Techniques & Applications of Sequence Comparison

> Limsoon Wong 30 August 2006

NTU SCE BI6106, 30 August 2006

Lecture Plan

- Recap on sequence alignment
- Popular tools
 - BLAST, Pattern Hunter
- Applications

. . .

 Homologs, Active sites, Key mutation sites, Looking for SNPs, Determining origin of species,

Recap on Sequence Alignment

NTU SCE BI6106, 30 August 2006

NUS National University of Singapore

Sequence Comparison: Motivations

- DNA is blue print for living organisms
- \Rightarrow Evolution is related to changes in DNA
- ⇒ By comparing DNA sequences we can infer evolutionary relationships between the sequences w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

- Doolittle et al. (Science, July 1983) searched for platelet-derived growth factor (PDGF) in his own DB. He found that PDGF is similar to v-sis oncogene
 - PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34 p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

Alignment

Alignment: Poor Example

Poor seq alignment shows few matched positions
 The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

60 70 80 90 100 Amicyanin MPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYHCTPHPFMRGKVVVE Ascorbate Oxidase ILORGTPWADGTASISOCAINPGETFFYNFTVDNPGTFFYHGHLGMQRSAGLYGSLI 70 80 90 100 110 120 No obvious match between Amicyanin and Ascorbate Oxidase

Alignment: Good Example

- Good alignment usually has clusters of extensive matched positions
- \Rightarrow The two proteins are likely to be homologous

D >gil13476732|ref|NP_108301.1| unknown protein [Mesorhizobium loti]
gil14027493|dbj|BAB53762.1| unknown protein [Mesorhizobium loti]
Length = 105

```
Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)
```

 Query:
 1
 MKPGRLASIALATIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT
 60

 MK G L
 ++
 MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT

 Sbjct:
 1
 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT

good match between Amicyanin and unknown M. loti protein

Popular Tools for Sequence Comparison: FASTA, BLAST, Pattern Hunter

Acknowledgements:

Some slides here are "borrowed" from Bin Ma & Dong Xu

NTU SCE BI6106, 30 August 2006

Scalability of Software

- Increasing number of sequenced genomes: yeast, human, rice, mouse, fly, ...
- \Rightarrow S/w must be "linearly" scalable to large datasets

Need Heuristics for Sequence Comparison

- Time complexity for optimal alignment is O(n²), where n is sequence length
- ⇒ Given current size of sequence databases, use of optimal algorithms is not practical for database search

- Heuristic techniques:
 - BLAST
 - FASTA
 - Pattern Hunter
 - MUMmer, ...
- Speed up:
 - 20 min (optimal alignment)
 - 2 min (FASTA)
 - 20 sec (BLAST)

Basic Idea: Indexing & Filtering

- Good alignment includes short identical, or similar fragments
- ⇒ Break entire string into substrings, index the substrings
- ⇒ Search for matching short substrings and use as seed for further analysis
- ⇒ Extend to entire string find the most significant local alignment segment

BLAST in 3 Steps

- Altschul et al, JMB 215:403-410, 1990
- Word matching
- Similarity matching of words (3 aa's, 11 bases)
 - no need identical words
- If no words are similar, then no alignment
 - won't find matches for very short sequences

- MSP: Highest scoring pair of segments of identical length. A segment pair is locally maximal if it cannot be improved by extending or shortening the segments
- Find alignments w/ optimal max segment pair (MSP) score
- Gaps not allowed
- Homologous seqs will contain a MSP w/ a high score; others will be filtered out

BLAST in 3 Steps Altschul et al, JMB 215:403-410, 1990

Step 1

• For the query, find the list of high scoring words of length w

Query Sequence of length L

Maximum of L-w+1 words (typically w = 3 for proteins)

For each word from the query sequence find the list of words that will score at least T when scored using a pair-score matrix (e.g. PAM 250).

