et al. (2008) propose using shortest paths to recover genes that lie
between two high-confidence seeds. In their study, they first define a set of seeds previously reported to
be associated with the disease in question. They then extract a shortest-path composite network from
PATHWAY STUDIO 5.0, a commercial PPIN database and software suite (Nikitin et al., 2003).

This approach is based on the hypothesis that proteins connecting pairs of other proteins with a well-
defined biological function have a higher probability to share that function than randomly selected pro-
teins (Witten and Bonchev, 2007). This hypothesis is partially justified by the observation that most
proteins share at least one function with their interaction partners (Titz et al., 2004) in a PPIN and thus
transitively with the partners of these partners (Nabieva et al., 2005). However, the longer a (shortest)
path gets, the more false positives it inevitably contains (Chua et al., 2006).

4 Improving consistency using biological networks

Quantitative comparisons of cancerous and non-cancerous samples are central to oncoproteomics (Bukhman
et al., 2008). However, biomarkers identified in one batch of patients are quite often not consistent and
not reproducible in another batch of patients. This is likely due to (i) the noise and coverage of the
proteome at the level of individual samples and (ii) limitation of current statistical techniques as a result
of insufficient sample size.

In order to qualitatively improve the statistical power of proteomic analysis methods and the reliability
of the results, additional dimensions present in the problem have to be brought into consideration. In
particular, current paradigm suggests protein interactions constitute a major part of all cellular processes.
The extent of interactions between proteins denotes shared functionality (Deng et al., 2003), complex
or sub-module participation (Hirsh and Sharan, 2007) and/or co-expression (Stuart et al., 2003). In
the case of metabolic and biochemical relationships, extensive validation studies have established with
higher confidence relationships between proteins in a pathway; and it is reasonable to postulate shared
functionalities between such proteins even though, in pathways, an edge can mean different things such as
regulation or signaling. Thus a comparative proteomic profile analysis that incorporates such information
from biological networks, as suggested earlier, is useful in identifying results that are more consistent,
more reproducible, and more biologically coherent.

An analogous situation exists in gene expression profile analysis. Many approaches (Zhao and Wang,
2010; Liu et al., 2010; Tusher et al., 2001) have been proposed for identifying differentially expressed
genes useful for diagnosis of diseases and prognosis of treatment response. However, these methods often
produce gene lists that are inconsistent when they are applied to different data sets of the same disease
phenotypes (Ein-Dor et al., 2006). For example, for a pair of datasets involving prostate cancer (Lapointe
et al., 2004; Singh et al., 2002), Zhang et al. (2009) show that the two lists of significant genes identified
by running SAM (Tusher et al., 2001) independently on the two datasets have a low overlap of 30% in
their top 10 genes and an even lower 15% overlap in their top 100 genes. Methods based on individual-
gene analysis—such as SAM Tusher et al. (2001)—have a low degree of reproducibility because of their
relatively higher level of false positives. For example, suppose genes are selected at P ≤ 0.05. There
are generally > 10, 000 genes on a microarray. Thus we expect 10, 000 ∗ 0.05 = 500 genes to correlate
with the phenotypes in a dataset purely by random chance. Many of these genes may even rank higher
than the true relevant genes. But for a different datasets (of the same phenotypes), a different set of
false-positive genes is often selected. The two sets of independently selected genes from the two datasets
can thus be expected to have a low overlap, resulting in low reproducibility for these methods. In order
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to overcome the uncertainty in the reliability of the selected genes, over the years, the gene expression
analysis community has developed powerful methods that analyze gene expression profiles with respect to
biological networks. Although gene expression (DNA and RNA) does not always directly correlate with
protein expression, gene co-expression is something proven at the protein level, especially when it comes
to an induction of a particular function. So, some of these methods from the gene expression community
can be adapted for proteomic profile analysis.

In the following subsections, we briefly introduce three types of approaches—viz., overlap analysis, direct
group analysis, and network-based analysis—for identifying significant pathways from the gene expression
analysis community. We also briefly describe approaches for identifying and characterizing significant
novel protein clusters.

4.1 Overlap analysis

Overlap analysis methods are well known. A list of differentially expressed genes or proteins is first
determined. This list is then intersected with each biological pathway (usually a protein complex, MN, or
RN) in a database. The statistical significance of the overlap is computed using, e.g., the hypergeometric
test. The subsets of differentially expressed genes that have a statistically significant intersection with
a pathway are declared candidate biomarkers. ORA (Khatri and Draghici, 2005) is a representative of
overlap analysis methods.

