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Proteomics Is a system-wide NUS
characterization of all proteins

of Singapore

Technology-dependent Technology-independent

a) peptide and protein
identification from PSMs

c) peptide significance analysis e) class discovery g) data integration
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b) feature detection, quantification,

annotation, and alignment d) protein significance analysis f) class prediction h) pathway analysis

Kall and Vitek, PLoS Comput Biol , 7(12): e1002277, 2011
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Proteomics vs transcriptomics %/ zzmz

* Proteomic profile « Key differences
— Which protein is — Profiling
found in the sample - Complexity: 20k genes
— How abundant it is vs 500k proteins

 Dynamic range: > 10
orders of magnitude in

e Similar to gene plasma. Proteins
expression profile. So cannot be amplified
typical gene — Analysis
expression profile « Much fewer features
analysis methods can - Difficult to reproduce
be applied in theory... « Much fewer samples

« Unstable quantitation

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Issues In proteomics: NUS
Coverage and consistency

of Singapore

Technical incompleteness How it affects real data
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Per sample | |
Only 25 out of 800+ proteins are common
to all 5 mod-stage HCC patients!
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Using protein complexes to enhance
proteomics: Basic ideas
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An inspiration from gene expression

profile analysis

11

AINUS

of Singapore

Gene Regulatory Circuits
O—0O

BAD  Apoplosis

Anti-Apoptotic Pathway

Growth
factors

factor
receptors

* Uncertainty in selected
genes can be reduced by
considering biological
processes of the genes

Each disease phenotype
has some underlying
cause

There is some unifying
biological theme for genes
that are truly associated
with a disease subtype

The unifying biological
theme is basis for inferring
the underlying cause of
disease subtype

Cor t2011 © Limsoon

Contextualization!

Taming false positives by
considering pathways instead of
all possible groups

National University
of Singapore

EEANUS

National University
of Singapore

of Singapore

Group of Genes

# of pathways =
1000

* Suppose * Prob(group of genes

correlated) = (1/26)5
— Good, << 1/26

* Hef-gretpe-=-llliG,

— Each gene has 50%
chance to be high

— You have 3 disease
and 3 normal

samples

E(# of pathwavs
correlated) =
1000 * (1/28y =
9.3*107

* What is the chance of (
a group of 5 genes
heing perfectly
correlated to these
samples?

= Even more false
positives?

+ Perhaps no need to
consider every group

Microarray Workshop for Gene Expression Profiling, NUH, 23/9/2011 Copyright 2011 © Limsoon Wong
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i e NUS
Intuition 955 e
Patient1  Patient2  Patient 3 ° SUppOSG the failure to

form a protein complex
causes a disease

— If any component
protein is missing, the
complex can’t form

= Diff patients suffering
from the disease can
have a diff protein
eesCOMpPONENt missing
:b Construct a profile
ot based on complexes?

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong
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... and some math

 Postulate: The chance of a protein complex being present is
proportional to the fraction of its constituent proteins being reported
In the screen

« Suppose proteomics screen has 75% reliability; a complex
comprises proteins A, B, C, D, E; and screen reports A, B, C, D only

— Complex has 60% (= 0.75*4/5) chance to be present

— The unreported protein E also has > 60% chance to be present, as
presence of the complex implies presence of all its constituents ...
Improving coverage

= Each of A, B, C, and D individually has 90% (= 100% * 0.6 + 75% *
0.4) chance of being true positive, whereas a reported protein that is
Isolated has a lower 75% chance of being true positive ... removing
noise

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong
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Reference complexes 95 e

* In this talk, human complexes (of size at least 5)
from CORUM are used as reference complexes

* |tis possible to use subnetworks generated from
pathway and PPl databases. However these such
subnetworks vary significantly depending on
databases and generation algorithms used

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Improving coverage Iin
proteomic profiles
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Patient 1 FPatient 2

Fatient 3

ypical proteomic
profiling misses
many proteins

Need to improve
coverage!

