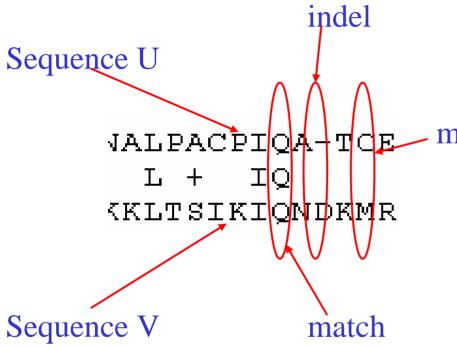
A Guest Lecture for CS6280: Guilt by Association

Limsoon Wong
1 March 2006

National University of Singapore

Plan


- Recap of sequence alignment
- Guilt by association
- What if no homology of known function is found?
 - Guilt by different types of association!
 - Genome phylogenetic profiling
 - Protfun
 - SVM-Pairwise
 - Protein-protein interactions

Very Brief Recap of Sequence Comparison/Alignment

Sequence Alignment

 Key aspect of seq comparison is seq alignment

mismatch

 A seq alignment maximizes the number of positions that are in agreement in two sequences

Sequence Alignment: Poor Example National University of Singapore

- Poor seq alignment shows few matched positions
- ⇒ The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

Amicyanin MPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYHCTPHPFMRGKVVVE
:..: :::::

Ascorbate Oxidase ILQRGTPWADGTASISQCAINPGETFFYNFTVDNPGTFFYHGHLGMQRSAGLYGSLI
70 80 90 100 110 120

No obvious match between Amicyanin and Ascorbate Oxidase

Sequence Alignment: Good Example National University of Singapore

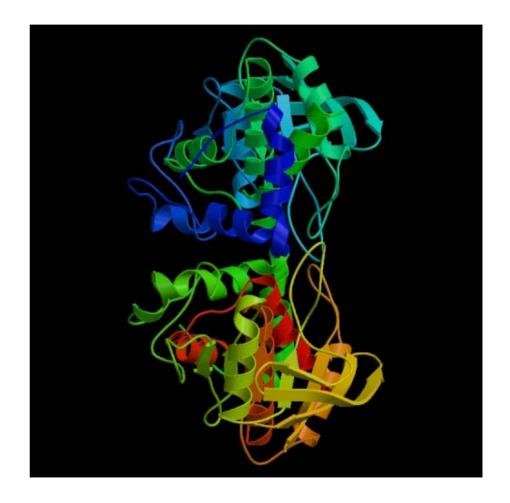
- Good alignment usually has clusters of extensive matched positions
- ⇒ The two proteins are likely to be homologous

```
Sgi|13476732|ref|NP_108301.1| unknown protein [Mesorhizobium loti]
gi|14027493|dbj|BAB53762.1| unknown protein [Mesorhizobium loti]
Length = 105

Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)

Query: 1 MKPGRLASIALAIIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60
MK G L ++ MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT
Sbjct: 1 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60
```

good match between Amicyanin and unknown M. loti protein


Guilt-by-Association

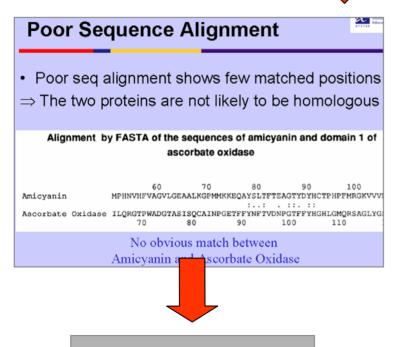
A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT

 How do we attempt to assign a function to a new protein sequence?