These methods have a shortcoming in that they are sensitive to the thresholds used in determining the
differentially expressed genes or proteins. Different test statistics and different thresholds result in a
different list of differentially expressed genes. As a result, the outcome of the whole procedure is not
stable, leading to potentially low reproducibility. Another problem is that it is not uncommon for a
real causal gene underlying a disease phenotype to be not differentially expressed. It thus can never be
suggested by these methods. For example, suppose a gene A upregulates both genes B and C in normal
people. Suppose also that genes A is observed to be highly expressed in both normal and disease samples;
and genes B and C are observed to be highly expressed in normal but not disease samples. Then only
genes B and C, which are differentially expressed, have a chance to be suggested by these methods. In
such as a situation, we have to postulate mutations in B and C to explain their differential expression.
However, a more reasonable explanation is that A has a mutation that does not change its expression
but changes its ability to upregulate B and C.

4.2 Direct group analysis

Direct group analysis methods work on a different principle to avoid the shortcoming above. In direct
group analysis, each reference biological pathway (usually a MN, RN, or protein complex) is checked to
establish whether the pathway is differentially expressed as a whole. This is achieved by comparing the
distributions of expression values of genes and proteins on the pathway with the distributions of expression
values of all the other genes and proteins, e.g., by a weighted Kolmogorov-Smirnov test. FCS (Goeman
et al., 2004) and GSEA (Subramanian et al., 2005) are examples of the direct group analysis methods.

These methods are able to detect more subtle changes in gene and protein expression profiles. For
example, if the majority of genes and proteins on the biological pathway have small but correlated
expression level changes, they can still result in a high statistical significance of the biological pathway
under a direct group analysis method. Nevertheless, direct group analysis methods have a key shortcoming
in that they work on a whole-pathway basis. Thus, they are unable to declare a large pathway to
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be significant when only a small subnetwork within that pathway is truly responsible for the disease
phenotype.

4.3 Network-based analysis

Network-based analysis methods (Chuang et al., 2007; Sivachenko et al., 2007; Soh, 2010; Sohler et al.,
2004; Liu et al., 2007) are newer developments in gene expression analysis. The advantage of these
methods is that, rather than using pathways as a whole, they identify subnetworks that are significantly
differentially expressed. Although gene expression (DNA and RNA) is known not to correlate directly
with protein expression, the concepts behind these network-based techniques are applicable to proteomics
profile analysis.

An early example of these network-based methods is NEA (Sivachenko et al., 2007). NEA extracts from
each biological pathway (usually a MN, RN, or PPIN) a set of subnetworks, by treating each regulator
in a pathway and all its direct targets in the pathway as a separate group. Each such subnetwork is then
tested—using a direct group analysis method like FCS or GSEA—to see whether the genes and proteins
in the subnetwork are differentially expressed as a whole. A significant subnetwork potentially provides
a more precise hypothesis that explains the disease phenotype than an entire pathway. A shortcoming of
NEA is that it tends to produce small subnetworks as each subnetwork comprises only a regulator and
its immediate regulatees.

The latest addition to this family of methods is SNet (Soh, 2010), which is able to find larger subnetworks
than NEA. SNet first maps the genes or proteins that are highly expressed in most samples of the disease
phenotype in question to biological pathways (usually MNs, RNs, or PPINs). It then discards other
genes and proteins in these pathways and networks, causing these pathways to fragment into separate
subnetworks. The subnetworks are scored against the disease cases and the controls. Those subnetworks
showing a significant difference in scores between cases and controls are declared significant. Experiments
have shown that SNet produces subnetworks that are both much more substantial in size and much more
consistent cross independent data sets of the same disease phenotypes than other methods (Soh, 2010).
The strength of SNet lies in its ability to identify relevant large subnetworks (of known pathways) based
on microarray data. As explained earlier, methods such as FCS and GSEA use fixed gene sets and
determine whether these gene sets are significant or not. These techniques assume that a gene set
is significant only when a substantial proportion of the genes within the gene set is significant. This
assumption is not often valid because it is often the case that only a fraction of a gene set is significant;
such a gene set will probably go unnoticed if most of the rest of the genes are unaffected. SNet’s ability to
extract subnetworks based on the microarray data of the phenotypes—and use these as gene sets—ensures
that there is sufficient granularity for it to capture portions of pathways or gene sets that are affected. A
disadvantage of SNet in the proteomics context—compared to NEA, FCS, GSEA, etc.—is that it requires
the subnetworks to be scored against individual samples; thus it may not be straightforward to adapt
SNet for situations where samples are pooled.

