
Enabling more sophisticated proteomic profiles analysis

Limsoon Wong

Proteomics is a system-wide characterization of all proteins

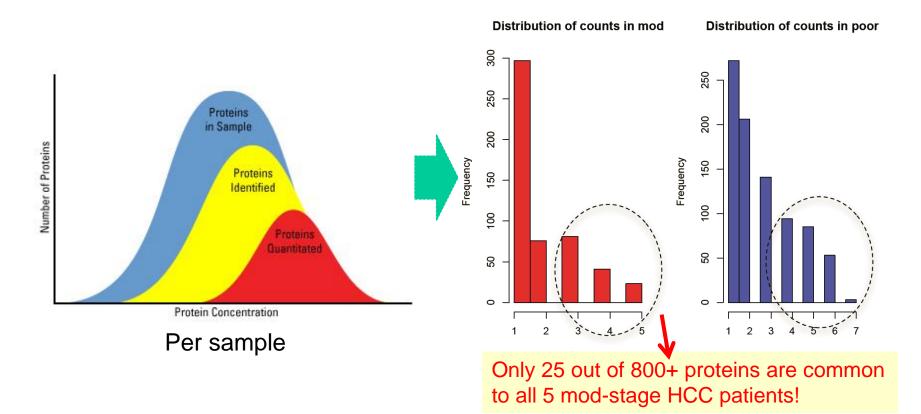
Kall and Vitek, PLoS Comput Biol, 7(12): e1002277, 2011

Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong

Proteomics vs transcriptomics

- Proteomic profile
 - Which protein is found in the sample
 - How abundant it is
- Similar to gene expression profile. So typical gene expression profile analysis methods can be applied in theory...

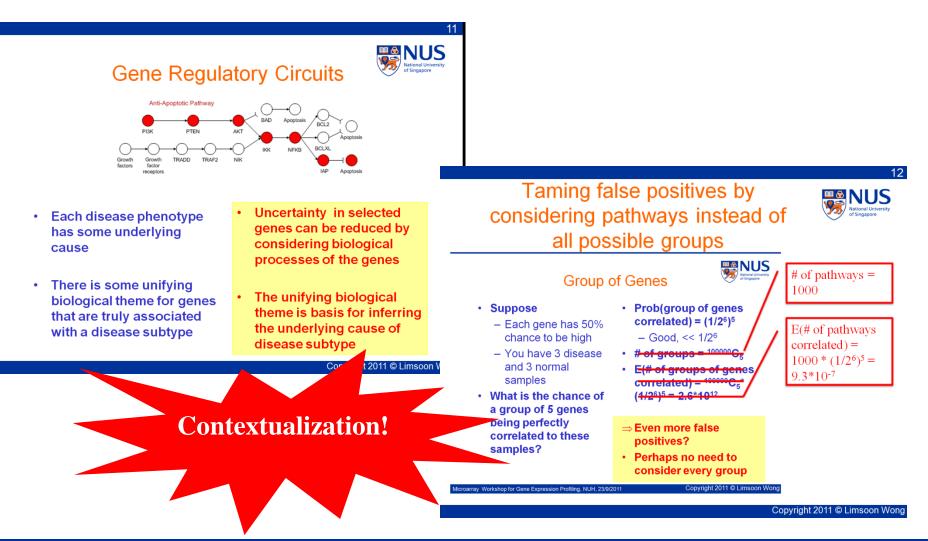

- Key differences
 - Profiling
 - Complexity: 20k genes vs 500k proteins
 - Dynamic range: > 10 orders of magnitude in plasma. Proteins cannot be amplified
 - Analysis
 - Much fewer features
 - Difficult to reproduce
 - Much fewer samples
 - Unstable quantitation

Issues in proteomics: Coverage and consistency

4

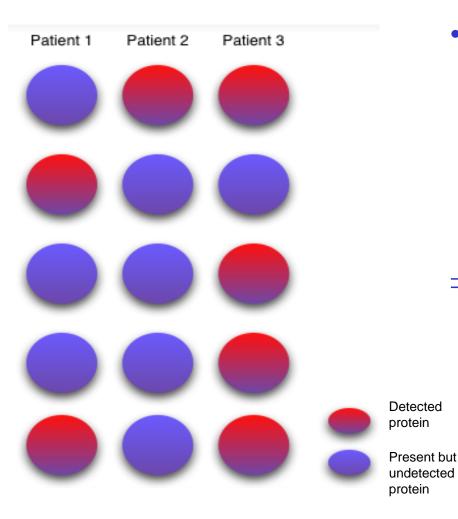
Technical incompleteness How it affects real data

Copyright 2016 © Limsoon Wong


Using protein complexes to enhance proteomics: Basic ideas

An inspiration from gene expression profile analysis

6



Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong

Intuition

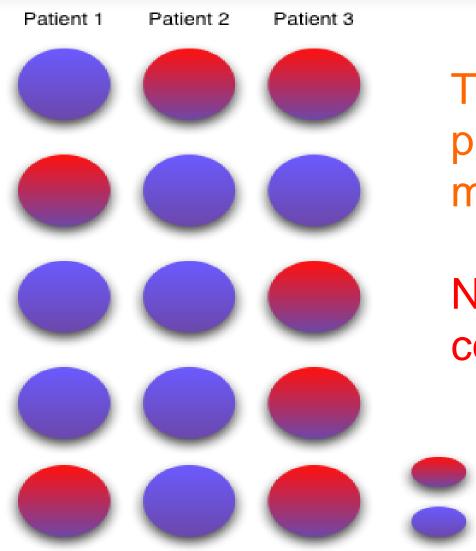
- Suppose the failure to form a protein complex causes a disease
 - If any component protein is missing, the complex can't form
- ⇒ Diff patients suffering from the disease can have a diff protein component missing
 - Construct a profile based on complexes?