Guilt-by-Association

- Compare the target sequence T with sequences $S_1, ..., S_n$ of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt-by-Association

Compare *T* with seqs of known function in a db

Discard this function as a candidate

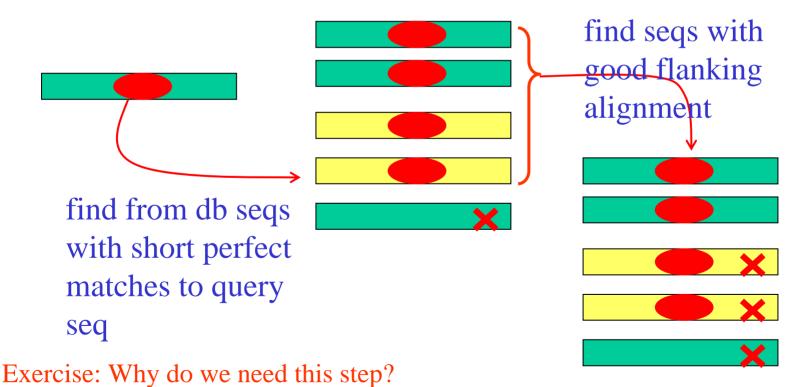
Good Sequence Alignment

 Good alignment usually has clusters of extensive matched positions

⇒ The two proteins are likely to be homologous

| Description |

Assign to *T* same function as homologs


Confirm with suitable wet experiments

BLAST: How It Works

Altschul et al., *JMB*, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

Homologs obtained by BLAST

```
Score
Sequences producing significant alignments:
                                                                   (bits) Value
                                                                    62:
                                                                          e - 177
qi|14193729|qb|AAK56109.1|AF332081 1 protein tyrosin phosph...
                                                                    621
                                                                          e - 177
qi|126467|sp|P18433|PTRA HUMAN Protein-tyrosine phosphatase...
qi|4506303|ref|NP 002827.1| protein tyrosine phosphatase, r...
                                                                    621
                                                                          e - 176
qi|227294|prf||1701300A protein Tyr phosphatase
                                                                    620
                                                                          e - 176
                                                                    621
                                                                          e - 176
qi|18450369|ref|NP 543030.1| protein tyrosine phosphatase, ...
                                                                    61:4
                                                                          e - 176
qi|32067|emb|CAA37447.1| tyrosine phosphatase precursor [Ho...
                                                                    619
qi|285113|pir||JC1285 protein-tyrosine-phosphatase (EC 3.1....
                                                                          e - 176
                                                                   61:
                                                                          e - 176
qi|6981446|ref|NP 036895.1| protein tyrosine phosphatase, r...
                                                                    61
gi|2098414|pdb|1YF0|A Chain A, Receptor Protein Tyrosine Ph...
                                                                          e - 174
                                                                    61
                                                                          e - 174
qi|32313|emb|CAA38662.1|
                          protein-tyrosine phosphatase [Homo...
qi|450583|qb|AAB04150.1|
                          protein tyrosine phosphatase >qi|4...
                                                                    605
                                                                          e - 172
                                                                    60-
                                                                          e-172
qi|6679557|ref|NP 033006.1|
                             protein tyrosine phosphatase, r...
qi|483922|qb|AAA17990.1| protein tyrosine phosphatase alpha
                                                                    599
                                                                          e - 170
```

• Thus our example sequence could be a protein tyrosine phosphatase α (PTP α)

Example Alignment with $PTP\alpha$

Score = 632 bits (1629), Expect = e-180Identities = 294/302 (97%), Positives = 294/302 (97%)

Query:	1	${\tt SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX$	60
		SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAAS R	
ენები და განანი გ	202	SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR	261
Query:	61	YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE	120
		YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE	
Sbjct:	262	YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE	321
00	121	QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD	100
Gaerà.	121	QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD	100
Sbjct:	322	QNTAT I VMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFC I QQVGD	381
_			
Query:	181	${\tt VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG}$	240
		VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG	
Sbjct:	382	VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG	441
00	2/1	TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE	300
Greil.	241	TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE	200
Shict	442	TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE	501
~ , ~ ~ .			