4.4 Identifying and characterizing novel protein clusters

The methods mentioned earlier—viz., ORA, FCS, GSEA, NEA, SNet, etc.—are dependent on both the
quality and comprehensiveness of the reference pathway databases. Hence they cannot yield good result
if the underlying cause of the disease phenotype is a novel functional module or pathway. So they need
to be complemented by methods for identifying and characterizing novel functional modules.
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A simple approach for identifying novel functional modules is to first map the differentially expressed
proteins to a PPIN. Then a protein complex prediction method is run on the mapped portion of the PPIN
to produce a list of predicted protein clusters, each comprising some subsets of the differentially expressed
proteins. These protein clusters are potentially novel protein complexes and functional modules. After
that, these predicted protein clusters are characterized using some form of GO term analysis.

For the protein complex prediction step, there is no dearth of methods. A detailed review covering newer
methods can be found in (Wang et al., 2010). So we just briefly describe a few easily accessible methods
here. CFinder is based on the clique percolation method described by Palla et al. (2005). It relaxes the
constraint on cluster definition by first identifying cliques and then scoring those that overlap using a
standard component analysis procedure. MoNet is an implementation of the Girvan-Newman method
based on betweenness centrality (Newman and Girvan, 2004). MCL is based on the Markov clustering
method (Enright et al., 2002). CMC works by generating maximal cliques from the cleansed network and
then merges or removes highly overlapping cliques based on their interconnectivity (Liu et al., 2009).

For the GO term analysis step, it is often done using tools based on the hypergeometric test. Examples
include GO East (Zheng and Wang, 2008) and GO Term Finder (Boyle et al., 2004). These tools
essentially test predicted protein clusters against the reference protein sets defined by GO terms. If a
predicted protein cluster is enriched in some GO terms, the proteins in the cluster can be considered to
consistently show a function described by these GO terms. However, many times, given the incompleteness
of GO annotations and the complexity of the GO tree structure, the returned GO term lists can be
perplexing and difficult to analyze. Many significant GO terms may also be returned; this creates a
misleading picture that the cluster is heterogeneous when, in fact, many of the returned GO terms could
be closely related.

There are other methods that can improve the resolution of GO analysis. The two simplest are the
parent-child method (Grossmann et al., 2007) and the intuitive “informative GO term” method (Huang
et al., 2008).

The parent-child method proposed by Grossmann et al. (2007) modifies the hypergeometric test statistics.
Instead of the standard hypergeometric distribution, they propose using P (σt = k|σpa(t) = npa(t)) =(
mt

k

)(mpa(t)−mt

npa(t)−k

)
/
(
mpa(t)
npa(t)

)
. Here, t is the GO term that we want to establish whether it is enriched in the

predicted protein cluster; mt is the number of proteins in the GO database that are annotated to t; mpa(t)

is the number of proteins in the GO database that are annotated to the parent terms of t; and npa(t)

is the number of proteins in the predicted protein cluster that are annotated to the parent terms of t.
This approach reduces the dependencies between individual term’s measurements and avoids producing
false positives due to inheritance problems (Grossmann et al., 2007), thereby increasing the stringency
for significance reporting.

The “informative GO terms” method decreases the number of terms reported by introducing a threshold
on the GO tree itself. Only terms that are annotated to at least 30 genes, and each of whose direct
child has no more than 30 genes, are considered informative. This way, each GO term considered is at
the finest resolution possible while being annotated to a sufficiently large number of proteins for a valid
analysis (Chua et al., 2007). This also has the effect of reducing redundancy on GO terms reported as a
whole (Huang et al., 2008).
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Database # nodes, URL Build Reference
# edges Focus

BioGRID 10k, 40k http://thebiogrid.org Literature (Stark et al., 2006)
DIP 2.6k, 3.3k http://dip.doe-mbi.ucla.edu Literature (Xenarios et al., 2002)
HPRD 30k, 40k http://www.hprd.org Literature (Prasad et al., 2009)
IntAct 56k, 267k http://www.ebi.ac.uk/intact Literature (Aranda et al., 2010)
MINT 30k, 90k http://mint.bio.uniroma2.it/mint Literature (Chatr-aryamontri et al., 2007)
STRING 5200k, ? http://string-db.org Literature,

Prediction
(Szklarczyk et al., 2011)

Table 1: Databases of protein-protein interaction networks.