... and some math

- Postulate: The chance of a protein complex being present is proportional to the fraction of its constituent proteins being reported in the screen
- Suppose proteomics screen has 75% reliability; a complex comprises proteins A, B, C, D, E; and screen reports A, B, C, D only
- \Rightarrow Complex has 60% (= 0.75 * 4 / 5) chance to be present
- ⇒ The unreported protein E also has > 60% chance to be present, as presence of the complex implies presence of all its constituents ... improving coverage
- ⇒ Each of A, B, C, and D individually has 90% (= 100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a reported protein that is isolated has a lower 75% chance of being true positive ... removing noise

Reference complexes

9


• In this talk, human complexes (of size at least 5) from CORUM are used as reference complexes

 It is possible to use subnetworks generated from pathway and PPI databases. However these such subnetworks vary significantly depending on databases and generation algorithms used

So I do not consider these...

Improving coverage in proteomic profiles

11

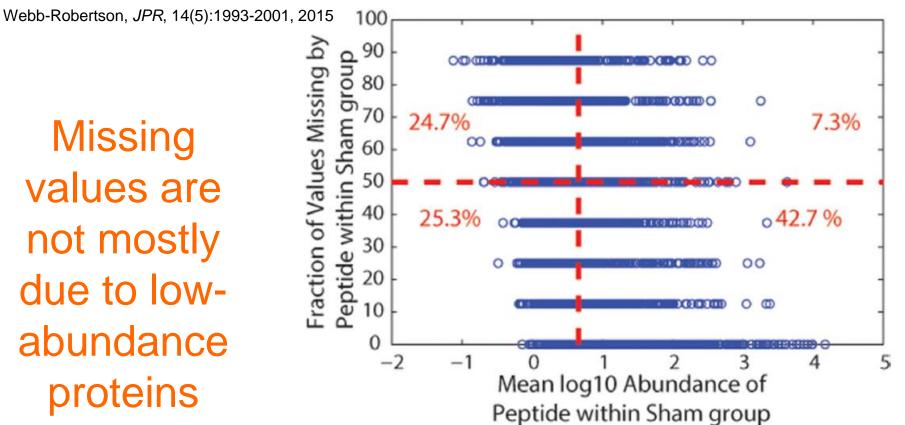
Typical proteomic profiling misses many proteins

Need to improve coverage!