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

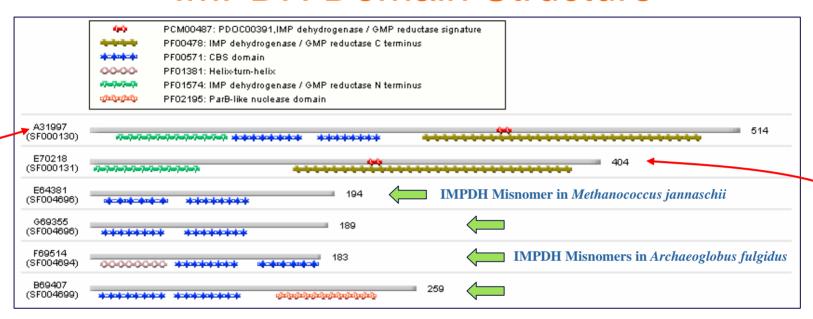
Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a P-value to each hit
- P-value is interpreted as prob that a random seq has an equally good alignment

- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq comparison prog does not do that!

Exercise: Name a commonly used method for correcting p-value for a situation like this

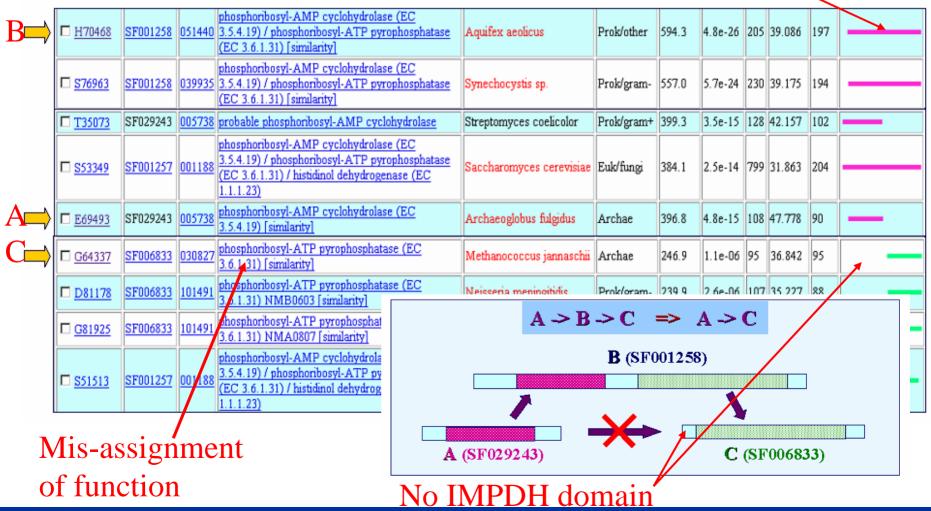
Examples of Invalid Function Assignment:


The IMP Dehydrogenases (IMPDH

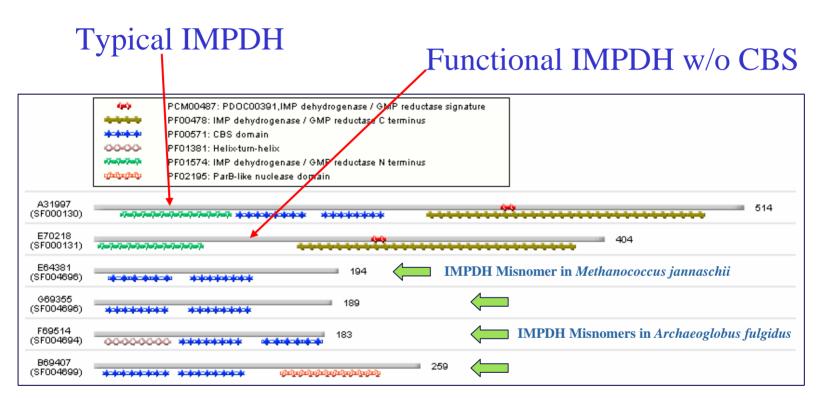
40			
-1×	entries	THETE	tound
10	CHIMICS	AA CT C	round