5 Use of biological networks: What to watch out for

The use of biological network databases for improving proteomics analysis is very promising. Nevertheless,
we should be aware of a number of caveats, especially with respect to the reliability and completeness of
these databases.

5.1 Reliability of PPINs

The databases of PPINs and GINs have grown rapidly in size over the years, with improved methodologies
in testing protein interactions. There prominent PPIN and GIN databases include HPRD, BioGRID,
MINT, IntAct, STRING, and DIP; see Table 1 for details. It should be noted that STRING corresponds
more to protein functional associations than to physical protein interactions.

In spite of the growth of PPIN databases, it is difficult to ascertain quality. In fact, given high false
positive rates in Yeast 2 Hybrid (Y2H) and other binding experiments, up to 70% of the reported edges
may be false (Deane et al., 2002). Mark Vidal and co-workers tried producing higher quality all-against-all
experimental data (Rual et al., 2005; Stelzl et al., 2005), by testing all possible protein pairs in their data
set using Y2H. However, these datasets are a select subset of the entire proteome, and are not reflective
of the whole PPIN. It also does not eliminate false positives reported by Y2H.

Using a poor-quality PPIN is likely to skew analytical outcome. Network coverage needs to be sufficiently
extensive in order to enhance resolution. In recent works, it is common to merge datasets across various
sources (Li et al., 2009; Bossi and Lehner, 2009). However, simple integration may lead to compounded
errors for which confidence is not certain due to different or poorly-defined study parameters.

A walk around this problem, as demonstrated by Bossi and Lehner (2009), is to repeat the analysis on
two networks and check for consistency. The first is a lower confidence construct using edges supported
by at least one publication source. The second is a higher confidence construct using edges supported
by at least two publications. However, experiment-based filtering is biased, and two papers utilizing the
same flawed technique may also give rise to the same erroneous result. Hence more robust methods for
evaluating the network quality are needed.

A good way to assess the reliability of an edge in a PPIN is based on GO term coherence. That is,
we check whether the two proteins connected by that edge are annotated to an informative GO term in
common (Chua and Wong, 2008). The overall reliability of a PPIN can in turn be assessed based on
the fraction of its edges that have coherent GO term annotations. This approach is reasonable because
two interacting proteins should be in the same cellular compartment (i.e., share an informative CC
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term) and participate in the same biological function or process (i.e., share an informative MF or BP
term) (Nabieva et al., 2005; Sprinzak et al., 2003). Limitations of this method include incomplete GO
term annotation, unresolved bona fide localization of proteins, and the dynamic distribution of proteins
in different physiological states.

Another way to assess the reliability of an edge in a PPIN is based on the hypothesis that if two proteins
interact, it is also likely that they share common neighbors in the PPIN. This hypothesis follows naturally
from the more fundamental postulate that proteins usually function as a group. One early example of
this “topological” approach is given by the CD-distance, which is calculated as the number of interaction
partners shared between two proteins divided by the set of interaction partners of both proteins (Liu et al.,
2009). Other examples are surveyed in (Chua and Wong, 2008). Since topological cleaning approaches
rely on network intra-connectivity, they do not perform well on sparse networks. It is possible that
improvements could be achieved via manifold embedding (You et al., 2010), or homologous transfer of
edges (Bork and Koonin, 1998).

A harder problem to resolve is the false negative problem—viz., true interactions that are not reported.
Chua and Wong (2008) and Shoemaker and Pachenko (2007) provided detailed reviews on approaches
for predicting novel protein-protein interactions, including protein primary structures and associated
physicochemical properties (Bock and Gough, 2001), interacting domains (Sprinzak and Margalit, 2001),
interacting motifs (Li et al., 2006), gene-fusion events (Marcotte et al., 1999), coevolution of proteins or
residues (Juan et al., 2008), and the topology of PPINs (Chen et al., 2006).

5.2 Completeness of biological pathway databases

The databases of MNs and RNs can be considered as more reliable than PPIN and GIN datasets due
to higher levels of curation and experimental evidence. In today’s research landscape, the major ones
include single-lab curation efforts (KEGG, BioCyc), collaborating labs (WikiPathways, Reactome), and
commercially compiled databases (Ingenuity R©, NetProTM), as well as integrative databases that merge
information from other databases. The details of these databases are given in Table 2.

It was a surprising revelation that none of the pathway databases proved comprehensive in terms of cov-
erage. For example, comparison of human apoptosis pathway in humans between Ingenuity R© Knowledge
Base, KEGG and WikiPathways showed only a small 32–46% gene overlap and an even more alarming
11–16% edge overlap.

