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Lecture Plan

• Gene structure basics
• Gene finding overview
• GRAIL
• Indel & frame-shift in coding regions
• Histone promoters: A cautionary case study
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Gene Structure Basics

Some slides here are “borrowed” from Ken Sung
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Body

• Our body consists of a number of organs
• Each organ composes of a number of tissues
• Each tissue composes of cells of the same type



NTU SCE BI6106, 13 Sept 2006 Copyright 2006 © Limsoon Wong

Cell

• Performs two types of function
– Chemical reactions necessary to maintain our life
– Pass info for maintaining life to next generation

• In particular
– Protein performs chemical reactions
– DNA stores & passes info
– RNA is intermediate between DNA & proteins
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DNA

• DNA stores instruction 
needed by the cell to 
perform daily life function

• Consists of two strands 
interwoven together and 
form a double helix

• Each strand is a chain of 
some small molecules 
called nucleotides

Francis Crick shows James Watson the model of DNA
in their room number 103 of the Austin Wing at the 
Cavendish Laboratories, Cambridge
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Chromosome
• DNA is usually tightly wound around histone

proteins and forms a chromosome

• The total info stored in all chromosomes 
constitutes a genome

• In most multi-cell organisms, every cell contains 
the same complete set of chromosomes 
– May have some small different due to mutation

• Human genome has 3G base pairs, organized in 
23 pairs of chromosomes
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Gene
• A gene is a sequence of DNA that encodes a 

protein or an RNA molecule

• About 30,000 – 35,000 (protein-coding) genes in 
human genome

• For gene that encodes protein
– In Prokaryotic genome, one gene corresponds to 

one protein
– In Eukaryotic genome, one gene can corresponds 

to more than one protein because of the process 
“alternative splicing”
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Complexity of Organism 
vs. Genome Size

• Human Genome: 3G base 
pairs

• Amoeba dubia (a single 
cell organism): 600G base 
pairs

⇒ Genome size has no 
relationship with the 
complexity of the 
organism
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Number of Genes vs. Genome Size

• Prokaryotic genome (e.g., 
E. coli)
– No. of base pairs: 5M
– Number of genes: 4k
– Average length of a 

gene: 1000 bp

• Eukaryotic genome (e.g., 
human)
– No. of base pairs: 3G
– Estimated number of 

genes: 30k – 35k
– Estimated average length 

of a gene: 1000-2000 bp

• ~ 90% of E. coli genome 
are of coding regions

• < 3% of human genome is 
believed to be coding 
regions

⇒ Genome size has no 
relationship with the 
number of genes!
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Mutation

• Mutation is a sudden 
change of genome

• Basis of evolution

• Cause of cancer

• Can occur in DNA, RNA, & 
Protein
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Central Dogma

• Gene expression consists 
of two steps
– Transcription 

DNA mRNA
– Translation 

mRNA Protein
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Genetic Code
• Start codon: ATG (code for M)
• Stop codon: TAA, TAG, TGA
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Introns and exons

• Eukaryotic genes contain 
introns & exons
– Introns are seq that are 

ultimately spliced out of 
mRNA

– Introns normally satisfy 
GT-AG rule, viz. begin w/ 
GT & end w/ AG

– Each gene can have 
many introns & each 
intron can have 
thousands bases

• Introns can be very long
• An extreme example is a 

gene associated with 
cystic fibrosis in human:
– Length of 24 introns 

~1Mb
– Length of exons ~1kb
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• Unlike eukaryotic genes, a prokaryotic gene typically consists of 
only one contiguous coding region

Typical Eukaryotic Gene Structure

Image credit: Xu
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Reading frame #1
ATG
GCT
TAC
GCT
TGC

Reading frame #2
TGG
CTT
ACG
CTT
GA.

Reading frame #3
GGC
TTA
CGC
TTG
A..

ATGGCTTACGCTTGAForward strand:

Reading frame #4
TCA
AGC
GTA
AGC
CAT

Reading frame #5
CAA
GCG
TAA
GCC
AT.

