What do gambling, database design, your
calculator, and human evolution have in
common?

Fun With Invariants

National University
of Singapore

TN US
ked

Plan
* What is an invariant? * What will we learn?
— Bet on color of the bean
— Make a list sorted — Problem solving by
— Take exponent faster logical reasoning on
invariants
* Where do Polynesians _
come from? — Problem solving by
rectifying violation of
invariants
* Are Europeans of pure
Neanderthal or pure Cro _ o
Magnon or mixed — Solution optimization by
descent? preserving invariants
* What is a good database
design?

Copyright 2007 © Limsoon Wong

What is an invariant?

NUS

National University
of Singapore

» Suppose you have a bag
of x red beans and y green
beans

* Repeat the following:
— Remove 2 beans
— If both green, discard
both
— If both red, discard one,
put back one
— If one green and one red,
discard red, put back
green
* If one bean is left behind,
can you predict its colour?

Shall we bet on

the color of the

bean that is left
behind?

Copyright 2007 © Limsoon Wong

» Suppose you have a bag
of x red beans and y green
beans

* Repeat the following:

— Remove 2 beans

— If both green, discard
both

— If both red, discard one,
put back one

— If one green and one red,
discard red, put back
green

* If one bean is left behind,
can you predict its colour?

Bet on the last green bean

When the parity of green
beans is odd, it remains
odd...

Start with y=2n+1
y=2n+1 > y=2n-1
y=2n+1 > y=2n+1

y=2n+1 > y=2n+1

It must be green!

Copyright 2007 © Limsoon Wong

Bet on the last red bean

» Suppose you have a bag * When the parity of green
of x red beans and y green beans is even, it remains
beans even...

* Repeat the following: + Start with y=2n

— Remove 2 beans
— If both green, discard * y=2n - y=2n-2
both

If both red, discard one, « y=2n-y=2n

put back one

If one green and one red,

discard red, put back

green

+ If one bean is left behind,
can you predict its colour? * It must be red!

* y=2n > y=2n

Copyright 2007 © Limsoon Wong

+ If you start with odd #
(even #) of green beans,
there will always be an odd
(even #) of green beans
in the bag

= Parity of green beans is
invariant

= Bean left behind is green
iff you start with odd # of
green beans

Copyright 2007 © Limsoon Wong

- What have we just seen?

* Problem solving by logical reasoning
on invariants

Copyright 2007 © Limsoon Wong

 What is a sorted list?

A list L is sorted iff L[i] <
L[j] for all adjacent
positions i, j

* So how do you make a list .
M become sorted? What makes a list

ist?
While M[i] > M[j] for some a sorted list*

adjacent positionsi i, j {

swap M[i], M[j]

Copyright 2007 © Limsoon Wong

* Invariant of sorted lists

A list L is sorted iff L[i] <
L[j] for all adjacent
positions i, j

* Making a list M become
sorted:

While M[i] > M[j] for some
adjacent positionsi i, j {

swap M[i], M[j]

Sorting a list

Find violation of the
invariant

Fix it

When no more violation,
the list must be sorted!

Copyright 2007 © Limsoon Wong

« What have we just seen?

* Problem solving by rectifying
violation of invariants

Copyright 2007 © Limsoon Wong

F(a,0) =1

 We see that

F(a,n) = a"

+ What does this program
do?

F(a, n+1) =a * F(a, n)

Exponentiation

a'=ax---%a,
\—v_r""

n

Copyright 2007 © Limsoon Wong

do?

F(a, 0) =1
F(a, n+1) =a * F(a, n)

. We see that %%

Playing the invariant...

+ What does this program

Then

oy ™
F(a, 2*n) = a2"

= an * an bﬂ ‘\“\1
=y *ywherey=F(a, n)

N
F(a, 2*n+1) = a2’ o

=a*a"*a"
=a*y*ywhere F(a, n)

So we get ... 2,

Copyright 2007 © Limsoon Wong

Original program:

F(a,0) =1
F(a, n+1) =a * F(a, n)

New program:

F(a, 0) =1

F(a,1)=a

F(a, n) = if n is odd
thena*y*y
elsey*y
where y = F(a, n div 2)

invariant

What’s the difference?

Costof F(a,n) =n

Cost of F(a, n) =log, n

n log n | call sequence

8 3 4 2 1
9 3 4 2 1
10 3 5 2 1
11 3 5 2 1

« What have we just seen?

« Optimizing a solution by preserving

Copyright 2007 © Limsoon Wong

Where do Polynesians
come from?

Do Polynesians come from
Asia or America?

Copyright 2007 © Limsoon Wong

In the course of evolution...

Copyright 2007 © Limsoon Wong

What is the invariant?