ID	Organism	PIR	Swiss-Prot/TrEMBL	RefSeq/GenPept	
NF00181857	Methanococcus jannaschii	E64381 conserved hypothetical protein MJ0653	Y653_METJA Hypothetical protein MJ0653	g1592300 inosine-5'-monophosphate dehydrogenase (guaB) NP_247637 inosine-5'-monophosphate dehydrogenase (guaB)	
NF00187788	Archaeoglobus fulgidus	chaeoglobus fulgidus Chaeoglobus fulgidus			
NF00188267	Archaeoglobus fulgidus	F69514 yhcV homolog 2 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	g <u>2648410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)	
NF00188697			nydrogenase misn	ive.	
NF00197776	Thermo in CO	-	s remaining in so atabases	nophosphate d protein nonophosphate d protein	
NF00414709	Methanothermobacter thermautotrophicus	ALT_NAMES: inosine-monophosphate dehydrogenase related protein V [misnomer]	O27294 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN V	onophosphate dehydrogenase related protein V <u>NP_276354</u> inosine-5'-monophosphate dehydrogenase related protein V	
NF00414811	Methanothermobacter thermautotrophicus	D69035 MJ1232 protein homolog MTH126 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein VII [misnomer]	O26229 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN VII	g2621166 inosine-5'-monophosphate dehydrogenase related protein VII NP_275269 inosine-5'-monophosphate dehydrogenase related protein VII	
NF00414837	Methanothermobacter thermautotrophicus	H69232 MJ1225-related protein MTH992 ALT_NAMES: inosine-5'-monophosphate dehydrogenase related protein IX [misnomer]	O27073 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	g2622093 inosine-5'-monophosphate dehydrogenase related protein IX NP_276127 inosine-5'-monophosphate dehydrogenase related protein IX	
NF00414969	Methanothermobacter thermautotrophicus	B69077 yhcV homolog 2 ALT_NAMES: inosine-monophosphate dehydrogenase related protein X [misnomer]	O27616 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN X	g2622697 inosine-5'-monophosphate dehydrogenase related protein X NP_276687 inosine-5'-monophosphate dehydrogenase related protein X	

IMPDH Domain Structure



- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains


Invalid Transitive Assignment

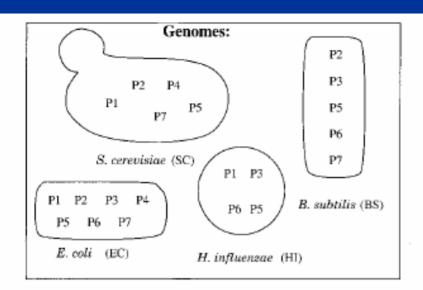
Root of invalid transitive assignment.

Emerging Pattern

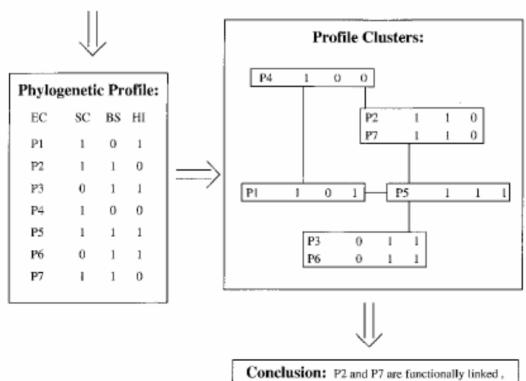
- Most IMPDHs have 2 IMPDH and 2 CBS domains
- Some IMPDH (E70218) lacks CBS domains
- ⇒ IMPDH domain is the emerging pattern

Guilt-by-Association: What if no homolog of known function is found?

genome phylogenetic profiles protfun's feature profiles SVM Pairwise Level-2 Neighbours