Reading frame #6
AAG
CGT
AAG
CCA
T..

TCAAGCGTAAGCCATReverse strand:

• Each DNA segment has six possible reading 
frames

Reading Frame
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stop stop

ORF

• ORF is a segment of DNA with two in-frame stop 
codons at the two ends and no in-frame stop 
codon in the middle

• Each ORF has a fixed reading frame

Open Reading Frame (ORF)
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Coding Region

• Each coding region (exon or whole gene) has a 
fixed translation frame

• A coding region always sits inside an ORF of 
same reading frame

• All exons of a gene are on the same strand
• Neighboring exons of a gene could have different 

reading frames
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ATG GCT TGG GCT TTA A -------------- GT TTC CCG GAG AT ------ T GGG

exon 1 exon 3exon 2

Frame Consistency

• Neighbouring exons of a gene should be frame-
consistent
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Overview of Gene Finding

Some slides here are “borrowed” from Mark Craven
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What is Gene Finding?

• Find all coding regions 
from a stretch of DNA 
sequence, and construct 
gene structures from the 
identified exons

• Can be decomposed into
– Find coding potential of a 

region in a frame
– Find boundaries betw

coding & non-coding  
regions

Image credit: Xu
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Approaches

• Search-by-signal: find genes by identifying the 
sequence signals involved in gene expression

• Search-by-content: find genes by statistical 
properties that distinguish protein coding DNA 
from non-coding DNA

• Search-by-homology: find genes by homology 
(after translation) to proteins

• State-of-the-art systems for gene finding usually 
combine these two strategies
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Relevant Signals 
for Search-by-Signals

• Transcription initiation
– Promoter 

• Transcription termination
– Terminators

• Translation initiation
– Ribosome binding sites
– Initiation codons 

• Translation termination
– Stop codons

• RNA processing
– Splice junction Image credit: Xu
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How Search-by-Signal Works

• There are 2 impt regions in a promoter seq
–10 region, ~10bp before TSS
–35 region, ~35bp before TSS 

• Consensus for–10 region in E. coli is TATAAT, 
but few promoters actually have this seq

⇒ Recognize promoters by
– weight matrices
– probabilistic models
– neural networks, …
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How Search-by-Content Works

• Encoding a protein affects 
stats properties of a DNA 
seq
– some amino acids used 

more frequently
– diff number of codons for 

diff amino acids
– for given protein, usually 

one codon is used more 
frequently than others

⇒ Estimate prob that a given 
region of seq was “caused 
by” its being a coding seq

Image credit: Craven
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How Search-by-Homology Works

• Translate DNA seq in all reading frames
• Search against protein db
• High-scoring matches suggest presence of 

homologous genes in DNA
⇒ You can use BLASTX for this
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Search-by-Content Example: 
Codon Usage Method

• Staden & McLachlan, 1982
• Process a seq w/ “window” of length L
• Assume seq falls into one of 7 categories, viz.

– Coding in frame 0, frame 1, …, frame 5
– Non-coding

• Use Bayes’ rule to determine prob of each 
category

• Assign seq to category w/ max prob
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Image credit: Craven
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Image credit: Craven
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Image credit: Craven

• Pr(codingi) is the same for 
each frame if window size 
fits same number of codons 
in each frame

• otherwise, consider relative 
number of codons in 
window in each frame
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Image credit: Craven
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Genbank
or nr

candidate gene

BLAST 
search

sequence alignments 
with known genes,

alignment p-values

Image credit: Xu

Search-by-Homology Example: Gene 
Finding Using BLAST

• High seq similarity typically implies homologous 
genes 

⇒ Search for genes in yeast seq using BLAST
⇒ Extract Feature for gene identification
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BLAST hits

sequence

• Searching all ORFs
against known genes in nr 
db helps identify an initial 
set of (possibly 
incomplete) genes

Image credit: Xu
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• A (yeast) gene starts w/ 
ATG and ends w/ a stop 
codon, in same reading 
frame of ORF 

• Have “strong” coding 
potentials, measured by, 
preference models, 
Markov chain model, ...