Detected protein

Present but undetected protein

Copyright 2016 © Limsoon Wong

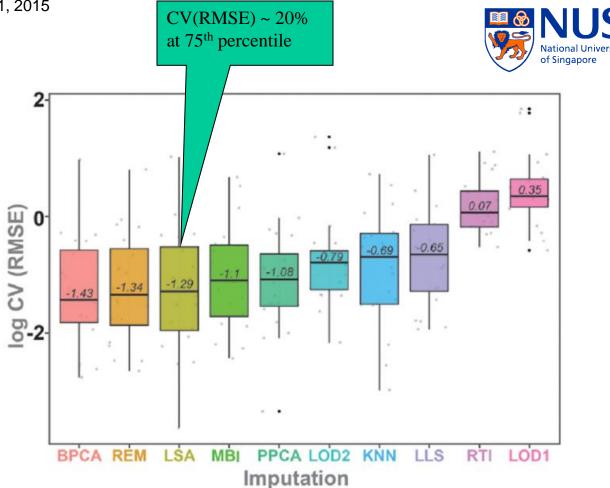


Missing values in a real dataset 😼

📓 📴 🧐 - 🕲 - 🖻 ×																													
File Home Insert Page Layout Formulas Data Review View Acrobat																													
	👗 Cut		Calibri	× 11 ×	· A A	= = =	\$\$∕	📑 Wrap Tex	xt [General				Normal	В	Bad	Good	d	Neutral	L C	Calculation	<u> </u>	-	<	Σ AutoSum	n • 🐴	A		
Paste	Copy	-	в 7 т [.] -								• •.0 .00 .00 →.0	Condition	nal Format			Explanatory			Linked C		Note	+ _ C		te Format	🛃 Fill 🔻	∑∐ Sort &	Find &		
, dSt	I Forma	nt Painter		🖽 🔹 🆄	<u> </u>			Merge &	a center *	\$ - % :		Formattin	ng * as Table *			UIIUTOI			Linked v	<u></u>			* *	*	🖉 Clear 🔻	Filter * 1			
	Clipboard	Es.		ont	Fa		Alignmen	int	Es.	Numb	er G	-					Styles						Cells	s		Editing			
	X30	-	(f x	NA																									~
	А	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC 🔺
	4	GeneSy		kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	s kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTi
	protein		kidneyTisue1		ue3	ue4	ue5	ue6	ue7	ue8	ue9	ue10	ue11	ue12	ue13	ue14	ue15	ue16	ue17	ue18	ue19	ue20	ue21	ue22	ue23	ue24	ue25	ue26	ue27
	P09110	ACAA1		46353.28						92200.62				NA	222387.2	NA													
	P05166	PCCB		70504.27																				NA		41974.24			
	Q96RP9		37872.59722	NA	40359.89		73975.35							23060.3	91995.3		37735.48									NA			
	Q15417		28364.89722	NA 25176-2	NA	NA CCOTA 20														NA				NA 75050.02	25129.86				
		S100A16	NA	35176.2		66058.39			1804.538		NA	NA 68503-30	11359.64	NA					NA NA	NA	NA	36422.79		75858.83		31161.06			NA
	P62820	RAB1A	NA	NA	NA	NA	NA	NA		3130.811		68503.39		NA	NA	NA	NA	NA	NA	NA	32596.28	NA	NA	54839					NA
	P27169	PON1		47101.83							NA	NA	NA	59432.1			36282.92			NA 62742.02	NA	45107.13		19506.67		38130.55			NA 40140.27
	Q9UL46			99968.93										114480.8															
	P08237	PFKM	39644.09722	NA 149622.6	54240.61	NA 24964.95	136064	NA						NA	140860.9	NA	96590.73	NA				NA 162095-2	47697.29	NA 21299 75	136064	NA			143381.1
	P04040							. 220764.4													290924.4				271920.4				25150110
		CTNNBL1 C11orf54	NA 454591 5833	NA 77225 75	NA 393512.7	NA 55/131 72	NA 365975 5	NA 180535-1	1804.538 188742 5		NA 352898 9	NA 119242 7	NA //17999-9	NA 263299.1	NA 474797	NA 229655 9	NA 427428				1 NA 1 441856.5	NA 74156-41	NA 370040 5	NA 44605-86	NA 363784.6	NA 187566-8	2064.747	NA 104101.6	NA 375463.4
	Q9H0W9 C P31948		454591.5833 76018.00556	77225.75 83236.9												229655.9 129969.2		143697 124568	124568 108554.7		441856.5 2 69039.96								375463.4 122047.2
	P31948 094901		76018.00556 57623.33889	83236.9 NA	83516.5 NA		75613.89 72273.86		98642.34 1804.538	195146 NA	77709.53 NA	282315.9 NA	65948.94 58063.49	122386.3 NA	81635.42 NA	129969.2 NA	67749.81 NA	. 124568 NA	108554.7 NA	135737.2 NA	2 69039.96 60013.66	92656.4 NA	85600.47 NA	147792.9 NA	65262.99 71252.19		91127.04 2064.747	218888 NA	122047.2 NA
				NA 114480.8										NA 117389.5															
								91466.47 NA	218888 1804.538																	91325.89 NA			
		STXBP2 SLC3A2		24264.99 42825.82					1804.538 1804.538		14303.05 77850.57	17309.98 NA	11459.84 100616.3	14224.85 NA	12617.18 76579.02					5634.228 NA	3 13283.71 80199.58					NA NA	2064.747		13166.66 76292.57
	P08195 P26038			42825.82																					222387.2				
	P26038 P09104	ENO2		438752.3		184650.5					440078.9 NA	107923.7 NA		310472.5 119650.8		404349.8		48438.29			/ 2/3201.7 NA	151558.9		181096.8		123793.9			441850.5 NA
	P03104 P07148			34579.48			940142	NA	120140.3		1130692	NA	1057986	NA	789446.1	404349.8 NA	221565	40438.23 NA	NA	NA				NA	970053.3	NA	2064.747	NA	1300718
	Q96Q11	TRNT1	NA	NA	NA	NA	NA	NA	1804.538		NA	NA	NA	NA	NA	NA	221303 NA	NA	37098.09			52550.45 NA	NA	NA	NA	NA	2064.747	NA	NA
	015083	ERC2	NA	NA		85740.42		NA	1804.538		83390.33		NA	NA	NA	NA	NA	142306.8		NA	NA	NA		72396.48		NA	2064.747		70213.43
	Q15911	ZFHX3	NA	NA							243050.1	NA	189860.5	NA	NA	NA	NA	457756.2		NA	NA	NA	NA	NA	NA	NA	2064.747		252846.2
	Q9BUR5	2111010	35479.70278	NA				/ NA								NA	40140.37	457750.2 7 NA	NA	10649.17		NA				NA			
	Q9UJ83		417999.9306	NA	435248.4					174111.8			274264.6	NA				NA	NA		5 446678.9	NA	390317.5						
									84319.78										73200.35										
				99433.59				150524.5													5 357417.6								
		STXBP3		28468.21		NA		19019.68			NA	NA		21949.83	NA	NA	NA	NA	NA	NA				NA	NA	NA	2064.747		NA
			52415.71111	NA	59328.51												45502.32		57623.34		54737.36	NA	62380.69	NA					
		SNRNP70		51791.05							59432.1	54839				NA	NA	72977.35						93224.91	-0			NA	50797.63
	Q969V6	MKL1		91325.89							71906.43			152627.3							5 72021.55		NA	NA	NA		2064.747	NA	NA
	P08311	CTSG	NA	NA	46154.89			67879.78			53026.19			68927.99		NA	NA	NA		78414.15		NA	46895.88	NA	NA			NA	NA
_	Q9UKU7			31797.32			64601.65								41840.21	NA	42678.39	NA		32270.84		NA	49467.07	NA	61900.08	NA			
_	Q86X76	NIT1	75613.88611	NA									84009.8	75506.47	78547.77				57523.94	40935.27	70713.02	NA	59540.84	70713.02		73278.36	55745.15	58932	52415.71
36	P05162	LGALS2	33491.8	NA	35565.03	NA	52415.71	36825.06	1804.538	23560.07	18592.77	NA	36763.92	72761.18	35479.7	50008.51	24907.94	NA	16653.18	22730.31	L 34916.06	NA	30730.15	NA	32815.68	71139.86	2064.747	NA	25737.06
	P23946	CMA1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	61155.07	14049.16	5 NA	NA	NA	NA	NA	NA	53240.82	NA	NA
_	P01834		462133.8694	885197.1									312295.6			692332.5	325019.6				L 499422.8							310472.5	
	P14868	DARS	12567.36389	110112				121022.2												94484.9		114678.3		177772					
40	Q9H773	DCTPP1	NA	NA	NA	NA	NA		1804.538			11589.48		27509.79		NA	NA	26314.17	87070.11	74656.39		NA	NA	NA	NA	NA		22251.11	
	▶ ► sTab	leg / lege	iend / 🞾 /] 4											•
Read	v							-																			100%	Θ	\rightarrow
	7 	2	9) S																				E	EN EN	- 😵 🔁	1 🖻 🕪	4:35 PM 6/28/2016

Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong


Figure 1.

Average log₁₀ intensity as measured by peptide peak area in the control group versus fraction of missing values and peptide counts associated with bins corresponding to the fraction of missing data comparing phenotypes and exposures for datasets from (A) human plasma and (B) mouse lung. The control group for the human plasma is the normal glucose tolerant (NGT) samples, and the sham group for the mouse lung is the regular weight mice with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average intensity, and the horizontal red line represents the point that 50% of the values are missing.

14

Webb-Robertson, JPR, 14(5):1993-2001, 2015

Current imputation methods don't work very well

Figure 2.

Boxplot of the average $\log_{10} \text{CV}(\text{RMSE})$ for the imputed dilution series datasets (Table 1) at the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the upper line of the box represents the 75th percentile, and the inner line corresponds to the median $\log_{10} \text{CV}(\text{RMSE})$.

Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. *JPR*, 12(5):2116--2127, 2013

15

- Rescue undetected proteins from high-scoring
 protein complexes
- Procedure:
 - Score a protein complex based on proportion of its member proteins being reported in the screen
 - A complex is declared significant if this proportion is much higher than chance
 - Unreported proteins in a significant complex are predicted to be present
- Shortcoming: Many complexes are not known

Li et al. Network-assisted protein identification and data interpretation in shotgun proteomics. *Mol. Syst. Biol.*, *5*:303, 2009.

