Happy families are all alike; Every unhappy family is unhappy in its own way

Wong Limsoon This talk is based on joint work with Wilson Goh

The Anna Karenina Principle

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy

www.thequotes.in

Translation

• There are many ways to violate the null hypothesis but only one way that is truly pertinent to the outcome of interest

GETTING THE NULL HYPOTHESIS RIGHT

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

		Group					
SNP	Genotypes	Cont	rols [n(%)]	Cases	s [n(%)]	χ²	P value
s123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97.5%		
	GG	<mark>6</mark> 9	63.9%	2	2.5%		

A seemingly obvious conclusion

- SNP rs123 is a great biomarker for a disease, based on a prospective study
 - If rs123 is AA or GG, unlikely to get the disease
 - If rs123 is AG, ~3x higher risk of disease
- A straightforward χ^2 test. Anything wrong?

Careless null hypothesis

5

"Effective" H0

 rs123 alleles are identically distributed <u>in the two samples</u>

Assumption

 Distributions of rs123 alleles in the two samples are identical to the two populations

Apparent H0

 rs123 alleles are identically distributed in the two populations

Apparent H1

 rs123 alleles are differently distributed in the two populations

There may be sample bias

	Group							
SNP	Genotypes	Cont	rols [n(%)]	Case	s [n(%)]	χ²	P value	
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b	
	AG	38	35.2%	79	97.5%			
	GG	69	63.9%	2	2.5%			

- AG = 38 + 79 = 117, controls + cases = 189 ⇒ population is ~62% AG ⇒ population is >9% AA, unless AA is lethal
- "Big data check" shows AA is non-lethal for this SNP ⇒ sample is biased

6

Time for Exercise #1

- Suppose distributions of rs123 alleles in the two samples are identical to the corresponding populations and the test is significant
- Can we say rs123 mutation causes the disease?

 Hint: Human genetic recombinations take place in large chunks

Overall

	Α	В
lived	60	65
died	100	165

Treatment A is better

What is happening here?

N	Л	ρ	n	
	1	e	н	

	Α	В
lived	40	15
died	20	5

	A	В
lived	20	50
died	80	160

Treatment B is better

Careless null hypothesis

9

"Effective" H0

- Treatment effects are identically distributed in the two samples
- Assumption
 - All other factors are equalized in the two samples

Apparent H0

 Treatment effects are identically distributed in the two populations

Apparent H1

 Treatment effects are differently distributed in the two populations

A/B sample not equalized in other attributes, e.g. sex

Overall

	Α	В
lived	60	65
died	100	165

Women

	А	В
lived	40	15
died	20	5

Men	
-----	--

	A	В
lived	20	50
died	80	160

- Taking A
 - Men = 100 (63%)
 - Women = 60 (37%)
 - Taking B
 - Men = 210 (91%)
 - Women = 20 (9%)

Time for Exercise #2

• Suppose you have tested that a hypothesis is significant in your dataset. What can you do next to increase the depth of your analysis?

In statistical hypothesis testing, the **null distribution** is the probability **distribution** of the test statistic when the **null** hypothesis is true. For example, in an F-test, the **null distribution** is an F-**distribution**.

GETTING THE NULL DISTRIBUTION RIGHT

Synthetic lethality

genes *B* in conjunction with deleted/downregulated genes *A*: **a** parallel pathways model where targeting *B* results in disruption of both survival pathways, and **b** negative feedback-loop model where targeting *B* shunts of (forward) signals for cell survival

Why interested in synthetic lethality?

Synthetic-lethal partners of frequently mutated genes in cancer are likely good treatment targets Srihari et al. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer. *Biology Direct*, 10:57, 2015.

Synthetic lethal pairs

14

• Fact

 When a pair of genes is synthetic lethal, mutations of these two genes avoid each other

• Observation

- Mutations in genes (A,B) are seldom observed in the same subjects
- Conclusion by abduction
 - Genes (A,B) are synthetic lethal

A seemingly obvious approach based on the hypergeometric test

$$P[X \le |S_{AB}|] = 1 - P[X > |S_{AB}|], \tag{1}$$

where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:

$$P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_B|} \frac{\binom{|S_A|}{k} \binom{|S|-|S_A|}{|S_B|-k}}{\binom{|S|}{|S_B|}}$$

Mutations of genes (A,B) avoid each other if P[X ≤ S_{AB}] ≤ 0.05

• Anything wrong with this?