BLAST in 3 Steps

Altschul et al, JMB 215:403-410, 1990

Step 2

• Compare word list to db & find exact matches

Step 3

• For each word match, extend alignment in both directions to find alignment that score greater than a threshold s

Spaced Seeds

- 111010010100110111 is an example of a spaced seed model with
 - 11 required matches (weight=11)
 - 7 "don't care" positions

1111111111 is the BLAST seed model for comparing DNA seqs

Observations on Spaced Seeds^V

- Seed models w/ different shapes can detect different homologies
 - the 3rd base in a codon "wobbles" so a seed like 110110110... should be more sensitive when matching coding regions
- \Rightarrow Some models detect more homologies
 - More sensitive homology search
 - PatternHunter I
- \Rightarrow Use >1 seed models to hit more homologs
 - Approaching 100% sensitive homology search
 - PatternHunter II

PatternHunter I

Ma et al., *Bioinformatics* 18:440-445, 2002

- BLAST's seed usually uses more than one hits to detect one homology
- \Rightarrow Wasteful

- Spaced seeds uses fewer hits to detect one homology
- ⇒ Efficient

TTGACCTCACC? ||||||||||? TTGACCTCACC? 1111111111 111111111

1/4 chances to have 2nd hit next to the 1st hit

CAA?A??A?C??TA?TGG? |||?|???|?||? CAA?A??A?C??TA?TGG? 111010010100110111 111010010100110111

1/4⁶ chances to have 2nd hit next to the 1st hit

PatternHunter I Ma et al., *Bioinformatics* 18:440-445, 2002

Proposition. The expected number of hits of a weight-*W* length-*M* model within a length-*L* region of similarity p is $(L - M + 1) * p^{W}$

Proof. For any fixed position, the prob of a hit is p^{W} . There are L - M + 1 candidate positions. The proposition follows.

PatternHunter I Ma et al., *Bioinformatics* 18:440-445, 2002 Proposition. The expected number of hits of a

Implication

- For *L* = 1017
 - BLAST seed expects (1017 - 11 + 1) * p^{11} = 1007 * p^{11} hits
 - But ~1/4 of these overlap each other. So likely to have only ~750 * p¹¹ distinct hits
 - Our example spaced seed expects $(1017 - 18 + 1)^*$ $p^{11} = 1000 * p^{11}$ hits
 - But only 1/4⁶ of these overlap each other. So likely to have ~1000 * p¹¹ distinct hits

Copyright 2006 © Limsoon Wong

gapore

seeds

likely to

be more

sensitive

& more

efficient

Sensitivity of PatternHunter I

Copyright 2006 © Limsoon Wong

Speed of PatternHunter I

Mouse Genome Consortium used PatternHunter to compare mouse genome & human genome

PatternHunter did the job in a 20 CPU-days --it would have taken BLAST 20 CPU-years!

How to Increase Sensitivity?

- Ways to increase sensitivity:
 - "Optimal" seed
 - Reduce weight by 1
 - Increase number of spaced seeds by 1

Proposition. The expected number of hits of a weight-W length-M model within a length-L region of similarity p is $(L - M + 1) * p^{W}$

Proof. For any fixed position, the prob of a hit is p^w. There are L – M + 1 positions. The proposition follows.

• For L = 1017 & p = 50%

- 1 weight-11 length-18 model expects 1000/2¹¹ hits
- 2 weight-12 length-18 models expect 2 * 1000/2¹² = 1000/2¹¹ hits
- ⇒ When comparing regions w/ >50% similarity, using 2 weight-12 spaced seeds together is more sensitive than using 1 weight-11 spaced seed!

PatternHunter II

Li et al, G/W, 164-175, 2003

• Idea

- Select a group of spaced seed models
- For each hit of each model, conduct extension to find a homology
- Selecting optimal multiple seeds is NP-hard

• Algorithm to select multiple spaced seeds

- Let A be an empty set
- Let s be the seed such that A U {s} has the highest hit probability
- $A = A \cup \{s\}$
- Repeat until |A| = K
- Computing hit probability of multiple seeds is NPhard

Sensitivity of PatternHunter II

- Solid curves: Multiple (1, 2, 4, 8,16) weight-12 spaced seeds
- Dashed curves: Optimal spaced seeds with weight = 11,10, 9, 8
- ⇒ "Doubling the seed number" gains better sensitivity than "decreasing the weight by 1"

Expts on Real Data

- 30k mouse ESTs (25Mb) vs
 4k human ESTs (3Mb)
 - downloaded from NCBI genbank
 - "low complexity" regions filtered out
- SSearch (Smith-Waterman method) finds "all" pairs of ESTs with significant local alignments
- Check how many percent of these pairs can be "found" by BLAST and different configurations of PatternHunter II

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Farewell to the Supercomputer Age of Sequence Comparison!