CFA

- Generate cliques from PPIN
- Rescue undetected proteins from cliques containing many high-confidence proteins
- Reason: Cliques in a PPIN often correspond to proteins at the core of complexes
- Shortcoming: Cliques are too strict
 ⇒ Use more powerful protein complex prediction methods

Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. *Journal of Proteome Research*, 10(5):2261--2272, 2011

- Map high-confidence proteins to PPIN
- Extract immediate neighbourhood & predict protein complexes using CFinder
- Rescue undetected proteins from high-ranking predicted complexes
- Reason: Exploit powerful protein complex
 prediction methods
- Shortcoming: Hard to predict protein complexes
 Do we need to know all the proteins a complex?

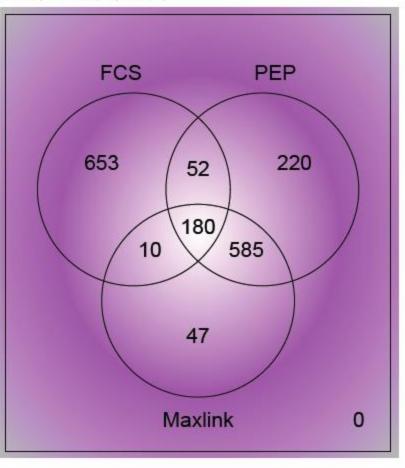
Goh et al. International Journal of Bioinformatics Research and Applications, 8(3/4):155--170, 2012

MaxLink

- Map high-confidence proteins ("seeds") to PPIN
- Identify proteins that interact many seeds but few non-seeds
- Rescue these proteins
- Reason: Proteins interacting with many seeds are likely to be part of the same complex as these seeds
- Shortcoming: Likely to have more false-positives

Goh et al. **Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice**. *JPR*, 12(5):2116--2127, 2013

Experiment


- Valporic acid (VPA)-treated mice vs control
 - VPA or vehicle injected every 12 hours into postnatal day-56 adult mice for 2 days
 - Role of VPA in epigenetic remodeling
- MS was scanned against IPI rat db in round #1
 291 proteins identified
- MS was scanned against UniProtkb in round #2
 498 additional proteins identified
- All recovery methods ran on round #1 data and the recovered proteins checked against round #2

20

Moderate level of agreement of reported proteins between various recovery methods

FCS (Real Complexes)

Performance comparison

21

Method	Novel Suggested Proteins	Recovered proteins	Recall	Precision
PEP	1037	158	0.317	0.152
Maxlink	822	226	0.454	0.275
FCS (predicted)	638	224	0.450	0.351
FCS (complexes)	895	477	0.958	0.533

• Looks like running FCS on real complexes is able to recover more proteins and more accurately

Another validation experiment

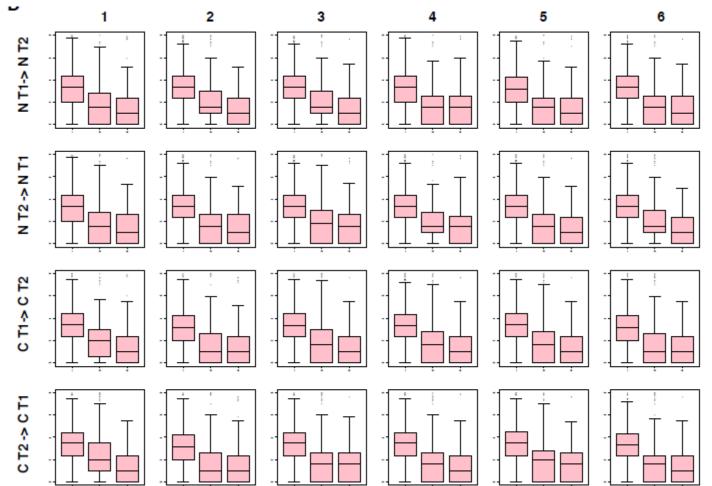
22

- If there are technical replicates, they should have reported the same proteins. So we can run FCS on one replica, and see whether the predicted missing proteins show up in other replicas
- If there are multiple biological replicates (i.e. patients of the same phenotype), we can run FCS on one of them, and check on the others
- Proteomics data used: Renal cancer
 - Guo et al. Nature Medicine, 21(4):407-413, 2015
 - 6 pairs of normal vs cancer ccRCC tissues
 - SWATH in duplicates

>20% of predicted missing proteins are NUS supported by ≥ 1 reported peptide in

24

replicates strategy 3 (complex to proteins in the peptide list)


Sample	N T1-> N T2	N T2 -> N T1	C T1-> C T2	C T2 -> C T1		
1	0.212 0	0.210 0	0.198 0	0.182 0		
	984 209	937 197	823 163	911 166		
2	0.213 0	0.216 0	0.205 0	0.202 0.001		
	936 199	889 192	904 185	918 185		
3	0.212 0	0.196 0	0.218 0	0.249 0		
	972 206	950 186	849 185	840 209		
4	0.224 0	0.233 0	0.197 0.002	0.222 0		
	943 211	948 221	925 182	930 206		
5	0.188 0.002	0.235 0	0.185 0	0.209 0		
	912 171	964 227	877 162	904 189		
6	0.224 0	0.246 0	0.227 0	0.249 0		
	883 198	977 240	886 201	927 231		