15

Differential essentiality of genes *B* between DDR-deficient and MCF7 cell lines

cens

Ranges for GARP scores of predicted genes (ME) and entire set of profiled genes in BRCA1-deficient cell lines

Cell lines with BRC41 mutation, loss or downregulation

Among top ME-genes, GARP score ranks correlate with mutual exclusion ranks But GARP scores of MEgenes (i.e. have mutually exclusive mutations to BRCA1) are similar to other genes

cautionary note

	Distribution		Mean		Standard deviation				
Scenario	А	В	А	В	А	В	Sample size		
(1)	Normal	Normal	0	0	1	1	10	30	100
(2)	Normal	Normal	0	0.5	1	1	10	30	100

Sample size

Wang, Sue, & Goh. Drug Discovery Today, 22(6):912-918, 2017

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

The hypergeometric distribution NUS does not reflect real-world mutations

$$P[X \le |S_{AB}|] = 1 - P[X > |S_{AB}|], \tag{1}$$

where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:

$$P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_{B}|} \frac{\binom{|S_{A}|}{k} \binom{|S|-|S_{A}|}{|S_{B}|-k}}{\binom{|S|}{|S_{B}|}}$$

- The Hypergeometric distribution assumes
 - Mutations are independent
 - Mutations have equal chance to appear in a subject

Real-life mutations

- Inherited in blocks;
 those close to each
 other are correlated
- Some subjects have more mutations than others, e.g. those with defective DNArepair genes

⇒ Null distribution is not hypergeometric, binomial, etc. 19

Real-life example: Mutations of TP53 and its neighbours

(a) Genomic location of genes close to TP53

TNFSF12	:	2.4%	
SENP3	÷	2.4%	
TNF5F13	1	2.4%	
EIF4A1	:	24%	
SNORD10	1	2.4%	
CD68	÷	2.4%	
FXR2	1	2.6%	
MPDU1	÷	2.5%	
5DX15	÷	2.5%	
SHBG	÷	2.6%	
SAT2	1	2.6%	
ATP1B2	÷	2.8%	
TP53	÷	2,8%	
WRAP53	1	2.4%	
EFNB3	:	24%	

Deep Deletion No alterations - Not profiled

Genetic Atteration

(b) CNA profile of genes close to TP53

Time for Exercise #3

21

- FXR2 is located near TP53
- FXR1 and FXR2 are paralogs that buffer each other's function
- Do FXR1 and TP53 deletions avoid each other?

TCGA prostate						
Altered in 159 (32%) of 498 sequenced cases/patients (498 total)						
TP53	• •	13%				
FXR2	•	23%				
FXR1	•	12%				
Genetic Alteration		I	Amplification Deep Deletion Inframe Mutation (unknown significance) Missense Mutation (unknown significance) mRNA Downregulation Mo alterations Truncating Mutation (unknown significance)			

- Is FXR1 synthetic lethal to TP53?
- Does inhibiting FXR1 lead to cell death for TP53deleted cell lines?

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

Tumour bearing homozygous TP53/FXR2 codeletion shrinks upon doxycycline-induced FXR1 knock down

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

Gene-selection methods have poor reproducibility

23

- Low % of overlapping genes from diff microarray expt
 - Prostate cancer
 - Lapointe et al, 2004
 - Singh et al, 2002
 - Lung cancer
 - Garber et al, 2001
 - Bhattacharjee et al, 2001
 - DMD
 - Haslett et al, 2002
 - Pescatori et al, 2007

Datasets	DEG	POG
Prostate	Top 10	0.30
Cancer	Тор 50	0.14
	Top100	0.15
Lung	Top 10	0.00
Cancer	Top 50	0.20
	Top100	0.31
	Top 10	0.20
DMD	Top 50	0.42
	Top100	0.54

Zhang et al, *Bioinformatics*, 2009

Contextualizing based on pathways may help

24

- Each disease phenotype has some underlying cause
- There is some unifying biological theme for genes that are truly associated with a disease subtype
- Uncertainty in selected genes can be reduced by considering biological processes of the genes
- The unifying biological theme is basis for inferring the underlying cause of disease subtype

ORA-Paired

25

- Let g_i be genes in a given pathway P
- Let p_i be a patient
- Let q_k be a normal

- Let ∆_{i,j,k} = Expr(g_i,p_j) -Expr(g_i,q_k)
- H0: Pathway P is irrelevant to the diff betw patients and normals, so genes in P behave similarly in patients and normals
- \Rightarrow t-test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Lim et al., JBCB, 13(4):1550018, 2015.