Computer: PIII 700Mhz Redhat 7.1, 1G main memory

Sequence Length	Blastn	PatternHunter
816k vs 580k	47 sec	9 sec
4639k vs 1830k	716 sec	44 sec
20M vs 18M	out of memory	13 min

Image credit: Bioinformatics Solutions Inc

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Application of Sequence Comparison: Guilt-by-Association

A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

• How do we attempt to assign a function to a new protein sequence?

Copyright 2006 © Limsoon Wong

Guilt-by-Association

- Compare the target sequence T with sequences $S_1, ..., S_n$ of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to *T* the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt-by-Association

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

BLAST: How it works Altschul et al., *JMB*, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

Homologs Obtained by BLAST

Sequences producing significant alignments:	(bits)	Value
gi 14193729 gb AAK56109.1 AF332081_1 protein tyrosin phosph	<u>62:</u> L	e-177
gi 126467 sp P18433 PTRA_HUMAN Protein-tyrosine phosphatase	<u>621 - </u>	e-177
<u>qi 4506303 ref NP_002827.1 </u> protein tyrosine phosphatase, r <u>qi 227294 prf 1701300A</u> protein Tyr phosphatase	621 620	e-176 e-176
gi 18450369 ref NP_543030.1 protein tyrosine phosphatase,	<u>621 L</u>	e-176
<pre>qi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho gi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.1</pre>	<u>61:</u> 619	e-176 e-176
gi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r	<u>61:</u>	e-176
gi 2098414 pdb 1YFO A Chain A, Receptor Protein Tyrosine Ph	<u>61</u> S	e-174
qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homoqi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4	61 605	e-174 e-172
<u>qi 6679557 ref NP_033006.1 </u> protein tyrosine phosphatase, r <u>qi 483922 qb AAA17990.1 </u> protein tyrosine phosphatase alpha	60, L 599	e-172 e-170

 Thus our example sequence could be a protein tyrosine phosphatase α (PTPα)

Example Alignment with $PTP\alpha$

Score = 632 bits (1629), Expect = e-180
Identities = 294/302 (97%), Positives = 294/302 (97%)

- Sbjct: 202 SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR 261
- Query: 61 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 120 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
- Sbjct: 262 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 321
- Query: 121 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 180 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
- Sbjct: 322 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 381
- Query: 181 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
- Sbjct: 382 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 441
- Query: 241 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 300 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
- Sbjct: 442 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 501

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Law of Large Numbers

- Suppose you are in a room with 365 other people
- Q: What is the prob that a specific person in the room has the same birthday as you?
- A: 1/365 = 0.3%

- Q: What is the prob that there is a person in the room having the same birthday as you?
- A: $1 (364/365)^{365} = 63\%$
- Q: What is the prob that there are two persons in the room having the same birthday?
- A: 100%

Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a Pvalue to each hit
- P-value is interpreted as prob. that a random seq. has an equally good alignment

- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq. comparison prog does not do that!

Lightning Does Strike Twice!

- Roy Sullivan, a former park ranger from Virgina, was struck by lightning 7 times
 - 1942 (lost big-toe nail)
 - 1969 (lost eyebrows)
 - 1970 (left shoulder seared)
 - 1972 (hair set on fire)
 - 1973 (hair set on fire & legs seared)
 - 1976 (ankle injured)
 - 1977 (chest & stomach burned)
- September 1983, he committed suicide

Cartoon: Ron Hipschman Data: David Hand

Effect of Seq Compositional Bias

- One fourth of all residues in protein seqs occur in regions with biased amino acid composition
- Alignments of two such regions achieves high score purely due to segment composition
- While it is worth noting that two proteins contain similar low complexity regions, they are best excluded when constructing alignments
- BLAST employs the SEG algorithm to filter low complexity regions from proteins before executing a search

Source: NCBI

Effect of Sequence Length

Copyright 2006 © Limsoon Wong

Examples of Invalid Function Assignment: The IMP dehydrogenases (IMPDH)