Detected
protein

Present but
undetected
protein

Talk given at SBBI 2016, St. Petersburg, Russia
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Guo et al. Nature Medicine, 21, 407, 2015
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Missing values In a real dataset
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1 | protein mbol  kidneyTisuel  ue2 uel ued ues ueb ue? ues ued ueld uell uel2 uell ueld uel5 uel6 uel? uel8 uel9 ue20 ue21 ue2? ue23 ue24 ue25 ue26 ue2?
2 | POS110  ACAAl  288001.7778 46353.28 237958.5 30102.47 297711.2 37093.09 67454.84 92200.62 231528.4 12617.18 263299.1 NA 222387.2 NA 177211  27857.94 84689.834 43497.89 2380540.3 77962.17 235242.5 23827.06 302761.4 41190.07 2064.747 97756.44 122386.3
3 | PO5166 PCCB 246687.75  70504.27 253890.9 NA 314250.1 33680.65 108554.7 321442.7 260389.5 183399.7 258247.1 139288.5 2849345 115138 245595.9 30488.41 221565 280540.3 240054.8 65477.99 250479.3 NA 327799 4197424 125103 321442.7 175808.5
4 | QS6RPI GFM1 3787259722 NA 40359.89 NA 73975.35 NA 64601.65 56815.28 34506.99 35176.2 98642.34 23060.3 91995.3 NA 3773548 33491.8 48208.46 47858.24 39584.44 NA 67976.03 23631.74 46763.48 NA 2064.747 53619.99 67535.47
5 | Q15417 CNN3Z 28364.89722 NA NA NA NA 44156.47 52272.02 27128.03 1057749 32524.27 14171.12 33388.93 27593.38 49821.32 23144.21 249p4.95 32403 NA 24907.94 46053.92 NA NA 25129.86 42948.4 2064.747 26438.35 23207.51
6 | QS6FQ6 S100A16 NA 35176.2 NA 66058.39 NA 30674.6 1804.538 21706.65 NA NA 11359.64 NA 18677.58 41493.97 12617.18 22496.77 NA NA NA 36422.79 NA 75858.83 20589.93 31161.06 2064.747 20398.13 NA
7 | P62320 RAB1A NA NA NA NA NA NA 54417.16 3130.811 NA 68503.39 NA NA NA NA NA NA NA NA 32596.28 NA NA 54839 NA 48748.28 2064.747 NA NA
8 | P27169 PON1 NA 47101.83 58436.31 18128.35 NA 33573.36  112930.6 NA NA NA NA 55432.1 NA 39084.55 36282.92 16953.34 NA NA NA 45107.13 NA 19506.67 NA 38130.55 109838.9 NA NA
9  Q9uUL46 PSME2 33680.65278 999568.93 55047.33 145114.2 33256.26 141575.7 77962.17 75727.38 64365.04 121022.2 40286.83 114480.8 40567.01 1044584 42876.78 836066.14 55954.92 62742.03 33768.27 111940.8 59915.42 151558.9 38443.16 1131455 79024.33 73747.38 40140.37
10| P0O3237 PFKM 39644.09722 NA 54240.61 NA 136064 NA 1804.538 62845.97 141296.3 100616.3 137596.7 NA 140860.9 NA 96590.73 NA 92823.65 51085.24 155550.8 NA 47697.29 NA 136064 NA 2064.747 58618.05 143381.1
11| P04040 CAT 292456.0528 149632.6 239229.2 24964.95 258247.1 220764.4 540115.8 133921.9 284934.5 367784.7 293727.3 179981.9 259314.6 124294.3 204722.1 77070.33 109006.7 136875.9 290924.4 163095.2 237958.5 31389.75 271920.4 227900.3 499422.8 150524.5 294964.3
12 | QBWYAS CTNNBL1 NA NA NA NA NA NA 1804.538 NA NA NA NA NA NA NA NA 27646.1 37621.73 26686.24 NA NA NA NA NA NA 2064.747 NA NA