Time for Exercise #4

ORA-Paired

- Let g_i be genes in a given pathway P
- Let p_i be a patient
- Let q_k be a normal
- H0: Pathway P is irrelevant to the diff betw patients and normals, so genes in P behave similarly in patients and normals
- Let $\Delta_{i,j,k} = \text{Expr}(g_i,p_j) \text{Expr}(g_i,q_k)$
- \Rightarrow t-test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Which null distribution is appropriate? Why?

- t-distribution with n*m degrees of freedom
- t-distribution with n+m degrees of freedom
- Generate null distribution by genelabel permutation
- Generate null distribution by classlabel permutation

Copyright 2018 © Wong Limsoon

Testing the null hypothesis

"Pathway P is irrelevant to the difference between patients and normals and so, the genes in P behave similarly in patients and normals"

- By the null hypothesis, a dataset and any of its class-label permutations are exchangeable
- ⇒ Get null distribution by class-label permutations
 - What happens when sample size is small?

Lim et al., *JBCB*, 13(4):1550018, 2015.

27

A related cautionary note

NN	NN Acc. (%)	Acc. t_1 -sparse (%)	Acc. t_2 -sparse (%)	NPAQ r for t_1 -sparse (%)	NPAQ r for t_2 -sparse (%)
ARCH1	74.00	78.00	81.00	20.31	62.50
ARCH ₂	62.00	73.00	78.00	12.50	65.62
ARCH ₃	76.00	82.00	83.00	45.31	52.34
ARCH ₄	50.00	64.00	72.00	17.19	93.75
ARCH5	78.00	82.00	83.00	74.22	24.22
ARCH ₆	80.00	11.00	87.00	37.50	55.47
ARCH ₇	87.00	89.00	89.00	6.25	79.69

Table 2: First and second column refer to the baseline model where we use BNNs with 7 different architectures. The third and fourth represent the accuracies of sparsified models with $t_1 = 0.03, t_2 = 0.05$ sparsification thresholds. The last 2 columns show NPAQ estimates for the difference between each sparsified model and the orignal model.

Credit: Teodora Baluta

© Scott Adams, Inc./Dist. by UFS, Inc.

GETTING THE TEST STATISTIC RIGHT

Venet et al., PLOS Comput Biol, 2011

30

A seemingly obvious conclusion

- A multi-gene signature (social defeat in mice) is claimed as a good biomarker for breast cancer survival
 - Cox's survival model p-value << 0.05
- A straightforward Cox's analysis. Anything wrong?

Guest lecture for CS2309

Venet et al., PLOS Comput Biol, 2011

p-value (log₁₀)

Guest lecture for CS2309

Almost all random signatures also have p-value < 0.05

- What happened?
- Maybe the significant random signatures share some genes with observed signature?

Almost all random signatures sharing no genes with observed signatures also have p-value < 0.05

• What happened?

Goh & Wong, Drug Discovery Today, 2018

Copyright 2018 © Wong Limsoon

Guest lecture for CS2309

What is the right null hypothesis? National Universit of Singapore

🚆 NU

A seemingly obvious conclusion

 A multi-gene signature (social defeat in mice) is claimed as a good biomarker for breast cancer survival

- Cox's survival model p-value << 0.05

 A straightforward Cox's analysis. Anything wrong? at CSBio2018, Bangkok Copyright 2018 © Wong

- H0 = the black/red survival curves induced by the observed signature are not different
- H0 = survival curvesinduced by the observed signature are not different from those induced by random signatures?