18 entries were found

ID	Organism	PIR	Swiss-Prot/TrEMBL	RefSeq/GenPept		
<u>NF00181857</u>	Methanococcus jannaschii	<u>E64381</u> conserved hypothetical protein MJ0653	<u>Y653_METJA</u> Hypothetical protein MJ0653	<u>g1.592300</u> inosine-5'-monophosphate dehydrogenase (guaB) <u>NP_247637</u> inosine-5'-monophosphate dehydrogenase (guaB)		
<u>NF00187788</u>	Archaeoglobus fulgidus	G69355 MJ0653 homolog AF0847 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-1) homolog [misnomer]	<u>029411</u> INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-1)	<u>g2649754</u> inosine monophosphate dehydrogenase (guaB-1) <u>NP_069681</u> inosine monophosphate dehydrogenase (guaB-1)		
<u>NF00188267</u>	Archaeoglobus fulgidus	<u>F69514</u> yhcV homolog 2 <i>ALT_NAMES</i> : inosine-monophosphate dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	<u>g2648410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)		
NF00188697	Archaeoglobus fulgidus	<u>B69407</u> MJ0188 homolog <i>ALT_NAMES</i> : inosine monophosphate	O29009 Hypothetical protein AF1259	<u>g2649320</u> inosine monophosphate dehydrogenase, putative NP_070097 inosine monophosphate ive		
A partial list of IMPdehydrogenase misnomers in complete genomes remaining in some						
<u>NF00414709</u>	09 Methan thermat public databases Inophosphate sprotein V monophosphate					
<u>NF00414811</u>	Methanothermobacter thermautotrophicus	D69035 MJ1232 protein homolog MTH126 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein VII [misnomer]	<u>O26229</u> INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN VII	<u>g2621166</u> inosine-5'-monophosphate dehydrogenase related protein VII <u>NP_275269</u> inosine-5'-monophosphate dehydrogenase related protein VII		
<u>NF00414837</u>	Methanothermobacter thermautotrophicus	H69232 MJ1225-related protein MTH992 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein IX [misnomer]	<u>O27073</u> INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	<u>g2622093</u> inosine-5'-monophosphate dehydrogenase related protein IX <u>NP_276127</u> inosine-5'-monophosphate dehydrogenase related protein IX		
<u>NF00414969</u>	Methanothermobacter thermautotrophicus	<u>B69077</u> yhcV homolog 2 <i>ALT_NAMES</i> : inosine-monophosphate dehydrogenase related protein X [misnomer]	<u>O27616</u> INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN X	g <u>2622697</u> inosine-5'-monophosphate dehydrogenase related protein X <u>NP_276687</u> inosine-5'-monophosphate dehydrogenase related protein X		

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

IMPDH Domain Structure

	Image: PCM00487: PD0C00391,IMP dehydrogenase / GMP reductase signature Image: PF00478: IMP dehydrogenase / GMP reductase C terminus Image: PF00571: CBS domain Image: PF01381: Helix-turn-helix
	PF01574: IMP dehydrogenase / GMP reductase N terminus PF02195: ParB-like nuclease domain
A31997 (SF000130)	
E70218 (SF000131)	404
E64381 (SF004696)	194 IMPDH Misnomer in Methanococcus jannaschii
G69355 (SF004696)	
F69514 (SF004694)	IMPDH Misnomers in Archaeoglobus fulgidus
869407 (SF004699)	**************************************

- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains

Invalid Transitive Assignment

Root of invalid transitive assignment _

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Application of Sequence Comparison: Active Site/Domain Discovery

What is a domain

- A domain is a component of a protein that is selfstabilizing and folds independently of the rest of the protein chain
 - Not unique to protein products of one gene; can appear in a variety of proteins
 - Play key role in the biological function of proteins
 - Can be "swapped" by genetic engineering betw one protein and another to make chimeras
- May be composed of one, more than one, or not any structural motifs (often corresponding to active sites)

Discovering Domain and Active Sites

• How do we find the domain and associated active sites in the protein above?

In the course of evolution...