Phylogenetic Profiling



Pellegrini et al., PNAS, 96:4285--4288, 1999

- Gene (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

P3 and P6 are functionally linked

Phylogenetic Profiling: How it Works

Phylogenetic Profiling: P-value

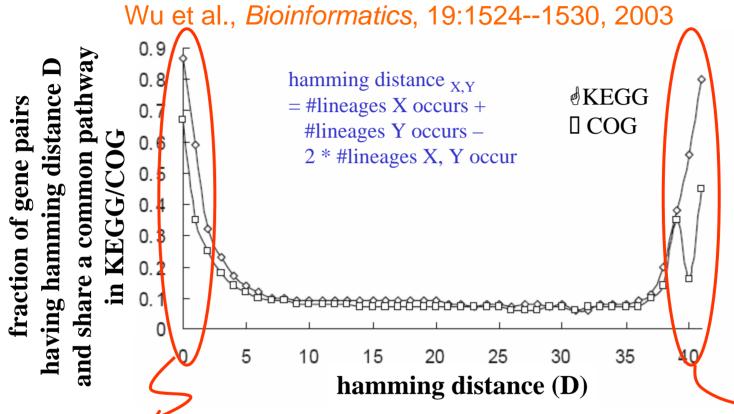
The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

No. of ways to distribute
$$z$$
 co-occurrences over N lineage's
$$\overline{w_z} = \binom{N-z}{x-z} * \binom{N-z}{y-z}$$
No. of ways to distribute
$$W = \binom{N}{x} * \binom{N}{y} * \binom{N}{y}$$
No. of ways of distributing X and Y over X lineage's occurrences over the remaining X without restriction X without restriction X and X over X lineage's without restriction X and X and X over X lineage's without restriction X and X

Phylogenetic Profiles: Evidence



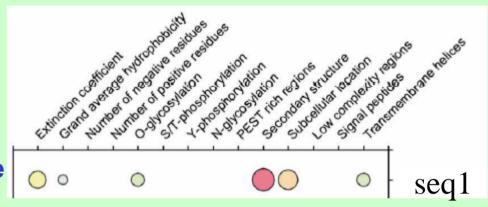
Pellegrini et al., PNAS, 96:4285--4288, 1999

Keyword	No. of non- homologous proteins in group	No. neighbors in keyword group	No. neighbors in random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical†	1,084	108,226	8,440

• E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles

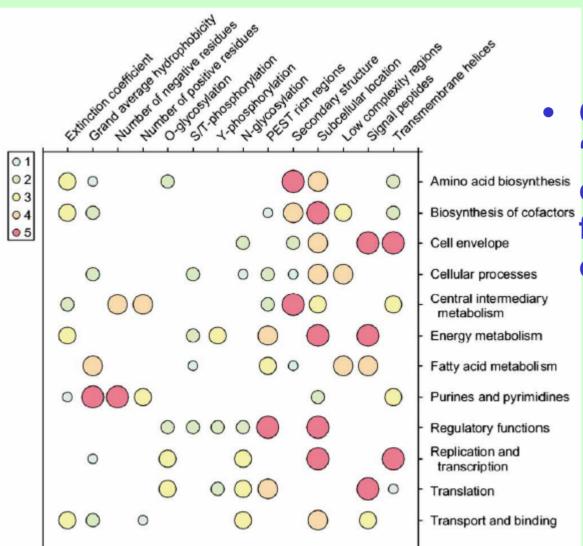
Phylogenetic Profiling: Evidence

 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways
 Exercise: Why do proteins having high


hamming distance also have this behaviour?

The ProtFun Approach

Jensen, JMB, 319:1257--1265, 2002


- A protein is not alone when performing its biological function
- It operates using the same cellular machinery for modification and sorting as all other proteins do, such as glycosylation, phospharylation, signal peptide cleavage, ...
- These have associated consensus motifs, patterns, etc.

- Proteins performing similar functions should share some such "features"
- ⇒ Perhaps we can predict protein function by comparing its "feature" profile with other proteins?