13 | Q9HOWSY CllorfS4 454591.5833 77225.75 393512.7 55431.72 365975.5 180535.1 188742.5 77348.17 352898.9 119242.7 417999.9 263299.1 474797 229855.9 427428 143697 124568 146454.4 441856.5 74156.41 370040.5 44605.86 363784.6 187566.8 129074.3 104101.6 375463.4
14| P31948 STIP1 76018.00556 83236.9 83516.5 137596.7 75613.89 110367.2 93642.34 155146 77709.53 282315.9 65948.94 122386.3 81635.42 129969.2 67749.81 124568 108554.7 135737.2 69039.96 92656.4 85600.47 147792.9 65262.99 109273.7 91127.04 218383 122047.2
15| 094901 SUN1  57623.33889 NA NA NA 72273.86 NA 1804.538 NA NA NA 58063.49 NA NA NA NA NA NA NA 60013.66 NA NA NA 71252.19 NA 2064.747 NA NA
16| Q99714 HSD17BL0 1753727444 114480.8 181096.8 75400.28 222387.2 91466.47 218888 269679.7 1791774 1652859 202618.2 117389.5 191537 41135.21 196208.5 151044.7 210269.6 254964.3 183893 82644.38 1799819 102286.8 2333729 91325.89 196996.8 293727.3 174540.8
17| Q15833 STXBP2Z 14224.84722 242p4.99 14303.05 19690.86 16316.33 NA 1804.538 NA 14303.05 17309.98 11459.84 14224.85 12617.13 NA 14224.85 9837.458 21131.38 5634.228 13283.71 28846.59 20057.06 12924.71 17380.49 NA 2064.747 11880.63 13166.66
18 | PO8195  SLC3A2 50797.625  42825.82 63302.14 26628.24 85345.18 NA 1804.538 NA 77850.57 NA 100616.3 NA 76579.02 NA 44010.16 17146.31 NA NA 80199.58 41362.6 72273.86 32198.97 75858.83 NA 2064.747 NA 76292.57
19 | P26033 MSN 333342.6833 438752.3 421056.2 381249.5 241992.3 404349.8 1643435 172028.6 446678.9 167923.7 367784.7 310472.5 404349.8 393512.7 292456.1 427428 390317.5 244865.7 273261.7 446678.9 404349.8 306071.8 222387.2 423963.5 191537 182241.6 441856.5
20| PO9104 ENO2 NA 144058.2 NA 184650.5 NA 137596.7 126146.3 21831.56 NA NA NA 119650.8 NA 404349.8 NA 48438.29 57080.76 NA NA 151558.9 NA 181096.8 NA 123793.9 2064.747 NA NA
21| PO7148 FABP1  1219163.714 34579.48 861796.3 NA 940142 NA 1804.538 NA 1130692 NA 1057986 NA 789446.1 NA 221565 NA NA NA 1162786 32336.43 805128.4 NA 970053.3 NA 2064.747 NA 1300718
22 | Q96011 TRNT1 NA NA NA NA NA NA 1804.538 NA NA NA NA NA NA NA NA NA 37098.09 35565.03 NA NA NA NA NA NA 2064.747 NA NA
23 | 015083 ERC2 NA NA NA 85740.42 NA NA 1804.538 NA 83390.33 NA NA NA NA NA NA 142306.8 NA NA NA NA NA 72396.48 NA NA 2064.747 NA 70213.43
24| Q15911  ZFHX3 NA NA 178745.3 393512.7 205865.1 682653.9 1804.538 NA 243050.1 NA 189860.5 NA NA NA NA 457756.2 NA NA NA NA NA NA NA NA 2064.747 NA 252846.2
25| Q9BURS APQO  35479.70278 NA 27260.11 15459.06 40140.37 NA 1804.538 46154.89 30730.15 54737.36 47185.33 13642.38 28517.17 NA 40140.27 NA NA 10649.17 34436.2 NA 36956.08 16653.18 47858.24 NA 2064.747 33003.64 20057.06
26 | QU183 HACL1  417999.9306 NA 435248.4 NA 336790.8 227161.7 1804.538 174111.8 276628.6 NA 274264.6 NA 317227.1 2715920.4 336790.8 NA NA 372485.6 446678.9 NA 390317.5 NA 307205 211073.8 2064.747 169317.6 333342.7
27 Q8WUM4 PDCD6IP 50008.50556 34991.44 70504.27 50108.55 59047.33 41611.18 B84319.78 97140.59 56715.96 134561.7 52110.31 61553.77 67555.47 65262.99 68597.03 59827.38 73200.35 75049.44 64108.37 40359.89 70903.29 49636.31 49821.32 37258.59 76579.02 76685.11 37386.23