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Domain/Active Sites as Emerging Patterns

- How to discover active site and/or domain?
- If you are lucky, domain has already been modelled
 - BLAST,
 - HMMPFAM, ...
- If you are unlucky, domain not yet modelled
 - Find homologous seqs
 - Do multiple alignment of homologous seqs
 - Determine conserved positions
 - \Rightarrow Emerging patterns relative to background
 - \Rightarrow Candidate active sites and/or domains

Lucky Case: Try BLAST

Your request has been successfully submitted and put into the Blast Queue.

Query = (807 letters)

Putative conserved domains have been detected, click on the image below for detailed results.

- Find homologous seqs
 - Literature search
 - BLAST, ...
 - It is better to use distance homologs (why?)
 - "Adjust" the seqs if necessary
- Do multiple alignment of homologous seqs
 - ClustalW
 - T-Coffee, ...
- Determine conserved positions

Multiple Alignment of PTPs

gi 126467	FHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTGTFVVIDAMLD
gi 2499753	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 462550	YHYTQWPDMGVPEYALPVLTFVRRSSAARMPETGPVLVHCSAGVGRTGTYIVIDSMLQ
gi 2499751	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
gi 1709906	FQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHCSAGVGRTGCFIVIDAMLE
gi 126471	LHFTSWPDFGVPFTPIGMLKFLKKVKTLNPVHAGPIVVHCSAGVGRTGTFIVIDAMMA
gi 548626	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 131570	FHFTGWPDHGVPYHATGLLGFVRQVKSKSPPNAGPLVVHCSAGAGRTGCFIVIDIMLD
gi 2144715	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
	* *** .** . ******* **** **

- Notice the PTPs agree with each other on some positions more than other positions
- These positions are more impt wrt PTPs
- Else they wouldn't be conserved by evolution
- \Rightarrow They are candidate active sites

Guilt-by-Association: What if no homolog of known function is found?

genome phylogenetic profiles protfun's feature profiles

NTU SCE BI6106, 30 August 2006

Phylogenetic Profiling Pellegrini et al., *PNAS*, 96:4285--4288, 1999

- Gene (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

Phylogenetic Profiling: How it Works

Conclusion: P2 and P7 are functionally linked, P3 and P6 are functionally linked

NTU SCE BI6106, 30 August 2000

Copyright 2000 S Linnsoon Wong

Phylogenetic Profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

No. of ways to distribute
$$z$$

co-occurrences over N
lineage's
No. of ways to distribute
 $W = \binom{N-z}{x-z} * \binom{N-z}{y-z}$
No. of ways to distribute
the remaining $x - z$ and $y - z$
occurrences over the remaining
 $N - z$ lineage's
No. of ways to distribute
 $W = \binom{N}{x} * \binom{N}{y}$
No. of ways of
distributing X and Y
over N lineage's
without restriction

Cence NUS National University of Singapore

Phylogenetic Profiles: Evidence

Pellegrini et al., PNAS, 96:4285--4288, 1999

Keyword	No. of proteins in this group	No. of protein pairs in this group that differ by < 3 "bit"	No. of protein pairs in random group that differ by < 3 "bit"
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical [†]	1,084	108,226	8,440

• Proteins grouped based on similar keywords in SWISS-PROT have more similar phylogenetic profiles

- Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways
- Exercise: Why do proteins having high hamming distance also have this behaviour?

The ProtFun Approach

Jensen, *JMB*, 319:1257--1265, 2002

- A protein is not alone when performing its biological function
- It operates using the same cellular machinery for modification and sorting as all other proteins do, such as glycosylation, phospharylation, signal peptide cleavage, ...
- These have associated consensus motifs, patterns, etc.

- Proteins performing similar functions should share some such "features"
- Perhaps we can predict protein function by comparing its "feature" profile with other proteins?