ProtFun: Evidence

Combinations of "features" seem to characterize some functional categories

ProtFun: Example Output

	Prion	A4	TTHY
Amino acid biosynthesis	0.011	0.011	0.011
Biosynthesis of cofactors	0.041	0.161	0.034
Cell envelope	0.146	0.804	0.698
Cellular processes	0.027	0.027	0.051
Central intermediary metabolism	0.047	0.139	0.059
Energy metabolism	0.029	0.023	0.046
Fatty acid metabolism	0.017	0.017	0.023
Purines and pyrimidines	0.528	0.417	0.153
Regulatory functions	0.013	0.014	0.014
Replication and transcription	0.020	0.029	0.040
Translation	0.035	0.027	0.032
Transport and binding	0.831	0.827	0.812
Enzyme	0.233	0.367	0.227
Non-enzyme	0.767	0.633	0.773
Oxidoreductase (EC 1)	0.070	0.024	0.055
Transferase (EC 2)	0.031	0.208	0.037
Hydrolase (EC 3.–.–.)	0.101	0.090	0.208
Isomerase (EC 4)	0.020	0.020	0.020
Ligase (EC 5)	0.010	0.010	0.010
Lyase (EC 6)	0.017	0.078	0.017

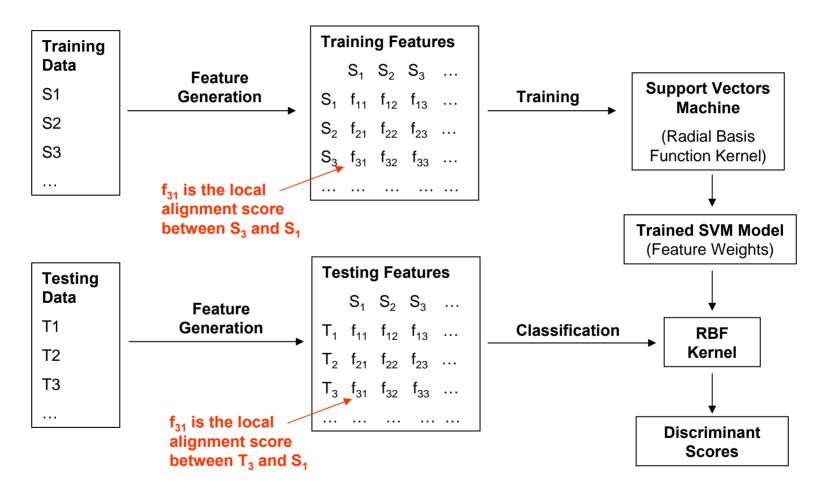
At the seq level, Prion, A4, & TTHY are dissimilar

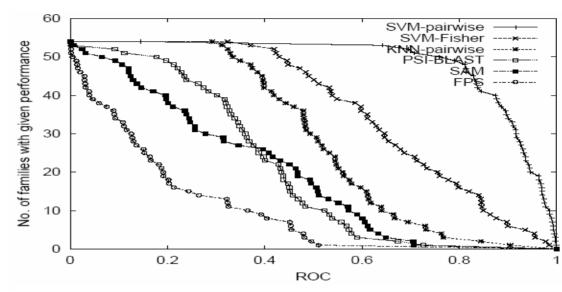
ProtFun predicts
them to be cell
envelope-related,
tranport & binding

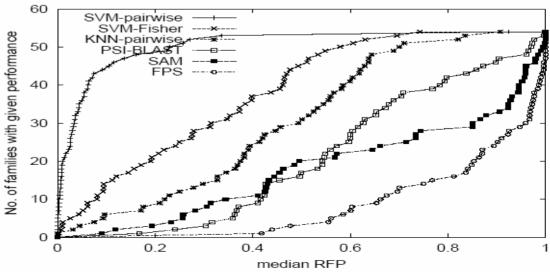
This is in agreement w/ known functionality of these proteins