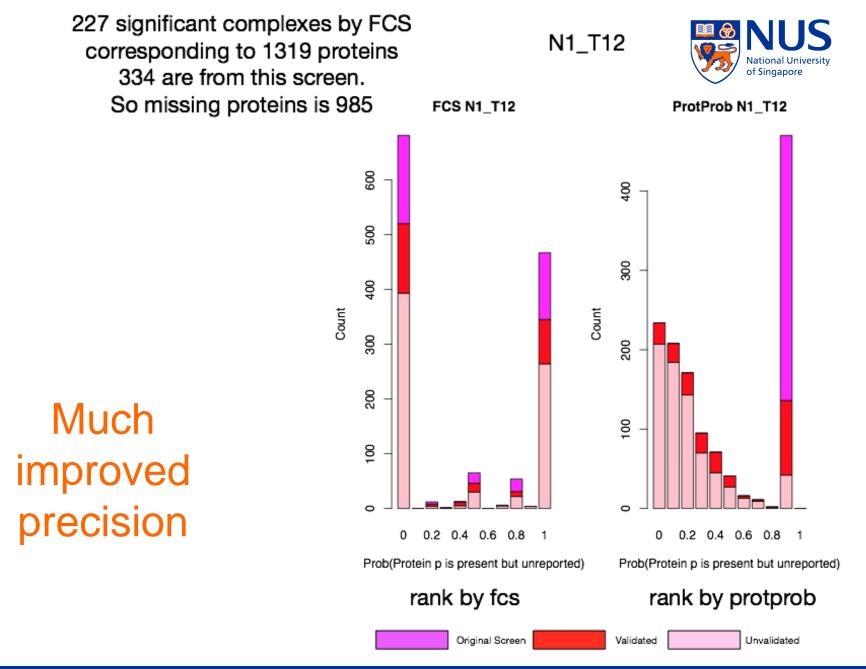
Note: Treating proteins supported by ≥ 1 peptide as reported increases verified proteins by 10x, & reported proteins by 2x

Recovered proteins are more reliable than excess ones

26

The y-axis is the number of supporting peptides (0 - 8) per protein. The 3 barplots in each box are labelled I R E I - identified (proteins in batch 1), R - recovered (proteins in batch 2), E - excess (proteins in batch 2 not found in batch 1)

~20% FCS-predicted missing protein are supported by peptides in replicates. Can we do better?


Recall this postulate:

The chance of a protein complex being present is proportional to the fraction of its protein members being reported in the screen

Presence of complex implies presence of all member proteins

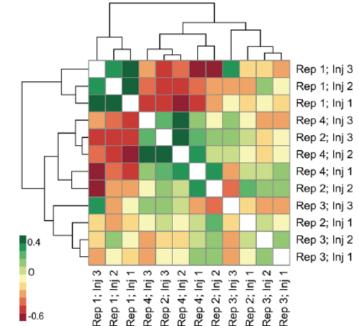
Rank predicted missing proteins by:

Prob(Protein p is present but unreported) = Max_{complex C contains p} Prob(C is present) 27

Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong

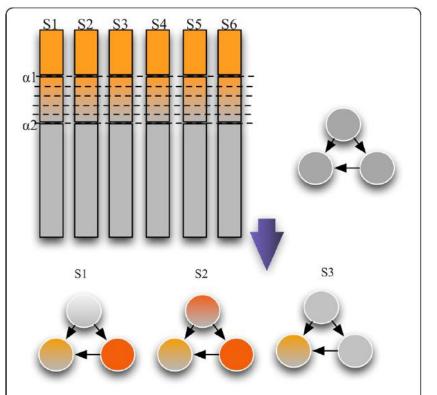
28


Improving consistency in proteomic profile analysis

Proteomic profiles generally not NUS consistent, even for technical replicates

A human kidney tissue

- Guo et al. Nature Medicine, 21(4):407-413, 2015
- Digested in quadruplicates
- Analyzed in triplicates
- Clustering by proteins
 - Correlation betw replicates is not good (~0.4)
 - Technical replicates of the same biological replicate are not tightly clustered


32

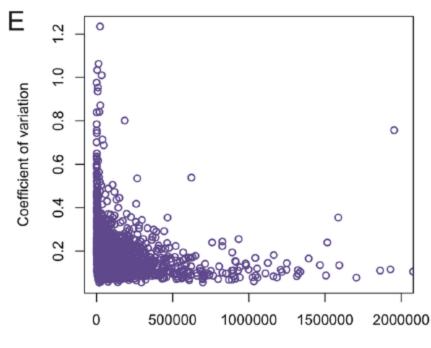
Goh et al. Quantitative proteomics signature profiling based on network contextualization. *Biology Direct*, 10:71. 2015

qPSP

33

Fig. 1 Schematic demonstrating qPSP's fuzzification procedure. First, alpha1 at top 10 % was defined. An alpha2 was defined from top 10-20 %. To place less confidence in the lower-scoring alpha2, proteins that fall within this range were grouped into 5 bins with descending weights. The modulated hit-rates for each sample could then be used for generating each sample's proteomic signature profile

- Features are complexes
- Feature values are fuzzy weighted proportion of proteins in a complex

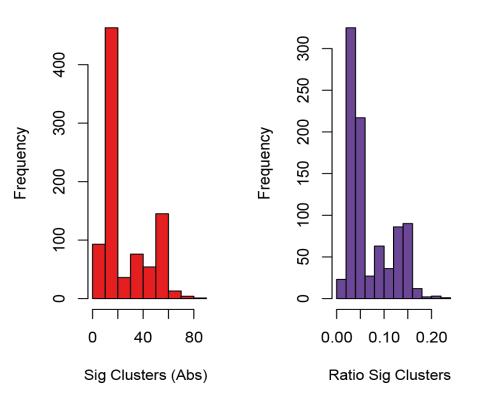

- score(C,S_i) = $\Sigma_{p \in C} fs(p,S_i) / |C|$

• Complex C is significant if $\{score(C,S_i) \mid S_i \in A\}$ is very different by t-test from $\{score(C,S_i) \mid S_i \in B\}$

34

Justification for fuzzy scoring

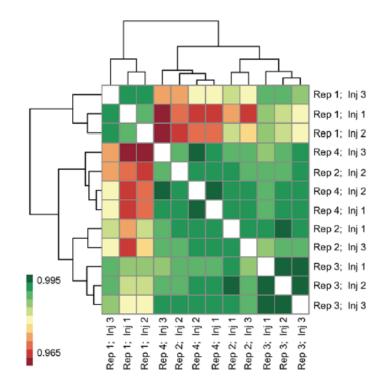
Average Abundance


- Low-abundance proteins have very high coefficient of variation; they thus are very noisy
- Fuzzy scoring mitigates this