ProtFun: How it Works

Abbriviation	Encoding	Description	-
ec	single value	Extinction coefficient predicted by ExPASy ProtParam	-
gravy	single value	Hydrophobicity predicted by ExPASy ProtParam	-
nneg	single value	Number of negatively charged residues counted by ExPASy ProtParan	1
npos	single value	Number of positively charged residues counted by ExPASy ProtParam	
nglyc	potential in 5 bins	N-glycosylation sites predicted by NetNGlyc	-
oglyc	potential-threshold in 10 bins	GaINAc O-glycosylations predicted by NetOGlyc	-
pest	fraction in 10 bins	PEST rich regions identified by PESTfind	-
phosST	potential in 10 bins	Serine and threonine phosporylations predicted by NetPhos	
phosY	potential in 10 bins	Tyrosine phosporylations predicted by <u>NetPhos</u> Extrac	et feature
psipred	helix, sheet, coil in 5 bins	Predicted secondary structure from <u>PSI-Pred</u> profile	of protein
psort	20 probabilities	Subcellular location predtions by PSORT	various
seg	fraction in 10 bins	Low-complexity regions identified by SEG	tion mothods
signalp	meanS, maxY, log(cleavage pos)	Signal peptide predictions made by SignalP	uon methous
tmhmm	inside, outside, membrane in 5 bins	Transmembrane helix predictions made by TMHMM	

Category	Hidden units	Input features
Amino acid biosynthesis	30	ec psipred psort tmhmm
	30	ec psipred tmhmm
A years of the output of	, 30	ec netoglyc psipred psort
Average the output of	30	graw psipred psort
the 5 component ANN	S 30	oglyc psipred psort

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

ProtFun: Evidence

Some combinations of "features" seem to characterize some functional categories

ProtFun: Example Output

	Prion	A4	TTHY	At the sec lovel
Amino acid biosynthesis	0.011	0.011	0.011	Prion. A4. & TTHY are
Biosynthesis of cofactors	0.041	0.161	0.034	
Cell envelope	0.146	0.804	0.698	– dissimilar
Cellular processes	0.027	0.027	0.051	
Central intermediary metabolism	0.047	0.139	0.059	
Energy metabolism	0.029	0.023	0.046	DrotEup prodicto
Fatty acid metabolism	0.017	0.017	0.023	Protrun predicts
Purines and pyrimidines	0.528	0.417	0.153	them to be cell
Regulatory functions	0.013	0.014	0.014	
Replication and transcription	0.020	0.029	0.040	envelope-related,
Translation	0.035	0.027	0.032	trannort & binding
Transport and binding	0.831	0.827	0.812	
Enzyme	0.233	0.367	0.227	
Non-enzyme <	0.767	0.633	0.773	This is in agreement
Oxidoreductase (EC 1)	0.070	0.024	0.055	with known
Transferase (EC 2.–.–.–)	0.031	0.208	0.037	functionality of those
Hydrolase (EC 3.–.–.)	0.101	0.090	0.208	iunctionality of these
Isomerase (EC 4.–.–.–)	0.020	0.020	0.020	proteins
Ligase (EC 5)	0.010	0.010	0.010	
Lyase (EC 6)	0.017	0.078	0.017	

NTU SCE BI6106, 30 August 2006

ProtFun: Performance

Similarity of Dissimilarities

	orange ₁	banana ₁	
apple ₁	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
apple ₂	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
orange ₂	Color = orange vs orange Skin = rough vs rough Size = small vs small Shape = round vs round	Color = orange vs yellow Skin = rough vs smooth Size = small vs small Shape = round vs oblong	••

SVM-Pairwise Framework

Image credit: Kenny Chua

Performance of SVM-Pairwise

Receiver Operating Characteristic (ROC)

- The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.

NTU SCE BI6106, 30 August 2006

Application of Sequence Comparison: Key Mutation Site Discovery

Identifying Key Mutation Sites

K.L. Lim et al., JBC, 273:28986--28993, 1998

Sequence from a typical PTP domain D2

>ai|00000|PTPA-D2 **EEEFKKLTSIKIONDKMRTGNLPANMKKNRVLOIIPYEFNRVIIPVKRGEENTDYVNASF IDGYROKDSYIASOGPLLHTIEDFWRMIWEWKSCSIVMLTELEERGOEKCAOYWPSDGLV** SYGDITVELKKEEECESYTVRDLLVTNTRENKSROIROFHFHGWPEVGIPSDGKGMISII **AAVOKOOOOSGNHPITVHCSAGAGRTGTFCALSTVLERVKAEGILDVFOTVKSLRLORPH MVOTLEOYEFCYKVVOEYIDAFSDYANFK**

- Some PTPs have 2 PTP domains
- PTP domain D1 is has much more activity than PTP domain D2
- Why? And how do you figure that out?