• Have “strong” translation 
start signal, measured by 
weight matrix model, ...

• Have distributions wrt
length, G+C composition, 
...

• Have special seq signals 
in flanking regions, ...

known 
genes

0

%known 
non-

genes

coding potential

gene length distribution
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GRAIL,
A Pioneer Gene Finding Program

Signals  assoc w/ coding regions 
Models for coding regions

Signals assoc w/ boundaries 
Models for boundaries

Other factors & information fusion

Some slides here are “borrowed” from Ying Xu
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Coding Signal
• Freq distribution of 

dimers in protein 
sequence

• E.g., Shewanella
– Ave freq is 5%
– Some amino acids 

prefer to be next to 
each other

– Some amino acids 
prefer to be not next 
to each other

Exercise: What is shewanella?

Image credit: Xu
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Coding Signal

• Dimer preference implies dicodon (6-mers like AAA TTT) 
bias in coding vs non-coding regions

• Relative freq of a di-codon in coding vs non-coding
– Freq of dicodon X (e.g, AAA AAA) in coding region, total 

number of occurrences of X divided by total number of dicocon occurrences

– Freq of dicodon X (e.g, AAA AAA) in noncoding region, total 
number of occurrences of X divided by total number of dicodon occurrences

• Exercise: In human genome, freq of dicodon “AAA AAA” is 
~1% in coding region vs ~5% in non-coding region. If you 
see a region with many “AAA AAA”, would you guess it is a 
coding or non-coding region?
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There are 
43 = 64 codons
46 = 4096 dicodons
49 = 262144 tricodons

Why Dicodon (6-mer)?

• Codon (3-mer)-based 
models are not as info rich 
as dicodon-based models

• Tricodon (9-mer)-based 
models need too many 
data points 

• To make stats reliable, 
need ~15 occurrences of 
each X-mer

⇒ For tricodon-based 
models, need at least 
15*262144 = 3932160 
coding bases in our 
training data, which is 
probably not going to be 
available for most 
genomes
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• Most dicodons show bias towards either coding 
or non-coding regions

⇒ Foundation for coding region identification

⇒ Dicodon freq are key signal used for coding 
region detection; all gene finding programs use 
this info

Regions consisting of dicodons that 
mostly tend to be in coding regions are 

probably coding regions; otherwise 
non-coding regions

Coding Signal
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Shewanella Bovine

Coding Signal

• Dicodon freq in coding vs non-coding are 
genome-dependent

Image credit: Xu
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• In-frame vs any-frame 
dicodons

ATG TTG GAT GCC CAG AAG.....

in-frame dicodons

not in-frame dicodons
In-frame:
ATG TTG
GAT GCC
CAG AAG

Not in-frame:
TGTTGG, ATGCCC
AGAAG ., GTTGGA
AGCCCA, AGAAG ..

any-frame

• In-frame dicodon freq 
provide a more sensitive 
measure than any-frame 
dicodon freq

Coding Signal
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Dicodon Preference Model

• The preference value P(X) of a dicodon X is 
defined as

P(X) = log FC(X)/FN(X)
where

FC(X) is freq of X in coding regions
FN(X) is freq of X in non-coding regions
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Dicodon Preference Model’s Properties

• P(X) = 0 if X has same freq in coding and non-
coding regions

• P(X) > 0 if X has higher freq in coding than in non-
coding region; the larger the diff, the more 
positive the score is

• P(X) < 0 if X has higher freq in non-coding than in 
coding region; the larger the diff, the more 
negative the score is
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Dicodon Preference Model Example

• Suppose AAA ATT, AAA 
GAC, AAA TAG have the 
following freq:

FC(AAA ATT) = 1.4%
FN(AAA ATT) = 5.2%

FC(AAA GAC) = 1.9%
FN(AAA GAC) = 4.8%

FC(AAA TAG) = 0.0%
FN(AAA TAG) = 6.3%

• Then
P(AAA ATT) = –0.57
P(AAA GAC) = –0.40

P(AAA TAG) = –∞,
treating STOP codons differently

⇒ A region consisting of 
only these dicodons is 
probably a non-coding 
region
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Frame-Insensitive 
Coding Region Preference Model

• A frame-insensitive coding preference Sis(R) of a 
region R can be defined as

Sis(R) = ΣX is a dicodon in R P(X)
• R is predicted as coding region if Sis(R) > 0

• NB. This model is not commonly used
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In-Frame 
Dicodon Preference Model

• The in-frame + i preference value Pi(X) of a 
dicodon X is defined as

Pi(X) = log FCi(X)/FN(X)
• where 

FCi(X) is freq of X in coding regions 
at in-frame + i positions

FN(X) is freq of X in non-coding regions

ATG TGC CGC GCT P0
P1

P2
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In-Frame 
Coding Region Preference Model

• The in-frame + i preference Si(R) of a region R can 
be defined as

Si(R) = ΣX is a dicodon at in-frame + i position in R Pi(X)

• R is predicted as coding if Σi=0,1,2 Si(R)/|R| > 0

• NB. This coding preference model is commonly used
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• Calculate all ORFs of a DNA segment
• For each ORF

– Slide thru ORF w/ increment of 10bp
– Calculate in-frame coding region preference 

score, in same frame as ORF, within window of 
60bp

– Assign score to center of window
• E.g., forward strand in a particular frame...

preference scores

0

+5

-5

Coding Region Prediction: An Example 
Procedure 

Image credit: Xu
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• Making the call: coding or non-coding and where 
the boundaries are

⇒ Need training set with known coding and non-
coding regions to select threshold that includes 
as many known coding regions as possible, and 
at the same time excludes as many known non-
coding regions as possible

coding 
region? where to draw the 

boundaries?

where to draw 
the line?

Image credit: Xu

Problem with Coding Region Boundaries
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• Knowing boundaries of coding regions helps 
identify them more accurately

• Possible boundaries of an exon

• Splice junctions:
– Donor site:  coding region | GT
– Acceptor site: CAG | TAG | coding region

• Translation start
– in-frame ATG

{ translation start, 
acceptor site } 

{ translation stop, 
donor site } 

Image credit: Xu

Types of Coding Region Boundaries
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• Splice junction sites and translation starts have 
certain distribution profiles

• For example, ...

Signals for Coding Region Boundaries
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• If we align all known acceptor sites (with their 
splice junction site aligned), we have the 
following nucleotide distribution

• Acceptor site: CAG | TAG | coding region

Acceptor Site (Human Genome)

Image credit: Xu
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• If we align all known donor sites (with their splice 
junction site aligned), we have the following 
nucleotide distribution

• Donor site:  coding region | GT

Donor Site (Human Genome)

Image credit: Xu



NTU SCE BI6106, 13 Sept 2006 Copyright 2006 © Limsoon Wong

• For a weight matrix, information content of each 
column is calculated as 

– ΣX∈{A,C,G,T} F(X)*log (F(X)/0.25)

⇒ When a column has evenly distributed 
nucleotides, its information content is lowest

⇒ Only need to look at positions having high 
information content

What Positions Have 
“High” Information Content?