Soh et al. (2010) demonstrated the difficulties associated with integrating pathway databases. Merging
pathways via gene or reaction overlap proved inefficacious: A low threshold resulted in many false positives
while too high produced many false negatives. Combining pathways via longest common substring match
in pathway names (LCS) turned out to be a good compromise. However, Goh et al. (2011) found that
some redundancies still persist within and between databases during functional analyses. This suggests
limitations in LCS that could be further improved and built upon in future works. Since pathway edges
have been verified by expert knowledge and experimental verification, they likely have low false positive
rates. Hence, in combining same pathways across different databases, it is acceptable to simply take the
union of their genes, proteins, and reactions.

Integration problems aside, there are specific problems associated with different pathway databases that
still prove a challenge to resolve fully. For example, WikiPathways lack a stable and useful API. Extracting
data from the coordinate-based XML file is also rather challenging. In Ingenuity R© Knowledge Base, only
image-based maps can be retrieved. In previous efforts, we used manual curation to extract the data.
But this is inefficient and non-scalable if we want to expand coverage to other species.
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Database Remarks

KEGG KEGG (http://www.genome.jp/kegg) is one of the best known
pathway databases (Kanehisa et al., 2010). It consists of 16
main databases, comprising different levels of biological infor-
mation such as systems, genomic, etc. The data files are down-
loadable in XML format. At time of writing it has 392 path-
ways.

BioCyc BioCyc ver 15 (http://http://biocyc.org) comprises over
1,129 species-based databases (Krummenacker et al., 2005). An
interesting feature of the BioCyc databases is that they are di-
vided into 3 tiers, where tier 1 is high confidence manually
curated, tier 2 is computer generated with moderate curation,
and tier 3 has minimal curation. BioCyc can be downloaded
via BIOPax, SBML among other formats.

WikiPathways WikiPathways (http://www.wikipathways.org) is a
Wikipedia-based collaborative effort among various
labs (Kelder et al., 2009). It has 1,627 pathways of which 369
are human. The content is downloadable in GPML format.

Reactome Reactome (http:://www.reactome.org) is also a collaborative
effort like WikiPathways (Vastrik et al., 2007). It is one of the
largest datasets, with over 4,166 human reactions organized into
1,131 pathways by December 2010. Reactome can be down-
loaded in BioPax and SBML among other formats.

Ingenuity R© Ingenuity R© Knowledge Base (http://www.ingenuity.com) is
a repository of biological interactions accessible via its propri-
etary interface. Information is returned as an image file.

NetProTM Molecular Connections’ NetProTM (http://www.
molecularconnections.com) is a commercial manually
curated database. It contains more than 320,000 protein-
protein interactions and small molecule-protein interactions
across 20 organisms. Data can be downloaded in XML-format
files or via SQL queries.

Pathway Commons Pathway Commons (http://www.pathwaycommons.com) col-
lects information from various databases but does not unify the
data (Cerami et al., 2011). It contains 1,573 pathways across
564 organisms. The data is returned in BioPax format.

PathwayAPI PathwayAPI (http://www.pathwayapi.com) contains over 450
unified human pathways obtained from a merge of KEGG,
WikiPathways and Ingenuity R© Knowledge Base (Soh et al.,
2010). Data is downloadable as a SQL dump or as a csv file,
and is also interfaceable in JSON format.

Table 2: Databases of biological pathways.

12



6 Final Remarks

The use of biological networks is an extremely powerful tool for enhancing proteomics analysis. Although
protein clusters and metabolic pathways are topologically different, they should yield complementary
results that can augment the functional characterization of the proteome.

Data quality is paramount in determining the resolution and power of analysis. Due to different coverage
of various databases, it is advisable to use all available information for network construction. A caveat
is that quality of information should also be checked. This can be performed by using measures such as
GO term coherence, or topology-based edge scoring methods such as CD-distance.

Pathway databases are fragmented, and merging such information is harder than in PPINs. Although
we addressed some of the inherent problems, more work remains to be done in ensuring higher quality
data extraction and merging.

Another point to address is on expansion of the proteome. Given the fragmented nature of the recovered
proteins, they usually give rise to a relatively sparse network. Shortest distance approaches, or identi-
fication of whether the differential protein belongs to a clique, followed by recovery of lower confidence
proteins can help to alleviate the problem of data wastage. It can also better capture information on
function based on clusters, rather than average function based solely on differential proteins.
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