Emerging Patterns of PTP D1 vs D

- Collect example PTP D1 sequences
- Collect example PTP D2 sequences
- Make multiple alignment A1 of PTP D1
- Make multiple alignment A2 of PTP D2
- Are there positions conserved in A1 that are violated in A2?
- These are candidate mutations that cause PTP activity to weaken
- Confirm by wet experiments

Emerging Patterns of PTP D1 vs E

This site is consistently conserved in D1, but is not consistently missing in D2 \Rightarrow it is not an EP \Rightarrow not a likely cause of D2's loss of function

This site is consistently conserved in D1, but is consistently missing in D2 ⇒ it is an EP ⇒ possible cause of D2's loss of function

Key Mutation Site: PTP D1 vs D2

gi|00000|P gi|126467| gi|2499753 gi|462550| gi|2499751 gi|1709906 gi|126471| gi|548626| gi|131570| gi|2144715

2 22 2 2 2 QFHFHGWPEVGIPSDGKGMISIIAAVQKQQQQ-SGNHPITVHCSAGAGRTGTFCALSTVL ∕QFHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAML OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OYHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTYIVIDSML **OFHFTSWPDHGVPDTTDLLINFRYLVRDYMKOSPPESPILVHCSAGVGRTGTFIAIDRLI** QFQFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAML D1-OLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMM OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OFHFTGWPDHGVPYHATGLLGFVROVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIML QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI Τ. **. *.* ***** ****

• Positions marked by "!" and "?" are likely places responsible for reduced PTP activity

- All PTP D1 agree on them
- All PTP D2 disagree on them

Key Mutation Site: PTP D1 vs D2²³

Image credit: Kolatkar

• Positions marked by "!" are even more likely as 3D modeling predicts they induce large distortion to structure

Confirmation by Mutagenesis Expt

- What wet experiments are needed to confirm the prediction?
 - Mutate $E \rightarrow D$ in D2 and see if there is gain in PTP activity
 - Mutate D \rightarrow E in D1 and see if there is loss in PTP activity
- Exercise: Why do you need this 2-way expt?

Application of Sequence Comparison: From Looking for Similarities To Looking for Differences

Single Nucleotide Polymorphism

- SNP occurs when a single nucleotide replaces one of the other three nucleotide letters
- E.g., the alteration of the DNA segment AAGGTTA to ATGGTTA

- SNPs occur in human population > 1% of the time
- Most SNPs are found outside of "coding seqs" (Exercise: Why?)
- ⇒ SNPs found in a coding seq are of great interest as they are more likely to alter function of a protein

Example SNP Report

Ensembl SNP Report

SNP	1907745
Source	dbSNP
Synonyms	dbSNP: 1907745 TSC: TSC0953388 HGbase: SNP001275703
Score	1
Validation Status	proven by cluster (SNP tested and validated by a non-computational method)
Alleles	AIG (ambiguity code: R)
Sequence Region	AGGCATCCAGTCTCGGTAAACCTAGRCAAGTAATATTATTAGTTGAGCATT (SNP highlighted)
SNP neighbourhood	20.00 Kb AC011433 > AC011433 > KCNHA1 Ensembl known trans 20.00 Kb 20.00 Kb

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

SNP Uses

- Association studies
 - Analyze DNA of group affected by disease for their SNP patterns
 - Compare to patterns obtained from group unaffected by disease
 - Detect diff betw SNP patterns of the two
 - Find pattern most likely associated with diseasecausing gene

Application of Sequence Comparison: The 7 Daughters of Eve

Population Tree

- Estimate order in which "populations" evolved
- Based on assimilated freq of many different genes
- But ...
 - is human evolution a succession of population fissions?
 - Is there such thing as a proto-Anglo-Italian population which split, never to meet again, and became inhabitants of England and Italy?