« Mitochrondrial DNA accumulates 1 mutation
about every 10,000 years

* Human history is not so long relative to this

= When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

Copyright 2007 © Limsoon Wong

10

Origin of Polynesians

+ Common mitochondrial * More 189, 217 closer to
control seq from Taiwan. More 189, 217, 261
Rarotonga have variants at closer to Rarotonga
positions 189, 217, 247, « 247 not found in America
261. Less common ones ;

= Polynesians came from
have 189, 217, 261 Taiwan!

* Seq from Taiwan natives

« Taiwan seq sometimes
have variants 189, 217 q

have extra mutations not
found in other parts

 Seq from regions in betw — These are mutations that
have Variants 189, 217, happened since
261. Polynesians left Taiwan!

Copyright 2007 © Limsoon Wong

Are Europeans descended purely
from Cro Magnons? Purely from
Neanderthals? Or mixed?

bencocm, | Wy,

B Cro Manon
Neanderthal

Copyright 2007 © Limsoon Wong

11

Neanderthal vs Cro Magnon

+ Based on palaeontology, + The number of diff betw
Neanderthal & Cro Magnon Welsh is ~3, & at most 8.
last shared an ancestor « When compared w/ other
250,000 yrs ago Europeans, 14 diff at most

* Mitochondrial DNA — Ancestor either 100%
accumulates 1 mutation Neanderthal or 100% Cro
per 10,000 yrs Magnon

= If Europeans have mixed « Mitochondrial DNA from
ancestry, the Neanderthal have 26 diff
mitochondrial DNA betw 2 from Europeans

Europeans should have

A 1009
-25 diff w/ high probability Ancestor mustbe 100%

Cro Magnon

Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

* The invariant:

When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

 The lesson learned:

Figure out origins of Polynesians
and Europeans by logical
reasoning on invariant

Copyright 2007 © Limsoon Wong

What is a good database design?

Relational Data Model

+ Data are represented as a two-dimensional table

It is alogical representation, not a physical
representation

— Ordering of the rows is irrelevant
— Ordering of the columns is irrelevant

— How the rows and columns of a table are stored is
irrelevant

Copyright 2007 © Limsoon Wong

13

Example

G;@ 1 Carrie Fisher

T
- -
Contracts

Contracts
Contract No | Star Studio Title Salary
Fox Star Wars | $$$
Mark Hamill Fox Star Wars | $$$
Harrison Ford | Fox Star Wars | $$$
Stars
Name Address
] Carrie Fisher | Hollywood
— /@@ Mark Hamill Brentwood
Harrison Ford | Beverly Hills

o I o B L SN
= G}‘f“:') _/ \ (=) Movies

CE @) Title Year | Length | Film Type
Fra Mighty Ducks 1991 104 Color
Wayne’s World 1992 | 95 Color
Star Wars 1977 | 124 Color

Design Issues

* How many possible alternate ways
movies using tables?

* Why this particular set of tables to
movies?

below to represent movies?

Copyright 2007 © Limsoon Wong

to represent

represent

* Indeed, why not use this alternative single table

Wrong Movies
Title Year | Length | Film Type | Studio Star
Star Wars 1997 | 124 Color Fox Carrie Fisher
Star Wars 1997 (124 Color Fox Mark Hamill
Star Wars 1997 | 124 Color Fox Harrison Ford
Mighty Ducks | 1991 104 Color Disney | Emilio Estevez

Copyright 2007 © Limsoon Wong

14

Anomalies
« What’s wrong with the “Wrong Movies” table?
Wrong Movies
Title Year | Length | Film Type | Studio | Star
Star Wars 1997 124 Color Fox Carrie Fisher
Star Wars 1997 124 Color Fox Mark Hamill
Star Wars 1997 124 Color Fox Harrison Ford
Mighty Ducks 1991 104 Color Disney Emilio Estevez

* Redundancy: Unnecessary repetition of info

+ Update anomalies: If Star Wars is 125 min, we
might carelessly update row 1 but not rows 2 & 3

+ Deletion anomalies: If Emilio Estevez is deleted
from stars of Mighty Ducks, we lose all info on
that movie

Copyright 2007 © Limsoon Wong

Functional Dependency

+ Functional dependency (A, ..., A, 2 B, ..., B,)

— If two tuples of a table R agree on attributes A, ...,
A, then they must also agree on attributes B, ..., B,

« Example: Title, Year - Length, Film Type, Studio

 FD(A,, ..., A, 2 By, ..., B,) is trivial if a B; is an A,

Copyright 2007 © Limsoon Wong

15

Wrong Movies

Title Year Length | Film Type | Studio Star

Star Wars 1997 124 Color Fox Carrie Fisher
Star Wars 1997 124 Color Fox Mark Hamill
Star Wars 1997 124 Color Fox Harrison Ford
Mighty Ducks 1991 104 Color Disney Emilio Estevez

« Some FD’s:
— Title, Year - Length
— Title, Year - Film Type
— Title, Year > Studio

Copyright 2007 © Limsoon Wong

Keys

+ Key
— A minimal set of attributes {A,, ..., A} that
functionally determine all other attributes of a table

— A key is trivial if it comprises the entire set of
attributes of a table

* Superkey
— A set of attributes that contains a key

Copyright 2007 © Limsoon Wong

16

[ac] 1 MAS

|
FYF9y,/ National Universi
NP

2

Can you identify the keys here?"