28 | P53597 SUCLGL 387432.1583 995433.59 228946.3 94932.09 3104725 150524.5 187002.3 299487.5 275420.7 308775.7 299487.5 1017327 245595.9 108554.7 270810.9 89524.72 192915.6 276628.6 357417.6 96737.9 205171.6 95793.82 288001.8 162300.5 193664.8 299487.5 245595.9
29 | 000186 STXBP3 NA 28468.21 NA NA NA 19019.68 1804.538 NA NA NA NA 21949.83 NA NA NA NA NA NA 15575.29 29005.53 NA NA NA NA 2064.747 NA NA
E Q8N335 GPDIL 52415.71111 NA 59328.51 NA 54240.61 21949.83 109838.9 91466.47 45427.61 109273.7 50443.03 NA 52700.48 22321.01 45502.32 NA 57623.34 41362.6 54737.36 NA 62380.69' NA .I 54839  23827.06 152627.3 71658.52 49636.31
31| P0O8621 SNRNP70  48594.65 51791.05 47269.07 86082.28 44306.32 53026.19 1804.533 NA 59432.1 54839 49636.31 60605.33 52477.21 NA NA 72977.35 74546.25 82242.07 33003.64 60605.33 49636.31 93224.91 NA 56917.54 2064.747 NA 50797.63
32 | Q969Ve MKLL NA 91325.89 55954.92 NA 74269.09 80102.57 1804.538 NA 71906.43 NA NA 152627.3 72497.5 72497.5 89662.88 51690.71 68707.95 41576.85 72021.55 92973.8 NA NA NA 88904.66 2064.747 NA NA
33| PO8311 CTsG NA NA 46154.89 NA NA 67879.78 1804.538 NA 53026.19 NA NA 68927.99 NA NA NA NA 218057.1 78414.15 NA NA 46895.88 NA NA 56514.53 66379.24 NA NA
34| Q9UKUY ACAD8 46053.91944 31797.32 50179.16 NA 64601.65 NA 75160.02 49228.15 44010.16 28070.84 41974.24 NA 41840.21 NA 42678.39 NA 24335.52 32270.84 46053.92 NA 49467.07 NA 61900.08 NA 2064.747 46053.92 44605.86
35 | QB6X76 NITL 75613.88611 NA 61068.98 63988.55 80199.58 69590.71 1804.538 55745.15 70389.43 NA B84009.8 75506.47 78547.77 84980.21 76153.19 NA 57523.94 40935.27 70713.02 NA 59540.84 70713.02 78753.85 73278.36 55745.15 58932 52415.71
36| PO5162 LGALS2 334918 NA 35565.03 NA 52415.71 36825.06 1804.538 23560.07 18592.77 NA 36763.92 72761.18 35479.7 50008.51 24907.94 NA 16653.18 22730.31 34916.06 NA 30730.15 NA 32815.68 71139.86 2064.747 NA 25737.06
37| P23946 CMAL NA NA NA NA NA NA 1804.538 NA NA NA NA NA NA NA NA NA 61155.07 14049.16 NA NA NA NA NA NA 53240.82 NA NA
38 | P0O1334 IGKC 462133.8694 885197.1 692332.5 484624 296507.9 462133.9 1219164 3192284 659554.4 351190.2 312295.6 524995.4 566103.9 692332.5 325019.6 454067.2 236640.3 263299.1 499422.8 1130692 706520.3 469971.2 322906.2 438752.3 913960 3104725 643593
39 | P14863 DARS 12567.36389 110112 54554.37 136875.9 30209.1 121022.2 1804.538 114195.5 43350.86 95493.71 29430.84 182241.6 61667.11 201171.9 81193.99 2478715 161420 944849 76929.26 114678.3 54839 177772 50108.55 141996.6 2064.747 95951.08 53026.19
40 | Q9H773  DCTPPL NA NA NA NA NA NA 1804.538 46303.49 NA 11589.48 NA 27509.79 NA NA NA 26314.17 87070.11 74656.39 NA NA NA NA NA 2064.747 22251.11 NA ™
M 4+ M| sTable3 legend %J [Tal ]
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Figure 1.