NTU SCE BI6106, 13 Sept 2006 Copyright 2006 © Limsoon Wong

• Information content
column –3 = – .34*log (.34/.25) – .363*log (.363/.25) 

– .183* log (.183/.25) – .114* log (.114/.25) = 0.04
column –1 = – .092*log (.92/.25) – .03*log (.033/.25) 

– .803* log (.803/.25) – .073* log (.73/.25) = 0.30

Image credit: Xu

Information Content Around 
Donor Sites in Human Genome
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• Weight matrix model 
– build a weight matrix for donor, acceptor, 

translation start site, respectively
– use positions of high information content

Weight Matrix Model for Splice Sites

Image credit: Xu
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Just to make sure you know what I mean …

• Give me 3 DNA seq of length 10:
– Seq1 = ACCGAGTTCT
– Seq2 = AGTGTACCTG
– Seq3 = AGTTCGTATG

• Then the weight matrix is …

1-mer pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10

A 3/3 0/3 0/3
C 0/3 1/3 1/3
G 0/3 2/3 0/3
T 0/3 0/3 2/3

Exercise: Fill in the rest of the table
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• Add up freq of corr letter in corr positions:

• Make prediction on splice site based on some 
threshold

AAGGTAAGT: .34 + .60 + .80 +1.0 + 1.0 
+ .52 + .71 + .81 + .46 = 6.24

TGTGTCTCA: .11 + .12 + .03 +1.0 + 1.0 
+ .02 + .07 + .05 + .16 = 2.56

Image credit: Xu

Splice Site Prediction: A Procedure 
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Other Factors Considered by GRAIL

• G+C composition affects dicodon distributions
• Length of exons follows certain distribution
• Other signals associated with coding regions

– periodicity 
– structure information 
– .....

• Pseudo genes
• ........
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Info Fusion by ANN in GRAIL

Image credit: Xu
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Remaining Challenges in GRAIL
• Initial exon 

– R. V. Davuluri et al., "Computational identification of promoters and 
first exons in the human genome", Nat. Genet., 29:412--417, 2001

– H. Liu et al., "Data Mining Tools for Biological Sequences", JBCB, 
1:139--168, 2003

– V. B. Bajic et al., "Dragon Gene Start Finder: An advanced system for 
finding approximate locations of the start of gene transcriptional 
units", Genome Research, 13:1923--1929, 2003 

• Final exon
– J. E. Tabaska et al., "Identifying the 3'-terminal exon in human DNA", 

Bioinformatics, 17:602--607, 2001 
– J. E. Tabaska et al., "Detection of polyadenylation signals in human 

DNA sequences", Gene, 23:77--86, 1999
– H. Liu et al., "An in-silico method for prediction of polyadenylation

signals in human sequences", GIW, 14:84--93, 2003

• Indels & frame shifts
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Indel & Frame-Shift in Coding Regions

Problem definition
Indel & frameshift identification

Indel correction
An iterative strategy

Some slides here are “borrowed” from Ying Xu
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• Indel = insertion or deletion in coding region
• Indels are usually caused by seq errors

ATG GAT CCA CAT …..
ATG GAT CA CAT …..

ATG GAT CTCA CAT …..

Indels in Coding Regions
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Effects of Indels on Exon Prediction

• Indels may cause shifts in reading frames & 
affect prediction algos for coding regions

pref
scores

exon

indel

Image credit: Xu
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• Preferred reading frame is reading frame w/ highest 
coding score

• Diff DNA segments may have diff preferred reading 
frames

⇒ Segment a coding sequence into regions w/ consistent
preferred reading frames corr well w/ indel positions

⇒ Indel identification problem can be solved as a sequence 
segmentation problem!

Key Idea for Detecting Frame-Shift

Image credit: Xu
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Frame-Shift Detection by 
Sequence Segmentation

• Partition seq into segs so that
– Chosen frames of adjacent segs are diff
– Each segment has >30 bps to avoid small 

fluctuations
– Sum of coding scores in the chosen frames over 

all segments is maximized

This can be solved as a dynamic programming problem …
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Frame-Shift Detection: 
A Simplified Treatment

• Given DNA sequence a1 … an

• Define key quantities

C(i, r) = max score on a1 … ai, 
w/ the last segment in frame r 

• Then

maxr∈{0, 1, 2}C(n, r) is optimal solution



NTU SCE BI6106, 13 Sept 2006 Copyright 2006 © Limsoon Wong

Frame-Shift Detection: C(i,r)