35

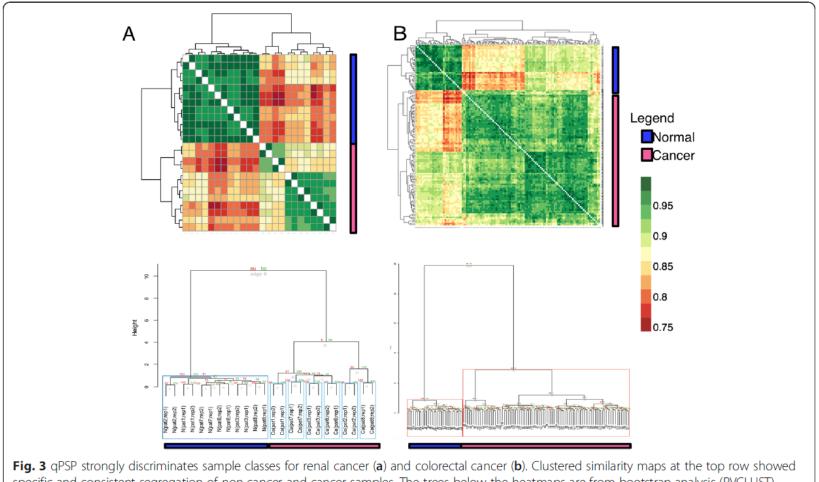
False-positive rate analysis

- 12 kidney controls randomly assigned into two groups of equal size, and qPSP analysis performed many rounds
- # of significant clusters (5% FDR) determined each round
- False-positive rate well within the expectation levels
 - Sig Clusters (Abs)
 - Expect: 19, Observed: 16
 - Sig Clusters (Ratio)
 - Expect: 0.05, Observed: 0.04



Consistency of qPSP

36


- Clustering of benchmarking control data based on protein complexes (i.e. qPSP)
 - Correlation betw replicates is >0.95
 - Cf. 0.4 based on proteins
 - Technical replicates are better clustered

Application to renal & colorectal cancers

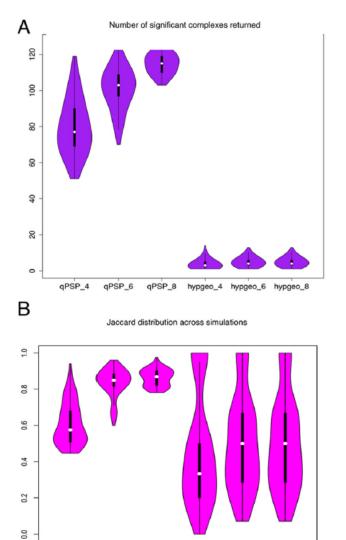
37

specific and consistent segregation of non-cancer and cancer samples. The trees below the heatmaps are from bootstrap analysis (PVCLUST), which demonstrates that the discrimination between sample classes based on qPSP hit-rates is highly stable

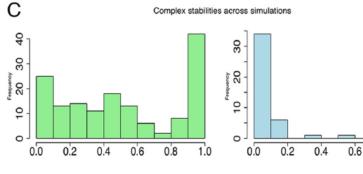
Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong

Comparing qPSP to HE

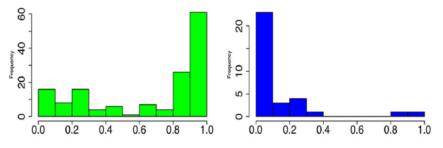

38

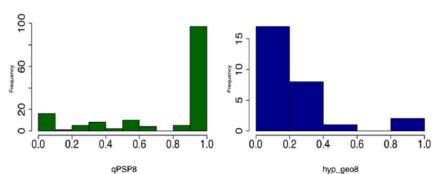
- Hypergeometric enrichment (HE)
 - A complex is significant if, based on the hypergeometric test, it has a larger-than-chance intersection with the list of t-test significant proteins


Data used

- Renal cancer, Guo et al. Nature Medicine, 21(4):407-413, 2015
- Colorectal cancer, Zhang et al. Nature, 513(7518):382-387, 2014
- Evaluation
 - Generate subsamples of size 4, 6, 8
 - Run a method on a subsample; check agreement of the selected complexes betw diff runs

qPSP_8 hypgeo_4 hypgeo_6 hypgeo_8

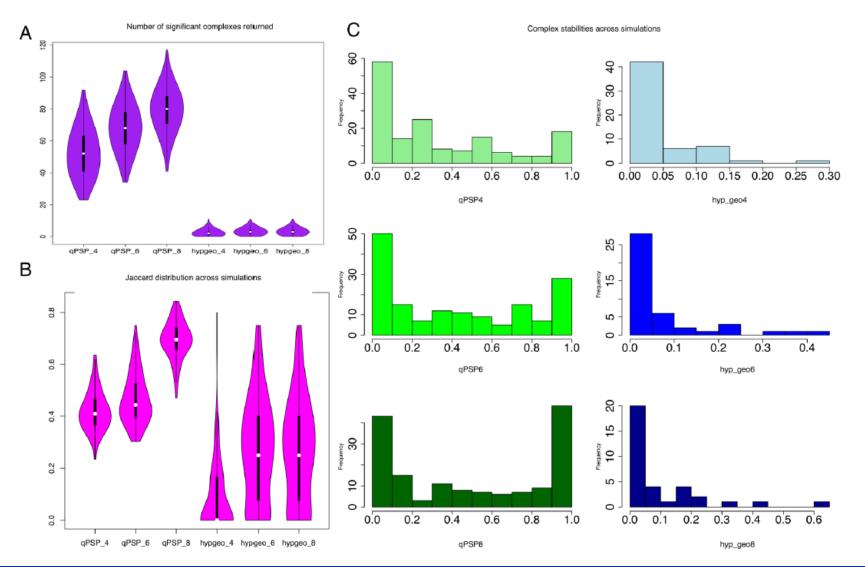

qPSP6


hyp_geo4

hyp_geo6

0.8

1.0


copyr

Copyright 2016 © Limsoon Wong

qPSP 6

qPSP 4

Talk given at SBBI 2016, St. Petersburg, Russia

Copyright 2016 © Limsoon Wong

40

Aspects to improve for qPSP

- Low-abundance proteins are ignored
- The performance, especially feature-selection stability, on colorectal cancer is not as good as that on renal cancer
- Precision/recall not evaluated