Average log;( intensity as measured by peptide peak area in the control group versus
fraction of missing values and peptide counts associated with bins corresponding to the
fraction of missing data comparing phenotypes and exposures for datasets from (A) human
plasma and (B) mouse lung. The control group for the human plasma is the normal glucose
tolerant (NGT) samples. and the sham group for the mouse lung is the regular weight mice
with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average
intensity. and the horizontal red line represents the point that 50% of the values are missing.
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Webb-Robertson, JPR, 14(5):1993-2001, 2015
N US

National University
of Singapore
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Figure 2.

foplot of the average log;y CV(RMSE) for the imputed dilution series datasets (Table 1) at
the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the
upper line of the box represents the 75th percentile, and the inner line corresponds to the
median log;g CV(RMSE).
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Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological
changes in valporic acid-treated mice. JPR, 12(5):2116--2127, 2013 B8 & N US

National University
of Singapore

 Rescue undetected proteins from high-scoring
protein complexes

* Procedure:

— Score a protein complex based on proportion of its
member proteins being reported in the screen

— A complex is declared significant if this proportion
IS much higher than chance

— Unreported proteins in a significant complex are
predicted to be present

 Shortcoming: Many complexes are not known

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Li et al. Network-assisted protein identification and data interpretation

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. B & N US
C EA W National University
of Singapore

 Generate cliques from PPIN

 Rescue undetected proteins from cliques
containing many high-confidence proteins

)

 Reason: Cliques in a PPIN often correspond to
proteins at the core of complexes

« Shortcoming: Cliques are too strict

— Use more powerful protein complex prediction
methods

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 BE ® N US
€ Map high-confidence proteins to PPIN D

« Extract immediate neighbourhood & predict
protein complexes using CFinder

 Rescue undetected proteins from high-ranking
\_ predicted complexes Y

 Reason: Exploit powerful protein complex
prediction methods

 Shortcoming: Hard to predict protein complexes
— Do we need to know all the proteins a complex?

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Goh et al. International Journal of Bioinformatics

Research and Applications, 8(3/4):155--170, 2012 . BE ® N US
MaxLink 95 e
‘. Map high-confidence proteins (“seeds”) to PPIN\

« Identify proteins that interact many seeds but few
non-seeds

e Rescue these proteins
N ; Y

 Reason: Proteins interacting with many seeds are
likely to be part of the same complex as these
seeds

 Shortcoming: Likely to have more false-positives

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological
changes in valporic acid-treated mice. JPR, 12(5):2116--2127, 2013 B2 & N US

Experiment W i
Valporic acid (VPA)-treated mice vs control

— VPA or vehicle injected every 12 hours into
postnatal day-56 adult mice for 2 days

— Role of VPA in epigenetic remodeling

MS was scanned against IPl rat db in round #1
— 291 proteins identified

MS was scanned against UniProtkb in round #2
— 498 additional proteins identified

All recovery methods ran on round #1 data and
the recovered proteins checked against round #2

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong
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FCS (Real Complexes)

Moderate level of
agreement of
reported proteins
between various
recovery methods

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



. BANUS

Performance comparison 98z
Method Movel Suggested Proteins  Recovered proteins Recall Precision
PEP 1037 158 0.317 0.152
Maxlink 822 226 0.454 0.275
FCs 638 224 0.450 0.351

(predicted)

Fes 895 477 0.958 0.533

(complexes)

 Looks like running FCS on real complexes is able
to recover more proteins and more accurately

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



* If there are technical replicates, they should have
reported the same proteins. So we can run FCS
on one replica, and see whether the predicted
missing proteins show up in other replicas