• To calculate C(i,r), there are 3 possible cases for 
each position i:
– Case 1: no indel occurred at position i
– Case 2: ai is an inserted base
– Case 3: a base has been deleted in front of ai

⇒ C(i, r) = max { Case 1, Case 2, Case 3 }
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Frame-Shift Detection: Case 1

• No indel occurs at position i. Then

C(i,r) = C(i–1, r’) + Pr (ai–5…ai)

a1 a2 …… ai-5 ai-4 ai-3 ai-2 ai-1 ai

di-codon 
preference

r’’ r’ r

1

2

0

2 0

0 1

1 2
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a1 a2 …… ai-6 ai-5 ai-4 ai-3 ai-2  ai-1 ai

di-codon 
preference

Frame-Shift Detection: Case 2

• ai-1 is an inserted base. Then

C(i,r) = C(i–2, r’) + Pr (ai–6...a i–2ai)

r’’ r’ r

1

2

0

2 0

0 1

1 2
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a1 a2 …… ai-5 ai-4 ai-3 ai-2  ai-1 ai

add a neutral 
base “C”

Frame-Shift Detection: Case 3
• A base has been deleted in front of ai. Then

C(i, r) = C(i–1, r’’) + Pr’ (ai–5… ai–1C) + 
Pr (ai–4… ai–1Cai)

r’’ r’ r

1

2

0

2 0

0 1

1 2

Exercise: why is “C” is best 
choice for the purpose above?
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Frame-Shift Detection: Initiation

• Initial conditions,
C (k, r) = –∝, k < 6
C (6, r) = Pr (a1 … a6)

• This is a dynamic programming (DP) algorithm; the 
equations are DP recurrences

Exercise: How to modified the recurrence
so that each fragment is at least 30bp?
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Frame-Shift Detection: Step 3

• Calculation of  maxr∈{0, 1, 2}C(i, r) gives an optimal 
segmentation of a DNA sequence

• Tracing back the transition points---viz. case 2 & 
case 3---gives the segmentation results

frame 0

frame 1

frame 2

Image credit: Xu
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Frame-Shift Detection: 
Determine Coding Regions

• For given H1 and H2 (e.g., = 0.25 for noncoding and 
0.75 for coding), partition a DNA seq into segs so 
that each seg has >30 bases & coding values of 
each seg are consistently closer to one of H1 or H2
than the other

H1
H2

segmentation 
result

Image credit: Xu
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Frame-Shift Detection: Step 5
• Overlay “preferred reading-frame segs” & “coding 

segs” gives coding region predictions regions w/ 
indels

Image credit: Xu
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• If an “insertion” is detected, 
delete the base at the 
transition point

• If a “deletion” is detected, 
add a neutral base “C” at 
transition point

Frame-Shift Detection: Step 6

• We still need to correct the identified indels...
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actual 
indels

predicted 
indels

What Happens When 
Indels Are Close Together?

• Our procedure works well when indels are not too 
close together (i.e., >30 bases apart)

• When indels are too close together, they will be 
missed...
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• Employ an iterative process, viz
Find one set of indels and correct 
them & then iterate until no more 
indels can be found

actual 
indels

predicted 
indels

predicted indels
in iteration 2

Handling Indels That Are Close Together
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Modeling & Recognition of 
Histone Promoters

Some slides here are “borrowed” from Rajesh Chowdhary
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• Play essential role in 
chromosomal processes
– gene transcription, 

regulation, 
– chromosome 

condensation, 
recombination & 
replication

Histone

• Basic proteins of 
eukaryotic cell nucleus

• Form a major part of 
chromosomal proteins

• Help in packaging DNA in 
the chromatin complex

• Five types, namely H1, 
H2A, H2B, H3 and H4

• Highly conserved across 
species
– H1 least conserved, H3 & 

H4 most conserved
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Histone Transcription
• TFs bound in core,  proximal, 

distal promoter & enhancer 
regions

• TFIID binds to TATA box  & 
identifies TSS with help of TAFs
& TBP

• RNA Pol-II supplemented by 
GTFs (A,B,D,E,F,H) recruited to 
core promoter to form Pre-
initiation complex