Copyright 2018 © Wong Limsoc

🔛 NUS

33

What is the right null distribution? National University of Singapore

P NU

A seemingly obvious conclusion

- A multi-gene signature (social defeat in mice) is claimed as a good biomarker for breast cancer survival
 - Cox's survival model p-value << 0.05
- A straightforward Cox's analysis. Anything wrong? at CSBio2018, Bangkok Copyright 2018 © Wong

Reg NUS Almost all random signatures also have p-value < 0.05

- What happened?
- Maybe the significant random signatures share some genes with observed

- Generate null samples by permutating sample labels (viz. survival time)
- **Null samples are** random signatures?

Copyright 2018 © Wong Limsoc

What is the right test statistic?

A seemingly obvious conclusion

- A multi-gene signature (social defeat in mice) is claimed as a good biomarker for breast cancer survival
 - Cox's survival model p-value << 0.05
- A straightforward Cox's analysis. Anything wrong? at CSBio2018, Bangkok Copyright 2018 © Wong

Reg NUS Almost all random signatures also have p-value < 0.05

- What happened?
- Maybe the significant random signatures share some genes with observed signature?

 Cox's hazard ratio (HR)

- Cox's p-value?
- Median \triangle HR betw the observed signature and random signatures?

Copyright 2018 © Wong Limsoo

"Excellent health statistics - smokers are less likely to die of age related illness"

SOMETIMES CHANGING PERSPECTIVE HELPS

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

Almost all random signatures also have p-value < 0.05

 Instead of asking whether a signature is significant, ask what makes a signature (random or otherwise) significant

Venet et al., PLOS Comput Biol, 2011

Proliferation is a hallmark of cancer

38

Hypothesis: Proliferation-associated genes make a signature significant

			# of rar signatu: ≥1 proli	res w/	
Cutoffe	Counts				
Cutoffs	NP	Р	Marginals		
Above 0.05	7043	19 043	26 086		
Below 0.05	2766	19 148	21 914		
Marginals	9809	38 191	48 000		

Impact of proliferation genes on reported signatures

Large signatures

P-value of reported signatures, before removing proliferation genes

P-value of reported signatures, after removing proliferation genes

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

Time for Exercise #5

40

 In the 1st place, how do I know (which) proliferation genes make many random signatures significant?

- Some helpful analytical practices
 - Leverage existing data and knowledge
 - Careful and systematic evaluation of gene sets
 - Rigorous testing against as many published datasets as possible

Leverage background knowledge National University of Singapore

- Proliferation is a cancer hallmark
- Good signatures with high diff in p-values or effect size before vs after removing proliferation genes
 - GLINSKY, DAI, RHODES, ABBA, WHITFIELD
- SPS = { genes appearing in at least two of these good signatures }
 - 83 genes in total
 - 81 of these are proliferation associated

Systematic evaluation

42

SPS genes show
 additive effect, other
 proliferation genes
 don't

Test on many datasets

43

Number of datasets random signature significant in

- SPS is universally
 significant on 7 breast
 cancer datasets
- Random signatures (same size as SPS) are hardly universal, even though they get better p-values than known signatures on some datasets

Time for Exercise #6

- SPS is universally significant on 7 breast cancer datasets
- Random signatures
 (same size as SPS)
 are hardly universal,
 even though they get
 better p-values than
 known signatures on
 some datasets
- Why consider 7 datasets?

of Singapore

SUMMARY

Guest lecture for CS2309

Copyright 2018 © Wong Limsoon

Anna Karenina Principle

46

- Careless null / alternative hypothesis due to forgotten assumptions
 - Distributions of the feature of interest in the two samples are identical to the two populations
 - Features not of interest are equalized / controlled for in the two samples
 - No other explanation for significance of the test
 - Null distribution models the real world
- These make it easy to reject the carelessly stated null hypothesis and accept an incorrect alternative hypothesis

Avoiding wrong conclusion, Getting deeper insight

47

- Check for sampling bias
 - Are the distributions of the feature of interest in the two samples same as that in the two populations?
- Check for exceptions
 - Are there large subpopulations for which the test outcome is opposite?
 - Are there large subpopulations for which the test outcome becomes much more significant?
- Check for validity of the null distribution etc.
 - Can you derive it from the null hypothesis?
- Check on many datasets
 Guest lecture for CS2309