* If there are multiple biological replicates (i.e.
patients of the same phenotype), we can run FCS
on one of them, and check on the others

e Proteomics data used: Renal cancer

— Guo et al. Nature Medicine, 21(4):407-413, 2015

— 6 pairs of normal vs cancer ccRCC tissues
— SWATH in duplicates

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



— v prealcfea mISSINg pro!elns aLE

supported by >1 reported peptide In NUS

of Singapore
re ng%@g';@é}mplex to proteins in the peptide list)

Sample NT1->NT2 NT2->NT1 CT1>CT2 CT2>CT1
1 0.2120 0.2100 0.198 0 0.1820
984 209 937 197 823 163 911 166

5 0.213 0 0.216 0 0.2050 0.202 0.001
936 199 889 192 904 185 918 185
3 0.2120 0196 0 0.2180 0.2490
972 206 950 186 849 185 840 209
4 0.224 0 0.2330 0.197 0.002 0.222 0
943 211 948 221 925 182 930 206
5 0.188 0.002 02350 0.1850 0.209 0
912171 964 227 877 162 904 189
6 0.224 0 0.246 0 0.2270 0.2490
883 198 977 240 886 201 927 231

Talk given at SBBI 2016, St. Petersburg, Russia

Note: Treating proteins supported by >1 peptide as reported increases verified proteins by 10x, & reported proteins by 2x

Copyright 2016 © Limsoon Wong




Recovered proteins are more NUS
reliable than excess ones
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The y-axis is the number of supporting peptides (0 — 8) per protein. The 3 barplots in each box are labelled | R E
| - identified (proteins in batch 1), R - recovered (proteins in batch 2), E - excess (proteins in batch 2 not found in batch 1)
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~20% FCS-predicted missing proteinmnHm

of Singapore

are supported by peptides in replicates.
Can we do better?

Recall this postulate:

The chance of a protein complex being present is
proportional to the fraction of its protein members
being reported in the screen

Presence of complex implies

presence of all member proteins

Rank predicted missing proteins by:

Prob(Protein p is present but unreported) =
Max Prob(C is present)

complex C contains p

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



227 significant complexes by FCS B8 &
corresponding to 1319 proteins N1_T12 W NPSW
334 are from this screen. efsngapore
So missing proteins is 985 FCS N1_T12 ProtProb N1_T12
2 ) 8 -
§ -
8 - ®

200
1

§ |
Much )

improved
p . . o - __!_!H_=E=_ P HHHD_ —
preCISlon 0 02 04 06 08 1 0 02 04 06 08 1

Prob({Protein p is present but unreported) Prob{Protein p is present but unreported)

100
|

100
|

rank by fcs rank by protprob
_ Original Screen _ Validated l:l Unvalidated
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Improving consistency Iin
proteomic profile analysis
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Proteomic profiles generally notNUS

National University
of Singapore

consistent, even for technical replicatés

A human kidney tissue

— Guo et al. Nature Medicine, 21(4):407-413, 2015

— Digested in quadruplicates
— Analyzed in triplicates

« Clustering by proteins
— Correlation betw replicates
is not good (~0.4)  Pedi
— Technical replicates of the
same biological replicate ~ °  zfzzzfziz:zi:
are not tightly clustered o 333isiasissd
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Goh et al. Quantitative proteomics signature profiling based on network
=BANUS

contextualization. Biology Direct, 10:71. 2015
q P S P W National University
of Singapore

slutlntntials * Features are complexes
T T M * Feature values are fuzzy
) welghted.proportlon of
proteins in a complex
— - — score(C,S) = 2, fs(p,S) / |C]
Si
P « Complex C is significant
-8 If {score(C,S)) | S, € A} is
B T e very different by t-test
i ¢k i Yo i o1 from {score(C,S)) | S; €
descending weights. The modulated hit-rates for each sample B
could then be used for generating each sample’s proteomic }
I signature profile )

Copyright 2016 © Limsoon Wong
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Justification for fuzzy scoring 9%/ e

E

Coefficient of variation
06 08 10 1.2
o
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l