Contracts
Contract No | Star Studio Title Salary
@;‘:}) 1 Carrie Fisher Fox Star Wars | $$$
]
S Mark Hamill Fox Star Wars | $$$
omdrdcis
Harrison Ford | Fox Star Wars | $$$
1
oSS Stars
‘v’(Name Address
1] Carrie Fisher | Hollywood
{ ImT:
] — /@_—;@ Mark Hamill Brentwood
Stars J I Sl‘nsd'r'mJ :' Movies ! wo
(1“_ A e \@@ Harrison Ford | Beverly Hills
ame add .
; i) / rar) Movies
<m9 ¢ @ Title Year | Length | Film Type
e Mighty Ducks 1991 104 Color
Wayne’s World 1992 | 95 Color
Star Wars 1977 | 124 Color

Copyright 2007 © Limsoon Wong

Can you identify the superkeys here?

Wrong Movies
Title Year Length | Film Type | Studio Star
Star Wars 1997 124 Color Fox Carrie Fisher
Star Wars 1997 124 Color Fox Mark Hamill
Star Wars 1997 124 Color Fox Harrison Ford
Mighty Ducks 1991 104 Color Disney | Emilio Estevez

* Superkeys :

— Any set of attributes that contains {Title, Year,
Star} as a subset

Copyright 2007 © Limsoon Wong

17

Boyce-Codd Normal Form

» Arelation R is in Boyce-Codd Normal Form iff
whenever there is a nontrivial FD (A, ..., A, 2 B,,
..., B,,) for R, it is the case that {A,, ..., A} isa
superkey for R

 Theorem A1 (Codd, 1972)
A database design has no anomalies due to FD iff
all its relations are in Boyce-Codd Normal Form

Copyright 2007 © Limsoon Wong

How is BCNF violated here?

Title Year Length | Film Type | Studio Star

Star Wars 1997 124 Color Fox Carrie Fisher
Star Wars 1997 124 Color Fox Mark Hamill
Star Wars 1997 124 Color Fox Harrison Ford
Mighty Ducks 1991 104 Color Disney Emilio Estevez

* A nontrivial FD:
— Title, Year - Length, Film Type, Studio
— The LHS not superset of the key {Title,Year, Star}
= Violate BCNF!

« Anomalies are due to FD’s whose LHS is not
superkey

Copyright 2007 © Limsoon Wong

18

Towards a Better Design

+ Use an offending FD (A, ..., A, 2 B4, ..., B,) to
decompose R(A,, ..., A,, B, ..., B,,; C,, ..., C,) into
2 tables

No
I\i:()url:i?;c redundant
— infi
R,A,, ...,A, B,B)
~ RyA,, ..., A, Cy, ..., Cp)
Title Year Length Fi‘\/\ Type | Studio
Star Wars 1997 124 Covlor Fox
Mighty Ducks N 1991 104 Color Disney

') No
Wrong Movies deletion

anomal;
Title Year | Length | Film Type | Studio | Star - . anomaly) Tvear [star

Star Wars 1997 124 Color Fox Carrie Fisher LA Ll (LGOS
Star Wars 1907 | 124 Color Fox Mark Hamill SO el
Star Wars 1997 124 Color Fox Harrison Ford ST e e rord
Mighty Ducks | 1981 | 104 Color Disney | Emillo Estevez MightyiDucksusl M99/l EmiliolEsteves

Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

* The invariant:

FD’s (A, ..., A, 2 B,, ..., B,;)) are “invariants” of
the database, as {A,, ..., A,} determines {B,, ...,
B}

 The lesson learned:

Deliver a better database design by
fixing violated invariants

Copyright 2007 © Limsoon Wong

19

What have we learned?

What have we learned?

* Invariant is a fundamental property of many
problems

« Paradigms of problem solving
— Problem solving by logical reasoning on invariants
— Problem solving by rectifying violation of invariants
— Solution optimization by preserving invariants

Copyright 2007 © Limsoon Wong

20

| didn’t get to telling you yet, but ...

» Every time you write a loop in a program, it
involves an invariant

« Every time you do a recursive function call, it
involves an invariant

» Every time you do an induction proof, it involves
an invariant

* ... Computing is about discovering,
understanding, exploiting, and having fun with
invariants!

Copyright 2007 © Limsoon Wong