Further improving consistency, as well as catching significant low-abundance complexes

ESSNet, adapted for proteomics

43

- Let g_i be a protein in a given protein complex
- Let p_j be a patient
- Let q_k be a normal
- Let $\Delta_{i,j,k} = \text{Expr}(g_i,p_j) \text{Expr}(g_i,q_k)$
- Test whether $\Delta_{i,j,k}$ is a distribution with mean 0

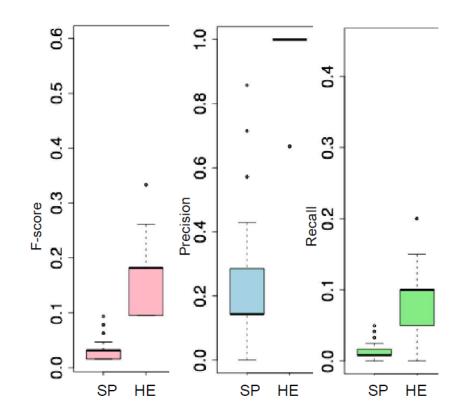
- Null hypothesis is "Complex C is irrelevant to the difference between patients and normals, and the proteins in C behave similarly in patients and normals"
- No need to restrict to most abundant proteins
- ⇒ Potential to reliably detect low-abundance but differential proteins

Lim et al. A quantum leap in the reproducibility, precision, and sensitivity of gene expression profile analysis even when sample size is extremely small. *JBCB*, 13(4):1550018, 2015

Five methods to compare with

- Network-based methods
 - Hypergeometric enrichment (HE)
 - Direct group analysis (DG), similar to GSEA
 - qPSP
 - PFSNET, Lim & Wong. *Bioinformatics*, 30(2):189--196, 2014
- Standard t-test on individual proteins (SP)

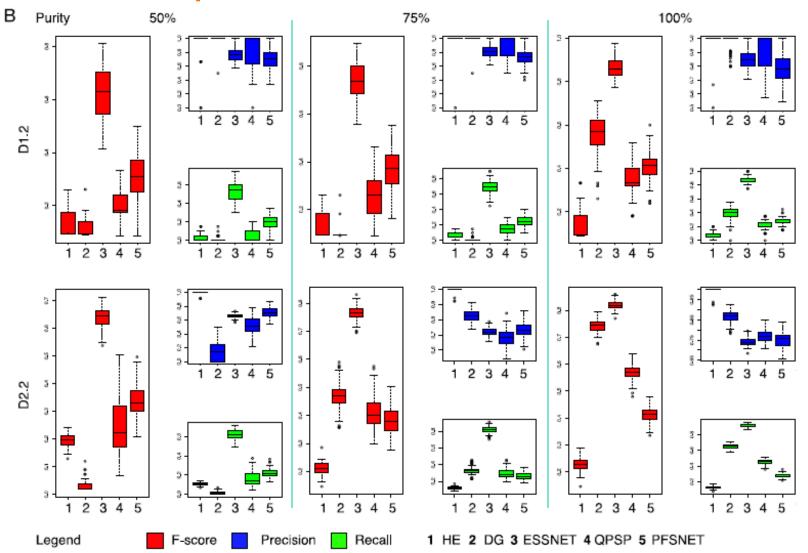
Simulated data



- Simulated datasets from Langley and Mayr
 - D.1.2 is from study of proteomic changes resulting from addition of exogenous matrix metallopeptidase (3 control, 3 test)
 - D2.2 is from a study of hibernating arctic squirrels (4 control, 4 test)
- Both D1.2 and D2.2 have 100 simulated datasets, each with 20% significant features
 - Effect sizes of these differential features are sampled from one out of five possibilities (20%, 50%, 80%, 100% and 200%), increased in one class and not in the other
- Significant artificial complexes are constructed with various level of purity (i.e. proportion of significant proteins in the complex)
 - Equal # of non-significant complexes are constructed as well

SP shows poor performance on simulated data.

Can networkbased methods do better?



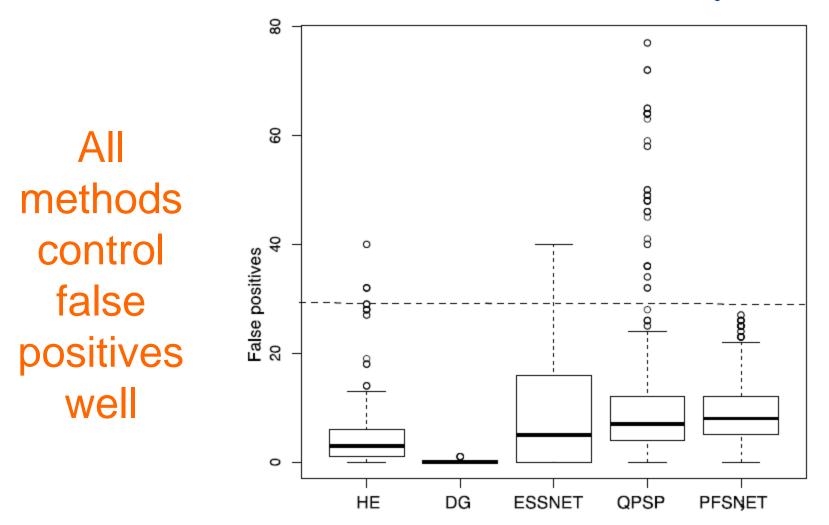
Supplementary Figure 1 Single protein (SP) precision-recall performance on D1.2. The f-score

(pink), precision (blue) and recall (green) shows that SP performs abysmally on simulated data. HE is

shown next to SP as a reference.