0.2

0 500000 1000000 1500000 2000000

Average Abundance

 Low-abundance proteins have very high
coefficient of variation; they thus are very noisy

 Fuzzy scoring mitigates this
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False-positive rate analysis

« 12 kidney controls randomly
assigned into two groups of

equal size, and PSP analysis S _
o ap}
performed many rounds S 7]
o
g p—
S - o
« # of significant clusters (5% g g K7
. Q (O]
FDR) determined each round g g 3 3 -
T« T
S |
« False-positive rate well within S
. A o _|
the expectation levels 0
— Sig Clusters (Abs) i p— i —
« Expect: 19, Observed: 16 0 40 80 000 010 0.20
— Sig Clusters (Ratio) _ o
Sig Clusters (Abs) Ratio Sig Clusters

« Expect: 0.05, Observed: 0.04
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Consistency of gPSP

e Clustering of
benchmarking control data
based on protein
complexes (i.e. gPSP)

— Correlation betw
replicates is >0.95
e Cf. 0.4 based on proteins

— Technical replicates are
better clustered

Rep1; Inj3

Rep1; Inj1
Rep1; Inj 2
Rep4; Inj3
Rep2; Inj2
Rep4; Inj2
Repd; Inj1
Rep2; Inj1
Rep2; Inj3
Rep 3; Inj 1
Rep 3; Inj2
Rep 3; Inj3
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Application to 2 NUS
renal & colorectal cancers

of Singapore
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Fig. 3 gPSP strongly discriminates sample classes for renal cancer (a) and colorectal cancer (b). Clustered similarity maps at the top row showed
specific and consistent segregation of non-cancer and cancer samples. The trees below the heatmaps are from bootstrap analysis (PVCLUST),
which demonstrates that the discrimination between sample classes based on gPSP hit-rates is highly stable

LN

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong



TINUS
95

National University
of Singapore

Comparing PSP to HE

« Hypergeometric enrichment (HE)

— A complex is significant if, based on the
hypergeometric test, it has a larger-than-chance
Intersection with the list of t-test significant proteins

 Data used
— Renal Ccancer, cuo et al. Nature Medicine, 21(4):407-413, 2015
— Colorectal CaNncer, zhanget al. Nature, 513(7518):382-387, 2014

« Evaluation
— Generate subsamples of size 4, 6, 8

— Run a method on a subsample; check agreement
of the selected complexes betw diff runs
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Stablility of gPSP — Colorectal can
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Aspects to improve for PSP 9§/ zm=

 Low-abundance proteins are ignored

« The performance, especially feature-selection
stability, on colorectal cancer is not as good as

that on renal cancer

« Precision/recall not evaluated

Copyright 2016 © Limsoon Wong
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Further improving consistency, as well as
catching significant low-abundance
complexes

National University
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ESSNet, adapted for proteomics

* Null hypothesis is “Complex
L et of be a protein in a Cisirrelevant to the

given protein complex difference between patients
and normals, and the
proteins in C behave
similarly in patients and

Let p; be a patient
Let q, be a normal

normals”
Let A|Jk Expr(gl,p)
Expr(g;,dy) « No need to restrict to most
abundant proteins
Test whether A, Is a = Potential to reliably detect
distribution with mean O low-abundance but

differential proteins

Lim et al. A quantum leap in the reproducibility, precision, and
sensitivity of gene expression profile analysis even when
sample size is extremely small. JBCB, 13(4):1550018, 2015
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 Network-based methods
— Hypergeometric enrichment (HE)
— Direct group analysis (DG), similar to GSEA
— PSP

- P FSN ET, Lim & Wong. Bioinformatics, 30(2):189--196, 2014

e Standard t-test on individual proteins (SP)
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Langley & Mayr, J. Proteomics, 129:83-92, 2015 == 1C) N US

Simulated data 95 om0

 Simulated datasets from Langley and Mayr

— D.1.2 s from study of proteomic changes resulting from addition of
exogenous matrix metallopeptidase (3 control, 3 test)