Evolution Tree

- Leaves and nodes are individual persons---real people, not hypothetical concept like "protopopulation"
- Lines drawn to reflect genetic differences between them in one special gene called mitochondrial DNA

Why Mitochondrial DNA

- Present in abundance in bone fossils
- Inherited only from mother
- Sufficient to look at the 500bp control region
- Accumulate more neutral mutations than nuclear DNA
- Accumulate mutations at the "right" rate, about 1 every 10,000 years
- No recombination, not shuffled at each generation

Mutation Rates

- All pet golden hamsters in the world descend from a single female caught in 1930 in Syria
- Golden hamsters "manage" ~4 generations a year :-)
- So >250 hamster generations since 1930
- Mitochondrial control regions of 35 (independent) golden hamsters were sequenced and compared
- No mutation was found

⇒ Mitochondrial control region mutates at the "right" rate

Contamination

- Need to know if DNA extracted from old bones really from those bones, and not contaminated with modern human DNA
- Apply same procedure to old bones from animals, check if you see modern human DNA
- \Rightarrow If none, then procedure is OK

Origin of Polynesians

Do they come from Asia or America?

Image credit: Sykes

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Origin of Polynesians

- Common mitochondrial control seq from Rarotonga have variants at positions 189, 217, 247, 261. Less common ones have 189, 217, 261
- Seq from Taiwan natives have variants 189, 217
- Seq from regions in betw have variants 189, 217, 261.

- More 189, 217 closer to Taiwan. More 189, 217, 261 closer to Rarotonga
- 247 not found in America
- ⇒ Polynesians came from Taiwan!
- Taiwan seq sometimes have extra mutations not found in other parts
- ⇒ These are mutations that happened since Polynesians left Taiwan!

Neanderthal vs Cro Magnon

• Are Europeans descended purely from Cro Magnons? Pure Neanderthals? Or mixed?

NTU SCE BI6106, 30 August 2006

Copyright 2006 © Limsoon Wong

Neanderthal vs Cro Magnon

- Based on palaeontology, Neanderthal & Cro Magnon last shared an ancestor 250k years ago
- Mitochondrial control regions accumulate 1 mutation per 10k years
- ⇒ If Europeans have mixed ancestry, mito-chondrial control regions betw 2 Europeans should have ~25 diff w/ high probability

- The number of diff betw Welsh is ~3, & at most 8.
- When compared w/ other Europeans, 14 diff at most
- ⇒ Ancestor either 100% Neanderthal or 100% Cro Magnon
- Mitochondrial control seq from Neanderthal have 26 diff from Europeans
- ⇒ Ancestor must be 100% Cro Magnon

Suggested Readings

NTU SCE BI6106, 30 August 2006

- S.E.Brenner. "Errors in genome annotation", *TIG*, 15:132--133, 1999
- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details'", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A.Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001.
- K.L.Lim et al. "Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein tyrosine phosphatase PTP-alpha by two point mutations is synergist and substrate dependent", *JBC*, 273:28986--28993, 1998.

References

- J. Park et al. "Sequence comparisons using multiple sequences detect three times as many remote homologs as pairwise methods", *JMB*, 284(4):1201-1210, 1998
- J. Park et al. "Intermediate sequences increase the detection of homology between sequences", *JMB*, 273:349--354, 1997
- Z. Zhang et al. "Protein sequence similarity searches using patterns as seeds", *NAR*, 26(17):3986--3990, 1996
- M.S.Gelfand et al. "Gene recognition via spliced sequence alignment", *PNAS*, 93:9061--9066, 1996
- B. Ma et al. "PatternHunter: Faster and more sensitive homology search", *Bioinformatics*, 18:440--445, 2002
- M. Li et al. "PatternHunter II: Highly sensitive and fast homology search", GIW, 164--175, 2003

National of Singap

References

- S.F.Altshcul et al. "Basic local alignment search tool", *JMB*, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", NAR, 25(17):3389--3402, 1997.
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from posttranslational modifications and localization features", *JMB*, 319:1257--1265, 2002
- B. Sykes. "The seven daughters of Eve", *Gorgi Books, 2002*

- P.Erdos & A. Renyi. "On a new law of large numbers", *J. Anal. Math.*, 22:103--111, 1970
- R. Arratia & M. S. Waterman. "Critical phenomena in sequence matching", *Ann. Prob.*, 13:1236--1249, 1985
- R. Arratia, P. Morris, & M. S. Waterman. "Stochastic scrabble: Large deviations for sequences with scores", *J. Appl. Prob.*, 25:106--119, 1988
- R. Arratia, L. Gordon. "Tutorial on large deviations for the binomial distribution", Bull. Math. Biol., 51:125--131, 1989