ESSNET shows excellent recall/precision on simulated data

Talk given at SBBI 2016, St. Petersburg, Russia

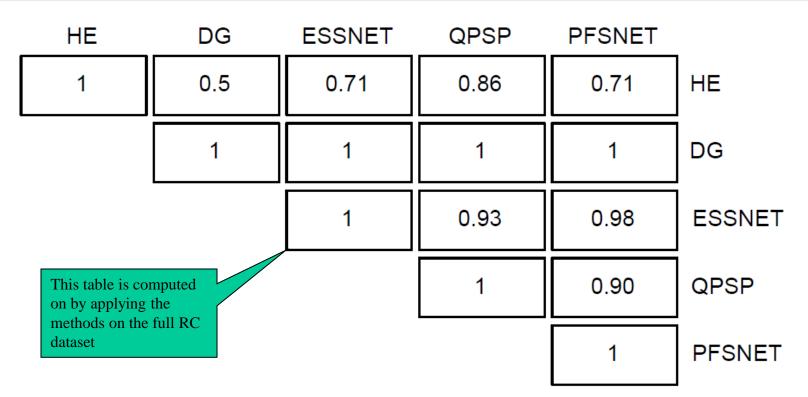

Copyright 2016 © Limsoon Wong

47

National University of Singapore Renal cancer control data (RCC)

- 12 runs originating from a human kidney tissue digested in quadruplicates and analyzed in triplicates
- Excellent for evaluating false-positive rates of feature-selection methods
 - Randomly split the 12 runs into two groups.
 Report of any significant features between the groups must be false positives

Dash line corresponds to expected # of false positives at alpha 0.05 (~30 complexes)


Renal cancer data (RC)

- 12 samples are run twice so that we have technical replicates over 6 normal and 6 cancer tissues
- Excellent opportunity for testing reproducibility of feature-selection methods
 - A good method should report similar feature sets between replicates
- Can also test feature-selection stability
 - Apply feature-selection method on subsamples and see whether the same features get selected

ESSNET & PFSNET show excellent reproducibility

Number of terms	HE	DG	ESSNET	QPSP	PFSNET
Replicate 1	4	1	35	86	45
Replicate 2	6	2	29	75	46
Overlaps	0.25	0.5	0.83	0.66	0.94

Number of features Sampling size Δ Δ ΗE DG ESSNET QPSP PFSNET ŏ Feature-selection stability 0.8 ____ 0.4 Ο

Δ

Δ

റ്റ

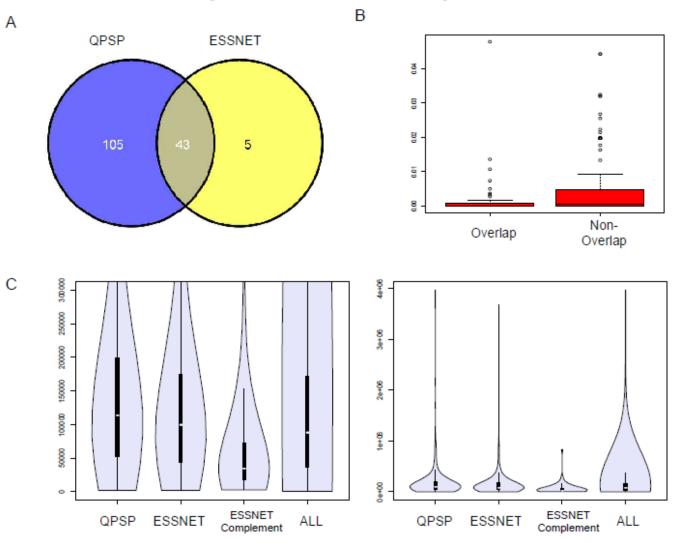
0.0

Sampling size

о

ESSNET & PFSNET show excellent stability

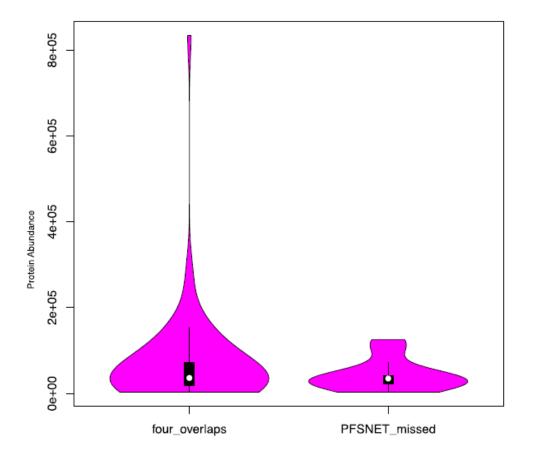
Copyright 2016 © Limsoon Wong


Ο

ESSNET & PFSNET show excellent stability

	4	6	8	Mean
HE	0.022	0.016	0.047	0.030
DG	0.001	0.001	0.002	0.001
ESSNET	0.714	0.941	1.000	0.885
QPSP	0.149	0.282	0.991	0.470
PFSNET	1.000	1.000	1.000	1.000

ESSNET can assay low-abundan


A: QPSP-ESSNET significantcomplex overlaps

54

B: P-value distribution for overlapping and non-overlapping QPSP complexes.

C: Sampling abundance distribution. The left panel is a zoom-in of the right. The y-axis is the protein abundance while the four categories are the distribution of abundances of complexes found in QPSP, ESSNET, **ESSNET** unique (complement), and all proteins in RC.

ESSNET can assay low-abundan

Of the 5 ESSNETunique complexes, PFSNET can detect 4; the missed complex consists entirely of lowabundance proteins. 55

If p-value threshold is adjusted by Benjamini-Hochberg 5% FDR, PFSNET can detect only 3 of the 5 ESSNETunique complexes while ESSNET continues to detect them all.

Concluding Remarks

In conclusion...

Contextualization (into complexes) can deal with coverage and consistency issues in proteomics

Acknowledgements

58

Singapore Ministry of Education

Wilson Goh

Talk given at SBBI 2016, St. Petersburg, Russia

- Goh & Wong. Integrating networks and proteomics: Moving forward. Trends in Biotechnology, in press
- [FCS] Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acidtreated mice. Journal of Proteome Research, 12(5):2116-2127, 2013
- [qPSP] Goh et al. Quantitative proteomics signature profiling based on network contextualization. *Biology Direct*, 10:71, 2015.
- [PFSNET] Lim & Wong. Finding consistent disease subnetworks using PFSNet. *Bioinformatics*, 30(2):189--196, 2014
- [ESSNET] Lim et al. A quantum leap in the reproducibility, precision, and sensitivity of gene expression profile analysis even when sample size is extremely small. Journal of Bioinformatics and Computational Biology, 13(4):1550018, 2015