National University of Singapore

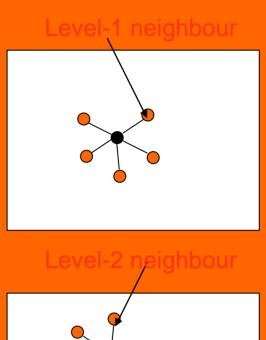
SVM-Pairwise Framework

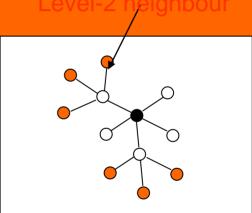


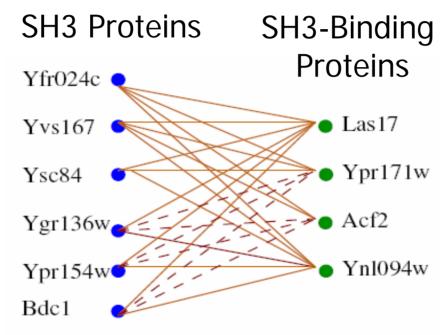

Image credit: Kenny Chua

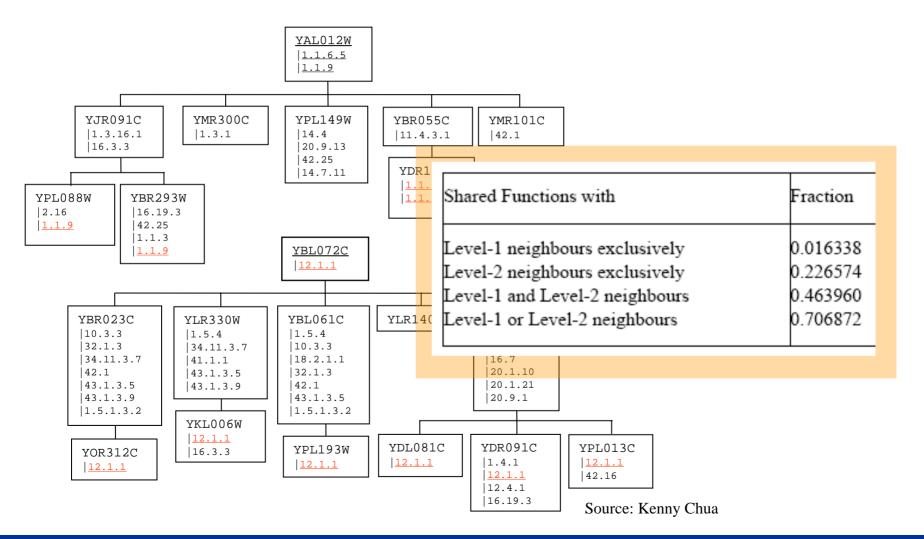


Performance of SVM-Pairwise


Receiver Operating Characteristic (ROC)


- The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.

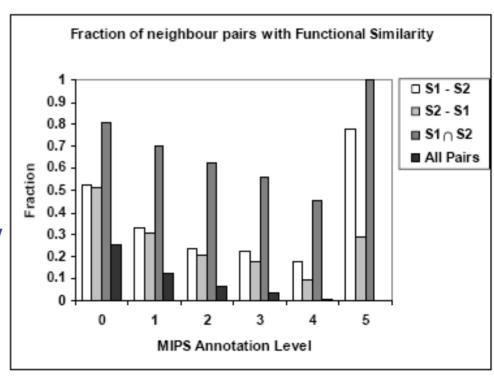

Protein Function Prediction from Protein Interactions



An illustrative Case of Indirect Functional Association?

- Is indirect tunctional association plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

Freq of Indirect Functional Association of Singap


Over-Rep of Functions in Neighbour

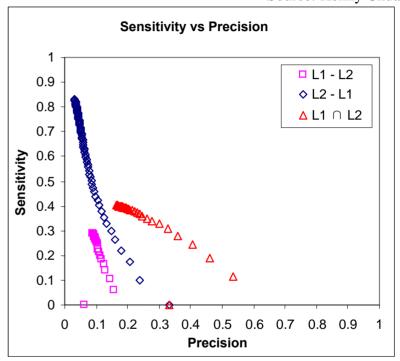
National University of Singapore

Functional Similarity:

$$S(i,j) = \frac{\left| F_i \cap F_j \right|}{\left| F_i \cup F_j \right|}$$

- where F_k is the set of functions of protein k
- L1 ∩ L2 neighbours show greatest over-rep
- L3 neighbours show little observable over-rep

Source: Kenny Chua


Prediction Power By Majority Votir

Source: Kenny Chua

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Use L1 & L2 Neighbours for Prediction National University of Singapore