• Transcription initiated
– Basal/Activated, depending on 

space & time
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Histone Promoter Modeling
Werner 1999

• Three promoter types: Core, proximal and distal
• Characterised by the presence of specific TFBSs

– CAAT box, TATA Box, Inr, & DPE
– Order and mutual distance of TFBS modules is specific & 

determine function
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Histone H1t Gene Regulation
Grimes et al. 2003

• One gene can express in 
diff ways in diff cells

• Same binding site can 
have diff functions in diff 
cells
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Why Model Histone promoters

• To understand histone’s regulatory mechanism 
– To characterise regulatory features from known 

promoters
– To identify promoter from uncharacterised 

genomic sequence (promoter recognition)
– To find other genes with similar regulatory 

behaviour and gene-products 
– To define potential gene regulatory networks
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Difficulties of Histone Promoter Modeling

• Not a plain sequence alignment problem
• Not all features are common among different 

groups
• Not only TFBSs’ presence, but their location, 

order, mutual distance and orientation are critical 
to promoter function

• Not all TFs & TFBSs have been characterized yet
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Tools for Promoter Modeling

• Genomic signals in 
promoter v/s non-promoter
– Core promoter (TATA 

Box, Inr, DPE) and/or few 
TFBS outside core 
promoter

– Entire promoter (core, 
proximal & distal) with 
whole ensemble of TFBS

• Genomic content in 
promoter v/s non-promoter 
– CpG islands, GC content

• 2D-3D DNA structural 
features 

• Model with a scoring 
system based on training 
data (good data not always 
available)
– Input seq scanned for 

desired patterns & those 
whose scores above 
certain threshold are 
reported
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Promoter Recognition Programs

• Programs have different 
objectives

• Use various combinations 
of genomic signals and 
content

• Typically analyse 5’ region 
[-1000,+500] 

• Due to low accuracy, 
programs developed for 
sub-classes of promoters

Image credit: Rajesh
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Steps for Building Histone Promoter 
Recognizer

• Exercise: What do you think these steps are?
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MEME

• MEME is a powerful and good method for finding 
motifs from biological sequences

• T. L. Bailey & C. Elkan, "Fitting a mixture model by expectation 
maximization to discover motifs in biopolymers", ISMB, 2:28--36, 
1994
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H2A

Motifs Discovered by MEME in Histone
Gene 5’ Region [-1000,+500]

Image credit: Rajesh
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H2B

Motifs Discovered by MEME in Histone
Gene 5’ Region [-1000,+500]

Image credit: Rajesh
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Are These Really Motifs of H2A and H2B 
Promoters?

H2B

H2A

• One could use the motifs 
discovered by MEME to 
detect H2A & H2B 
promoters

• But….it is strange that the 
motifs for H2A and H2B 
are generally the same, but 
in opposite orientation

• Exercise: Suggest a 
possible explanation

Image credit: Rajesh
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The Real Common Promoter Region of 
H2A & H2B is at [-250,-1]!

H2B

H2A

• MEME was overwhelmed by 
coding region & did not find 
the right motifs!

Image credit: Rajesh
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Motifs Discovered by MEME in Histone
Promoter 5’ Region [-250,-1]

• Discovered 9 motifs 
among all 127 histone
promoters

• All 9 motifs are 
experimentally proven 
TFBSs (TRANSFAC)

Image credit: Rajesh
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Deriving Histone Promoter Models
• Divide H1 seqs into 5 

subgroups
• Aligned seqs within 

each subgroup
• Consensus alignment 

matches biologically 
known H1 subgroup 
models

⇒ Can apply same 
approach to find 
promoter models for 
H2A, H2B, H3, H4...

Image credit: Rajesh
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