— D2.2 is from a study of hibernating arctic squirrels (4 control, 4 test)

e Both D1.2 and D2.2 have 100 simulated datasets,

each with 20% significant features

— Effect sizes of these differential features are sampled from one out
of five possibilities (20%, 50%, 80%, 100% and 200%), increased in
one class and not in the other

« Significant artificial complexes are constructed
with various level of purity (i.e. proportion of

significant proteins in the complex)
— Equal # of non-significant complexes are constructed as well

Copyright 2016 © Limsoon Wong
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SP shows poor

performance on g 2 —
simulated data. s y =
Can network- o A
based methods {,| T Bl £ _
do better? - 1 S
= ol L=

Supplementary Figure 1 Single protein (SP) precision-recall performance on D1.2. The f-score
(pink), precision (blue) and recall (green) shows that SP performs abysmally on simulated data. HE is

shown next to SP as a reference.
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ESSNET shows excellent NUS
recall/precision on simulated data

of Singapore
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Guo et al. Nature Medicine, 21(4):407-413, 2015

Renal cancer control data (RCC)9% =

12 runs originating from a human kidney tissue
digested in quadruplicates and analyzed in
triplicates

« Excellent for evaluating false-positive rates of
feature-selection methods

— Randomly split the 12 runs into two groups.
Report of any significant features between the
groups must be false positives
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g
All 5 - 8
methods :
control g% ° T 3
false '; ----- S B o a— -
positives  £=z- -
well e
I-:E D|G ESSI‘LJET C:-P|SP PFShleT

Dash line corresponds to expected # of false positives at alpha 0.05 (~30 complexes)
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Guo et al. Nature Medicine, 21(4):407-413, 2015

Renal cancer data (RC)

« 12 samples are run twice so that we have
technical replicates over 6 normal and 6 cancer
tissues

« Excellent opportunity for testing reproducibility
of feature-selection methods

— A good method should report similar feature sets
between replicates

« Can also test feature-selection stability

— Apply feature-selection method on subsamples
and see whether the same features get selected

Talk given at SBBI 2016, St. Petersburg, Russia Copyright 2016 © Limsoon Wong
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ESSNET & PFSNET show NUS
excellent reproducibility

National University
of Singapore

DN HE DG ESSNET QPSP PFSNET
terms
Replicate 1 4 1 35 86 45
Replicate 2 6 2 29 75 46
Overlaps 0.25 0.5 0.83 0.66 0.94
HE DG ESSNET QPSP PFSNET
1 0.5 0.71 0.86 0.71 HE
1 1 1 1 DG
1 0.93 0.98 ESSNET
1 0.90 QPSP
1 PFSNET
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ESSNET &
PFSNET
show
excellent

sy |

0.022 0.016 0.047 0.030

DG 0.001 0.001 0.002 0.001
ESSNET 0.714 0.941 1.000 0.885
QPSP 0.149 0.282 0.991 0.470
PFSNET 1.000 1.000 1.000 1.000
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ESSNET can assay low-abundan 1@? NUS
complexes that gPSP cannot

of Singapore

QPsP ESSNET =
- A: QPSP-ESSNET

z significant-
complex overlaps
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B: P-value
distribution for
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—_— non-overlapping
QPSP complexes.
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Non- C: Sampling
Overlap abundance
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left panel is a
zoome-in of the
right. The y-axis is
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ESSNET can assay low-abundan c\!z,_%, NUS
complexes that PFSNET cannot

of Singapore

Of the 5 ESSNET-
unigue complexes,
PFSNET can detect 4;
the missed complex
consists entirely of low-
abundance proteins.

Be+05
|

6e+05
|

If p-value threshold is
adjusted by Benjamini-
Hochberg 5% FDR,
PFSNET can detect
only 3 of the 5 ESSNET-
unique complexes while
ESSNET continues to
detect them all.

4e+05
|

Protein Abundance

2e+05
|

‘

| |
four_overlaps PFSNET_missed

Oe+00
|
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Concluding Remarks




National University

In conclusion...

Contextualization (into complexes) can
deal with coverage and consistency
ISSues In proteomics
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