Weighted Average

- Over-rep of functions in L1 and L2 neighbours
- Each observation of L1 or L2 neighbour is summed

$$f_{x}(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_{x} + \sum_{v \in N_{u}} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_{v}} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- S_{TR}(u,v) is an "index" for function xfer betw u and v,
- $\delta(k, x) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- λ is contribution of background freq to the score
- r_{int} is fraction of all interaction pairs that share some functions

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

Functional Similarity Estimate: Czekanowski-Dice Distance

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{\left| N_u \Delta N_v \right|}{\left| N_u \cup N_v \right| + \left| N_u \cap N_v \right|}$$

- N_k is the set of interacting partners of k
- X \(\Delta \) Y is symmetric diff betw two sets X and Y
- Greater weight given to similarity

⇒ Similarity can be defined as

$$S(u,v) = \frac{2X}{2X + (Y+Z)}$$

Is this a good measure if u and v have very diff number of neighbours?

Functional Similarity Estimate: Modified Equiv Measure

Modified Equivalence measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

⇒ Rewriting this as

Exercise: What else should we consider in this formula?

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Reliability of Expt Sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

An "Index" for Function Transfer Based on Reliability of Interactions

 Take reliability into consideration when computing Equiv Measure:

$$S_{R}^{\prime}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{u}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w} \left(1 - r_{v,w}\right)\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}{\left(\sum_{w \in N_{v}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{v,w} \left(1 - r_{u,w}\right)\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w} r_{v,w}}$$

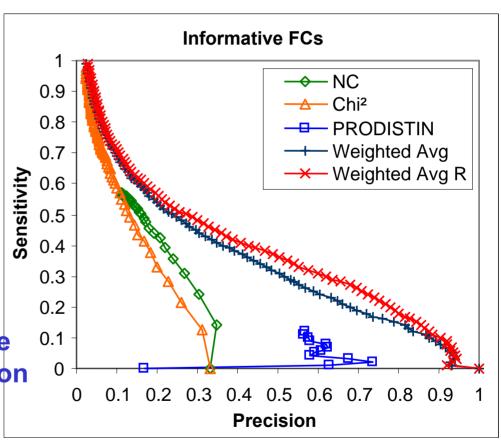
- N_k is the set of interacting partners of k
- r_{u.w} is reliability weight of interaction betw u and v

Functional Similarity Estimate: Transitive Functional Association

- If protein u is similar to protein w, and protein w is similar to protein v, proteins u and v may show some degree of similarity
- So we estimate functional similarity betw u and v by product of functional similarity betw u and w, and that between w and v:

$$S_{TR}(u, v) = \max \left(S_R(u, v), \max_{w \in N_u} S_R(u, w) S_R(w, v) \right)$$

Correlation with Functional Similarity National University of Singapore


 Equiv measure shows improved correlation w/ functional similarity when reliability of interactions & transitive association is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R	Transitive FS- Weight R
S_1	0.471810	0.498745	0.532596	0.532626
S_2	0.224705	0.298843	0.375317	0.381966
$S_1 \cup S_2$	0.224581	0.29629	0.363025	0.369378

Performance Evaluation

- Prediction performance improves after incorporation of interaction reliability
- ⇒ Indirect functional association is plausible
- ⇒ It is found often in real interaction data
- ⇒ It can be used to improve protein function prediction from protein interaction data

Any Questions?

Acknowledgements

 Some of the slides are based on slides given to me by Kenny Chua

References

- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A. Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001
- S.F.Altshcul et al. "Basic local alignment search tool", *JMB*, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", NAR, 25(17):3389--3402, 1997
- H.N. Chua, W.-K. Sung. <u>A better gap penalty for pairwise SVM</u>. Proc. APBC05, pages 11-20
- T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote homologies. *JCB*, 7(1-2):95— 11, 2000

References

- S.E.Brenner. "Errors in genome annotation", TIG, 15:132--133, 1999
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- C. Wu, W. Barker. "A Family Classification Approach to Functional Annotation of Proteins", *The Practical* Bioinformatician, Chapter 19, pages 401—416, WSPC, 2004